
Master Project

Presentation and study of robustness for several
methods to classify individuals based on their gene

expressions

Author:

Professor:

Supervisor:

Julien Damond

EPFL

Prof. Stephen Morgenthaler

EPFL

PhD Sahar Hosseinian

Diagnoplex

june 2011

Contents

1 Introduction 4

2 The Top Scoring Pair Classi�er 6

2.1 Presentation of the Top Scoring Pair Classi�er 6
2.1.1 Notation . 7
2.1.2 The score ∆ . 8
2.1.3 The average ranking di�erence Γ 9
2.1.4 Classi�cation of a new observation 10

2.2 Multi-class classi�cation . 10
2.2.1 One-vs-Other . 11
2.2.2 One-vs-One . 11
2.2.3 Hierarchical classi�cation . 11

2.3 Robustness of the TSP . 12
2.3.1 Study of robustness through simulation 13
2.3.2 Basic notion of robustness 20
2.3.3 Analytical study of the robustness for ∆ and Γ 23
2.3.4 Adaptation of the basic notion of robustness for the method

TSP . 27
2.3.5 Analytical study of the robustness of the TSP 29

3 The �rst extension of the TSP: the k-TSP 35

3.1 k-TSP . 36
3.1.1 De�nition of k-TSP . 36
3.1.2 Classi�cation of a new observation 39

3.2 Robustess of k-TSP . 41
3.2.1 Study of robustness through simulation 42
3.2.2 Analytical study of the robustness 49

3.3 Another way to choose k . 52

4 The second extension of the TSP: the weighted k-TSP 54

4.1 De�nition of WTSP . 55
4.2 Classi�cation of a new observation 56

5 Penalized logistic regression 57

5.1 Linear Regression . 57
5.2 Logistic regression . 59
5.3 The penalization . 60

6 Comparison of the methods on the leukemia cancer dataset 64

1

7 Diagnoplex Dataset 65

8 Conclusion 81

2

Abstract

Motivation: Several studies have shown that it is possible to detect
cancer tissues based on gene expressions using methods of machine learning.
The main problem with classifying gene expression data is to obtain accu-
rate rules that are easy to interpret and provide indications for follow up
studies. Indeed high accuracy is hard to achieve due to the small number
of observations and the large amount of genes in the human genome. Some
methods of machine learning are based on an important quantity of genes,
which lead to decision rules that are usually di�cult to interpret.

These methods were tested on di�erent samples and their results were
compared. Most of them provided good results with a high accuracy (see
[1] and [2]). Among these methods for gene classi�cation one distanced
itself from the others by producing transparents results which were readily
interpretable and were very useful for follow up studies. It highlighted pair of
genes that were the most e�cient to classify individuals with respect to their
gene expressions. This is the so called Top Scoring Pair (TSP) classi�er.

This method achieves prediction rates that are as high as those of the
other methods. In contrast to other classi�ers which use considerably more
genes and more complicated procedures, the TSP has an easy and quick
implementation and involves very few genes, namely only two. This pro-
vides very easy rules that are accurate and transparent. Finally, the TSP is
paramter-free, which avoids over�tting and in�ation of the estimation of the
prediction rate.

Results: In this paper we will present the TSP classi�er, give its de�-
nition, explain how it is constructed and we will also present the procedure
used to classi�y new observations. We will study the robustness of this
method, how the results (in this case, the provided pair of genes) are af-
fected by modifying the training set. Firstly we use bootstrap methods to
simulate datasets in order to analyse the stability of the method. Secondly
we study the robustness in a mathematical way through the de�nition of the
TSP.

We will also present an extension of the TSP, namely the k-TSP. This
method is based on the same idea as the TSP but involves more pairs of
genes. We will compare the robustness of the two methods. Then we will
brie�y introduce another extension, the WTSP which adds weights to the
k-TSP. Finally we will present a widely used method, the penalized logistic
regression. The goal is to compare these methods on speci�c datasets and
draw advantages and disadvantages of these methods.

3

1 Introduction

In biological studies it is common to work with microarray data. With the recent
improvement in biological technologies, this technique has become easier to use and
is relative cheaper. For this reason it has been widely used to examine the possible
discrimination of cancer samples from normal ones. It allows the user to obtain a
large amount of measured genes, more precisely it is common to have thousands
of genes. Through analysis of gene expressions, some genes are found to be highly
correlated with the sample tissues we analyse; we call these genes biomarkers.
They can be used in a lot of biomedical applications, the main example is the pre-
diction of cancer based on gene expressions. The real challenge in such situation
is to �nd decision rules which have a high accuracy on the classi�cation and a
meaningfull interpretation. Unfortunately such classi�ers are often very sensitive
to changes on the data set, since in di�erent studies of the same cancer, di�erent
biomarkers can be selected. This lack of stability (in this case stability refers to
the sensitivity of the selection procedure to perturbation of the training set) is
mainly explained by the lack of data. Indeed it is often the case in such studies
that the number of samples compared to the number of genes remains quite small
and can be around one hundred. This leads to estimators with high variance. This
problem is known as the small N , big P problem. One of the undesirable proper-
ties of these kind of problems is the computational di�culties. Indeed, as the size
of the dataset increases, the required time to compute the estimation increases
as well and can be very long even using computers. One solution is to consider
a dimension reduction, whose goal is to remove the variables (genes in this case)
that are useless for the study. A solution to reduce the variance of the estimator
is to increase the sample size. This can be made through joining datasets from
di�erent studies, this would increase the number of observation and thus reduce
the variance of the estimators. Joining datasets is presented by Geman et al in [3].
However, one must be carefull using this method. Indeed microarray results can
strongly depend on the technologies used, such as spotted cDNA and A�ymatrix
arrays which cannot be directly compared. A lot of factors can also a�ect the re-
sults, for example the generation of microarray, alternative experimental protocols,
experiment parameters, sampling of di�erent patient populations, etc.

A lot of methods are already available for analysing such kind of datasets, espe-
cially in the so-called learning machine �eld. The most well known method, called
Support Vector Machine (SVM) uses all the genes to perfom the analysis. This
method provides good results but is very hard to interpret. In this paper we will
present a method called Top Scoring Pairs (TSP) classi�ers, the original method
seeks pairs of genes whose intensities are ordered in a di�erent way with respect
to the group from which the measures come from. This method provides good re-

4

sults based on only two genes. One of its advantages is that the results are easily
interpreted and transparent and they also provide follow-up for other studies by
indicating which gene could be important in a speci�c disease.

We will study the stability of the TSP, namely how changes in the datasets can
a�ect the genes pair provided by the method. We will proceed in two ways. In the
�rst way we use boostraping to reproduce datasets that "look like" the original
data but slightly di�erent and apply the TSP on it. We will perform 500 such
bootstraps and compute the frequency of appearence of the TSP computed on the
original dataset among the TSP computed on the bootstraped dataset. The second
way is more formal, we will use the mathemical de�nition of the TSP to study the
importance of one single observation on the stability of the TSP. The in�uence of
a single observation will also be studied through the notion of sensitivity curve,
which will be applied on the special case of the TSP. We will also present the notion
of breakdown point which measures the percentage of data that can be modi�ed
such that the method still provides the same genes pairs (this is an adaptation of
the traditional notion of breakdown point).

We will present a �rst extension of the TSP, namely the k-TSP. It has the same
strategy as the TSP but works with more than only one pair of genes. The method
researchs for the k best pairs of genes based on the same principle as for the TSP.
The decision rule of an observation is based on a voting system funded on the
prediction of the k pairs of genes selected by the method. In this paper we proposed
two solutions to determine k. The �rst one is based on the crossvalidation whose
goal is to minimize the error prediction rate. The second one is based on a score
used to derive the methods, its goal is to make the estimation of the value of k
less sensitive to perturbation in the dataset. Atought the numer of genes has been
increased by a factor k, it remains small enough to keep the nice properties of
the TSP on the easiness of interpretation of the results and the usefulness of the
selected genes pairs for follow up studies.

We will study the robustness of the k-TSP in the same way as for the TSP. We
will use bootstrap resample and apply the k-TSP on each step in order to study
the sensitivity of the method. We will also investigate the mathematic properties
of this method. They will be quite similar to the one of the TSP, except we will
have to deal with several pairs instead of a unique one.

Then we will brie�y present another extension of the TSP, the WTSP. It is similar
to the k-TSP but is based on ratio of genes expression instead of di�erences. We
mention this method as it is another interesting way to study the relative ordering
expression of pro�les within di�erent groups. We will not make any investigation
on this extension, neither implement it.

5

After that we will present a last method, whose goal is to explain the response
variable (the group of the observation) based on a linear combination of the vari-
ables (here the genes). This relation can be de�ned through a function, chosen
to increase the performance of the method. As mentioned before, the biological
datasets may contain a lot of variables, to deal with this problem a penalization is
added on the number of parameters in order to deacrease the number of non zero
parameters. This will reduce the quantity of genes used and make the interpreta-
tion easier. This method is knows as the penalized logistic regression.

Finally we will use two datasets to compare the methods presented along this pa-
per, and discuss their advantages and disadvantages based on the results obtained
on these two datasets.

2 The Top Scoring Pair Classi�er

In this section we de�ne the Top Scoring Pair (TSP) classi�er. We begin by
introducing the notation of the data set. Then we will present a �rst score, which
will be used to decide which pair will be considered to be the best one. In order to
break ties (several pairs that achieve the maximum score) we will de�ne a second
score which will allow to select only one pair of genes. Finally we will present the
decision rule to classify a new sample.

In the second part of this section we will study the robustness of the TSP us-
ing bootstrap resamples. We will use it to analyse the sensibility of the methods
to perturbations produced on the dataset. We will also perform a mathematical
analysis of the TSP based on its de�ntion to determine the in�uence of one obser-
vation, and compute if it makes the TSP to select another pair. We will also derive
a function that allows the user to compute the lowest number of observations one
can add without producing changes on the results of the TSP. We will discuss
robust notion of the TSP, as the breakdown point and the sensitivity curve.

2.1 Presentation of the Top Scoring Pair Classi�er

The �rst point of this section is to de�ne the notation used for the TSP. We will
keep this notation as we will introduce other methods and discuss the results.

6

2.1.1 Notation

Consider a gene expression pro�le consisting of P genes labeled as {g1, g2, . . . , gP}
and assume there are N observations {x1,x2, . . . ,xN}, where xn = (x1,n, . . . , xP,n)
represents the expression values of the P genes for the observation n. These data
can be represented as a matrix of dimension P ×N in which the expression of the
i-th gene, i ∈ {1, . . . , P}, from the j-th observation, j ∈ {1, . . . , N}, is denoted by
xi,j. In this setting the columns represent the gene expressions of the samples for
an observation.

We de�ne the set of possible class labels as C = {C1, . . . , CM} and the class for
the observation j is denoted by yj, where yj ∈ C. We assume for the moment that
M = 2. For example C1 is the class for observations from people with cancer and
C2 from healthy people. We will extend the problem to multi class classi�cation in
a later chapter. The whole training set is expressed as S = {(x1, y1), . . . , (xn, yn)}.
We assume that the expression's pro�le and its class label are random variables.
We denote byX the gene expressions and byY the class label. We assume that the
elements of S are independent and identically distributed observations. Here we
labeled the genes as {g1, g2, . . . , gP}. The labels are not always available (especially
for the last datasets we will present), for this reason we also use the number of the
line in the matrix X which stands for the gene gi as its names, in other words, the
gene gi will be labeled as i.

The TSP classi�er is a rank-based classi�cation method, more exactly the decision
rules depend only on the relative ordering of the expression values within each
pro�le. This should not be confused with rank based methods for determining
di�erentially regulated genes. In such methods we are interested in genes that
have di�erent expression values between two population. It is possible to use
ranked expression value for a �xed gene among all observations, this is not the
purpose of this paper. Here, the expression values of the P genes are ordered
within each pro�le.

The �rst step of the TSP is to transform the data matrix into a matrix which
contains the rank of the expression values within each pro�le. They are ranked
with respect to their expression value, the most expressed value will be ranked
top (obtain the highest rank N) and the least expressed ranked last (obtain the
lowest rank 1). We de�ne the matrix of the rank as R, where R(i, n) is the rank
of the i-th gene for the n-th observation. The reason why we use the rank matrix
will become clear as we introduce the second score for the gene pair which it is
based on the ranked values of the genes within each pro�le. We remark that the
part based exclusively on the �rst score could have been done using the matrix of
values as well as the rank matrix.

7

2.1.2 The score ∆

The goal of the TSP is to �nd a pair of genes that best discriminates between the
two groups with respect to the relative rank of the expression of these two genes.
To state this more mathematically we want to �nd a pair (gi, gj) such that we
have R(i, n) < R(j, n) with a high probability for individuals of group C1 (resp.
C2) and a low probability for individuals of group C2 (resp. C1). We de�ne these
probabilities by

pij(cm) = P
(
R(i, n) < R(j, n)|yn = cm

)
, m ∈ {1, 2}. (1)

We note that the event {R(i, n) < R(j, n)} and {xin < xjn} are exactly the same.
So the probability of each of these events will be the same, thus, at this stage,
it is equivalent to work with the original matrix or with the matrix composed of
ranks.

The probabilities pij(·) are estimated by the relative frequencies of occurrence of
the event of interest. Mathematically this is expressed as

pij(Ci) =
|{n ∈ Ci : R(i, n) < R(j, n}|

|Ci|
.

If the value of pij(C1) is big (close to 1), then the occurrence of the event {R(i, n) <
R(j, n)} is high and thus people from group C1 will often tend to have values of
the pairs (i, j) such that R(i, n) < R(j, n). On the other hand if this probability
is small (close to 0), the event R(i, n) < R(j, n) will occur less often.

We can restate the goal of the TSP as �nding a pair of genes such that pij(·) is
big for the group C1 and small for the group C2 (or inversely small for the group
C1 and big for the group C2). These values will highlight the capacity of the
pair of genes to classify correctly the individual to one of the groups. Indeed if
pij(C1) is big, this means that on a big proportion of people of group C1 we observe
R(i, n) < R(j, n). Inversely this events will occur rarely for people from group C2,
a big value of pij(C1) and a small value of pij(C2) will result in a good classi�cation
of the individuals with the pair of genes (i, j). This idea is the main concept on
which the TSP relies. We use the absolute di�erence of this probabilities as the
power of the pair of genes and call it the �score� of the pair (i, j). We thus de�ne
the score as

∆ij = |pij(C1)− pij(C2)|. (2)

The value of ∆ij gives an indication on the accuracy of the pair (i, j).

8

Let us suppose that the selected gene pair is (i, j) and that pij(C1) > pij(C2), then
∆ij = pij(C1)− pij(C2). We wish that ∆ij is big, so pij(C1) need to be high (close
to 1) and pij(C2) low (close to 0). Having pij(C1) close to 1 means that for a big
proportion of individual from group C1 the event R(i, n) < R(j, n) occurs often
and pij(C2) close to 0 means that for a low proportion of the population from
group C2 the event R(i, n) < R(j, n) occurs rarely. As the classi�cation rules are
based on R(i, n) < R(j, n) or R(i, n) > R(j, n) (see section on the classi�cation), a
value of ∆ij close to 1 will provide high accuracy (assuming the dataset represents
well the true expression of the genes).

The TSP will compute the score for every pair of genes and choose the pair that
achieve the highest one. It is not enough to compute only the score, it is possible
that several pairs of genes achieve the maximal score. In order to break ties and
pick only one pair, a new quantity is introduced.

2.1.3 The average ranking di�erence Γ

In order to break ties for pairs achieving the maximum score we introduce the
�average ranking di�erence�. We de�ne it, for each pair (i, j), as

γij(Cm) =

∑
yn=Cm

(
R(i, n)−R(j, n)

)
|Cm|

, m ∈ {1, 2},

where |Cm| is the number of observations that belong to the class Cm. The average
ranking di�erence is speci�c to each class, it measures how "far" (in term of rank)
are the expressions of the two genes within each group. The TSP will be a good
method if it classi�es well the patients. The score already introduces this notion,
but we can add a new notion that makes the TSP classi�ers even better. We
wish the groups are well separated. For the TSP, it means that the di�erence
between the two genes expression within each group is big (in absolute value) and
we also want it to be very di�erent from the other group (of opposite signe). The
di�erence being a real number, an intuitive solution would be to ask that the
average ranking di�erence is high and of opposite sign from one group to another,
so the genes would have a very di�erent relative ordering in each group. We express
this notion mathematically as follow

Γij = |γij(C1)− γij(C2)|, (3)

this quantity is called the �rank score�.

If several pairs achieve the maximum score over all scores, the rank score is used
to break ties and allows to pick only one pair.

9

The decision to use the rank matrix instead of the orignal data matrix had no
in�uence until the introduction of the rank score Γ. Indead the probabilities pij(·)
were not in�uenced by this modi�cation because the events would contain the same
individuals. But this modi�cation has a big impact on the rank score Γ, in fact
it robusti�es this second score. Without this modi�cation, an outlier with a big
(positive or negative) value will make the rank score explode and thus making us
to choose the corresponding pair of genes among all the pairs achieving the same
score ∆ij.

2.1.4 Classi�cation of a new observation

So far we have de�ned the TSP. Now we will explain how to classify a new observa-
tion with this method. Given that the provided pair of genes is (i, j), we need only
to compare these two genes for the new patients denoted by xn+1. We observed
that it was equivalent to work with the original data or with the ranked values.
For the derivation of the method it was more comfortable to work with the ranked
matrix. However, for the prediction of a new observation it is more direct to work
with the expression values. For the resulting pair of genes (i, j), we only need to
compare the expression of the genes i and j for the new patient. Without loss of
generality we can suppose that pij(C1) > pij(C2). In the case xi,n+1 < xj,n+1 we
assign the new individual to the group C1 and to the group C2 otherwise. We can
also write more formally

hTSP(xn+1) =

{
C1, if xi,n+1 < xj,n+1

C2, otherwise
(4)

The decision rule should be inversed if pij(C1) < pij(C2).

To summarize, the TSP is a classi�er based on the expression of genes; it searches
gene pairs whose expressions are inversely ordered between the two groups. It has
two parameters to score a pair, the score ∆ij and in case of tie break, the rank
score Γij. It classi�es a new observation to the class to which the ordered values
match with the highest probability pij(C1) or pij(C2).

2.2 Multi-class classi�cation

For the moment we only dealt with binary problem classi�cation. It is common to
have to handle with more than two classes. The TSP family can easily be extended
to such problems. The strategy is to decompose the procedure into several steps

10

in which the usual TSP method can be applied. We brie�y present three common
procedure.

We suppose we have to deal with M classes and we denote the set of multiple
classes by C = {C1, C2, . . . , CM}.

2.2.1 One-vs-Other

The One-vs-Other (1-vs-r) approach decomposes the original problem into a set of
M binary problems. For each class m = 1, 2, . . . ,M we need to construct a TSP
to distinguish between the class Cm and the class composed of all the other classes
C\Cm. To predict the class of a new observation, we need to evaluate each of these
M classi�ers, which results in a set of M predictions each of these choosing either
a single class or a class composed by M − 1 classes. We are interested exclusively
in the predictions of single classes and ignore the one for composite classes. If only
one observation to a single classe is available, we classi�e the observation to this
class. If the M predictions contain several single classes we choose the one that
contains the more observations. If no single classes were pointed out we assign the
observation to the biggest class.

2.2.2 One-vs-One

The second approach we present is called the One-vs-One (1-vs-1) scheme. Much
more calculations are needed for this method. In fact we aim to make comparisons
between all possible pairs of classes. For every pair of classes (Cl, Cm) with m 6= l
a binary classi�er hlm is constructed based only on the training set composed of
these two classes. ConsequentlyM(M−1)/2 binary classi�ers are generated, each
predicting exactly one of the classes. We combine the predictions by counting the
number of prediction for each class and assign the observation to the class that
gets the highest number of predictions.

2.2.3 Hierarchical classi�cation

The last procedure we present is the hierarchical classi�cation (HC). It is a se-
quential procedure based on a tree. On the �rst node of the tree a binary classi�er
h1 needs to be constructed and it has to distinguish between the largest class and
the class composed of all remaining classes. On the second node a new classi�er
h2 is constructed and it distinguishes between the second largest class and the
remaining classes (the single classes from the previous steps are removed). And

11

so on until all classes are represented on the tree. Each single class represents a
leaf of the tree, these beeing seen as the labels. To classify a new observation we
need to make it go through the whole tree until it reaches a leaf whose label will
be the prediction of the new observation. At each step we need to evaluate the
observation with the current classi�er. If it chooses a single class, the classi�ca-
tion ends and outputs the label of the leaf as prediction, otherwise we have to go
down in the tree and evaluate the next classi�er, and so on until a single class is
chosen.

It is totally arbitrary to choose one of this methods. They may produce di�erent
results and the goodness may be highly correlated to the kind of dataset one
analyses.

Along this paper we will deal with two class problems. But in the last chapter we
will present a dataset, which will contain three classes. We will choose one class
as a reference and generate three TSPs, two against each of the two remaining
classes and one against the class composed of the merged remaining classes. We
will discuss this procedure with more details in the related chapter.

2.3 Robustness of the TSP

The main goal of this paper is to study the robustness of the TSP. More exactly
we want to see how an estimator is a�ected by small departures from the model's
assumptions. In our case we are interested in the robustness of a method, namely
the TSP. We saw that this method is based on the computation of two quantities,
the score ∆ and the rank score Γ. The �rst point in studying the robustness of
the TSP is to analyse if these two quantities are robust or not. It is obvious that
if they aren't, the chances that the method is robust are small. The second point
is the analysis of the robustness for the method.

There are several ways to proceed, one way is to see the in�ucence of only one
observation on the results provided by the method. It is common to add an outlier
x0 to the data and to investigate its in�uence on our estimator. We can also study
the impact of the outlier x0 on the estimator but in this case as a fonction of x0.
This notion is often caracterised by the in�uence function IF(x0, F), where F (·)
represents the underlying distribution of the data. Another important quantitiy
is the breakdown point (BP), which measures the largest proportion of atypical
point that the data set can contain such that the estimator still gives information
about a paramter. We will give more details about these notions in a later section
and adapt them to the TSP.

In order to study the robustness of the TSP we will proceed in two steps. In the

12

�rst step, we perform the TSP on a dataset where tissue samples were analysed
from healthy people and from people a�ected of breast cancer. The goal of the
original study was to classify patients based exclusively on their gene expressions.
Then we will use bootstrap resample of this dataset to obtain several new datasets
which are similar to the original one and then we will compute the TSP on each of
the bootstraped samples. Finally, after repeating the experiment a large number
of times, we computed the appearance frequency of the original TSP among all
TSPs generated from each bootstraped sample and reported this frequency as well
as the pairs of genes.

In the second step, we examine the robustness of the estimator of the score ∆ and
the rank score Γ. We will present in details the notion of in�uence function and
breakdown point in a general point of view. We will compute these functions for
the two quantities, which will allow us, in particulary, to determine the in�uence of
a new observation on the computation of these quantities. Then we will examine
the robustness of the TSP through these two quantities and propose an adaptation
of the in�uence function and the breakdown point especially for the TSP. We will
compute the adaptatation of these two notions and apply them on the speci�c case
of the leukemia cancer dataset.

2.3.1 Study of robustness through simulation

In this section we study the behaviour of the TSP as the dataset is modi�ed. We
based our computations on a public available dataset named Leukemia cancer

dataset, this dataset has been widely used in many papers and can be found at
http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi. This dataset was used
to infer on prediction of leukemia cancer based on gene expression pro�les. It is
clearly presented and analysed in the paper from Golub et al. in [4]. The results of
this paper highlighted the feasibility of cancer classi�cation based uniquely on gene
expresssion measures. The data consists of gene expression pro�les measured in
leukemia tumor samples. The training dataset contains 38 bone marrow samples
from two classes, labeled as AML for acute myeloid leukemia and ALL for acute
lymphoblastic leukemia, the number of observations in each class is 27 for ALL
and 11 for AML. A test set was also available, it consists of 30 samples with 20
ALL and 14 AML. To be consistant with the analyse made on dataset which we
will present later, we merged the training and the test set to have 78 observations
with 47 patients in group ALL and 25 the group AML. The number of genes was
7129.

