CONVOLUTION OPERATORS AND HOMOMORPHISMS OF LOCALLY COMPACT GROUPS

CÉDRIC DELMONICO

(Received 1 September 2005; accepted 25 April 2007)

Communicated by G. Willis

Abstract

Let 1 , let*G*and*H* $be locally compact groups and let <math>\omega$ be a continuous homomorphism of *G* into *H*. We prove, if *G* is amenable, the existence of a linear contraction of the Banach algebra $CV_p(G)$ of the *p*-convolution operators on *G* into $CV_p(H)$ which extends the usual definition of the image of a bounded measure by ω . We also discuss the uniqueness of this linear contraction onto important subalgebras of $CV_p(G)$. Even if *G* and *H* are abelian, we obtain new results. Let G_d denote the group *G* provided with a discrete topology. As a corollary, we obtain, for every discrete measure, $\|\|\mu\|\|_{CV_p(G)} \le \|\|\mu\|\|_{CV_p(G_d)}$, for G_d amenable. For arbitrary *G*, we also obtain $\|\|\mu\|\|_{CV_p(G_d)} \le \|\|\mu\|\|_{CV_p(G)}$. These inequalities were already known for p = 2. The proofs presented in this paper avoid the use of the Hilbertian techniques which are not applicable to $p \ne 2$. Finally, for G_d amenable, we construct a natural map of $CV_p(G)$ into $CV_p(G_d)$.

2000 *Mathematics subject classification*: primary 43A22; secondary 43A15, 43A25, 43A45, 47B38. *Keywords and phrases*: convolution operators, pseudomeasures, *p*-multipliers, transform theorem, Herz algebra.

1. Introduction

In 1965, de Leeuw [5] studied the transfer of *p*-multipliers from the circle \mathbb{T} to \mathbb{R} and from \mathbb{R}_d to \mathbb{R} . These results were extended in part to locally compact abelian groups by Saeki [22], Lohoué [16–18] and Lust-Piquard [19]. The present paper investigates this problem for nonabelian locally compact groups.

Let $1 , <math>\omega : G \to H$ be a continuous homomorphism of locally compact groups and $CV_p(G)$ be the set of all continuous operators on $L^p(G)$ commuting with left translation; they are called the *p*-convolution operators on *G*. Provided with the operator norm, denoted $||| \cdot |||_p$, $CV_p(G)$ is a Banach algebra. If *G* is abelian, $CV_p(G)$ is isomorphic to the Banach algebra of all *p*-multipliers of \widehat{G} .

The first part of this paper is devoted to the transfer of convolution operators. We show in Theorem 3.1, if G is amenable, that there is a linear contraction of $CV_p(G)$

^{© 2008} Australian Mathematical Society 1446-7887/08 \$A2.00 + 0.00

into $CV_p(H)$ which generalizes the transfer of bounded measures. This map is unique for convolution operators with compact support (see Theorem 4.6). We give a global and a new point of view of the problem; our approach completely avoids the use of the structure theory of locally compact abelian groups and methods of Hilbert spaces. Moreover, we obtain new results even in the abelian case; we give a generalization of Reiter's theorem of relativization of the Beurling spectrum [21] in Scholium 5.5.

Theorem 3.1 gives us, if G_d is amenable, a map of $CV_p(G_d)$ into $CV_p(G)$. In Theorem 6.6, in analogy to the Bohr compactification for G abelian, we are able to construct a natural new map of $CV_p(G)$ into $CV_p(G_d)$, even if G is nonabelian. On the way, we compare the operator norm of the discrete measures on G and on G_d . Theorem 6.1 shows that $\|\|\mu\|\|_{CV_p(G_d)} \leq \|\|\mu\|\|_{CV_p(G)}$, for every discrete measure μ and that equality holds if G_d is amenable. This result is already known for p = 2(see [3, 4]), but the proof cannot be adapted to $p \neq 2$.

The ultraweak closure of the bounded measures in $CV_p(G)$ is denoted $PM_p(G)$ and called the Banach algebra of the *p*-pseudomeasures of *G*. If p = 2, $PM_2(G)$ is the von Neumann algebra VN(G) of *G*. We recall that $PM_2(G) = VN(G) = CV_2(G)$. In this case, the study of the convolution operators is related to the theory of von Neumann algebras and Hilbert spaces. For example, the map $a \mapsto \lambda_G^2(\delta_a)$, where δ_a is the Dirac measure, is the left regular representation of *G* on $L^2(G)$. These techniques are not applicable to $p \neq 2$.

2. Preliminaries

Let 1 , <math>p' = p/(p-1), and let *G*, *H* be two locally compact groups.

For any function f on G, we define $_a f(x) = f(ax)$, $f_a(x) = f(xa)$, $\check{f}(x) = f(x^{-1})$ and $\tilde{f}(x) = \overline{f(x^{-1})}$. For any measure μ on G, we define $\check{\mu}(f) = \mu(\check{f})$, $\bar{\mu}(f) = \overline{\mu(\bar{f})}$ and $\tilde{\mu}(f) = \overline{\mu(\bar{f})}$. We define an isometric involution of $L^p(G)$ via $\tau_p \varphi = \Delta_G^{1/p'} \check{\varphi}$, where Δ_G denotes the modular function of G.

Let $M^1(G)$ denote the Banach algebra of the bounded measures of G. The map λ_G^p , defined via $\lambda_G^p(\mu)(\varphi) = \varphi \star \Delta_G^{1/p'}\check{\mu}$, where $\mu \in M^1(G)$ and $\varphi \in C_{oo}(G)$, is an injection of $M^1(G)$ into $CV_p(G)$.

We recall that $A_p(G)$ is the set of the bounded functions on G,

$$u = \sum_{n=1}^{\infty} \bar{f}_n \star \check{g}_n \quad \text{where } f_n \in L^p(G), \ g_n \in L^{p'}(G) \text{ and } \sum_{n=1}^{\infty} ||f||_p ||g||_{p'} < \infty,$$

 $PM_p(G)$ is the dual of $A_p(G)$ and $CV_p(G) = PM_p(G)$, if G is amenable or p = 2. Let $\langle \cdot, \cdot \rangle_{L^p(G), L^{p'}(G)}$ denote the duality of $L^p(G)$ and $L^{p'}(G)$. We recall that the duality of $A_p(G)$ and $PM_p(G)$ is given by

$$\langle u, T \rangle_{A_p(G), PM_p(G)} = \sum_{n=1}^{\infty} \overline{\langle T(\tau_p f_n), \tau_{p'} g_n \rangle}_{L^p(G), L^{p'}(G)},$$

where $u = \sum_{n=1}^{\infty} \bar{f}_n \star \check{g}_n$.

DEFINITION 2.1. For each $T \in PM_p(G)$, the support of T is the set, denoted supp(T), of all $x \in G$ such that, for every neighborhood V of x, there is $v \in A_p(G)$ such that supp(v) $\subset V$ and $\langle v, T \rangle_{A_p(G), PM_p(G)} \neq 0$.

