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Introduction

Measures of surprise have been recently studied in statistics. This new con-

cept can be used as the �rst exploratory tool to verify if a model under the

null hypothesis �ts appropriately. As no alternative models are necessary,

the use of the measures of surprise is considered very simple. At the same

time, this new alternative to test the goodness of a model cannot replace the

full Bayesian analysis.

The aim of this project is threshold selection for threshold models. The

estimate of the threshold could be investigated by using the measures of

surprise. The reason is that no alternative models are speci�ed for non-

extreme data, for which the distribution in extreme value theory is unknown,

and thus the surprise would be a credible tool.

In order to quantify the measures of surprise, predictive marginal likeli-

hoods are computed. The purpose of these quantities is to observe if data

are surprising under a given model. For this reason we calculate the p-values

with respect to the predictive marginal likelihoods. Section 1 describes all

these measures and gives their respectively p-values.

In Section 2 the basic concepts of the extreme value theory are reviewed.

Firstly, the generalized extreme value distribution is de�nite to allow the

introduction of the generalized Pareto distribution and its properties. Fi-

nally, di�erent methods to estimate the threshold u of a dataset having a

generalized Pareto distribution are studied.

In order to analyse the measures of surprise more profoundly, a simulation

study is carried out in Section 3 and two particular predictive marginal

likelihoods are considered: the posterior and the prior predictive marginal

likelihoods. Given di�erent datasets, the aim is to estimate the threshold u
using these two measures of surprise.

Three di�erent samples (uniform and generalized Pareto data, gamma

and generalized Pareto data, generalized Pareto data only) are generated

and the behaviour of the posterior predictive measures of surprise is anal-

ysed. Because of numerical reasons, we use the mean of the generalized
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Pareto density of each observation rather than the product of the densities.

This approximation allows to obtain some interesting results which give the

estimation of the true threshold u.
The prior predictive measures of surprise are estimated using the Laplace

approximation method. Once more, the likelihood is replaced by the mean

of the densities for numerical reasons. For this approach the study is carried

out only for the sample generated by uniform and generalized Pareto data.

Finally, we discuss the results and the problems that we have had con-

cerning some computations of the measures of surprise. Furthermore, some

suggestions are also presented in order to improve and ride over these com-

putational di�culties.
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Chapter 1

Measures of Surprise

�Once a (null) model (or hypothesis) H0 is formulated and xobs is observed,
are data surprising?� (Bayarri and Berger, 1997). In Statistics this is a

very old question and to answer it we introduce the notion of measure of

surprise.

De�nition 1 (Bayarri and Berger (1997)). The measure of surprise in-

dicates the need of modi�cation of the model. It gives the incompatibility

degree of data with an hypothesized model H0 without any reference to

alternative models.

This means that there is no way to compare the model under the null

hypothesis without any other models.

The use of the measure of surprise is considered extremely interesting

because it is very simple. No alternative models with their priors over their

parameters exist. A �surprise� analysis cannot replace a full Bayesian one

but it plays an important role as exploratory tool. This means that if the

data xobs can be explained by H0, we might not need to carry out also

the full analysis which corresponds to compare the null model with di�erent

alternative models with their associated priors over their parameters. On the

other hand, if xobs is �surprising�, then we have to indicate an alternative

model to H0 and we have to carry out a Bayesian analysis without rejecting

directly the model under the null hypothesis.

Under it we usually have X ∼ f(x | θ) and θ ∼ π(θ) but since there is no
explicit H1, no prior is assigned. Once we introduce an alternative model,

we have X ∼ f1(x | η) and η ∼ π1(η).
We often use a statistic T (X) to investigate the compatibility of the

model under H0 with the observed data. If we know the parameter θ, the
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1.1. WEAVER'S AND GOOD'S SURPRISE INDICES

distribution under H0 will be f(t | θ) = f(t). The best-known way to

measure the compatibility of the model is p-values or tail area probabilities

de�ned by Bayarri and Morales (2003) as follows,

p = Prf(·){T (X) ≥ T (xobs)}.

On the other hand, it is extremely rare to know the parameter θ. There-
fore, in the next sections we will focus di�erent kind of probability distribu-

tions used to compute the p-values.

1.1 Weaver's and Good's Surprise Indices

The surprise index is based on the probability f(xobs) of observing data

that eventually occurred. Weaver underlined that a small probability is not

necessary surprising unless it is small if compared with the probability f(x)
of the other possible results (Weaver (1948) and Weaver (1963)).

The basic idea consists in the comparison between f(xobs) and the aver-

age (expected) probability. Let X be a random variable or vector having a

discrete distribution. Let x1, x2, . . . have probabilities f1, f2, . . . respectively.
Then the surprise index associated with the observed value xobs is

λ1 =
E{f(X)}

Pr{X = xobs}
=
∑

i f
2
i

fobs
,

where
∑

i f
2
i corresponds to the Gini's homogeneity index (Good, 1988).

The surprise index generalized to continuous random variables is

λ1 =
E{f(X)}

Pr{X = xobs}
=
∫
f(x)2dx

f(xobs)
. (1.1)

We notice that the Weaver's index (1.1) is multiplicative. This means

that if X and Y are independent random variables, then

λ1(xobs, yobs) = λ1(xobs)λ1(yobs). (1.2)

When we use Weaver's surprise index, two possible di�culties could arise.

The �rst one concerns its invariance: it is invariant only under linear trans-

formations. The second one refers to the standard chosen to compare the

observed f(xobs) with its expected value E{f(X)} which might be considered

somewhat arbitrary. A single-parameter generalization of (1.1) is suggested

by Good (1953) and Good (1956) that would also possess the property (1.2).
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1.1. WEAVER'S AND GOOD'S SURPRISE INDICES

These measures of surprise compare f(xobs) with some sort of geometric

expectation. Two di�erent cases are considered. First, for c > 0 the index is

λc =
[E{f(X)c}]1/c

f(xobs)
. (1.3)

Second, the limiting case, as c→ 0 gives

λ0 =
exp[E{log(f(X))}]

f(xobs)
. (1.4)

Notice that for c = 1, equation (1.3) corresponds to Weaver's index.

Another generalization has been proposed by Good (1988),

λ0 =
φ−1[E{φ(f(X))}]

f(xobs)
.

In this case φ is a monotonic increasing function that is multiplicative only

in the case in which φ is a power or logarithm (so that it reduces to either

(1.3) or (1.4)).

If an additive index is required, it could be possible to use the loga-

rithmic surprise index. This was proposed by Good (1956) using the

logarithm of (1.3),

Λc = log(λc), c ≥ 0.

This index has many connections with information theory. In particular,

Λc + log{f(xobs)} is also called Renyi's generalized entropy (Renyi,

1961). Then, we have

Λ1 = log[E{f(X)}]− log{f(xobs)}
Λ0 = E[log{f(X)}]− log{f(xobs)}.

Measures λ1, λ0 and Λ1, Λ0 are considered to be the most �natural� by Good

basing on properties of the expected indices of surprise before the experiment

is performed.

We need to detail the distribution of the observations underH0 if we want

to compute these indices. Unfortunately it is not always possible. Then we

introduce tail areas or Bayesian p-values which allow to compute the measure

of surprise, as we work on suitable predictive distributions.
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1.2. PRIOR PREDICTIVE P-VALUES

1.2 Prior Predictive p-values

Under H0 data are distributed as X ∼ f(x | θ) and the prior distribution is

θ ∼ π(θ). Then the prior predictive distribution for Bayesians is

m(x) =
∫
f(x | θ)π(θ)dθ, (1.5)

which is the natural tool to quantify surprise. Equation (1.5) corresponds to

the probability of observing data x. This means that a small value of m(x)
would indicate data that are unlikely to be observed. If the observation xobs

produces a �small� m(xobs), then there is evidence of �surprise�.

In order to understand how small is m(xobs), we have to compare it with

some standard. For example, we comparem(xobs) with some �possible� m(x)
(see Section 1.5). Box (1980) proposed to compute the associated tail area

of m(xobs) in the prior predictive m(x) to measure the smallness of m(xobs).
He de�ned

α = Prm(·){m(X) < m(xobs)}

as an overall predictive check of a given model, where the probability is

computed with respect to the prior predictive distribution (1.5). So we can

use 1− α or 1/α as measures of surprise. In the same way, we can compute

the surprise for some functions D(xobs) by

Prm(·){m(D(X)) < m(D(xobs))}. (1.6)

As these measures of surprise are very close to classical p-values, they

violate the conditionality principle and the likelihood principle, too. These

probabilities are also based on values of X that provide a much stronger

evidence against the null model than the observed one, so we obtain an

exaggerated measure of surprise. Another negative feature is that the prior

predictive p-values are not invariant under one-to-one transformation (see

the example of Evans (1997)).

To remove some of these di�culties, it is necessary to use directly a

statistic T = T (X) to compute the p-value (Bayarri and Berger, 2000).

The most natural and simple T statistic for the prior predictive is T (X) =
1/m(X). Thus, the prior predictive p-value can be written as

pprior = Prm(·){T (X) ≥ T (xobs)}, (1.7)

which is more used than (1.6) and which is invariant under one-to-one trans-

formation.
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1.3. POSTERIOR PREDICTIVE P-VALUES

We notice that m(X) measures the likelihood of x relative to both the

model and the prior. Therefore we could get an excellent model where the

prior is of poor quality because we often use non-informative prior for the

parameters. Unfortunately this prior is often improper, so that the compu-

tation of (1.7) will be impossible because also the prior predictive m(x) is

improper.

1.3 Posterior Predictive p-values

The posterior predictive p-values allow us to compute the p-values for

a predictive distribution, and the measure of surprise is de�ned as

m(x | xobs) =
∫
f(x | θ)π(θ | xobs)dθ, (1.8)

where θ has the proper posterior distribution π(θ | xobs).
Guttam (1967) was the �rst to propose this measure of surprise based on

posterior predictive distribution to check a model. The idea is based on a

comparison between the observed empirical frequencies in a partition of the

sample space with the �theoretical� frequencies computed from the posterior

predictive distribution of a future observation. A χ2 procedure is used for

the comparison and the �surprise� is based on p-values.