13

Filtering Due to the extremely high dimension of the data set, the mathemati-
cal computations were extremely long and sometimes ran out of space for speci�c
calculations. We reduced the number of genes and thus worked only on a subset
of genes instead of on the whole dataset. This reduced considerably the computa-
tional time. A lot of methods to reduce the datasets exist, they are part of data
mining and a lot of litterature about them is available. Among these methods
we can cite sophisticated statistal methods like clustering, principal component
analysis, etc. There is no best method, one can be in certain case better and in
other case worse,they all depend on the analysed dataset. The goal of this paper is
not to reduce the dataset the most e�ciently but to study the robustness of TSP.
The method we used is totaly arbitrary and other methods could be used as well
and could be better. Here, the goal of the reduction is mainly to decrease the size
of the dataset in order to make the computations easier and faster.

Given the fact that the TSP uses only genes that have a signi�cantly di�erent rel-
ative ordering expression whether it comes from an infected patient or an healthy
one, we decided to keep only genes that have signi�cant di�erent means between
the two groups. We conducted this by �rst using a Shapiro test to test the assump-
tion that the genes expression come from a normal distribution or not. In the �rst
case we used a Welch's test (an unpaired t-test without the assumption of equal
variance) to test the di�erence in means of the two populations. In the second case
we used a Wilcoxon t-test. This lead to an important reduction of the dataset.
Indeed the number of genes went down from 7129 to 2691, which makes the dataset
much more comfortable to deal with and the computations much faster.

Simulation The aim was to simulate new datasets from the original dataset
which were similar, to compute TSPs on the resulting datasets and to study the
sensitivity of the method to changes in the dataset. We used bootstrap resample
from the original dataset to create new datasets. Bootstraping is a computer-based
method that measures the accuracy of a sample estimate as well as properties of
an estimate like the variance, con�dence intervals, etc. A number of steps need to
be de�ned, which stand for the number of dataset we want to generate. At each
step we create a new dataset from the original one, where each observation has
the same probability of being chosen. It is posssible that an observation doesn't
appear in the new sample as well as it can appear several times. The size of the
bootstraped dataset was chosen to be the same as the original dataset.

This method is very simple and its computation is very quick. It is also very
good and was shown to provide good results for high number of resampling. In
our simulation we choose n to be equal to 500, which is large enough for accurate
results.

14

Results For each of the 500 bootstraps we computed the TSPs and stored the
selected gene pairs. We are also intersted in the appearance of the single genes,
because this can be useful to determine the importance of a single gene in the
detection of the speci�c cancer tissues. It can be further used if we are interested
in classi�cation based on single genes or if we look for a set of genes correlatd to
the disease. Figure 1 shows the frequency of appearance for each genes among all
gene pairs. We keept only genes that had a signi�cant frequency of appearance
relatively to the other pair (> 8%).

0 500 1000 1500 2000 2500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Genes

F
re

qu
en

cy

Frequency of appearance of single genes
in the tsp for the leukemia cancer dataset

463

574
923

720

735

1900

Figure 1: Frequency of appearance of the single gene in the pairs selected by the
TSP over 500 bootstrap resamples from the dataset Leukemia cancer, only the
genes whose appearance where above 8% where hold.

The genes 463, 574, 712, 735, 923 and 1900 are the genes that appear the most
often in the pair of genes selected by the TSP over the bootstrap. If one would
be interested on a subset of genes correlated with the disease, the TSP would
provide such a set. This set could be improved by using other methods since the

15

TSP used in this way would only provide a clue about which genes should the set
contains.

The most interesting part of the simulation is the frequency of appearance of the
pairs selected by the TSP as we focus our study on the robustness of the method.
We are interested in the freqeuncy of appearance of the original gene pair of the
TSP in the bootstraped datasets. Figure 2 presents the resulted TSP over the
bootstraped data as well as the number of times the gene appeared. We keept
only pairs that had a signi�cant frequency of appearance relatively to the other
pair (> 5%).

●

●

●

● ● ●

●

●

0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Frequency of appearance of gene pairs
in the tsp for the leukemia cancer dataset

Pair of genes

F
re

qu
en

cy

463/720

574/720

923/1748

266/720

148/735

720/1723
270/720

250/720

●

Figure 2: Frequency of appearance of the pairs of gene selected by the TSP over
500 bootstrap resamples from the dataset Leukemia cancer, we ploted only pairs
whose frequency was at least 5%. The pair with the red dot represents the pair
selected by the TSP on the original data set.

Figure 2 shows the frequency of appearance of the pair of genes that appeared the

16

most often in the bootstrap of the Leukemia cancer dataset. We see that the pair
(463, 720) which was detected by the TSP on the original dataset appears often
among the TSPs computed on the bootstrap, indeed this frequency is about 25% of
the time and is much more bigger than the second best frequency of appearance.
Which is attaigned by the pair (574, 720) and is about 7%. The other pairs of
genes computed by the TSP on the bootstrap have a frequency about 3%. Finally
we observe that the genes 720 appears in three quarter of the pairs, which makes
it very interesting for the study of this dataset because of its high correlation with
the disease. On the other hand Figure 2 showed also that the gene 1900 was of
interest, but it doesn't appear in the pair of genes for the selected threshold of
appearance.

Figure 3 shows the ROC curve for the TSP applied on the leukemia cancer
dataset.

These results showed good properties of the TSP. We want to make the reader
sensible to the fact that they hardly depends on the dataset we used. We brie�y
introduce another dataset and analyse the sensibility of the TSP to changes in the
same way as for the leukemia cancer dataset.

This dataset is based again on tumor sample, but this time from breast cancer.
It contains 78 observations, which consists of patients who developped a distance
metastase within 5 years (they were labeled as "diseased") and patients who re-
mained healthy for at least 5 years after their original diagnosis (they were labeled
as "healthy"). We have 34 "diseased" patients and 44 "healthy". The number of
genes was 24481. We did the �ltering and the bootstrap in the same way as for
the leukemia cancer dataset.

The TSP computed on the original dataset of breast cancer selected the pair of
genes (541/2343). Actually the maximum score ∆ was achievied by two pairs. The
tie was separated by the second score Γ in order to pick one pair. Figure 4 shows
the frequency of appearance of the pair of genes that appeared the most often.
We see that the pair (498/2333), which was ranked second on the original dataset,
appears more often than the pair that was ranked �rst. Inversely the top ranked
pair from the original dataset is ranked second with the bootstrap resampling.
The top pair on the boostrap sample appears slighty more than 8% of the time,
whereas the frequency of the top pair based on the original dataset appears is
approximately of 7%.

There are other pairs of gene highlighted by the bootstrap which were not detected
by the TSP. There were 5 pairs which appear around 2− 3% of the time. In total
this represents about 10% of the total frequency of the bootstrap.

17

●

●

●

● ●

●●

●

●●

●

●●

●

●

●
●

●●
●

● ●

●●

●

●

●

●

●
●

●

●

●●

●

●

ROC curve for the TSP on the leukemia cancer dataset

1−Specificity

S
en

si
bi

lit
y

AUC:

median = 0.95

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

●

●

●

●

●
● ● ●

●
● ●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●●●

●

Figure 3: ROC curve for the TSP on the leukemia cancer dataset. The red line
represents the median of the sensibility. The grey line stands for the line with
interecept 0 and slope 1.

If we add the frequencies of the 7 gene pairs selected (whose frequencies are above
0.02%) we obtain only 25% of the total frequency, which is a very low percentage.
Indeed, this means that 3 times over 4 a perturbation of the dataset leads to pairs
that doesn't belong to the selected pair of genes (with the threshold) over the
boostrap.

We see on the second dataset that the TSP is much more sensible to perturbations
than on the �rst dataset. The pair provided by the TSP on the original dataset
appears much more often among the bootstrap made on the �rst set than among
the bootstrap made on the second set. This sensitivity highly depends on the setup
of the dataset. We saw that, on the second dataset, two pairs of genes reached
the maximum score ∆, which makes this two pairs very competitive to each other.

18

●

●

●

●

●

● ●

0 2 4 6 8

0.
00

0.
02

0.
04

0.
06

0.
08

Frequency of the pair genes in the tsp
for the breast cancer dataset

Pair of genes

F
re

qu
en

cy

498/2333

599/990

1243/3001

541/2343

3621/5488

130/3069

21/3069

●

●

Figure 4: Frequency of appearance of the pairs of gene selected by the TSP over
500 bootstrap resamples from the dataset Breast cancer, we ploted only pairs
whose frequency was at least 2%. The pair with the red dot represents the pair
selected by the TSP on the original data set. The pair with the blue dot achieved
the same score ∆ as the top pair but was ranked second with respect to the score
Γ.

This problem will be analysed with more precision in a later section.

The simulation provided in this section highlights the power of the bootstrap,
it allowed us to obtain a large amount of datasets based on an original dataset
and showed us how the TSP reacted to changes in the dataset. We note that
the changes were totally arbitrary, every observation could have been removed or
observed several times. We actually observed lack of robustness of the TSP for
low perturbations as well as for important perturbations in the dataset.

In a later section we will analyse the robustness of the TSP through its mathemat-

19

ical de�nition. But before we will present some basic notions of robustness in a
general meaning. Then we will adapt them to the special case of the TSP in order
to see why and how changes in the data can modify the pair selected by the TSP.
Finally, we will derive a function to calculate the number of observations that can
be added (and removed) from the dataset leaving the TSP unchanged. This func-
tion will be a function of the setting of the dataset (the number of observations,
the number of observations in each group, the size of the groups,etc).

2.3.2 Basic notion of robustness

The main goal of statistic is to analyse di�erent kinds of datasets and to be able to
draw useful estimations from them in order to learn from what we observed and to
allow predictions with a certain amount of accuracy (often also estimated from the
data). The main weakness of most estimators is their reaction to perturbations
on the dataset, i.e., they stay in a neighborhood of the original estimation or if
they hardly di�er when adding an atypical observation to the dataset. A �eld of
statistics deals with such problems, it studies how an estimator reacts to changes
in the dataset and provides new estimators which are supposed to be less sensitive
to perturbations. This branch of statistics is relatively new to the other �elds
but it gained a lot of importance in the last 30 years. This �eld is the so called
Robust statistics and seeks to provide methods that are competitive with popular
statistic methods but which are less a�ected by outliers or small derivations from
the model's assumptions.

In this section we present two basic notions of robust statistics. The �rst notion is
based on the sensitivity of an estimator to a single observation, which represents
the in�uence of adding a new observation to the dataset. It measures the variation
of the estimator as a function of the single observation added to the dataset. The
second notion we present computes the largest proportion of atypic points that
the dataset can contain such that the estimator still yields accurate information
about the parameter of interest.

Sensitivity curve and in�uence function The �rst notion we present is called
the Sensitivity Curve, and as its name shows, it deals with sensitivity. An impor-
tant point in robustness is to compute how a new observation added to the dataset
can modify our estimations. The sensitivity curve is based on this point of inter-
est. Let us denote by θ̂n(x1, . . . , xn) the estimation of the paramter θ based on a
sample of size n composed of the observations x1, . . . , xn. We write x0 as the new
observation.

20

The sensitivity curve (SC) for the sample of size n composed of x1, . . . , xn is de�ned
as follows

SCn(x0) =
θ̂n+1(x1, . . . , xn, x0)− θ̂n(x1, . . . , xn)

1/(n+ 1)

= (n+ 1)
(
θ̂n+1(x1, . . . , xn, x0)− θ̂n(x1, . . . , xn

)
.

(5)

The sensitivity curve computes the di�erence of the estimation of θ based on the
original dataset plus the new observation x0 and the estimator based exclusively
on the original dataset. This quantity is then scaled by the number of observation
of the largest set (n + 1). It represents the in�uence of the observation x0 on the
estimator of θ.

The in�uence function is calculated for a �nite n, we note that there exists an ex-
tension to this quantity as n tends to in�nity. This is the so called In�uence Function,
which measures the in�uence of an observation x0 as n tends to in�nity. In this
paper we will concentrate us only on the sensitivity curve, for more details about
the in�uence function see [5].

The next point that we will present computes the largest number of observations
we can add to the dataset such that the pair provided by the TSP remains un-
changed.

Breakdown point We have seen how to compute the in�uence of a new obser-
vation to the estimate. We will now introduce another quantity which allow us to
compute the largest amount of atypical points (contamination) that the data may
contain such that the estimate θ̂ will still give an accurate estimation of the param-
eter θ. We are interested in the proportion of incorrect observations (arbitrarily
large observation) that can be contained in the dataset such that the estimator
still gives accurate estimation of the parameter of interest. By accurate we mean
that the estimator cannot take arbitrarily large values. As for the sensitivity curve
there exist a distinction in the case of �nite and un�nite sample size. Here we are
interested only in the �nite version as we deal with dataset for which the size n is
known and �nite. For more details on the un�nite case see [5].

The �nite-sample breakdown point (FBP) of an estimate θ̂ for the sample S =
{x1, . . . , xn} is the largest proportion ε∗n(θ̂n, S) of data points that can be arbitrarily
replaced by outliers without θ̂n leaving a set which is bounded and also bounded
away from the boundary Θ, where Θ stands for the set on which θ ranges.

21

We can express this more formally. For this we de�ne Xm as the set of all datasets
S ′ of size n having n − m elements in common with the set S. Mathematically
this is expressed by

Xm = {S ′ : |S ′| = n, |S ∩ S ′| = n−m}.

Then

ε∗n(θ̂n, S) =
m∗

n
,

where

m∗ = max{m ≥ 0 : θ̂(S ′) bounded and also bounded away from ∂Θ ∀S ′ ∈ Xm}.

We will now bie�y discuss this de�nition. First, the set Xm stands for all possible
perturbations of the original dataset with m observations being modi�ed. Then it
searches the largest amount of data (largest m) such that the estimation remains
bounded and bounded away from the boundary in the worst case. The worst
case is �nding the lowest number of observations m we need to modify such that
the estimation doesn't provide anymore a good information for the parameter of
interest, i.e., the lowest amount of data we need to modi�y such that the estimator
"breaks".

We give a quick example to enhance the intuition on this notion. Let us suppose
we have a set of independant observations following a Normal distribution, i.e.,

(X1, . . . , Xn)
iid∼ N (µ, σ2) and we are intested in estimating the mean µ of this

sample. An usual way is to use the maximum likelihood estimator, which is de�ned
as

µ̂n =
1

n

n∑
i=1

Xi.

This estimator has a breakdown point of 0, indeed by changing any of the xi we
can make µ̂n arbitrarily large. Robust statistics suggest to estimate the mean
through the median of the sample (X1, . . . , Xn). In this case, if we change only
one of the xi's it won't be enough to make this estimator arbitrarily large. In fact
the median has a breakdown point of 0.5 as we need to change at least the half of
the observations to make it arbitrarily large.

Moreover we note that for any estimator it is not possible to have a breakdown
point higher than 0.5. This is due to the fact that, if more than a half of the
observations are contamined, then we can't distinguish between the data from the
true model and the perturbated data.

In the next subsection we analyse the robustness of the quantities used for the
derivation of the TSP, i.e., the score ∆ and the rank score Γ.

22

2.3.3 Analytical study of the robustness for ∆ and Γ

The TSP's procedure in selecting the pair of genes is entirely based on the com-
putation of the quantities ∆ and Γ. In order to study the property of robustness
for the TSP it is necessary to �rst investigate this property for the score and the
rank score.

Let us suppose the dataset is de�ned as S = {(x1, y1), . . . , (xn, yn)}, where xi
stands for the gene expression of the observation i and yi as an indicator for the
group to which the sample i belongs, we write yi = 1 if it belongs to the group C1

and yi = 2 if it comes from the group C2. Let us write ∆ = ∆n(S) and Γ = Γn(S)
to emphasis that these quantities depends on the current dataset S. We begin with
the score ∆. We compute the sensitive curve and discuss the breakdown point for
this parameter and then we will do the same for the rank score Γ.

Robustness of ∆ We analyse the robustness of ∆ for a given pair of genes.
Without loss of generality we write this pair as (i, j) and we suppose that pij(C1) >
pij(C2), which de�nes the classi�cation rule expressed in (4). We de�ne the fol-
lowing quantities n1 = |C1|, n2 = |C2|, k1 = |{k ∈ C1 : xi,k > xj,k}| and k2 =
|{k ∈ C2 : xi,k > xj,k}|. The probabilities pij(Ci) are estimated by p̂ij(Ci) = ki

ni
for

i = 1, 2. The score becomes in this case

∆ij(S) =

∣∣∣∣k1n1

− k2
n2

∣∣∣∣.
A new observation is characterised by the vector (x0, y0) and by de�nition the
sensitive curve is de�ned as

SCn(x0) =
1

n+ 1

(∣∣∣∣k1 + I
(
(x0, y0) ∈M1

)
n1 + I(y0 = 1)

−
k2 + I

(
(x0, y0) ∈M2

)
n2 + I(y0 = 2)

∣∣∣∣− ∣∣∣∣k1n1

− k2
n2

∣∣∣∣
)
,

where M1 = {(x, y) ∈ S : y = 1, xi < xj} and M2 = {(x, y) ∈ S : y = 2, xi < xj}.
We can suppose suppose that y0 = 1 (the procedure is similar with y0 = 2). With
the assumption that pij(C1) > pij(C2), the sensitivity curve becomes

1

n+ 1

(∣∣∣∣k1 + I
(
(x0, y0) ∈M1

)
n1 + 1

− k2
n2

∣∣∣∣− k1
n1

+
k2
n2

)
.

Moreover we suppose that the part in the absolute value is positive, so we can
omit the absolute value (need to put a −1 if it is not the case), and �nally the

23

sensitivity curve is given by

SCn(x0) =
1

n+ 1

(
n1I
(
(x0, y0) ∈M1

)
− k1

n1(n1 + 1)

)
.

We see that the sensitivity curve is, in this case, a line with a jump when (x0, y0) /∈
M1. On each side of the jump the curve takes two di�erent values

−k1
n1(n1 + 1)(n+ 1)

and
n1 − k1

n1(n1 + 1)(n+ 1)
.

The graph of the sensitivity curve for the parameter ∆ is shown in Figure 5. We
observe that these values remain bounded (the absolute value never exceed 1), so
the in�uence of one observation is bounded and cannot make the sensitivity curve
explode.

For example on the breast cancer dataset with the assumption that y0 = 1 and
pij(C1) > pij(C2), we obtain the two values 1.44 · 10−5 and −1.44 · 10−4 for the
in�uence function. On the other hand, if we suppose that y0 = 2 but pij(C1) >
pij(C2) still holds, we obtain the values 3.19 · 10−5 and −3.29 · 10−4. Here the
division by n1(n1 +1) (or n2(n2 +1) in the case where y0 = 2) reduces signi�cantly
the in�uence of one observation.

The computation of the breakdown point for the case of the parameter ∆ is not
obvious. Indeed, the parameter ∆ ranges in [0, 1], so the boundary of this param-
eter is {0, 1}. Given a dataset S = {(x1, y1), . . . , (xn, yn)} de�ned as previously. If
all observations from the group C1 except one satis�es the rule R(i, n) > R(j, n)
and no observation from the group C2 satis�es it, then the score would be n1−1

n1
.

If we construct a second dataset S ′ equal to S but where the observation from
the group C1 which didn't satis�ed the rule is replaced by an observation which
satis�es the rule, then the score ∆ will be 1. From the de�nition we presented
about the breakdown point of an estimator, the breakdown point of ∆ would be
0 as the estimator reaches the boundary. But the estimators computed on the set
S ′ still give accurate results about the pair (it provide perfect classi�cation on the
current dataset) and di�er from the previous estimator only by 1

n1
. For this reason

setting the breakdown point of ∆ to 0 is a severe decision. Another de�nition of
the breakdown point should be used here in order to allow more �exibility when
reaching the boundary.

During the computation of the sensitivity curve we came accross an important
property of ∆ which has to be highlighted. As we introduced a new observation
x0, we computed the di�erence of the scores ∆ij(S)−∆ij(S

′). This gives an indi-
cation about the in�uence of one observation on the score .

24

−4 −2 0 2 4

Sensitive curve for Delta

x0i−x0j

S
C

n(
x0

)

●●

●

−k1/n1(n1+1)(n+1)

n1−k1/n1(n1+1)(n+1)

−1.44 *10^−4

1.44*10^−5

0

Figure 5: The red line represents the sensitive curve for the parameter Delta in an
arbitrary dataset. The orange line represents this curve applied on the leukemia
cancer dataset, where we supposed thatpij(C1) > pij(C2) and y0 = 1

If we suppose that k1
n1
> k2

n2
the di�erence is given by

∆ij(S)−∆ij(S
′) =


n1−k1

n1(n1+1)
, if xi,0 < xj,0

−k1
n1(n1+1)

, otherwise.
(6)

Here we supposed that x0 ∈ C1, the result is similar with x0 ∈ C2. In our study we
worked with bootstrap to investigate the robustness of the method. In bootstrap,
the notion of replacing is of interest since the size of the resample dataset is the
same as the size of the original dataset. In this case where only one observation is

25

replaced, the di�erence in the score is given by

∆ij(S)−∆ij(S
′) =



−1
n1
, if xi,0 < xj,0

1
n1
, if k1−1

n1
> k2

n2

2k1
n1
− 2k2

n2
− 1

n1
, if k1−1

n1
< k2

n2
.

(7)

The di�erence 2k1
n1
− 2k2

n2
is, because of the assumption made, quite small. Indeed

we supposed that k1−1
n1

< k2
n2

which is equivalent to 2k1
n1
− 2k2

n2
< 1

n1
. Finally we

can conclude that ∆ij(S) − ∆ij(S
′) ≤ 1

n1
. The case when the inequality is strict

occurs when there is a change in the sign of k1−1
n1
− k2

n2
, i.e. when pij(C1) becomes

less than pij(C2). This shows that the in�uence of one observation of the group
C1 (resp. C1) on the score is bounded by 1

n1
(resp. 1

n2
). And thus the in�uence of

one observation is bounded by max
(

1
n1
, 1
n2

)
.

Robustness of Γ Let us analyse the rank score. As a new observation was
introduced to the dataset, the rank score will take into account a new element and
will be modi�ed. The sensitivity curve of this parameter is

SCn(x0) = 1
n+1

(∣∣∣∣∑yn=Cm

(
R(i,n)−R(j,n)

)
+
(
R(i,x0)−R(j,x0)

)
I(y0=1)

|Cm|+I(y0=1)

−
∑

yn=Cm

(
R(i,n)−R(j,n)

)
+
(
R(i,x0)−R(j,x0)

)
I(y0=2)

|Cm|+I(y0=2)

∣∣∣∣
−
∣∣∣∣∑yn=Cm

(
R(i,n)−R(j,n)

)
|Cm| −

∑
yn=Cm

(
R(i,n)−R(j,n)

)
|Cm|

∣∣∣∣
)
.

It is obvious that this function remains bounded. Indeed the values which allow
to compute the rank score are the rank of the gene expressions within the pro�les.
The ranks within each pro�le will stay bounded and can't be larger than the total
number of genes, so the di�erence between the rank of two genes within one pro�le
will be less than the total number of genes (so it can't become arbitrarily lage).
Furthemore the number of indices on which we sum is �nite. Finally we use the fact
that a �nite sum of bounded number is also bounded. We can use 2(n+ 1)P as a
bound for the sensitivity curve of Γ, where P stands for the number of genes.