3. A transfer theorem for convolution operators

Our first main result is the following theorem.

THEOREM 3.1. Let $1 , let G, H be two locally compact groups with G amenable and let <math>\omega$ be a continuous homomorphism of G into H. Then there is a linear contraction

$$\omega: CV_p(G) \to CV_p(H)$$

which satisfies

 $\omega(\lambda_G^p(\mu)) = \lambda_H^p(\omega(\mu))$ for each bounded measure μ of G.

To prove this theorem, we need the following preliminaries.

Let $\omega: G \to H$ be a continuous homomorphism. For each $T \in CV_p(G)$, f, $g \in C_{oo}(G), \varphi \in L^p(H)$ and $\psi \in L^{p'}(H)$, we consider the function of H

$$h \mapsto \langle T(\tau_p(f((\tau_p \varphi)_h \circ \omega))), \tau_{p'}(g((\tau_{p'} \psi)_h \circ \omega)) \rangle_{L^p(G), L^{p'}(G)}.$$

This function is integrable and continuous on H with its L^1 -norm bounded by $|||T|||_p ||f||_p ||g||_{p'} ||\varphi||_p ||\psi||_{p'}$. Then for each $T \in CV_p(G)$ and $f, g \in C_{oo}(G)$, there is a unique *p*-convolution operator on H, denoted $\omega_{f,g}(T)$, such that, for all $(\varphi, \psi) \in L^p(H) \times L^{p'}(H)$,

$$\begin{split} \langle \omega_{f,g}(T)\varphi,\psi\rangle_{L^{p}(H),L^{p'}(H)} \\ &= \int_{H} \langle T(\tau_{p}(f((\tau_{p}\varphi)_{h}\circ\omega))),\tau_{p'}(g((\tau_{p'}\psi)_{h}\circ\omega))\rangle_{L^{p}(G),L^{p'}(G)}\,dh \end{split}$$

PROPOSITION 3.2. Let G and H be two locally compact groups (not necessary amenable) and $\omega : G \to H$ be a continuous homomorphism. Let $f, g \in C_{oo}(G)$. Then $\omega_{f,g}$ is a linear map of $CV_p(G)$ into $CV_p(H)$ and $\|\omega_{f,g}\| \leq \|f\|_p \|g\|_{p'}$. Moreover, for each $\mu \in M^1(G)$ and $f, g \in C_{oo}(G)$,

$$\langle \omega_{f,g}(\lambda_G^p(\mu))\varphi,\psi\rangle_{L^p(H),L^{p'}(H)} = \tilde{\mu}(\bar{f}\star\check{g}(\overline{\tau_p\varphi}\star(\tau_{p'}\psi\check{)})\circ\omega).$$

We can immediately compare this result with

$$\langle \lambda_{H}^{p}(\omega(\mu))\varphi, \psi \rangle_{L^{p}(H), L^{p'}(H)} = \overline{\tilde{\mu}((\overline{\tau_{p}\varphi} \star (\tau_{p'}\psi)) \circ \omega)},$$

and see that, if $\bar{f} \star \check{g}$ is close to 1, $\lambda_H^p(\omega(\mu))$ is close to $\omega_{f,g}(\lambda_G^p(\mu))$.

REMARK 3.3. The special cases where ω is the inclusion of a closed subgroup or the projection on a quotient were already treated in [1, 2, 6–9]. Combining these two cases, it is possible to treat open continuous homomorphisms. The study of a general continuous homomorphism requires new ideas.

PROOF OF THEOREM 3.1.

Let
$$f, g \in C_{oo}(G)$$
. For all $T \in CV_p(G)$ and $(\varphi, \psi) \in L^p(H) \times L^p(H)$, we define

$$\Omega_{f,g}(T, \varphi, \psi) = \langle \omega_{f,g}(T)\varphi, \psi \rangle_{L^p(H), L^{p'}(H)}.$$

In fact, $\Omega_{f,g}$ is a continuous form on $CV_p(G) \times L^p(H) \times L^{p'}(H)$ which is bilinear on the first two factors and conjugate linear on the last. Let \mathcal{B} denote the set of these forms provided with the weak topology of duality with $CV_p(G) \times L^p(H) \times L^{p'}(H)$.

For every compact $K \subset G$ and $\varepsilon > 0$, we define

$$\mathcal{U}_{K,\varepsilon} = \{ U \subset G : U \text{ compact}, m(U) > 0, m(xU \triangle U) < \varepsilon m(U) \forall x \in K \}$$
$$\mathcal{A}_{K,\varepsilon} = \{ \Omega_{f,g} : f = m(U)^{-1/p} \mathbb{1}_{U}, g = m(U)^{-1/p'} \mathbb{1}_{U}, U \in \mathcal{U}_{K,\varepsilon} \}.$$

By the Banach–Alaoglu theorem,

$$S = \{F \in \mathcal{B} : |F(T, \varphi, \psi)| \le ||T|||_p ||\varphi||_p ||\psi||_{p'},$$

for all $(T, \varphi, \psi) \in CV_p(G) \times L^p(H) \times L^{p'}(H)\}$

is a compact subset of \mathcal{B} . Since *G* is amenable, it satisfies the property (*F*) of Følner [20, Theorem 7.3], so the $\mathcal{U}_{K,\varepsilon}$ are all nonempty. Then, the family $\{\overline{\mathcal{A}_{K,\varepsilon}}\}$ (where $\overline{\mathcal{A}_{K,\varepsilon}}$ denotes the weak closure of $\mathcal{A}_{K,\varepsilon}$) have the property of finite intersection. However, each $\mathcal{A}_{K,\varepsilon} \subset S$ and S is a compact set, so

$$\bigcap_{\substack{K \subset G \text{ compact,} \\ \varepsilon > 0}} \overline{\mathcal{A}_{K,\varepsilon}} \neq \emptyset.$$

Let

$$\Omega \in \bigcap_{\substack{K \subset G \text{ compact,} \\ \varepsilon > 0}} \overline{\mathcal{A}_{K,\varepsilon}}.$$

There is a unique continuous linear operator $\omega(T)$ on $L^p(G)$ such that, for all $(\varphi, \psi) \in L^p(H) \times L^{p'}(H)$,

$$\langle \omega(T)\varphi,\psi\rangle_{L^{p}(H),L^{p'}(H)} = \Omega(T,\varphi,\psi).$$

By construction, $\omega(T) \in CV_p(H)$ and ω is a contraction.