Rubin (1984) generalized the use of the posterior predictive p-values

which is based on the use of tail area probabilities corresponding to the

observed value of some test statistics T = T (X) as

ppost = Pr{T (X) ≥ T (xobs) | xobs}, (1.9)

where the probability is computed with respect to the posterior predictive

distribution m(x | xobs) de�ned in (1.8).

More studies have been carried out by Meng (1994) and Gelman et al.

(1996). They replace the statistic T (X) by a function T (X, θ). Furthermore,

f(x | θ) used in equation (1.8) becomes f(x | θ,A), where A is an �auxiliary�

statistic. So, the posterior predictive p-value has the following form,

ppost = Pr{T (X, θ) ≥ T (xobs, θ) | xobs, A(xobs)},

where the probability is computed with respect to the joint distribution

Pr{θ, x | xobs, A(xobs)} = f(x | θ,A(x) = A(xobs))π(θ | xobs).

We use posterior predictive distributions to compute tail areas and we

obtain posterior predictive p-values when no alternative models exist. This
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1.4. OTHER PROPOSALS TO MEASURE SURPRISE

method has some problems which are similar to those of Aitkin (1991), who

needs posterior predictive distributions to calculate Bayes factors in the pres-

ence of alternative models.

Unlike the prior predictive p-values, improper and non-informative priors

can be used to compute posterior predictive p-values since π(θ | xobs) will

be proper. Furthermore, m(x | xobs) will be much more in�uenced by the

model than by the prior. Finally, the posterior predictive p-values are easy

to compute using the outputs from Bayesian analyses.

Unfortunately, there are two weaknesses when posterior predictive p-

values are computed.

The �rst weakness concerns the observed data xobs, which are used twice

to compute the full posterior predictive distribution m(x | xobs): �rst to

modify the improper prior π(θ) into a proper distribution π(θ | xobs) and

second to measure the surprise in the posterior predictive distribution m(x |
xobs).

The second weakness is that posterior p-values are very similar to classical

p-values, so they have the same inadequacies of the latter. In order to

understand this, we look at (1.9). We can rewrite the posterior predictive

p-value in the following way,

ppost =
∫

Prm(·|xobs){T (X) ≥ T (xobs)}π(θ | xobs)dθ, (1.10)

so ppost corresponds to the expected value of the classical tail probability

pc(θ) = Pr{T (X) ≥ T (xobs) | θ},

with respect to the posterior distribution. For a large sample, we have ppost ≈
pc(θ̂), where θ̂ is the MLE of θ, and then the behaviour of both measures

(posterior predictive p-values and classical p-values) will be similar.

1.4 Other Proposals to Measure Surprise

Another interesting measure of surprise is due to Evans (1997), who proposed

a measure invariant under one-to-one transformation.

Suppose that ϕ = ϕ(θ) is a parametric function of interest. Then the

observed relative surprise for testing the null hypothesis H0 : ϕ = ϕ0

against each alternative H1 : ϕ = ϕ1 has been de�ned by Evans (1997) as

Pr
{
π(ϕ1 | xobs)
π(ϕ1)

>
π(ϕ0 | xobs)
π(ϕ0)

| xobs

}
, (1.11)

10



1.4. OTHER PROPOSALS TO MEASURE SURPRISE

where the probability is computed with respect to the posterior distribution

π(ϕ1 | xobs). This measure is invariant under one-to-one transformation

given the presence of the Jacobians in both numerator and denominator.

The use of (1.11) has been suggested also for estimation (minimizing the

observed relative surprise) and for con�dence regions (α−relative surprise

regions) (Evans, 1997).

However, there are two di�culties when we use (1.11) as a measure of

surprise. The �rst, once more, concerns the use of the data twice: once to

obtain the ratio of the posterior to the prior and the second to compute

the probability that this ratio is larger than its hypothesized value. This

problem can be related to Aitkin's posterior Bayes factors (Aitkin, 1991).

The probability given in (1.11), also called Evans' relative surprise, can

be rewritten as follows,

Prϕ1|xobs

{
f(xobs | ϕ1)
f(xobs | ϕ0)

> 1
}

= PrB|xobs {B > 1} .

The expected value of this distribution∫
f(xobs | ϕ1)π(ϕ1 | xobs)dϕ1

f(xobs | ϕ0)

corresponds to the Aitkin's posterior Bayes factor for H1.

The second di�culty is that we have to assess carefully the alternatives

to ϕ0 and for each alternative we have to specify a prior distribution.

Evans (1997) proposed to use the surprise to check a model by de�ning

the observed relative surprise in the following way,

Pr
{
m(T (X) | xobs)
m(T (X))

>
m(T (xobs) | xobs)
m(T (xobs))

}
, (1.12)

where m(T (X) | xobs) is the posterior predictive density of T (X), m(T (X))
is the prior predictive density of T (X) and T (X) is a function with a

Lebesgue measure on the appropriate space.

Once more there is no invariance. This probability can be also used

for prediction. However, if the ratio m(T (xobs) | xobs)/m(T (xobs)) used in

(1.12) is very large, it will be not useful to check the model as the measure

of surprise will equal 0.
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1.5. RELATIVE MAXIMIZED AND EXPECTED MEASURES OF

SURPRISE

1.5 Relative Maximized and Expected Measures of

Surprise

There are other methods to �nd measures of surprise. Instead of computing

p-values, Berger (1980-85) suggested to compare their relative likelihoods.

Once more we need the prior predictive distribution m(x) and if m(xobs) is
small, then data are surprising. Two di�erent likelihoods have been de�ned,

m∗(xobs) =
m(xobs)
supxm(x)

, (1.13)

m∗∗(xobs) =
m(xobs)

Em(x){m(X)}
. (1.14)

We notice that (1.14) is the inverse of the index λ1 given in (1.2) when

applied to the prior predictive distribution m(x) and then it has the same

properties. On the contrary, as c → 0, we have that (1.13) is the limiting

case of the inverse of (1.3).

Measure of surprise m∗ has a property that is related with the robust

Bayes approach. This approach has a natural measure of surprise in the

in�mum of Bayes factors derived from Bayesian global robustness analyses.

If we accept to approximate H1 by de�ning π1 as a prior belonging to a

large class of priors, then the in�mum of the Bayes factor in favour of H0

corresponds to the natural measure of surprise. The model for H1 is de�ned

as f(x | θ, ξ) and the marginal prior distribution π(θ) is the same under both

hypotheses. Then we have that π(θ, ξ) = π1(ξ)π(θ), where π1 ∈ Γ and Γ is

the class of all priors π1 for the alternative values ξ. The lower bound on

the Bayes factor of H0 to H1 is

B = inf
π1∈Γ

∫
f(x | θ)π(θ)dθ∫ ∫

f1(x | θ, ξ)π(θ)π1(ξ)dθdξ
(1.15)

and data xobs resulting in small B would be considered surprising.

Let H0 be simple, without considering θ. Then the in�mum of (1.15)

becomes

B =
f(xobs)

supξ f1(xobs | ξ)
.

We have the same problem for these measures of surprise: there is no in-

variance under non-linear, one-to-one transformation. Furthermore, if the

dimension or the number of observations n is large, then it will be di�cult

to explain these values.
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1.6. CONDITIONAL PREDICTIVE DISTRIBUTION

In more than one Bayesian situation we have seen that taking supremum

or expectations over large spaces is not a good idea. This is underlined

principally when measurem∗ is applied to data x that are independent under
H0. Then we have as n→∞

m∗(x) =
n∏
i=1

f(xi)
f(xmax)

→ 0, with probability 1,

even when the data come from the correct model.

In order to reduce and remove the problem of non-invariance and the im-

pact of high dimensions, we introduce a �natural� statistic T , whose purpose
is to measure the �distance� between the observations and the null hypothe-

sis and apply m∗ and m∗∗ to its predictive distribution. The choice of T has

to be done carefully and as we have already seen, the most evident di�culty

to overcome is the lack of invariance. Therefore, Bayarri and Berger (1997)

suggested that it is better to look for an appropriate alternative hypothesis

rather than to get a statistic T , so that we can carry out a Bayesian analysis.

1.6 Conditional Predictive Distribution

In the previous sections we have seen that two di�culties arise when we

use the prior predictive distribution (1.5). The �rst concerns the use of an

improper prior or not well-de�ned proper prior π(θ). The second refers to

the impossibility of separating the surprise in the model and in the prior.

We notice that sometimes also the use of a statistic T does not give a

solution to the problem.

An attractive solution is conditioning on an appropriate statistic U as

proposed by Bayarri and Berger (1997) so that we will achieve all the advan-

tages of the prior and posterior predictive p-values in the same procedure.

The most important features are the following ones. First, these p-values

are based on the prior predictive distribution m(x), which has a natural

Bayesian meaning. Second, if we choose the statistic U appropriately, the

prior has a secondary role. Third, if π(θ) is proper, the prior can be also

non-informative. Finally, the data are not used twice.

A conditional predictivem(t | u) is obtained for the statistic T de�ned

previously and is

m(t | u) =
∫
f(t | u, θ)π(θ | u)dθ, (1.16)

where π(θ | u) = f(u | θ)π(θ)/
∫
f(u | θ)π(θ)dθ.

13



1.6. CONDITIONAL PREDICTIVE DISTRIBUTION

Since an improper prior is used, we have to choose the statistic U so

that π(θ | u) is proper, so that m(t | u) will be also a proper distribution.

If we compare the conditional predictive p-value to the posterior predictive

p-value, the data are not used twice: the part of the data represented by U
will be used to eliminate the nuisance parameter and the part represented

by T will be used to measure the surprise.

The separation of the e�ects of the model inadequacy and prior inade-

quacy can also be reduced if we choose an appropriate U .
Once we get the conditional predictive distribution, we can use it in any

of the surprise measures explained in the previous sections. The relative

measures of surprise (1.13) and (1.14) become

m∗(tobs | uobs) =
m(tobs | uobs)

suptm(t | uobs)
, (1.17)

m∗∗(tobs | uobs) =
m(tobs | uobs)

Em(t|uobs){m(T | uobs)}
. (1.18)

The conditional predictive p-value is

pcond = Prm(·|uobs){T (X) ≥ T (xobs)}, (1.19)

where T (xobs) = tobs.