In this case again, the notion of breakdown point we presented won't yield any
interesting results. Indeed, the values of Γ ranges in [0,∞[. It is possible for Γ
to reach 0 in the case where all the patient's genes expressions would have the
same ordering in the two groups. A pair of genes that would sati�es this would be

26

unintersting for the classi�cation procedure as the indivual's gene expression have
the same order in both groups. Moreover, the value of Γ can't be made arbitrarily
large as it uses a �nite sum of rank values (also �nite).

2.3.4 Adaptation of the basic notion of robustness for the method

TSP

We de�ned two important notions to analyse the robustness of parameters. In this
paper we are mostly interested in the robustness of the TSP, i.e., we need a notion
to de�ne robustness for a method instead of parameters. In the next section we
will present an adaptation of the sensitivity curve and the breakdown point for
the method TSP.

Sensitivity curve The de�nition for the sensitive curve that we presented is for
the case of a continuous estimator. In our case we want to analyse the in�uence
of an observation on the TSP. The TSP yields a pair of genes, which is a discrete
element in N×N. Adding an observation to the dataset may have di�erent impacts,
it can reduce or increase the accuracy rate of the TSP (if the gene pair matches
or not with the classi�cation rule determined by the TSP), or much worse, it
can produce changes in the results of the TSP by using a di�erent pair for the
classi�cation rule. In this report we are interested in the second case (altough it
is highly related to the loss of accuracy, as we will see later).

We thus adapt the notion of sensitivity curve to that case. As we are intested only
in changes in the resulting gene pair, it is natural to consider two events, either the
pair provided by TSPx0 is the same as for the TSP or the pair is a di�erent one.
We mean by TSPx0 the TSP based on the augmented dataset, i.e., the original
dataset including the observation x0. The sensitive curve will be de�ned in the
following way. We set it to 1 if TSPx0 yields the same result as the original TSP
and to 0 otherwise. We denote the adaptation of the sensitive curve to the TSP
by SCTSP and we de�ne it as

SCTSP = I
(
pair(TSPx0) = pair(TSP)

)
,

where the function pair(·) returns the pair of the TSP and I(·) represents the
indicator function.

This adaptation will be very useful to study the sensitivity of the TSP to a new
observation, as it will compute if the TSP will remain unchanged (SCTSP = 1)
or if another pair of gene will be selected by the method (SCTSP = 0). We will
have to be careful to the fact that SCTSP will be highly correlated to the current

27

dataset (number of observations, number of observations in each group, etc). This
relationship will be analysed and precisely determined as a function of the setting
in a later section.

We note that SCTSP may be easily adapted to the case where we add a set of
observation to the dataset instead of a single observation.

Breakdown point Here we are interested in the breakdown point for the TSP,
and as before we have to adapt this notion to this special case. We de�ne the
breakdown point for the TSP, denoted by BPTSP, as the largest proportion of data
that can be replaced by contaminated observations (will be de�ned more precisely
in the next section) such that the pairs of genes provided by the TSP computed
on the perturbated dataset are the same as the TSP computed on the original
dataset. Mathematically this can be written as

BPTSP =
1

n
max arg max

n′∈{0,1,...,n}
min

Sn′⊂{1,...,n}
I
(
pair(TSPSn′) = pair(TSP)

)
,

where TSPSn′ stands for the TSP computed on the dataset where the elements xi,
with i ∈ Sn′ , have been replaced by arbitrary observations.
Some words to the de�nition. We took the indicator function on the pairs of both
TSP, the one computed on the original dataset and the one computed on the con-
tamined dataset in order to see when the pairs of genes provided by both TSP will
be di�erent.
Second we took the minimum over all possible subsets of indices from {0, 1, . . . , n}
because we want to see if the gene pair will change in any of the case where the
number of contamination is n′. If for one subset from {0, 1, . . . , n} the TSP com-
puted on the contamined dataset di�ers from the original gene pairs, the indicator
function will be equal to 0. Thus we want that the number of perturbations al-
lowed such that the gene pair doesn't change to be lower than the current value of
n′. The value of n′ won't be considered, because for n′ the indicator function is 0.
We note that for n′ = 0 the indicators function is 1 and thus argmax will contain
0 and not n′, so 0 ≤ BPTSP < n′ (for n′′ > n′ the minimum of the indicators
function will be 0 because we can choose the same subset of index as in the case
where the indicator function was 0 for n′ and add a pertubation which let the
indicator function to be equal to 0).
Afterwards we take the max over all possible amounts of contamination such that
the genes pairs don't change (they are given by the arg max function) in order to
have the largest number of contamined data that can be introduced to the dataset
such that the gene pair stays the same as for the original dataset.
Finally, we divide this number by the total number of observations n to obtain a
proportion.

28

2.3.5 Analytical study of the robustness of the TSP

In this part we are intersted in computing analytically the robustness of the TSP.
Firstly we will study the in�uence of a new observation on the pair of genes selected
by the TSP on the original dataset and show that this in�uence depends highly
on the setup of the dataset and express it explicitly as a function of the setup.
Secondly we will give the value of the breakdown point of the TSP using a sample
where this value can be computed easily and we will show that it is equal to 0.

In�uence of a new observation We suppose we performed the TSP on a
dataset and that the gene pair resulting is given by (i, j). Without loss of generality
we suppose that pij(C1) > pij(C2), so for a new observation xn+1, we assign it to
the group C1 if xi,n+1 < xj,n+1 and to the group C2 otherwise.

We set the following notation, n1 = |C1|, n2 = |C2|, k1 = |{k ∈ C1 : xi,k > xj,k}|
and k2 = |{k ∈ C2 : xi,k > xj,k}|.

The score of the pair (i, j) is de�ned by ∆ij =
∣∣ k1
n1
− k2

n2

∣∣.
Suppose the second best TSP is represented by (k, l) (here we suppose that there
are no ties, i.e., ∆kl < ∆ij). We want to see the in�uence on a new observation
on the gene pair yield by the TSP. More precisely we are interested to see when
the pair (i, j) will become ranked second instead of �rst. Suppose we add a new
observation x0 to the dataset and without loss of generality we can suppose that
x0 comes from the group C1. We distinguish two cases

1. xi,0 > xj,0 :
The new observation matches with the decision rules of the current TSP.
Then the TSP will remain unchanged and its score will increase and be
equal to

∆′ij =

∣∣∣∣k1 + 1

n1 + 1
− k2
n2

∣∣∣∣ > ∆ij,∆
′
kl.

The TSP will select again the pair (i, j).

2. xi,0 < xj,0 :
This case is more interesting since the classi�cation rule of the TSP doesn't
match with the relative ordering expression of the new observation. Thus the
computation of the score will be a�ected. Indeed the score for the pair (i, j)
will become lower as we add an individual to the group C1 whose relative
ordering gene expression doesn't match with the classi�cation rule. The score

29

of the pair (i, j) would be given by

∆′ij =

∣∣∣∣ k1
n1 + 1

− k2
n2

∣∣∣∣ < ∆ij.

Now the point is to see if this new individual will make the score of the
second pair bigger. We suppose it is the case (otherwise we would use the
pair that has the higher score and whose classi�cation rule matches with the
relative ordering of the new observation for this pair), i.e., xk,0 > xl,0. Since
the new observation matches with the classi�cation rule of the TSP based
on the pair (k, l) the score ∆kl will increase and be

∆′kl =

∣∣∣∣k′1 + 1

n1 + 1
− k′2
n2

∣∣∣∣,
where k′1 and k

′
2 are de�ned as for the �rst pair but with indices (k, l) instead

of (i, j). The results of the TSP on the original dataset will change if the
score of the second pair (the one for wich the classi�cation rule matches with
the relative ordering of the new individual) becomes higher than the score
of ∆ij, i.e., if ∣∣∣∣k′1 + 1

n1 + 1
− k′2
n2

∣∣∣∣ > ∣∣∣∣ k1
n1 + 1

− k2
n2

∣∣∣∣,
which is equivalent to∣∣∣∣k′1 + 1

n1 + 1
− k′2
n2

∣∣∣∣− ∣∣∣∣ k1
n1 + 1

− k2
n2

∣∣∣∣ > 0.

This is a necessary and su�cient condition such that the pair (i, j) is not
selected anymore by the TSP.

Let us de�ne the fonction

f(k1, k2, k
′
1, k
′
2, n1, n2) =

∣∣∣∣k′1 + 1

n1 + 1
− k′2
n2

∣∣∣∣− ∣∣∣∣ k1
n1 + 1

− k2
n2

∣∣∣∣. (8)

This function depends highly on the setup of the dataset as it depends explicitely
on the variables (k1, k2, k

′
1, k
′
2, n1, n2), which are quantities speci�c to the analysed

dataset.

Here we supposed that the new observation belonged to the group C1. If the
observation came from the group C2 the derivation of the function f would have

30

worked in the same way, but n2 would have been increased to n2 + 1 instead of n1.
Supposing this observation would be unfavorable to the classi�cation rule of the
pair (i, j) (the pair (i, j) would misslcassi�e this observation) but not for the pair
(k, l), then k′2 would be increased to k′2 + 1. We note that adding an observation
in the group C1 or in the group C2 has not the same in�uence on the score when
|C1| 6= |C2|.

We also have to be careful on the fact that for the derivation of f we supposed
that pij(C1) > pij(C2). If this inequality is inversed, the interpretation of favorable
observation to a pair of genes will have a di�erent meaning, in the sense that the
relative order of the gene expressions will be inversed.

We saw that if the new observation's relative ordering gene expressions matches
with the classi�cation rule of the best pair, the TSP selects the same pair. But in
the case where the relative ordering gene expressions of this new individual doesn't
match with the classi�cation rule, then changes in the selected pair of genes may
occur. The pair that could become ranked �rst is one for which the relative ordering
gene expression of this new observation matches with the classi�cation rule of this
pair, otherwise the score of this pair won't be increased and can't become higher
than the best score. In order to have this pair ranked �rst, its score must become
higher than the updated best score (taking into account that a new observation
is added to the dataset). The function f(·) gives information if the selected gene
pair will be subject to changes with the simple condition f(·) > 0 (this means a
di�erent gene pair will be selected).

We can make an extension to this function to �nd how many observations we can
add to the current dataset such that the selected gene pair will remain unchanged.
We consider the worst case, i.e., add observations whose relative ordering genes ex-
pressions don't match with the classi�cation rule but match with the classi�cation
rule of the second best pair (which will become the top ranked one in this case).
We have to split the derivation of this function in two cases as for the derivation of
the function f . First we suppose that the new observations come from the group
C1 and de�ne F1 is de�ned as

F1(k1, k2, k
′
1, k
′
2, n1, n2, x) =

∣∣∣∣k′1 + x

n1 + x
− k′2
n2

∣∣∣∣− ∣∣∣∣ k1
n1 + x

− k2
n2

∣∣∣∣.
Then we seek for the largest positive integer x such that the function
F1(k1, k2, k

′
1, k
′
2, n1, n2, x) stays negative.

31

In the same way, for new observations which come from the group C2 we de�ne
the function F2 with the same parameters as for F1 as

F2(k1, k2, k
′
1, k
′
2, n1, n2, x) =

∣∣∣∣k′1n1

− k′2 + x

n2 + x

∣∣∣∣− ∣∣∣∣k1n1

− k2
n2 + x

∣∣∣∣.
Here we supposed that pij(C1) > pij(C2). The case where pij(C1) < pij(C2) will
be similar but we need to change the indices, i.e., k1, k2, n1 and n2 will become
k2, k1, n2 and n1 respectively.

These functions seek how many observations from group C1 or C2 wich are un-
favorable to the best pair but favorable to the second one, one can add such
that the orignal pair remains ranked �rst, i.e., the largest integer x such that
F1(k1, k2, k

′
1, k
′
2, n1, n2, y) < 0,∀ y ≤ x and equivalently for F2.

One can combine these two functions in order to obtain the largest amount of
data one can add such that the pair of genes remains unchanged in the worst case,
i.e., if the new observations came from the group C1 or C2. We note that if the
sizes of the two groups are equal, then it has no in�uence if the observations come
from C1 or C2. If the groups' sizes are not equal then the worst case will be when
unfavorable indviduals come from the group with the lowest size as its in�uence
will be of size 1

Ci
, i = 1, 2. We can combine the functions F1 and F2 to have

a general form for the largest number of observations one can add such that the
gene pair stays the same. We de�ne the function F , which stands for this quantity,
as

F (k1, k2, k
′
1, k
′
2, n1, n2, x) = max{x : F1(y), F2(y) < 0, ∀ y ≤ x}. (9)

We saw a function that is able to compute if a new observation may produce
changes in the gene pair selected and we also saw an extension to compute how
many observations, which are unfavorable to the top pair but favorable to the
second pair (seen as the worst case), can be added to the dataset without producing
changes to the selected gene pair. We will apply these two functions on the dataset
of leukemia cancer and breast cancer and compare their values with the result we
found when we used the boostrap resampling. We will �rst apply them on the
breast cancer dataset as it will give a direct calculation to compute the breakdown
point fo the TSP and will highlight the e�ect of ties on the choice of the best
pair.

When applying the TSP on this dataset a tie will occur. Indeed the two pair of
genes (498, 2333) and (541, 2343) will be selected with the same score ∆ = 0.82,
the second score Γ enables to break this tie and choose the pair (541, 2343). In

32

this case, if we add only one observation which is favorable to one of the pair but
unfavorable for the second pair, it is obvious that the �rst pair will be selected and
be the only one to achieve the best score. Here we don't consider the second pair
(498, 2333) and see when the score of the third best pair will become ranked �rst.
The third best pair of this dataset is (3621, 5488) with a score ∆ = 0.79. For these
two pairs of genes we have the setting k1 = 40, k2 = 3, k′1 = 40, k′2 = 4. In this
case the group C2 contains less observations than the group C1, so an unfavorable
observation for the top TSP will have a higher in�uence if this observation belongs
to the group C2. Here we are interested in the worst case, so we suppose that
the observation comes from the group C2, the size of the �rst group n1 as well
as the number of people in the group satisfying the rule of the �rst TSP k1 and
of second TSP k′1 won't change, in addition the number of people in the second
group satisfying the rule of the �rst tsp k2 won't change too. However the number
of people in the second group that satis�es the rule of the second TSP will be
incremented by 1 (as the size of the second group). After some computation we
obtain that F = 0. Which means that the second considered TSP will become as
good as the �rst one and a tie will occur. It may happen that this TSP will have an
average ranking di�erence higher that for the �rst TSP and �nally be picked as the
best pair by the TSP. We note that this analyse could have been done in the same
way when we remove one observation from the dataset. This example illustrates
well how adding a single observation might change the pair of genes selected by
the TSP. This highlights the sensibility of the TSP and gives an accurate function
of its sensibility depending on the setting of the analyzed dataset.

Through the computation of the function F on the dataset of breast cancer we
observed that adding an observation that doesn't match with the top TSP but
which matches with the second best TSP might produce changes on the gene pair
that the TSP selects. This means that, in the worst case, the largest proportion of
data we can perturbate such that the TSP produces the same result is 0%, for this
reason the breakdown point of the TSP in, a general case, is 0. It is clear that it
highly depends on the dataset we used, and for this reason we gave an adaptation
of the breakdown point to a speci�c dataset. Moreover the maximum score ∆ was
reached by two pairs, it was intuitively obvious that adding an observation that
matches only with one of the classi�cation rule would have produced changes on
the score ∆ and thus modify the selected pair of genes.

We will apply these functions on the dataset leukemia cancer. The best score is
∆ = 0.98 and is reached by the pair (463, 720), the second highest score is ∆ = 0.96
for the pair (1900, 2234). The values of the parameters for the function of interest
are n1 = 47, n2 = 25, k1 = 46, k2 = 0, k′1 = 0 and k′2 = 24. By the same way as
before we �nd that adding only one observation in any of the groups will modify

33

the selected pair of genes. This can be also quickly derivated from

max

(
1

n1

,
1

n2

)
= 0.04 > 0.02 = 0.98− 0.96 = ∆463,720 −∆1900,2334.

This shows that introducting only a single observation (x0, y0) that doesn't satisfy
the classi�cation rule of the top pair can change the pair selected by the TSP. This
remark allows us to compute the adaption of the sensiitivity curve for the TSP.
Acutally it will depend on the values of x0 for the genes selected. If (x0, y0) will
be correctly classi�ed, then the gene pair selected by the TSP won't change and
we will have SCTSP = 1. By contrast, if (x0, y0) will be missclassi�ed, then the
resulting gene pair will change and then SCTSP = 0.

The mathematical analysis showed that the estimators of the TSP ∆ and Γ were
slightly sensitive to pertubations on the dataset and that the in�uence of a new
observation was bounded by 1

n1
or 1

n2
, depending to which group the observation

belonged to. A solution to deacrease the in�uence of a new observation is to
increase the number of observations in each group, this is a well known problem
in statistics. Indeed with a too low number of observation the parameters are
estimated with low accuracy and small changes in the data can strongly a�ect the
estimations. In the case of the TSP we know that the highest in�uence that an
observation can have on the score ∆ is bounded by max

(
1
n1
, 1
n2

)
, and that on the

score Γ the in�uence is bounded by P
N
.

Finally we observed, by applying the method on bootstraped resamples of the
original dataset, that the TSP may be highly a�ected by pertubations on the
dataset. This sensibility could be measured mathematically and expressed through
the largest amount of "bad" perturbations the TSP could bear without producing
changes in the yielded pair of genes. When we computed the in�uence of one
observation we supposed that there we no ties in the score of the pairs of genes. If
ties were present the sensitivity would have been even bigger. Indeed, the presence
of ties mean that several pairs achieved the maximum score ∆ and the choice of a
the top pair was made through comparing the score Γ. If we add an observation
that satis�es the classi�cation rule only for one of the pair whose score achieved
the maximum score, the TSP will select this pair. Thus, in case of ties, it is enough
to add only one well chosen observation to produce changes on the results of the
TSP.

The bootstrap could indirectly de�ne a robust way to select a pair of genes. Indeed
one can choose the pair that appears the most often over the 500 bootstraps and
use it at the top pair. The bootstrap had shown that this pair is the one that
appears the most often as the dataset is slightly modi�ed and would claim that
this pair is the most robust one over the pairs present in the dataset.

34

One important point of this section is that all the results presented here were
computed on the leukemia and breast cancer datasets. If we would have used
another dataset, the results would have been di�erent. This will be illustrated in
the last section when we will present another dataset to compare the methods.
Indeed the results of precision, explained through the function f , F and the ROC
curve will have a very di�erent form. This is often the case in statistics, the results
of the methods used depend strongly on the dataset we analysed. This make the
analyses di�cult to perform because there are not a best way to proceed.

In the next section we will present a method that is based on the same idea
as the TSP, but is extended in the sense that it can consider several pairs of
genes. This method is supposed to yield a better accuracy and be less sensitive to
perturbations.

3 The �rst extension of the TSP: the k-TSP

In this section we present an extensions of the TSP, namely the k-TSP. As we saw
in the last section, the TSP may change when the training data is perturbed by
adding or deleting few observations. The k-TSP classi�er extends the TSP and
is constructed to deal with this problem as well as providing more accuracy than
the TSP and to yield a more stable classi�er. The k-TSP was introduced by Tan
et al. [2]. It builds a classi�er using k disjoint TSPs that provide the best scores
∆. We can see the k-TSP as an ensemble method, where the goal is to use the
power of many �weaker� rules to construct a �stronger� classi�er. This technique
of combining several predictors is also called boosting. The value of k is chosen
such that the accuracy is maximal. For computational problem we have to set k to
be less than 10. Moreover the classi�cation will be based on a vote, i.e., counting
the number of predictions for each classes for each classi�ers and choose the group
that obtained the most votes. In order to select only one class we have to require
k to be an odd number. There are di�erent ways to choose k, in this paper we
used cross-validations on the dataset and selected the k that produced the highest
accuracy. If k = 1, then it is obvious that the k-TSP is equivalent to the TSP as
it selects only one pair of genes, namely the one with the highest score ∆.

The �exibility provided by the k-TSP might be of great interest for follow up
studies as it considers more than two genes that are of particular interest and
might give a better indication to which genes should be considered.

35

3.1 k-TSP

In this section we will explain how the k-TSP works as a direct extension of the
TSP. We will show that it is also based on the two same scores ∆ and Γ, and
then we explain how it classi�es a new observation. Afterwards we will study
its robustness, which is quite straightforward from the TSP, we will also study
its sensibility to changes in the dataset in the same way as for the TSP. We will
use bootstrap to obtain di�erent samples, perform the k-TSP on it and analyse
the changes in the results. We will repeat this procedure for several datasets and
compare the results with those obtained for the TSP.

3.1.1 De�nition of k-TSP

The k-TSP is a direct and easy extension of the TSP. The main feature that di�ers
for these two methods is the number of TSP included in the �nal prediction. It is
intuitive to select the k best pairs to construct the k-TSP as we want the k-TSP
to reach a high accuracy. To avoid high correlation between the selected pairs, we
require the genes in the dataset to appear at most in one pair in the k-TSP. This
imposes the k-TSP to be combined with more di�erent genes and thus, in case
where measurement errors occur in the dataset, avoid the k-TSP to be quickly
corrupted.

The �rst step is to construct an ordered list of all possible gene pairs where the
�rst one stands for the best one, the second one for the second best and so on. We
must �rst compute ∆ij and Γij as de�ned in (2) and (3) for all possible pairs of
genes (i, j). We sort them in descending order with respect to the value of the �rst
criteria ∆, and if ties occur we use the criteria Γ to break them. We take the top
pair (i, j) as being the �rst TSP. We remove all pairs that involve either the gene
i or the gene j from the list created in the previous step and select the second pair
as beeing the second TSP. We remove all the pairs that involve at least one of the
gene used in the second TSP. We repeat this procedure until we obtain a list of k
TSP. This list is de�ned as the k-TSP.

The number of pairs k will be determined by cross validation with the restriction
that is has to be an odd number in order to break ties in the majority procedure
and to be less than 10 for computational easiness.

Moreover we restricted k to be less than 10 for computational speed. The number
of TSPs k is determined by cross validation. More precisely, the data set will be
separated into a training set and a test set wihout overlapping. We perform a
k-TSP on the training set for every possible value of k and compute their accuracy

36

on the test set by computing their prediction error. We proceed in this way for
several separation of training and test set (as in usual cross validation procedure)
and �nally average the error prediction for each of the possible k. We choose the
value that minimizes the error prediction and perform a �nal analyse on the whole
data set with the selected value for k.

In our study we used 10 fold cross validation, this means we seperated the dataset
into 10 subsets without overlapping, preformed a k-TSP on the set combined
of 9 subsets and computed the prediction error on the remaining subset. We
repeated this on all possible choice of 9 subsets and �nally averaging the prediction
error.

Table 1 present the algorithm to perform a k-TSP on a data set for a given k. This
algorithm is easily adapted to the cross validation procedure to determine k.

Algorithm k-Top scoring pair

Input: The expression gene values for each observation,
the group to which it belongs, denoted by S,
and the number of TSPs k.

Output: k pairs of genes that achieved the best score ∆
(genes can appear only in one pair)

1 De�ne a list called k-TSP that will contain the chosen TSP methods
2 Compute the values of ∆ij and Γij for all pairs of genes (i, j),

where 1 ≤ i 6= j ≤ P.
3 Make a sorted listM of all pairs of genes such that (i, j) ≺ (i′, j′)

de�ned as either ∆ij > ∆i′j′ or ∆ij = ∆i′j′ and Γij > Γi′j′ .
4 Repeat k times:

Pick the top pair (i, j) and put it into the list k-TSP.
Remove every pairs in the listM which involves either i or j.