Let $\mu \in M^1(G)$. We prove that

$$\omega(\lambda_G^p(\mu)) = \lambda_H^p(\omega(\mu)).$$

Let $(\varphi, \psi) \in L^p(H) \times L^{p'}(H)$ and $\varepsilon > 0$. We consider

$$0 < \delta < \varepsilon [1 + \omega(|\mu|)(\Delta_H^{1/p} | \varphi \star \tilde{\psi}|) + 2 \|(\Delta_H^{1/p} \varphi \star \tilde{\psi}) \circ \omega\|_{\infty}]^{-1}.$$

There is a compact subset $K_{\delta} \subset G$ such that $|\mu|(G \setminus K_{\delta}) < \delta$. By definition of Ω , there is a compact subset $U \in \mathcal{U}_{K_{\delta},\delta}$ such that

$$|\Omega_{f,g}(\lambda_G^p(\mu),\varphi,\psi) - \Omega(\lambda_G^p(\mu),\varphi,\psi)| < \frac{\varepsilon}{2},$$

where $f = m(U)^{-1/p} 1_U$ and $g = m(U)^{-1/p'} 1_U$. In fact, for all $x \in K_{\delta}^{-1}$,

$$0 \le 1 - \frac{m(x^{-1}U \cap U)}{m(U)} < \frac{\delta}{2}.$$

Let $(\varphi, \psi) \in L^p(H) \times L^{p'}(H)$. On the one hand,

$$\begin{split} \left| \int_{K_{\delta}} \left(1 - \frac{m(x^{-1}U \cap U)}{m(U)} \right) \Delta_{H}^{1/p}(\omega(x))\varphi \star \tilde{\psi}(\omega(x)) \, d\mu(x) \right| \\ & \leq \frac{\delta}{2} \, \omega(|\mu|) (\Delta_{H}^{1/p}|\varphi \star \tilde{\psi}|). \end{split}$$

On the other hand,

$$\left| \int_{G \setminus K_{\delta}} \left(1 - \frac{m(x^{-1}U \cap U)}{m(U)} \right) \Delta_{H}^{1/p}(\omega(x))\varphi \star \tilde{\psi}(\omega(x)) \, d\mu(x) \right| \\ \leq \|\Delta_{H}^{1/p} \circ \omega \, \varphi \star \tilde{\psi} \circ \omega\|_{\infty} \, |\mu| (G \setminus K_{\delta}) \leq \|(\Delta_{H}^{1/p}\varphi \star \tilde{\psi}) \circ \omega\|_{\infty} \delta.$$

Finally,

$$\begin{split} |\langle \omega(\lambda_{G}^{p}(\mu))\varphi, \psi \rangle_{L^{p}(H), L^{p'}(H)} - \langle \lambda_{H}^{p}(\omega(\mu))\varphi, \psi \rangle_{L^{p}(H), L^{p'}(H)}| \\ &\leq |\langle \omega(\lambda_{G}^{p}(\mu))\varphi, \psi \rangle_{L^{p}(H), L^{p'}(H)} - \langle \omega_{f,g}(\lambda_{G}^{p}(\mu))\varphi, \psi \rangle_{L^{p}(H), L^{p'}(H)}| \\ &+ |\langle \omega_{f,g}(\lambda_{G}^{p}(\mu))\varphi, \psi \rangle_{L^{p}(H), L^{p'}(H)} - \langle \lambda_{H}^{p}(\omega(\mu))\varphi, \psi \rangle_{L^{p}(H), L^{p'}(H)}| \\ &\leq \frac{\varepsilon}{2} + \left| \int_{G} \left(1 - \frac{m(x^{-1}U \cap U)}{m(U)} \right) \Delta_{H}^{1/p}(\omega(x))\varphi \star \tilde{\psi}(\omega(x)) \, d\mu(x) \right| \\ &< \frac{\varepsilon}{2} + \frac{\delta}{2} \, \omega(|\mu|) (\Delta_{H}^{1/p}|\varphi \star \tilde{\psi}|) + \|(\Delta_{H}^{1/p}\varphi \star \tilde{\psi}) \circ \omega\|_{\infty} \, \delta < \varepsilon. \end{split}$$

REMARK 3.4. Instead of Følner's property, we could use the property (P_p) of Reiter [20, Proposition 6.12]. It is sufficient to consider the set

$$\mathcal{R}_{K,\varepsilon} = \{\Omega_{f,g} : f, g > 0, \|f\|_p = \|g\|_{p'} = 1, \\ \|af - f\|_p < \varepsilon \text{ and } \|ag - g\|_{p'} < \varepsilon \text{ for all } a \in K\}.$$

[5]

With the same arguments, we obtain that

$$\bigcap_{\substack{K \subset G \text{ compact,} \\ \varepsilon > 0}} \overline{\mathcal{R}_{K,\varepsilon}} \neq \emptyset.$$

REMARK 3.5.

- (1) The definition of the convolution operator $\omega_{f,g}(T)$ does not require the amenability of *G*.
- (2) Using duality techniques of Herz [11, 12], one can give a shorter proof of Theorem 3.1. We have presented the above proof as it uses more basic ideas. We use duality arguments in the next section.

4. Image of a pseudomeasure and the A_p algebras

We show now that $\omega(T)$ is uniquely defined for T in the norm closure of the set of all compactly supported convolution operators. This Banach algebra is denoted $cv_p(G)$. We recall that $cv_2(G) = C_u^b(\widehat{G})$, since G is abelian.

For $u \in A_p(G)$ and $T \in PM_p(G)$, it is useful to define $\omega_u(T)$ by

$$\omega_u(T) = \sum_{n=1}^{\infty} \omega_{f_n, g_n}(T) \quad \text{where } u = \sum_{n=1}^{\infty} \bar{f}_n \star \check{g}_n.$$

The map ω_u is well defined because

$$\sum_{n=1}^{\infty} \overline{\langle \omega_{f_n,g_n}(T)(\tau_p \varphi), \tau_{p'} \psi \rangle}_{L^p(H),L^{p'}(H)}$$
$$= \left\langle (\bar{\varphi} \star \check{\psi}) \circ \omega \sum_{n=1}^{\infty} \bar{f_n} \star \check{g_n}, T \right\rangle_{A_p(G),PM_p(G)}$$

The following proposition is similar to Proposition 3.2.

PROPOSITION 4.1. Let $1 and <math>u \in A_p(G)$. Then, ω_u is a linear map of $PM_p(G)$ into $PM_p(H)$ such that $|||\omega_u(T)|||_p \le |||T|||_p ||u||_{A_p}$.

REMARK 4.2. Let us assume that *G* is amenable. Theorem 3.1 implies that, for every $T \in PM_p(G)$, $\varepsilon > 0$, $v \in A_p(H)$, there is $u \in A_p(G)$ such that

$$|\langle v, \omega(T) \rangle_{A_p(G), PM_p(G)} - \langle v, \omega_u(T) \rangle_{A_p(G), PM_p(G)}| < \varepsilon.$$

Let MA_p denote the set of the multipliers of A_p (that is, $v \in MA_p$, if $vu \in A_p$, for all $u \in A_p$). It is well known that $MA_p(G)$ multiplies $PM_p(G)$ in the sense of

$$\langle v, uT \rangle_{A_p(G), PM_p(G)} = \langle uv, T \rangle_{A_p(G), PM_p(G)},$$

for all $u \in MA_p(G)$, $v \in A_p(G)$ and $T \in PM_p(G)$. We recall that $\omega(u) \in MA_p(H)$, for all $u \in MA_p(G)$, see [13].