In the next paragraphs we detail di�erent choices for the statistic U .

1.6.1 Through one-to-one Transformation of X

Let (T,X∗) be a one-to-one transformation ofX. Then we can take U = X∗,
where dimU = n − dimT . This means taking �the rest� of the data con-

cerning T for the statistic U . This is the easiest and the most evident choice

because it is not di�cult to implement. We obtain m(t, u) from m(x). Then
we compute the measure of surprise (1.17) multiplying by the Jacobians,

m∗(tobs | uobs) =
m(tobs | uobs)

suptm(t | uobs)
=

m(tobs, uobs)
suptm(t, uobs)

, (1.20)

so that m(t | u) does not have to be derived. Since m(t | u) is proper and

the constants cancelled, we can always use this method even though m(x)
would usually be improper.

The partial posterior predictive p-value (Bayarri and Berger, 1999)

is

ppart = Prm
∗(·){T ≥ tobs}, (1.21)

14



1.6. CONDITIONAL PREDICTIVE DISTRIBUTION

where

m∗(t) =
∫
f(t | θ)π∗(θ)dθ,

π∗(θ) ∝ f(xobs | tobs, θ)π(θ) ∝ f(xobs | θ)π(θ)
f(xobs | tobs)

.

In this case the double use of the data is removed because the contribution

of tobs to the posterior is cancelled out before θ is eliminated by integration.

Some examples given by Bayarri and Berger (1997) show that there is

an e�ect of �too much conditioning�. This phenomenon could be reduced if

we �nd a suitable �orthogonal� transformation so that we have independence

between T and X∗. The choice of U = X∗ might be quite appropriate.

A natural choice of U is often a statistic of the same dimension as θ,
because we must take the dimension of U bigger or equal to the dimension

of θ in order that π(θ | u) be proper.

1.6.2 Ideal Choice of U

Having su�cient statistics (T,U) of low dimension and conditionally inde-

pendent corresponds to the ideal situation. In this case we have

m(t | u) =
∫
f(t | θ)π(θ | u)dθ.

The data are used twice: once with independent pieces of it in order to learn

about the nuisance parameter and once to detect surprising features.

1.6.3 Asymptotic Independence

It could be di�cult to have independence between T and U . For this rea-

son we look for an U that is asymptotically independent of T under some

regularity conditions. To be more precise, we choose U such that(
T
U

)
∼ N

((
m
θ

)
,Σ
)
,

where Σ is a block diagonal matrix. We can sometimes choose U as the MLE

θ̂ of some linear transformations of (T, θ̂). Unfortunately this idea is not as

good as hoped because once more U results in �too much conditioning�.
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1.6. CONDITIONAL PREDICTIVE DISTRIBUTION

1.6.4 Su�ciency for the Nuisance Parameter

The need to learn about the nuisance parameter θ is the reason for condition-
ing on some statistic U . One proposal is to choose U as a su�cient statistic

for θ. In this case f(x | u, θ) = f(x | u) does not involve θ. Furthermore, we

have that m(t | u) is given by f(t | u) and as θ is not involved, no prior is

needed.

1.6.5 An Attractive Choice of U

Information in the data and in T are used to �nd a suitable conditioning

statistic U to eliminate θ. The distribution f(x | t, θ) is very interesting

because it removes the information provided by T from the likelihood for θ.
Taking U as a low-dimensional su�cient statistic of this conditional dis-

tribution is not always possible because su�cient statistics may not exist.

On the contrary we choose an approximate su�cient statistic with the same

dimension as θ, so that we are sure of its existence, and we can de�ne it as

follows,

U = θ̂ = arg max f(x | t, θ) = arg max
f(x | θ)
f(t | θ)

for T (x) = t. (1.22)

1.6.6 Computational Issues

Numerical computations are usually necessary to obtain surprise measures.

In Bayesian analysis inference is based on samples which are generated from

the target distribution via MCMC methods. We develop the computations

for T and U having dimension 1.
If we do not know the conditional predictive distribution m(t | uobs) but

we have a simulated sample x1, . . . , xM of sizeM from m(x | uobs), it is easy
to calculate:

• p-values:

Pr{T (X) ≥ tobs | uobs} =
#{T (xi) : T (xi) ≥ tobs}

M
,

• relative maximized surprise:

m∗(tobs | uobs) =
#{T (xi) :| T (xi)− tobs |< ε}

max #{T (xi) : T (xi) ∈ (T (xi)− ε, T (xi) + ε)}
,
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1.6. CONDITIONAL PREDICTIVE DISTRIBUTION

• relative expected surprise:

m∗∗(tobs | uobs) =
#{T (xi) :| T (xi)− tobs |< ε}∑M

j=1 #{T (xi) :| T (xi)− T (xj)/M |< ε}
.

These computations can also be applied when the measure of surprise is

obtained from m(x).
We simulate a sample ofm(x | uobs) using one of the following algorithms:

the �rst based on a Gibbs scheme and the second based on the Metropolis�

Hastings approach (Robert and Casella, 2005).

In order to use both of them, we need to know an explicit expression for

U . The sample is generated from m(x | | u − uobs |< δ) and not directly

from m(x | uobs). If δ is small, we will have that m(x | | u − uobs |< δ) is
an approximation to m(x | uobs). Otherwise if δ is large, the computations

will be faster and there will be less conditioning than that one provided by

uobs. Furthermore, if δ →∞, we will have m(x | | u− uobs |< δ)→ m(x),
which corresponds to the prior predictive distributions.

We can rewrite m(x | | u− uobs |< δ) as follows:

m(x | | u− uobs |< δ) =
∫
f(x, θ | | u− uobs |< δ)dθ

=

∫
f(x | θ)π(θ)I{|u−uobs|<δ}dθ

Pr{| u− uobs |< δ}
,

where the denominator is a constant and therefore is not relevant to both

algorithms.

Gibbs Sampler

Gibbs Sampler chain is based on the following steps (Bayarri and Berger,

1999):

1. Generate θ ∼ π(θ | x).
We notice that the generation comes from the posterior distribution.

2. Generate X ∼ f(x | θ)I{|u−uobs|<δ}.

3. After many iterations of Steps 1 and 2, estimate p by the fraction of

the generated x's for which T (x) is greater than T (xobs). This means

that the chain is built only for �surprise� evaluations.

17



1.6. CONDITIONAL PREDICTIVE DISTRIBUTION

Metropolis�Hastings Algorithm

This algorithm (Bayarri and Berger, 1999) generates a chain (xj , θj) through
the following steps. First of all, we de�ne the proposal as

f(x | θ)π(θ | xobs)I{|u−uobs|<δ}. (1.23)

Then, from (xt, θt) at time t,

1. Generate a candidate (x∗, θ∗) from the proposal (1.23) by taking θ ∼
π(θ | xobs), simulating x ∼ f(x | θ) and repeating this procedure until

the distance between u(x) and uobs is less than δ. If u(x) is not within
δ of uobs, a new θ has to be generated from π(θ | xobs).

2. Accept the candidate with probability

α = min
{

1,
π(θ∗)

π(θ∗ | xobs)
π(θt | xobs)
π(θt)

}
= min

{
1,
f(xobs | θt)
f(xobs | θ∗)

}
.

3. After su�ciently many iterations of Steps 1 and 2, the estimate p by

the fraction of the generated xj in the chain for which T (xj) is greater
than T (xobs).

If U has an explicit form, we can easily implement both schemes. Oth-

erwise, if U is de�ned as in (1.22), we need more computations. In the �rst

case f(t | θ) is known and to obtain U we have a numerical maximisation

to compute from x. The second case is more complicated because the closed

form of f(t | θ) is not available. Therefore, we have to implement an algo-

rithm which computes u = u(x∗) for a given x∗ and t∗ = T (x∗). Three steps
are required (Bayarri and Berger, 1997):

1. Take a grid of θ values.

2. For each θ generate a sample xi from f(x | θ) and compute

r(θ) =
f(x∗ | θ)
f̂(t∗ | θ)

,

where f̂(t∗ | θ) is some estimate of the density f(t∗ | θ). The crudest
estimate is

f̂(t∗ | θ) =
#{T (xi) :| T (xi)− t |< ε}

2Mε
,

thought we could use a more sophisticated kernel estimator.
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3. Take u as the value of θ maximizing r(θ) over the grid.

We need only the values of u so that the distance between u and uobs is less

than δ. So, once we have computed the values uobs, we only need a grid of

values of θ such that | θ − uobs |< δ and we have to look if max r(θ) occurs
in this grid.

We have seen that measures of surprise based on likelihood ratios are

more in accord with Bayesian reasoning than ones based on tail areas or

p-values. But tail areas are easier to compute; they do not change under

one-to-one transformations and they can be applied to discrepancy measures.

Therefore it is advisable to compute tail area of the observed T (xobs) in the

predictive distribution m(t | u). On the contrary p-values are analysed in

the next section, as they are highly misleading measures of evidence against

H0.

1.7 Calibration of p-values

It is well-known that there are many di�culties to interpret p-values. For

this reason, in this section we investigate the possibility of developing an

adjustment to the p-value. A possibility is to calibrate the p-value such that

it will be closer to an in�mum of Bayes factors (see Equation (1.15)). The

proposal for calibrating a p-value is to compute

B = −ep log p, p < e−1, (1.24)

and interpret this as a lower bound on the Bayes factor of H0 to H1. For

this purpose we need to consider alternative models to the null one.

Let f(x) be the model under the null hypothesis and recall that for

surprise purposes we usually de�ne f(x) like m(t | u). As the alternative

model is usually larger than the null model, it will be denoted as f(x | ξ)
while the null model will be f(x) = f(x | ξ0), where ξ and the �xed ξ0 denote

the parameters of the alternative and the null models respectively. Let the

p-value be p = p(xobs) (Bayarri and Berger, 1997), where

p(x) =
∫ ∞
x

f(z | ξ0)dz. (1.25)

Furthermore, we compute the measure of surprise

m(x) =
∫
f(x | ξ)π(ξ)dξ (1.26)
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in order to obtain the Bayes factor in favour of ξ0 given by

B =
f(xobs | ξ0)
m(xobs)

.