5 Return k-TSP.

Table 1: Algorithm 1 k-Top scoring pair

We used the package of the TSP in R [6] as a base to create new functions that allow
to compute the k-TSP on this software. We extended the code C in a way that
makes it able to yield k pairs of genes, where the k is given as a parameter of the
function. We extended all the functions available in the package, as the function
plot, summary, prediction,etc to deal with the new class of created objects, namely
the class k-TSP. We also made an extension on the overall method to be able to

37

deal with the presence of NA in the datasets. The initial package doesn't take
it into account, indeed where the comparisons R(i, n) < R(j, n) are not possible
because of the presence of NA the method goes over it but uses in the computation
of the score the division by n1 or n2 depending on which group the observations
belongs too, instead of dividing by the number of time the comparison was possible.
This produces a bias in the computation of ∆, and can give lower score to pairs of
genes that contain NA which would have been better if the NA weren't considered.
In our functions we corrected this by dividing through the number of comparisons
that were possible (i.e. when no NA are present) within each group. We also
modi�ed the functions plot, summary, prediction, etc to deal with the presence of
NA and to produce coherent results. The code is available in the Appendice and
maybe a package will be available soon on R. To validate our method, we computed
it for the dataset of leukemia and prostate cancer and compared them with the
results found in [1] and [2]. The results are summarized in Table 2. Our results
are quite similar to the one obtained in other papers. This allow us to validate
our method. We note that the values of k are computed through crossvalidation
and thus they possess a random part (see next paragraph for details about the
crossvalidation). This can lead to di�erences, as for the prostate cancer dataset.
By contrast, the correct rate prediction is less sensitive to the partition made from
the dataset in the crossvalidation procedure.

Tan et al. Yoon & Kim Our implementation

k CRP k CRP k CRP
Leukemia 9 0.95 5 0.94 9 0.97
Prostate 1 0.95 5 0.90 1 0.93

Table 2: Comparisons of the results of the k-TSP computed on the datasets
leukemian and prostate cancer with the results found in the articles [2] and [1].
The abreviation CRP stands for "correct rate prediction".

To determine the value of k that we will use to compute the k-TSP, we used 10-fold
crossvalidation. The 10-fold crossvalidation works as follows, �rst it seperates the
dataset into 10 non overlapping subsets of approximately equal size (≈

⌊
n
10

⌋
, where

n is the size of the dataset and bmc stands for the largest integer less than m). We
choose one of these 10 subsets as the test set and we merge the 9 remaining subsets
to compute a k-TSP with k = 1, 3, . . . , 9. For each of these k values we apply the
k-TSP on the test set (the chosen subset) and compute the error prediction rate
for this value of k. This gives an error prediction rate for each of these k. We
choose another subset to be the test set and proceed in the same way as previously.
We repeat this operation until we have chosen all the subsets as test set. We have
�nally 10 error prediction rates for each of the k values. For each k we take the

38

mean over all error prediction rates calculated for this k and set it as the total
error prediction rate. We choose the k that provided the lowest error prediction
rate and apply the k-TSP on the full dataset with the chosen k.

This method is widely used to estimate parameters. It has the advantage that
the user doesn't require a supplementary test set to test the model �tted on the
training set. It allows the user to have also an estimation of the error prediction
rate for the �tted model. One must be careful to the fact that this estimation is
overestimated as the �nal model will be based on a bigger dataset and thus provide
an higher accuracy.

It is arbitrary to use 10-fold or 5-fold crossvalidation. There exists also the special
case of the n− 1-fold crossvalidation, known under the name of the leave-one-out
crossvalidation (LOOCV). The more subsets we use to perform the crossvalidation
the less biais will have the estimation of the prediction. But the variance will
increase with the number of subsets we divide the dataset into. Indeed the test
set will become small and the estimation will be based only on few estimations.

In this paper we chose to work with the 10-crossvalidation, because it provides a
good trade-o� between the unbiasedness and the variance of the error prediction
rate.

3.1.2 Classi�cation of a new observation

The k-TSP was fairly quickly de�ned from the TSP, the second step is to de�ne
how to classi�e a new observation. This is achieved through the classi�cation rule
of each TSP contained in the k-TSP. Then we use the majority procedure to select
the group to which a new observation will be assigned. For a new observation,
we compute the prediction for each TSP in the k-TSP and count how many times
they predicted the class C1 and C2. We choose the class that obtained the more
votes. In order to express this mathematically we de�ne the following function for
a new observation xn+1

hl(xn+1) =

{
C1, if xi,n+1 < xj,n+1

C2, otherwise
, (10)

where l stand for the index of the pair (i, j) in the list of the the k-TSP, l =
1, 2, . . . , k. We supposed that pij(C1) > pij(C2), we have the opposite situation if
pij(C1) < pij(C2).

39

We de�ne the vote of a single pair to a class as

I(hu(xn+1) = Ci) =

{
1, if hu(xn+1) = Ci
0, otherwise

. (11)

The �nal prediction is given as a sum of all single predictions, and we write it
as

yn+1 = hk-TSP(xn+1) = arg max
i∈{1,2}

k∑
u=1

I(hu(xn+1) = Ci). (12)

We observe that if k is an even value, the prediction can be inde�nite and predict
the new observation to be in both classes. For this reason we restrained k to be
an odd number, to get always a clear prediction.

Application of the k-TSP on the leukemia cancer dataset Figure (3)
presents the results of the k-TSP applied on the leukemia cancer dataset. We
computed k with 10-fold crossvalidation, it results in choosing k = 9 and the error
prediction rate was around e = 0.028.

The results of the k-TSP on the original dataset have little similarities with the
results of the TSP on the bootstrap. Indeed only the �rst pair of genes of the k-TSP
appears on the bootstrap of the TSP. The graph of the frequency of appearance
of the genes pairs in the bootstrap of the TSP shows that the gene 720 appears in
multiple pair.

k-TSP Indices Scores
TSP 1 463/720 0.98
TSP 2 923/1900 0.96
TSP 3 2318/2614 0.96
TSP 4 735/2019 0.94
TSP 5 1250/2185 0.94
TSP 6 942/2130 0.94
TSP 7 331/838 0.94
TSP 8 902/1972 0.92
TSP 9 617/2460 0.92

Table 3: Result of the k-TSP computed on the leukemia cancer dataset. The
10-fold crossvalidation provided k = 9. The TSP are ordered with respect to their
score, in case of tie break the rank average score is used.

40

The k-TSP allows a gene to appear only in at most one pair of genes in the k-TSP.
For this reason, once the gene 720 is used in a pair, it can't be used again to create
the other pairs present in the bootstrap of the TSP. The top pair which involved
the gene 720 was (463, 720) for both the TSP and the k-TSP.

The goal of allowing a gene to appear only in at most one pair was to reduce
the correlation between the genes pairs and to prevent against outliers. Indeed if
the values of a gene for an individual are aberrant (or unvailable), this procedure
avoids having to use this gene in several pairs. On the other hand, this restriction
has the disadvantage to eliminate genes that were important only when compared
with a gene present in a previous pair. For example, among all the genes that
were highlighted on the bootstrap that involve genes 720, none appears again in
the k-TSP.

3.2 Robustess of k-TSP

We saw that the k-TSP was de�ned through an ordered list where the componants,
which are pairs of genes, were ordered through their scores ∆ and Γ. As for the
TSP it is obvious that one factor that may in�ue on the robustness of the k-TSP
is the robustness of the parameters ∆ and Γ. This point was already analysed in
a previous section and acts here similarly.

As the list is de�ned through multiple calculations of TSPs, it is evident that
the robustness of the k-TSP will be in�uenced by the robustness of the TSP. We
saw that the TSP was sensible to perturbations of the dataset. As the k-TSP is
an ensemble of TSPs, a �rst intuition is to say that it will also be sensitive to
perturbations. But if we analyse the k TSPs we choose to build the k-TSP, we
might assume they are the best k one, and that the k + 1-th best TSP (which is
not selected) will have a much lower score that the k-th best one, and thus, even
if a large amount of perturbations occurs, the k-TSP won't select the k + 1-th
best pair and still contains the same k pairs. This highlights a �rst property for
robustness of the TSP: the score of the "worst" TSP in the list of the chosen TSP
has to be "far away" from the best score over the non selected gene pair. We will
come back to this point in a later subsection.

In this section we will analyse the robustness of the k-TSP. We will proceed in
the same way as for the TSP. First we apply the k-TSP we implemented on the
leukemia cancer dataset. Then we perform 500 bootstrap resamples of this dataset
and for each of these resamples we compute the k-TSP on it. We will study how
the number of TSPs chosen k as well as the pairs of genes chosen change over
the boostraped dataset. In the second part we will analyse mathematically the

41

robustness of the k-TSP. We will brie�y discuss the notion of sensitivity curve and
of breakdown point for the k-TSP as it will be a direct deduction from the results
on the TSP. Then we will investigate the in�uence of adding a new observation
on the results yield by the k-TSP. This will have some similarities with what was
made before for the TSP, and the results will be analogue.

3.2.1 Study of robustness through simulation

We performed 500 bootstraps resamples of the leukemia cancer dataset and on
each of these resamples we computed a k-TSP, where k was computed through
10-fold crossvalidation. For the analysis of the results we proceed in the same way
as for the TSP. First we look for the frequency of appearance of the genes among
the 500 computed k-TSPs. Second we compute the frequency of appearance for
the pairs of genes. Afterwards we present an histogram of the values of k that
were selected over the bootstraps. Finally we analyse which k-TSPs appeared the
most often among the bootstraps.

Figure 6 shows the frequency of appearance of the genes in the chosen pairs of
genes among the 500 computed k-TSPs. We see that much more genes appear,
this is clearly explained by the fact that the k-TPS uses 2k pairs and the TSP only
2. There are 2 genes that appear much more often than the others, the genes 720
and 1900. The gene 720 appeared often in the results of the TSP too, but the gene
1900 appeared much more rarely. If we look in Table 3, we can see that the gene
720 is present in the top pair and the gene 1900 in the second pair. When applying
the TSP only the �rst pair will be selected, but, with the k-TSP, more pairs can
appear and thus gives more chance to the second, third, etc. pair to appear. Based
on the TSP, the gene 1900 would have been considered only as little important as
it appeared only 5% of the time. Whereas, based on the k-TSP, this pair would be
considered as very important, as it appears the most often with the gene 720. We
can distinguish a second cluster composed by the genes 463, 735, 923 and 1250.
The �rst three genes of this cluster appeared also quite often in the TSP, but the
fourth one, the gene 1250, never appeared. The k-TSP would make the gene 1250
to be considered as important to detect the disease. However, it wouldn't have
ever been considered when using only the TSP. The rest of the genes that had an
important frequency of appearance in the k-TSP were not considered by the TSP.
Finally, we note that the gene 923 that appeared in the TSP, is not of importance
in the k-TSP, even if it appears in the second best pair. The reason is that this
gene is only useful when it is compared with the gene 1900, when the gene 1900
is not available (may be already used in another pair) the usefulness of this gene
drops.

42

0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

Frequency of single genes
in the k−tsp for the leukemia cancer dataset

Genes

F
re

qu
en

cy

463 923

1250

661
902

735

720

2318

1900

682
24601972

2614

Figure 6: Frequency of appearance of the single gene in the pairs selected by the
k-TSP over 500 bootstrap resamples from the dataset Leukemia cancer, only
the genes whose appearance were above 8% were hold.

We can conclude that the k-TSP provides generaly almost all genes that were
present in the TSP, but some exceptions can occur. It makes also genes that
weren't important for the TSP much more important. Actually, the idea of the
k-TSP is to deal with more than only one pair of genes, and to make other genes
also of importance to detect the disease. As we can see in this case, the k-TSP will
allow the user to obtain more gene related to the disease that wouldn't have been
considered by the TSP, even by applying a bootstrap procedure. This highlight
one of the advantage of the k-TSP, to be more �exible and thus can provide more
and better genes that would be linked to the disease.

We analyse now the appearance of the pairs of genes over the bootstraps. Figure 7
presents the frequency of appearance for the pairs of genes present in the k-TSPs

43

over the 500 bootstraps resamples. The pair (463, 720) appears as being the top
one and appears in about one third of the k-TSPs. The second pair (923, 1900)
appears around 17% of the time. Then a cluster of pairs appears, whose appearence
are between 7−13%. Although if for the TSP a lot of pairs including the gene 720
appeared, this is not necessarily the case for the k-TSP as the graph shows.

●

●

●

●

● ●

●

●

●

0 2 4 6 8 10

0.
1

0.
2

0.
3

0.
4

Pair of genes

F
re

qu
en

cy

Frequency of appearance of gene pairs
in the k−tsp for the leukemia cancer dataset

463/720

923/1900

617/2460

902/1972
735/2501

720/1723

2318/2614

1250/2185

942/2130

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 7: Frequency of appearance of the pairs of genes selected by the TSP over
500 bootstrap resamples from the dataset Leukemia cancer, we ploted only pairs
whose frequency were at least 5%. The pair with the red dot represents the pair
selected by the k-TSP on the original data set.

An important point is to look on the values of k among the bootstrap resamples.
We wish that k stays stable, this would be a good point to present the k-TSP as a
robust method. Figure 8 shows a histogram of the values of k that were computed
through 10-fold crossvalidation over the 500 bootstraped datasets. Unfortunately
k varies a lot, and ranges over all possible values, i.e., all odd numbers between 1
and 9. The two most frequent values for k are 3 and 5, however the frequency of

44

having k = 3 is higher. So the most probable value for k is 3. Now, the point is
which k TSPs one would choose to construct the k-TSP.

Histogram of the values of k in the k−tsp
for the leukemia cancer dataset

k

F
re

qu
en

cy

1 3 5 7 9

0
0.

2
0.

4
0.

6
0.

8
1

Figure 8: Histogram of the values of k computed by 10-fold crossvalidation over
the 500 bootstraps on the leukemia cancer dataset.

Over the repeated computations of the k-TSPs on the bootstraped resamples, the
k-TSPs that appeared the most often was formed by only one pair of genes. This
resulted to be �nally a TSP. This problem is caused by the sensitivity of the k
TSPs present in the k-TSP. As we saw in a previous section, small perturbations
can strongly a�ect the pair of genes yield by the TSP. The k-TSP being formed by
several TSPs also possesses this property. Again this result of sensibility depends
highly on the dataset we analyse. For instance, if we would consider a dataset
where only 3 pairs would be "good" for classi�cation and all the other genes would
have a score of 0, then it is obvious that the k-TSP will select either one pair or
the three pairs. And, in this case, the result could be much more stable, altough

45

it could easily jumps from 1 to 3 pairs when small perturbations occurs. We will
study this sensitivity in the next section.

This problem of sensibility causes too much variations in the k-TSPs. And thus
the k-TSPs with k big will have less chance to reappear in the bootstrap (we
didn't considered the order in which the TSPs were ranked). This causes that the
k-TSP that appeared the most often were �nally simple TSPs. Table 4 presents
the k-TSPs that appeared the most often over the bootstraps. These pairs were
selected by the k-TSP computed on the original dataset, but one of them were
not ranked as one of the top pairs. Indeed the pairs (463, 720), (923, 1900) were
ranked �rst and second respectively, but the pairs (902, 1972) and (617, 2460) were
ranked eighth and nineth. If we look on the score of the pair chosen by the
original k-TSP, we see that the third one (the one that was expected to appear
the most after the �rst two) had a score of 0.96 and the eighth one a score of 0.92.
Changing one observation in the second group that was favorable to the third pair
but unfavorable to the eighth pair into an observation that would be favorable
to the eighth pair but unfavorable to the third pair would increase the score of
the eighth pair by 0.27 and lower the score of the third pair also by 0.27 (= 1

n2
).

This results in an higher score for the eighth pair than for the third one. Thus,
changing one observation can have a big in�uence on the pair we choose, even for
the k-TSP.

k-TSP Indices
k-TSP 1 463/720
k-TSP 2 923/1900
k-TSP 3 902/1972
k-TSP 4 617/2460

Table 4: The k-TSPs that appeared the most often over the bootstraps.

This example shows that the k-TSP can change a lot when perturbations occur.
Indeed, we computed on the original dataset a k-TSP with k = 9 and saw that, over
the bootstraps, this value changed a lot. Nevertheless, the pairs of genes provided
by the original k-TSP were good, in the sense they were highly correlated with the
disease. The bootstrap makes this assumption even stronger as almost all the pairs
of genes of the orignal k-TSP are present in the computation over the bootstraps.
Indirectly, we presented two methods to perform the k-TSP. The �rst one, the
one we presented, was to use crossvalidation on the original dataset to determine
k and then to apply the method with the selected k on the orginal dataset. The
second was presented as we performed the bootstrap resample. Indeed one can use
bootstrap resample and perform a k-TSP on each of these (k is chosen through
10-fold crossvalidation on the bootstraped dataset). Then one chooses the value of

46

k that appeared the most ofen over the boostrap and chooses the k pairs of genes
that appeared the most often to form the k-TSP. For example, on the leukemia
dataset, we would choose k = 3 with the pairs of genes (463, 720), (923, 1900) and
(902, 1972).

Figure 9 shows an estimation of the ROC curve for the k-TSP on the Leukemia
cancer dataset. We proceeded in the following way. First we simulated 200 boot-
strap resamples of the original dataset. On each of these resample we performed
a k-TSP, where k was chosen by 10-fold crossvalidation on the bootstrap sample.
At each step we used the individuals out of the bootstrap resample to compute a
ROC curve. In this way we obtained 200 curves representing 200 ROC curve. We
averaged them and used boxplot to present the variability of the sensiblity at the
chosen point of the speci�city.

●●

●
● ● ●

●
●

●

ROC curve of the k−TSP with M=0.25

1−Specificity

S
en

si
bi

lit
y

AUC:

median = 0.95

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

●

●

●

●●●
● ●

●
●●

●● ● ●●● ● ●● ●●● ●● ●●● ●●●●●● ●● ●● ● ●● ●●●●● ● ●●● ●●● ●●●●●●

●

●

●

●
●
●

●

ROC curve of the k−TSP with M=0.5

1−Specificity

S
en

si
bi

lit
y

AUC:

median = 0.90

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

●

●
●

●

●

●

●
●

●● ●

●
● ●●

●●● ●● ●● ●●●●●● ● ●● ●● ● ●● ●● ●● ●●● ●● ● ●●●●● ●●●●●●

●

ROC curve of the k−TSP with M=0.75

1−Specificity

S
en

si
bi

lit
y

AUC:

median = 0.92

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

●

●

●

●
●

● ●● ● ●
●● ●● ● ●● ● ●●●● ●●● ● ● ●● ●● ●●●● ● ● ● ●● ● ● ● ●● ●

●

●

●

●

●●●
● ●

●
●●

●● ● ●●● ● ●● ●●● ●● ●●● ●●●●●● ●● ●● ● ●● ●●●●● ● ●●● ●●● ●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve of different values of the threshold
on the voting mean

1−Specificity

M
ed

ia
n

of
 th

e
se

ns
iti

vi
ty

●

●

●

●●●
● ●

●
●●

●● ● ●●● ● ●● ●●● ●● ●●● ●●●●●● ●● ●● ● ●● ●●●●● ● ●●● ●●● ●●●●●●

●

●

●
●

●

●

●

●
●

●● ●

●
● ●●

●●● ●● ●● ●●●●●● ● ●● ●● ● ●● ●● ●● ●●● ●● ● ●●●●● ●●●●●●

●
●

●

●

●
●

● ●● ● ●
●● ●● ● ●● ● ●●●● ●●● ● ● ●● ●● ●●●● ● ● ● ●● ● ● ● ●● ●

●

●

●

●

M=0.25
M=0.5
M=0.75

ROC curve for k−TSP with different threshold on the voting mean
for the leukemia cancer dataset

Figure 9: ROC curve of the k-TSP on the leukemia cancer dataset computed on
200 bootstraps and with di�erent values of threshold on the mean of the votes.

47

For the k-TSP we computed the ROC curve as follow. First we chose M ∈
{0.25, 0.5, 0.75}, this stands for the point of decision in the voting system. For
example, if M = 0.25, this means that at least 25% of the TSPs present in the
k-TSP need to classify an individual to the group C2 in order that the k-TSP clas-
si�es this individual in the group C2. And equivently for M = 0.5 and M = 0.75.
We note that the original k-TSP is a special case when M = 0.5. Once M is
chosen, we must construct a sequence of points de�ned by

C =
{
− A+ c ∗ A| c = 0,

a

2 ∗ A
,

2 ∗ a
2 ∗ A

, . . . , 2 ∗ A
}
,

where A = max
(i,j)∈k−TSP

|Ri − Rj| and a is a smoothing parameter. The notation

(i, j) ∈ k − TSP stands for all the pairs of genes selected by the current k-TSP.
We will perturbate the rules of all TSPs presents in the computed k-TSP as fol-
lows

Ri < Rj + C, C ∈ C, ∀(i, j) ∈ k − TSP,

or Ri > Rj + C,

depending on the original de�nition of the classi�cation rule.

For each C ∈ C we compute the sensitivity and the speci�city of the individuals out
of the current bootstrap. Changing C will give di�erent values of the sensibility
and the speci�city. This will allow us to compute a ROC curve on the current
bootstrap. If several values of the sensibility appear for the same speci�city we
take the mean of the sensibilities.

The sequence C was constructed such that all the perturbated rules were able to
achieve a sensiblitiy and a speci�city of 0, i.e., to join the two extreme points of
the ROC curve. The parameter a was chosen such that the sequence C contains
enough points to make the ROC curve as smooth as possible.

The graphs show that the ROC curves on the leukemia cancer dataset for di�erent
values of M are roughly equivalent. We note that, for M = 0.25, the sensiblity
increases faster than on the other graphs. Comparing these graphs with their
respective AUC (area under the curve) makes the value ofM interesless. However,
we will see later that the choice of M can have an in�uence on the ROC curve.
If we consider the median of the sensitivity for di�erents choices of M , we see
that it varies between 0.90 and 0.94 with a mean around 0.93. For the TSP we
found that the median of the sensibility was equal to 0.95, which is a little bit

48

higher. Nevertheless this di�erence is not signi�cative. Indeed if we look on the
boxplot of the ROC curve, we note that the variance is big enough to explain this
di�erence.

Along this subsection we saw how the k-TSP could be sensible to perturbations
on the dataset and that these pertubations could cause changes on the chosen pair
of genes as well as the number of pairs we choose. We will analyse this problem
more precisely in the next subsection.

3.2.2 Analytical study of the robustness

The goal of this subsection is to analyse the sensibility of the k-TSP to pertur-
bations of the dataset. There are mainly two points of interest. The �rst one is
how the pairs of genes yield by the k-TSP may change when perturbations in the
dataset occur. The second is the number of pairs of genes yield by the k-TSP. The
�rst point is similar to the study we made on the sensibilty of the TSP as the pairs
chosen depend on their score. The perturbations will principaly have an impact on
the scores and thus produce changes in the ordered list computed in the algorithm
1. This will make the k-TSP to select di�erent pairs of genes. The second point is
much more di�cult to analyse. Indeed, the value k is chosen by crossvalidation on
the dataset, which makes the mathematical analysis of the sensibility quite hard.
We will birie�y show the problem dued to this crossvalidation and give some clues
to solve it.

First we discuss the notion of sentivity curve. We de�ne it in the same way as for
the TSP

SCk−TSP = I
(
pair(k − TSPx0) = pair(k − TSP)

)
,

where the function pair(·) returns the pair of the k-TSP, I(·) represents the indi-
cator function and k − TSPx0 stands for the k-TSP on the dataset including the
observation (x0, y0).

The sensivitiy curve for the k-TSP will have the value 1 if the results don't change
when adding the observation x0 and the value 0 if changes occur. It is obvious
that if k changes, then SCk−TSP = 0.