PROPOSITION 4.3. Let $T \in PM_p(G)$ and $u \in MA_p(H)$. If G is amenable, then

$$\omega((u \circ \omega)T) = u \,\omega(T).$$

PROOF. Let $\varepsilon > 0$ and $w \in A_p(H)$. There is $v \in A_p(G)$ such that

$$|\langle w, \omega((u \circ \omega)T) \rangle_{A_p(H), PM_p(H)} - \langle w, \omega_v((u \circ \omega)T) \rangle_{A_p(H), PM_p(H)}| < \frac{c}{2}$$

and

$$|\langle uw, \omega(T) \rangle_{A_p(H), PM_p(H)} - \langle uw, \omega_v(T) \rangle_{A_p(H), PM_p(H)}| < \frac{\varepsilon}{2}$$

However, $\langle w, \omega_v((u \circ \omega)T) \rangle_{A_p(H), PM_p(H)} = \langle uw, \omega_v(T) \rangle_{A_p(H), PM_p(H)}.$

LEMMA 4.4. Let $T \in PM_p(G)$ and $u \in A_p(G)$. If $h \in \text{supp}(\omega_u(T))$, then for every neighborhood V of h, there is $v \in A_p(G)$ with $\text{supp}(v) \subset \omega^{-1}(V)$ such that

$$\langle v, T \rangle_{A_p(G), PM_p(G)} \neq 0.$$

THEOREM 4.5. Let $T \in PM_p(G)$. If G is amenable, then

$$\operatorname{supp}(\omega(T)) \subset \overline{\omega(\operatorname{supp}(T))}.$$

PROOF. Let $u \in A_p(G)$. First, we prove that $\operatorname{supp}(\omega_u(T)) \subset \omega(\operatorname{supp}(T))$.

Let $h \in \text{supp}(\omega_u(T))$ and suppose $h \notin \overline{\omega(\text{supp}(T))}$. Then there exists a closed neighborhood V of h in H such that

$$V \cap \omega(\operatorname{supp}(T)) = \emptyset.$$

Let $v \in A_p(H)$ with $\operatorname{supp}(v) \subset V$. For each $x \in G$ with $((v \circ \omega)u)(x) \neq 0$, we have $x \in \omega^{-1}(V)$, so $\operatorname{supp}((v \circ \omega)u) \subset \omega^{-1}(V)$. However, $\omega^{-1}(V) \cap \operatorname{supp}(T) = \emptyset$. Then, $((v \circ \omega)u)T = 0$, and by the amenability of G,

$$\langle (v \circ \omega)u, T \rangle_{A_p(G), PM_p(G)} = 0,$$

which contradicts Lemma 4.4.

Finally, we prove that

$$\operatorname{supp}(\omega(T)) \subset \overline{\bigcap_{u \in A_p(G)} \operatorname{supp}(\omega_u(T))}.$$

Let $h_0 \in \text{supp}(\omega(T))$. Suppose

$$h_0 \notin \bigcap_{u \in A_p(G)} \operatorname{supp}(\omega_u(T)).$$

335

Then there exists a closed neighborhood V_0 of h_0 in H such that, for all $u \in A_p(G)$, $V_0 \cap \operatorname{supp}(\omega_u(T)) = \emptyset$. Let $v \in A_p(H)$ with $\operatorname{supp}(v) \subset V_0$. For each $u \in A_p(G)$, $\operatorname{supp}(v) \cap \operatorname{supp}(\omega_u(T)) = \emptyset$, then $v \omega_u(T) = 0$ and by the amenability of G,

$$\langle v, \omega_u(T) \rangle_{A_p(H), PM_p(H)} = 0.$$

It follows that

$$\langle v, \omega(T) \rangle_{A_p(H), PM_p(H)} = 0,$$

which contradicts Lemma 4.4.

We now want to prove that the transfer mapping is uniquely defined on a larger class of convolution operators, notably on $cv_p(G)$. We recall that, if G is amenable, then $cv_p(G) = A_p(G)PM_p(G)$, as a direct consequence of the Cohen–Hewitt theorem [14, Ch. VIII, Paragraph 32].

THEOREM 4.6. Let $T \in PM_p(G)$ and $u \in A_p(G)$. If G is amenable, then

$$\omega(uT) = \omega_u(T).$$

In fact, there is a unique linear contraction $\omega : cv_p(G) \to cv_p(H)$ which generalizes the transfer of bounded measures.

PROOF. Let $T \in PM_p(G)$, $u \in A_p(G)$, $v \in A_p(H)$ and $\varepsilon > 0$. There is $w \in A_p(G)$ such that

$$|\langle v, \omega(uT) \rangle_{A_p(H), PM_p(H)} - \langle v, \omega_w(uT) \rangle_{A_p(H), PM_p(H)}| < \frac{\varepsilon}{2}$$

and

$$|\langle v \circ \omega \, u, \, T \rangle_{A_p(G), PM_p(G)} - \langle v \circ \omega \, u \, w, \, T \rangle_{A_p(G), PM_p(G)}| < \frac{\varepsilon}{2}$$

However,

$$\langle v, \omega_w(uT) \rangle_{A_p(H), PM_p(H)} = \langle v \circ \omega w, uT \rangle_{A_p(G), PM_p(G)} = \langle v \circ \omega u w, T \rangle_{A_p(G), PM_p(G)}.$$

Then,

$$\langle v, \omega(uT) \rangle_{A_p(H), PM_p(H)} = \langle v \circ \omega \, u, \, T \rangle_{A_p(G), PM_p(G)} = \langle v, \omega_u(T) \rangle_{A_p(H), PM_p(H)}.$$

Finally, we prove that $\omega(T) \in cv_p(G)$. There is a sequence $(T_n)_{n=1}^{\infty}$ of convolution operators with compact support such that $|||T_n - T|||_p \to 0$, and $(K_n)_{n=1}^{\infty}$ is a sequence of compact subsets of *G* with $\operatorname{supp}(T_n) \subset K_n$. For each $n \in \mathbb{N}$, $\operatorname{supp}(\omega(T_n)) \subset \omega(K_n)$. However, $\omega : CV_p(G) \to CV_p(H)$ is ultraweak continuous, then $||| \cdot |||_p$ -continuous. So

$$\lim_{n \to \infty} \omega(T_n) = \omega \left(\lim_{n \to \infty} T_n \right) = \omega(T).$$

336

EXAMPLE 4.7. Let H be a closed amenable subgroup of G and let $\omega = i : H \to G$ be the canonical inclusion. For all $T \in PM_p(H)$ and $v \in A_p(G)$,

$$\langle v, i(T) \rangle_{A_p(G), PM_p(G)} = \langle \operatorname{Res}_H v, T \rangle_{A_p(H), PM_p(H)}$$

Derighetti obtained this result without supposing the amenability of the subgroup H(see [8, Theorem 2, p. 76]). However, he used techniques which cannot be applied to arbitrary continuous homomorphisms.