Let de�ne the hazard rate or failure rate function of the null model,

h0(x) =
f(x)

1− F (x)
=

f(x | ξ0)∫∞
x f(y | ξ0)dy

.

An attractive approach to compute the Bayes factor is suggested by Sellk

et al. (2001) which consists in directly considering alternative distributions

for p itself and the uniform distribution for the null hypothesis. This means

that we have to test

H0 : p ∼ U(0, 1) versus H1 : p ∼ fp(p | ξ).

This is equivalent to compute the in�mum of the Bayes factor in favour of the

null hypothesis. A possible class of alternatives for p is the class of Be(ξ, 1)
distributions, where 0 ≤ ξ ≤ 1, so that the distributions are decreasing:

f(p | ξ) = ξpξ−1 =
ξ

p1−ξ . (1.27)

It is suitable to work with Y = − log p and its distributions under H0

and H1. By a simple computation, if p ∼ Be(ξ, 1), then we have

Pr{Y > y} = Pr{p < e−y} = e−ξy,

that is Y ∼ exp(ξ). In both cases, the null hypothesis is obtained for ξ = 1.
Therefore, the in�mum of the Bayes factor over all priors for ξ is

B =

{
infall π1

f(y|ξ)∫
f(y|ξ)π1(ξ)dξ

= exp(y|1)
supξ exp(y|ξ) = ye1−y, y ≥ 1,

1, otherwise.
(1.28)

Substituting p = e−y in the lower bound (1.28) we have the calibrating

p-value given in equation (1.24). This calibration assumes that the alter-

native models and the priors are such that the distribution of Y = − log p
is exponential, that is it has a constant failure rate. In order to relax this

assumption but at the same time to still require that the distribution of p
should decrease su�ciently fast so that most of the mass will be close to

0, we need that the distribution of Y has a decreasing failure rate. This is

equivalent to requiring that the distribution Y − y | Y > y is stochastically
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increasing with y. In a similar way, for p = e−y, this requirement of decreas-

ing failure rate is equivalent to say that the distribution of p/p0 | p < p0 is

stochastically decreasing with p. This means that, for any �xed p0 and ρ,
the probability Pr{p < ρp0 | p < p0} increases as p0 goes to zero. This corre-

sponds to the natural condition implying that the mass under the alternative

is appropriately concentrated near zero.

We have to show that the Bayesian factor for p is still valid when we

suppose that the distribution of Y has a decreasing failure rate. The failure

rate function of the distribution of Y is de�ned as follows,

h1(y) =
f1(y)∫∞

y f1(z)dz

and according to the alternative model f1 has a decreasing failure rate. This

function f1 can be written as

f1(y) = h1(y) exp{−
∫ y

0
h1(z)dz} ≥ h1(y) exp{−yh1(y)}.

In this case the in�mum of the Bayes factor of H0 to H1 is

B =

{
e−y

f1(y) ≥
e−y

h1(y) exp{−yh1(y)} ≥ ye
1−y, y ≥ 1,

1, otherwise.

It is simple to verify the decreasing failure rate for the distribution of Y when

the alternative model and the prior have been already assessed. First of all,

we assume under H0 that X ∼ f(x) and under H1 that X ∼ m(x), where
m(x) corresponds to the Bayesian marginal or the predictive density de�ned

in (1.5). Let F and M denote their probability distributions, respectively.

Knowing that the p-value under H0 is given by (1.25), we compute the

survival function of Y = − log{p(X)} under H1,

Pr{Y > y} = Pr{p < e−y} = 1−M{F−1(1− e−y)} (1.29)

and its density has the following form,

f1(y) =
m{F−1(1− e−y)}
eyf{F−1(1− e−y)}

. (1.30)

The hazard rate function of Y is given by dividing (1.30) by (1.29) and it is

decreasing if and only if

m(x)
1−M(x)

/
f(x)

1− F (x)
(1.31)

is decreasing, which is equivalent to the ratio of the alternative hazard rate

to the null one.
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Chapter 2

Threshold Selection for the

Generalized Pareto

Distribution

Extreme value theory is a statistical discipline that allows to model and study

the tail of distributions. Many di�erent approaches exist like the generalized

extreme value model, the threshold exceedance model and the point process

model. Coles (2001) gives a detailed explanation of all these models.

In this section, we focus our interest on modelling observations above

a certain threshold u. More precisely, we study di�erent ways to estimate

the threshold for a generalized Pareto distribution. One advantage of this

approach is that more data can be considered as extreme events compared

to the GEV model which takes only the maximum on each block.

2.1 Generalized Extreme Value Model

First of all we de�ne the generalized extreme values distribution which are

necessary when the generalized Pareto distribution will be introduced.

In order to develop the model for extreme value theory we need to know

the distribution of

Mn = max{X1, . . . , Xn},

where X1, . . . , Xn, is a sequence of independent random variables having a

common distribution function F . These random variables represent values

of a process measured on a regular time-scale, as daily mean temperature.

Therefore Mn corresponds to the maximum of process over n time units of
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2.1. GENERALIZED EXTREME VALUE MODEL

observation. The distribution function of Mn is

Pr{Mn ≤ z} = F (z)n,

where F is unknown. There are two approaches to estimate F . The �rst

one is based on observed data, applying standard statistical techniques. The

second one consists in �nding approximate families of models for Fn, which
can only be estimated on the basis of extreme data.

The behaviour of Fn as n → ∞ is observed, but it is not su�cient:

for any z < z+, F
n(z) → 0 as n → ∞, so that the distribution of Mn

degenerates to a point mass on z+, where z+ is the upper end-point of F (i.e.

z+ is the smallest value of z such that F (z) = 1). In order to overpass the

above said degeneration we need a linear renormalization of the variable Mn

as follows,

M∗n =
Mn − bn

an
,

where {an > 0} and {bn} are sequences of constants.
If appropriate {an} and {bn} are chosen, the location and the scale ofM∗n

will be stabilized. This avoids the problem of �nding the limiting distribution

of Mn. For this reason we look for limit distributions for M∗n. The following
de�nition gives the whole range of possible limit distributions for M∗n.

De�nition 2 (Jenkinson (1955)). The generalized extreme value (GEV)

may be formulated into a single family of models that have distribution

function of the form

G(z) = exp

[
−
{

1 + ξ

(
z − µ
σ

)}−1/ξ

+

]
, (2.1)

where −∞ < µ <∞, σ > 0 and −∞ < ξ <∞.

This model depends on three parameters: µ (location), σ (scale) and ξ
(shape). The shape parameter determines the rate of tail decay, with

• ξ > 0 giving the heavy-tailed (Fréchet) case,

• ξ = 0 giving the light-tailed (Gumbel) case,

• ξ < 0 giving the short-tailed (negative Weibull) case.

Joining the original three families into a single family simpli�es the sta-

tistical implementation and we obtain the following result.
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Theorem 1. (Coles (2001), p. 48). If there exist sequences of constants

{an > 0} and {bn} such that

Pr{(Mn − bn)/an ≤ z} → G(z) as n→∞ (2.2)

for a non-degenerate distribution function G, then G is a member of the

GEV family

G(z) = exp

[
−
{

1 + ξ

(
z − µ
σ

)}−1/ξ

+

]
where −∞ < µ <∞, σ > 0 and −∞ < ξ < ∞.

2.2 Threshold Exceedance Model

As explained above, the generalized extreme value models are ine�cient if

other data on extremes are available. In addition, if an entire time series of

observations is available, then it is better not to use this approach. For this

reason, we consider the generalized Pareto distribution.

Theorem 2. (Coles (2001), p. 75). Let {Xi}i≥1 be a sequence of inde-

pendent random variables with common distribution function F , and let

Mn = max {X1, . . . , Xn} .

Denote an arbitrary term in the Xi sequence by X, and suppose that F
satis�es Theorem 1, so that for large n,

Pr{Mn ≤ z} ≈ G(z),

where

G(z) = exp

[
−
{

1 + ξ

(
z − µ
σ

)}−1/ξ
]

for some µ, σ > 0 and −∞ < ξ < ∞. Then, for large enough u, the

distribution function of (X − u), conditional on X > u, is approximately

H(x) = 1−
{

1 + ξ

(
x− u
σ̃

)}−1/ξ

(2.3)

de�ned on
{
x : x− u > 0 and 1 + ξ

(
x−u
σ̃

)
> 0
}
, where

σ̃ = σ + ξ(u− µ). (2.4)
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From equation (2.3) we de�ne the generalized Pareto distribution.

De�nition 3 (Behrens et al. (2004) and Embrechts et al. (1997)). A ran-

dom quantity X follows a generalized Pareto distribution (GPD) with

threshold u if its distribution function is

H(x | σ̃, ξ, u) =

{
1−

{
1 + ξ

(
x−u
σ̃

)}−1/ξ
, if ξ 6= 0,

1− exp
{
−
(
x−u
σ̃

)}
, if ξ = 0,

x > u, (2.5)

where σ̃ > 0 and −∞ < ξ < ∞ are the scale and shape parameters, re-

spectively. Equation (2.5) is valid when x − u ≥ 0 for ξ ≥ 0 and for

0 ≤ x − u ≤ −σ̃/ξ for ξ < 0. The data present heavy tailed behaviour

when ξ > 0.

The parameters of threshold excesses are uniquely determined by those

of the GEV distribution of block maxima. The parameter ξ is the same as

that de�ned for the GEV distribution. Even if the block size n varies, it

would not a�ect the generalized Pareto distribution, but only the values of

the GEV parameters. This means that ξ is invariant to block size. Also

the changes in µ and σ, which compensate each other, do not perturb the

calculation of σ̃. There is a duality between the two distributions, then the

shape parameter ξ is dominant in determining their qualitative behaviour.

• If ξ < 0 the distribution of excesses has an upper bound of u− σ̃/ξ;

• if ξ > 0 the distribution has no upper limit;

• if ξ = 0 the distribution is unbounded.

Data analysis for a generalized Pareto model is carried out in two steps.

Firstly, the threshold u is chosen by using one of several existing procedures.