The value of the breakdown point is determined straighforward from the break-
down point of the TSP. Indeed, the TSP is a special case of the k-TSP when k = 1.
Thus the breakdown point of the k-TSP can be bigger than the one of the TSP
and, for this reason, it is also 0.

49

Sensibility of the chosen pairs of genes We begin to analyse the sensiblity of
the chosen pairs of genes as the dataset is perturbated. We suppose k to be �xed
and de�ne the following quantities. We de�neM as a list of pairs that are selected
by the k-TSP, actually this are the gene pairs present in the k-TSP. We denote
by (i, j) the pair from the list M with the lowest score ∆. Let (o, p) represents
the pair with the highest score ∆ on the set of the pairs that weren't selected
by the k-TSP (we have (o, p) /∈ M). The pairs (i, j) and (k, l) are actually two
consecutive elements of the list of the ordered pairs with respect to their scores
∆ and Γ de�ned in the algorithm 1. The pair (i, j) represents the point where
the k-TSP stops to select pairs. The analyse of the sensibility of the k-TSP will
be made in the same way as for the TSP. We add a new observation (x0, y0) to
the dataset and analyse the changes produced on the results of the k-TSP. We use
the following notations, n1 (resp. n2) is the number of observation in the group
C1 (resp. C2). And lim stands for the number of individuals in the group Ci that
satis�es the classi�cation rule of the m-th pair of genes of the k-TSP, m = 1, . . . , k
and i = 1, 2. The score ∆ is de�ned also by

∆u,v =

∣∣∣∣ l1mn1

− l2m
n2

∣∣∣∣,
where (u, v) is the m-th pair of M. Let us suppose that y0 = 1 and that the
individual (x0, y0) satis�es the classi�cation rule of the TSP based on the pair
(o, p). The score of this pair won't decrease and may be selected by the k-TSP. In
order to be selected by the k-TSP its score ∆ has to become bigger than at least
one of the scores of the genes pairs present in the original k-TSP. The pair (o, p)
will be selected by the k-TSP if the inequality

∆(x0)
u,v > min

(i,j)∈M
∆

(x0)
i,j

is veri�ed, where ∆
(x0)
i,j stands for the score of the pair (i, j) on the dataset con-

taining the observation (x0, y0).

It is obvious that if the new individual (x0, y0) satis�es all the classi�cation rules
for the pairs inM, the ordered list of the pairs computed by the algorithm won't
change and this observation won't have any in�uence. On the other hand, if for one
pair the new observation doesn't satisfy the classi�cation rule then its score will
decrease and it is possible that this pair of genes will be replaced by the pair (o, p)
and the list will be modi�ed. This will result in changes in the pairs yield by the
k-TSP. To determine if the addition of a new observation will produces changes,
one must determine the pair within the listM with the lowest score ∆ for which
the new observation would be missclassi�ed. And then apply the function (8) for

50

this pair and the pair (o, p) and study the sign of this function. This determines
if changes in the results of the k-TSP will occur or not. If we are interested in
the worst case, i.e., the lowest quantities of data one can add such that the k-TSP
remain unchanged, we must use again a function de�ned previously for the TSP.
Indeed, we saw that changes occur if the score of the top pair over the set of non
selected genes pair will become higher than one of the pairs in the set M. The
easiest is to choose the last pair ofM as it will be the one with the lowest score.
The number of observation that we need to add to produce changes is given by
applying the function (9) on the pairs (o, p) and (i, j).

We saw that the sensibility of the k-TSP to perturbations in the dataset possesses
similarities with the sensiblity of the TSP, this is obvious as the k-TSP is composed
of k TSPs. The sensiblity of the k-TSP is highly related to the properties of the
dataset. Indeed, we saw that it depends on the values of the score ∆ for the pair
in the list M and the best pair that doesn't belong to M. This remark will be
used in the next subsection to derive a new way to determine the value k to make
the k-TSP less sensitive to pertubations in the dataset.

Sensiblity of the number of chosen pairs The number of chosen pairs is
given by k. In our case we de�ned k through crossvalidation, i.e., if we de�ne S
as the entire dataset, we divided it into V1, V2, . . . , V10 non overlapping subsets of
approximately equal size, see section 3.1.1 for more details on the crossvalidation
procedure. The value for k was chosen as follows

k = arg max
k=1,3,5,7,9

{
1

n

10∑
i=1

1
(
predict

(
k-TSP(−Vi)

)
(Vi) = grp(Vi)

)}
,

(13)

where k-TSP(−Vi) represents the k-TSP based on the set S \ Vi, the function
predict

(
k-TSP(−Vi)

)
(Vi) represents the prediction of the observation from Vi based

on k-TSP(−Vi). Finaly the function grp(Vi) gives the group to which the individual
in Vi belongs. We seek k that maximizes the correct rate prediction.

If we add a new individual, one should look for its impact on the computation of
k-TSP(−Vi) when this individual doesn't belong to the subset Vi and to its impact
on the correct rate prediction when it belongs to Vi.

51

3.3 Another way to choose k

In this subsection we present another approach to determine the value of k. We
discussed in a previous paragraph how the distance between the score of the last
element inM and the highest score for the pairs not inM is related to the sen-
sibility of the k-TSP. Indeed, the lowest this distance was, the fewest observations
were needed to produce changes in the selected pairs of genes (here the obser-
vations were chosen in the worst case, i.e., favorable for the pair out of M and
unfavorable for the pairs in M). For k = 1, 3, 5, 7, 9, we de�ne Mk the ordered
list of pairs of genes selected by the k-TSP. Let us denote the distance between
the last pair from Mk and the best pair not inMk by distk. The idea is to choose
k such that distk is maximum.

Figure 10 shows a plot of the score for the 9 best pairs computed on the leukemia
cancer as well as the distance distk for k = 1, 2, 3, 4, 5. The highest score ∆ is 0.98
and then slowly drops until 0.92 for the nineth pair. There are no big jump were
we could clearly choose the value of k. The second graph shows the values of these
jumps where it would be possible to choose a value of k such that the prediction
of observations are clearly de�ned (k is an odd number). The two �rst points are
the highest one, it is not obvious on this graph that the second has a higher value
than the �rst one. If we choose k such that the distance distk is maximum, we
would choose here k = 3.

Figure 11 shows the results of the k-TSP applied on the 500 bootstraps used to
obtain the previous results on the leukmia cancer dataset, in this case we used the
alternative way to select k. The results of the frequency of appearance for the single
genes are roughly the same. However, the results of the frequency of appearance
of the gene pairs are slightly di�erent. The frequency for the pair (463, 720) went
down by 5%, from 0.35 to 0.3. The frequency for the pairs (923, 1900), (902, 1972),
(2318, 2614) and (942, 2130) also decreases by 5%. Moreover, there are less pairs
of genes whose frequency exceeded the chosen threshold of 8%. This is mainly
explained by the histogram of the values of k. Indeed, we see on the last graph
that the number of times that the methods chose lower k increased. The frequency
of k = 1 doubled, from 20% to 40%. For all the other values it went down, for
example, for k = 3 from 30% to 20%. The decrease of the frequency of appearance
for the pairs of genes is directly explained by the fact that lower values for k
were chosen. Indeed, if k is lower this means that less pairs are present along the
bootstraps and results in lower frequency.

The histogram of k shows that the values of k are more stable, and lay 60% of the

52

●

● ●

● ● ● ●

● ● ●

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Values of Delta for the 9 top ranked pairs

i−th pair

D
el

ta

● ●

●

●

●

1 2 3 4 5

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Plot of the values dist_k against k

k

di
st

_k

Plot of the values of Delta for the 9 best pairs and plot of dist_k
for k=1,2,3,4,5 on the leukemia cancer dataset

Figure 10: The �rst graph shows values of ∆ for the 9 top ranked pairs. The
second graph plots the values of distk for k = 1, 2, 3, 4, 5.

time between 1 and 3. This result depends on the dataset we analysed. Indeed,
we saw in Figure 10 that good values for k which would maximize the distance
distk would be 1 or 3.

Figure 11 shows big improvement of the stability of k with respect to the last
results. Nevertheless, we have to be careful that the gain we made on stability
will inevitably result in a loss of accuracy as we replaced a rule to choose k that
maximized the accuracy by a rule whose aim was to stabilize the values of k.

In the next section we present another extension of the TSP. It is based on the
same idea as the the k-TSP, to choose several pairs of genes. The di�erence is in
the way of computing the probabilities pij(Ci). Indeed it involves the ratio of the
gene expressions instead of the di�erence.

53

k

F
re

qu
en

cy

1 3 5 7 9

0
0.

2
0.

4
0.

6
0.

8
1

Histogram of the values of k in the k−tsp

0 500 1000 1500 2000 2500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Genes

F
re

qu
en

cy

Frequency of single genes
in the k−tsp

463
923

1250

661
902

735

331

720

2318

1900

682
2460

1972

2614

838

●

●

●

●
●

0 1 2 3 4 5

0.
05

0.
15

0.
25

0.
35

Pair of genes

F
re

qu
en

cy

Frequency of appearance of gene pairs
in the k−tsp for the leukemia cancer dataset

463/720

923/1900

902/1972
2318/2614

942/2130

●

●

●

●

●

●

Summary of the results for the k−tsp with the new way to choose k
for the leukemia cancer dataset

Figure 11: Results of the k-TSP on the leukemia cancer dataset with the proposed
way to choose k. The red dots on the second graph represent the pairs of genes
selected with the k-TSP on the original dataset with the alternative solution to
determine k.

4 The second extension of the TSP: the weighted

k-TSP

Microarray datasets usually tend to have huge amount of genes. This leads to
relatively high computational complexity, in order to reduce it feature selection is
applied before the classi�cation. Unfortunately, k-TSP is pretty sensitive to the
feature selection and low number of data may a�ect signi�cantly the rank and
thus have a big impact on the computation and �nally result on lower accuracy
of the method. The k-TSP also �misses� a part of the information. Indeed let us
suppose that two genes are highly correlated with the presence of cancer, let us

54

call them G1 and G2. Suppose that in healthy sample the expressions of genes
range are G1 ∈ [1, 100] and G2 ∈ [1000, 1200] and in cancer sample we measure
G1 ∈ [500, 800] and G2 ∈ [2000, 2200]. The k-TSP method will never detect this
pair because the expressions are in the same order for the case of healthy and cancer
samples. This drawback of the method is corrected in the extension, namely the
Weighted k-TSP (WTSP). Instead of searching for inverse relative expression it is
based on comparison of percentage changes of genes expression in pairs between
the di�erent classes.

4.1 De�nition of WTSP

Let us denote by S the average values quotient genes in each pair from the training
sample. For each pair of gene (i, j), i, j ∈ {1, . . . , P}, i 6= j a single element from
S can be written as

Sij =

∑N
m=1 xim/xjm

N
.

Weight k-TSP method focus on �nding pairs of genes (i, j) such that the probability
of the event {xin/xjn < Sij}, n = 1, . . . , N is very di�erent whether an individual
n belongs to class C1 or C2. The procedure follows the same strategy as for the
k-TSP. The probability of this event is computed by frequency of appearance,
mathematically this can be described as

pij(C1) =
1

|C1|

N1∑
n=1

I(xin/xjn < Sij),

pij(C2) =
1

|C2|

N2∑
n=1

I(xin/xjn < Sij),

where I(·) is the indicator function and |Ci| represents the number of observation
in class i, also written as Ni. Without loss of generality we supposed that the �rst
N1 observations come from class C1 and the last N −N1 from class C2.

We de�ne the score∆ij of a genes pair (i, j) as for the k-TSP, i.e.

∆ij = |pij(C1)− pij(C2)|.

This is the �rst criteria to order the pairs of genes. As for the k-TSP it may
happen that several pairs reach the same score, so a second criteria is needed. The
criteria for the k-TSP was based on the di�erence of rank within each class. This

55

is no longer of interest. We de�ne the �rst part of the second criteria as

γij(Cm) =

∑
n∈Cm

xin/xjn
Sij+xin/xjn

|Cm|
,

where we added Sij to avoid very small values of the divisor, with this restriction
all values belong to]0, 1]. Finally the second criteria is expressed as

Γij = |γij(C1)− γij(C2)|.

Now we proceed exactly in the same way as for the k-TSP but with the new
de�ntion of the scores. We determine k by crossvalidation and select the genes
pairs using algorithm 1.

4.2 Classi�cation of a new observation

Similarly to the previous algorithm we choose pairs that provide the highest score.
The procedure for the prediction is modi�ed for the weighted k-TSP. The di�erence
lie in the voting algorithm, an extension is proposed. For a new observation xn+1,
the pair of genes (i, j) will predict it as follow

h(xn+1) =

{
C1, if xi,n+1/xj,n+1 < Sij
C2, otherwise,

(14)

where xi,n+1 denotes the expression level of the ith gene from the new observa-
tion. We have the opposite situation when pij(C1) < pij(C2). It is possible to
keep equations (11) and (12) to proceed to the prediction of a new observation.
Nevertheless we can also use a weighted prediction, where the weights are given
in function of the �goodness� of the predictor. In the case where pij(C1) > pij(C2)
we de�ne

Iwg
(
hu(xnew

)
= Ci) =

{
Sij

Sij+xi,n+1/xj,n+1
, if hu(xn+1) = Ci

0, otherwise.
(15)

If pij(C1) ≤ pij(C2), the wages change as follow

Iwg
(
hu(xnew) = Ci

)
=

{
xi,n+1/xj,n+1

Sij+xi,n+1/xj,n+1
, if hu(xn+1) = Ci

0, otherwise.
(16)

56

The �nal prediction is given as in (12) but the indicator function I(·) is replaced
by the weights Iwg(·).

The results of robustness for the WTSP would be made in the same way as for the
k-TSP, as an ordered list is constructed. The di�erence comes from the de�nition
of the scores ∆ and Γ. The estimation of these parameters is achieved through the
use of the original values of the genes expressions. This would be very sensitive to
the presence of outliers.

5 Penalized logistic regression

In this section we present a widely used method for classi�cation, the Penalized
logistic regression, this method is based on a simpler method called Logistic
regression. The idea of logistic regression is to model the probability that an
individual comes from the group C1, as a function of a linear combination of the
explanatory variables x1, · · · ,xn. Logistic regression provides a good method for
classi�cation but it doesn't work for microarray data because there are much more
variables than observations. A solution to this problem is to reduce the number
of variables, this is exactly what the penalized logistic regression does. It adds
a penalization on the coe�cients in the linear combination. This makes some
parameters to be reduced to zero and �nally achieve a model with less parameters
which can be solved even for microarray data and which is easier to interpret.

The �rst step of this section is to present the logistic regression and to highlight
the problem caused by the property of "large P , small N" present in datasets
such as microarray. Then we introduce the solution to this problem, namely the
penalized logistic regression and discuss some of its properties. Finally we apply
this method on the dataset of leukemia cancer sample.

5.1 Linear Regression

We use the same notations as previous, the dataset is expressed as
S = {(x1, y1), . . . , (xn, yn)}.

The goal of logistic regression is to model the probability P(x) that an array with
measured gene expression X = x represents an observation from class Y = C1, the
dependence between the probability and the explanatory variables is a function of
a linear combination of the xi's. Here we wrote P(x), because the probability we

57

want to model is a function of x. More formaly, this probability is

P(Y = C1|X = x).

For example a simple regression model would be

P(x) = α + βx+ εi, for i = 1, . . . , n,

with α, β ∈ R and where n is the number of observation and ε stands for the
error term. The error is assumed to be independent and normaly distributed with
mean 0 and unknown standard deviation σ. The goal is to estimate the regression
coe�cients (α, β). We want that our model is as much accurate as possible, this
means that the ŷi estimated with α̂ + β̂xi will be as close as possible to the true
value yi. We de�ne the residual of observation i to be

ri = yi − ŷi = yi − (α̂ + β̂xi).

The �tting will be the best if the ri are "small". The most common way to estimate
the regression coe�cients is the method of least squares (LS), which consists in
estimating (α̂, β̂) to minimize the residual sum of square, i.e.,

(α̂, β̂) = arg min
(α,β)

n∑
i=1

r2i = arg min
(α,β)

n∑
i=1

(
yi − (α + βxi)

)
.

Di�erentiating this equation with respect to α and β and equalizing them to 0
provides the solutions

α̂ = ȳ − αx̄, β̂ =

∑
yi(xi − x̄)∑
(xi − x̄)2

,

where x̄ = 1
n

∑
xi and ȳ = 1

n

∑
yi.

Here we choose to minimize the residual sum of squares (RSS) of the residuals to
estimate the regression coe�cients. The square in the RSS makes the estimation
very sensitive to outliers, as an outlier will have a high residual, the square will
make it even bigger. This problem is clearly presented and discussed in [7]. A
solution to the weakness of the least squares is to use a L1 norm in the RSS, i.e.,
we now need to solve

(α̂, β̂) = arg min
(α,β)

n∑
i=1

|ri|.

58

This estimator is the least absolute deviation (LAD) or L1 regression. It is known
to be much less sensitive to outliers in the dataset. There exists other solution to
robustify the LS method, as using a Lq norm, with 1 < q < 2, etc.

Once the paramaters α and β are estimated, the classi�cation of a new observation
denoted as xn+1 is de�ned through the probability P(xn+1) to belong to the group
C1, estimated by P̂(xn+1) = α̂+β̂xi. An interesting property of the linear regression
is that the prediction is given through a probability and gives an indication on how
likely the classi�cation to one group is.

Nevertheless the method de�ned up to this point presents two problems. The value
of the probability P(x) can become negative for special values of the explanatory
variables. The second problem is that this probability can exceed one, this gives
nonsense to the prediction. A solution is to modi�y the relation between the
probability P(x) and the linear combination of the parameters. This is the topic
of the next section.

5.2 Logistic regression

To avoid the problems P(x) < 0 and P(x) > 1, we de�ne probability P(x) as a
function of the linear combination of the explanatory variables or, similarly, the
linear combination of the explanatory variables as a function of the probability
P(x). Such function is called a link function and can have several de�nitions.

We transform the probability function P(x) into the function ν(x) given by

ν(x) = log

(
P(x)

1− P(x)

)
= α + βx.

If we invert this function we �nd P(x) as a function of the explanatory variables
through the relation

P(x) =
1

1 + exp
(
− ν(x)

) .
This link function is called the logistic function. There exists other well known
link function as the complementary log-log and the normal link function. In this
report we will focus only on the logistic function.

Until this point we considered only a model with one explanatory variable, it is
straightforward to extend the model to a model with multiple explanatory vari-
ables. We introduce the explanatory variables x1, · · · , xP and de�ne

ν(x1, · · · , xP) = log

(
P(x)

1− P(x)

)
= α +

P∑
i=1

βixi.

59

The estimation of the parameters (α, β) will be computed as for the case of the
simple regression.

5.3 The penalization

It is possible that the logistic regression provides no zero coe�cients and thus the
number of coe�cients βi will be equal to the number of explanatory variables,
which can become very big for some dataset. In this paper we considered two
microarray dataset, which contained several thousands of genes. The logistic re-
gression would be hard to implement and the results would be very complex to
interpret. We thus need to reduce the number of non zero coe�cients. This is
achieved through adding a penalization on the coe�cients. The most common pe-
nalization is to add the L1 norm or L2 norm in the computation of the likelihood.
The likelihood is de�ned as

l(α, β) =
n∏
i=1

P(xi)
yi
(
1− P(xi)

)yi ,
and the log-likelihood as

L(α, β) =
n∑
i=1

yi logP(xi) + yi log
(
1− P(xi)

)
.

The approach of minimizing the RSS is equivalent to maximize the likelihood or
the log-likelihood, all yielding the same estimator. To add the penalization we
need to work with the log-likelihood. We de�ne the estimators of the penalized
logistic regression as the solutions of

(α̂, β̂) = arg min
(α,β)

−L(α, β) +
λ

2
J(α, β), (17)

where the function J(·) represents the penalty on the parameters. It is common
to choose the L2 norm, i.e.,

J(α, β) = ||(α, β)||22,

the norm L1 or Lq is also common. Actually there are arbitrarily many choices
of the penalization function, as also mixture of di�erent norms. Once the param-
eter λ is chosen, the equation (17) can be solved either by direct calculation or

60

in more complicated case with the Newton-Raphson algorithm, see [8] for more
details.

We note that when λ = 0, the penalized logistic regression is the simple linear
regression. As λ increases the penalized regression estimates will be shrinked
towards 0. There are di�erent ways to choose λ. Indeed one may want that the
error prediction rate is minimzed by the choice of λ, other may wish that the
deviance of the model will be minimzed (or the RSS) with a restriction on the
number of parameters, or to maximize the area under the curve (AUC) for the
respective ROC curve, etc.

We used the R package glmnet from [9] to compute the penalized logistic regres-
sion estimators for the leukemia cancer dataset. It computes the values of the
penalized likelihood for a sequence of values for λ and then chooses the λ that
minimizes a criteria. The most common criteria are the one presented in the last
paragraph.

We applied the method of penalized logistic regression on the leukemia cancer
dataset. Altough this dataset was quite big, the glmnet was very fast to compute
the coe�cients path for di�erent values of λ.

Figure 12 shows a plot of the penalized regression coe�cients against a sequence of
values λ. We see that some coe�cients that had a big in�uence when λ was large
(translated by a big β) are shrinked toward 0 as the values of λ increase.

−5 −4 −3 −2 −1

−0.
002

−0.
001

0.0
00

0.0
01

0.0
02

Log Lambda

Co
effi

cie
nts

27 26 21 11 0

Coefficients of the paramters beta_i's against lambda
for the leukemia cancer dataset

Figure 12: Plot of the coe�cients for the parameter βi's against di�erent values of
λ for the Leukemia cancer dataset.

We have values of the coe�cients for di�erent values of λ. We now need to choose
a criteria to compute λ. In our example, the response is a binary variable and

61

represents a group to which the sample belongs. Here, the goal is to derive a
powerful classi�cation method whose error prediction rate is as low as possible. It is
then natural to choose as criteria for λ to minimize the error rate prediction.

The package glmnet contains a function cv.glmnet which compute cross validation
and seeks for values of λ which minimze a given criteria. We used type = ”class”
in this function to specify that we wish to minimize the error prediction rate.

Figure 13 shows a plot of the missclassi�cation error rate against di�erent values of
λ. The R function chose log(λ) = −4.04 as value to minimize the error prediction
rate. We used again the glmnet function with the chosen value for λ. This provided
27 non zero coe�cients for the βi's including the intercept α.

−5 −4 −3 −2 −1

0.1
0.2

0.3
0.4

log(Lambda)

Mis
cla

ssi
fica

tion
 Er

ror

●●●

●

●

●

●

●●●

●

●●

●●

●●●

●●●●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

28 27 27 27 27 26 25 23 21 20 18 11 8 6 1 1

Plot of the error prediction rate against lambda
for the leukemia cancer dataset

Figure 13: Plor of the missclassi�cation error rate for di�erente values of λ for the
leukemia cancer dataset.

The results are shown in Table 5. We see that the sign of the coe�cients can be as
well positive as negative. This is of particular interest. Indeed, if a coe�cient has
a negative value, then high values of the corresponding variable (positive value)
will signi�cantly decrease the value of the linear combination and will tend the
estimation to one or the other group. It gives an indication to the relation between
genes and classes, if high value of the genes will make the patients to be classi�ed
to C1 with a higher (or lower) probability.

The magnitude of the coe�cients may also play a role. If a coe�cient has a
high value (in absolute value) then the bigger the value of the corresponding gene
expression the higher (or lower) the probability will be. One must be careful when
using this remark. The genes expressions don't have the same distribution and
can be big for some genes and low for others. This may in�ue the magnitude of
the coe�cients as well.

