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Électricité (n.f.): Propriété qu’ont
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illustré - 1913)





Abstract

Functional stimulation is one of the most fascinating applications of bioelectromagnetism. It
deals with the stimulation of excitable biological tissues by electromagnetic fields. One of
its most impressive medical applications is the subthalamic nucleus deep brain stimulation
(DBS). It consists in the insertion of an electrode into the deep brain, delivering electric
pulses to treat Parkinson’s disease and other movement disorders. But despite its wide use
throughout the world for almost twenty years, the understanding of the mechanisms of action
remains unclear.

To help clinicians to better understand the mechanisms of DBS, its limitations and implica-
tions from an electrical point of view, electrical models of the head can be used to predict the
electric potential distribution generated by the electric pulse. With the development of med-
ical imaging techniques, the information on biological tissues that can be used to build these
electrical models has never been so detailed. The diffusion tensor magnetic imaging (DT-
MRI) is able to provide the orientation of the fibers within the cerebral tissues. Thus, the
high inhomogeneity and anisotropy of the head can be modeled through anisotropic electrical
conductivity tensors to set up realistic models of the patient’s head.

This thesis aims to provide to clinicians an accurate prediction of the potential distribution
generated by the electric pulse. With this purpose, a finite element (FE) model is set up
using electric conductivity values based on DT-MRI data. Special care has been taken to
model more realistic boundary conditions than the ones commonly encountered in literature.
A great effort has also been put to model the tissues surrounding the stimulation. The results
show that these two aspects are impacting significantly the potential distribution.

To predict the neural extent of the stimulation, electrical equivalent models of axons are
combined with the obtained potentials. Volume of tissues activated (VTA) are thus obtained.
Results show that the VTA are also impacted by the decision on how to model the boundary
conditions. They show that the usual choice assumed in literature up to now leads to an
overestimation of 30% of the VTA.

Keywords

Bioelectromagnetism, deep brain stimulation, finite element method, diffusion tensor imaging,
human head model
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Résumé

La stimulation fonctionnelle est l’une des applications les plus fascinantes du
bioélectromagnétisme. Elle consiste en la stimulation des tissus biologique excitables par
un champ électromagnétique. L’une des applications médicales les plus impressionantes est
la stimulation cérébrale profonde (DBS) du noyau sous-thalamique. Celle-ci consiste à intro-
duire une électrode dans les profondeurs du cerveau et d’y appliquer des impulsions électriques
afin de traiter la maladie de Parkinson ou d’autres troubles moteurs. Mais malgré son us-
age largement répandu à travers le monde depuis près de vingt ans, la compréhension de ses
mécanismes d’actions demeure incomplète.

Afin d’aider les practiciens à une meilleur compréhension des mécanismes de la DBS, ses
limitations et ses implications d’un point de vue électrique, des modèles numériques de la tête
humaine peuvent être utilisés afin de prédire la distribution des potentiels générés. Grâce au
développement des techniques d’imagerie médicale, les informations disponibles sur les tissus
biologiques utilisables pour établir ces modèles n’ont jamais été aussi détaillées. L’imagerie par
résonnance magnétique du tenseur de diffusion (DT-MRI) est capable de fournir l’orientation
des fibres composant les tissus cérébraux. Dès lors, la forte inhomogénéité et l’anisotropie de
la tête peuvent être modélisées au travers de conductivités électriques anisotropiques, afin de
mettre au point un modèle réaliste du patient.

Cette thèse a pour but de fournir aux practiciens une prédiction détaillée de la distribution
des potentiels générés par l’impulsion électrique. Dans cette optique, un modèle d’éléments
finis (FE) est mis au point, utilisant des valeurs de conductivités électriques basées sur les
données du DT-MRI. Un soin particulier a été pris afin de modéliser des conditions aux limites
plus réalistes que celles fréquemment rencontrées dans la littérature. Un important effort a
aussi été porté sur la modélisation des tissus entourant l’électrode de stimulation. Les résultats
montrent que ces deux aspects ont un impact significatif sur la distribution des potentiels.

Afin de prédire l’étendue de la stimulation au niveau neural, des modèles équivalents
électriques d’axones sont combinés avec les potentiels obtenus. Le volume de tissus activés
(VTA) est alors obtenu. Les résultats montrent que les VTA sont aussi influencés par les choix
de modèlisation des conditions aux limites. Ils montrent que le choix généralement assumé
dans la littérature jusqu’à présent conduit à une surestimation du VTA de l’orde de 30 %.

Mots-clés

Bioélectromagnétisme, stimulation cérébrale profonde, méthode des éléments finis, imagerie
par résonnance magnétique du tenseur de diffusion, modèle de tête humaine
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D’abord au Professeur Juan R. Mosig qui m’a proposé cette thèse, accueilli au sein de son
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de nombreux bons moments et d’enrichissantes discussions sur le quai de la gare. Enfin merci
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que tu m’as apporté et pour la patience dont tu as fait preuve. Tu as joué tous les rles
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1 Introduction

The actual trend of combining medical science and engineering has given birth to numerous
applications for the improvement of the patients’ life. While the application of edge techniques
and the requirements of high reliability have been a source of motivation for the engineers, the
new paradigms offered by the application of cutting edge technologies to their problems have
always attracted the medical world. As Lausanne is the home of two major actors of these two
worlds, namely the university hospital (Centre Hospitalier Universitaire Vaudois, CHUV) and
the Swiss Federal Institute of Technology (Ecole Polytechnique Fédérale de Lausanne, EPFL),
many diverse collaborations are blooming between these two entities, thus giving birth to a
full panoply of innovative and advanced applications in domains as varied as

• specialized sensors – Laboratory of Movement Analysis and Measurement (LMAM)

• medical imaging techniques – Signal Processing Lab 5 (LTS5) and Biomedical Imaging
Group (LIB)

• orthopedic prosthesis – Laboratory of Biomechanical Orthopedics (LBO)

• computer guided surgery – Laboratoire de Systèmes Robotiques (LSRO)

and many others.
Deep brain stimulation is one of these areas for which the collaboration between engineers
and medical doctors can provide rich and invaluable improvements.

The deep brain stimulation (DBS) of subthalamic nucleus (STN) is a medical technique used
since the early 1990’s to treat Parkinson’s Disease and other movement disorders. It is now
used worldwide and, in particular, it has become a standard at Lausanne’s CHUV. Indeed,
more than 150 patient have been treated since 1996 in the CHUV and the results have been
considered as excellent for the vast majority of these persons. Nevertheless, the understanding
of the mechanisms of action underlying DBS remains unclear, despite the perspective offerred
now by almost 20 years of experience.
STN-DBS relies on generating electric impulses inside the brain thanks to a deeply implanted
electrode. Since the effects of the STN DBS are almost instantaneous on the patient, the
procedure to implant the electrode is based on a trial and error procedure. This empirical
procedure aims to obtain both an exact anatomical location of the stimulation and to select
its electric parameters (frequency, amplitudes, pulse shape...). Recently, long term sides
effects have been observed, which could lead to the use of this therapy as treatment for other
symptoms and diseases, such as chronical depressions or obsessive-compulsive troubles.
This thesis aims to provide the clinicians with a tool having the ability to predict which
neural pathways are activated or inhibited by the stimulation. Such a tool can be useful for

3



4 Chapter 1: Introduction

two reasons. First, from a preoperative point of view, to improve the localization of the best
stimulation target and to help in the choice of the stimulation parameters. And secondly, as
a post operative tool to correlate the neural structures stimulated with the long term effects
observed.

1.1 Objectives

The research presented in this thesis has been done in the frame of the Swiss National Science
Foundation (SNSF) project number 31523A-108318 : “Exploration of the mechanisms under-
lying subthalamic deep brain stimulation for Parkinson’s disease by a computer model and
an analysis of the electrophysiological response of the brain to stimulation”. This research
project has involved the neurosurgery department on the Centre Hospitalier Universitaire Vau-
dois (CHUV) and two laboratories of the Ecole Polytechnique Fédérale de Lausanne (EPFL),
namely the Laboratory of Signal Processing 5 (LTS5) and the Laboratory of Electromagnetics
and Acoustics (LEMA).
The main objective of the project was to provide to the clinicians the best prediction possi-
ble of the tissues activated by the DBS. In this frame, an electrical conductive model of the
involved body regions has been built. The so-called bioelectric problem is well-known and
numerous electrical head models have been developed in the frame of electroencephalograms
(EEG) prediction and analysis. These models are based on the latest high definition medical
imaging techniques, to increase the realism of the modelled tissues.
The model developed in this thesis is based on diffusion tensor imaging. This allows to as-
sign to the modelled tissues an anisotropic conductivity. Also, opposite to the previous DBS
electrical models which were mainly based on reduced head models, the model developed in
this thesis extends to the upper chest in order to encompass the implanted pulse generator.
The thesis remains on a pure electrical standpoint. Therefore, any result concerning the acti-
vation of the tissues surrounding the DBS electrode is done on the basis of the values obtained
for the electrical potential distribution and for derived mathematical quantities such as its
second directional derivative.
The knowledge of these electrical quantities can be used, for instance, to provide extracellular
potentials needed as input data in electrical equivalent models of neurons, which allow to
evaluate the response of these neurons to DBS.
Indeed, a remaining challenge would be to compare the numerical-based prediction of this
thesis with actual data results obtained by direct physiological or clinical methods.
This would allow us to ascertain the relevance of quantities like the potential second deriva-
tive in the firing of neurones and to better estimate the threshold values actually needed to
provoke this activation.

1.2 Outline

This section summarize the contents of the chapters of the thesis. Every chapter end with a
selective bibliography complementing its material.
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Chapter 2 aims to introduce the reader to the wide domain of bioelectromagnetism. After
a definition of that term, a classification of the different applications of bioelectromag-
netism is provided. Some explanations and the historical background are presented.
Special care is taken in describing electrical stimulation, and more specifically deep
brain stimulation (DBS). For this topic, a survey of the current state of the art is
provided.

Chapter 3 introduces the needed electromagnetic theory and provides the mathematical equa-
tions for the static approximation of the general bioelectromagnetic problem. The nu-
merical techniques available to solve this general bioelectromagnetic problem are then
reviewed. Afterwards, this chapter explain the strategy used to estimate the electrical
conductivity of the tissues, based on the diffusion tensor magnetic resonance imaging
(DT-MRI). Finally the description of the selected numerical technique to solve the prob-
lem, the finite element (FE) method, is provided.

Chapter 4 depicts the realistic FE model developed in this thesis to provide the macro-
scopic effect of the DBS: the potential distribution generated in the brain tissues. The
sensitivity of this potential distribution to the parameters defining the general bioelec-
tromagnetic problem, namely the tissues conductivity and the boundary conditions, is
thoroughly evaluated.

Chapter 5 uses the results obtained in Chapter 4 to evaluate the microscopic effects of DBS:
the activation of neurons by the electric stimulation. This chapter first introduces
to the reader the basic mechanisms of action of neural signal propagation. Electrical
equivalent models of axons are then developed. Theses models are then combined with
the potentials generated by the stimulation to provide the main results of this thesis:
the volume of tissues activated (VTA) by the stimulation. Here also, the influence of
the tissues’ conductivity and of the applied boundary conditions is evaluated.

Chapter 6 summarize the thesis, provides its concluding remarks and outline the possible
future research directions inspired by the outcome of this work.

1.3 Original contributions

The primary original contributions of this thesis are summarized in what follows.

Chapter 3, Section 3.3 presents an original approach to obtain anisotropic electrical conduc-
tivity values based on diffusion tensor magnetic resonance imaging, which does not need
a segmentation process but takes directly advantage of the linearity observed between
the water diffusion and the electrical conductivity.

Chapter 4, Section 4.2 proposes a model for DBS which extends to the chest, in order to
model the whole DBS system in combination with a more sophisticated boundary con-
dition. This original approach allows to evaluate the impact of the simplified boundary
condition and the reduced geometry models usually applied in previous studies.
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Chapter 5, Section 5.2 introduces two original methods to evaluate the VTA. The one using
the fiber direction provided by the DT-MRI should be able to provide information
relevant for the clinicians on the activation of anatomical structures.



2 State of the Art and historical background

This chapter provides a non-exhaustive review of bioelectromagnetism and its applications.
Starting from the definition of bioelectromagnetism, it will sum up the history of this field of
science and of its different kinds of applications. The emphasis will be put on the functional
electrical stimulation, and more precisely on deep brain stimulation.

2.1 Bioelectromagnetism

The interactions between living organisms and electric phenomena have been known to
humanity since at least the ancient Egypt civilization. Some hieroglyphs describing the
electric catfish dated from 4000 B.C. have indeed been found [1].
Bioelectromagnetism is the area of science that studies these interactions. Until the middle
of the nineteenth century, electromagnetism and bioelectromagnetism where sharing the
same history as the first electromagnetic experiments were conducted on biological bodies,
which were used as sensors. In the last 100 years, the fast improvement of the knowledge
in electromagnetism has led to a better understanding of the basic bioelectromagnetism
phenomena. This has enabled a full panoply of bioelectromagnetic applications.

Several aspects can be taken into account to classify the applications of bioelectromag-
netism. In this thesis, a classification is proposed based on the nature and location of the
source of the electromagnetic fields. It is categorized here below and summarized in Fig. 2.1.

• The interactions with internal sources refer to the electromagnetic fields and electric
currents produced by any biological system. Firstly, we have the bioelectrical activity
itself, source of life and of all the neurological process. But bodies or any other bio-
logical system can also use internal generated electricity to enhance their physiological
senses or to create true weapons like the catfish electric bolt. The bioelectrical activity
can be measured through the electric and magnetic fields it produces or through some
macroscopic quantities like voltages. The study of the bioelectrical activity ”per se” is
not targeted in this thesis, although an obvious goal in the thesis would be to ascertain
how some natural bioelectrical activity is affected by external man-made sources.

• The interactions with external sources include any modification of the biological be-
havior provoked by an external electromagnetic field or electric current. The word ”ex-
ternal” includes sources like pacemakers that, although thanks to modern technology
are nowadays implanted in the body and acts from within, remain essentially alien to
the natural body. External sources can be classified as natural or artificial (man-made).
Obvious examples of a natural external source is the Earth geomagnetic field and the
solar electromagnetic radiation, but these phenomena are of no concern in this thesis.

7
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Figure 2.1: Diagram summarizing the applications of bioelectromagnetism. Bioelectromagnetism can
be divided depending of the source of the fields, either external to the body or created
by its own activity.

As for the external artificial sources, we will classify them, for the sake of clarity into two
groups, depending on whether they are associated to ”passive” or to ”active” processes.

Passive processes are those that do not interact directly with the bioelectric process in
the body (like neuronal signal transmission or heart beat). They will rather act at a
molecular or even atomic scale, producing for instance heat (diathermia, or hyperther-
mia) or a orientation of hydrogen atoms along a magnetic field (some medical imaging
techniques). Obviously, an indirect or retarded effect on the bioelectrical processes of
the body cannot be excluded. This could be the aim of the interaction (like in many
hyperthermia processes) or an undesirable effect that must be controlled and kept at
bay (X-rays imaging).

Active processes are those intended to act directly on bioelectrical phenomena in order to
stimulate or to inhibit them. Therefore these active processes can be also considered as
functional stimulation processes. Functional stimulation is nowadays applied to many
body parts, most frequently with medical applications in mind. A relevant example is
the ”Deep Brain Stimulation” (DBS), which is the subject of this thesis.

A final word must be said about these processes from the electrical engineer point of view.
Active process must interact with the natural bioelectrical activities. Therefore they must
use the same range of frequencies arising naturally in body-generated processes. These are
relatively low frequencies, when considering the whole electromagnetic spectrum (Fig. 2.2).
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Figure 2.2: The bioelectromagnetic applications spread on the whole electromagnetic spectrum. The
low frequencies below one kilohertz are where the bioelectricity generated by the living
bodies takes place. The active interactions with external fields, which modify the behavior
of the biological body, are also arising at these frequencies. At higher frequencies, from
radiofrequency to the x-rays, the interactions are qualified as passive as they do not
modify the behavior of the living bodies. (Adapted from Wikimedia Commons)
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The range is roughly between DC and a few hundreds of Hz (Hertz), with DBS occupying
the higher part of this range at, typically 100-150 Hz. This, by the way, justifies why DBS is
termed in medical circles a ”high frequency technique”.
On the other hand, passive processes are intended not to elicit or to interfere directly with
natural bioelectrical processes. This is obtained by using frequencies very far away from the
natural range. The frequencies are typically in the high-end of the electromagnetic spectrum
(see Fig. 2.2). They are selected either to provoke a specific molecular reaction (hyperthermia
at 2.45 GHz, the resonant frequency of water molecules), to provide enough penetration power
(X-rays tomography) or to induce any specific reaction at molecular or atomic level that can
be used for imaging or for therapy purposes.

A succint description of the bioelectromagnetic interactions more deeply connected with
the purpose of this thesis is given in the following sections.

2.1.1 Bioelectric activity

The transport of information through neurons is made by variation of ion concentration,
creating electrical currents. Biological activity is the source of an important electrical activity
through neural processes. This electrical activity generated by any living body is called
bioelectricity. The chronology of bioelectricity measurements is now briefly reviewed.

Measurement of bioelectricity were first reported by Matteucci, who characterized a
muscle impulse in frog muscle in 1838. In 1887, the first trace of electric activity of human
heart, the electrocardiogram or ECG was measured by Waller.
Few years later, in 1924, the German psychiatrist Hans Berger made the first recording of
the electrical activity of the brain, the electroencephalogram or EEG and identified the two
major rhythms, α and β.
The development of modern electronics, and especially the transistor (Bardeen and Brattain,
1948), opened a new area in the use of these measurements. This indeed has allowed the
instrumentation of bioelectromagnetism to be more reliable, miniaturized and made it
portable and implantable.
According to Ampère, any electric current produces a magnetic field. In the biological
electrical processes, the currents involved are so small that the measurement of the magnetic
field they create was only possible in the second half of the twentieth century.
In 1963, Baule and McFee measured the first biomagnetic signal, the magnetocardiogram or
MCG, arising from the heart activity.
The magnetic signals generated by the electric activity of the brain, the magnetoencephalo-
gram or MEG, are so low that in practice their detection is only possible with the use of
Superconducting QUantum Interference Devices (SQUID), working at the temperature of
liquid helium (-269˚C). It is in 1970 that Cohen reported the first detection of MEG with
the help of these devices. More information on the history of bioelectricity measurements
can be found in [1].

Nowadays, applications of the measurements of the bioelectromagnetic activity of patients
covers a wide and important area.
The monitoring of the heart beats through ECG is routinely used in medical practice and
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(a) EEG acquisition
system

(b) EEG recordings (c) MEG acquisition
system

(d) BCI system

Figure 2.3: Examples of measuring the bioelectric activity of the head.

hospitalization procedures. Moreover the study of patient ECG rhythm is also used to diag-
nose several troubles [2].
The development of the EEG and MEG and the use of high resolution medical imaging al-
lowed neural science to elucidate some behavior of the brain. The study of EEG has several
applications in cognitive science (motor process, sensory pathways, spatial tasks . . . ) but also
clinical applications such as epilepsy, head trauma, sleep disorders, sclerosis.
Another promising application of EEG is the brain computer interface (BCI), which uses
the identification of EEG pattern to control computer interfaces [3]. The patient wears a
cap containing about thirty electrodes that record the EEG. Particular mental states such
as movement imagination, mental arithmetic or imagining someone, are differentiated among
each other. A task can be executed according to the mental state activated. The applications
are varied and are giving new hopes for autonomy for disabled people.

2.1.2 Interactions due to natural sources

An external electromagnetic field or an electric current containing the frequencies naturally
present in the bioelectrical phenomena (lower end of the EM spectrum) has all the chances
to interact with the biological process.
The source of the external field can be the Earth (magnetic field), but also another living
creature, in which case Evolution usually guarantees the compatibility of frequencies.

Within the animal kingdom, several animal species have developed biological processes
taking advantages of these interactions. Birds, fishes or turtles use the earth magnetic field to
locate themselves during their annual migrations (Fig. 2.4(a)) [4]. Hammerhead sharks and
similar species have developed electroreceptory sensory pores called ampullae of Lorenzini.
These sensors are used to locate their preys as an electromagnetic field is generated by any
movement of these preys (Fig. 2.4(b)).
When ancient Egyptians caught an electric catfish in their nets, the shock generated by the
fish (450volts) forced the fishermen to release all the fish [1]. This is a typical example of
excitation which should be classified as internal from the point of view of the catfish but
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external otherwise! Other similar dual cases can be easily found.

(a) During their migrations, avian birds use the
geomagnetic field as a compass to locate themselves.

(b) Hammerhead shark uses electrosensitive
organs to locate their preys.

Figure 2.4: Examples of animals using bioelectromagnetic interactions. (Taken from Wikimedia
Commons)

2.1.3 Passive interactions due to artificial sources

When increasing the frequency of the electromagnetic field, the effects of the interaction be-
tween a field and a biological body does not act on biological processes anymore but rather
on a structural or molecular processes. With the emergence of radiotelecommunications, the
study of the effects of man-made sources of electromagnetic field has become an intensive
research area. Most of the biological tissues are only interacting weakly with electromagnetic
fields, absorbing the energy of the fields and converting it into heat. But long term effects of
the exposure of biological tissues to electromagnetic fields remains unknown. Intensive studies
are ongoing but as these researches have started lately, there is no clear answer yet on these
effects [5].
Besides, therapeutic techniques using these kinds of interaction have been set up. The devel-
opment of diathermy as a heating source is well established [6]. The use of hyperthermia is
analog except that here the heating is used up to damage and even destroy tissues. As it has
been observed, the malignant cells are generally more sensitive to thermal damage than are
normal cells. The use of this technique to destroy cancers tumors that cannot be removed by
classical surgery has thus rapidly increased.
But the main application of bioelectromagnetic interactions at high frequency is the medical
imaging.

2.1.4 Medical Imaging

Medical imaging uses interactions between electromagnetic fields and biological tissues at
high frequencies. The frequency used is highly dependant on the type of imaging. The typical
range of frequency used for the magnetic resonance imaging (MRI) is around tens of mega-
hertz while radiography uses X-rays.
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The biological tissues modify in a specific way the field while interacting with it. The re-
flected or transmitted electromagnetic fields are then detected and analyzed to characterize
the properties of the tissues. Therefore, it allows a non destructive anatomical reconstruction
of the body.
Medical imaging has started at the end of the nineteenth century with the X-ray imagery,
which used the fact that bones absorb more these ionizing rays than the other tissues
(Fig. 2.5(a)). It provided the first non invasive imaging of the human internal anatomy.
In the 1970s, this technique was improved and upgraded to computed tomography scan (CT
scan), which uses the same properties to provide a 3-dimensional view of a living body
(Fig. 2.5(b)).
In the late 1970s, the availability of techniques to produce very strong magnetic fields led to
the development of MRI (Fig. 2.5(c)), a technique that provides higher contrast between soft
tissues than what previously obtained by CT scan. A strong magnetic field is used to align
hydrogen nuclei, found in abundance in water molecules and therefore in biological tissues. A
second electromagnetic field, which oscillates at radiofrequencies and is perpendicular to the
main field, is then pulsed to push a portion of the protons out of alignment with the main
field. These protons then drift back into alignment with the main field, emitting a detectable
radiofrequency signal as they do so. Since protons in different tissues of the body realign at
different speeds, the different structures of the body can be revealed. The MRI is the base of
several new imaging technique such as diffusion tensor MRI (DT-MRI) (see Fig. 2.5(d)) [7],
functional MRI [8] and so on.
The diffusion tensor imaging is obtained from a set of MRI taken for different direction of
field. It have been shown that the diffusivity of water depends on the angle between the field
and the fiber tract axis. The differences obtained for each direction allow to evaluate the
preferred direction for diffusion of water. This measure of the anisotropic water diffusion in
voxels provides an indication on the orientation of the fiber tracts in tissues [9]. This medical
imaging technique will be used in this thesis to build a realistic anisotropic model of the brain
tissues.