EXAMPLE 4.8. Let G be an amenable locally compact group and $\omega: G \to \{e\}$ be the trivial homomorphism. Then there is a linear contraction

$$\omega: CV_p(G) \to \mathbb{C}$$

with the following properties:

 $\omega(\lambda_G^p(\mu)) = \mu(G) \text{ for each bounded measure } \mu \text{ of } G;$ $\omega(uT) = \langle u, T \rangle_{A_p(G), PM_p(G)} \text{ for each } u \in A_p(G).$ (1)

(2)

In fact, this defines a kind of integral on $CV_p(G)$!

EXAMPLE 4.9. Let G be an arbitrary Lie group. Then, for each X in its Lie algebra, there is a continuous homomorphism of \mathbb{R} into G defined by $t \mapsto \exp(tX)$. Hence, we are able to transfer every $T \in CV_p(\mathbb{R})$ into $CV_p(G)$.

5. The abelian case

The aim of this section is to compute the Fourier transform of $\omega(T)$.

Let G and H be two locally compact *abelian* groups and $\omega: G \to H$ be a continuous homomorphism. Here A(G) denotes the Fourier algebra of G (we recall that $A(G) = A_2(G)$ and \widehat{G} be the character group of G. We denote by $\varepsilon_G : G \to \widehat{\widehat{G}}$ the canonical isomorphism defined by $\varepsilon_G(\chi)(\chi) = \chi(\chi)$, for all $\chi \in G$ and $\chi \in \widehat{G}$. We define an isometric isomorphism $\Phi_{\widehat{G}}: L^1(\widehat{G}) \to A_2(G)$ by

$$\Phi_{\widehat{G}}(f)(x) = \int_{\widehat{G}} f(\chi) \varepsilon_G(x)(\chi) \, d\chi,$$

for all $x \in G$ and the Fourier transform $\hat{}: L^1(\widehat{G}) \to A_2(\widehat{\widehat{G}})$ by

$$\hat{f}(\xi) = \int_{\widehat{G}} f(\chi) \overline{\xi(\chi)} \, d\chi,$$

for all $\xi \in \widehat{\widehat{G}}$. Let $\mathcal{F} : L^2(\widehat{G}) \to L^2(\widehat{\widehat{G}})$ denote the extension of $\widehat{} \text{ on } L^2(\widehat{G})$.

Let $\hat{\omega}: \widehat{H} \to \widehat{G}$ denote the dual homomorphism defined by $\hat{\omega}(\chi') = \chi' \circ \omega$, for all $\chi' \in \widehat{H}$. For each $T \in CV_2(G)$, \widehat{T} denotes the Fourier transform of T, that is the unique function of $L^{\infty}(\widehat{G})$ such that, for all $\varphi, \psi \in L^2(\widehat{G})$,

$$\langle T\varphi, \psi \rangle_{L^2(G), L^2(G)} = \langle \widehat{T} \mathcal{F}(\varphi), \mathcal{F}(\psi) \rangle_{L^2(\widehat{G}), L^2(\widehat{G})}.$$

Let $1 . We define a contractive monomorphism <math>\alpha_p : CV_p(G) \to CV_2(G)$ such that, for all $\varphi \in L^2(G) \cap L^p(G)$, $\alpha_p(T)(\varphi) = T(\varphi)$. For $T \in CV_p(G)$, the Fourier transform of *T* is defined by

$$\widehat{T} = \widehat{\alpha_p(T)}.$$
(5.1)

From these definitions we have the following lemma.

LEMMA 5.1. Let $1 , <math>u \in A(G)$ and $T \in CV_p(G)$. Then

$$\omega_u(\alpha_p(T)) = \omega_u(T)$$

and

$$\widehat{\omega_u(T)} = (\widehat{T} \star \widehat{\Phi^{-1}(u)}) \circ \widehat{\omega}.$$

THEOREM 5.2. Let $T \in PM_p(G)$ with \widehat{T} continuous on \widehat{G} . Then,

$$\widehat{\omega(T)} = \widehat{T} \circ \widehat{\omega}.$$

PROOF. First, we consider $S = \alpha_p(T) \in CV_2(G)$. Let $\varepsilon > 0$ and $f \in L^1(\widehat{H})$. By hypothesis, \widehat{S} is a continuous function on \widehat{G} . So, for all $\chi \in \widehat{G}$, there is a compact neighborhood *C* of $e \in \widehat{G}$ such that

$$|\widehat{S}(\chi\chi') - \widehat{S}(\chi)| < \frac{\varepsilon}{4(1+\|f\|_1)},$$

for all $\chi' \in C$.

There is $\delta > 0$ and a compact $K \subset G$ such that, for all $U \in \mathcal{U}_{K^{-1},\delta}$,

$$\int_{\widehat{G}\setminus C} \Phi^{-1}(v)(\chi) \, d\chi < \frac{\varepsilon}{8(1+\|\widehat{S}\|_{\infty})(1+\|f\|_1)}$$

and

$$|\langle u, \omega(S) \rangle_{A_p(H), PM_p(H)} - \langle u, \omega_v(S) \rangle_{A_p(H), PM_p(H)}| < \delta,$$

where $v = m(U)^{-1} 1_U \star \check{1}_U \in A(G)$. Then,

$$\|\widehat{S}\star \widetilde{\Phi^{-1}(v)} - \widehat{S}\|_{\infty} < \frac{\varepsilon}{2(1+\|f\|_1)}.$$

On the one hand,

$$\begin{split} |\langle f, \widehat{\omega(S)} \rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})} - \langle f, \widehat{\omega_{v}(S)} \rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})}| \\ &= |\langle \Phi(f), \omega(S) \rangle_{A(H), PM_{2}(G)} - \langle \Phi(f), \omega_{v}(S) \rangle_{A(H), PM_{2}(G)}| < \frac{\varepsilon}{2}. \end{split}$$

On the other hand,

$$\begin{split} |\langle f, \widehat{\omega_{v}(S)} \rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})} - \langle f, \widehat{S} \circ \hat{\omega} \rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})}| \\ &= |\langle f, (\widehat{S} \star \widetilde{\Phi^{-1}(v)}) \circ \hat{\omega} \rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})} - \langle f, \widehat{S} \circ \hat{\omega} \rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})}| \\ &= |\langle f, (\widehat{S} \star \widetilde{\Phi^{-1}(v)} - \widehat{S}) \circ \hat{\omega} \rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})}| < \|f\|_{1} \frac{\varepsilon}{2(1 + \|f\|_{1})} < \frac{\varepsilon}{2} \end{split}$$

Finally,

$$\begin{split} |\langle f, \widehat{\omega(S)} \rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})} - \langle f, \widehat{S} \circ \widehat{\omega} \rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})}| \\ & \leq |\langle f, \widehat{\omega(S)} \rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})} - \langle f, \widehat{\omega_{v}(S)} \rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})}| \\ & + |\langle f, \widehat{\omega_{v}(S)} \rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})} - \langle f, \widehat{S} \circ \widehat{\omega} \rangle_{L^{1}(\widehat{H}), L^{\infty}(\widehat{H})}| < \varepsilon \end{split}$$

and

$$\widehat{\omega(S)} = \widehat{S} \circ \hat{\omega}.$$

We conclude by applying (5.1).