62

Penalized logistic coe�cients
gene value gene value gene value

intercept -5.031882e+00 331 -1.041703e-04 501 -1.902320e-05
658 2.835025e-05 682 2.157503e-05 693 9.990825e-05
699 1.233826e-04 720 1.467988e-03 735 4.738104e-05
759 -8.489749e-06 761 -6.389065e-06 767 1.166342e-03
838 2.682606e-05 902 4.689704e-05 1491 7.106581e-04
1637 6.745307e-05 1688 -7.389820e-05 1900 3.782610e-04
1900 8.182355e-04 1938 -5.032853e-04 1947 -3.847228e-04
2073 -4.646599e-04 2223 -1.898748e-03 2363 1.140061e-03
2398 -1.278422e-06 2512 3.819823e-04 2614 -9.039997e-05

Table 5: Coe�cients for the penalized logistic regression on the leukemia cancer
dataset.

Figure 14 presents the ROC curve for the penalized logistic regression on the
leukemia cancer dataset. We performed 200 bootstraps of the original dataset. At
each step we �tted a penalized logistic regression on the bootstraped sample and
computed the probability that the individual that weren't present in the bootstrap
had to be classi�ed to the group C1. We used the R package [10] in order to
compute the ROC curve presented here. This package also allowed us to compute
the median of the ROC curve over the 200 bootstraps, which stands at 0.97.

We presented the theory about the penalized logistic regression and discussed some
of its properties. We presented also the tools available in R to �t this model on a
dataset and to obtain estimation of the accuracy.

Along this paper we presented three methods to classify individuals based on their
genes expressions. We performed them all on the leukemia cancer dataset. We
also computed their ROC curve to give a notion of performance of the method. In
the next two sections, we will compare these methods on two di�erent datasets.
The �rst one is the well known leukemia cancer dataset used along this paper to
illustrate our methods. The second one is a dataset from the start up with which
this paper was writen. We note that the dataset used is not the most recent one
and not the best one.

63

ROC curve for the penalized logistic regression
on the leukemia cancer dataset

1−Specificity

S
en

si
bi

lit
y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●●●●●●

●

●

●

●
●

●●
●
●

●

●
●●
●
●

●
●

●● ●●

●

●

●●

●●

●

●●●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●
●●●
●

●

●

●
●

●● ●

●

●

●

●

●

● ●
● ● ● ● ● ● ●

AUC:

mean = 0.97

Figure 14: ROC curve for the penalized logistic regression on the leukemia cancer
dataset.

6 Comparison of the methods on the leukemia can-

cer dataset

The aim of this section is to compare the e�ciency of the TSP, the k-TSP and
the penalized logistic regression (PLR) on the leukemia cancer dataset. Along the
paper we presented and discussed the results of these methods on this dataset.
The comparison will be principaly based on the ROC curve and the AUC from
these curves and which pairs of genes one would select using these methods.

The AUC were 0.95, 0.92 (took mean over the di�erent values of M) and 0.97 for
the TSP, the k-TSP and the PLR respectively. This shows that the three meth-
ods performed well. This di�erence in the values of the AUC is not signi�cative
compared to the variance presented by the boxplots. Nevertheless it is surprising

64

that the AUC of the TSP is higher than the AUC of the k-TSP. The results of
the TSP on the original dataset as the results of the bootstraps suggest that the
best pair of genes would be (463, 720). The k-TSP would also select this pair, but
would add the pairs (923, 1900) and (902, 1972), which showed again the �exibility
of the k-TSP to allow to choose several pairs of interest. For the PLR, 27 genes
were selected. Among these genes only the genes 720, 902 and 1900 are present in
the k-TSP and the PLR. These genes appear in di�erent pairs and never interact
together. This makes stronger the assumption we made previously that some genes
are of interest only when compared to another one, this seems to be the case for
the genes 463, 923 and 1972. The number of genes selected by the methods is 2, 6
and 27 for the TSP, the k-TSP and the PLR respectively. Altough the number 27
looks big with respect to 6, it is still very low compared to the number of genes in
the original dataset (2971 after reduction).

These methods all possesse their advantages and disadvantages presented along
this paper. The best solution would be to choose the genes with respect to the
properties we want the model to have and using all the methods to select the genes
of interest.

In the next section we present a new dataset and apply on it the methods we
presented along this paper (except the WTSP).

7 Diagnoplex Dataset

The results presented in this paper were developed in collaboration with Diagno-
plex. Diagnoplex is a start-up located in the norh of Lausanne (CH) constitued of
around 18 employees. They are developing a biological test whose aim is to detect
the colon cancer at an early stage based uniquely on genes expressions. They use
several mathematical methods of classi�cation to build their product.

In this section we present the results of the TSP, the k-TSP and the penalized
logistic regression on one of their datasets. This dataset is composed of 93 indi-
viduals, equaly split in three groups C1, C2 and C3 also labeled as 1, 2 and 3. The
groups are de�ned as follow, the group C1 is composed of healthy patients, the
group C2 of patients who developed polyps and C3 of patients with a colon cancer.
Their goal is to develop two classi�ers. The �rst one should classify an individual
between the groups C1 and C2. The second one between the groups C1 and C3.
An individual would be sent to conduct a coloscopy if it hasn't been classi�ed to
the group C1 for both classi�ers.

To determine which genes were important we made 3 analysis. In the �rst one

65

we seek for a classi�er between groups C1 and C3, in the second for a classi�er
between groups C1 and C2 and �nally the last one between the groups C1 and the
group C23 constitued of the groups C2 and C3. Here we will present the results
of the 3 analysis. We will mainly discuss the results of the �rst analysis and then
draw general comments and conclusions over the 3 analysis.

0 10 20 30 40 50

0.
0

0.
2

0.
4

Genes

F
re

qu
en

cy

Frequency of appearance of single genes
in the tsp

12

1795

38

41
30

7
362628

32 495012 ● ●

●
●

●

●

●

0 2 4 6 8

0.
05

0.
15

Pair of genes
F

re
qu

en
cy

Frequency of appearance of gene pairs
in the tsp

12/28

17/38

12/32

5/26
41/47

30/38

12/36

●

0 10 20 30 40 50

0.
0

0.
4

0.
8

Genes

F
re

qu
en

cy

Frequency of single genes
in the k−tsp

12

9
35145 16

38

41
301

36

28
26 47

● ●
● ●

● ●

●

●

●

●

0 2 4 6 8 10

0.
1

0.
3

0.
5

Pair of genes

F
re

qu
en

cy

Frequency of gene pairs
in the k−tsp

12/36

17/38
9/49

35/44

12/28

12/32
5/26

41/47

30/38
1/36

●

●

●
●

●

k

F
re

qu
en

cy

1 3 5 7 9

0
0.

4
0.

8

Histogram of the values of k in the k−tsp

Summary of the results for the tsp and the k−tsp
for dataset of Diagnoplex OA_deltaCT mai 26, 2011

Control VS Carcinome

Figure 15: Summary of the results of the TSP and the k-TSP for the groups C1

and C3. The red points represent the results of the TSP and the k-TSP applied
on the original dataset.

Figure 15 presents the results of the TSP and the k-TSP for the groups C1 and C3.
For the results of the TSP, the genes 12 and 38 are the one that appear the most
often on the single gene pairs. The pair that appears the most often is clearly the
pair (30, 38) with a frequency about 18%. This pair was also the one selected by
the TSP on the original dataset. For the k-TSP the genes 12 and 36 are equaly
the one that appear the most often, but there are a lot of other genes whose
frequency of appearance are quite high. The pair (30, 38) is ranked second on the

66

appearance rate, while the pair (41, 47) is ranked �rst. This pair also appeared on
the graph of the frequency of appearance for the TSP, but was ranked fourth. The
k-TSP highlighted the importance of this pair, as it appears very often among the
boostrap but wasn't ranked �rst the majority of the time. Probably for this reason
the TSP didn't select it. The pairs (5, 25) and (30, 38) appearead also often over
the bootstraps, one of this pair was ranked �rst in the results the TSP, while the
other on was ranked �fth. There are 7 other pairs of genes who appeared quite
often, their frequency of appearance was about 22%. Finally the histogram for the
values of k shows that the value k = 7 was chosen the majority of the time, around
40% while k = 9 was chosen 35% of the time. This suggests to choose several pairs
of genes. For example, in this case, one solution would be to choose the 7 pairs
that appeared the most often over the bootstraps as the genes of importance to
discriminate between the classes C1 and C3.

●

●
●

●

●

●●

●

●
●
●●
●

●

●
●●●●

●
●
●●
●●
●
●

●●●●●
●●
●●●

●

●

ROC curve for the TSP on the OA_deltaCT dataset

1−Specificity

S
en

si
bi

lit
y

AUC:

median = 0.65

Control VS Carcinome

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●
●

●
● ●

●

Figure 16: ROC curve of the TSP for groups C1 and C3. The red line represents
the median for the 200 ROC curves.

67

Figure 16 and 17 show estimated ROC curves for the TSP and for the k-TSP with
di�erent voting threshold for the groups C1 and C3 over 200 bootstrap resamples
of the original dataset. For more details on the estimation of these curves see
section 3.2.1.

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●●●●●
●
●
●
●●●●●●
●●●●●

●

●●●
●●●●●●●●
●●●●

ROC curve of the k−TSP with M=0.25

1−Specificity

S
en

si
bi

lit
y

AUC:

median = 0.66

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

●● ●

●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

● ● ● ●

● ●
● ● ● ●● ●

●

●

●
●

●

●

●

●

●

●
● ●

●●

●●

●

●

●

●

●

●

●●●●
●

●
●
●●●●●
●
●●●
●●●●
●●
●●
●●●●●●●

ROC curve of the k−TSP with M=0.5

1−Specificity

S
en

si
bi

lit
y

AUC:

median = 0.67

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

●●
●

●

●

●

● ●

●

●
●

● ●

● ●
●

●
●

●
● ● ●

●

● ●
● ●

● ●

●● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●

ROC curve of the k−TSP with M=0.75

1−Specificity

S
en

si
bi

lit
y

AUC:

median = 0.51

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

●● ●

●

●
●

●
●

● ●
● ●

● ●

●
●

●
● ●

●

●

●

●
● ●

●

●

● ●

●● ●

●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

● ● ● ●

● ●
● ● ● ●● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve of different values of the threshold
on the voting mean

1−Specificity

M
ed

ia
n

of
 th

e
se

ns
iti

vi
ty

●● ●

●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

● ● ● ●

● ●
● ● ● ●● ●

●
●●

●

●

●

●

● ●

●

●
●

● ●

● ●
●

●
●

●
● ● ●

●

● ●
● ●

● ●

●● ●

● ●● ●

●

●
●

●
●

● ●
● ●

● ●

●
●

●
● ●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

M=0.25
M=0.5
M=0.75

ROC curve for k−TSP with different threshold on the voting mean
for the dataset of Diagnoplex OA_deltaCT mai 26, 2011

Control VS Carcinome

Figure 17: ROC curve of the k-TSP for groups C1 and C3. The red line represents
the median for the 200 ROC curves.

On the second graph, based on the best AUC one will choose M = 0.5, i.e., the
orignal k-TSP, as its AUC is the highest one (with a value of 0.67). Moreover the
AUC for the TSP is 0.65, in this case the values of the AUC are as expected, the
k-TSP has an higher AUC than the TSP. We see that, for M = 0.25, the AUC is
near the AUC for M = 0.5. Thus it wouldn't have a big in�uence to choose one of
this M or the other. By contrast, choosing M = 0.75 would signi�cantly reduce
the AUC to 0.51 which is really bad. Indeed this means that throwing a coin to
perform the classi�cation would have almost the same classi�cation accuracy.

68

5 10 15 20 25 30

5
10

15
20

25

Plot of the expression of the genes 12 and 36

Gene: 12

G
en

e:
 3

6
Groups: CON = Red |CRC = Blue

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

● ●

●

●
●
●

●

R12 < R36 + 16
R12 < R36 + 14
R36 = R12

Figure 18: Plot of the values of the genes 12 and 36 with perturbated classi�cation
rules.

We can observe on the graphs of the ROC curve for the k-TSP that near the
point (0, 0), the median of the sensibility stays around 0 whereas the speci�city
decreases. This is an undesirable property of the k-TSP. Indeed we loose accuracy
on the healthy people and we don't gain any accuracy on the sick patients. This
problem comes from the methods we use to compute the ROC curve. Indeed we
decide to replace the rules

Ri < Rj,

by
Ri < Rj + C,

where we make C varies such that the points (0, 0) and (1, 1) are reached by the

69

curve. The problem comes from the distribution of the gene expressions for each
groups. Figure 18 shows a plot of the genes 12 and 36 for patients from C1 and
C3. The red points represents the healthy patients and the blue points the sick
patients. In this case we have p12,36(C1) > p12,36(C3), thus the classi�cation rule
has the usual order, i.e., if Rl,12 < Rl,36, classify the individual l in C1 and in
C3 otherwise. Moving this rule will change the classi�cation. For example, with
C = 16 (represented by the yellow curve on the graph), we see that all the healthy
patients are well classi�ed and the sick patients are missclassi�ed, this means that
the sensibility is 0 and the speci�city is 1. This represents the points (0, 0) on the
ROC curve. If we augment C until C = 14 (represented by the pink curve on the
graph), i.e., when the lines is between the red and blue point. Here one healthy
patients will be missclassi�ed, as well as all the sick patients. The sensibility won't
increase and stays at 0. The speci�ty will deacreases as one healthy patients is
missclassi�ed, for this reason the speci�city will be n1−1

n1
, this results in the point(

0, 1 − 1
n1

)
on the graphs. This points is below the line of slop 1 and intercept

0.

Genes used
1 4 5 6 8
9 11 12 16 18
19 22 26 32 35
36 38 39 41 43
45 48 50

Table 6: Genes whose regression coe�cients were non zero when comparing the
groups C1 and C3.

This pair of genes appears 12% of the times over the bootstrap of the k-TSP.
Such distribution of the data may occur for several pairs of genes, not only for the
pair (12, 36). This can partially explain why the ROC curve behaves so bad in a
neihgborhood of the point (0, 0).

This pair appeared only 5% of the times for the TSP, wich seems to be too low to
perturbate the ROC curve for the TSP. It is also possible that the TSP only takes
into account pairs of genes that don't have this particularity.

We performed also the penalized logistic regression on this dataset, the results are
shown in Table 6. The intercept was also non-zero but is not present in the table
that summarized the results as we are only interested in the genes used and not
their coe�cients.

Figure 19 shows the ROC curve for the PLR for the groups C1 and C3. This
curve was computed with the ROCR R-package [10]. The AUC for the PLR is

70

ROC curve for the penalized logistic regression
on the dataset of Diagnoplex OA_deltaCT mai 26, 2011

1−Specificity

S
en

si
bi

lit
y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Control VS Carcinome

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●
●●

●

●
●

●

●

●●
●

●

●
●

●

●●

●
●

●

●

●●

●

●
●
●●

●

●
●●●
●●●●●●
●
●
●
●
●
●●
●●●●●●

●

●

●

●●

●

●
●●●

●

●●
●●
●●●
●
●

●

●

●
●●

●●

●●●

●

●
●

●
●●
●●
●
●
●●●●●
●●

●

●●●

●

●

●

●●
●
●●●

●

●●●●●●●●●●●●●

●

●
●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

AUC:

median = 0.75

Figure 19: ROC curve of the PLR for groups C1 and C3. The red line represents
the median for the 200 ROC curves.

0.67 which is as high as the highest AUC for the ROC curve for the k-TSP. This
curve has a similar shape as the curve for the k-TSP with M = 0.5. The AUCs
suggest that the methods k-TSP and PLR are equivalent and the TSP a little
lower. Nevertheless the AUC are estimations and thus possesse a variance. The
di�erences on the AUC are not big enough to be signi�cant. They don't allow to
claim that one method is better than another one.

There are a some genes that are used in the PLR that are also used in the TSP
and the k-TSP. For example the genes 5, 26, 38 and 41. These three �rst genes
appear in the three methods, which make them quite interesting to study. They
are genes (like the gene 720 in the study of the leukemia cancer dataset) which
were highlighted to be highly correlated with the disease based on the TSP and
on the k-TSP, but weren't selected for the PLR. There are also a lot of genes that

71

0 10 20 30 40 50

0.
00

0.
15

0.
30

Genes

F
re

qu
en

cy

Frequency of appearance of single genes
in the tsp

12

4

21

6 32
15

10
3 11 22

28

27
37

●

●

●

●

●

● ●

●

●

0 2 4 6 8 10

0.
05

0.
15

Pair of genes

F
re

qu
en

cy

Frequency of appearance of gene pairs
in the tsp

12/32

12/28

4/21

21/28

6/27
15/37

10/11

10/22

12/27

●

0 10 20 30 40 50

0.
2

0.
4

0.
6

0.
8

Genes

F
re

qu
en

cy

Frequency of single genes
in the k−tsp

12 21

6

32

15

4 29

10
3

11
22

27

28

37

46
●

●

●

●

● ●

0 1 2 3 4 5 6
0.

1
0.

3

Genes

F
re

qu
en

cy

Frequency of gene pairs
in the k−tsp

12/28

21/28

6/27 15/37
10/11 10/22

●

●

●

●

●

●

k

F
re

qu
en

cy

1 3 5 7 9

0
0.

4
0.

8

Histogram of the values of k in the k−tsp

Summary of the results for the tsp and the k−tsp
for dataset of Diagnoplex OA_deltaCT mai 26, 2011

Control VS Polype

Figure 20: Summary of the results of the TSP and the k-TSP for the groups C1

and C2. The red points represent the results of the TSP and the k-TSP applied
on the original dataset.

were selected by the PLR but not by the k-TSP. This shows that, altough the three
methods are good, they may provide very di�erent results. We brie�y present the
results obtained when comparing the groups C1 with C2 and C1 with C23.

Figure 20 shows the results obtained by the TSP and the k-TSP when comparing
the groups Control and Polyps. The genes that appeared the most often on the TSP
are the genes 12, 21 and 28. The gene 12 was previously detected when comparing
the groups Control and Cancer. The pairs that appeared the most often along the
bootstrap is the pair (21, 28) which was also selected by the computation of the
TSP on the original dataset. A second pair is quite near the top pair, this pair is
(12, 28) which also involves gene 28. For the k-TSP, there are much more single
genes that appear with a high frequency. For the pairs of genes, the pair (21, 28)

72

●

●

●

●

●

●
●

●

●●
●

●

●
●
●

●

ROC curve for the TSP on the OA_deltaCT dataset

1−Specificity

S
en

si
bi

lit
y

AUC:

median = 0.60

Control VS Polype

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

●

●

● ●
●

●
●

● ●

●
●

●

● ●

●

● ● ●

●
●

●

● ●
●

● ●

●

●

Figure 21: ROC curve of the TSP for groups C1 and C2. The red line represents
the median for the 200 ROC curves.

appears the most often as for the TSP. There are 5 other pairs that appear also
quite often, in particular the pair (12, 28) that was also present on the graph of the
pair's appearance for the k-TSP. In this second analysis, the TSP and the k-TSP
have much more similar results than in the �rst analysis. Finally, the histogram
of the values for k shows a marked frequency of appearance for k = 7. The other
values of k have a lower frequency of appearance.

Figure 21 and 22 shows ROC curves for the TSP and the k-TSP based on the
groups C1 and C2. The AUC are slighly lower than in the �rst analysis. Indeed, the
AUC for TSP is around 0.6, the mean for the k-TSP is 0.58 and the maximimum
for the k-TSP is 0.61. Again we don't see a signi�cative di�erence on the AUC
for the k-TSP when choosing M = 0.25 or M = 0.5. The last graph of the �gure
illustrate well this fact. Indeed, we saw that the red and the yellow curves are

73

●

●

●

●

●

●
●

●

●●
●●

ROC curve of the k−TSP with M=0.25

1−Specificity

S
en

si
bi

lit
y

AUC:

median = 0.60

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

●●

●

●

●
●

●

●
●

●
● ● ●

●

●

●

● ●

● ● ● ●

●
●

● ● ●●

●
●

●

●

●

●

●

●
●

●

●

●

●

ROC curve of the k−TSP with M=0.5

1−Specificity

S
en

si
bi

lit
y

AUC:

median = 0.61

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

●●

●

● ●

●
●

●

● ● ●

● ●

●

●● ●

● ●
●

● ●

●
● ● ● ●

●

● ● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

ROC curve of the k−TSP with M=0.75

1−Specificity

S
en

si
bi

lit
y

AUC:

median = 0.55

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

●●
●

●

●

● ●

● ●

●

●
●

● ● ●

●

● ●

●
●

●
●

● ●
●

● ●
●

●●

●

●

●
●

●

●
●

●
● ● ●

●

●

●

● ●

● ● ● ●

●
●

● ● ●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve of different values of the threshold
on the voting mean

1−Specificity

M
ed

ia
n

of
 th

e
se

ns
iti

vi
ty

●●

●

●

●
●

●

●
●

●
● ● ●

●

●

●

● ●

● ● ● ●

●
●

● ● ●●

●

●

●●

●

● ●

●
●

●

● ● ●

● ●

●

●● ●

● ●
●

● ●

●
● ● ● ●

●

● ● ●●

●

●

●●
●

●

●

● ●

● ●

●

●
●

● ● ●

●

● ●

●
●

●
●

● ●
●

● ●
●

●

●

●

●

●

M=0.25
M=0.5
M=0.75

ROC curve for k−TSP with different threshold on the voting mean
for the dataset of Diagnoplex OA_deltaCT mai 26, 2011

Control VS Polype

Figure 22: ROC curve of the k-TSP for groups C1 and C3. The red line represents
the median for the 200 ROC curves.

tied together, whereas the blue one is always under. We see that, for these ROC
curves, the problem that the curves go under the line of slop 1 and intercept 0 in
the neighborhood of (0, 0) appears also in this case. This means that there exists
also pairs of genes highlighted by the k-TSP for the groups C1 and C2 for which the
problem presented on Figure 18 happen. We note that this problem also occurs
for the ROC curve of the TSP.

The results of the PLR are presented in Table 7. The three methods have only
two genes in common, namely the genes 21 and 36. In this case the PLR used less
genes than in the previous analysis, 14 against 23. The genes chosen with respect
to each analysis using the PLR have 3 genes shared. This remark is also true for
the case of the TSP and the k-TSP.

Finally, Figure 23 presents the ROC for the PLR when comparing the groups

74

Genes used
2 3 7 9
10 11 21 27
32 36 37 42
46 49

Table 7: Genes whose regression coe�cients were non zero when comparing the
groups C1 and C2.

Control and Polyps. The AUC is superior than for the TSP and the k-TSP. It
increases fast until a speci�ty of 0.6 and then increases more slowly until it reaches
the point (1, 1).

We present now the results of the last analysis, the groups C1 compared to the
group C23. Figure 24 presents the results for the TSP and the k-TSP. We can see
that, as for the last case, the genes 12 and 28 are important. The pair (12, 28)
is the one that appeared the most often on the frequency of appearance for the
TSP, this pair was ranked second in the last analysis. This pair also appears often
in the k-TSP. We note that other pairs reached the same frequency. Finally the
frequencies for the values of k are nearly constant for the values k = 1, 3, 5, 7,
altough k = 7 is slighty higher.

On the results of the TSP, we can identify three clusters. The �rst one is composed
of the single top ranked pair (12, 28), the second one of the second best pair, the
pair (12, 32). Finally the third cluster is composed of 6 pairs of genes, whose
frequencies of appearance are very close.

The graph of the results of the k-TSP highlights only one cluster composed of
7 pairs. We note that these pairs all appear on the graph of the frequency of
appearance for the TSP. But the k-TSP selected them the same number of times
over the bootstrap.