(a) sagittal X ray (b) axial CT (c) sagittal cut MRI (d) DTI color map

Figure 2.5: Examples of imaging the head.

The improvements of the medical imaging have allowed a better knowledge of the biological
tissues leading to the development of numerous medical techniques to detects and treat disease.
But biological bodies are also producing their own electromagnetic fields and using them as
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a mean of transporting information.

2.2 Functional stimulation of excitable biological tissues

Functional electric or magnetic stimulation consists in stimulating either muscle [10] or
nervous system [11] through the creation of an external electic or magnetic field in excitable
tissues.

A short history

A succinct review of the historical experiments of functional stimulation is given here. Dur-
ing the eighteenth century, Galvani produced the most famous experiments in neuromuscular
stimulation [1]: a dissected and prepared frog was lying on the same table as an electric
machine. When his assistant touched with a scalpel the femoral nerve of the frog, sparks
were simultaneously discharged in the nearby electric machine, and violent muscular contrac-
tions occurred. This is cited as the first documented experiment in neuromuscular electric
stimulation. He then elaborated an experiment which is often cited as the classic study to
demonstrate the existence of bioelectricity (see Fig. 2.6).

Afterwards, Green(1872) described a method used to awake surgical patients who where

Figure 2.6: Stimulation of a frog leg muscle by Galvani. The bimetallic arch of copper (C) and zinc
(Z), when in contact with the tissues, was producing a contraction of the muscle. Taken
from [1]

deeply anesthetized. Using a battery generating about 300 volts, he applied this voltage to
the patient between the neck and the lower ribs on the left side. It is documented that Green
used this method successfully on five to seven patients who suffered sudden respiratory arrest
and were without a pulse. Later, the development of induction coils by Faraday led to the
first magnetic stimulation of nervous system(d’Arsonval,1896). A more detailed history of
electric stimulation can be found in [1].
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Magnetic and electric stimulation

The typical frequency range for this kind of stimulation is between static and hundreds of
hertz. At these frequencies, it is correct to distinguish between electric and magnetic field
effects. Therefore, the functional stimulation is either said magnetic or electric, depending on
the field mainly used to interact with the excited tissues. The stimulation through electric
fields, the most widespread one, and specific examples will be described in detail in the
following subsections. Here some general remarks about magnetic and dielectric interactions
are made.

In magnetic functional stimulation, time-varying magnetic fields are used to induce the
stimulating current within the volume conductor. The fact that the magnetic field penetrates
unattenuatedly through various classes of biological tissues implies several advantages. It
avoids a high density of stimulating current at the contact and thus avoids pain sensation. It
also avoids physical contact between the stimulating coil and the target tissue, which can be
of primal importance in medical applications. The main application of magnetic stimulation
of excitable tissues is transcranial stimulation of the motor cortex [12]. A coil is placed over
the head of the patient, to produce a magnetic field. This field induces a current loop in the
head (see Fig. 2.7) and produces the stimulation. Magnetic stimulation of the heart is also
performed.

(a) (b)

Figure 2.7: In transcranial magnetic simulation, an external coil creates an magnetic field. This
field (solid line) induces a loop current (dashed line) in the brain (a) which stimulates
the targeted area. b) shows a transcranial magnetic stimulation device. Taken from
scholarpedia and www.princeton.edu

Functional electric stimulation consists of direct injection of current in excitable tissues
through electrodes. Opposite to magnetic stimulation, the stimulating electrodes must have
a galvanic contact with the tissues. The electrode can either be placed on the outer boundary
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of the body (transcutaneous stimulation) or implanted in direct contact with the targeted
tissue.
In the case of transcutaneous stimulation, the currents go through the skin to reach the tar-
geted area. This kind of stimulation is noninvasive but implies several drawbacks: activation
of cutaneous pain receptors, poor selectivity and use of strong currents. These drawbacks are
avoided when the electrode is directly implanted in the patient’s body.
However, it is obvious that then a surgical intervention is required. Various applications for
electrical stimulation exist and are discussed hereafter.

2.2.1 Heart stimulation

Electrical stimulation of the heart has played a major role in the development of electrical
stimulations due to the importance of this organ. The heart can be electrically stimulated
either to maintain the heartbeat regular (pacing) or to create an shock when the heart is
having a seizure (defibrillation).
The modern era of cardiac stimulation started in 1952, when Zoll performed cardiac pacing
for a duration of 20 minutes [13]. The first implantation of a cardiac pacemaker was
accomplished in 1958 by Senning [1].
The actual pacemakers monitor the electrical rhythm of the heart. When the pacemaker
detects a failed heartbeat within a normal beat-to-beat time period, it provides a short low
voltage pulse through an electrode contact in the ventricle to stimulate it. This sensing and
stimulating activity continues on a beat-by-beat basis.
The electrical stimulation of the heart can be achieved through several techniques explained
hereafter.
Transcutaneous or external pacing is used in case of medical emergency. It consists in
delivering pulses of electric current through electrodes located on each side of the patient’s
chest, which stimulate the heart to contract.
Transvenous pacing is the introduction of a pacemaker wire through a vein to the right part
of the heart. The wire is then connected to an external pacemaker and electric pulses are
then sent. When the stimulation is not necessary anymore, the system is removed.
Permanent pacing consists of the implantation of a whole system in the patient’s body. The
electrodes are placed in one or more chambers of the patient’s heart and then connected to
the pulse generator (see Fig. 2.8).

Another type of cardiac electrical stimulation is defibrillation. Prevost and Battelli found,
in animal experiments, that low-voltage electric shocks induced ventricular fibrillation whereas
high-voltage shocks did not. Instead, the latter defibrillated a fibrillating heart. In the 1930s
Kouwenhoven used a 60 Hz current to defibrillate a dog heart [14]. Modern implantable
defibrillators are designed to detect ventricular and atrial fibrillation and, if necessary, to
deliver an electric jolt in order to drive back the heart to its sinusoidal rhythm.
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Figure 2.8: Schematic view of a single-chamber pacemaker. Taken from www.rush.edu

Figure 2.9: A transcutaneous multichannel neuroprosthesis system allows persons with paraplegia
unbraced ambulation for home and short community distances. (Paradtep System User,
couretsy of Sigmedic Inc., Fairborn, OH.), taken from [15].

2.2.2 Muscle stimulation

The neuromuscular electrical stimulation (NMES) is widely used in neurorehabilitation [10,15]
and is directly inspired from Galvani’s experiment.
Its application may include standing or ambulatory activities (see Fig. 2.9), upper-limb per-
formance of activities of daily living and control of respiration or bladder function.
One of the therapeutic effects is motor relearning, which is defined as the “recovery of previ-
ously learned motor skills that have been lost following localized damage to central nervous
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system”. The stimulating system (neuroprosthesis) can be either implanted or transcuta-
neous.
NMES is initiated by the excitation of peripheral nervous tissues rather than the muscle cells.
Indeed, the threshold for eliciting a nerve fiber action potential is 100 to 1000 times less than
the threshold for muscle fiber stimulation. The strength of the resultant muscle contraction
is modulated by adjusting the amplitude and the duration of the electric pulse stimulation.
The frequencies used for NMES systems range from 10 to 50 Hz.

2.2.3 Spinal cord stimulation

Spinal cord stimulation is mainly used to treat chronic pain of neurologic origin [16]. Neu-
rostimulation delivers low voltage electrical stimulation to the spinal cord or targeted periph-
eral nerve (see Fig. 2.10) to block the sensation of pain.
The mechanism(s) of action of this technique remains unclear. One theory, the Gate Control
Theory, claims that neurostimulation activates the body’s pain inhibitory system [17]. Ac-
cording to this theory, there is a gate in the spinal cord that controls the flow of noxious pain
signals to the brain. An electrical activation of certain type of nerve fibers in the dorsal horn
of the spinal cord inhibit these pain signals or ”close the gate”. The neurostimulation system,
implanted in the epidural space, stimulates these pain-inhibiting nerve fibers, masking the
sensation of pain.

Figure 2.10: Artistic view of spinal cord stimulation.

2.2.4 Cochlea stimulation

A cochlear implant (CI) is a surgically implanted electronic device that provides a sense of
sound to a person who is profoundly deaf or severely hard of hearing. The cochlear implant
does not amplify sound like other hearing aids, but directly stimulates with an electric field
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any functioning auditory nerves inside the cochlea. The system is made of an external
microphone, a speech processor and an electrical stimulator. A transcutaneous link is used
to transmit the signal processor output to the impanted electrodes (see Fig. 2.11).

In 1800, Volta reported placing an electrode in each of his ears and connecting the
two electrodes to a series stack of electrochemical cells, whose potential was later estimated
at 50 V. He reported hearing a “sound like a boiling viscid fluid” [18]. Wisely, he never
repeated the study.
It is in the 1960s that the first studies on electrical stimulation of the cochlea have been
reported [19]. The earliest cochlear implants used a single electrode placed inside the cochlea.

Introduction of cochlear implants that use multiple implanted electrodes and better
processing of the signals from the microphone provided major improvements in speech
discrimination. Using more than one electrode allowed to stimulate different parts of the
cochlea and thereby different population of auditory nerve fibers with electrical signals
derived from different frequency band of sound. Actual cochlear implants separate the sound
spectrum using bandpass filters. Then a specific band of the sound spectrum activates the
proper nerves thanks to the electrode.

transcutaneous link

stimulating electrode

connecting wire

Figure 2.11: Cochlear stimulation implant. An external microphone and speech processor are ana-
lyzing the sound. Then the information is transmitted transcutaneously to the pulse
generator, which delivers the pulse to the electrode through a wire to stimulate the
cochlea. Adapted from www.thehearinginstitute.org

2.2.5 Brain stimulation

When speaking of electric neural stimulation, the brain is obviously the organ of main interest
as it is the source of most of the neural processes.
One of the technique of stimulation of the brain is electroconvulsive therapy (or electroshock).
This controversial psychiatric treatment is mainly used today to treat major depression which
have not responded to other treatments, and in some cases to treat psychotic disorders.
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Electrodes are usually placed on each part of the patient’s head and a strong electrical stimulus
is delivered to provoke a seizure to the patient. Whereas showing efficient results in some
therapies, this technique is used as a last possibility as it has serious sides effects.
To stimulate a specific area of the brain while minimizing the side effects, intracranial electrical
stimulation is performed either on the cortex (electrocorticography) or inside the brain. The
intracranial electrical stimulation is called deep brain stimulation (DBS).

2.3 Deep brain stimulation

Motor-control
brain region

Electrode

Electric pulse

Implanted pacemaker

Implanted wire

Figure 2.12: Artistic view of DBS. The implanted device is composed of a electrode which delivers
an electric pulse to the target. The pulse is generated by an implanted pulse generator
located in the chest and linked to the electrode via an implanted electric cable.

2.3.1 History

As knowledge on the brain structure increased, the understanding that the brain is an elec-
trical organ and that it is not homogeneous were major steps in the progress of DBS.
At the end of the nineteenth century, the first experiments of brain stimulation were performed
to treat epilepsy through electrocorticography (electric stimulation of the cortex). This tech-
nique was not yet ready to consider the implantation of a stimulating device [20]. Therefore,
practitioners rather used ablation or lesioning of the targeted area than electrical stimulation.
In a next step, surgical operations on the brain became much more efficient thanks to human
stereotaxy. This technique consists in the localization of the structure to be treated through
an atlas of the human brain. Once this structure is determined, an apparatus guided the
surgical tools to reach the targeted area (see Fig. 2.13(a)). As there are issues of inaccurate
targeting with stereotactic surgery, electrical stimulation was used since 1950 to determine
the proximity of vital structures and thereby avoid them before creating stereotactic lesions.
The development of the first totally implanted pacemaker by Chardack in 1960 and of the
radiofrequency-driven spinal cord stimulator by Shealy in 1967 opened the era of implantable
systems for DBS (see Fig. 2.12). In 1987, Benabid et al. [21], realized that chronic “high
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frequency” stimulation (in fact just above 100 Hz) achieved similar effects than lesions at
the same site of application, in a reversible, and therefore safer, manner than the former
surgical lesioning (destructive or ablative) stereotactic methods (thalamotomies and pallido-
tomies). DBS of the subthalamic nucleus (STN) or globus pallidus (GPi) has largely replaced
palidotomy in the treatment of the cardinal motor features of Parkinson’s disease (resting
tremor, rigidity, bradykinesia). The clinical benefits of the DBS are so encouraging that
several pioneer studies have begun to examine its utility for dystonia [22], epilepsy [23] and
obsessive-compulsive disorder.
The interested reader will find a more detailed history of DBS in the review of Schwalb and
Hamani [20].

(a) To apply precise surgery to an area previously se-
lected with imaging of a patient and anatomic atlas, a
stereotactic frame is used. Courtesy of Benjamin Bros-
dau

(b) During DBS surgery, the pa-
tient is still conscious. Taken
from Wikimedia Commons

Figure 2.13: Illustration of the DBS surgery tool and procedure

2.3.2 Set up procedure

The medical procedure used to install DBS devices is the following: The goal of stereotactic
surgery is to reach a selected area (or target) of stimulation with optimal accuracy. The first
step is to locate this area in the patient brain.
To do so, the practician uses an MRI of the patient’s head and a stereotactic atlas to identify
the target’s position (subthalamic nucleus in the case of Parkison’s disease).
Once the target located in the patient’s anatomy, a trajectory avoiding vital organs such as
veins or specific functional areas is selected for the insertion of the electrode. The stereotactic
frame is then set up to guide the surgical tools along this trajectory during the surgery.
The surgery then starts and during this phase, the patient remains conscious as the evaluation
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of the effects of the stimulation requires his participation. Openings are made under local
anesthesia in the patients scalp in order to reach the skull. The skull is then drilled to give
access to the brain.
First, a microelectrode is inserted in the brain and records the electric noise of the structures
crossed during the course to reach the target. The characteristic electrical noise signature
of the subthalamic nucleus allows to re-enforce the localization of this structure. But this
procedure increases the risks of bleeding and extends the duration of the procedure.
The introduction of the stimulating electrode takes place and stimulation starts few millime-
ters over the target to test the patient’s response to stimulation. Afterwards, the parameters
of stimulation are changed (frequency, amplitude) and several neurologic tests are proceeded
to evaluate how the patient’s symptoms evolve. The stimulating electrode is then introduced
deeper and the procedure is started again.
The final position of the electrode and the stimulation parameters are chosen according to
maximizing the patient’s response to stimulation while minimizing the side effects.
Once the electrode is placed adequately, the system is internalized and linked to the pulse
generator located under the collarbone. A picture illustrating the DBS surgery is shown in
Fig. 2.13(b).

2.3.3 Present understanding

The therapeutic effectiveness of DBS had for consequences that the clinical applications have
preceded the scientific understanding of the underlying mechanism(s) of action. We are only
in the preliminary stages of understanding the effects of DBS because of the limited num-
ber of years that have been available for scientific investigation and the sheer complexity of
the problems being addressed. However, a critical mass of talented clinicians and scientists
dedicated to addressing the mechanisms of DBS now exists. In turn, collaborative efforts are
forming to address the effects and mechanisms of DBS from the molecular, cellular, network,
system, and behavioral levels.

There exist long-standing controversies over different hypotheses to explain the therapeutic
benefit of DBS. Addressing the effects of high-frequency DBS confronts investigators with
a paradox of how stimulation (traditionally thought to activate neurons) can result in sim-
ilar therapeutic outcomes as lesioning target structures. In turn, there exist two general
philosophies on the effects of DBS: (1) DBS generates a functional ablation by suppressing or
inhibiting the structure being stimulated, or (2) DBS results in activation of the stimulated
structures that are transmitted throughout the network. It is possible that the therapeutic
mechanisms that underlie DBS most likely represent a combination of several phenomena:
such as depolarization blockade, synaptic inhibition, synaptic depression and stimulation-
induced modulation of pathologic network activity [24,25].

To address these questions, models have been set up analyzing several aspects of the different
levels of mechanism. These models will be reviewed in the following.
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Electric field released form the electrode

The electrical field generated by DBS is a three-dimensional complex phenomenon that is
distributed throughout the brain. The field distribution is affected by the electrical proper-
ties of the surrounding tissues [26, 27]. These electrical properties depend on the electrode
position in the brain anatomy, but also of the presence of a capacitive tissue at the interface
between electrode contact and brain tissue. Indeed the implantion of the stimulation electrode
induces the creation of cicatricial tissues. These tissues are directly influencing the potential
distribution created by the stimulation [28–30]. The design of the electrode also affects the
shape of the electric field [31–34]. The presence of cystic cavities in the tissues surrounding
the electrode have also been investigated in [35], and showed a deformation of the electric
potentials released during stimulation.
The electric field distribution plays an important role in DBS. Indeed, the response of an
individual neuron to the applied field is related to the second derivative of the extracellular
potential distribution along each process [36]. In turn, each neuron (or neural process) sur-
rounding the electrode will be subject to both depolarizing and hyperpolarizing effects from
the stimulation [37]. As a result, a neuron can either be activated or suppressed in response to
extracellular stimulation in different ways and in different portions of the neuron, depending
on its positioning with respect to the electrode and the stimulation parameters used [38].
Activation or inhibition of the different classes of neurons surrounding the electrode can re-
sult in dramatically different physiologic and/or behavioral outputs. Given the stimulation
parameters and electrode geometries presently used, it is likely that DBS directly affects local
cells, afferent inputs, and fibers of passage. This complicates our ability to specifically address
the role of activation/inhibition of each of these tissues in the mechanism of DBS.

Effect of DBS at the single cell level

When stimulating within the central nervous system, the electrode is placed within a complex
volume conductor where there exist three general classes of neurons that can be affected:
local cells, afferent inputs, and fibers of passage. Local cells represent neurons that have
their cell body in close proximity to the electrode. Afferent inputs represent neurons that
project to the region near the electrode and whose axon terminals make synaptic connections
with local cells. Fibers of passage represent neurons where both the cell body and axon
terminals are far from the electrode, but the axonal process of the neuron traces a path that
comes in close proximity to the electrode. Each of these classes of neurons can be affected by
extracellular stimulation.
The use of multicompartment cable models of neurons coupled to extracellular electrical
fields provides the opportunity to study the effects of stimulation on neural activity. The
first studies of modelling extracellular stimulation date back to McNeal (1976) [39] and have
been used extensively in the study of electrical stimulation nerve stimulation [32, 40–42].
More recently, investigations have addressed the biophysical mechanisms of action potential
initiation during extracellular brain stimulation on neuron models, [38, 43–45] and on axons
models [26–28,31,32,46,47].
In general, modelling the excitation of neurons relies on representing the neural membrane
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with multiple compartments of electrical circuits (conductance and capacitance in parallel or
series) [48]. Models of extracellular stimulation allow analysis of the effects of stimulation
of all the neural elements surrounding the electrode simultaneously, something impossible to
achieve experimentally. However, the strengths of modelling are tempered by the necessary
simplifications made in any reasonable model.

Modelling the volume of tissue influenced dy deep brain stimulation

Our understanding of the size and shape of the three-dimensional volume of tissue directly
influenced by DBS is limited. The subthalamic nucleus represents the most common target of
DBS technology. However, the subthalamus nucleus is a relatively small structure surrounded
by several other nuclei and multiple fiber tracts. One limitation of subthalamic nucleus DBS
is the low threshold for side effects such as tetanic muscle contraction, speech disturbances,
and ocular deviation [49]. Activation of highly anisotropic fiber tracks that surround the
subthalamic nucleus have been implicated in many of the side effects associated with DBS.
However, our limited understanding of the neural response to stimulation and the three-
dimensional anisotropic and inhomogeneous tissue medium surrounding the electrodes makes
predicting the volume of tissue influenced challenging.
The recent work of McIntyre’s group evaluated a volume of tissue activated. A finite element
model is used to solve for the electrical field generated in the tissue medium by DBS. The
diffusion tensor imaging was used to estimate the electrical conductivity of the surrounding
tissues [50]. The field was applied to detailed multicompartment cable models of myelinated
axons to determine stimulation parameters suprathreshold for axonal activation. Based on
the results from stimulation of the axon models, estimates of the spatial extent of activation
in the anisotropic and inhomogeneous tissue medium were made using the second difference
of the potential distribution [26, 27]. Nevertheless, the use of this second difference of the
potential is directional and needs an assumption on the fibers direction.

Clinical parameters used for DBS

The general therapeutic stimulation parameters for DBS (monopolar cathodic; 1 to 5 V
stimulus amplitude; 60 to 200 μs stimulus pulse duration; 120 to 180 Hz stimulus frequency)
have been derived empirically by trial and error [51]. This trial-and-error selection of the
stimulation parameters has been effective because of the nearly immediate effects of DBS on
the control of tremor and Parkinsonian motor symptoms. However, new therapies utilizing
DBS technology will not allow such ease of titration. The beneficial effects of stimulation can
take weeks to months to manifest in dystonia and obsessive-compulsive disorder, and it is
unclear which electrode geometries, stimulation amplitudes, pulse durations, and frequencies
are most effective for these new therapeutic directions. Therefore, the elaboration of a
reliable model of the physical phenomens involved during DBS is of paramount relevance to
elucidate the underlying mechanism(s) of action of DBS.
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2.4 Conclusion

This chapter introduced some aspects of bioelectromagnetism, which consists of the interac-
tion of electromagnetic fields with biological bodies. These interactions can be divided into
two groups, depending on the source of the electromagnetic fields. The bioelectricity concerns
the sources produced by biological processes inside the body.
The interactions between the electromagnetic fields produced by external sources and biologi-
cal bodies are used in several applications such as medical imaging. One of these applications
is the deep brain stimulation.
Deep brain stimulation is the electrical stimulation of a brain structure through an implanted
electrode. Whereas this technique is widely used, its mechanisms of action are still not well
understood and subject to research.
The aim of this thesis is to build an electrical model to predict the potential distribution
generated by the electric stimulation and to evaluate the impact of the stimulation on the
surrounding tissues.





Bibliography

[1] J. Malmivuo and R. Plonsey, Bioelectromagnetism. Oxford University Press, 1995.

[2] P. L. Nunez and R. Srinivasan, Electric Fields of the Brain - The Neurophysics of EEG, 2nd ed.
Oxford University Press, 2006.

[3] J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D. J. McFarland, P. H. Peckham, G. Schalk,
E. Donchin, L. A. Quatrano, C. J. Robinson, and T. M. Vaughan, “Brain-computer interface
technology: a review of the first international meeting.” IEEE Trans Rehabil Eng, vol. 8, no. 2,
pp. 164–173, Jun 2000.

[4] J. L. Kirschvink, “Magnetoreception: Homing in on vertebrates,” Nature, vol. 390, no. 6658, pp.
339–340, Nov. 1997. [Online]. Available: http://dx.doi.org/10.1038/36986

[5] “What are electromagnetic fields?” World Health Organization, Tech. Rep., 2004. [Online].
Available: http://www.who.int/peh-emf/about/WhatisEMF/en/

[6] J. M. Osepchuk, Biological effects of Electromagnetic Radiation. IEEE Press, 1983.