Secondly, the other parameters are estimated assuming that u is known. A

disadvantage of this method is that only the observations above the threshold

are considered for the estimation of the other parameters. Namely, if we

choose too low a threshold, then the data cannot be approximated by a

GPD model. Therefore there is a bias. Otherwise, if the threshold is high,

the data will be well approximated by a GPD model, but we do not have a

lot of observations; this means that the variance is high.

2.3 Threshold Selection

In the next sections, three di�erent approaches to select the threshold u are

investigated. Only the �rst two methods will be applied in the simulation

study carried out in Section 3.
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2.3.1 Parameter Stability

This �rst procedure (Coles, 2001) bases the selection of the threshold on �t-

ting the generalized Pareto distribution at a range of thresholds and looking

for stability of parameter estimates. We notice that if the generalized Pareto

distribution �ts well for u0, it also �ts well for u > u0. Both distributions

have the same shape parameter. On the other hand, the scale parameter σu
is de�ned as

σu = σu0 + ξ(u− u0), ξ 6= 0. (2.6)

In order to simplify the estimation, the scale parameter can be reparametrized

as follows,

σ∗ = σu − ξu,
which is constant with respect to u. Estimates of σ∗ and ξ should be roughly

constant above u, if u0 has been correctly chosen. If they are not constant,

they have to be stable after the value u0.

A suggestion could be to plot σ̂∗ and ξ̂ against u with their con�dence

intervals and choose u0 as the lowest value of u for which the estimates

remain near-constant. To obtain the con�dence intervals for ξ̂ we use the

variance-covariance matrix. On the other hand, the con�dence intervals for

σ̂∗ require the delta method as σ̂∗ depends on σu and ξ. The variance of σ̂∗

is

var(σ∗) ≈ ∇σ̂∗TV∇σ̂∗,

where ∇σ̂∗T =
[
∂σ̂∗

∂σu
, ∂σ̂

∗

∂ξ

]
= [1,−u] and V is the variance-covariance matrix

of σ̂∗.

2.3.2 Mean Residual Life Plot

Coles (2001) suggested also another method, which is based on the mean

of the generalized Pareto distribution. If Y is a random variable having a

generalized Pareto distribution with parameters σ̃ and ξ, then the expected

value of Y is

E(Y ) =

{
σ̃

1−ξ , ξ < 1

+∞, ξ ≥ 1.
(2.7)

Consider the generalized Pareto distribution as a good model for the excesses

of a threshold u0 generated by a series X1, . . . , Xn, where X is any term.

Applying (2.7) for ξ < 1, we have

E (X − u0 | X > u0) =
σu0

1− ξ
,
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where σu0 corresponds to the scale parameter of u0. If the generalized Pareto

distribution is valid for excesses of the threshold u0, it should be also valid for

all u > u0, choosing an adequate change of scale parameter σu. Therefore,

by equation (2.4) and for u > u0, we have

E (X − u | X > u) =
σu

1− ξ
=
σu0 + ξu

1− ξ
. (2.8)

This expectation is a linear function of u. This means that these estimates

might change linearly with u, at level of u for which the generalized Pareto

model is appropriate.

Let X(1), . . . , X(nu) be nu observations that exceed u and let xmax be the

largest of the Xi. Then the pair of points{(
u,

1
nu

nu∑
i=1

(x(i) − u)

)
: u < xmax

}
corresponds to the mean residual life plot.

This plot has to be linear in u and con�dence intervals can be added as

it is based on the approximate normality of sample mean.

2.3.3 Bayes Estimation

In contrast with the previous procedures, Behrens et al. (2004) mentioned

another way to select the threshold. The model contains uncertainty because

a prior, possibly �at, for u is chosen. He proposed a model to �t data

characterized by extremal events where the threshold is de�ned as another

model parameter.

Let X1, . . . , Xn be independent and identically distributed observations

and u the threshold. Then we have that

(Xi | Xi ≥ u) ∼ H(· | σ̃, ξ, u).

On the other hand, the observations below this threshold are distributed ac-

cording to J , which can be estimated either parametrically or non-parametri-

cally. In the parametric case, we often choose for the data below the threshold

J like a gamma, Weibull or normal distribution. Otherwise, if J is estimated

non parametrically, usually mixtures of these previous parametric forms are

a convenient basis for J .
Suitable prior distributions are chosen for each parameter of the model.

In particular Coles and Powell (1996)'s prior is used, that is the eliciting

information. Unfortunately, analytical computations are impossible. For

this reason, Markov Chain Monte Carlo methods are applied, in particular

Metropolis�Hastings and Gibbs Sampler.
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Model De�nition

Assume that the data under the threshold u are distributed according to

J(· | η), where η are the parameters of the distribution. Assume also that

the data above the threshold u come from a generalized Pareto distribution.

Then we can de�ne the distribution for any X as follows,

F (x | η, σ̃, ξ, u) =

{
J(x | η), x < u,

J(u | η) + {1− J(u | η)}H(x | σ̃, ξ, u), x ≥ u.
(2.9)

Let de�ne two sets, A = {i : xi < u} and B = {i : xi ≥ u}. For a sample

x = (x1, . . . , xn) from F and θ = (η, σ̃, ξ, u) the parameter vector, then the

likelihood function is

L(θ;x) =

{∏
A j(x | η)

∏
B{1− J(u | η)}

[
1
σ̃

{
1 + ξ

(
xi−u
σ̃

)}−1/ξ−1

+

]
, ξ 6= 0,∏

A j(x | η)
∏
B{1− J(u | η)}

[
1
σ̃ exp

{
−
(
xi−u
σ̃

)}]
, ξ = 0.

(2.10)

Graphically, we can imagine to have a density function which has a dis-

continuity point in u. This jump represents the di�culty to estimate the

threshold. This means that if we have a small jump, the estimation of u will

be more di�cult. On the contrary, if the jump is large, there is evidence of

separation of the data, then the estimation will be easier.

Figure 3.1 of the simulation study shows a jump between the data dis-

tributed below (uniform data) and above (generalized Pareto data) the thresh-

old u. This discontinuity is represented by the red line at the point u = 5.

Prior and Posterior distribution

The parameters in the model are θ = (η, σ̃, ξ, u). In the next paragraphs

we describe in details the priors for the parameters above, on and below the

threshold u.

Prior for parameters above the threshold

As it is not easy to express directly prior beliefs of GPD parameters, the

elicitation of information is used (Coles and Powell (1996) and Coles and

Tawn (1996)). Equation (2.5) is inverted and we get the 1− p quantile of
the distribution,

q = u+
σ̃

ξ
(p−ξ − 1).

The value q corresponds to the return level associated with a return period

of 1/p time units.
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For the generalized Pareto parameters, the prior elicitation is carried out

in term of (q1, q2, q3) specifying the values of p1 > p2 > p3. Hence, we

order the parameters and q1 < q2 < q3. Coles and Tawn (1996) proposed

to work with the di�erences di = qi − qi−1, i = 1, 2, 3. In addition, they

assume q0 = e1, where e1 is the physical lower bound of the variable. The

di�erences di are supposed to be gamma distributed with parameters (αi, βi)
for i = 1, 2, 3. The prior distribution of each di is supposed to be independent
to the others. Usually we use e1 equal to zero.

The procedure to obtain the prior information is the following: �rst, the

median and the 90% quantile (or any other) estimates for speci�c values of

p are required. Second, we transform the elicited parameters to obtain the

equivalent gamma parameters. Notice that neither di nor qi depend on u
for i > 1. Then, we have that p(di | u) is approximated by (di | u∗) ∼
Ga(ai(u∗), bi(u∗)), where u∗ is the prior mean for u.

In this particular case, we do not consider the location parameter, but

only the scale and shape parameters. For this reason, we need only two quan-

tiles. The gamma distributions for the di�erences with known parameters

are given by

d1 = q1 ∼ Ga(a1, b1), d2 = q2 − q1 ∼ Ga(a2, b2).

The marginal prior distribution for parameters σ̃ and ξ is

π(σ̃, ξ) ∝
{
u+

σ̃

ξ
(p−ξ1 − 1)

}a1−1

exp
[
−b1

{
u+

σ̃

ξ
(p−ξ1 − 1)

}]
×

{
σ̃

ξ
(p−ξ2 − p

−ξ
1 )
}a2−1

exp
[
−b2

{
σ̃

ξ
(p−ξ2 − p

−ξ
1 )
}]

×
∣∣∣∣− σ̃ξ2

{
(p1p2)−ξ(log p2 − log p1)− p−ξ2 log p2 + p−ξ1 log p1

}∣∣∣∣ ,
where a1, a2, b1 and b2 are hyperparameters obtained from the experts infor-

mation, σ̃ > 0 and ξ ∈ R.

Prior for the threshold

Di�erent alternatives to de�ne a prior distribution for u exist. The most used

are the continuous uniform prior, the discrete distribution or a truncated

normal distribution with parameters (µu, σ2
u), truncated from below at e1

with density

π(u | µu, σ2
u, e1) =

1√
2πσ2

u

exp{−(u− µu)2/2σ2
u}

Φ[−(e1 − µu)/σu]
(2.11)
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with µu set at some high data percentile, σ2
u large enough to represent a

fairly non informative prior (Behrens et al., 2004), e1 = q0 and e1 < u <∞.

Prior for parameters below the threshold

According to the distribution chosen for the data below the threshold u, the
prior for the parameters η could be modi�ed. The most suitable choice for

the prior would be a conjugate prior so that the problem has a simpler form

analytically.

In this case, we assume that the data have a gamma distribution j(x | η)
with parameters η = (α, β), where α is the shape and β the rate parameter.

It is easier to reparametrize in terms of α and µ = α/β to have a more natural

interpretation. Moreover, we assume that the shape parameter α and the

mean µ are independent to simplify the computations. Both parameters

have a gamma distribution,

α ∼ Ga(a, b), µ ∼ Ga(c, d),

where a, b, c and d are known hyperparameters. Then, the joint prior density

function can be written as follows,

π(η) =
ba

Γ(a)
αa−1e−bα

dc

Γ(c)

(
α

β

)c−1

e−dα/β
(
α

β2

)
,

where a, b, c, d > 0.