Figure 25 and 26 present the ROC curves for the TSP and the k-TSP. They have
about the same values as for the previous analysis. In this case the choice of
M = 0.75 wouln't give as bad estimations as in the previous cases. Indeed, on
the last graph we see that the three curves are quite close, except for the value of
speci�city around 0.7, here the blue and yellow lines performed better. If we choose
a speci�city in the neighborhood of a speci�city at least 0.7, here the curve that
gives the highest sensitivity is the one with a threshold on the voting mean being
M = 0.75. For lowest values of speci�city it is better to choose M = 0.25.

Table 8 presents the genes used for the penalized logistic regression on the last
analysis. There are much more genes used than in the previous analysis, in this

75

ROC curve for the penalized logistic regression
on the dataset of Diagnoplex OA_deltaCT mai 26, 2011

1−Specificity

S
en

si
bi

lit
y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Control VS Polype

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●

●

●
●
●

●

●●●
●●
●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

AUC:

median = 0.65

Figure 23: ROC curve of the PLR for groups C1 and C3. The red line represents
the median for the 200 ROC curves.

case 37 genes are needed. Thus there a lot of genes in common with the previous
studies as, in this case, the methods used almost 80% of the genes.

Genes used in the PLR
1 2 3 4 7 8 9
10 11 12 13 15 16 18
19 20 21 22 23 26 27
28 30 31 32 33 36 37
38 39 41 43 45 46 47
49 50

Table 8: Genes whose regression coe�cients were non zero when comparing the
groups C1 and C23.

76

0 10 20 30 40 50

0.
0

0.
3

0.
6

Genes

F
re

qu
en

cy

Frequency of appearance of single genes
in the tsp

12

6 1510

28

4 21
32

27
3722

●

●

●

●

● ●
●

● ●

0 2 4 6 8 10

0.
00

0.
15

Pair of genes

F
re

qu
en

cy

Frequency of appearance of gene pairs
in the tsp

12/28

6/27
5/26

12/32
15/37

10/22
12/27

4/21

21/28

●

0 10 20 30 40 50

0.
0

0.
4

0.
8

Genes

F
re

qu
en

cy

Frequency of single genes
in the k−tsp

12

6
5

15
109

28
214

32
3826

27 3722

●
●

●

●
●

●

●

0 2 4 6 8
0.

05
0.

25

Genes

F
re

qu
en

cy

Frequency of gene pairs
in the k−tsp

12/32 6/27
12/28

5/26 15/37 10/22
21/28

●

●

●
●

●

●

●
●

k

F
re

qu
en

cy

1 3 5 7 9

0
0.

2

Histogram of the values of k in the k−tsp

Summary of the results for the tsp and the k−tsp
for dataset of Diagnoplex OA_deltaCT mai 26, 2011

Control VS Polype & Carcinome

Figure 24: Summary of the results of the TSP and the k-TSP for the groups C1

and C23. The red points represent the results of the TSP and the k-TSP applied
on the original dataset.

Finally, Figure 27 presents the ROC curve for the penalized logistic regression
on the last analysis. The AUC reached by this ROC curve is the highest AUC
obtained using PLR on the three datasets. Moreover, we observe that, when the
speci�city is 0, the sensiblity has a non zero value, this means that even if we
classi�es perfectly all healthy patients, few sick patients will be also well classi�ed.
Altough the proportion of well classi�ed sick patients will be very low in this
case. This is explained by sick patients who hae a very high probability to be well
classi�ed.

The three analysis made on this dataset give a lot of information to the genes
that are correlated to the disease. Firstly, we note that the TSP and the k-
TSP provided results that were quite di�erent from the results obtained with the

77

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

ROC curve for the TSP on the OA_deltaCT dataset

1−Specificity

S
en

si
bi

lit
y

AUC:

median = 0.60

Control VS Polype & Carcinome

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●
●

●

●
● ●

●

Figure 25: ROC curve of the TSP for groups C1 and C23. The red line represents
the median for the 200 ROC curves.

penalized logistic regression. Indeed, this two methods are very di�erent and use
also di�erent rules for the classi�cation, it is then natural that they use di�erent
variables to perform their analysis.

The results found when comparing the groups C1 and C3 are very di�erent. Only
the gene 12 appears often for both comparisons for the TSP and the k-TSP. They
also select di�erent pairs in both situations. The k-TSP suggests to choose k = 7
in the second analysis, whereas in the �rst one it would be either 7 or 9. Based on
the results of the PLR, the genes used are also di�erent in both situations. Indeed,
only 3 genes appear in the results of both analysis. These results suggest that the
classi�ers used to discriminate between the classes C1 and C3 and between the
classes C1 and C2 are very di�erent. The methods also tends to select more genes
in the �rst analysis than in the second one.

78

●

●

●

●●●

●

●

●

●

●

● ●

●
●
●
●●●●●●
●
●●●●●●

●●●
●●●●●
●

●

●●
●
●●
●
●●

ROC curve of the k−TSP with M=0.25

1−Specificity

S
en

si
bi

lit
y

AUC:

median = 0.61

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

●●

●

● ●

● ● ●

●

● ● ●

●
● ●

●
● ●

● ●

●
●

● ● ●
● ●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●
●
●●
●●●●●
●●
●●●●
●

●

●●

ROC curve of the k−TSP with M=0.62

1−Specificity

S
en

si
bi

lit
y

AUC:

median = 0.67

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

●● ●

●
●

●

●

●

●

● ●
●

●

●

●

●
●

●
●

●
● ● ●

● ● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●
●
●●●
●●●

●

●

ROC curve of the k−TSP with M=0.75

1−Specificity

S
en

si
bi

lit
y

AUC:

median = 0.63

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

●●
●

● ●

● ●

●

●
●

●
●

●
●

●

●
● ●

●

● ●
● ● ●

●
●

●

●●

●

● ●

● ● ●

●

● ● ●

●
● ●

●
● ●

● ●

●
●

● ● ●
● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve of different values of the threshold
on the voting mean

1−Specificity

M
ed

ia
n

of
 th

e
se

ns
iti

vi
ty

●●

●

● ●

● ● ●

●

● ● ●

●
● ●

●
● ●

● ●

●
●

● ● ●
● ●

●● ●● ●

●
●

●

●

●

●

● ●
●

●

●

●

●
●

●
●

●
● ● ●

● ● ●

●

● ●●
●

● ●

● ●

●

●
●

●
●

●
●

●

●
● ●

●

● ●
● ● ●

●
●

●

●

●

●

●

M=0.25
M=0.5
M=0.75

ROC curve for k−TSP with different threshold on the voting mean
for the dataset of Diagnoplex OA_deltaCT mai 26, 2011

Control VS Polype & Carcinome

Figure 26: ROC curve of the k-TSP for groups C1 and C23. The red line represents
the median for the 200 ROC curves.

Finally the analysis made between the groups C1 and C23 shows similar results
for the pairs of genes chosen for the TSP and the k-TSP compared to the second
analysis. The di�erence is mainly on the number of genes one should use. Indeed,
in the second analysis, this number was suggested to be around 7 for the k-TSP,
whereas for the last analysis k had nearly the same frequency of appearance for
k = 1, 3, 5, 7. Based on the TSP and the k-TSP, the similarities between the �rst
and the third analysis are almost inexistant. Indeed, only the gene 12 appears in
both results. For the pairs of genes, we can note that two pairs appear in both
results, the pairs (12, 28) and (12, 32). Neverthelsess, the ranking of the frequency
of appearance are not similar in both cases.

The penalized logistic regression also suggests few similarities between the �rst
and the second analysis. Only the gene 11 appears in both results. The PLR

79

ROC curve for the penalized logistic regression
on the dataset of Diagnoplex OA_deltaCT mai 26, 2011

1−Specificity

S
en

si
bi

lit
y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Control VS Polype & Carcinome

●

●
●

●

●●
●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●●

●

●●

●

●

●
●

●
●

●

●

●
●
●●
●
●
●●●●
●

●●
●
●●●●●
●
●

●●●●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

AUC:

median = 0.65

Figure 27: ROC curve of the PLR for groups C1 and C23. The red line represents
the median for the 200 ROC curves.

makes stronger the suppostion drawn from the TSP and the k-TSP that the �rst
classi�cation should be based on more genes than the second classi�cations. Finally
the analysis made on the comparison between the groups C1 and C23 has a lot of
similarities with the two other analysis. This is not suprising as it includes a big
proportions of the genes present in the dataset.

One of the advantages of the TSP is that it includes only two genes, this gives an
important advantage to this method. Indeed, it is very easy to interpret it and to
use the results in other studies. The k-TSP also involves few genes. For this reason
the k-TSP keeps the same advantages as the TSP. But, because of the fact that
it considers k pairs, it allows much more �exibility and detects also other pairs
of genes which are correlated with the disease. This will lead to more genes on
which a study could be based on. The PLR tended to provide more genes than the

80

two other methods. We mentioned that we used a criteria based on the accuracy
precision to compute λ and the βi's. We could also use a bound on the number of
genes we allow the method to use. This would lead to a method with less genes
and thus easier interpretable.

8 Conclusion

In this work we presented several methods to perform a classi�cation analysis based
on datasets composed of gene expressions. First we presented the TSP, this method
is based on the relative ordering of gene expressions within two groups. It uses
only two genes for the comparison and searchs for a pair that achieves the highest
accuracy. We used bootstrap resample to study how this method was sensible to
perturbations in the dataset. It has been showed that this sensibility was linked
to the setup of the dataset, more precisely how the score ∆ was distributed among
the top ranked pairs of genes. We studied the robustness of the TSP through the
analyse of robustness for the parameters that we used to compute the TSP. This
allowed us to derive a function that was able to predict if the addition of a single
observation may produces changes in the dataset. We extended this function in
order that it was able to compute the lowest number of observations one would
need to add such that changes occur in the results of the TSP.

Then we presented an extension of the TSP, namely the k-TSP. This method is
also based on the relative ordering of the gene expressions as in the TSP, but
deals with k pairs of genes instead of 1. The case where k = 1 is the special
case of the TSP. We implemented this method for the R software. We analysed
the sensibility of these methods in the same way as for the TSP. We also used
bootstrap resample to analyse the behavior of the results provided by the k-TSP
as the dataset is modi�ed. We determined the value of k to minimize the error
prediction rate through a crossvalidation procedure. The k-TSP, as the TSP,
is sensitive to such perturbations and this sensitivity is directly linked to the
properties of the dataset we analyse. It depends mainly on the distribution of the
score ∆ among the top ranked pairs of genes. More precisely on the di�erence
between the lowest score over the k selected pairs and the highest score among
the non selected pairs. This led to determine a new way to choose k to make the
values of k less sensitive to perturbations. Actually, we choose k such that the
distance mentioned is maximized. This conducted to more stable values of k over
the bootstrap.

Afterwards we presented the penalized logistic regression. The aim of this method
is to explain the response variables as a function of a linear combination of the ex-

81

planatory variables. The genes are selected through maximizing the log likelihood
of the dataset when a penalty on the coe�cients is added. The penalty function
can have several de�nition. This will give di�erent results of the methods. In this
paper we used the L1 norm to de�ne the penalization. This yield less non zero
coe�cients than the L2 norm but with higher values.

We presented the leukemia cancer dataset at the beginning of this paper and
used it to illustrate and to discuss the results provided by our method along the
paper. At the end, we presented another dataset from the start up with which
we collaborate to produce this paper. We performed the three methods on it
and discussed the results. We saw that the TSP and the k-TSP provided similar
results. Nevertheless, the k-TSP highlighted pairs of genes that weren't selected
by the TSP. Indeed, the k-TSP select k pairs of genes, this allows more �exibility
to the results as it will consider the k best pairs of the dataset. For this reason,
the k-TSP can detect pairs of genes that are highly correlated to the disease but
were never selected by the TSP as another pair would have reached a better score.
The results obtained by the penalized logistic regression on these datasets were
very di�erent as the one obtained with the TSP and the k-TSP. This is, in part,
explained by the fact that the method are based on di�erent concepts. Indeed,
the k-TSP compares the relative ordering of gene expressions, whereas the PLR
estimates the probability of an individual to belong to one group based on a linear
combination of its explanatory variables. This can be seen as a kind of linear
regression, where the response variables have been transformed through a function
(the link function). The PLR used di�erent genes than the k-TSP to perform its
classi�cation. This was observed on every cases we treated. With this remark,
the problem is now which method should one use to derive a classi�cation rule.
Unfortunately there doesn't exist a clear solution to this problem. Every dataset
is di�erent and every method is di�erent. A �rst way to solve this would be to
use only one of these methods based on the properties they possess. For example,
we saw that the TSP and the k-TSP involve very few genes, that the k-TSP
allows more �exibility to the pairs of genes to be selected, that the PLR provides a
probability to belong to one group which gives an indication of how accurate this
classi�cation is, etc. Based on these properties, one should choose the methods
with respect to the properties he wishes for his model. Another solution would
be to use all the methods presented here and apply them on the individuals our
dataset contains. The classi�cation would be conduct with respect to a voting
system. One can either use a voting system with equivalent weights for each
of these methods or use an unweighted voting system. Again there are several
solutions on the way of choosing the weights. For example, one can �x arbitrary
weights with respect to the properties the methods possess, or proportionately to
the accuracy reached by each of these methods. One could also give weights with

82

respect to the robustness reached by the methods, for example, with respect to the
frequency of appearance of the chosen model as the dataset is pertubated. This
could conduct to a robust method.

To reach this goal another solution would be possible for the TSP and the k-
TSP. Indeed, one could modify the way of selecting the genes pairs. For the TSP,
one could perform a bootstrap as presented in the paper and select the pair that
appears the most often as the top pair. This pair being the one that appears the
most often as the dataset is perturbated, it is obvious that selecting this pair will
conduct to a less sensitive method. For the k-TSP, we also use bootstrap resample,
and, on each step, we perform a k-TSP, where k is chosen either by crossvalidation
or to maximize the di�erence between the correct score ∆ (as explained in section
3.3). Finally one will choose the value of k that appears the most often over the
bootstrap and select the k pairs of genes that appeared also the most often.

One could also modify the presented method. When we computed the ROC curves
we introduced a thresholdM on the voting system, one could use this as a tunning
parameter and choose it in order to maximize the accuracy or choose the values
of M that would maximize the AUC, or produce the highest sensitivity (resp.
speci�city) for a chosen minimum speci�city (sensitivity).

83

Annexe

We give here the code implementend to compute the k-TSP on the software R.
This code is based on the code from the package [6]. We extended the C code
such that it gives a list composed of all pairs of genes ordered with repect to the
scores ∆ and Γ with the restrictions that the genes could appear in at most one
pair.

We used also the R code from [6] as a structure to the new code. This code replaces
the NA by a parameter based on the dataset. It is linked with the C code and
retains only the k �rst TSPs of the list, where k is given as a parameter. We
extended all the functions as plot, summary, predict, etc. to be able to deal with
several pairs of genes and to take into account the presence of NA values.

The �le C needs to be compiled to create a .dll (under Windows) or a .so (un-
der Linux). See http://cran.r-project.org/doc/manuals/R-exts.pdf for more details
about this compilation.

#include <R.h>

#include <Rinternals.h>

#include <Rmath.h>

#include <R_ext/Utils.h>

/* This function will compute for every possible pair the scores

delta and gamma and construct an ordered list based on them.

It will select the k best pairs (the k first pairs of the list)

with the restriction that a gene can appear in at most one pair

and return them as well as their scores delta and gamma.

The list will be constitued of "blocks" of length 4.

Each block is constitued of two indices (the pair),

the score delta and the score gamma.

The NA in the original dataset have been replaced by

the value of "replacena". So when the program meet an

expression equal to this, it doesn't treat it.

*/

SEXP cktspair(SEXP Rdat, SEXP Rgrp, SEXP Rnumberk, SEXP Rreplacena)

{

int i,j,k,l,u,v, replace=0;

double score, rank;

int nProtected = 0;

84

int probsum[2]; probsum[0] = 0; probsum[1] = 0;

int probrank[2]; probrank[0] = 0; probrank[1] = 0;

double *grp, *dat, *repna;

grp = REAL(Rgrp);

dat = REAL(Rdat);

repna = REAL(Rreplacena);

int *numberk;

numberk = INTEGER(Rnumberk);

int n, m;

n = LENGTH(Rgrp);

m = LENGTH(Rdat)/n;

double n0, n1;

n0 = 0;

n1 = 0;

SEXP list, ans;

double *rans;

PROTECT(ans = allocVector(REALSXP,4 * numberk[0]));

rans = REAL(ans);

nProtected++;

/*the variable rans will stand for the ordered

list composed of the indices, the score delta

and the score gamma */

for (i=0; i < 4 * numberk[0]; i++){

rans[i]=0;

}

for(i = 0; i < m; i++){

for(j = 0; j < i; j++){

for(k = 0; k < n; k++){

if(dat[i + k * m]!= *repna && dat[j + k * m]!= *repna){

if(grp[k] == 1){

85

probsum[1] += (dat[i + k * m] < dat[j + k * m]);

probrank[1] += (dat[i + k *m] - dat[j + k * m]);

n1++;

}

if(grp[k] == 0){

probsum[0] += (dat[i + k * m] < dat[j + k * m]);

probrank[0] += (dat[i + k *m] - dat[j + k * m]);

n0++;

}

}

}

/* Compute the score for every pairs based on the

number of times the comparisons R(i)<R(j) were

possible */

score = fabs(probsum[1]/n1 - probsum[0]/n0);

rank = fabs(probrank[1]/n1 - probrank[0]/n0);

/*Modify the ordered list with respect to the

values of the score of the current pair analysed*/

if(score > rans[4 * (numberk[0] - 1)] ||

(score == rans[4 * (numberk[0] - 1)] &&

rank > rans[4 * (numberk[0] - 1) + 1])){

rans[4 * (numberk[0] - 1)] = score;

rans[4 * (numberk[0] - 1) + 1] = rank;

rans[4 * (numberk[0] - 1) + 2] = j + 1;

rans[4 * (numberk[0] - 1) + 3] = i + 1;

}

for(l=1; l < numberk[0]; l++){

if(score > rans[4 * (numberk[0]-l-1)] ||

(score == rans[4 * (numberk[0]-l-1)] &&

rank > rans[4 * (numberk[0]-l-1) + 1])){

rans[4 * (numberk[0]-l)] = rans[4 * (numberk[0]-1-l)];

rans[4 * (numberk[0]-l) + 1] = rans[4 * (numberk[0]-1-l) + 1];

rans[4 * (numberk[0]-l) + 2] = rans[4 * (numberk[0]-1-l) + 2];

rans[4 * (numberk[0]-l) + 3] = rans[4 * (numberk[0]-1-l) + 3];

rans[4 * (numberk[0]-1-l)] = score;

rans[4 * (numberk[0]-1-l) + 1] = rank;

86

rans[4 * (numberk[0]-1-l) + 2] = j + 1;

rans[4 * (numberk[0]-1-l) + 3] = i + 1;

}

}

probsum[0] = 0;

probsum[1] = 0;

probrank[0] = 0;

probrank[1] = 0;

n0 = 0;

n1 = 0;

void R_CheckUserInterrupt(void);

}

}

/*Replace by 0 the blocks which uses a gene

that was already used in a previous block

*/

for(u=0; u < numberk[0]; u++){

for(v=u+1; v < numberk[0]; v++){

if(rans[4*v+2]==rans[4*u+2] ||

rans[4*v+2]==rans[4*u+3] ||

rans[4*v+3]==rans[4*u+2] ||

rans[4*v+3]==rans[4*u+3]){

rans[4*v]=0;

rans[4*v+1]=0;

rans[4*v+2]=0;

rans[4*v+3]=0;

}

}

}

//Delete the block constitued of 0 in the list

for(replace=0; replace <numberk[0]; replace++){

for(l=0; l < numberk[0]-1; l++){

if(rans[4*l] < rans[4 * (l+1)] ||

(rans[4*l] < rans[4 * (l+1)] &&

rans[4*l+1] < rans[4*(l+1)+1])){

rans[4 * l] = rans[4 * (l+1)];

rans[4 * l+1] = rans[4 * (l+1) + 1];

rans[4 * l+2] = rans[4 * (l+1) + 2];

rans[4 * l+3] = rans[4 * (l+1) + 3];

87

rans[4 * (l+1)]=0;

rans[4 * (l+1) + 1]=0;

rans[4 * (l+1) + 2]=0;

rans[4 * (l+1) + 3]=0;

}

}

}

PROTECT(list=allocVector(VECSXP,1));

++nProtected;

SET_VECTOR_ELT(list, 0, ans);

UNPROTECT(nProtected);

return(list);

}

Now we give the code R which contains the main function as well as the extended
functions plot, summary, predict, etc. The structure of this part is quite similar to
the original code, i.e., the de�nition of the functions cited previously as well as the
arguments they take. The implementation of these functions are more complex
and are able to handle correctly the presence of NA.

dyn.load("ktsp.so") ## or dyn.load("ktsp.dll") under windows

kts.pair <- function (dat, grp, k){

This function computes the k pairs of genes achieving the best score delta

(use the score gamma in case of ties) using the C code

labels <- as.character(unique(grp)[order(unique(grp))])

If the dataset contains NA, it declares by which value they have been replaced

replacena <- floor(min(dat[is.na(dat)==FALSE]))-100000

out <- .Call("cktspair", as.double(rank_na(dat,replacena)), as.double(grp),

as.integer(floor(nrow(dat)/2)), as.double(replacena))

The vector out is a list, whose size is a multiple of 4, it contains

all the possible pair and is ordered w.r.t. the scores delta and gamma

index <- matrix(ncol=2, nrow=k)

rankscore <- c()

88

ktspscore <- c()

Select only the k best pairs

for (i in 1:k){

if((out[[1]][3 + (i-1) * 4]!=0) && (out[[1]][i * 4]!=0)){

index[i,1] <- out[[1]][3 + (i-1) * 4]

index[i,2] <- out[[1]][i * 4]

rankscore[i] <- out[[1]][2 + (i-1) * 4]

ktspscore[i] <- out[[1]][1 + (i-1) * 4]

}

}

If less than k pairs were available, it updates k and

the matrice containing the pairs chosen

if(is.na(index[k,1])==TRUE){

if(min(which(is.na(index[,1])==TRUE))%%2 == 1){

k <- min(which(is.na(index[,1])==TRUE))-2

}

if(min(which(is.na(index[,1])==TRUE))%%2 == 0){

k <- min(which(is.na(index[,1])==TRUE))-1

}

index <- matrix(c(index[1:k,1],index[1:k,2]),ncol=2, nrow=k)

}

If the number of pair is an even number, it deletes

the last pair in order to have an odd number of pair

if(k%%2==0){

k <- k-1

index <- matrix(c(index[1:k,1],index[1:k,2]),ncol=2, nrow=k)

}

ktspdat <- dat[c(index[,1],index[,2]),]

Create an object ktsp, which contains the quantities useful

for the use of the computed k-TSP

ktsp <- list(index = index, ktspscore = ktspscore[1:k], grp = grp,

ktspdat = ktspdat, k = k, labels =labels, rankscore = rankscore[1:k])

class(ktsp) <- "ktsp"

return(ktsp)

}

ktspcalc <- function (dat, grp, k) {

This function prepares the dataset to be used by the function

ktsp.pair in order to use the C code correctly

89

It creates an object which contain the name of the classes

and transfrom the variable of the group into

a variable containing only 0 and 1 instead of names

if (class(dat) == "ExpressionSet"){

genenames <- as.character(1:dim(exprs(dat))[1])

if (!is.null(featureNames(dat))) {

genenames <- featureNames(dat)

}

if (length(grp) == 1) {

labels <- as.character(unique(pData(dat)[, grp])[order(unique(grp))])

Transfrom the variables groups in 0 and 1

grp <- make.consecutive.int(pData(dat)[, grp])

dat <- exprs(dat)

rownames(dat) <- genenames

Check that the number of groups doesn't exceed two

if (max(grp) != 1) {

stop("TSPs can only be calculated for variables with two classes")