[7] D. Le Bihan, J. F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, and H. Chabriat,
“Diffusion tensor imaging: concepts and applications,” J. Magn. Reson. Imaging., vol. 13, no. 4,
pp. 534–546, Apr. 2001.

[8] K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet,
D. N. Kennedy, B. E. Hoppel, M. S. Cohen, and R. Turner, “Dynamic magnetic resonance imaging
of human brain activity during primary sensory stimulation.” Proc Natl Acad Sci U S A, vol. 89,
no. 12, pp. 5675–5679, Jun 1992.

[9] P. J. Basser, J. Mattiello, and D. LeBihan, “Mr diffusion tensor spectroscopy and imaging.”
Biophys J, vol. 66, no. 1, pp. 259–267, Jan 1994.

[10] O. K. Sujith, “Functional electrical stimulation in neurological disorders.” Eur J Neurol,
vol. 15, no. 5, pp. 437–444, May 2008. [Online]. Available: http://dx.doi.org/10.1111/j.1468-
1331.2008.02127.x

[11] P. L. Gildenberg, “Evolution of neuromodulation.” Stereotact Funct Neurosurg, vol. 83, no. 2-3,
pp. 71–79, 2005. [Online]. Available: http://dx.doi.org/10.1159/000086865

[12] M. Kobayashi and A. Pascual-Leone, “Transcranial magnetic stimulation in neurology.” Lancet
Neurol, vol. 2, no. 3, pp. 145–156, Mar 2003.

[13] P. M. Zoll, “Resuscitation of the heart in ventricular standstill by external electric stimulation.”
N Engl J Med, vol. 247, no. 20, pp. 768–771, Nov 1952.

[14] W. B. Kouwenhoven, “Effects of electricity on the human body.” Ind Med Surg, vol. 18, no. 7, p.
269, Jul 1949.

[15] L. R. Sheffler and J. Chae, “Neuromuscular electrical stimulation in neurorehabili-
tation.” Muscle Nerve, vol. 35, no. 5, pp. 562–590, May 2007. [Online]. Available:
http://dx.doi.org/10.1002/mus.20758

27



28 Bibliography

[16] M. Chaudhari and P. Mackenzie, “Implantable technology for pain management,” Anaesthesia
and Intensive Care Medicine, vol. 9, no. 2, pp. 69–74, 2008.

[17] R. Melzack and P. D. Wall, “Pain mechanisms: a new theory.” Science, vol. 150, no. 699, pp.
971–979, Nov 1965.

[18] F. A. Spelman, “The past, present, and future of cochlear prostheses.” IEEE Eng Med Biol Mag,
vol. 18, no. 3, pp. 27–33, 1999.

[19] A. R. Moller, “History of cochlear implants and auditory brainstem implants.” Adv Otorhino-
laryngol, vol. 64, pp. 1–10, 2006. [Online]. Available: http://dx.doi.org/10.1159/000094455

[20] J. M. Schwalb and C. Hamani, “The history and future of deep brain stimu-
lation.” Neurotherapeutics, vol. 5, no. 1, pp. 3–13, Jan 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.nurt.2007.11.003

[21] A. Benabid, P. Pollak, A. Louveau, S. Henry, and J. De Rougemont, “Combined (thalamotomy
and stimulation) stereotactic surgery of the vim thalamic nucleus for bilateral parkinson disease,”
Applied Neurophysiology, vol. 50, no. 1-6, pp. 344–346, 1987.

[22] A. L. Benabid, “Deep brain stimulation for parkinson’s disease.” Curr Opin Neurobiol, vol. 13,
no. 6, pp. 696–706, Dec 2003.

[23] W. H. Theodore and R. S. Fisher, “Brain stimulation for epilepsy.” Lancet Neurol, vol. 3, no. 2,
pp. 111–118, Feb 2004.

[24] A. L. Benabid, A. Benazzous, and P. Pollak, “Mechanisms of deep brain stimulation.” Mov Disord,
vol. 17 Suppl 3, pp. S73–S74, 2002.

[25] J. L. Vitek, “Mechanisms of deep brain stimulation: excitation or inhibition.” Mov Disord, vol.
17 Suppl 3, pp. S69–S72, 2002.

[26] C. C. McIntyre, S. Mori, D. L. Sherman, N. V. Thakor, and J. L. Vitek, “Electric
field and stimulating influence generated by deep brain stimulation of the subthalamic
nucleus.” Clin Neurophysiol, vol. 115, no. 3, pp. 589–595, Mar 2004. [Online]. Available:
http://dx.doi.org/10.1016/j.clinph.2003.10.033

[27] C. R. Butson, S. E. Cooper, J. M. Henderson, and C. C. McIntyre, “Patient-specific analysis of
the volume of tissue activated during deep brain stimulation.” Neuroimage, vol. 34, no. 2, pp.
661–670, Jan 2007. [Online]. Available: http://dx.doi.org/10.1016/j.neuroimage.2006.09.034

[28] C. R. Butson and C. C. McIntyre, “Tissue and electrode capacitance reduce neural activation
volumes during deep brain stimulation.” Clin Neurophysiol, vol. 116, no. 10, pp. 2490–2500, Oct
2005. [Online]. Available: http://dx.doi.org/10.1016/j.clinph.2005.06.023

[29] N. Yousif, R. Bayford, P. G. Bain, and X. Liu, “The peri-electrode space is a significant
element of the electrode-brain interface in deep brain stimulation: A computational
study.” Brain Res Bull, vol. 74, no. 5, pp. 361–368, Oct 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.brainresbull.2007.07.007

[30] N. Yousif, R. Bayford, S. Wang, and X. Liu, “Quantifying the effects of the
electrodebrain interface on the crossing electric currents in deep brain recording and
stimulation,” Neuroscience, vol. 152, no. 3, pp. 683–691, March 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.neuroscience.2008.01.023

[31] C. R. Butson, C. B. Maks, and C. C. McIntyre, “Sources and effects of electrode impedance
during deep brain stimulation.” Clin Neurophysiol, vol. 117, no. 2, pp. 447–454, Feb 2006.
[Online]. Available: http://dx.doi.org/10.1016/j.clinph.2005.10.007



Bibliography 29

[32] C. R. Butson and C. C. McIntyre, “Role of electrode design on the volume of tissue activated
during deep brain stimulation.” J Neural Eng, vol. 3, no. 1, pp. 1–8, Mar 2006, electrode design.
[Online]. Available: http://dx.doi.org/10.1088/1741-2560/3/1/001

[33] C. C. McIntyre and W. M. Grill, “Finite element analysis of the current-density and electric field
generated by metal microelectrodes,” Ann. Biomed. Eng., vol. 29, no. 3, pp. 227–235, Mar. 2001.

[34] X. F. Wei and W. M. Grill, “Current density distributions, field distributions and impedance
analysis of segmented deep brain stimulation electrodes.” J Neural Eng, vol. 2, no. 4, pp.
139–147, Dec 2005. [Online]. Available: http://dx.doi.org/10.1088/1741-2560/2/4/010

[35] M. Astrm, J. D. Johansson, M. I. Hariz, O. Eriksson, and K. Wrdell, “The effect of cystic cavities
on deep brain stimulation in the basal ganglia: a simulation-based study.” J Neural Eng, vol. 3,
no. 2, pp. 132–138, Jun 2006. [Online]. Available: http://dx.doi.org/10.1088/1741-2560/3/2/007

[36] F. Rattay, “Analysis of models for external stimulation of axons,” IEEE Trans Biomed Eng, 1986.

[37] C. C. McIntyre and W. M. Grill, “Excitation of central nervous system neurons by nonuniform
electric fields.” Biophys J, vol. 76, no. 2, pp. 878–888, Feb 1999.

[38] ——, “Extracellular stimulation of central neurons: influence of stimulus waveform and frequency
on neuronal output.” J Neurophysiol, vol. 88, no. 4, pp. 1592–1604, Oct 2002.

[39] D. R. McNeal, “Analysis of a model for excitation of myelinated nerve.” IEEE Trans Biomed Eng,
vol. 23, no. 4, pp. 329–337, Jul 1976.

[40] P. J. Basser and B. J. Roth, “New currents in electrical stimulation of ex-
citable tissues.” Annu Rev Biomed Eng, vol. 2, pp. 377–397, 2000. [Online]. Available:
http://dx.doi.org/10.1146/annurev.bioeng.2.1.377

[41] J. H. Frijns, S. L. de Snoo, and J. H. ten Kate, “Spatial selectivity in a rotationally symmetric
model of the electrically stimulated cochlea.” Hear Res, vol. 95, no. 1-2, pp. 33–48, May 1996.

[42] J. Holsheimer, “Computer modelling of spinal cord stimulation and its contribution to therapeutic
efficacy.” Spinal Cord, vol. 36, no. 8, pp. 531–540, Aug 1998.

[43] C. C. McIntyre, W. M. Grill, D. L. Sherman, and N. V. Thakor, “Cellular effects of deep brain
stimulation: model-based analysis of activation and inhibition.” J Neurophysiol, vol. 91, no. 4,
pp. 1457–1469, Apr 2004. [Online]. Available: http://dx.doi.org/10.1152/jn.00989.2003

[44] C. C. McIntyre, S. Miocinovic, and C. R. Butson, “Computational analysis of deep brain
stimulation.” Expert Rev Med Devices, vol. 4, no. 5, pp. 615–622, Sep 2007. [Online]. Available:
http://dx.doi.org/10.1586/17434440.4.5.615

[45] S. Miocinovic, M. Parent, C. R. Butson, P. J. Hahn, G. S. Russo, J. L. Vitek, and C. C.
McIntyre, “Computational analysis of subthalamic nucleus and lenticular fasciculus activation
during therapeutic deep brain stimulation.” J Neurophysiol, vol. 96, no. 3, pp. 1569–1580, Sep
2006. [Online]. Available: http://dx.doi.org/10.1152/jn.00305.2006

[46] C. R. Butson and C. C. McIntyre, “Differences among implanted pulse generator waveforms
cause variations in the neural response to deep brain stimulation.” Clin Neurophysiol,
vol. 118, no. 8, pp. 1889–1894, Aug 2007, electrode Parameters. [Online]. Available:
http://dx.doi.org/10.1016/j.clinph.2007.05.061

[47] S. Sotiropoulos and P. Steinmetz, “Assessing the direct effects of deep brain stimulation using
embedded axon models,” Journal of Neural Engineering, vol. 4, no. 2, pp. 107–119, 2007.
[Online]. Available: http://stacks.iop.org/1741-2552/4/107



30 Bibliography

[48] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its ap-
plication to conduction and excitation in nerve.” J Physiol, vol. 117, no. 4, pp. 500–544, Aug
1952.

[49] P. Krack, V. Fraix, A. Mendes, A.-L. Benabid, and P. Pollak, “Postoperative management of
subthalamic nucleus stimulation for parkinson’s disease.” Mov Disord, vol. 17 Suppl 3, pp. S188–
S197, 2002.

[50] D. S. Tuch, V. J. Wedeen, A. M. Dale, J. S. George, and J. W. Belliveau, “Conductivity tensor
mapping of the human brain using diffusion tensor MRI,” Proc. Natl. Acad. Sci. USA, vol. 98,
no. 20, pp. 11 697–11701, Sep. 2001.

[51] E. Moro, R. J. A. Esselink, J. Xie, M. Hommel, A. L. Benabid, and P. Pollak, “The impact on
parkinson’s disease of electrical parameter settings in stn stimulation.” Neurology, vol. 59, no. 5,
pp. 706–713, Sep 2002.



3 Bioelectric head model

To help the clinicians understanding the mechanism(s) activated by deep brain stimulation (DBS),
a better knowledge of the physical phenomena involved during the electrical stimulation needs to be
provided.
Bioelectromagnetic phenomena, as any other electromagnetic phenomena, are governed by Maxwell
equations. In the bioelectromagnetism applications of interest here (deep brain stimulation and related
techniques) the tissues can be considered as conductive media. This leads to a general formulation of
Maxwell equations for bioelectromagnetic problems that will be reviewed in Section 3.1.
These equations must be applied to a model of the involved biological region. In the case studied
here, this region extends to the head, neck and upper chest. Section 3.2 briefly describes the possible
geometrical and constitutive models and explains advantages and drawbacks of each one. The con-
ductivity of each tissue can be estimated or determined by many different techniques. The diffusion
tensor magnetic resonance imaging (DT-MRI) is favored here as documented in Section 3.3.
Finally, among the well established techniques to discretize Maxwell equations and transform them in
a set of algebraic equations that can be solved in a computer, the finite element (FE) method has been
selected, as this approach is very well adapted to high anisotropic and inhomogeneous problems. The
particular version of the FE method used here is described in Section 3.4.

3.1 Mathematical formulation of the general bioelectric problem

3.1.1 Maxwell’s equations

The equations governing the electric and magnetic phenomena are the Maxwell equations [1]:

∇ · D = ρ (3.1a)

∇× E = −∂B
∂t

(3.1b)

∇ ·B = 0 (3.1c)

∇× H = J +
∂D
∂t

(3.1d)

where D is the electric displacement, ρ the electric free charge density, H and B the magnetic field
and induction, E the electric field, J the electric current density and ∇, a symbol spelt as “del” or
“nabla”, is the classic first-order differential operator with respect to the spatial coordinates.
Equation (3.1a) arises from Gauss’ law and relates the electric displacement D to the source that
generates it, namely the source density ρ.
Equation (3.1b) arises from Faraday’s law and states that a time varying magnetic field H induces an
electric field E.
Equation (3.1c) is known as Gauss’ law for magnetism and recognize that no magnetic charges exist
and hence that B must be solenoidal.
Equation (3.1d) is a statement of Ampere’s law that the line integral of a magnetic field H around a
closed loop equals the total current through the loop.
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By taking the divergence of (3.1d) and introducing on it the equation (3.1a) we get :

∇ · J +
∂ρ

∂t
= 0. (3.2)

This is the continuity equation of paramount relevance for our calculations.
In the frequency range of the DBS (below 1000 Hz), the fields and its sources vary slowly and hence
their time derivatives can be neglected. This means that on one side the continuity equation (3.2)
reduces to :

∇ · J = 0 (3.3)

showing that the total current density must be solenoidal (or divergenceless). On the other hand
electric and magnetic phenomena are decoupled since Maxwell equations (3.1) reduce to

∇ · D = ρ (3.4a)

∇× E = 0 (3.4b)

∇ ·B = 0 (3.4c)

∇× H = J. (3.4d)

Under these conditions, biological media behave as electrolytes and the capacitive and inductive
properties of tissues can be neglected in a first approximation [2]. In response to any excitation
current density JS (the so called source or impressed current), a conduction or ohmic current density
JΩ will be induced everywhere in the medium. Therefore, the total current density to which equations
(3.3) and (3.4d) apply is

J = JS + JΩ. (3.5)

The impressed current JS is supposed to be the primary source of the problem and unaffected by the
existing fields. It could be the current generated by an external source or the current entering a cell
through its membrane.
The induced current will obey to the Ohm’s law and will be proportional to the total electric field
according to the equation

JΩ = ¯̄σ ·E (3.6)

where ¯̄σ is the electrical conductivity. This tensorial quantity, mathematically represented by a 3x3
matrix, is the most important physical parameter to be assigned to the biological tissues in this study.
Knowing the electrical conductivity at every point of a tissue accounts to know the electrical field
associated to a given current in this point or, viceversa, to reconstruct the induced ohmic current from
the knowledge of the electric field.
Finally, it is worth recalling an obvious mathematical property. The conductivity ¯̄σ being a tensor
(resulting from the tissues anisotropy), the vectors J and E (current and field) will not be in general
parallel inside a biological tissue.

The basic differential equation

Introducing equations (3.5) and (3.6) in (3.3) yields

∇ · (¯̄σE) = −∇ · JS (3.7)

This differential equation can be used to obtain E when ¯̄σ and JS are known.
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The static electric potential

Frequently, one speaks about electric potentials rather than about electric fields. Moreover, standard
technologies and devices are usually calibrated in terms of “voltages” or potential differences between
two electrodes measured in volts.
The mathematical relationship between field E and potential V is easily set up in the static approxi-
mation since the equation (3.4b) implies that

E = −∇V = −grad V. (3.8)

It is also well known that from a computational point of view it is much easier to deal with the scalar
quantity V than with vector quantities like E and J. Therefore, introducing (3.8) in (3.7) yields the
final differential equation to be solved inside biological media:

∇ · (¯̄σ∇V ) = ∇ · JS . (3.9)

No role for permittivity and permeability

In the classical electromagnetic theory, the two electric vectors E, D and the two magnetic vectors B,
H are connected through the constitutive relationships

D = ¯̄ε ·E (3.10a)
B = ¯̄μ · H (3.10b)

where ¯̄ε and ¯̄μ are respectively the electric permittivity and the magnetic permeability of the medium.
These relations remain valid for biological tissues but are irrelevant in the frame of the static approx-
imation and of the conductive electrolyte model.
Under these assumptions, it is the conductivity ¯̄σ which solely determines the values of J and E in
a biological medium. This is equivalent to say that the capacitive ¯̄ε and inductive ¯̄μ effects can be
neglected regarding the conductive effects ¯̄σ.

The quasistatic approximation: magnetic phenomena

Any current density flowing inside a material medium will create a magnetic field. Using the approxi-
mate static Maxwell equations (3.4), this magnetic field can be computed from

∇× H = J. (3.11)

In many current technological applications, J will be an alternating low frequency current J =
J0 cos(ωt). The so-called “quasi static” approximation assumes that (3.11) remains valid for these
low frequency currents and hence

∇× H(t) � J(t). (3.12)

Now, this slow-varying magnetic field could be used to compute a first correction to the static electric
field by invoking the basic Maxwell equation (3.1b) and the constitutive relations (3.10).

3.1.2 Boundary conditions

At the interface

The general bioelectric problem is formed of tissues of different electrical conductivities, which are
usually discrete, therefore the domain is piecewise homogeneous as shown in Fig. 3.1. The problem
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σ1

σ2σ3

Ω

Γd

Γn

Figure 3.1: General bioelectric problem. The medium Ω is divided in three subregions σi having their
own electrical properties. The external boundary Γ is divided in two. On one part, Γd, a
Dirichlet boundary condition is applied (fixed potential). On the other, Γn, a Neumann
boundary condition is applied (fixed normal current).

can be solved for each region having a constant ¯̄σ with the help of (3.9) and then enforcing continuity
at the interface between regions.
Electromagnetic theory requires that on one side the potential is continuous (to avoid non physical
infinite fields which would be associated to discontinuous potentials) and that the normal component of
the current density is also continuous (to avoid charge accumulation at the interface which will violate
the physical principle of charge conservation). This yields the following mathematical relationships,
known as boundary conditions :

Vi = Vj (3.13a)

n̂ · ¯̄σi∇Vi = n̂ · ¯̄σj∇Vj . (3.13b)

Heres i and j are two adjacent regions. ¯̄σ is a conductivity tensor. n̂ denotes the unit outward vector
orthogonal to the interface. Vi and Vj are the potentials on the two sides of the interface.

On the electrode surface

Special boundary conditions must be applied on the interface between the biological tissue and an
electrode, either on the voltage or on the current flowing through this interface. A fixed potential is
denoted as a Dirichlet boundary condition

V (x, y, z) = V0 (3.14)

where V0 is the fixed electrode voltage. A fixed current is denoted as a Neumann boundary condition

n̂ · ¯̄σ∇V = Jn (3.15)

where Jn is the surface current density of the electrode.

On the outer boundary

The problem studied in this thesis is a bounded conducting volume (human body), and the conductivity
outside the volume is zero. Therefore, at the interface between air and human tissues the outward
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normal current Jn is zero and the Neumann boundary condition reduces to

n̂ · ¯̄σ∇V = Jn = 0. (3.16)

This Neumann boundary condition models our problem much more accurately than the Dirichlet
condition used in previous studies, roughly equivalent to assure a null potential (ground) in the outer
boundary.

The final algorithmic strategy used in this thesis is summarized in Fig. 3.2. The next section will
show how the general bioelectric problem described here can be built and solved when applied to the
head.
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FINAL ALGORITHMIC STRATEGY

DATA ¯̄σ,JS
Source or impressed current,

conductivity

SOLVE
∇ · (¯̄σ∇V ) = ∇ · JS

COMPUTE V Electric potential

E = −∇V Electric field

JS = ¯̄σE Induced ohmic current

∇× H = J Magnetic field

∇× E = −∂(μH)
∂t corrected electric field
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Figure 3.2: Final algorithmic strategy.
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3.2 Bioelectromagnetic head models and associated
electromagnetic analysis methods

The main challenge in head modelling is to model the head tissues adequately (both shape and
characteristics). Human head is made of several type of tissues (such as skin, bone, white and gray
matter, cerebrospinal fluid (CSF)...). All these tissues have different structures and composition and
therefore different electrical characteristics. For example, bone can be seen as an insulator, CSF as a
good conductor.
Bioelectromagnetic models of the head can be used either to evaluate the electroencephalograms
(EEG) generated from a known source (forward or direct problem), or to estimate the source position
of a known EEG (backward or inverse problem).
In this section, a review of the bioelectric models and their associated electromagnetic analysis
methods is proposed. A summary is given in Table 3.1.

Table 3.1: Model used for bioelectric problem.
Bioelectric model EM model + -

Ideal spherical and ellip-
soidal

analytical fast not realistic geometry

Anatomical realistic shaped layered
model

boundary element
method

fast important mathemati-
cal preprocessing

atlas based anatomical
model

FE method limited number of un-
knowns

statistical models

patient based model FE method + finite
difference method

realistic high number of un-
knowns, image prepro-
cessing needed

3.2.1 Ideal models: spherical and ellipsoidal shapes

The head models are becoming more and more realistic thanks to:

• the increase of the computational power which reduces the time of calculation and allows an
increase of the problem size

• the improvement of the medical imaging, which provided better and more detailed knowledge
of tissues properties.

The first models describing the bioelectric phenomena in the head were used to predict EEG. The head
was approximated by concentric spheres or ellipsoids of different tissues [3, 4]. Typically, three classes
of tissues were used in these models: brain, skull and scalp from the innermost to the external layer
(see Fig. 3.3).
These models can be solved analytically and provide a first reasonable approximation.
More realistic models have been developed later, increasing the number of layers and using anisotropic
conductivity [5]. These models have been employed to localize the electrophysiological generators
associated with neural activity in various states of health and disease.

3.2.2 Anatomical models

To overcome the geometrical simplification of using spheres to model the head, models having more
realistic shapes have been built. But these models imply the use of numerical techniques to solve the
problem as no analytical solution exists for these complex geometries. Each domain has therefore to
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Figure 3.3: Three layers head model, the arrow represents a dipole source.

be sampled into elements. Each element has to be defined to be as close as possible to reality (shape
and physical properties).

3.2.3 Atlas based models

The first realistic model geometries are based on anatomical knowledge [4, 6]. These models are
segmented according to anatomical atlases. The geometry used is thus based on statistical observations
made during post mortem dissection. These observations allow to divide the structure of the human
brain in several tissue classes. Fig. 3.4 illustrates an example of an atlas-based FE model.

Figure 3.4: Finite element model of a human head based on the atlas of Eycleshymre and Shoemaker
(1911) [7]. Classes of tissue are muscle (M), fat (F), pharynx (P), bone (B), skull (K),
gray matter (G), white matter (W), cerebellum (C), medulla spinalis (N), CSF (E), blood
(BL), air cavity (KL), and scalp (SC), taken from [8].