Posterior inference

We take the likelihood de�ned in equation (2.10) and the prior distributions

given in the previous paragraphs to compute the posterior distribution given

by applying Bayes Theorem. As the calculations are too much complicated

to carry out analytically, we apply the Markov Chain Monte Carlo methods,

in particular the Metropolis�Hastings algorithm.
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Chapter 3

Simulation Study

In order to check the theoretical properties of measures of surprise, simula-

tions are performed. In particular, we consider two cases, the prior predic-

tive p-values (1.7) and the posterior predictive p-values (1.9). After that, we

compare the results with two of the approaches explained in Section 2.3: the

parameter stability plot (see Section 2.3.1) and the mean residual life plot

(see Section 2.3.2).

Firstly, we look at the posterior predictive measures of surprise consid-

ering three di�erent samples and after that we get on to the prior predictive

measures of surprise.

3.1 Posterior Predictive p-values

Considering the posterior predictive p-values de�ned in (1.8),

m(x | xobs) =
∫
f(x | θ)π(θ | xobs)dθ,

we notice that m(x | xobs) could be approximated by

m(x | xobs) ≈
1
N

N∑
i=1

f(x | θ(i)), θ(i) ∼ π(θ | xobs). (3.1)

Then, for the parameter θ = (σ̃, ξ) of a generalized Pareto distribution,

the likelihood of a set of independent observations x = (x1, . . . , xn) can be

written as

f(x | θ) =
n∏
i=1

f(xi | θ), (3.2)
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3.1. POSTERIOR PREDICTIVE P-VALUES

where

f(xi | θ) =

{
1
σ̃

{
1 + ξ

(
xi−u
σ̃

)}−1/ξ−1
, if ξ 6= 0,

1
σ̃ exp

{
−
(
xi−u
σ̃

)}
, if ξ = 0,

xi > u.

In order to compute the measure of surprise (3.1), the Metropolis�Hastings

algorithm is implemented to draw the posterior distribution. Usually to

simplify the calculations of the likelihood-ratio in the MCMC algorithm,

computation is performed on the log-scale (i.e. di�erence of log likelihoods).

This avoids evaluations of the likelihood being numerically rounded to zero.

However, in evaluating (3.1) the likelihood must be evaluated on its nat-

ural scale, and so is rounded accordingly to 0. It is di�cult to get round this

by using log likelihood computations as

log
(∫

f(x | θ)π(θ | xobs)dθ
)
6=
∫

log f(x | θ)π(θ | xobs)dθ

or any other computation with log f(x | θ).
For this reason, the likelihood de�ned in equation (3.2) as the product of

the f(xi | θ) is replaced by the mean of the f(xi | θ) so that higher likelihood
values will produce a higher mean of the densities and then the surprise is

more evident,

f(x | θ) ≈ 1
n

n∑
i=1

f(xi | θ). (3.3)

While this approach is non-standard, this approximation gives credible re-

sults and we can see them in the simulation studies. Unfortunately, no

information has been found on how to compute these marginal likelihoods

numerically in the literature and to support this choice. Only algebraic

computations could have been found in certain circumstances.

In addition, the prior distribution is given by the Je�rey's prior (Castel-

lanos and Cabras, 2007),

π(θ) =
1
σ̃

1
1 + ξ

1√
1 + 2ξ

σ̃ > 0, ξ > −0.5. (3.4)

The procedure to approximate the integral consists of several steps.

Firstly, the Metropolis�Hastings algorithm produces a chain of values of

θ. These parameter values come from the posterior distribution f(x | θ) us-
ing the Metropolis�Hastings algorithm. The prior of θ is the Je�rey's prior

de�ned in equation (3.4) and the distribution f(x | θ) is the mean of the
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3.1. POSTERIOR PREDICTIVE P-VALUES

generalized Pareto distribution of each observation with scale parameter σ̃
and shape parameter ξ. The proposal densities for σ̃ and ξ are a log-normal

density distribution and a normal density distribution, respectively.

In order to generate the sample, R = 10000 iterations have been carried

out, where a burn in period of 1000 has been cut o�. Furthermore, we

consider for the analysis the chains consisting in every 10−th observation.

These values are used to evaluate the distribution f(x | θ) and calculate

approximatively m(x | xobs). Finally, the probability

Prm(·|xobs){m(X | xobs) < m(xobs | xobs)}

is estimated by counting the number of times that m(X | xobs) is less than
m(xobs | xobs) divided by the total number of simulations. Then, the poste-

rior predictive p-values can be written as

ppost = Pr{T (X) ≥ T (xobs) | xobs},

where T (X) = m(X | xobs). The same study is carried out for three datasets

which are created with di�erent changepoints. Two samples are generated

with a known changepoint location and the third one does not have a change-

point. Concerning the datasets with a changepoint, we have either some uni-

form or gamma data generated below it and some generalized Pareto data

generated above it. The last dataset has a generalized Pareto distribution.

The purpose of looking at these di�erent datasets is the detection of the

known changepoint, if it exists by using measures of surprise.

3.1.1 Uniform and Generalized Pareto Data

First of all we generate two di�erent datasets. The �rst sample has a gener-

alized Pareto distribution with parameters σ̃ equal to 1, ξ equal to 0.2 and u
equal to 5. Its size is n = 500. The second sample (n = 500) has a uniform

distribution on the interval [0, 5]. The histogram of the complete dataset

(generalized Pareto and uniform data) is represented in Figure 3.1; the red

line represents the threshold u = 5.
Before starting to compute the measures of surprise, we look at di�erent

plots. Figure 3.2 illustrates the traces of the sampled values of the param-

eters ˆ̃σ and ξ̂ estimated by Metropolis�Hastings algorithm. The trace plots

represent the behaviour of the parameters at each iteration for the new chain.

The posterior means (red line in Figure 3.2) and their 95% central credibil-

ity intervals are displayed in Table 3.1. The marginal posterior densities

are analysed too. Figure 3.3 shows the marginal posterior densities of each
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parameter and the red lines correspond to the posterior mean. Finally, the

correlogram of both parameters is displayed in Figure 3.4. This graph indi-

cates that the chain has a stationary distribution and the observations are

independent. For lags bigger than 2 the observed ACFs correspond to white

noise.
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Figure 3.1: Histogram of the complete dataset. Data below the threshold

u = 5 (red line) correspond to uniform data on the interval [0, 5]. Data above
the threshold u = 5 (red line) have a generalized Pareto distribution with

parameters σ̃ = 1 and ξ = 0.2.

Mean 2.5% quantile 97.5% quantile

σ̃ 0.87 0.75 0.99

ξ 0.19 0.09 0.30

Table 3.1: Estimates of the parameters and their 95% central credibility

intervals.
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Figure 3.2: Trace plots of the parameters ˆ̃σ and ξ̂ estimated by Metropolis�

Hastings algorithm (10000 iterations have been carried out, a burn in period

of length 1000 has been cut o� and one every 10-th observation is considered).
The red lines correspond to the posterior means for the sampled values σ̃
and ξ.
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Figure 3.3: Marginal posterior density plots of the parameters ˆ̃σ and ξ̂ esti-
mated by Metropolis�Hastings algorithm (10000 iterations have been carried

out, a burn in period of length 1000 has been cut o� and one every 10-th
observation is considered).
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Figure 3.4: ACFs for the parameters ˆ̃σ and ξ̂ estimated by Metropolis�

Hastings algorithm (10000 iterations have been carried out, a burn in period

of length 1000 has been cut o� and one every 10-th observation is considered).

Further on, we analyse the measures of surprise and posterior predictive

p-values for the thresholds from 2 to 9. Figure 3.5 shows the posterior

predictive measures of surprise (left panel) and the posterior predictive p-

values (right panel) for each threshold, where the vertical lines correspond

to the 95% central credibility intervals. The true threshold (i.e u = 5) is
highlighted by the red triangle.
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Figure 3.5: Plot of the measures of surprise m(x | xobs) (left panel) and of

the posterior predictive p-values with their 95% central credibility intervals

(right panel) for the di�erent thresholds u from 2 to 9 estimated by using

the approximation given in equation (3.1). The red triangle corresponds to

the proper threshold u = 5.

Both graphs indicate that the data below the true threshold do not have

a generalized Pareto distribution, that is there is evidence of �surprise�. The

left plot shows the marginal likelihoods which increase from very small values,

for a threshold far away from u = 5, to the highest value of m(x | xobs) =
0.53 at u equal to 5. Then the marginal likelihood starts again to decrease.

The way, how the estimated marginal likelihoods change, a�ects the results

concerning the p-values as its graph indicates it. In fact, the right plot shows

the p-values estimated around 1 below the true threshold and this means that

the probability to have surprise is very high and therefore the model does not

�t appropriately. The reason why the p-values are very big is due to the fact

that having very small marginal likelihoods, the probability to obtain larger

values of the marginal likelihoods, which are obtained from the simulated

dataset, than the marginal likelihood of the dataset is slight. Thus, the

probability to have �surprise� is very high. On the other hand, small p-

values indicate a slight surprise, that is the generalized Pareto model �ts

appropriately to the data. Furthermore, in the p-values plot we notice that

the probability jump from values around 1 to 0.6 for a threshold chosen just

below the true one (i.e. u = 4.9). We remark that the dataset considering the

threshold at 4.9 has just ten observations more than the dataset generated

only from the generalized Pareto distribution. Then this jump of about 0.4
gives evidence of the appearance of a changepoint. Thus, in order to �nd
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the suitable changepoint both graphs are necessary for the analysis.

Other tools to estimate the threshold are explained in Section 2 and we

exploit two of them to check the goodness of the model.

First of all, we look at the threshold selection by using parameter stability

(see Section 2.3.1) which consists in plotting the �tted GPD parameters at

di�erent thresholds in order to detect a good threshold for the dataset.

Figure 3.6 shows the estimated values of the scale and shape parameters

at each threshold from 2 to 9. In addition, the vertical broken lines represent

the 95% central credibility intervals. Both the left and the right panels

indicate that the parameters are not stable below the threshold u = 5 and

for u bigger than 5 the bands cover horizontal lines, suggesting stability. A

similar result is not surprising as below the threshold u = 5 the data are

uniform distributed.