REMARK 5.3. Theorem 5.2 was previously proved by Lohoué [17, Theorem I.1] and [15]. Nonabelian methods allow us to give a new proof.

REMARK 5.4. Let G be a locally compact abelian group and consider the homomorphism of Example 4.8,

$$\omega: G \to \{e\}.$$

Then, for each $T \in CV_p(G)$ with \widehat{T} continuous,

$$\omega(\widehat{T}) = \widehat{T}(1).$$

Let $\varphi \in L^{\infty}(G)$. We recall that the spectrum of φ is the set

$$\operatorname{sp}(\varphi) = \{\chi \in \widehat{G} : \widehat{f}(\chi) = 0 \text{ for all } f \in L^1(G) \text{ with } f \star \varphi = 0\},\$$

and that

$$\varepsilon_G(\operatorname{supp}(T)) = (\operatorname{sp}(\widehat{T}))^{-1}.$$

SCHOLIUM 5.5. Let $T \in CV_p(G)$ with \widehat{T} continuous. Then,

$$\operatorname{sp}(\widehat{T}\circ\widehat{\omega})\subset\overline{\widehat{\widehat{\omega}}(\operatorname{sp}(\widehat{T}))}.$$

PROOF. By Theorem 4.5, we have $supp(\omega(T)) \subset \overline{\omega(supp(T))}$ and then

 $\varepsilon_G(\operatorname{supp}(\omega(T))) \subset \overline{\widehat{\widehat{\omega}}(\varepsilon_G(\operatorname{supp}(T)))}.$

By Theorem 5.2,

$$\operatorname{sp}(\widehat{T} \circ \widehat{\omega}) \subset (\overline{\widehat{\widehat{\omega}}((\operatorname{sp}(\widehat{T}))^{-1})})^{-1} \subset \overline{\widehat{\widehat{\omega}}((\operatorname{sp}(\widehat{T})))}.$$

339

REMARK 5.6. In [21, Theorem 7.2.2, p. 200], Reiter proves a result called 'relativisation of the spectrum'. It is, in fact, a particular case of the Scholium 5.5 where \hat{H} is a closed subgroup of \hat{G} and $\hat{\omega}$ is the inclusion.

6. Relations between $CV_p(G)$ and $CV_p(G_d)$

We know that deep relations exist between the harmonic analysis of G and G_d . In [10, 12], Eymard and Herz investigated the relationship between B(G) and $B(G_d) \cap C(G)$. In this section, we study the relationship between $CV_p(G)$ and $CV_p(G_d)$. More precisely, we construct a new map of $CV_p(G)$ into $CV_p(G_d)$, for G_d amenable.

First, we give results about the operator norm of discrete measures. For each sequence $(c_n)_{n=1}^{\infty} \in \ell^1$ and $(a_n)_{n=1}^{\infty}$ on *G*, we consider the measure $\mu = \sum_{n=1}^{\infty} c_n \delta_{a_n}$, where δ_a is the Dirac measure on *a*. Here μ is a bounded measure on both *G* and on G_d with $\omega(\mu) = \mu$. All of these measures are called discrete measures of *G*.

THEOREM 6.1. Let $1 , G be a locally compact group and let <math>\mu$ be a discrete measure of G. Then,

$$\||\lambda_{G_d}^p(\mu)|||_p \le \||\lambda_G^p(\mu)|||_p.$$

Moreover, if G_d is amenable,

$$\|\|\lambda_{G_d}^p(\mu)\|\|_p = \|\|\lambda_G^p(\mu)\|\|_p$$

The proof of the first inequality is based on the following construction and the second is a corollary of Theorem 3.1.

DEFINITION 6.2. Let *W* be a relatively compact neighborhood of *e* in *G*. For each $k \in C_{oo}(G_d)$, we define

$$T_W^p(k) = m(W)^{-1/p} \sum_{x \in G} k(x)_{x^{-1}}(1_W).$$

It is straightforward to prove the following properties:

- (1) $T_W^p: C_{oo}(G_d) \to L^p(G);$
- (2) $||T_W^p(k)||_p \le ||k||_1;$
- (3) $T_W^p(ak) = a(T_W^p(k))$ for all $a \in G$.

The second property can be improved on, as follows.

LEMMA 6.3. Let $k \in C_{oo}(G_d)$ with $\operatorname{supp}(k) = \{x_1, \ldots, x_n\}$ and let W be a relatively compact neighborhood of e in G such that $x_i W \cap x_j W = \emptyset$, for each $1 \le i, j \le n$ with $i \ne j$. Then

$$||T_W^p(k)||_p = ||k||_p.$$

PROOF. For each $y \in G$, there is $j_y \in \{1, ..., n\}$ such that $x_{j_y}^{-1} y \in W$. Then

$$\left|\sum_{j=1}^{n} k(x_j) \mathbf{1}_W(x_j^{-1}y)\right|^p = \sum_{j=1}^{n} |k(x_j)|^p \mathbf{1}_W(x_j^{-1}y) \text{ and}$$
$$\|T_W^p(k)\|_p^p = m(W)^{-1} \sum_{j=1}^{n} |k(x_j)|^p \int_G \mathbf{1}_W(y) \, dy = \|k\|_p.$$

LEMMA 6.4. Let $k, l \in C_{oo}(G_d)$ and let μ be a bounded measure on G with finite support (that is, $\mu = \sum_{i=1}^{n} c_i \delta_{a_i}$, where $c_i \in \mathbb{C}$ and $a_i \in G$). Then there exists a neighborhood W of e in G such that

$$\langle \overline{k} \star \widetilde{l}, \lambda_{G_d}^p(\mu) \rangle_{A_p(G_d), PM_p(G_d)} = \langle (T_W^p(\overline{k})) \star (T_W^{p'}(l)), \lambda_G^p(\mu) \rangle_{A_p(G), PM_p(G)}.$$

PROOF. Suppose that $\mu = \delta_a$, for any $a \in G$. Let $supp(k) = \{x_1, \ldots, x_n\}$ and $supp(l) = \{y_1, \ldots, y_m\}$.