Once the model built, the electrical properties of each tissue class used in the model must be
characterized. Several studies have been made to characterize the electrical properties of biological tis-
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sues [9–11]. In general, quite large discrepancies have been obtained when quantifying these properties.
A review of these studies can be found in the article of Geddes and Baker [12].

3.2.4 Medical imaging based models

(a) Axial cut (b) Coronal cut (c) Sagittal cut

Figure 3.5: Cutting views of a segmented head. Each pixel has a color which refers to the class of
tissue it belongs to (for example here from black to white one has CSF, gray matter,
white matter, fat, muscle, skin, skull, glial matter). Based on the BrainWeb model [13].

With the improvement of the medical imaging techniques (for instance magnetic resonance imaging
(MRI) or computed tomography (CT)), the knowledge on the head tissues distribution dramatically
increased.
Consequently, head models using this information also increased strongly in complexity. Nowadays,
these models can be based on an individual patient’s head, according to some image preprocessing to
transform the obtained biological data in electrical quantities.

As each imaging technique has its own advantages, image processing is needed to combine these
advantages, thus increasing the reality of the final model as explained hereafter.
T1-weighted MRI is well suited for segmentation of tissue boundaries like white and gray matter,
outer skull and skin. But the identification of the inner skull surface is problematic.
CT is well suited for imaging bone tissues as the human skull. But most of the models built for
neurology or neuropsychology research are based on healthy patient, therefore exposition to ionized
radiation is inappropriate.
The use of proton density MRI (PD-MRI) coupled to T1-MRI to build a head model is well explained
in Wolter’s PhD dissertation [14]. The PD-MRI is registered onto the corresponding image in order
to correct for movement of the subject and geometrical distortions.

Afterwards, segmentation algorithms are applied to obtain for each voxel a probability of belonging
to a class of tissue. Then each element is labelled according to the tissue having obtained the highest
probability (see Fig. 3.5). Finally, bulk isotropic conductivities values are taken from literature and
assigned to each element according to its label.

Lately an improvement of magnetic resonance imaging technique has provided information on the
water diffusion in tissues. This information provided by the diffusion tensor MRI (DT-MRI) [15] can
be used to enforce the reality of the head model, as explained in the next section.
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3.3 Diffusion and conductivity tensors

Previous modelling studies using anatomical models have shown that the results of the forward
problem are sensitive to the accuracy of the conductivity values assumed for the tissue [16–19]. So in
this thesis a special care will be taken to model these tissues and especially the ones surrounding the
electrode.
Anatomical models have the ability to be based on real patient heads, but the segmentation process
assume that each tissue of a class share the same electrical properties. However this assumption may
be questioned, as a voxel is likely to be composed of more than one type of tissue.

Efforts to develop an imaging strategy to characterize noninvasively the electrical conductivity
of tissue have been encumbered by anatomical and biophysical barriers. The organ of interest can
be shielded by highly resistive barriers such as the bony tissue of the skull. The tissue can exhibit
significant reactance, anisotropy and microstructural heterogeneity.
The difficulties associated with imaging biological conductivity in vivo can be appreciated by
considering the limitations of electrical impedance tomography. This technique suffers from poor
spatial resolution and requires delivering current to the tissues under characterization.

Lately, the improvement of medical imaging technique has provided the diffusion tensor MRI
(DT-MRI) [15]. As explained in Section 2.1.4, this imaging technique provides information on the
water self-diffusion in tissue for each voxel. The use of the information given by the DT-MRI has
been made in several studies to show the importance of the anisotropy on the solution obtained for
EEG prediction in forward or backward models [14, 20, 21].

This section explains how the electrical conductivity of the tissues used in our model is obtained
from the results of the DT-MRI.

3.3.1 Water diffusion tensors

The DT-MRI provides images of diffusion gradient applied in noncolinear directions. An example of a
32 direction DT-MRI result is shown in Fig. 3.6.

An image processing task is needed to obtain a more useful information: the diffusion tensor. This
image processing uses multiple linear regressions as explained in [22]. A diffusion tensor ¯̄d is then
obtained for each voxel. It provides a three dimensional indicator on the ability of water molecules to
move. As these movements are constrained by the structure of the cells, it provides information on
the fibers directions. ¯̄d is a 3 × 3 matrix which is symmetric, full rank.
If we define a local Cartesian basis with the axis along the eigenvectors, the tensor can be represented
by a diagonal matrix. Therefore it can be represented as an ellipsoid and can be written as

¯̄d = S

⎡⎣ d1 0 0
0 d2 0
0 0 d3

⎤⎦ · St (3.17)

where d1, d2 and d3 are the diffusion eigenvalues and S is the rotation matrix composed by putting
the eigenvectors in the columns.

The obtained tensor is hardl to represent visually. That is why several scalar indicators are used to
characterize the diffusion tensor.
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Figure 3.6: Images obtained from a 32 axes DT-MRI. The first image is a T1 MRI. Each small image
shows the diffusion gradient obtained in one of the 32 noncolinear directions.

Trace of the diffusion tensors

The mean diffusivity is obtained by taking the trace of the diffusion tensor:

Tr( ¯̄d) = d1 + d2 + d3. (3.18)

This quantity gives an information on the overall diffusion for each voxel. Note that no information
on the anisotropy can be extracted at this point. Nevertheless, it can be observed that the tissue
consistently showing the highest diffusion is the cerebrospinal fluid (CSF). For this reason, CSF plays
an essential role as reference or normalizing value in the conductivity calculation formula of the con-
ductivity tensor.

Anisotropy of the diffusion tensors

To have information on the tensor’s anisotropy, the fractional anisotropy (FA) and the volume ratio
(V R) have been defined as [22] :

FA( ¯̄d) =

√
3
2

√
(d1 − 〈d〉)2 + (d2 − 〈d〉)2 + (d3 − 〈d〉)2

d2
1 + d2

2 + d2
3

(3.19)
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Figure 3.7: Trace of the diffusion tensor. Due to its similarity with water solution, tensors issued
from CSF shows the biggest trace. As the ventricles are filled with that liquid, they are
easily seen on the picture. The limit between gray and white matter is hardly visible.

where 〈d〉 is the mean eigenvalue.
FA quantifies the fraction of the “magnitude” of ¯̄d that can be ascribed to anisotropic diffusion and
varies between 0 (isotropic diffusion) and 1 (infinite anisotropy).

V R( ¯̄d) =
d1d2d3

〈d〉3 . (3.20)

V R represents the ratio of the ellipsoid volume to the volume of a sphere of radius 〈d〉, its range
is from 1 (isotropic diffusion) to 0, hence, it is is preferred to use the quantity 1 − V R in order to
continue to assign the value 0 to isotropy.
An illustration of these three indicators can be seen in Fig. 3.8.

Three dimensional representation of the diffusion tensors

Another way to represent the diffusion tensor is to use ellipsoids, as proposed in [15]. An ellipsoid is
a three-dimensional representation of the diffusion distance covered in space by molecules in a given
diffusion time (see Fig. 3.9). Each ellipsoid has as main axes the eigenvectors of the diffusion tensor.

3.3.2 Conductivity tensors

The information provided by the DT-MRI, namely the water diffusion tensors, characterizes the
diffusive motion of protons and other metabolites within a single voxel of anisotropic medium. Basser
et al. [15] were the first to propose that the diffusion tensor and conductivity tensor might share eigen-
vectors. This observation was prompted by the observation that, although in free solutions there is no
fundamental relationship between the two transport modes, in a structured medium such as biological
tissues, the two processes are related through the boundary conditions imposed by the tissue geometry.

In their study Tuch et al. [23] showed that a strong linear relationship between the conductivity and
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(a) Fractional anisotropy of the diffusion tensor (b) Volume ratio of the diffusion tensor

Figure 3.8: Indicators measuring the anisotropy obtained from the DT-MRI. As the white matter
is made of bundle of nerves sharing the same direction, it has a high anisotropy and
therefore can be easily seen on these picture. Gray matter is made of fibers crossing in
random directions, so the anisotropy is low. Opposite to white matter, the CSF shows
a very low anisotropy as it is close to a water solution. The ventricles observed easily in
Fig. 3.7 are now close to 0.

diffusion tensor exists. This relationship can be written as

¯̄σi =
σe

de

¯̄di, (3.21)

where ¯̄σi and ¯̄di are the conductivity and diffusion tensor (respectively), and σe and de denote the
extracellular conductivity and diffusivity. This linear approximation of the relationship between the
eigenvalues of the conductivity tensor and the diffusion tensor assumes the intracellular conductivity
to be negligible.

Several techniques can be used to include the anisotropic conductivity into electrical models of the
head.
A fixed ratio between the conductivity along the longitudinal eigenvector and the transverse eigenvec-
tors (σL and σT , respectively) can be set. This ratio has been evaluated to be 9:1 by Nicholson [24].
This means that the conductivity along a nerve bundle is nine times bigger than the transverse or per-
pendicular one. A constraint is then used to fix the volume of the ellipsoid having these eigenvectors.
The volume is compared to the volume obtained for an ellipsoid having its eigenvectors σiso equal
(isotropic sphere) of the same class of tissue. The two main constraints used are:

• Wang’s constraint [25], which states that the product of radial and tangential conductivity has
to stay constant and has to be equal to the square of the isotropic conductivity:

σLσT = σiso
2, (3.22)

• a volume constraint [14, 21] which retains the geometric mean of the eigenvalues and thus the
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(a) Cutting view of the volume ratio
of full head.

(b) Cutting view of the volume ratio of partial head cut.

(c) Cutting view of the diffusion tensor ellipsoids.

Figure 3.9: The ellipsoids represented in (c) show the diffusion tensor obtained from a DT-MRI file.
Their color is linked to their volume ratio (see equation (3.20)). In order to have a
better visualization, each ellipsoid has its main eigenvalue equalized. The white matter,
showing high anisotropy, can easily be seen in white on the image (b) and its derived
tensors ellipsoids show a prolate aspect on image (c).

volume of the conductivity tensor:

4
3
πσL(σT )2 =

4
3
πσiso

3. (3.23)

Another technique is to use the volume constraint directly on the obtained diffusion tensor and the
linearity factor between the diffusion and the conductivity tensor (see equation 3.21) [26]

d1

σ1
=

d2

σ2
=

d3

σ3
(3.24)

where d1, d2 and d3 are the eigenvalues of the matrix representation of the diffusion tensor at a voxel
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as explained in equation 3.17. σ1, σ2 and σ3 are the unknown eigenvalues of the matrix representation
of the conductivity tensor at the same voxel. This system of two equations and three unknowns can be
solved by applying the volume constraint on the anisotropic conductivity ellipsoid using the isotropic
conductivity sphere of the tissue considered:

4
3
πσ1σ2σ3 =

4
3
πσiso

3. (3.25)

These techniques are well tailored to model either the white matter or the skull anisotropy.
Nevertheless, they have to follow a segmentation procedure, since the application of either the volume
constraint or Wang’s constraint is using a reference volume of a certain class of tissue. But, as shown
in Fig. 3.8, the anisotropy is not constant in a class of tissue. The assumption of a fixed ratio of
anisotropy can be challenged, since when bundles of fibers are crossing in a voxel, the diffusion tensor
can show two main directions or be quasi anisotropic. Setting a constant volume among a class of
tissue can also be questioned, since a voxel can contain several type of tissues and therefore can show
an overall conductivity higher than other voxel of the same class of tissue.

3.3.3 Original approach to obtain the conductivity tensors

The usual approach to include the anisotropic conductivity in patient tailored FE models of the head
is the following. A pre processing treatment of the medical imaging obtained for the patient is made to
segment the different classes of tissues. To the isotropic classes of tissues such as CSF or gray matter,
an isotropic conductivity tensor is applied, constant for each tissue class and based on the isotropic
conductivity values found in litterature. For the classes of tissue showing anisotropy, such as white
matter or skull, the use of Wang’s constraint or of volume constraint is made, based on the anisotropy
direction provided by the DT-MRI [20, 21, 26].
In this thesis the segmentation of the tissues is avoided. A linear transformation of the water diffu-
sion tensor into electrical conductivity tensors is applied on all the tensors obtained by the DTMRI,
regardless of the tissue class they belong to. The linear relation of the diffusion tensor and the electric
conductivity tensor introduced in [23] is used not only on the white matter but on all the tis-
sues of the head. The diffusion tensors are transformed into conductivity tensor using the following
formula:

¯̄σvoxel = ¯̄dvoxel ·
(

Vol(¯̄σCSFiso)

Vol( ¯̄d)max

)1/3

(3.26)

where Vol() refers the volume of an ellipsoid. The volumes of the diffusion tensor are normalized to
fix the volume of the biggest diffusion tensor ellipsoid to be equal to an isotropic sphere of the tissue
having the highest conductivity, namely the CSF. A head cut of the ellipsoids obtained with this
method can be seen in Fig. 3.10. Formula (3.26) summarizes the new technique used in this work to
predict conductivity values out of the diffusion measured by DT-MRI techniques.
Our proposed approach is supposed first to account better for the actual strong anisotropy of brain
tissues. On the other hand, it is free from segmentation procedures and it it hence it should provide
conductivity values more stable respect to the choice of FE geometries and meshes.

3.4 Finite element formulation

In order to solve the generalized bioelectric problem formulated in Section 3.1, a numerical technique
is used, since obviously no analytical solutions is possible. Several numeric techniques exist having
their own advantages and drawbacks.
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Figure 3.10: Conductivity tensor ellipsoids used in this thesis. The biggest tensor volume is normal-
ized to the volume of an isotropic sphere of CSF. Ellipsoids representing the CSF can be
identified as they are quasi spherical and have big volumes. As white matter is highly
anisotropic and has a lower conductivity than CSF, the ellipsoids are hardly seen.

The boundary element method (BEM) has been widely used for head modelling and for EEG source
localization [27–30]. The use of BEM is adapted for piecewise homogeneous isotropic compartments.
The main layers (scalp, skull and brain) can be represented with realistic geometry and the currents are
computed only on the boundaries, therefore the computational cost remains low. But BEM involves
an important analytic effort before computation.
Another technique used to solve the bioelectric problem is the finite difference method (FDM) [5,
26, 31–33]. This numerical technique as an algorithm easily implementable and is able to treat any
geometry and anisotropic and inhomogeneous media. Nevertheless, it has to use a regular mesh and
any interface must be interpolated as a staircase slope. Therefore it needs an important computational
effort to deal with a high definition model of the head.
The finite element (FE) method is a numerical technique that uses the same kind of discretization
as FDM, howevre the use of regular meshes is not mandatory. The number of unknowns and the
computational power to solve big problems can be therefore greatly reduced, while keeping, thanks to
an adaptive meshing, a high definition mesh on specific areas.

For the problem treated in this thesis, the model should provide the evaluation of the potentials
delivered by the DBS electrode, and especially on the tissues surrounding the electrode contact as
they are most likely to be influenced by the simulation. These tissues are highly inhomogeneous and
anisotropic. Considering the size of the problem, which extends to the upper chest in order to include
all the element involved in deep brain stimulation, the use of mesh refinement on specific area is clearly
an advantage. Therefore the modelling technique that will be used is the finite element method [34,35].
In the following a description of this method is given, using linear shape functions. The construction
of the stiffness matrix is explained, leading to a matrix linear system that can be solved with a matrix
inversion.
Another important distinction is that FDM works on a three dimensional grid of equidistant points.
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Potentials and fields outside the grid must be obtained by external specific interpolation. On the
other hand, FE method works with tetrahedrons where the unknown quantities are assumed to follow
simple mathematical variations. Therefore FE method works on a continuous space and no external
interpolation is needed.

3.4.1 Finite element formulation of the bioelectric problem

Finite element formulations involve the approximation of an unknown function, the state variable, over
some region of space Ω (see Fig. 3.1). This state variable V (x, y, z) is a function of spatial coordinates.
The finite element method provides an approximate solution satisfying the governing equations and
boundary conditions.

The first step of finite element formulation is the construction of an approximate solution satisfying
the governing equation of our problem.

The electrical potential V , the state variable of our problem is governed by equation (3.9), repeated
here:

∇ · (σ∇V ) = ∇ · Js.

Let Ṽ designate this approximation and let

V ≈ Ṽ =
n∑

i=1

ViNi, (3.27)

where Vi is the solution of the electric potential at the node i and Ni is any piecewise-smooth
function (called basis or shape function) spanning an n-dimensional linear space.

As (3.27) is unlikely to exactly satisfy the governing equation, substituting it in the governing
differential equation (3.9) leads to an error or residual

R = ∇ · (σ∇Ṽ) −∇ · Js �= 0. (3.28)

Obviously, the residual will not equal zero unless our approximate solution Ṽ is the one. A criterion
has to be chosen to optimize Ṽ . The Galerkin method of weighted residuals is forcing the residual to
equal zero in an average sense, using for weighting functions the set of shape functions∫

Ω

NjR dΩ = 0, j = 1, . . . , n. (3.29)

Substituting (3.28) in (3.29) and applying Gauss’ theorem∫
Ω

∇fg dΩ =
∫

Γ=∂Ω

fgn̂ dΓ −
∫
Ω

f∇g dΩ, (3.30)

with g = Nj and f = σ∇Ṽ gives

−
∫
Ω

∇Njσ∇Ṽ dΩ +
∫
Γ

Nj(σ∇Ṽ ) · n̂ dΓ

︸ ︷︷ ︸
B.C.

=
∫
Ω

∇ · JsNj dΩ, j = 1, . . . , n, (3.31)
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where
B.C. =

∫
Γ

Nj(σ∇Ṽ ) · n̂ dΓ =
∫
Γ

NjJ · n̂ dΓ =
∫
Γ

JnNj dΓ, (3.32)

Jn being the normal component of the current at the boundary where Neumann boundary conditions
are imposed.

Using the definition of Ṽ from (3.27) and letting all known values to be on the right-hand side of
equation (3.31) yields

n∑
i=1

Vi

∫
Ω

∇Njσ∇Ni dΩ =
∫
Γ

JnNj dΓ −
∫
Ω

∇ · JsNj dΩ, j = 1, . . . , n, (3.33)

which can be written in a matrix form
Kx = f . (3.34)

In classical FEM approaches, K is called the stiffness matrix and f is the excitation vector. The
elements of the stiffness matrix K depend only on the shape functions and conductivity and are given
by

kji =
∫
Ω

∇Njσ∇Ni dΩ. (3.35)

The force or excitation vector f contains the source function and boundary conditions and is given by

fj =
∫
Γ

JnNj dΓ −
∫
Ω

∇ · JsNj dΩ, (3.36)

and the vector x contains the solutions of the unknown potentials at n nodes xi = Vi.

As the shape functions have only local support, the matrix K is sparse.

3.4.2 Shape function definition

The shape functions are chosen such that Ni(xj , yj , zj) = δij , where (xi, yj , zj) are the coordinates of
node j. In other words, the function has a value of one at its associated node and zero at all other
nodes. The domain under study is partitioned into elements with adjacent sides and no overlap or
gap between elements. The elements are connected at nodes, which must be in the corner of each
element but may also be on the edges or in the center. The numbers of nodes per element determines
the order of the shape function polynomials. Whereas the domain considered is inhomogeneous, each
element needs to be homogeneous. In this section, the definition of linear basis function is given for
tetrahedron element type (basis functions can be quadratic or even with higher order of continuity).

Fig. 3.11 shows the mapping between a four-node tetrahedral daughter element in the (x, y, z) space
and the unit parent element in the (ξ, η, ζ) space. We will first define the shape functions in the parent
(ξ, η, ζ) space and then map them to the (x, y, z) space.

Any point in the daughter tetrahedron (x, y, z) has a mapping point (ξ, η, ζ) in parent unit tetrahe-
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Figure 3.11: Mapping between a four-node tetrahedral daughter element in the (x, y, z) space and
the unit parent element in (ξ, η, ζ) space.

dron and the following relation holds⎛⎝ x
y
z

⎞⎠ =

⎛⎝ x1

y1

z1

⎞⎠ + ξ

⎛⎝ x2 − x1

y2 − y1

z2 − z1

⎞⎠ + η

⎛⎝ x3 − x1

y3 − y1

z3 − z1

⎞⎠ + ζ

⎛⎝ x4 − x1

y4 − y1

z4 − z1

⎞⎠
= (1 − ξ − η − ζ)

⎛⎝ x1

y1

z1

⎞⎠ + ξ

⎛⎝ x2

y2

z2

⎞⎠ + η

⎛⎝ x3

y3

z3

⎞⎠ + ζ

⎛⎝ x4

y4

z4

⎞⎠ . (3.37)

The natural coordinates for tetrahedrons are based on volume ratios. The volume of a tetrahedron,
when coordinates of all four nodes are known, is given by

Ω =
1
6

∣∣∣∣∣∣∣∣
1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣ . (3.38)

Consider first the ratio of the volume formed by points ©2 , ©3 , ©4 and any point (ξ, η, ζ) inside of
the parent tetrahedron and the volume of the unit tetrahedron. The volume of the unit tetrahedron
is 1/6, so this ratio is given by

N1(ξ, η, ζ) =

∣∣∣∣∣∣∣∣
1 ξ η ζ
1 1 0 0
1 0 1 0
1 0 0 1

∣∣∣∣∣∣∣∣ = 1 − ξ − η − ζ. (3.39)

This is at the same time the expression for the shape (basis) function for the node ©1 . Its value varies
linearly from N1 = 1 at node ©1 to N1 = 0 at all other nodes.

In the same way we define the linear shape function for node ©2 . It is defined as ratio of the volume
formed by points ©1 , ©3 , ©4 and any point (ξ, η, ζ) and the volume of the unit tetrahedron, and it is
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given by

N2(ξ, η, ζ) =

∣∣∣∣∣∣∣∣
1 ξ η ζ
1 0 0 0
1 0 1 0
1 0 0 1

∣∣∣∣∣∣∣∣ = ξ. (3.40)

Similarly for the rest of the nodes
N3(ξ, η, ζ) = η, (3.41)

N4(ξ, η, ζ) = ζ. (3.42)

If we take into account the definition of the basis functions and the mapping equation (3.37), the
mapping between the parent and daughter tetrahedrons can be defined as a function of shape functions
and node coordinates

x(ξ, η, ζ) =
4∑

i=1

Ni(ξ, η, ζ)xi, (3.43a)

y(ξ, η, ζ) =
4∑

i=1

Ni(ξ, η, ζ)yi, (3.43b)

z(ξ, η, ζ) =
4∑

i=1

Ni(ξ, η, ζ)zi. (3.43c)

Derivatives of shape functions

The stiffness matrix involves derivatives of the basis functions, which can be calculated using a chain
rule for partial derivatives. The mapping from parent to daughter element is characterized by the
Jacobian matrix, which in 3-D, for a parent (ξ, η, ζ) space is given by

[J ] =

⎡⎢⎣
∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

⎤⎥⎦ . (3.44)

The relationship between derivatives is given by⎛⎜⎝
∂Ni

∂ξ
∂Ni

∂η
∂Ni

∂ζ

⎞⎟⎠ = [J ]

⎛⎜⎝
∂Ni

∂x
∂Ni

∂y
∂Ni

∂z

⎞⎟⎠ , (3.45)

that is ⎛⎜⎝
∂Ni

∂x
∂Ni

∂y
∂Ni

∂z

⎞⎟⎠ = [J ]−1

⎛⎜⎝
∂Ni

∂ξ
∂Ni

∂η
∂Ni

∂ζ

⎞⎟⎠ . (3.46)

For the case of tetrahedral elements and linear basis functions, the derivatives are summarized in
Table 1.