Another approach to estimate the threshold u of a dataset is the use of

the mean residual life plot which has been explained in Section 2.3.2. Figure

3.7 illustrates the mean residual life plots for every threshold (left panel) and

for the thresholds chosen for the previous studies (from 2 to 9). Looking at

the left plot, we observe a slight linearity of the mean exceedance from u = 5.
This means that the GPD distribution does not �t appropriately before the

true threshold. This linearity is shown more clearly in the right panel.
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Figure 3.6: Parameter stability plots of ˆ̃σ (left panel) and ξ̂ (right panel)

against the thresholds. The vertical broken lines correspond to the 95%
central credibility intervals.
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Figure 3.7: Mean residual life plot for every threshold (left panel) and mean

residual life plot for the thresholds from 2 to 9 (right panel). The blue

lines correspond to the 95% central credibility intervals and the red line

corresponds to the threshold u = 5.

Once more, this result is coherent with the hypothesis considering that

only the data above the threshold u = 5 have a generalized Pareto distri-

bution. Furthermore, in the left panel we observe that for a big threshold

(i.e. u > 9) the dataset becomes very small and thus the generalized Pareto

model does not �t any more very well. In fact, there is a decreasing tendency

of the mean exceedance instead of keeping a constant value.

3.1.2 Gamma and Generalized Pareto Data

A second simulation study is carried out on a sample generated by gamma

and generalized Pareto data. The �rst sample has a generalized Pareto

distribution with parameters σ̃ equal to 5, ξ equal to 0.1 and u equal to 4.5.
Its size is n = 500. The second sample has a gamma distribution with shape

parameter equal to 10 and rate parameter equal to 5. We take into account

only the values which are less or equal than 4.5. Figure 3.8 represents the

histogram of the complete dataset (gamma and generalized Pareto data)

and the vertical red line corresponds to the changepoint (u = 4.5). The

histogram let suggest that the data appear to come from a single continuous

distribution with a bit of data removed at around u equal to 4.5.
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Figure 3.8: Histogram of the complete dataset. Data below the threshold

u = 4.5 (red line) correspond to gamma data with shape parameter equal

to 10 and rate parameter equal to 5. Data above the threshold u = 4.5
(red line) have a generalized Pareto distribution with parameters σ̃ = 5 and

ξ = 0.1.

A similar analysis about the outputs (posterior densities of the param-

eters) of the Metropolis�Hastings algorithm is carried out: the marginal

posterior density plots, the trace plots and the independence of the chain

are studied before looking at the measures of surprise and their p-values.

Figure 3.9 shows the posterior marginal likelihoods (left panel) and the

posterior predictive p-values with their 95% central credibility intervals (right

panel). These graphs highlight some interesting but at the same time un-

expected results. The behaviour of both the marginal likelihoods and their

p-values for the thresholds between 1 and 3 is not regular. First of all,

the marginal likelihoods increase until u equal to 1.76 and after that it de-

creases until becoming in�nitesimal for u equal to 3.27. Respectively, the

p-values plot shows that for the highest marginal likelihood (at u = 1.76),
the �surprise� to have a generalized Pareto model is very small. After that

it increases until 1 (for u equal to 3.64).
No surprise means that the p-values is equal to zero, that is every dataset

generated during the simulation is less likely than the observed one. Fur-

thermore, as the observed marginal likelihood is very small, the probability

to obtain bigger marginal likelihoods for the generated dataset is extremely

di�cult and then the surprise is estimated around zero.
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Figure 3.9: Plot of the measures of surprise m(x | xobs) (left panel) and of

the posterior predictive p-values with their 95% central credibility intervals

(right panel) for the di�erent thresholds u from 1 to 9 estimated by using

the approximation given in equation (3.1). The red triangle corresponds to

the proper threshold u = 4.5.

Observing the histogram (see Figure 3.8) we notice a drop just before the

true threshold. Two di�erent interpretations of this plot can be possible: the

�rst one is that the data come from two separate datasets and the second one

it that there is a unique dataset coming from a continuous distribution with

some data missing. As shown in Figure 3.9 this duel interpretation a�ects

the results of the posterior marginal likelihoods and the posterior predictive

p-values. In fact, for low threshold (i.e. u < 3), when data are generated to

estimate the p-values, consistently with the second interpretation, the drop

is not taken into account because we have a lot of data and they seem to have

a generalized Pareto distribution. Thus the �surprise� will be small for very

low threshold values. On the other hand, when the threshold u is chosen

just around 4 (or possibly < 1.76), the data will not be generalized Pareto

distributed. Therefore instead of having a small surprise we have a surprise

which increases as we move below the threshold u = 4 (or u = 1.76). This
occurs in the �rst case (u < 1.76) because we have too much gamma data

than generalized Pareto data and in the second case (3 < u < 4) because of
the presence of the drop.

Then for the analysis we cannot consider the results for u less than 3.
The reason why we cannot consider the threshold u equal to 1.76 as credible

is because if data are really generalized Pareto distributed, they should be

GPD for all thresholds above u. This is not true for u = 1.76 but it is
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true for u = 4.5. Therefore, analysing both graphs we can conclude that

approximately the right threshold is around 4.5.
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Figure 3.10: Parameter stability plots of ˆ̃σ (left panel) and ξ̂ (right panel)

against the thresholds. The vertical broken lines correspond to the 95%
central credibility intervals.
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Figure 3.11: Mean residual life plot for every threshold (left panel) and

mean residual life plot for the thresholds from 1 to 9 (right panel). The

blue lines correspond to the 95% central credibility intervals and the red line

corresponds to the threshold u = 4.5.

Looking at the outcomes displayed in the parameter stability plots (see

Figure 3.10) and the mean residual life plots (see Figure 3.11), we have
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that the generalized Pareto model �ts appropriately for the threshold u =
4.5. Opposite of the p-values plot, both graphs do not indicate that for

the threshold u equal to 1.76 the generalized Pareto distribution �ts well.

Looking more attentively at the left mean residual life plot we notice a similar

behaviour as for the previous study for high thresholds: for u bigger than

15, the stability of the exceedence disappears slowly.

3.1.3 Generalized Pareto Data

A last simulation study is analysed: no changepoint exists and only general-

ized Pareto data are generated with parameters σ̃ equal to 1, ξ equal to 0.2
and u equal to 2. Its size is n = 1000. In Figure 3.12 the histogram of the

sample is represented and the red line indicates the threshold at u = 2.
As for the previous studies, some di�erent analysis are carried out on the

chain of σ̃ and ξ produced by Metropolis�Hastings algorithm. After that

the posterior marginal likelihoods and the posterior predictive p-values are

estimated and the results are displayed in Figure 3.13.

Histogram of the data

Data

D
en

si
ty

2 4 6 8 10 12 14 16

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 3.12: Histogram of the complete dataset. All data above the threshold

u = 2 (red line) have a generalized Pareto distribution with parameters σ̃ = 1
and ξ = 0.2.
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Figure 3.13: Plot of the measures of surprise m(x | xobs) (left panel) and of

the posterior predictive p-values with their 95% central credibility intervals

(right panel) for the di�erent thresholds u from 2 to 9 estimated by using

the approximation given in equation (3.1). The red triangle corresponds to

the proper threshold u = 2.

The left panel shows the posterior predictive measures of surprise and the

right panel their respective p-values. Both graphs indicate the goodness of

the model for u equal to 2. The marginal likelihood plot shows a decreasing

behaviour of the measures of surprise. Already this �rst graph suggests to

take into account u equal to 2 as the most appropriate threshold because its

marginal likelihood is the highest. Furthermore, we look at the right panel,

where the posterior predictive p-values are displayed. We notice that the

�surprise� for each threshold is quite constant and not very high. This can

be interpreted as that the model �ts appropriately to the data.

As in the previous studies, we look at the usual tools to assess the ap-

propriateness of the model: the parameter stability plots (see Figure 3.14)

and the mean residual life plots (see Figure 3.15).

In Figure 3.13 we notice a �jump� in the marginal likelihood plot between

u = 5 and u = 6. This odd behaviour is also represented in the Figures 3.14

and 3.15. It looks like that there are like two di�erent generalized Pareto

distributions, the �rst one before the �jump� and the second one after the

�jump�. In fact, looking at the parameter stability plots (see Figure 3.14) we

observe that the parameters are stable but their values change according to

the threshold (before or after the �jump�). Similarly, the mean residual life

plot (see Figure 3.15) is linear in u giving evidence of the goodness of the

generalized Pareto distribution but the straight line has also a jump when
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the threshold is between 5 and 6. In other words, all these graphs indicate

that there is another generalized Pareto distribution for a dataset having a

threshold higher than u = 5.
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Figure 3.14: Parameter stability plots of ˆ̃σ (left panel) and ξ̂ (right panel)

against the thresholds. The vertical broken lines correspond to the 95%
central credibility intervals.
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Figure 3.15: Mean residual life plot for every threshold (left panel) and

mean residual life plot for the thresholds from 2 to 9 (right panel). The

blue lines correspond to the 95% central credibility intervals and the red line

corresponds to the threshold u = 2.

In this last study, when no changepoint exists, we can notice that the
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use of the measure of surprise like a tool to estimate the right threshold is

harder. The reason is that having only a generalized Pareto dataset, for each

threshold that we choose from u equal to 2, the model will �t appropriately

to the sample. In fact, for none of the thresholds the �surprise� is very high

or even 1, which indicates the goodness of the model. However, there is a

more accurate generalized Pareto distribution �tted to the data above the

threshold u = 5.

3.2 Prior Predictive p-values

Let us now de�ne the prior predictive distribution as in (1.5),

m(x) =
∫
f(x | θ)π(θ)dθ,

where, for the same reasons as in the previous section, we approximate the

likelihood f(x | θ) as the mean of the density of each observation xi given
in equation (3.3) and the prior distribution is de�ned as the Je�rey's prior

given in equation (3.4).

Computing marginal likelihoods is extremely di�cult; therefore we need

to estimate these quantities separately. Many di�erent ways to do it exist,

such as computing integrals by choosing conjugate f(x | θ) and π(θ) and

making exact computations by hand. Other tools are numerical integra-

tion (e.g. Gaussian quadrature), analytical approximation and simulation.