We define $E = \{(i, j) \in \mathbb{N}_n \times \mathbb{N}_m : ax_i = y_j\}$ and consider W a neighborhood of e such that $(x_i^{-1}a^{-1}y_j)W \cap W = \emptyset$. Then,

$$\begin{split} \langle (T_{W}^{p}(\bar{k})) \star (T_{W}^{p'}(l)), \lambda_{G}^{p}(\mu) \rangle_{A_{p}(G), PM_{p}(G)} \\ &= m(W)^{-1} \sum_{i=1}^{n} \sum_{j=1}^{m} \bar{k}(x_{i}) l(y_{j}) \int_{G} 1_{W}(x_{i}^{-1}a^{-1}y_{j}y) 1_{W}(y) \, dy \\ &= \sum_{(i,j) \in E} \bar{k}(a^{-1}y_{j}) l(y_{j}) = \sum_{j=1}^{m} \bar{k}(a^{-1}y_{j}) l(y_{j}) \\ &= \langle \bar{k} \star \check{l}, \lambda_{G_{d}}^{p}(\mu) \rangle_{A_{p}(G_{d}), PM_{p}(G_{d})}. \end{split}$$

The result now follows by linearity.

PROOF OF THEOREM 6.1. We prove that $\||\lambda_{G_d}^p(\mu)|\|_p \le \||\lambda_G^p(\mu)\|\|_p$.

Let $r \in C_{oo}(G_d)$ with $||r||_1 \le 1$. We define $f = r^{1/p}$ and $g = r^{1/p'}$. Let v be a bounded measure with finite support. There is a neighborhood W of e in G such that

$$\langle \overline{\tau_p f} \star (\tau_p g), \lambda_{G_d}^p(\nu) \rangle_{A_p(G_d), PM_p(G_d)} = \langle T_W^p(\overline{\tau_p f}) \star T_W^{p'}((\tau_p g)), \lambda_G^p(\nu) \rangle_{A_p(G), PM_p(G)}.$$

Then

$$\begin{split} |\langle \lambda_{G_d}^p(\nu) f, g \rangle_{\ell^p(G), \ell^{p'}(G)}| \\ &= |\langle \lambda_G^p(\nu)(\tau_p(T_W^p(\tau_p f))), \tau_{p'}(T_W^{p'}(\tau_{p'} g)) \rangle_{L^p(G), L^{p'}(G)}| \\ &\leq \||\lambda_G^p(\nu)\||_p \|T_W^p(\tau_p f)\|_p \|T_W^{p'}(\tau_{p'} g)\|_{p'} \leq \||\lambda_G^p(\nu)\||_p \|f\|_p \|g\|_{p'}. \end{split}$$

Finally, from $||f||_p \le 1$ and $||g||_{p'} \le 1$, we obtain $|||\lambda_{G_d}^p(v)||_p \le |||\lambda_G^p(v)||_p$.

There is a $(v_n)_{n=1}^{\infty}$ sequence of bounded measures of G with finite support such that $\lim ||v_n - \mu|| = 0$.

$$\begin{split} \|\lambda_{G_{d}}^{p}(\mu)\|_{p} &\leq \|\lambda_{G_{d}}^{p}(\mu) - \lambda_{G_{d}}^{p}(\nu_{n})\|_{p} + \|\lambda_{G_{d}}^{p}(\nu_{n})\|_{p} \\ &\leq \|\lambda_{G_{d}}^{p}(\mu - \nu_{n})\|_{p} + \|\lambda_{G}^{p}(\nu_{n})\|_{p} \\ &\leq \|\mu - \nu_{n}\| + \|\lambda_{G}^{p}(\nu_{n}) - \lambda_{G}^{p}(\mu)\|_{p} + \|\lambda_{G}^{p}(\mu)\|_{p} \\ &\leq 2\|\mu - \nu_{n}\| + \|\lambda_{G}^{p}(\mu)\|_{p}. \end{split}$$

Assume that G_d is amenable. The inequality $\||\lambda_{G_d}^p(\mu)||_p \ge \||\lambda_G^p(\mu)||_p$ is then a direct consequence of Theorem 3.1.

REMARK 6.5. The map $a \mapsto \lambda_G^2(\delta_a)$ is the left regular representation of *G* on $L^2(G)$. Theorem 6.1 is a version when $p \neq 2$ of the result of [3, Lemma 2, p. 606] and [4, Theorem 2, p. 3152]. The Hilbert space methods used to prove the version when p = 2 are not applicable when $p \neq 2$. Our proof requires another approach.

THEOREM 6.6. Let $1 and G be a locally compact group. Assume that <math>G_d$ is amenable. Then there is a linear contraction

$$\sigma: CV_p(G) \to CV_p(G_d)$$

such that, for all discrete measures μ on G,

$$\sigma(\lambda_G^p(\mu)) = \lambda_{G_d}^p(\mu).$$

The proof of this theorem is based on Definition 6.2 and the following construction.

DEFINITION 6.7. Let $1 , let <math>T \in CV_p(G)$, let W be a relatively compact neighborhood of e in G and let $k, l \in C_{oo}(G_d)$. We define $\sigma_{W,k,l}(T)$ by

$$\langle \sigma_{W,k,l}(I)\varphi,\psi\rangle_{L^p(G_d),L^{p'}(G_d)}$$

$$= \sum_{x\in G} \langle T(\tau_p(T_W^p(k(_x\varphi)))),\tau_{p'}(T_W^{p'}(l(_x\psi)))\rangle_{L^p(G),L^{p'}(G)}$$

for all $\varphi \in L^p(G_d)$ and $\psi \in L^{p'}(G_d)$.

Let \mathcal{W} denote the set of pairs (W, r) where W is a relatively compact neighborhood of e in $G, r \in C_{oo}(G_d)$ such that $x_i W \cap x_j W = \emptyset$, for all $i \neq j, 1 \leq i, j \leq n$, where $\{x_1, \ldots, x_n\} = \operatorname{supp}(r)$.

LEMMA 6.8. Let $(W, r) \in W$, $k = r^{1/p}$ and $l = r^{1/p'}$. Then $\sigma_{W,k,l}$ is a linear map of $CV_p(G)$ into $CV_p(G_d)$ with $||\sigma_{W,k,l}(T)||_p \le ||T||_p ||k||_p ||l||_{p'}$.

LEMMA 6.9. Let μ be a bounded measure of G with finite support. Then there is $(W, r) \in W$ such that, for all $\varphi, \psi \in C_{oo}(G_d)$,

$$\langle \sigma_{W,k,l}(\lambda_G^p(\mu))\varphi, \psi \rangle_{L^p(G_d),L^{p'}(G_d)} = \mu^{\star}((\bar{k} \star \tilde{l})(\tilde{\varphi} \star \psi)),$$

where $k = r^{1/p}$ *and* $l = r^{1/p'}$.