Now that all basis functions are defined and the derivatives in the parent cell known, and taking into
account the definition of mapping as a function of basis functions and node coordinates, the expression
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i = 1 2 3 4

∂Ni
∂ξ -1 1 0 0

∂Ni
∂η -1 0 1 0

∂Ni
∂ζ -1 0 0 1

Table 3.2: Derivatives of linear basis functions defined in parent tetrahedral element.

for the Jacobian matrix is given by

[J ] =

⎡⎣ x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

x4 − x1 y4 − y1 z4 − z1

⎤⎦ . (3.47)

The determinant of the Jacobian matrix will give us the value of the ratio between the volume of the
daughter and parent elements.

3.4.3 Stiffness matrix calculation

Stiffness matrix elements are calculated for every node, which can have several basis functions assigned
to. The number of basis functions assigned to the node depends on how many elements the node belongs
to. The computation of stiffness matrix elements is on element-by-element basis. Non-zero interactions
exist only between basis functions on a given element which is a support for them.

The interactions over a given element Ωe are given by

ke
ij =

∫
Ωe

∇Ni ¯̄σe∇Nj dΩ. (3.48)

Taking into account the conductivity tensor σe = [σpq]3×3, p, q ∈ {x, y, z}, (3.48) can be written in
indicial notation as

ke
ij =

∑
p,q∈{x,y,z}

∫
Ωe

∂Ni

∂p
σpq

∂Nj

∂q
dΩ. (3.49)

In the parent tetrahedron coordinate system (ξ, η, ζ), the interaction term (3.48) can be expressed as

ke
ij =

∫
Ωe

(∇Ni ¯̄σe∇Nj) |J | dξ dη dζ, (3.50)

where |J | is the determinant of the Jacobian of the transformation.
For a general type of basis functions we have to apply the numerical integration. If nint - point

integration rule is applied ∫
Ω

f(ξ, η, ζ) dξ dη dζ =
nint∑
k=1

wkf(ξk, ηk, ζk), (3.51)
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(3.50) becomes

ke
ij =

nint∑
k=1

wk|J | (∇Ni ¯̄σe∇Nj)|(ξk,ηk,ζk) . (3.52)

For the chosen tetrahedral elements and linear basis functions, the derivatives are constant for a
given element and a given basis function. Supposing, in addition, that every element has an isotropic
constant conductivity σe, (3.52) can be rewritten in the following simplified form

ke
ij =

σe

6
|J |

(
∂Ni

∂x

∂Nj

∂x
+

∂Ni

∂y

∂Nj

∂y
+

∂Ni

∂z

∂Nj

∂z

)
. (3.53)

3.4.4 Force vector calculation

The force vector f is given by

fi =
∫
Γ

JnNi dΓ −
∫
Ω

∇ · JsNi dΩ, i = 1, . . . , n, (3.54)

and must be calculated on an element-by-element basis, that is, over its domain Ωe and boundary Γe.
Either V or Jn will be known at every node on the boundary Γ through boundary conditions. The
value of V at node i is equivalent to xi and if it is known then the equation for xi can be eliminated
from the vector of nodal potentials x. If a fixed-voltage electrode is present, for example all nodes in
contact with the electrode can be assigned that voltage and the associated equations eliminated from
the solution.

The boundary integral ∫
Γ

JnNi dΓ (3.55)

reduces to
Jn

∫
Γn

Ni dΓ. (3.56)

In the absence of external sources, this boundary integral will cancel between elements, since the
current leaving one element boundary will exactly equal the current entering its neighbor as stated in
equation (3.13b). It must be evaluated for the external boundary or any interval element boundaries
if Jn exists due to an external source. If the source is a fixed-current electrode, for every node on the
side to which the current electrode is connected we have∫

Γ

JnNi dΓ = Jn

∫
Γn

Ni dΓ. (3.57)

If we introduce the mapping from daughter to parent variables (Fig. 3.12), the surface integral over
a side of one element can be written as∫

Γe

Ni(x, y, z) dΓ =
∫

Γen

Ni(x, y, z)|J | dξ dη, (3.58)

where the Jacobian of transformation is equal to the ratio of the surface of the daughter side and the



Section 3.4: Finite element formulation 53

surface of the unit triangle

[J ] =

⎡⎣ 1 x1 y1

1 x2 y2

1 x3 y3

⎤⎦ . (3.59)

In the previous, we supposed that the daughter side is placed in the x y plane. Taking into account
the definitions of linear basis functions defined at nodes ©1 , ©2 and ©3 , one obtains∫

Γen

Ni(ξ, η, ζ = 0) dξ dη =
1
6
, i = 1, 2, 3. (3.60)

x

y

z

©1

©1

©2

©2
©3

©3

©4

Jnn̂

ξ

η

Figure 3.12: Mapping between the side of a daughter tetrahedron to which the fixed current electrode
is connected and the side of a parent unit tetrahedron.

This means that the current has to be multiplied by the side area and the third part of that amount
is assigned to each node at the endpoints of the side∫

Γe

JnNi dΓ = Jn

∫
Γe

Ni dΓ = Jn
1
6
|J | = JnΓe/3, (3.61)

where Γe = 2|J | is the area of connecting side.

3.4.5 Stiffness matrix regularization

At least one node needs to have a known potential which will serve as a reference point. Otherwise
the stiffness matrix will be overdefined and therefore singular. The value of V at node i is equivalent
to xi and if it is known, then the equation for xi can be eliminated from the vector of nodal potentials
x. If a fixed-voltage electrode is present, for example, all nodes in contact with the electrode can be
assigned that voltage and the associated equations eliminated from the solution.

If the Dirichlet boundary conditions are applied at nodes i and j, then xi and xj will be known and
we can remove the ith and the jth rows from the matrix equation. The corresponding columns are
removed from the stiffness matrix by subtracting them from the computed force vector. In this way,
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the starting matrix equation⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k11 . . . k1i . . . k1j . . . k1n

...
. . .

...
. . .

...
. . .

...
ki1 . . . kii . . . kij . . . kin

...
. . .

...
. . .

...
. . .

...
kj1 . . . kji . . . kjj . . . kjn

...
. . .

...
. . .

...
. . .

...
kn1 . . . kni . . . knj . . . knn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

...
xi

...
xj

...
xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

...
fi

...
fj

...
fn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.62)

becomes⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k11 . . . k1,i−1 k1,i+1 . . . k1,j−1 k1,j+1 . . . k1n

...
. . .

...
...

. . .
...

...
. . .

...
ki−1,1 . . . ki−1,i−1 ki−1,i+1 . . . ki−1,j−1 ki−1,j+1 . . . ki−1,n

ki+1,1 . . . ki+1,i−1 ki+1,i+1 . . . ki+1,j−1 ki+1,j+1 . . . ki+1,n

...
. . .

...
...

. . .
...

...
. . .

...
kj−1,1 . . . kj−1,i−1 kj−1,i+1 . . . kj−1,j−1 kj−1,j+1 . . . kj−1,n

kj+1,1 . . . kj+1,i−1 kj+1,i+1 . . . kj+1,j−1 kj+1,j+1 . . . kj+1,n

...
. . .

...
...

. . .
...

...
. . .

...
kn,1 . . . kn,i−1 kn,i+1 . . . kn,j−1 kn,j+1 . . . kn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

...
xi−1

xi+1

...
xj−1

xj+1

...
xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

...
fi−1

fi+1

...
fj−1

fj+1

...
fn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1,i k1,j

...
...

ki−1,i ki−1,j

ki+1,i ki+1,j

...
...

kj−1,i kj−1,j

kj+1,i kj+1,j

...
...

kn,i kn,j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
xi

xj

]
. (3.63)

Once the potential distribution is computed, the electric field is obtained using

E = −∇V = −
n∑

i=1

Vi∇Ni. (3.64)

3.5 Software implementation

This thesis work aims at discussing the numerical results obtained with the presented FE model in the
context of the deep brain stimulation problem. Therefore, no emphasis has been put in the inhouse
development of an original FE software.
Rather, our formulas as developed and discussed in the previous Section 3.4 have been implemented
thanks to a commercial tool COMSOL [36], which provides all the needed facilities for pre-processing
(mesher) and post-processing (specialized graphics) for the studied problem.
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3.6 Conclusion

The combination of a well established powerful numerical technique with a new and more accurate
strategy for living tissues, including conductive anisotropy is one of the main achievements in this
chapter. To this, it must be added the discussion of the main electromagnetic quantities involved
and the thorough discussion of the mathematical relationship between them. In particular the careful
application of the selected boundary conditions (Dirichlet and/or Neumann) is of paramount relevance
for the results obtained in the subsequent chapters.
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4 Application to deep brain stimulation

To evaluate the electric potentials generated by the deep brain stimulation (DBS), the general bioelec-
tric problem should be solved with the help of a numerical tool, as explained in the previous chapter. In
this chapter, the previously selected finite element (FE) model is adapted to the specific environment
of DBS and provides the first results for the electric potential generated by this type of stimulation.
First, the DBS system itself is described as well as the models used in previous studies (Section 4.1).
Second, the original anatomical model used throughout this thesis, is described in Section 4.2. In con-
tracts with previously published models, this simplified model extends to the chest in order to includes
all the elements of the electric loop involved in DBS. In order to increase the realism and accuracy of
the model, the highly inhomogeneous and anisotropic brain tissues surrounding the stimulation elec-
trode are characterized through data extracted from a patient diffusion MRI (DT-MRI). Finally, the
sensitivity of the potential distribution in the brain with respect to variations of parameters such as
the conductivity and the applied boundary conditions (BC) are evaluated in Section 4.3.

4.1 Electrical model of deep brain stimulation

As explained in Section 3.2, numerous electrical head models have been built for EEG prediction
(direct problem) or for source localization (inverse problem). With the development of medical
imaging and the associated enhancing of biological tissues knowledge, the complexity of these models
has dramatically increased. The main effort in these studies has been put on the modelling of tissues
excited by currents which are created in a localized bundle of neurons transmitting a neural message.
Therefore, these approaches have chosen to model these microscopic sources as infinitesimal electric
dipoles [1–10].
However, in DBS, the source generating the potential distribution is usually an electrode of a length
in the order of millimeters. Modelling it as an infinitesimal source is not accurate and a special care
must be taken to model the stimulation electrode [11].

4.1.1 Deep brain stimulation system

In DBS, the electric pulses are usually delivered to the tissues through a system like the one represented
in Fig. 4.1(a). This system is composed of [12]:

• an implanted pulse generator (IPG) that generates the electric pulses

• an implanted cable made of several wires that makes a galvanic connection between the IPG
and the various contacts of the stimulation electrode

• a stimulation electrode, composed of several contacts insulated from each other, which delivers
the electric pulses to the surrounding tissues (see Fig. 4.1(b)).

The system can be used in several configurations (see Fig. 4.2):

• monopolar stimulation: one contact is active (Fig. 4.3(a)),
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(a) Deep brain stimulation implantable
system

(b) Stimulation electrode

Figure 4.1: Medtronic SOLETRA system for deep brain stimulation [12]. The system (a) is composed
of a case containing the electronic system which generates the pulses, a bundle of wire
and an electrode made of four contacts at its end (b). The case has one of its faces
conductive and the other one insulated.

• multipolar balanced stimulation: several contacts are active and the sum of the currents going
out of the contact is null (Fig. 4.3(b)),

• multipolar unbalanced stimulation: several contacts are active, the sum of the currents going
out of the contact is not null and the difference have to go back to the IPG (Fig. 4.3(c)).

Either when the stimulation is monopolar or unbalanced, a return current electrode (RCE) must be
set up in order to close the electric loop. The metallic case of the implanted pulse generator is usually
used for that purpose. The SOLETRA stimulator [12] has all its faces electrically insulated except
one, which acts as the RCE when needed.
Therefore the real BC of the DBS (see Fig. 4.4) are the following:

• on the stimulation contact surface, the stimulation parameters set the BC. For voltage stimu-
lation, a fixed voltage must be set (Dirichlet type BC). For current stimulation, a fixed current
must be set (Neumann type BC). When a contact is not activated, the continuity equations are
applied.

• on the external boundary of the model, a fixed null Neumann BC is applied. That BC is set
as the head is surrounded by air, which is an electric insulator, no current flux is crossing this
boundary.

• on the conductive face of the implanted pulse generator, a Dirichlet BC sets a reference zero
potential. This face is used as RCE in monopolar or unbalanced stimulation. On the other faces
of the IPG, which are insulated, a null Neumann BC is applied, as no currents are crossing these
interfaces.

As the IPG is remotely controlled, the parameters of the electric pulse (pulse width and frequency)
as well as the type of stimulation chosen can be adjusted through the IPG even after the surgery.

The preferable configuration of the stimulation device is still discussed to treat movement disorders
with DBS. Nevertheless, most of the clinicians are using monopolar configuration as it allows a more
local stimulation (only the tissues surrounding one contact are activated) and therefore reduces side
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Insulated face 
(no current flow , 
i.e. Neumann BC)

Conducting grounded
face (V=0, i.e. Dirichlet BC)

Stimulation electrode
with N=4 contacts at 
the end−side of the cable

Cable with N=4 wires
to excite independently
the contacts

Simplified electric scheme
of the IPG: individual 
variable pulse generators with 
switches and voltage control

Figure 4.2: Simplified electric description of the implanted pulse generator.

effects [13]. When the bipolar balanced configuration is used, the tension set to one contact is usually
opposite to the one applied on the other contact.
The DBS system can be either current or voltage controlled. Nevertheless, most of the implanted
systems [12] are voltage controlled.
Considering the fact that monopolar configuration can be applied for the stimulation, the inadequacy
of the infinitesimal dipole approach, used in most of the EEG studies to model the source, is clearly
and plainly evident.

The Medtronic 3389 quadripolar device is the most commonly used system for DBS. Its electrode
consists of a 1.27 mm-diameter cylinder made of four 1.5 mm height-contacts separated by 0.5 mm, as
shown in Fig. 4.5. The contacts are made of conductive material (σ=5.99 107 S/m) and the space be-
tween each contact is made of insulator material (σ=5.99 10−7 S/m). These values are the limit values
of the FE software used. The curved tip of this device is neglected in the model and is approximated
by a straight cylinder of an equivalent height. As this cylinder and this curved tip are both made of
insulating material, this replacement should only have a very minor impact on the global potential
distribution. Nevertheless, this approximation may lead to an error for the potential evaluation at
that precise place (the tip). Our approach is flexible enough to include a detailed treatment of the
tip geometry and it would be worth in future studies to ascertain the real error incurred with this
approximation.

The location of the electrode contact in the model is based on its anatomical position. The preferred
site of stimulation for DBS applied for Parkinson’s disease is the subthalamus nucleus (STN). The
electrode contact position is therefore located with a small offset from the middle plan separating the
two brain hemispheres.
The IPG is modelled by a box of 6 × 5 × 1 cm 3. These dimensions correspond to the Soletra system
of Medtronic [12]. Unless specified, one of the main face of the box is set at the potential reference (0
Volt) to model the RCE needed to close the electrode loop in unbalanced stimulation. On the other
faces, a null Neumann boundary condition is applied (no current going through the surfaces).
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I

IPG

(a) Monopolar

I

IPG

(b) Balanced

I

IPG

ΔI

(c) Unbalanced

Figure 4.3: Schematic views of the electric loops involved in DBS. (a) Monopolar stimulation: all
the current going out of the stimulation electrode reaches the IPG in the chest. (b)
Multipolar balanced stimulation: the sum of current going out of the electrodes is zero.
(c) Unbalanced multipolar stimulation: the sum of currents going out of the electrode
contact ΔI is not zero and must reach the return current electrode, here the IPG.

4.1.2 Description of the previous deep brain stimulation models

Several studies have been conducted lately with the purpose of evaluating the potential distribution
generated by DBS and to predict their effect on the surrounding tissues. These studies have used
different electrical brain models that can be classified as follows:

• An axisymmetric two-dimensional model, where the tissues have been considered as homogeneous
and isotropic (Fig. 4.6 a) [14–18].

• A three dimensional cylindrical geometry to represent the homogeneous tissues surrounding the
electrode (Fig. 4.6 b) [19–21]

• A cubic model including the inhomogeneous and anisotropic tissues surrounding the electrode
(Fig. 4.6 c) [22–24]

• Butson et al. used a model extended to the head boundary to analyze the effect of deep brain
stimulation (Fig. 4.6 d) [25].

All of them used a reduced model which does not include all the electric stimulation system.
Therefore the approximation of setting a null Dirichlet BC to the external limits of their model to
model the RCE has been made. So far, any complete and rigorous studies have been made (to our
knowledge) to validate this approximation.

4.2 Description of the developed model

The model developed in this thesis aims at including all the tissues volumes involved in the whole DBS
electric loop. For this reason it extends to the chest in order to include the IPG. The model is built
with simple geometric elements such as cubes and cylinders to represent the main anatomical parts,
namely the human head, neck and upper chest (see Fig. 4.7). Extensive numerical studies, including
those performed in this thesis, have shown that the actual size of the body boundaries is of a very
minor relevance here. The critical parameters affecting the quality and the accuracy of the results are:
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Fixed potential

Fixed current

Figure 4.4: Two dimensional view of the real BC of DBS. On the surface of the stimulation electrode,
the BC are set according to the stimulation parameters. On the external boundary of the
model (dashed line) a null Neumann BC is applied. On the conductive face of the IPG
(bold line), a fixed reference zero potential is applied, whereas on the other insulating
faces (dashed line), a null Neumann BC is applied.

c0

c3

c2

c1

STN

Figure 4.5: Schematic view of the quadripolar Medtronic electrode model, widely used in DBS. The
black regions are the contacts (conducting material), while the rest of the structure is
made of insulator. The labels denote the usual nomenclature used in clinical practice:
C0 is the most distal contact and C3 is the most proximal one. Each contact is can be
feed independently from the others by the IPG. The gray area depicts the STN.

• a good modelling of the conductive properties of tissues around the electrode

• an observance of the global boundary conditions to be fulfilled by the electric current flow.

Precisely, both conditions are accurately considered in the proposed model.
The deal was: once these conditions are fulfilled, what can be the improvements introduced in the
model to maintain or improve accuracy without unduly increasing the computational complexity. This
internal logic commands the inclusion on the model of neck and upper chest with the appropriate
boundary conditions, to ensure an electric current flow as realistic as possible. On the other hand, for
the geometrical treatment, the choice of highly simplified geometric structures to describe the biological
tissues was considered a correct decision since it allows to maintain a reduced number of unknowns
without modifying the electric loop followed by the currents. Indeed numerical experiments have shown
that in these cases the modification of the geometrical elements (e.g. tetrahedrons, cylinders or spheres
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a b

c d

Figure 4.6: Schematic views of the previously used models. All these models have set a fixed 0 V
potential to their boundaries. a) is an axisymmetric two dimensional model. b) is a
three dimensional cylinder filler of homogeneous and isotropic medium. c) is a cubic
three dimensional model using inhomogeneous and anisotropic tissues. d) is a three
dimensional head model using anisotropic and inhomogeneous tissues.

instead of parallelepipeds) have a very low impact on the quantities of interest.

4.2.1 Tissue modelling

A reasonable number of different tissues, selected according to anatomical criteria, are used in the
model. The choice of these tissues is mainly directed by previous models found in literature [4, 7] and
by the availability of conductivity values for these tissues. This is depicted in Fig. 4.8, where each
tissue is associated with a color.
The head is made of a parallelepiped containing the skull, which in turn includes the cerebrospinal
fluid (CSF) and two hemispheres composed of white and gray matter. The rest is assimilated to
muscle.
From the bottom of the skull two concentric cylinders go down to the bottom boundary to model
the spinal cord: the outer represents bone while the innermost represents spinal cord. The neck is
made of two concentric cylinders. The outermost models the skin while the innermost is assimilated
as muscle and represents the tissues of the neck.
The upper chest is a parallelepiped crossed by the spinal cord. It is made of muscle and contains a
small box which represents the IPG. The bones are not taken into account in this model since they
present a very low conductivity and therefore are unlikely to be crossed by the electric loop.

Numerous studies have been conducted to quantify the electrical properties of the biological
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Figure 4.7: Simplified view of the three-dimensional model composed of: the head, the neck and the
chest with the implanted DBS system.

tissues [26–31]. Nevertheless, the values provided by these studies show important variations. This
is due to either the variability of these properties from a body to another or to the hard process of
isolating one class of tissue to measure its electrical characteristics.

4.2.2 Global indicators for ascertaining the influence of the tissue conductivity

In order to extract information from the potential distribution, global indicators are developed.

To quantify the impact of the conductivity on the potentials, the global impedance RTissue of the
tissues crossed by the current released during stimulation is computed. For a homogeneous medium,
the resistance R [Ω] is given by

R =
1
σ

l

S
(4.1)

where l [m] is the length of the medium, S [m2] its cross section and σ [S] its conductivity (see Fig. 4.9).
Therefore the relation R-σ is trivial.

But in a inhomogeneous medium, moreover having a variable cross section such as the model devel-
oped here, resistance can only be computed as

RTissue =
ΔV

I
(4.2)
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Figure 4.8: Coronal cutting view of the biological tissues used in the model.

where ΔV is the potential difference between the two electrodes involved in the stimulation (see
Fig. 4.10(a) for monopolar case and Fig. 4.10(b) for bipolar case). Indeed, according to the anatomy
and the current path, the conductivity of each tissue has its own impact. The total current I is
computed by the surface integration of the current density on one of the electrode surfaces. When
more than two electrodes are involved in the stimulation (unbalanced stimulation), the situation
becomes much more complicated, since an electrical multiport equivalent circuit must be considered
including more than one resistance.
RTissue is an excellent global indicator, as it takes into account any variation of conductivity for any

tissue.

Another way to quantify the impact of the conductivity values used in the model is to compute the
half pulse amplitude volume (HPAV). The HPAV is the volume of tissue where the potential ranges
from the pulse voltage amplitude value Upulse to its half value (see Fig. 4.11(a) for monopolar case
and Fig. 4.11(b) for bipolar case). For example, for a voltage stimulation amplitude of Upulse = 1
Volt, then the HPAV is the volume of tissue having a potential between 0.5 and 1 Volt. The HPAV
provides an information on the potential repartition and more especially on the gradient of the potential
amplitude. A small HPAV is obtained for a high amplitude gradient of potential, while a low amplitude
gradient of potential induces a big HPAV. The knowledge of the potential variation is useful in electrical
stimulation. As explained in Rattay’s study [32], the activation of neurons is indeed linked to the second
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Figure 4.9: Resistance of a homogeneous volume with a constant cross section.
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Figure 4.10: Illustration of the electrical equivalent circuit in for monopolar (a) and bipolar balanced
(b) stimulation. For bipolar balanced stimulation, the current differential ΔI = 0 and
therefore RTissue defines the impedance between the two active contacts.

spatial derivative of the potential. Therefore, a high HPAV is likely to activate less neurons than a
small one, as the spatial variation is smoother. The equivalent radius of the HPAV can also be defined
as

req = 3

√
3 · HPAV

4π
. (4.3)

These two indicators are dependant of the conductivity of the tissues, but also of the BC applied
to the model. Indeed, RTissue is computed for the tissues between the two electrodes involved in
the stimulation. In monopolar stimulation, one of these electrodes is directly modelled by the BC.
Therefore, a special care should be taken to model these BC.