Di�culties, even if di�erent, appear in each of these methods.

In this particular case the Laplace approximation approach is studied

and the most important steps concerning this method to estimate the prior

predictive distribution are explained in the next section.

The main drawback of analytical approximation is that the result is not

very precise if compared to the result carried out by simulation. Nevertheless,

simulations are sometimes hard to implement and need a lot of tuning.

3.2.1 Laplace Approximation

The one-dimensional integral is de�ned as follows,

In =
∫ ∞
−∞

e−nh(v)dv, (3.5)

where h(v) is a smooth convex function with minimum at v = ṽ, at which
point dh(ṽ)/dv = 0 and d2h(ṽ)/dv2 > 0 (Davison, 2003). Then we carry out
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a Taylor series expansion close to ṽ obtaining the following approximation

In
.=
(

2π
nh2

)1/2

e−nh(ṽ), (3.6)

where h2 = d2h(ṽ)/dv2.

In the multivariate case, the integral In is approximated as follows,

In
.=
(

2π
n

)p/2
| h2 |−1/2 e−nh(ṽ), (3.7)

where h(v) is again a smooth convex function but v is a vector of dimension p.
Furthermore, we have that ṽ solves the p×1 system of equations ∂h(v)/∂v =
0 and | h2 | is the determinant of the p × p matrix of second derivatives

∂2h(v)/∂v∂vT evaluated at v = ṽ, at which point the matrix is positive

de�nite (Davison, 2003).

In this case, we have that

h(θ) = − log f(x | θ)− log π(θ)

because exp{−h(θ)} = f(x | θ)π(θ) and where f(x | θ) is de�ned in (3.3)

and π(θ) is de�ned in (3.4). Moreover p is equal to 2. Hence the approxi-

mation of the integral is

log In
.= log(2π)− log n− 1

2
log | h2 | −h(θ).

The following analysis using the Laplace approximation is based on the

same dataset generated in Section 3.1.1 for the posterior predictive measures

of surprise. The sample consists in uniform and generalized Pareto data with

a threshold u = 5.
The main steps to approximate the integral are the following. Firstly,

we estimate the parameters of h(θ) using the R function optim for the true

threshold u = 5. In the second place, the measure of surprise m(xobs) is

estimated and �nally, similarly to the posterior distribution, we compute

the probability

Prm(·){m(X) < m(xobs)}

in order to obtain the prior predictive p-values

pprior = Prm(·){T (X) ≥ T (xobs)},

where T (X) = m(X) Afterwards several thresholds are taken into account

from 2 to 4.9 and from 5.1 to 9 and the parameters estimated by using once
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more the R function optim for each threshold. Finally, their measures of

surprise and their prior predictive p-values are estimated. The results are

illustrated in Figure 3.16: for each threshold the measure of surprise and

the prior predictive p-values are displayed on the left and on the right panel,

respectively. The graph of the marginal likelihoods has a similar behaviour as

the one corresponding to the posterior marginal likelihoods in Figure 3.5: it

indicates that below the threshold u = 5, the generalized Pareto model does

not �t appropriately to the data. On the contrary, the p-values plot does not

show the �surprise� as well as the posterior predictive p-values plot: in fact,

the values below the true threshold are not as surprising as expected. The

main reason is that the Laplace approximation does not compute precisely

the marginal likelihoods as this method approximates these measures having

a normal distribution. Therefore the results carried out by using the Laplace

approximation have a poorer quality compared to the results obtained by

using the posterior predictive approximation given by equation (3.1).

The same parameter stability plots and mean residual life plots displayed

in Section 3.1.1 give evidence of the goodness of a generalized Pareto model

from u equal to 5.
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Figure 3.16: Plot of the measures of surprise m(x) (left panel) and of the

prior predictive p-values with their 95% central credibility intervals (right

panel) for the di�erent thresholds u from 2 to 9 estimated by using Laplace

approximation. The red triangle corresponds to the proper threshold u = 5.
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Conclusion

Our objective was to estimate the true threshold u for generalized Pareto

models. A new tool, the measure of surprise, has been exploited. An im-

portant point to consider is that �surprise� exists only in the presence of

uncertainty and is related to the expectations of the observer. In fact, it can

only be de�ned in a relative, subjective, way.

Section 1 presents many di�erent ways to measure the surprise. We

decided to consider only the most natural ones, the prior and the poste-

rior predictive measures of surprise. Unfortunately, several obstacles appear

when we started coding the algorithms allowing the computations of both

the marginal likelihoods and the predictive p-values.

The most important problem concerns the computation of the likelihood:

in most of the cases the likelihood rounds everything to zero so that no cred-

ible measures of surprise have been obtained. Therefore to avoid this di�-

culty, we decided to replace the likelihood with the mean of the generalized

Pareto density for each observation. Thanks to this alternative substitute,

credible results for the surprise have been carried out using both the poste-

rior and the prior predictive p-values, even if the posterior results are much

more precise (see Sections 3.1 and 3.2.1).

Another complication during the computations is related to the impor-

tance sampling approach for the prior p-values. We introduced the impor-

tance sampling to estimate the marginal likelihoods as it is more precise than

the Laplace approximation, which approximates the marginal likelihoods via

a Gaussian distribution. We tried to use this method but the alternative like-

lihood substitute given in (3.3) cannot be used because the resulting hessian

is not positive-de�nite (according to the function optim in R). In addition,

even if we approximate the marginal likelihoods, considering that the loga-

rithm of the marginal likelihoods is not equal to the integral of the logarithm

of a density function (in this case f(x | θ)π(θ)), the results are not credi-

ble enough to allow identi�cations of the most appropriate threshold. For

this reason, we have to look for an attractive and credible approximation
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3.2. PRIOR PREDICTIVE P-VALUES

for the prior marginal likelihoods, which allows us to improve the results

obtained by importance sampling. One possibility consists of choosing an-

other prior density like a log-normal for σ̃ and a normal for ξ, in order to

achieve a positive-de�nite hessian matrix, although the choice must be well

considered. Another suggestion could be to investigate if any other kind of

approximation of the marginal likelihoods exist instead of the mean of the

densities or the logarithm.

In order to solve the di�culty related to the hessian, we could estimate

the posterior densities of σ̃ and ξ by the Metropolis�Hastings algorithm so

that we can derive a suitable importance sampling density. However, the

required computation of these estimates of the marginal likelihood is very

high. In fact, this procedure has to be repeated for each sample.

Other approaches to estimate the marginal likelihoods are proposed by

Han and Carlin (2001). Unfortunately, because of the short time on our

hands, we did not get further.

It is however important to underline that on the whole the surprise is a

credible way of estimating the threshold. This means that, in principle, this

approach works correctly and gives interesting results even if some prob-

lems with the computations are present and in order to avoid them some

approximations have been taken without any particular demonstration.

The most important di�erence between the �surprise� method to select

the threshold and the parameter stability plot or the mean residual life plot

is that the �rst one is a Bayesian approach and the others are not. Let

consider also the last method studied only theoretically, which is explained

in Section 2.3.3, that is the mixture model where both data above and below

the threshold are modelled. We have that it allows a Bayesian approach

too but unlike the �surprise� approach, we have to specify a model, not

necessarily correct, for the data below the threshold.

After having carried out all these studies, we noticed easily that the

amount of computations to obtain the �surprise� is extremely large com-

pared to the speed with that the mean residual life plot or the parameter

stability plot are obtained. Then, this suggests us to look for other ways to

implement the algorithms in order to reduce the time of the computations.

One possibility is the use of sequential Monte Carlo methods or sequential

importance sampling to get the posterior distributions. This approach is

based on increasing slightly at each step the threshold u rather than per-

forming MCMC independently on each threshold.

Finally, it should have been interesting to take into consideration also

other measures of surprise, like the Kullback-Leibler distance between prior

and posterior distribution.
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Let {Pr(M)}M∈M be the prior distribution of a model M and Pr(D |
M) be the associated likelihood function quantifying how likely any data

observation D is under the assumption that the model M is correct. Then

as surprise is based on the Bayes' theorem, we can transform prior belief

distributions into posterior belief distributions (Itti and Baldi, 2006),

∀M ∈M, Pr(M | D) =
Pr(D |M)
Pr(D)

Pr(M).

Under this hypothesis, if the posterior distribution is identical to the prior

distribution, then no surprise exists for the new data D; this means that the

observer's beliefs are una�ected. On the other hand, the new data D are con-

sidered as surprising if the posterior distribution Pr(M | D) is di�erent from
the prior distribution. This is the reason why the surprise is measured by

computing the di�erence between the prior and the posterior distributions.

This distance is better measured if we use the Kullback-Leibler divergence.

Then, the surprise is de�ned by the average of the log-odd ratio,

S(D) =
∫
M

Pr(M | D) log
Pr(M | D)

Pr(M)
dM,

taken with respect to the posterior distribution over the model spaceM.

This measure of surprise may give more attractive results. During the

implementation we have to pay attention at the model space because the

integral takes into account all the models for the measurement D. In fact,

we cannot use directly this formula but we have to convert the model space

into a parameter space having a speci�c parametric family of distributions

as a model (Ranganathan and Dellaert, 2009). In order to compute the

expected surprise, Monte Carlo approximation of the integral is carried out,

as for the prior and posterior measures. We generate N measurements x ∈ D
with the prior distribution Pr(M) and we take the average of these values,

E(x) =
1
N

N∑
i=1

S(xi).

A di�culty of this measure of surprise consists in the choice of the prior

because the Kullback-Leibler divergence measures the distance between the

prior and the posterior. Therefore, if the prior is uninformative, then all

the data should be equally surprising from the point of view of the model.

This means that we could always obtain the same distance between prior

and posterior. This implies that no surprise exists and thus the model �ts
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appropriately to the data. Not necessarily it could be the case given that we

have de�ned a non-informative prior.

Finally, we deduce that when we desire to test a hypothesis for which

no alternative has been proposed, the measures of surprise are an appropri-

ate tool, which give interesting results. As many di�erent measures exist,

it would be interesting to get a deeper insight into them and analyse more

accurately the other measures too.
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