}

ktsp <- kts.pair(dat, grp, k)

ktsp$labels <- labels

return(ktsp)

}

else{

labels <- as.character(unique(grp)[order(unique(grp))])

grp <- make.consecutive.int(grp)

dat <- exprs(dat)

rownames(dat) <- genenames

if (max(grp) != 1) {

stop("TSPs can only be calculated for variables with two classes")

}

ktsp <- kts.pair(dat, grp, k)

ktsp$labels <- labels

return(ktsp)

}

}

else {

labels <- as.character(unique(grp)[order(unique(grp))])

grp <- make.consecutive.int(grp)

if (is.null(rownames(dat))) {

rownames(dat) <- as.character(1:dim(dat)[1])

90

}

if (max(grp) != 1) {

stop("TSPs can only be calculated for variables with two classes")

}

ktsp <- kts.pair(dat, grp, k)

ktsp$labels <- labels

}

return(ktsp)

}

This function transfrom the variable group into

a variable that contain only 0 and 1

make.consecutive.int <- function(y) {

oldWarn = getOption("warn")

Turn off warnings.

options(warn = -1)

if(is.null(y)) {return(NULL)}

if(!is.vector(y))

y = as.vector(as.character(y))

out <- as.integer(as.factor(as.character(y)))-1

options(warn = oldWarn)

return(out)

}

This function presents the results of the k-TSP, i.e.,

which pairs of genes are selected and their score delta

print.ktsp <- function(x){

ktspobj <- x

cat(c("k-TSP object with:",ktspobj$k, "TSPs\n"))

cat(c("Pair:\t\tTSP Score\t\tIndices\n"))

for(i in 1:length(ktspobj$ktspscore)){

cat(c("TSP",i,":","\t",round(ktspobj$ktspscore[i],2),"\t\t\t",

ktspobj$index[i,],"\n"))

}

}

This functions plot the distributions of the genes expression

for every pair present in the k-TSP, it is

also possible to select only one pair by using the variable select

91

ktspplot <- function(ktspobj, select=NULL){

grp <- ktspobj$grp

labels <- ktspobj$labels

dat <- ktspobj$ktspdat

index <- ktspobj$index

k <- ktspobj$k

if(is.null(select)){

cat("Number of TSPs: ",k,"\n")

for(i in 1:k){

par(mar=c(4,4,4,4))

plot(dat[i,],dat[(i + k),],xlab=paste("Gene:",rownames(dat)[i],"Expression")

,ylab=paste("Gene:",rownames(dat)[(i+k)],"Expression"),type="n")

mtext(paste("Groups:",labels[1],"= Red |",labels[2],"= Blue; Score:"

,round(ktspobj$ktspscore[i],3)),line=1)

points(dat[i,grp==0],dat[(i+k),grp==0],col="red",pch=19)

points(dat[i,grp==1],dat[(i+k),grp==1],col="blue",pch=19)

abline(c(0,1),lwd=2)

readline(paste("TSP",i,": Hit return for next TSP.\n"))

}

}

else{

par(mar=c(4,4,4,4))

plot(dat[select,],dat[(select + k),],xlab=

paste("Gene:",rownames(dat)[select],"Expression"),

ylab=paste("Gene:",rownames(dat)[(select+k)],"Expression"),type="n")

mtext(paste("Groups:",labels[1],"= Red |",labels[2],"= Blue; Score:",

round(ktspobj$ktspscore[select],3)),line=1)

points(dat[select,grp==0],dat[(select+k),grp==0],col="red",pch=19)

points(dat[select,grp==1],dat[(select+k),grp==1],col="blue",pch=19)

abline(c(0,1),lwd=2)

}

}

plot.ktsp <- function(x){ktspplot(x)}

The function summary presents the number of patients (for each group)

that will be classified to each class under the form of a table.

92

From this table it is possible to compute the sensibility and

the specificity of the method. It is also possible to obtain this

table for a single pair contained in the k-TSP via the variable select.

summary.ktsp <- function(object,select=NULL){

ktspobj <- object

grp <- ktspobj$grp

k <- ktspobj$k

grplabels <- character(length(grp))

grplabels[grp==0] <- ktspobj$labels[1]

grplabels[grp==1] <- ktspobj$labels[2]

if(!is.null(select)){

cat(paste("Data for TSP:", select,"\n"))

z <- ktspobj$ktspdat[select,] < ktspobj$ktspdat[(select + k),]

print(table(z,grplabels,dnn=list(paste

("1(Gene",rownames(ktspobj$ktspdat)[select],

" < Gene", rownames(ktspobj$ktspdat)[(select + k)],")"),"Group Labels")))

}

if(is.null(select)){

cat(paste("There are",k,"TSPs\n\n"))

for(i in 1:k){

cat(paste("Data for TSP:", i,"\n"))

z <- ktspobj$ktspdat[i,] < ktspobj$ktspdat[(i + k),]

print(table(z,grplabels,dnn=list(paste

("1(Gene",rownames(ktspobj$ktspdat)[i],

" < Gene", rownames(ktspobj$ktspdat)[(i + k)],")"),"Group Labels")))

cat("\n\n")

readline("Hit return for next TSP")

}

}

}

The function predict is used to compute predictions. It can predict

observations from the original dataset (the one used to compute the k-TSP)

or predcit new observations via the variable dat. It is also possible

to perform the prediction for a single pair in the k-TSP

by using the variable select.

predict.ktsp <- function(object,dat=NULL,select=NULL){

ktspobj <- object

93

grp <- ktspobj$grp

k <- ktspobj$k

grplabels <- character(length(grp))

grplabels[grp==0] <- ktspobj$labels[1]

grplabels[grp==1] <- ktspobj$labels[2]

predict <- c()

if(is.null(dat) & !is.null(select)){## compute the prediction for a single pair

z1 <- ktspobj$ktspdat[select,] < ktspobj$ktspdat[(select + k),]

Create the table used to predict individuals based on the

frequency of appearance of R(i)<R(j) in both groups.

table_label <- dimnames(table(z1,grplabels))[[2]]

if(sum(z1)!=0 && sum(z1)!=length(z1)){

predict[which(z1 == 0)] <- table_label[which.max(table(z1,grplabels)[1,])]

predict[which(z1 == 1)] <- table_label[which.max(table(z1,grplabels)[2,])]

}

z2 <- ktspobj$ktspdat[select,] > ktspobj$ktspdat[(select + k),]

table_label <- dimnames(table(z2,grplabels))[[2]]

if((sum(z1)==0 || sum(z1)==length(z1)) && (sum(z2)!=0 && sum(z2)!=length(z2))){

predict[which(z2 == 0)] <- table_label[which.max(table(z2,grplabels)[1,])]

predict[which(z2 == 1)] <- table_label[which.max(table(z2,grplabels)[2,])]

}

return(predict)

}

if(is.null(dat) & is.null(select)){

predict <- character(length(grp))

vote <- numeric(length(grp))

vote2 <-matrix(nrow=length(grp), ncol=k)

count <- numeric(length(grp))

for(i in 1:k){

For each pair it creates the table used for the prediction and

use it to predict the individuals. It makes an count for every

pair present in the k-TSP.

z1 <- ktspobj$ktspdat[i,] < ktspobj$ktspdat[(i + k),]

if(sum(z1)!=0 && sum(z1)!=length(z1)){

vote2[which(z1 == 0),i] <- which.max(table(z1,grplabels)[1,]) - 1

vote2[which(z1 == 1),i] <- which.max(table(z1,grplabels)[2,]) - 1

count[is.na(z1)==FALSE] <- count[is.na(z1)==FALSE]+1

94

}

z2 <- ktspobj$ktspdat[i,] > ktspobj$ktspdat[(i + k),]

if((sum(z1)==0 || sum(z1)==length(z1)) && (sum(z2)!=0 && sum(z2)!=length(z2))){

vote2[which(z2 == 0),i] <- which.max(table(z2,grplabels)[1,]) - 1

vote2[which(z2 == 1),i] <- which.max(table(z2,grplabels)[2,]) - 1

count[is.na(z2)==FALSE] <- count[is.na(z2)==FALSE]+1

}

}

table_label <- labels(table(z1,grplabels))[2]

vote <- apply(vote2, 1, sum)

Predict an individual to the class that obtained the largest prediction

in the previous step.

predict[(vote/count < 1/2)] <- table_label$grplabels[1]

predict[(vote/count > 1/2)] <- table_label$grplabels[2]

nopred <- which((predict=="")==TRUE)

if(length(nopred)>0){##

##Consider individual that couldn't be predict (because of NA)

predict2 <- character(length(nopred))

cat("For the observation(s): ", nopred, " a part of the data is missing \n")

cat("Their prediction was computed on a subset of the k-TSP\n")

for(i in 1:length(nopred)){## Consider only prediction that were possible

and take the mean.

vote3 <- numeric(length(nopred))

vote3 <- vote2[i,is.na(vote2[i,])==FALSE]

pred <- mean(vote3)

Classfie an individual to the class that obtained the largest vote

if(pred < 1/2){predict2[i] <- table_label$grplabels[1]}

if(pred > 1/2){predict2[i] <- table_label$grplabels[2]}

else{

pred <- mean(vote3[-length(vote3)])

if(pred < 1/2){predict2[i] <- table_label$grplabels[1]}

if(pred > 1/2){predict2[i] <- table_label$grplabels[2]}

}

predict[nopred] <- predict2

}

}

return(predict)

}

Same as before but in this case we predict new individuals

(represented by the matrix dat)

95

if(!is.null(dat) & !is.null(select)){

ktspnames <- rownames(ktspobj$ktspdat)[c(select,(select + k))]

predict <- character(dim(dat)[2])

vote <- numeric(length(grp))

vote2 <-matrix(nrow=length(grp), ncol=k)

count <- numeric(length(grp))

if(class(dat) == "matrix"){

if(is.null(rownames(dat))){

cat("No rownames found, using indices \n")

ktspnames <- as.numeric(ktspnames)

if(any(!(ktspnames %in% 1:dim(dat)[1]))){

stop("Rownames of new data do not include the TSP names")}

}

else{

if(any(!(ktspnames %in% rownames(dat)))){

stop("Rownames of new data do not include the TSP names")}

}

z1 <- ktspobj$ktspdat[select,] < ktspobj$ktspdat[(select + k),]

table_label <- as.vector(dimnames(table(z1,grplabels))[[2]])

if(sum(z1)!=0 && sum(z1)!=length(z1)){

w <- dat[ktspnames[1],] < dat[ktspnames[2],]

predict[which(w == 0)] <- table_label[which.max(table(z1,grplabels)[1,])]

predict[which(w == 1)] <- table_label[which.max(table(z1,grplabels)[2,])]

}

z2 <- ktspobj$ktspdat[select,] > ktspobj$ktspdat[(select + k),]

table_label <- dimnames(table(z2,grplabels))[[2]]

if((sum(z1)==0 || sum(z1)==length(z1)) &&

(sum(z2)!=0 && sum(z2)!=length(z2))){

w <- dat[ktspnames[1],] > dat[ktspnames[2],]

predict[which(w == 0)] <- table_label[which.max(table(z2,grplabels)[1,])]

predict[which(w == 1)] <- table_label[which.max(table(z2,grplabels)[2,])]

}

nopred <- which((predict=="")==TRUE)

if(length(nopred)>0){

cat("For the observation(s): ", nopred,

" a part of the data is missing \n")

cat("Their prediction for the selected pair is not possible\n")

}

return(predict)

96

}

if(class(dat) == "ExpressionSet"){

if(is.null(featureNames(dat))){

cat("No featureNames info found, using indices \n")

ktspnames <- as.numeric(ktspnames)

if(any(!(ktspnames %in% 1:dim(exprs(dat))[1]))){

stop("Rownames of new data do not include the TSP names")}

dat <- exprs(dat)

}

else{

if(any(!(ktspnames %in% featureNames(dat)))){

stop("Rownames of new data do not include the TSP names")}

genenames <- featureNames(dat)

dat <- exprs(dat)

rownames(dat) <- genenames

}

z1 <- ktspobj$ktspdat[select,] < ktspobj$ktspdat[(select + k),]

table_label <- dimnames(table(z1,grplabels))[[2]]

if(sum(z1)!=0 && sum(z1)!=length(z1)){

w <- dat[ktspnames[i],] < dat[ktspnames[i+k],]

predict[which(w == 0)] <- table_label[which.max(table(z1,grplabels)[1,])]

predict[which(w == 1)] <- table_label[which.max(table(z1,grplabels)[2,])]

}

z2 <- ktspobj$ktspdat[select,] > ktspobj$ktspdat[(select + k),]

table_label <- dimnames(table(z2,grplabels))[[2]]

if((sum(z1)==0 || sum(z1)==length(z1)) && (sum(z2)!=0 && sum(z2)!=length(z2))){

w <- dat[ktspnames[i],] > dat[ktspnames[i+k],]

predict[which(w == 0)] <- table_label[which.max(table(z2,grplabels)[1,])]

predict[which(w == 1)] <- table_label[which.max(table(z2,grplabels)[2,])]

}

nopred <- which((predict=="")==TRUE)

if(length(nopred)>0){

cat("For the observation(s): ", nopred, " a part of the data is missing \n")

cat("Their prediction for the selected pair is not possible\n")

}

return(predict)

}

}

else{

97

ktspnames <- rownames(ktspobj$ktspdat)

if(class(dat) == "matrix"){

if(is.null(rownames(dat))){

cat("No rownames found, using indices \n")

ktspnames <- as.numeric(ktspnames)

if(any(!(ktspnames %in% 1:dim(dat)[1]))){

stop("Rownames of new data do not include the TSP names")}

}

else{

if(any(!(ktspnames %in% rownames(dat)))){

stop("Rownames of new data do not include the TSP names")}

}

predict <- character(dim(dat)[2])

vote <- numeric(dim(dat)[2])

vote2 <-matrix(nrow=dim(dat)[2], ncol=k)

count <- numeric(dim(dat)[2])

for(i in 1:k){

z1 <- ktspobj$ktspdat[i,] < ktspobj$ktspdat[(i + k),]

if(sum(z1)!=0 && sum(z1)!=length(z1)){

w <- dat[ktspnames[i],] < dat[ktspnames[i+k],]

vote2[which(w == 0),i] <- which.max(table(z1,grplabels)[1,]) - 1

vote2[which(w == 1),i] <- which.max(table(z1,grplabels)[2,]) - 1

count[is.na(w)==FALSE] <- count[is.na(w)==FALSE]+1

}

z2 <- ktspobj$ktspdat[i,] > ktspobj$ktspdat[(i + k),]

if((sum(z1)==0 || sum(z1)==length(z1)) &&

(sum(z2)!=0 && sum(z2)!=length(z2))){

w <- dat[ktspnames[i],] > dat[ktspnames[i+k],]

vote2[which(w == 0),i] <- which.max(table(z2,grplabels)[1,]) - 1

vote2[which(w == 1),i] <- which.max(table(z2,grplabels)[2,]) - 1

count[is.na(w)==FALSE] <- count[is.na(w)==FALSE]+1

}

}

table_label <- labels(table(z1,grplabels))[2]

vote <- apply(vote2, 1, sum)

predict[(vote/count < 1/2)] <- table_label$grplabels[1]

predict[(vote/count > 1/2)] <- table_label$grplabels[2]

nopred <- which((predict=="")==TRUE)

if(length(nopred)>0){

predict2 <- character(length(nopred))

98

cat("For the observation(s): ", nopred,

" a part of the data is missing \n")

cat("Their prediction was computed on a subset of the k-TSP\n")

for(i in 1:length(nopred)){

vote3 <- numeric(length(nopred))

vote3 <- vote2[i,is.na(vote2[i,])==FALSE]

if(length(vote3)<1){

cat("Prediction not possible for observation", nopred[i], " \n")}

else{

pred <- mean(vote3)

if(pred < 1/2){predict2[i] <- table_label$grplabels[1]}

if(pred > 1/2){predict2[i] <- table_label$grplabels[2]}

else{

if(length(vote3)<2){

cat("Prediction not possible for observation", nopred[i], "\n")}

else{

pred <- mean(vote3[-length(vote3)])

if(pred < 1/2){predict2[i] <- table_label$grplabels[1]}

if(pred > 1/2){predict2[i] <- table_label$grplabels[2]}

}

}

}

}

predict[nopred] <- predict2

}

return(predict)

}

if(class(dat) == "ExpressionSet"){

if(is.null(featureNames(dat))){

cat("No featureNames info found, using indices \n")

ktspnames <- as.numeric(ktspnames)

if(any(!(ktspnames %in% 1:dim(exprs(dat))[1]))){

stop("Rownames of new data do not include the TSP names")}

dat <- exprs(dat)

}

else{

if(any(!(ktspnames %in% featureNames(dat)))){

stop("Rownames of new data do not include the TSP names")}

genenames <- featureNames(dat)

dat <- exprs(dat)

99

rownames(dat) <- genenames

}

predict <- character(dim(dat)[2])

vote <- numeric(dim(dat)[2])

vote2 <-matrix(nrow=dim(dat)[2], ncol=k)

count <- numeric(dim(dat)[2])

for(i in 1:k){

z1 <- ktspobj$ktspdat[i,] < ktspobj$ktspdat[(i + k),]

if(sum(z1)!=0 && sum(z1)!=length(z1)){

w <- dat[ktspnames[i],] < dat[ktspnames[i+k],]

vote2[which(w == 0),i] <- which.max(table(z1,grplabels)[1,]) - 1

vote2[which(w == 1),i] <- which.max(table(z1,grplabels)[2,]) - 1

count[is.na(w)==FALSE] <- count[is.na(w)==FALSE]+1

}

z2 <- ktspobj$ktspdat[i,] > ktspobj$ktspdat[(i + k),]

if((sum(z1)==0 || sum(z1)==length(z1)) &&

(sum(z2)!=0 && sum(z2)!=length(z2))){

w <- dat[ktspnames[i],] > dat[ktspnames[i+k],]

vote2[which(w == 0),i] <- which.max(table(z2,grplabels)[1,]) - 1

vote2[which(w == 1),i] <- which.max(table(z2,grplabels)[2,]) - 1

count[is.na(w)==FALSE] <- count[is.na(w)==FALSE]+1

}

}

table_label <- labels(table(z1,grplabels))[2]

vote <- apply(vote2, 1, sum)

predict[(vote/count < 1/2)] <- table_label$grplabels[1]

predict[(vote/count > 1/2)] <- table_label$grplabels[2]

nopred <- which((predict=="")==TRUE)

if(length(nopred)>0){

predict2 <- character(length(nopred))

cat("For the observation(s): ", nopred,

" a part of the data is missing \n")

cat("Their prediction was computed on a subset of the k-TSP\n")

for(i in 1:length(nopred)){

vote3 <- numeric(length(nopred))

vote3 <- vote2[i,is.na(vote2[i,])==FALSE]

if(length(vote3)<1){

cat("Prediction not possible for observation", nopred[i], " \n")}

else{

pred <- mean(vote3)

100

if(pred < 1/2){predict2[i] <- table_label$grplabels[1]}

if(pred > 1/2){predict2[i] <- table_label$grplabels[2]}

else{

if(length(vote3)<2){

cat("Prediction not possible for observation", nopred[i], "\n")}

else{

pred <- mean(vote3[-length(vote3)])

if(pred < 1/2){predict2[i] <- table_label$grplabels[1]}

if(pred > 1/2){predict2[i] <- table_label$grplabels[2]}

}

}

}

}

predict[nopred] <- predict2

}

return(predict)

}

}

}

This function replaces the NA in the dataset by the variable na,

by default na is -100000

rank_na <- function (dat, na=-100000){

n <- nrow(dat)

m <- ncol(dat)

for(i in 1:m){

dat[,i][is.na(dat[,i])==FALSE]<- rank(dat[,i][is.na(dat[,i])==FALSE])

}

dat[which(is.na(dat)==TRUE)] <- na

dat <- matrix(dat,n,m)

return(dat)

}

101

References

[1] Sejong Yoon and Saejoon Kim. k-top scoring pair algorithm for feature selec-
tion in svm with applications to microarray data classi�cation. Soft Comput.,
14:151�159, September 2009.

[2] Aik Choon Tan, Daniel Q. Naiman, Lei Xu, Raimond L. Winslow, and Don-
ald Geman. Simple decision rules for classifying human cancers from gene
expression pro�les. Bioinformatics, 21:3896�3904, October 2005.

[3] Lei Xu, Aik Choon Tan, Daniel Q. Naiman, Donald Geman, and Raimond L.
Winslow. Robust prostate cancer marker genes emerge from direct integration
of inter-study microarray data. Bioinformatics, 21(20):3905�3911.

[4] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P.
Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, and C. D.
Bloom�eld. Molecular classi�cation of cancer: class discovery and class pre-
diction by gene expression monitoring. Science, 286:531�537, 1999.

[5] Ricardo A. Maronna, R. Douglas Martin, and Victor J. Yohai. Robust statis-
tics. Wiley Series in Probability and Statistics. John Wiley & Sons Ltd.,
Chichester, 2006. Theory and methods.

[6] Je�rey T. Leek. tspair: Top Scoring Pairs for Microarray Classi�cation. R
package version 1.10.0.

[7] Sahar Hosseinian. Robust inference for generalizaed linear models: binary and
poisson regression. PhD thesis, EPFL, 2009.

[8] Mee Young Y. Park and Trevor Hastie. Penalized logistic regression for detect-
ing gene interactions. Biostatistics (Oxford, England), 9(1):30�50, January
2008.

[9] Robert Tibshirani (2010) Jerome Friedman, Trevor Hastie. Regularization
Paths for Generalized Linear Models via Coordinate Descent. R package ver-
sion 1.10.0.

[10] Niko Beerenwinkel Tobias Sing, Oliver Sander and Thomas Lengauer. Rocr:
visualizing classi�er performance in r. Bioinformatics, 21:3940�3941, 2005.

[11] Donald Geman, Christian d'Avignon, Daniel Q. Naiman, and Raimond L.
Winslow. Classifying gene expression pro�les from pairwise mRNA compar-
isons. Stat. Appl. Genet. Mol. Biol., 3:Art. 19, 21 pp. (electronic), 2004.

[12] Marcin Czajkowski and Marek Kr¦towski. Novel extension of k - tsp algo-
rithm for microarray classi�cation. In Proceedings of the 21st international

102

conference on Industrial, Engineering and Other Applications of Applied In-
telligent Systems: New Frontiers in Applied Arti�cial Intelligence, IEA/AIE
'08, pages 456�465, Berlin, Heidelberg, 2008. Springer-Verlag.

[13] Robert Gentleman, Vincent J. Carey, Wolfgang Huber, Rafael A. Irizarry, and
Sandrine Dudoit, editors. Bioinformatics and computational biology solutions
using R and bioconductor. Statistics for Biology and Health. Springer, New
York, 2005.

103

	Introduction
	The Top Scoring Pair Classifier
	Presentation of the Top Scoring Pair Classifier
	Notation
	The score
	The average ranking difference
	Classification of a new observation

	Multi-class classification
	One-vs-Other
	One-vs-One
	Hierarchical classification

	Robustness of the TSP
	Study of robustness through simulation
	Basic notion of robustness
	Analytical study of the robustness for and
	Adaptation of the basic notion of robustness for the method TSP
	Analytical study of the robustness of the TSP

	The first extension of the TSP: the k-TSP
	k-TSP
	Definition of k-TSP
	Classification of a new observation

	Robustess of k-TSP
	Study of robustness through simulation
	Analytical study of the robustness

	Another way to choose k

	The second extension of the TSP: the weighted k-TSP
	Definition of WTSP
	Classification of a new observation

	Penalized logistic regression
	Linear Regression
	Logistic regression
	The penalization

	Comparison of the methods on the leukemia cancer dataset
	Diagnoplex Dataset
	Conclusion