4.2.3 Critical region

Numerous studies, mainly for EEG applications, have shown the importance of the tissue modelling
in the vicinity of the source [4, 7, 8]. Therefore, special care is taken to model critical region formed
by the tissues surrounding the electrode contact.
Ideally, the dimensions of the critical region should be comparable with the volume of tissue activated
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Figure 4.11: Illustration of the half pulse amplitude volume (HPAV). The HPAV is the volume of
tissue having a potential ranging between 100% and 50% of the pulse amplitude Upulse.

but this information is only known a posteriori, so as a reasonable assumption must be made a priori
on the size of the critical region. This assumption must be compatible with the available computer
resource. Nevertheless the clinical observations showed that the extent of stimulation remains within
a radius of several millimeters.

The use of the DT-MRI to provide information on the direction of fibers makes possible the
introduction of anisotropic conductivity in the head models. Several studies have shown that the
introduction of anisotropic conductivity in EEG models leads to a more realistic modelling of the
human head and therefore to improvements in the EEG prediction and on the dipole localiza-
tion [3, 5, 9, 23, 33–35].

Modelling each nerve and all microscopic cells constituting the brain structure is impossible (or at
least impracticable) today. A macroscopic approximation is then used to assign a global electrical
property to each discretized part of the brain.
This macroscopic approximation for the conductivity of tissue is based on the diffusion tensor imaging

(DT-MRI) of a selected patient. First, the stimulation target is localized anatomically on the DT-MRI
data by a clinician. Then an array of voxels (three dimensional elements of composing the DT-MRI
data) surrounding the target is extracted and converted into an array of electrical conductivity tensors
(see Section 3.3). An array of parallelepipeds having the same size and dimensions than the DT-MRI
voxels (in this study an array of 8 × 8 × 5 elements of 1.5 × 1.5 × 3 mm3) is created around the
stimulation electrode model so the information included in the medical imaging is maximized. The
conductivity tensors are then assigned to each elements, taking care that the targeted voxel is assigned
to the element around the stimulation electrode contact. This array of tissue, referred as refined tissue,
is shown in Fig. 4.12(a). The Fig. 4.12(b) shows the stimulation electrode model and the conductivity
ellipsoids obtained from the DT-MRI for an 8 × 8 × 5 array located around the stimulation electrode.
The conductivity tensor ellipsoids show a high inhomogeneity, not only in their volumes but also in
their shapes, which is a typical characteristic of the brain tissues. Indeed, white matter shows high
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Figure 4.12: Illustration of the refined tissues position and of their anisotropic conductivity. a) To
improve the quality of the model, refined tissues (in pink) are located in the vicinity
of the stimulation electrode. These tissues have their conductivity based on a high
definition DT-MRI of each patient. b) The stimulation electrode is surrounded with
the ellipsoids representing the anisotropic electrical conductivity. The color of each
ellipsoid shows the fractional anisotropy (equation (3.19)). A blue color indictates an
isotropic conductivity while a red color depicts a high anisotropy. The volume of the
ellipsoid is linked to the value of the conductivity. A highly conductive tissue (i.e CSF)
will have a bigger volume than a tissues showing low conductivity (i.e white matter).

anisotropy and CSF is a highly conductive media.

4.2.4 Finite element meshing of the model

The mesh generation for the model is managed directly by the finite element software COMSOL [36].
The electric potentials need to be accurately computed in the vicinity of the source. The neural effects
are analyzed in this region. Since the electric field changes rapidly in this area, a high mesh density is
forced in the critical region.

The maximum mesh element size is set to 0.2 mm on each electrode contact. An illustration of the
high mesh density around the stimulation electrode can be seen in Fig. 4.13.
The final model is made of approximately 400 000 unknowns. The mesh density provides good results
for the quantities under study. Indeed, as a proof of numerical convergence and stability, it has been
checked that doubling the node number changes the potential values by amounts always smaller that
1.75%.

4.3 Sensitivity of the model to different parameters

In this section the sensitivity of potential distribution of the model to several parameters is investigated.
First, the sensitivity of the model to the use of anisotropy is evaluated. Second, the values of the tissues
conductivity are varied and the impact on the quantificators defined in previous section are analyzed.
Finally, the effect of the applied BC is studied.
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(a) 3-D view (b) top view

(c) face view (d) contact

Figure 4.13: Different cutting views of the mesh used in the model. The darker, the finer the mesh
density. In (d) is shown a zoomed view of the stimulation electrode. The mesh in that
area is forced to have a high density, as an accurate field value is required.

4.3.1 Influence of the anisotropic tissue modelling

At first glance, to evaluate the effect of anisotropy one could just compare a simple model where
the refined tissues are modelled by an isotropic conductivity (that of white matter) with a more
evolved model where tensorial conductivities based on DT-MRI is used within the refined region.
Unfortunately, these changes imply not only the use of anisotropic rather than isotropic conductivity
but also a global modification of the conductivity values. Therefore, quantifying the improvements
obtained with the anisotropic conductivity is not an easy task.
Fig. 4.14 shows two isopotential surfaces corresponding approximately to the same volume. The first
one, obtained using isotropic conductivity, shows an regular elliptical shape, while the one obtained
using anisotropic conductivities shows a more irregular shape. This demonstrates that using anisotropic
values impacts the potential distribution generated by the stimulation. The potential gradient will
follow the direction of the largest conductivity. This leads to a more pronounced dependence of the
potentials with the angular direction.

4.3.2 Influence of the tissue conductivity

The influence of the electrical tissue properties on the the potential distribution in EEG models has
been investigated in [4, 7, 8]. These studies have shown that the values of conductivity used for the
tissues surrounding the source have an important impact on the potential amplitude and distribution.
In [4], the resistivity values found in literature has been reviewed. The sensitivity of forward model
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(a) Isotropic conductivity (b) Anisotropic conductivity

Figure 4.14: Illustration of the changes when using anisotropy. The left figure shows a volume ob-
tained using isotropic conductivity. The obtained volume is regular and almost spher-
ical. Right figure shows a volume having approximately the same size, but obtained
using anisotropic conductivity. The obtained volume is non regular and is deformed
according to the anisotropic conductivity of the tissue.

of EEG with respect to the resistivity of each class of tissue has been computed. Each class of tissue
has been set to a mean conductivity value and an upper and lower bound (usually set to ± 50% of
the mean value). Only in the case of widely varying values other bounds have been chosen. The range
of the chosen lower and upper bounds represents a good approximation for all the resistivity values
which can be found in the literature. This study has provided rounded up resistivity values in ω cm.
The previously described methodology has been applied to evaluate the sensitivity of the model to tissue
conductivity. The conductivity values are taken from [4]. They are given in Table 4.1. Contrary to the
EEG applications, conductivity values are considered rather than resistivity. This choice is motivated
by the fact that the values of conductivity will be used to create the anisotropic conductivity based on
water diffusion tensors.
To evaluate the sensitivity of the model to a specific class of tissue, each value is set to its upper and
lower value, as defined in Table 4.1, while keeping the others to the mean value.
It is worth mentioning that the conductivity values shows a very similar degree of incertitude in most
tissues, save for muscle and skull, where the open literature provides a rather important disparity of
the announced results.

Case of monopolar stimulation

The sensitivity of monopolar DBS model to the electrical conductivity of tissues is investigated. The
computed impedance and the HPAV results are given in Table 4.2.
The variation of the value of conductivity for the refined tissues leads to major variation of RTissue

(+27% and -29% compared to the impedance using mean values). Since the refined tissues surround
the stimulation electrode, the current must flow through these tissues (see Fig. 4.15). Therefore, they
play a major role in the total impedance seen by the stimulation system.
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Table 4.1: Conductivity of the human tissues used in the proposed model (values extracted from [4])
σTissue [S.m−1] mean lower upper
Refined tissues 1.538 1.026 (66%) 3.076 (200%)

CSF 1.538 1.026 (66%) 3.076 (200%)
Muscle 0.1 0.056 (56%) 0.5 (500%)
Skull 0.0063 0.002 (31%) 0.0125 (200%)

Gray Matter 0.33 0.222 (66%) 0.667 (200%)
White Matter 0.143 0.095 (66%) 0.286 (200%)

Skin 0.434 0.29 (66%) 0.869(200%)
Bone 0.04 0.0267 (66%) 0.08 (200%)

Spinal cord 0.154 0.103 (66%) 0.308(200%)

Table 4.2: Sensitivity of the model of monopolar DBS to the tissue conductivity
RTissue[Ω] relative error [%] HPAV [mm3]

Type of tissue σupper σlower σupper σlower σupper σlower

base model 1001 0 272
refined tissue 709 1271 -29 +27 20563 61

muscle 779 1183 -22 +18 33 3803
skull 992 1029 -0.9 +3 400 241
CSF 993 1006 -0.8 +0.5 243 287

gray matter 996 1004 -0.5 +0.3 254 282
white matter 939 1055 -6 +5 134 582

skin 977 1049 -2 +5 202 332
bone 997 1002 -0.4 +0.1 260 277

spinal cord 998 1002 -0.3 +0.1 260 277

The impact of the muscle conductivity on RTissue is important (+18% and -22%). This result can be
explained by several ways. First, most of the model is composed of muscle and its location makes that
the current has to go through. Moreover, as pointed out in Table 4.1, the variation of the estimated
conductivity of muscular tissue is important. On the other hand, it is worth noticing that the cross
section of muscle is big, which according to equation (4.1) should reduce the value of RMuscle.

White matter surrounds the refined tissues. The current is therefore forced to go across this
tissue. But here also the cross section reduces the impact of that class of tissue, since changing its
conductivity value between its extreme accepted values only modifies RTissue of less than 6%.
The current is also forced to go across the neck to reach the RCE. Its preferred path is to go through
the tissue having the highest conductivity on the skin. Notice that despite of its location, in the
outermost surface of the model, the skin conductivity has a big influence on the total impedance
(+5% and -2%).
For the remaining classes of tissues, the changes obtained when changing the value of conductivity
are not significant (below 1%).

The HPAV is also influenced by changing the conductivity of tissues. The same type of tissue have
an important influence on the total impedance also have a great effect on the HPAV. Nevertheless, the
impact on the HPAV is opposite if the considered tissue is in the vicinity or far from the stimulation
electrode.
This can be explained as follows. The voltage drop between two points and hence the slope of the
voltage variation with distance is directly proportional to the medium resistance and therefore inversely
proportional to conductance. So higher values of conductance yield lower slopes of the potential curve.
Now there are two fixed values of this curve, namely the Upulse value at the contact electrode level and
the reference zero value at the IPG position (see Fig. 4.16).
If a change of slope is forced in the proximal region (the critical region near the electrode) or in the
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Figure 4.15: The total resistance of the tissue RTissue can be decomposed is a sum of resistance. As
refined tissues and muscle are surrounding the electodes, the current have to go through
these classes of tissue. The rest of the resistance is made by the other tissues.

distal region (far from the electrode), the potential curves must forcefully evolve as in, respectively,
Fig. 4.16(a) and Fig. 4.16(b), since the potential is a continuous function. Now if the mid point in the
vertical axis (50% of Upulse) which is used to define the HPAV we see by plain geometry that HPAV
increases when conductivity increases in the proximal region (Fig. 4.16(a)). But the same increase of
conductivity in the distal region will produce a decrease of the HPAV Fig. 4.16(b).
These phenomena are particularly evident when changes of conductivity are applied to muscle with
white matter playing the second role in the list of relevant tissues.
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Figure 4.16: Illustration of the effect of the change of the conductivity on the HPAV.

Case of bipolar balanced stimulation

In a bipolar stimulation, the current loop involved is much smaller than in a monopolar stimulation.
The current emitted by the positive electrode returns to the negative electrode and the differential
current ΔI (see Fig. 4.10(b)) is not significant compared to the current between the two contacts.
Only the conductivity of the tissues in the vicinity of the stimulation electrodes (refined tissues and
white matter in the critical region) might influence the potential distribution in bipolar stimulation.
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The obtained results are showed in Table 4.3.
As expected, doubling the resistivity of the refined tissues leads to a double tissue impedance. When
changing the conductivity value of the white matter, the variation of impedance are negligible. The
tissues located further to the stimulation electrode than the refined tissues have a negligible impact
and to the electric loop involved in bipolar stimulation.
Changing the value of conductivity in bipolar model does not impact the HPAV, which remains constant
with the changes. As the electric loop is going across only one class of tissue (the refined tissues),
changing the conductivity value of this class does not affect the potential distribution.

Table 4.3: Sensitivity of the model of bipolar balanced DBS to the tissue conductivity
RTissue[Ω] relative error [%] HPAV [mm3]

Type of tissue lower upper lower upper lower upper
base model 864 0 13

refined tissue 1274 424 +47 -51 12.9 13.1
white matter 864 868 0 -0.4 13.0 12.9

Case of multipolar unbalanced stimulation

These techniques are rarely used in DBS. Since the current is going both between the active elec-
trode contacts and to the IPG, the influence of the tissue conductivity could be obtained as a linear
combination of the results associated to the two previous cases.

4.3.3 Influence of the boundary conditions

In this section, the influence of the BC applied on the model is investigated.
Most of the previous studies on DBS have used the same reduced model to investigate bipolar and
monopolar stimulation [14–17,20,21,23–25,37,38]. The choice of the BCs applied on the limits of these
model was usually the same for bipolar and monopolar configuration, namely a fixed zero potential on
the external boundary (see Fig. 4.6). This boundary condition is fully justified for balanced bipolar
stimulation. In effect, it has been shown in Section 4.3.2 that tissues located away from the source
do not impact the potential distribution. The currents reaching the tissues located away from the
electrode are negligible, and therefore fixing a null Neumann or Dirichlet condition on the external
boundary is equivalent.
In monopolar stimulation, applying a zero potential on the external boundary sets up a RCE and
then only one part of the electric loop is considered. However, the entire electrical loop involved in
monopolar STN DBS includes all the biological tissues between the stimulation electrode active contact
and the RCE, i.e. the IPG.
To evaluate the influence of the RCE model, three full loop models are used and compared with a
commonly used model of reduced size that is considered as the reference.

Description of the return current electrode models

Four RCE models are investigated. They present various types of BC, as depicted in Fig. 4.17:

• BC I: the IPG is located in the chest. One of the main faces (30 cm2) of the box is set to the
reference potential (0 Volt) while the other faces are considered as isolating surfaces (no current
flow through the surfaces).

• BC II: the IPG is located in the chest and has its two main faces set to 0 Volt. The area of the
RCE is then doubled (60 cm2).
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Figure 4.17: Illustration of the four return current electrode (RCE) models compared in this study.
BC I – the IPG is located in the chest and its main side is set to 0 Volt. BC II – the
IPG is located in the chest and its two main sides are set to 0 Volt. BC III – the IPG
is located at the bottom of the head and its main side is set to 0 Volt. BC IV – an
artificial cubic boundary is created (10 cm side). The surface of this cube is set to 0
Volt to recreate the boundary condition used in previous studies. Refined tissues having
their properties based on the DT-MRI can be seen in the center of the head.

• BC III: the IPG is located in the bottom of the head, closer to the electrode (see Fig. 4.17), with
one face set to 0 Volt.

• BC IV: the surface of a 10 cm side cube (600 cm2) surrounding the stimulation electrode is set
to 0 Volt.

BC IV is the most currently used model [14, 16, 17, 21, 23, 24]. Therefore, this BC will be used as
benchmark to ascertain the improvements obtained by the more sophisticated model, BC I, that is
used in this thesis. BC II and BC III are used to show the influence of, respectively, the size and the
position of the RCE.

Influence of the return current electrode model in monopolar stimulation

The evaluated impedance of the tissues located between the electrode contact and the RCE in monopo-
lar stimulation are reported in Table 4.4 for the four RCE models. The HPAV are also given, as well
as the equivalent radius req.
The highest value of impedance is obtained with the the RCE model BC I (1001 Ω). For this case,
we observe an increase of the tissue impedance of 48% compared to the reference boundary condition
model (BC IV). Doubling the surface of the RCE (BC II) induces a small decrease of the impedance
(953 Ω). When moving the RCE to the base of the head, the impedance reaches 853 Ω. Finally, using
the boundary condition BC IV yields to an impedance value of 674 Ω.
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Figure 4.18: Isopotential surfaces of half the pulse amplitude obtained using four return current
electrode (RCE) models (I stands for BC I). The potentials generated by the stimulation
decrease more rapidly when the surface set to 0 Volt is closer (IV, III) or larger (II)
than when using the most realistic model for the RCE (I).

The potential distribution is also affected by the RCE model, as exposed in Fig. 4.18. Isopotential
surfaces of the half pulse amplitude are shown. The potentials generated by the stimulation decrease
more rapidly when the 0 Volt surface is closer to the electrode contact and/or larger. Inversely, the
total resistance of the tissues decrease when the RCE model surface increases and/or when its position
is closer. So, as anticipated, the more accurate is the model, the smaller are the results for RTissue and
HPAV. In other words, the values of RTissue and HPAV are largely underestimated with the standard
models available in the literature.

4.4 Conclusion

In this chapter, the model used to to compute the potential generated by the stimulation electrode
in deep brain stimulation has been presented. Opposite to the models used in previous studies, this
model encompasses the head, the neck and the upper chest to include the full electric loop involved in
DBS. This electric loop is composed of the stimulating electrode, the implanted generator and all the
tissues located in between. The use of a full electric loop model, while not necessary when studying
balanced bipolar stimulation, is mandatory in studies of monopolar stimulation. It has been shown
that whereas all the tissues crossed by the stimulation current impacts the impedance seen by the
stimulation system and modifies the potential distribution, only the ones surrounding the active elec-
trodes have a relevant impact. It has also been shown that the boundary condition usually applied in
previous studies leads to important differences in the prediction of the potential distribution compared
to the one applied here, which is more realistic.
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Table 4.4: RCE model influence on the impedance and the potential distribution

RCE model Rtissue [Ω] Rtissue relative error [%] HPAV [mm3] req

BC I 1001 +48 272 4.02
BC II 953 +40 160 3.36
BC III 853 +27 49 2.27
BC IV 674 0 19 1.66

The effects of these modelling aspects on the potential distribution have been shown, but their neu-
rological effects on the stimulated tissues are still hard to quantify. According to Rattay [32], the
activation of a neuron is linked to the second spatial derivative of the potential. As the spatial po-
tential decrease from the electrode is influenced either by the tissues conductivity and the boundary
conditions applied, it is likely that the volume of tissue stimulated is also affected by these parameters.
In any case, as far as only electric quantities are discussed, this work shows clearly that key quantities
like the total tissular resistance RTissue and the radius of the HPAV could be strongly underestimated
(roughly a factor two) by current approaches.
In the next chapter, neuron models will be introduced in the potential field obtained by the FE simu-
lation in order to quantify the amount of tissue activated by the stimulation.





Bibliography

[1] S. V. D. Broek, H. Zhou, and M. Peters, “Computation of neuromagnetic fields using finite-element
method and biot-savart law,” Medical and Biological Engineering and Computing, 1996.

[2] H. Buchner, G. Knoll, M. Fuchs, A. Riencker, R. Beckmann, M. Wagner, J. Silny, and J. Pesch,
“Inverse localization of electric dipole current sources in finite element models of the human head.”
Electroencephalogr Clin Neurophysiol, vol. 102, no. 4, pp. 267–278, Apr 1997.

[3] H. Hallez, B. Vanrumste, P. V. Hese, S. Delputte, and I. Lemahieu, “Dipole estimation
errors due to differences in modeling anisotropic conductivities in realistic head models for eeg
source analysis.” Phys Med Biol, vol. 53, no. 7, pp. 1877–1894, Apr 2008. [Online]. Available:
http://dx.doi.org/10.1088/0031-9155/53/7/005

[4] J. Haueisen, C. Ramon, M. Eiselt, H. Brauer, and H. Nowak, “Influence of tissue resistivities
on neuromagnetic fields and electric potentials studied with a finite element model of the head.”
IEEE Trans Biomed Eng, vol. 44, no. 8, pp. 727–735, Aug 1997.

[5] J. Haueisen, D. S. Tuch, C. Ramon, P. H. Schimpf, V. J. Wedeen, J. S. George, and J. W.
Belliveau, “The influence of brain tissue anisotropy on human eeg and meg.” Neuroimage, vol. 15,
no. 1, pp. 159–166, Jan 2002. [Online]. Available: http://dx.doi.org/10.1006/nimg.2001.0962

[6] G. Marin, C. Guerin, S. Baillet, L. Garnero, and G. Meunier, “Influence of skull anisotropy for
the forward and inverse problem in eeg: simulation studies using fem on realistic head models.”
Hum Brain Mapp, vol. 6, no. 4, pp. 250–269, 1998.

[7] C. Ramon, P. Schimpf, and J. Haueisen, “Influence of head models on eeg simulations and inverse
source localizations,” BioMedical Engineering OnLine, 2006.

[8] R. V. Uitert, C. Johnson, and L. Zhukov, “Influence of head tissue conductivity in
forward and inverse magnetoencephalographic simulations using realistic head models.”
IEEE Trans Biomed Eng, vol. 51, no. 12, pp. 2129–2137, Dec 2004. [Online]. Available:
http://dx.doi.org/10.1109/TBME.2004.836490

[9] C. H. Wolters, A. Anwander, X. Tricoche, D. Weinstein, M. A. Koch, and R. S. MacLeod,
“Influence of tissue conductivity anisotropy on eeg/meg field and return current computation
in a realistic head model: a simulation and visualization study using high-resolution finite
element modeling.” Neuroimage, vol. 30, no. 3, pp. 813–826, Apr 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.neuroimage.2005.10.014

[10] Y. Yan, P. L. Nunez, and R. T. Hart, “Finite-element model of the human head: scalp potentials
due to dipole sources,” Med. Biol. Eng. Comput., vol. 29, pp. 475–481, Sep. 1991.

[11] C. C. McIntyre and W. M. Grill, “Finite element analysis of the current-density and electric field
generated by metal microelectrodes,” Ann. Biomed. Eng., vol. 29, no. 3, pp. 227–235, Mar. 2001.

[12] SOLETRA system, Medtronic, Minneapolis, MN, USA, http://www.medtronic.com/our-
therapies/neurostimulators-movement-disorders/index.htm.