PROOF OF THEOREM 6.6. For each $(W, r) \in W$, $k = r^{1/p}$ and $l = r^{1/p'}$, we define

$$\Sigma_{W,k,l}(T,\varphi,\psi) = \langle \sigma_{W,k,l}(T)\varphi,\psi \rangle_{L^p(G_d),L^{p'}(G_d)}$$

where $T \in CV_p(G)$ and $\varphi, \psi \in C_{oo}(G_d)$. Here $\Sigma_{W,k,l}$ is a continuous form on $CV_p(G) \times L^p(G_d) \times L^{p'}(G_d)$, which is bilinear in the two first factors and conjugate linear on the third. Let \mathcal{B} denote the set of these forms with the weak topology of duality with $CV_p(G) \times L^p(G_d) \times L^{p'}(G_d)$. By the Banach–Alaoglu theorem, $\mathcal{S} = \{F \in \mathcal{B} : |F(T, \varphi, \psi)| \leq ||T||_p ||\varphi||_p ||\psi||_{p'}\}$ is a compact subset of \mathcal{B} . For each K finite subset of $G, \varepsilon > 0$ and U neighborhood of e in G, we define

$$\begin{aligned} \mathcal{A}_{K,\varepsilon,U} &= \{ \Sigma_{W,k,l} : (W,r) \in \mathcal{W}, \ k = r^{1/p}, \ l = r^{1/p'}, \ r \ge 0, \ \|r\|_1 = 1, \\ \|_{x^{-1}k} - k\|_p < \varepsilon \quad \forall x \in K, \ W \subset U \}. \end{aligned}$$

The $\mathcal{A}_{K,\varepsilon,U}$ are all nonempty, because G_d is amenable. It easy to show that for all $n \in \mathbb{N}, K_1, \ldots, K_n \subset G$ finite, $\varepsilon_1, \ldots, \varepsilon_n > 0$ and U_1, \ldots, U_n neighborhood of e on $G, \bigcap_{i=1}^n \mathcal{A}_{K_i,\varepsilon_i,U_i} \neq \emptyset$. However, S is compact, so there is

$$\Sigma \in \bigcap_{\substack{K \in G \text{ finite} \\ \varepsilon > 0 \\ U \text{ neighbor of } e}} \overline{\mathcal{A}_{K,\varepsilon,U}}.$$

For each $T \in CV_p(G)$, $\varphi \in L^p(G_d)$ and $\psi \in L^{p'}(G_d)$, we define

$$\Sigma(T,\varphi,\psi) = \langle \sigma(T)\varphi,\psi \rangle_{L^p(G_d),L^{p'}(G_d)}.$$

This extends Lust-Piquard's result [19, Theorem 4.1]. The techniques used for the proof are completely different and are not applicable to nonabelian groups. This problem was also treated by Lohoué in [17, 18] for special kinds of convolution operators, with strong use of structure theory of locally compact abelian groups.

REMARK 6.10. For *G* amenable, the map defined in Theorem 6.6 could be considered as a substitute for the map of the *p*-multipliers of \hat{G} into the *p*-multipliers of the Bohr compactification of \hat{G} .

Acknowledgements

This work was part of the author's PhD Thesis defended in July 2003 at the University of Lausanne. I am very grateful to Professor A. Derighetti for his continuous support and for his good advice which helped me to produce my PhD Thesis and the present paper.

References

- [1] J.-P. Anker, 'Aspects de la *p*-induction en analyse harmonique', PhD Thesis, Université de Lausanne, 1982.
- [2] _____, 'Applications de la *p*-induction en analyse harmonique', Comment. Math. Helv. 58(4) (1983), 622–645.
- [3] E. Bédos, 'On the *C**-algebra generated by the left regular representation of a locally compact group', *Proc. Amer. Math. Soc.* **120**(2) (1994), 603–608.
- [4] M. B. Bekka, E. Kaniuth, A. T. Lau and G. Schlichting, 'On C*-algebras associated with locally compact groups', *Proc. Amer. Math. Soc.* **124**(10) (1996), 3151–3158.
- [5] K. de Leeuw, 'On L_p multipliers', Ann. of Math. (2) **81** (1965), 364–379.
- [6] J. Delaporte, 'Convoluteurs continus et topologie stricte', in: *Harmonic Analysis (Luxembourg, 1987)* (Springer, Berlin, 1988), pp. 135–141.
- [7] J. Delaporte and A. Derighetti, '*p*-pseudomeasures and closed subgroups', *Monatsh. Math.* **119**(1–2) (1995), 37–47.
- [8] A. Derighetti, 'Relations entre les convoluteurs d'un groupe localement compact et ceux d'un sous-groupe fermé', *Bull. Sci. Math.* (2) 106(1) (1982), 69–84.
- [9] ---, 'À propos des convoluteurs d'un groupe quotient', *Bull. Sci. Math.* (2) **107**(1) (1983), 3–23.
- [10] P. Eymard, 'L'algèbre de Fourier d'un groupe localement compact', Bull. Soc. Math. France 92 (1964), 181–236.
- [11] C. Herz, 'The theory of *p*-spaces with an application to convolution operators', *Trans. Amer. Math. Soc.* 154 (1971), 69–82.
- [12] _____, 'Harmonic synthesis for subgroups', Ann. Inst. Fourier (Grenoble) 23(3) (1973), 91–123.
- [13] _____, 'Une généralisation de la notion de transformée de Fourier-Stieltjes', Ann. Inst. Fourier (Grenoble) 24(3) (1974), 145–157.
- [14] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. II: Structure and Analysis for Compact Groups. Analysis on Locally Compact Abelian Groups (Springer, New York, 1970).
- [15] N. Lohoué, 'Sur certains ensembles de synthèse dans les algèbres A_p(G)', C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A589–A591.
- [16] —, 'Sur le critère de S. Bochner dans les algèbres $B_p(R^n)$ et l'approximation bornée des convoluteurs', C. R. Acad. Sci. Paris Sér. A–B **271** (1970), A247–A250.
- [17] —, 'Algèbres $A_p(G)$ et convoluteurs de $L^p(G)$ '. Doctorat d'état, Université Paris-Sud, Centre d'Orsay, 1971.
- [18] _____, 'Approximation et transfert d'opérateurs de convolution', Ann. Inst. Fourier (Grenoble) 26(4) (1976), 133–150.
- [19] F. Lust-Piquard, 'Means on $CV_p(G)$ -subspaces of $CV_p(G)$ with RNP and Schur property', Ann. Inst. Fourier (Grenoble) **39**(4) (1989), 969–1006.
- [20] J.-P. Pier, Amenable Locally Compact Groups (John Wiley & Sons, New York, 1984).
- [21] H. Reiter and J. D. Stegeman, *Classical Harmonic Analysis and Locally Compact Groups*, 2nd edn (The Clarendon Press/Oxford University Press, New York, 2000).
- [22] S. Saeki, 'Translation invariant operators on groups', *Tôhoku Math. J.* (2) 22 (1970), 409–419.

CÉDRIC DELMONICO, EPFL SB IACS, Station 8, CH-1015 LAUSANNE, Switzerland e-mail: cedric.delmonico@a3.epfl.ch