[13] S. Breit, J. B. Schulz, and A.-L. Benabid, “Deep brain stimulation.” Cell Tissue Res, vol. 318,
no. 1, pp. 275–288, Oct 2004. [Online]. Available: http://dx.doi.org/10.1007/s00441-004-0936-0

81



82 Bibliography

[14] C. R. Butson, C. B. Maks, and C. C. McIntyre, “Sources and effects of electrode impedance
during deep brain stimulation.” Clin Neurophysiol, vol. 117, no. 2, pp. 447–454, Feb 2006.
[Online]. Available: http://dx.doi.org/10.1016/j.clinph.2005.10.007

[15] C. R. Butson and C. C. McIntyre, “Differences among implanted pulse generator waveforms cause
variations in the neural response to deep brain stimulation.” Clin Neurophysiol, vol. 118, no. 8,
pp. 1889–1894, Aug 2007. [Online]. Available: http://dx.doi.org/10.1016/j.clinph.2007.05.061

[16] ——, “Role of electrode design on the volume of tissue activated during deep brain
stimulation.” J Neural Eng, vol. 3, no. 1, pp. 1–8, Mar 2006. [Online]. Available:
http://dx.doi.org/10.1088/1741-2560/3/1/001

[17] ——, “Tissue and electrode capacitance reduce neural activation volumes during deep brain
stimulation.” Clin Neurophysiol, vol. 116, no. 10, pp. 2490–2500, Oct 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.clinph.2005.06.023

[18] S. Miocinovic, M. Parent, C. R. Butson, P. J. Hahn, G. S. Russo, J. L. Vitek, and C. C.
McIntyre, “Computational analysis of subthalamic nucleus and lenticular fasciculus activation
during therapeutic deep brain stimulation.” J Neurophysiol, vol. 96, no. 3, pp. 1569–1580, Sep
2006. [Online]. Available: http://dx.doi.org/10.1152/jn.00305.2006

[19] M. Aström, J. D. Johansson, M. I. Hariz, O. Eriksson, and K. Wårdell, “The effect of cystic
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5 Interaction between neurons and electric
field

The finite element (FE) model presented in the previous chapter is able to solve the Poisson equation
for a biological environment extending to the chest. Therefore, the prediction of the potentials
generated by the deep brain stimulation (DBS) can be immediately done. But while this knowledge
is valuable from a physical point of view, it does not reveal the neurological action leading to the
improvements of the symptoms observed clinically.
In this chapter, the action of the stimulation on the tissues surrounding the electrode is investigated.
In the first section, the general electrical model of a neuron is introduced, and the action of electrical
stimulation is explained. The second section introduces the specific model of axons used in this
thesis to evaluate the volume of activated tissues. Finally the last section presents the central results
obtained in this thesis, predicting the volume of tissue activated by the electrical stimulation in
different configurations.

5.1 Neural signal propagation and general electrical model of a
neuron

This section provides a general description of neurons and introduces the biological mechanisms of
neural signal propagation. The electrical models of neurons are then developed, and the definition of
the activation function is provided.

5.1.1 Neuron description and signal propagation in axons

Neurons are the responsible cells for the generation and transmission of information in living bodies.
The typical structure of a neuron is shown in Fig. 5.1. According to the task it is dedicated a neuron
can show several morphologies.
A succinct description of the neuron morphology as follow [1]:

• the soma, which is the central part of the neuron. It contains the nucleus of the cell. The nucleus
ranges from 3 to 18 μm in diameter.

• the dendrites are cellular extensions with many branches. The majority of input signals arriving
to the neuron enter through this part of the neuron.

• the axon is a cable-like projection which transmits the neural signal away from the soma. Its
length varies from ten to ten thousand times the diameter of the soma. An axon can be covered
with an insulating sheath of myelin, which allows a more rapid transmission of signal. These
sheaths frequently happen a s discontinuous sections. The space between two sections of myelin
sheath is called a node of Ranvier (see Fig. 5.1).

• the axon terminal contains synapses, specialized structures where neurotransmitter chemicals
are released in order to communicate with the dendrites of other neurons.
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Dendrite
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Node of
Ranvier

Axon terminal

Myelin sheath

Axon

Nucleus

Input region Conductile region Output region

Figure 5.1: Typical structure of a neuron. The cell body is called soma. It is surrounded by dendrites
which are the receptors of signals from other neurons. The signal propagates through
the axon to the axon terminals, which are connected to the dentrites of other neurons.
After [1]

The transmission of signal takes place through electrochemical processes along the fiber. The cell
membrane of the axon and soma contains voltage-gated ion channels which allows the neuron
to generate and propagate an electrical signal. These signals are generated and propagated by
charge-carrying ions including sodium (Na+), potassium (K+), chloride (Cl−), and calcium (Ca2+).
The unidirectional signal transmission from one neuron to the other is made through synapses,
specialized structures allowing communication between two neurons where neurotransmitter chemicals
are released. The conduction of nerve impulses is an example of an all-or-none response. In other
words, either a neuron stays unactivated or responds completely to stimulation. In that case, an
action potential propagates along the axon to the axon terminals.
There are several stimuli that can activate a neuron amd lead to electrical activity, including pressure,
stretch, chemical transmitters, and changes of the electric potential across the cell membrane. Stimuli
cause specific ion-channels within the cell membrane to open. This leads to a flow of ions through the
cell membrane. The result is a change in the “transmembrane potential” defined as the potential
difference or voltage existing between the intracellular and extracellular regions at both sides of
the cell’s membrane. The time-evolution of this transmembrane potential during a neuronal signal
transmission is called the “action potential”.

The time evolution of the action potential can be divided into five parts (see Fig. 5.2):

• resting state: Prior to the signal activation, as the intracellular and extracellular ions concentra-
tions are not equal, there is a non-zero value for the transmembrane potential, called the resting
potential.

• depolarization: As the membrane potential is increased, both the sodium and potassium ion
channels begin to open up. This increases both the inward sodium current and the balancing
outward potassium current. For small voltage increases, the potassium current triumphs over
the sodium current and the voltage returns to its normal resting value. However, if the voltage
increases past a critical threshold, the sodium current dominates. This results in a runaway
condition whereby the positive feedback from the sodium current activates even more sodium
channels. Thus, the cell ”fires”, producing an action potential.

• repolarization: At the peak of the action potential, the sodium channels become inactivated. At
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the same time, the raised voltage opens voltage-sensitive potassium channels. Combined, these
changes in sodium and potassium permeability cause the membrane potential to drop quickly.

• hyperpolarization: The raised voltage opened many more potassium channels than usual, and
these do not close right away when the membrane returns to its normal resting voltage. Hence,
there is an undershoot, called hyperpolarization, that persists until the membrane potassium
permeability returns to its usual value.

• refractory period: The opening and closing of the sodium and potassium channels during an
action potential may leave some of them in a ”refractory” state, in which they are unable to
open again until they have recovered. In the absolute refractory period, so many ion channels
are refractory that no new action potential can be fired. In the relative refractory period, enough
channels have recovered that an action potential can be provoked, but only with a stimulus much
stronger than usual. These refractory periods ensure that the action potential travels in only
one direction along the axon.

More details on the description of the neurons and of the bioelectrochemical mechanisms of signal
propagation can be found in [1].
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Figure 5.2: Idealized time course of an action potential. The difference between the outer and the
inner potential is called the membrane potential. This membrane potentials is varying
while the signal is transmitted along the axon.

5.1.2 Electrical equivalent models of a neuron

The first electrical stimulation of nerves and muscles dates from Galvani’s experiment (see Chapter 2).
Nevertheless, the understanding of what really happens when a nerve is electrically excited was not
possible prior to the knowledge of the behavior of the membrane surrounding the nerve fiber.
The breakthrough in understanding the propagation process has come with the description of
membrane behavior by a system of four differential equations which are known as the Hodgkin-Huxley
equations [2]. This mechanism has been understood thanks to experiments on giant squids axons.
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Their extremely large axon diameters, up to 1 mm, allow the insertion of microelectrodes.
The electrical properties of a biological membrane depend essentially on the types and amount of
ionic channels. In 1964, as technical progress allowed the measurements of myelinated frog axons
(which have diameters of some μm only), Frankenhaeuser and Huxley published their equations which
seemed more appropriate for mammalian and human applications [3].
The Hodgkin-Huxley equations, as well as the Frankenhaeuser-Huxley (FH) equations quantifies the
voltage current relations of a piece of membrane in the time dimension. They essentially deal with
the transmembrane potential Vm (difference of potential between the inner (Vi) and the outer (Vo)
potential)
The behavior of such a patch of membrane, can be simulated by an electrical equivalent circuit
consisting of a voltage source, capacity and nonlinear resistance (see Fig. 5.3). More information on
the description of the equation driving the resistance of the membrane can be found in [4].

C

R

Vo

Vm

Vi

Outside (extracellular fluid)

Inside (intracellular fluid)

Membrane

Figure 5.3: Electrical equivalent circuit for a patch of membrane. The voltage source represents
the potential difference of the membrane due to the different ionic concentrations. The
membrane resistance is highly nonlinear because of the activity of the ionic channels
embedded in the membrane.

An action potential propagates like a wave phenomena, because during repolarization it generates
local currents that tend to depolarize the membrane immediately adjacent to the action potential.
When that depolarization caused by the local currents reaches a threshold, a new action potential is
produced adjacent to the original one. Action potential propagation is unidirectional (no backward
propagation) because the recently depolarized area of the membrane is in absolute refractory period
and cannot generate an action potential.
A similar effect can be reached artificially by changing the membrane voltage via the extracellular
potential. This is the aim of extracellular electrical stimulation.

5.1.3 Electrical equivalent models of the excitation of a myelinated fiber

The simplest example of nerve stimulation consists of a punctual current source of amplitude Ia placed
near an uniform myelinated axon (see Fig. 5.4). Both the source and the fiber are considered to lie in
an uniform conducting medium of unlimited extent. This model has been investigated in [5].
The electric model corresponding to Fig. 5.4 is described in Fig. 5.5. In this electric model, it is
assumed that the transmembrane current is confined solely in to the nodal region. Since the node is
relatively narrow, the network representing the membrane is essentially described by lumped elements.
These are shown as a parallel RC-structure at all the nodes except the central one (node 0). Only the
central node is described by the FH equations, as it is here that the stimulation arises [5].

The axial intracellular current path introduces the axial intracellular resistance per internodal length
Ri, in [Ω], that can be obtain according to equation (4.1). In this case, the involved surface is a circular
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di

l
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Ia

h

Vi

Vm

Vo

Figure 5.4: Example of myelinated fiber stimulation. A punctual current stimulus, Ia, lies at a
distance h form a single myelinated fiber. A node of Ranvier is assumed to be aligned
with the stimulating monopole. The internodal distance l is related to the outer diameter
of the myelin, de where l = 100de. The axon diameter is di.

FH

0 1 2−1−2

RmRmRmRm

RiRiRiRi

Cm Cm CmCm
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Vi
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Figure 5.5: Electrical equivalent model of a myelinated fiber stimulation. The fiber is stimulated by
a point current source of strength Ia. The node directly beneath the source is labeled 0
and its membrane is modeled by Frankenhaeuser-Huxley (FH) equations. Lateral nodes
are assumed to be at resting state and represented by parallel resistance and capacitance
(where Rm, Cm are the total nodal lumped resistance and capacitance, respectively,
per nodal area). The total intracellular internodal resistance is Ri. The hatched lines
represent the internodal myelin sheaths.
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Figure 5.6: Generic nth node.

section of diameter di. Therefore :

Ri =
1
σi

l

π(di/2)2
=

4l

σiπd2
i

(5.1)

with σi the intracellular conductivity, in [Ω · m]−1; l the internodal length, in [m] and di the axon
diameter (internal myelin diameter), in [m].
McNeal assumed that the potential on the extracellular side of the nodal membrane was fixed by the
stimulating field. Since the latter is a point source (i.e. a monopole), the associate resistance is a
radial one, computed again as in equation (4.1) but using as surface a sphere of radius r :

R =
1
σo

r

4πr2
(5.2)

and therefore, the applied stimulating potential Vo, in [V ], is

Vo = IaR =
Ia

4πσ0r
(5.3)

with Ia the applied current, in [A]; σ0 the extracellular conductivity of the medium, in [Ω · m]−1 and
r the distance from any node to the point source, in [m].
This formulation considers that the field is obtained for an infinite homogeneous medium. The influ-
ence of the axon structure and of the action potential on the field are thus neglected.
On the basis of the equivalent electric circuit for a nth node described in Fig. 5.5 and the applied

field of Equation (5.3), one can determine the response to step currents of varying strengths (up to
that required for excitation at node 0).
The Fig. 5.6 shows a generic nth �= 0 element in the axon. According to Kirchhoff laws, the transmem-
brane current I

(n)
m can be obtained as

I(n)
m =

V
(n−1)
i − V

(n)
i

Ri
+

V
(n+1)
i − V

(n)
i

Ri
(5.4)

where V
(n)
m is the transmembrane voltage at the nth node and Ri the axial intracellular resistance per

internodal length. This current can be separated into two terms, going through the nodal capacitance
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Cm and resistance Rm, as

I(n)
m = Cm

dV
(n)
m

dt
+ I

(n)
i (5.5)

where

I
(n)
i =

V
(n)
m

Rm
(5.6)

is the so called “ionic current”.
Combining equations (5.4) and (5.5) and using the definition in equation (5.6) an the definition of the
transmembrane voltage V

(n)
m = V

(n)
i − V

(n)
o gives

dV
(n)
m

dt
=

1
Cm

[
1
Ri

(V (n−1)
m − 2V (n)

m + V (n+1)
m + V (n−1)

o − 2V (n)
o + V (n+1)

o ) − I
(n)
i

]
. (5.7)

However this development is only valid for n �= 0 (subthreshold conditions). For the activated node,
the ionic current I

(n)
i is in fact given by the Frankenhaeuser-Huxley equations and has a much more

complicated expression being done by

I
(0)
i = πdiν(iNa + iK + iP + iL) (5.8)

where ν is the nodal width.
Then for n = 0 equation (5.7) must be replaced by

dV
(0)
m

dt
=

1
Cm

[
1
Ri

(V (−1)
m − 2V (0)

m + V (1)
m + V (−1)

o − 2V (0)
o + V (1)

o ) − I
(0)
i

]
. (5.9)

Additional mathematical aspects of these equations can be found in [1].

5.1.4 Electrical models of the excitation of an unmyelinated fiber

The response of a single unmyelinated fiber of diameter d to a stimulating field can be found through
the same type of simulation described for the myelinated fiber. In fact, to obtain numerical solutions
it is necessary to discretize the axial coordinate (x) into elements Δx and a network somewhat similar
to that considered in Fig. 5.5 results. One obtains an expression similar to the equation (5.7) for the
transmembrane current at the nth element:

dV
(n)
m

dt
=

1
Cm

[
1

riΔx
(V (n−1)

m − 2V (n)
m + V (n+1)

m + V (n−1)
o − 2V (n)

o + V (n+1)
o ) − π d Δx iionic

]
(5.10)

where
ri =

4
σiπd2

, (5.11)

with σi being the conductivity of the axon. Introducing the capacitance per cm2 cm and the geometrical
relationship:

Cm = π d Δ x cm (5.12)

leads to

dV
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m

dt
=

1
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ridπ

(
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(n)
m + V
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m

Δx2
+
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(n−1)
o − 2V

(n)
o + V

(n+1)
o

Δx2

)
− iionic

]
. (5.13)
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For Δx → 0 we obtain

dV
(n)
m

dt
=

1
cm

[
1

ridπ

(
∂2Vm

∂x2
+

∂2Vo

∂x2

)
− iionic

]
. (5.14)

In the above formula, the only term including the extracellular influence is the second derivative of Vo.
Therefore, the stimulating influence of the extracellular potential in a fiber is given by

f =
∂2Vo

∂x2
. (5.15)

This function f has been named “activating function” by Rattay [6].
The activation takes place when ∂V

(n)
m /∂t > 0, namely when there is a depolarization of the membrane

(see Fig. 5.2). But according to equation (5.14), the sign of ∂V
(n)
m /∂t will depend on the amplitude of

a positive term (which includes f as main part) which must counterbalance the existing negative ionic
current iionic. Therefore, when f exceeds a given threshold which depends on several parameters such
as the properties of the fiber and the initial conditions, the stimulation takes place. Fig. 5.7 shows the
potential distribution Vo generated by a positive punctual current source as obtained form Equation
(5.3). The red curve shows the activation function for a negative current (cathodic stimulation) and
the blue for a positive current (anodic stimulation). It is easy to show that the activation function
reach higher value when using cathodic stimulation rather than anodic stimulation. Therefore
cathodic stimulation is preferred as the threshold is reached using a lower current than with anodic
stimulation.
When the value of cathodic current is increased, the negative lobes located on each side of the
maximum peaks create a lateral hyperpolarization to the active region that blocks the emerging
propagating pulse. More investigations on this behavior can be found in [4].

5.2 Coupling of an axon model with extracellular potentials

The activation of neuron by extracellular stimulation is linked to the second spatial difference of the
extracellular potential applied along the fiber. Several studies have used the activating function f (see
Equation (5.15)) in computer models to predict the volume of tissues activated by a stimulation [7–9].
But the generation of an action potential arise when f exceeds a certain threshold, depending on
several parameters such as the structure of the neuron. Therefore the use of multi-compartment
models coupled with the electric potential field generated by the stimulation provides a more accurate
prediction of activated neurons [10, 11].

5.2.1 Description of the axon model

During extracellular stimulation, the action potential initiation occurs in the axon [12–14] rather than
in the soma of the neuron. Therefore the model used to predict the action potential generation by
DBS is a thalamocortical axon. The axon model is based on the McIntyre model, proposed in [15].
This model has been reused in most of the studies on DBS [16–27].
This model consists of a multi-compartment double cable of a mammalian axon. The 21 nodes of
Ranvier are explicitly represented, as well as the 20 paranodal and internodal section of the axons and
a finite impedance myelin sheath. The double cable represents the axon membrane and the myelinated
sheath. Each segment between two nodes of Ranvier has a length of 0.5 mm and is composed of two
myelin attachment segments (MYSA), two paranode segments (FLUT) and six internodes segments
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Figure 5.7: Extracellular stimulation of a fiber. The upper curve shows the extracellular potentials
generated by a positive current point source (anodic stimulation). The middle curve
shows the activation function f for an cathodic stimulation (negative current) and the
lower curve shows f an anodic stimulation. The activation happens when f is over a
certain threshold, depending of the fiber properties. The cathodic stimulation is much
more effective than the anodic stimulation.

(STIN). Fig. 5.8 shows the geometry of the axon model.

Each segment of the axon model has its own membrane dynamics (see Fig. 5.9):

• the node of Ranvier is a combination of nonlinear fast Na+, persistent Na+ and slow K+ con-
ductance, a linear leakage conductance and the membrane capacitance.

• the internodal segments are made of a double cable structure. The myelin sheath and the axon
membrane are represented by a linear conductance in parallel with the membrane capacitance.
The MYSA, FLUT and STIN segments have their own conductance and capacitance.

Fig. 5.8 shows the geometry of the axon model. The values of the electrical properties of the membrane
and ionic sources can be found in Table 2 of [15].

The electrical model of the axon is implemented with the help of the NEURON simulation envi-
ronment [28]. In [15], several model geometric parameters are proposed, based on the diameter of the
fiber. The excitability of axons is reduced as their diameters decrease [29]. Therefore the choice of
the smallest diameter (5,7 μm ) is assumed. The other dimensions of the axon model can be found in
Table 1 of [15].

5.2.2 Determination of the extracellular potentials generated by the stimulation

The potential Vo applied as extracellular potential to the electrical model of axon are extracted from
the FE model.

A time varying field of potential is created convoluting the normalized potentials by an time varying
electric pulse of amplitude Upulse and width Pw. The pulse amplitude and width can be adjusted to
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Figure 5.8: The model of axon used to evaluate the generation of action potential by the stimulation
is a multi-compartment double cable model of myelinated axon, taken from [15]. This
axon is composed of 21 nodes and 20 internodes. Each internode has a length of 0.5 mm
and is decomposed into 2 myelin attachment segments (MYSA), 2 paranode segments
(FLUT) and 6 internode segments (STIN), having different electrical properties.

correspond to clinically used electric pulses.

The time varying extracellular potentials Vo(t) are then set to each NEURON discretized node
of the axon model. When the location of the discretized nodes did not match a FE node, a linear
interpolation of the electric potential value of the adjacent nodes is made.

5.2.3 Choice of the axons’ direction

The generation of an action potential in an axon is linked to the activation function f , defined as the
second spatial difference of the extracellular potential along the axon process. Therefore the chosen
direction of the axon plays an important role on the determination of the generation of an action
potential.
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Figure 5.9: Electrical equivalent of the model of axon. The nodal segment is composed of a fast Na+

(Naf), persistent Na+ (Nap) and slow K+ (Ks) conductance, a linear leakage conductance
(Lk) and the membrane capacitance (Cn). The internodal segments are made of a double
cable structure of linear conductance with an explicit representation of the myelin sheath
(Gm in parallel with Cm) and the internodal axon membrane (Gi in parallel with Ci).
Gp and Ga represent the axial resistance of the periaxonal space and the axon. Taken
from [15].

Pre-determined direction of axons

Many studies have evaluated the extend of the stimulation using axon models perpendicular to the
electrode shaft coupled to a two dimensional FE model, as shown in Fig. 5.10(a) [18–20, 30]. These
studies have shown that the activation threshold is dependent not only on the fibers topology but also
to is distance from the stimulation electrode. They also provided the first predictions of the volume
of tissue activated (VTA). This approach to evaluate the spatial activation of axons is satisfying when
using axisymmetric or homogeneous FE models. Indeed, the results provide a two dimensional image
of the area where action potential arise. Subsequently, a rotation of the obtained results provide a
volume of tissue activated (VTA).

When the FE model is fully 3D and uses inhomogeneous or anisotropic conductivities, the potential
distribution is not axisymmetric anymore (see Section 4.3.1). In these cases, techniques assuming
axons always perpendicular to the rotation plane will miss the real situation and will produce only
partially valid results. A three dimensional evaluation of the VTA cannot be accurately made by using
axons models perpendicular to only one plane. Indeed, according to this plane direction, the potential
distribution along the axons varies. To overcome this issue, the McIntyre’s group has proposed another
method to evaluate the VTA, based on the evaluation of the activation threshold for f . The VTA
has then been obtained through the computation of f in an anisotropic and inhomogeneous three
dimensional model. But choices for the direction chosen to compute f has not been clearly explained
in the publications [16, 17, 27].

A new technique is proposed here to evaluate the VTA generated by the DBS. Axons model
are placed regularly in the three dimensional space around the stimulation electrode. Therefore
the inhomogeneities of the potential field introduced by the anisotropic conductivity are directly
taken into account. The direction of the axons is forced to be perpendicular to several planes
containing the electrode shaft, as proposed in the two dimension case(see Fig. 5.10(b)). Therefore,
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Figure 5.10: Models of axons having pre-determined direction. a) In previous studies, several models
of axon having their direction perpendicular to the same plane are used. The volume
of tissue activated is then obtained using a rotation of the responses obtained for one
plane. b) When using inhomogeneous and anisotropic conductivity, the use of axons
having their direction tangential to the electrode shaft is necessary, as the potential
distribution does not have a regular shape. To improve the clearness of the figure, less
axons are represented. In both cases, the extracellular potentials of the axon models
are coupled to the potential field obtained from the FE model. In that case, the pulse
amplitude Upulse is set to −2 V.

the space is described by axons tangential to the electrode shaft. As the central nodes are the
most proximal to the stimulation electrode, the action potential is likely to arise at this position.
Therefore, the determination of activation at one point is given by the activation of the axon model
centered at this point and tangential to the electrode shaft. The evaluation of the VTA is then
obtained with a spatial integration of the responses of the axons to stimulation for all the central points.

Anatomically based direction of axons

Another method to evaluate the tissue activation is to set the direction of the axon models according
to a realistic fiber direction.
The direction of the rectilinear axon models as well as the tissue anisotropy have been set according
to the anatomical knowledge in the model used by Sotiropoulos and Steinmetz in [26].
Yet, an alternative technique is used in [25]. This study has focused on the effect of stimulation
on a particular class of neurons, the STN projection neurons. Models using the non-rectilinear real
geometry of neurons have been generated and combined with the results of a FE model of the DBS
electrode and electric field transmitted to the tissue medium.

In this thesis a new method is developed to use the information of the DT-MRI to orient the models
of axons. When a DT-MRI voxel shows a fractional anisotropy (see equation (3.19)) over 0.25, the
axons having their central nodes in that vortex are aligned according to the main eigenvector of the
anisotropic tensor. When the fractional anisotropy of a voxel is below that threshold, no axon models
are used for that voxel. Fig. 5.11 shows the obtained models for a coronal cutting view.
With axon models having their direction based on DT-MRI, the most proximal nodes to the stimulation
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Figure 5.11: Cutting view showing the models of axons having their orientation based on DT-MRI.
The conductivity tensor ellipsoids are shown in black. When the fractional anisotropy
of a voxel is over 0.25, the axons models having their central nodes in that voxel share
the same direction that the conductivity tensor’s main eigenvector. When the fractional
anisotropy is below 0.25, no axon models are used for that voxel. All the axons model
have the same length, the projection introduces some differences. The extracellular
potentials of axon models is coupled to the potential field obtained from the FE model.
In that case, the pulse amplitude Upulse is set to −2 V.
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Vo fixed to the last interpolated potential

Extracellular
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Figure 5.12: Extracellular potential Vo of the axons models having their direction based on the DT-
MRI. To avoid a firing of the axon ends, only the 7 central nodes and 6 central internodal
segments have their extracellular potentials extracted from the FE potential data. The
other extracellular potentials are set to the last interpolated value to have a continuity
of potential.

electrode are not necessary at the center of the axon models. Therefore, determination of the action
activation at one point can be ambiguous. Moreover, it has been shown that the axon’s ends have a
larger sensitivity to extracellular stimulation. To avoid that problem, only the extracellular potential
of the seven central nodes and of the six internodes are set to the values obtained from the FE method.
The other extracellular potentials are set to the value of the last interpolated node, to maintain the
potential continuity as proposed in [26]. Fig. 5.12 shows the extrapotential applied to these axon
models. A spatial integration of the responses of the axons to stimulation for all the central points
provides the evaluation of the VTA.

The spatial extents of stimulation is evaluated for a three dimensional space around the stimulation
electrode. The evaluation for a point of the space is made through the response of an axon model to
the extracellular potentials generated by the stimulation. The axon models are set according to the
two originals methods proposed in this section.
In the following section, the influence of several parameters on the VTA will be investigated with the
help of the two techniques described just before:

• Using axon models perpendicular to the electrode shaft

• Setting the axons according to the fiber direction provided by DT-MRI.

5.3 Evaluation of the volume of tissue activated by the deep brain
stimulation

This section evaluates the influence of several parameters on the activation of tissue by the DBS. First,
the used procedure is described. Then, the evaluation of the influence of several parameters such as
the pulse amplitude, the tissue conductivity and the applied boundary conditions is performed.

5.3.1 Procedure used to evaluate the activation of neuron models

The main steps for the evaluation of the volume of tissue activated are shown in Fig. 5.13. The
potentials obtained from the FE model are used as input for the extracellular potentials of axon
models. The response of these axon models to the extracellular stimulation is evaluated with the help
of the NEURON environment tool [28]. Each point is said to be activated when the corresponding
axon model is the place where an action potential arises. To detect if an action potential arises, a
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Figure 5.13: Steps to predict the axon activation. The potential obtained with the FE model are
interpolated at the nodes of axon model. The NEURON environment tool [28] is then
used to evaluate the response of axon models to stimulation. If an action potential is
generated, the axon is considered as activated by the stimulation.

simple threshold filter is applied on the time variation of the membrane potential Vm.
The volumes of tissues activated are then computed by estimating the volume spanned by the active

axons with a simplified three dimensional integration procedure. Both techniques used to determine
the orientation of the axons are considered, thus leading to two series of results that can be compared.
The equivalent radius of the VTA obtained with tangential models of axons can also be defined as

req = 3

√
3 · VTA

4π
(5.16)

for monopolar stimulation,

req =
3

√
3 · VTA

2

4π
(5.17)

for bipolar stimulation. Due to their irregular shape, defining an equivalent radius of the VTA obtained
with axons direction based on DT-MRI is inappropriate.

5.3.2 Influence of the pulse amplitude

Fig. 5.14 shows four coronal cutting views of the response of tangential axon models to different
stimulation amplitudes. The boundary condition used for these models is the most realistic one (BC
I, see Section 4.3.3).
The two VTA obtained using either tangential or DT-MRI based directions for axons are shown in
Fig. 5.15, for a pulse amplitude of -2V and the same BC applied.
Both the cutting views and the computed VTA with tangential directions show good agreements
with the results obtained in previous modeling studies [8, 16, 18–20, 26, 27, 30]. The VTA obtained
with axon direction based on the DT-MRI is very irregular. This is due to mainly two reasons: the
discontinuities in the axons direction when changing from a voxel to another one and the fact that
when a voxel shows a low anisotropy, no axon models are used. As this technique has not been used
so far, no comparison with previous studies can be done.
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Table 5.1: Influence of the pulse amplitude on the VTA [mm3] for monopolar stimulation

VTA with tangential VTA with direction of
Upulse [V] direction of axons [mm3] req [mm] axons based on DT-MRI [mm3]

-0.5 24 1.79 19
-1 67 2.52 47
-2 165 3.40 208
-3 409 4.60 505

Nevertheless, both approaches show the same trends. As the pulse amplitude increases, the
number of axons activated by the stimulation increases. This result is in accordance with clinical
observations, as increasing the pulse amplitude leads to an extension of the stimulation effect.
Table 5.1 shows the computed VTA using tangential and DT-MRI based directions for axon models
in function of the pulse amplitude. With both approach the volumes increase with the pulse amplitude.
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Figure 5.14: Prediction of the axon models activation for several pulse amplitudes. Increasing the
pulse amplitude leads to more action potential generation.

The obtained values for the VTA computed for bipolar stimulation are in Table 5.2. The same
effects are observed than for monopolar stimulation. An increase of the pulse amplitude generates
more activation and therefore a bigger VTA.
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Figure 5.15: Volumes of tissue activated obtained for Upulse = −2 V . a) axon directions tangential
to the electrode shaft. b) axon directions based on DT-MRI.

Table 5.2: Influence of the pulse amplitude on the VTA [mm3] for bipolar stimulation

VTA with tangential VTA with direction of
±Upulse [V] direction of axons [mm3] req [mm] axons based on DT-MRI [mm3]

0.5 56 1.88 50
1 154 2.64 93
2 443 3.75 190

5.3.3 Influence of the return current electrode model

To evaluate the influence of the RCE model, the potential fields obtained with the four different models
introduced in Section 4.3.3 are used. The influence of the boundary conditions applied to the model
on the volume of tissue activated for a -2 V monopolar stimulation is shown in Table 5.3. The volumes
of tissues activated increases when increasing the surface set to the reference potential (BC II). It
also increases when modelling the RCE closer to the stimulation electrode (BC III). The VTA also
increases when setting the RCE on the boundary of a reduced model as proposed in previous studies
(BC IV). The equivalent radius req increases of more than 30% when using BC IV rather than BC I.
These results are coherent with the observations of Section 4.3.3, since a smaller half pulse amplitude
volume (HPAV) leads to a more important decrease of potential and therefore to an increase of the
VTA.
The influence in bipolar stimulation has not been computed since for that configuration, the potential
distribution is not influenced by the choice of the RCE model (see the results of Section 4.3.3).
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Table 5.3: Influence of the RCE model on the VTA [mm3]

VTA with tangential VTA with direction of
RCE type direction of axons [mm3] req [mm] axons based on DT-MRI [mm3]

BC I 165 3.40 208
BC II 178 3.49 232
BC III 235 3.83 320
BC IV 358 4.45 483

Table 5.4: Influence of the tissue conductivity on the VTA [mm3]

Refined tissue VTA with tangential VTA with direction of
conductivity type direction of axons [mm3] req [mm] axons based on DT-MRI [mm3]

base 165 3.40 208
lower 204 3.65 234
upper 138 3.20 184

5.3.4 Influence of the tissue conductivity

The influence of the tissue conductivity on the volume of tissue activated is investigated for the class
of tissue showing the most important changes in the potential, namely the refined tissues. As shown
in Section 4.3.2, the potential distribution is affected by the conductivity of tissues in monopolar con-
figuration whereas in bipolar configuration it remains practically unaffected. Therefore, the evaluation
will be conducted for the monopolar configuration only. Table 5.4 shows the computed volumes of
tissues obtained using the three different conductivity values for the refined tissues, as explained in
Section 4.3.2. The pulse amplitude is set to -2 V and the BC applied are of type BC I. The volumes
are computed using either a tangential direction for axons or a direction based on the DT-MRI.
The results show that the obtained VTA are affected by the used conductivity of tissue values. The
biggest VTA is obtained when the lower conductivity is used. This is in accordance with the obser-
vations of Section 4.3.2, as a smaller HPAV and therefore a more important potential drop has been
observed with this parameter. Nevertheless, the variations observed are less important than when
modifying the other parameters under consideration (pulse amplitude or RCE model).

5.3.5 Discussion

The observed VTA are very different when evaluated with tangential or with DT-MRI based axon
directions. The volume obtained with tangential axon directions seems more realistic than the one
obtain with the alternative method. But independently of the approach chosen for the VTA compu-
tations, the same trends are observed on the influence of the parameters. The irregularities observed
when using DT-MRI based axon direction arise because of the the variations of axon directions from
voxel to voxel and because when a voxel does not show any anisotropy, no axon models are used.
Nevertheless the information they provide should help the neurologist to identify if some specific area
are activated or not by the stimulation.
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All of the parameters previously tested impacted the VTA. Nevertheless, the impact of the choice of
RCE model is more important than the choice of tissue conductivity. The differences observed when
using the realistic BC proposed in this thesis rather than a simplified BC as in previous studies (BC
IV) [8,9,16,18–20,22,26,27,30,31] on the VTA is very important (-54% for tangential axon models and
-57% for DT-MRI based axon models). For the equivalent radius, the observed reduction is of -24%.

5.4 Conclusion

This chapter has introduced the neural aspects into the model. Based on the potentials obtained for
the FE model, the response to stimulation of specific axon models has been evaluated. In particular
the electrical equivalent model for an axon has been reviewed and the role of currents and potentials in
axon activation has been discussed. The equations show the relevance of the second spatial derivative
of the potential (the so called activation function f) in the firing of the axonal signal.
The link between the computed potential obtained from the finite element model and their derivatives
and the volume of tissue activated is explored through the computed based NEURON environment
tool. For the VTA computation, two original techniques have been used. The first uses axon models
having their direction set tangentially to the electrode shaft. The second uses the information provided
by DT-MRI to set the direction of axon models anatomically.
The VTA obtained with the first technique showed good agreement with previous studies. As for
the second technique, which includes anatomical anisotropy, it produces very interesting results as it
should be possible to make correlations with real anatomical structures in the brain. Most probably,
the most reliable results can be obtained with a combination of both techniques.
It has been shown that the volume of tissue activated by the stimulation increases with the pulse
amplitude, which agrees with clinical observations. Special care should be taken to set the conductivity
of tissues, as this parameter also impacts the volumes of tissue activated. Finally, it has been shown
that using the original more realistic BC introduced in this thesis rather than the simplified ones
generally used in literature leads to an important decrease of the VTA. This would tend to prove that
there is an important overestimation of VTA values in the current literature.
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6 Conclusions and Future Work

6.1 Thesis assessment

Deep brain stimulation is a invasive surgical technique widely used in the last twenty years to treat
Parkinson’s disease and similar movement disorders. But despite his relatively long existence, the
understanding of its action mechanisms remains unclear and controversial.
This thesis aims to provide a clear understanding of the electromagnetic aspects of the stimulation, and
a precise evaluation of the involved electric potentials. Through this, a better prediction of clinically
important parameters like the volume of tissue likely to be activated by the stimulation is hoped to be
achieved.
Since this thesis is intended not only for electrical engineers but also for medical doctors and practicians,
an effort has been made to provide the needed background in both areas. Thus, a definition of the
bioelectromagnetism and of some of its applications is provided to the reader in Chapter 2. Special
care is taken to explain the applications of electromagnetic stimulations, and more specifically of the
electrical deep brain stimulation. Therefore, a review of the history of that technique and of the State
of the Art was undertakn as a preliminary task.

Preliminary facts

One of the catalysts for the strategy adopted in this thesis was the consideration of two antagonist
facts. On one side, it was evident that the new imaging techniques were providing a description of the
human body’s inner anatomy and physiology with an accuracy and detail never previously achieved.
Also for the first time, results concerning the natural anisotropy of biological tissues were available,
for instance thanks to the diffusion tensors generated by magnetic resonance imaging (MRI).
On the other hand the translation of these informations into electric properties of living biological
tissues remains uncertain. For instance, it is not unusual to find in the literature estimations for
the isotropic conductivity of tissues varying by a factor of five or even ten. And the anisotropy of
the electrical conductivity was scarcely taken into account, although it is obviously a very important
property. Any sound electrical model accurately depicting a very inhomogeneous medium (the brain)
where directive structures (the neurons) are embedded should show a strong anisotropy!

Better description of conductivity and anisotropy

The above considerations prompted us to try to develop a new model for DBS, where these properties
and uncertainties would be better taken into account. Although the natural biological variability will
prevent us forever to assign to the tissue conductivities numerical bounds as narrow as those used for
inorganic media, there was clearly a lot of room for improvement.
This led to some of the first relevant achievements in the thesis: the thorough study of the effect of
conductivity variation and the systematic introduction of a conductivity tensor, obtained through an
original treatment of the MRI diffusion tensors. With this approach, conductivity values could even
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be individually adapted to each patient!

New theoritical model, better boundary conditions

The obvious consequence was the need to start with a re-appraisal of the equations customarily solved
in biolelectromagnetism. Here, they are derived from the fundamental differential equations of elec-
tromagnetism (Maxwell), including anisotropy from the very beginning. The developed formulation
leaves the door open for further rigorous developments, like the quantification of associated magnetic
fields and the use of electric permittivity and magnetic permeability properties.
A key ingredient for the accurate solution of differential equations is the use of a correct geometrical
discretization and of the proper boundary conditions (BC). Most existing models use conservative or
oversimplified boundary conditions (Dirichlet). In this work we us, for the first time, more appropri-
ate BCs (Neumann) that correctly reproduce the behavior of potentials and currents in the limiting
surfaces of the problem (skin in contact with the air and IPG).

Computer implementation, better geometry, refined finite elements

No claims of originality are made respect to the choice of the numerical discretization technique. Finite
elements (FE) are here the obvious choice, as recognized by most researchers in the area.
However, this thesis provides a original computer implementation, using equations that naturally
accepts anisotropy. Also, an intermediate complexity model has been introduced for the geometry
under study. It includes head, neck and upper chest and, in this sense, it goes a step beyond the
currently used reduced head models. On the other hand, the proposed model remains reasonably simple
in terms of tissue characterization (eight different types) and anatomy reconstruction (parallelepipeds
and cylinders) and it is readily tractable with a single advanced desktop computer. Accuracy is
improved by using an adaptive mesh that refines the tissue description in a critical small region around
the electrode.

A wealth of numerical results

All the above improvements concur to produce a numerical model that is supposed to predict realistic
and accurate values for the electric potentials and other mathematically derived quantities.
One of the immediate benefits is the possibility of running systematic sensitivity or parametric studies.
This document summarizes a few of the most significant results. Many other were obtained, by running
exhaustively a computer model with almost half a million of unknowns and changing the conductivity
values, the mesh density, the boundary conditions, the type of electric stimulation (monopolar, multi-
polar...) and many other relevant parameters. For instance it can be clearly shown with the proposed
model that tissue conductivity is strongly influencing the potential distribution generated by DBS,
especially in monopolar configurations.

Our model provides also many other interesting results. The IPG (implanted pulse generator, usually
under the collarbone) plays a major role from an electrical point of view, especially in monopolar
stimulation. Indeed, in this configuration the involved electric loop is closed through the conductive
face of the IPG. Our model can easily characterize this situation, since it extends to the upper chest
and it uses the right boundary conditions allowing the correct characterization of a return current.

The obtained results show that the approaches usually chosen in the literature to model DBS
are systematically underestimating several key indicators used to quantify the electrical potential
distribution, like the tissue impedance and the half pulse amplitude volume.
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Combining finite elements and neuron/axon models

Whereas the information provided by our model is considered to be reliable from an electric point of
view, it is hard to evaluate the impact it can have on the actual neural processes. A first step in this
direction is provided in this thesis by applying the obtained potential distribution to a well established
electric neuron/axon model. For the sake of completeness the basics of neural signal propagation are
first reviewed and the electrical equivalent models for axons are introduced. Then the specific axon
models used to predict the volumes of tissue activates are discussed.

More flexibility in axons’ orientation

Thanks to the inclusion of anisotropy and to the enhanced anatomical information available, we have
been able to include two improved axon models, defined not only by their topologies but also by their
orientation respect to the electrode.
The first type exhibits a radial orientation, normal to the electrode shaft. For the second type, the
axon orientation is set according to the information provided by the diffusion tensor and therefore it
bears information about the actual anatomical position of fibres surrounding the electrode.
The results obtained for the first type of axons show good agreement with previous studies. As for
the second technique, it produces very promising new results, as they should make possible to perform
correlations with real anatomical structures.

The volume of tissue activated by DBS

The combination of the global finite element model with local axon models allows a first prediction of
the volume of tissue activated (VTA) . First, it has been checked that, as expected and in agreement
with clinical observations, VTA increases with the pulse amplitude. More interesting is to obtain the
impact of the tissues conductivity and of the BCs. Thanks to the correct approach used to model the
return current in monopolar configurations, we can show that the simplified assumptions and the BCs
currently used in the literature may lead to a serious (typically more than 30%) overestimation of the
equivalent radius of volume of tissues activated. As expected, results are practically unaffected by the
choice of BC or the modification of parameters in distal tissues in the case of bipolar configurations.

6.2 General discussion on the model

The model used in this thesis has been developed based on a survey of the existing models found in
literature. It includes most of the important aspects proposed in these studies. Nevertheless several
assumptions have been made are discussed globally in this section.

On a geometrical point of view, the main objective was to include the whole electric loop involved
in the monopolar deep brain stimulation. Therefore, the models is not based on a reduced size model
of the head but encompass the head, neck and upper chest of a human. The simplified geometry
used for these structures is motivated by a reduction of the number of unknowns and the easier
generation of the model, while keeping its essential features. The number of tissues classes used in
the model is based on anatomical consideration and on the values of electric conductivity available in
literature. These geometrical considerations can be debated as they only partially represent reality.
Improvements of the model could be obtained by using more realistic geometries for the tissues. The
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most realistic model should be obtained using the information on the tissues provided by the medical
imaging (MRI or DT-MRI) to build a model extending to the chest. Nevertheless, this technique
would need and important pre-processing task. Indeed, the use of MRI would need a segmentation
process, while the use of the DTMRI would not provide a good characterization of some tissues such
as the bones. Moreover, the use of elements having the same definition than voxels provided by the
medical imaging would dramatically increase the number of unknowns in a model encompassing the
whole electric loop.
An interesting way to avoid the problem of the return current electrode model would be to use of a
model using fixed currents rather than fixed voltage as boundary conditions. In that case, a reduced
size model could be used, providing that the total current going out of the stimulation electrode
equals the current going out of the external boundary of the problem. Nevertheless, the obtained
potentials will be highly dependent of the value of the conductivity.
An important aspect that is not treated in this work is the cicatricial tissues that will systematically
form around the stimulation electrode after the surgery. These tissues are obviously of course
not present on medical imaging obtained before surgery, but are surely influencing the potential
distribution. The model proposed here could be really improved by inserting an encapsulation of
cicatricial tissues around the electrode contact.

The use of the quasistatic approximation in this work can also be discussed as the biological tissues
are showing capacitive effects. Therefore, the time variation of the potential will be affected by these
capacitive properties of the tissues, deforming the electric pulse shape. These deformations might
generate variation on the firing of the axons models.
Another timely aspect that has not been treated in this work is the influence of the pulse width.
Increasing this parameter should lead to an increase of the firing of axons. Indeed, the threshold for
an action potential generation should be easier to reach with longer stimulation times.
Another key parameter of the DBS is the frequency of stimulation. This parameter has an influence
on the global neural response to stimulus rather than on the firing of axons, since the usual refractory
period is about one millisecond and the frequency of stimulation does not exceeds 200 Hz.

Finally the technique used to evaluate the volume of tissue activated (VTA) is highly dependent on
the axon models. The response of a neuron to extracellular stimulation is linked to several parameters
such as its geometrical properties and its direction.
The choice of using axon models rather than soma is motivated by the fact that this part of neuron
is the most excitable one by extracellular stimulation. This choice is logical when modeling white
matter fibers, as they are mainly composed of axons, but it can be questioned for gray matter, as it
is essentially made of soma. The use of neuron models adapted to each voxel could be implemented
in further research.
The choice of the direction is also determinant for the evaluation of the response of a neuron to
external stimulation, as shown by the obtained VTA. When tangential direction for the axons are
used, the VTA have an spheroidal shape that reflects the global extent of the stimulation. When
the axon direction is determined with the help of the DT-MRI, the VTA shape is highly irregular.
It shows important information on the ability of anatomical structures to influence on the firing
threshold when they are not in the direct vicinity of the stimulation electrode. The irregular shape has
to major origins: the fact that when a voxel doesn’t show anisotropy, no evaluation of the activation
is performed, and the high discontinuity in the axon direction when moving from a voxel to another
one. To improve the VTA obtained, the use of both approaches should be mixed. Axons located in
voxels showing high anisotropy should have their directions fixed by this anisotropy, while in voxels
showing low anisotropy, models of soma having no preferential direction or a statistical distribution
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should be used.

6.3 Perspectives and future work

The immediate objective of the thesis, namely to provide a tool able to accurately predict the electric
potentials generated in DBA has been clearly achieved. The subsequent and more exciting goal is to
predict the volume of tissue activated by the deep brain stimulation. This goal can be also considered
as fulfilled. Our model has demonstrated both to give results in accordance with the literature and to
correct the literature predictions in more complex situations.

To go further, the model should also foresee the influence of different positions of the electrode
in the brain. This would help to predict the optimized localization of the electrode from an initial
position targeted before surgery. Moreover, for post-operative studies, very accurate results could
be obtained with the definitve electrode localization, providing information on the activated area
involved in long term effects of DBS.

The model developed here does not include the so-called ”brain-electrode” interface, which has
been shown to impact the potential distribution. Recent observations have demonstrated the creation
in a thin region around the electrode contacts of a layer of tissue whose properties are affected and
modified by the electrode. Moreover, very accurate results could then be obtained for the final
electrode localization.

One of the main results obtained from this study is the accurate modelling of the return current
electrode in monopolar voltage stimulation, ignored in most existing studies. This return current
plays an important role not only on the potential distribution but also on the predicted volume of
tissue activated. A promising technique to make the stimulation less dependent on return currents
is the recently announced introduction of current controlled electrodes. Our model is general and
should be easily adapted to this new electric excitation (fixed current rather than voltage). Also the
boundary conditions should be re-examined in the case of fixed current excitation as by continuity the
total current issued from the electrode contact should be equal to the current going out of any closed
surface surrounded the electrode, thus opening new possibilities for reduced geometrical models. The
tissue conductivity would remain a key factor in this type of situations and this is also a positive asset
for our model.

From a medical point of view, the obtained volumes of tissue activated should be correlated with
anatomical atlases, to identify the anatomical zone activated by the stimulation especially in long
term effects studies. Another interesting challenge with obvious clinical implications is to evaluate the
influence of the position of the return electrode (IPG) on a patient.
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