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Abstract—The problem of optimal control of power distri-
bution systems is becoming increasingly compelling due to
the progressive penetration of distributed energy resources in
this specific layer of the electrical infrastructure. Distribution
systems are, indeed, experiencing significant changes in terms of
operation philosophies that are often based on optimal control
strategies relying on the computation of linearized dependencies
between controlled (e.g. voltages) and control variables (e.g.
power injections). As the implementation of these strategies
in real-time controllers imposes stringent time constraints, the
derivation of analytical dependency between controlled and
control variables becomes a non-trivial task to be solved. With
reference to optimal voltage and power flow controls, this paper
aims at providing an analytical derivation of node voltage and
line current flows as a function of the nodal power injections.
Compared to other approaches presented in the literature, the
one proposed here is based on the use of [Y] compound matrix of
a generic multi-phase unbalanced network. In order to estimate
the computational benefits of the proposed approach, the relevant
improvements are also quantified versus traditional methods.
The validation of the proposed method is carried out by using
both IEEE 13 and 34 node test feeders. The paper finally shows
the use of the proposed method for the problem of optimal voltage
control applied to the IEEE 34 node test feeder.

Index Terms—Voltage/current sensitivity coefficients, unbal-
anced electrical networks, power systems optimal operation,
smart grids.

I. INTRODUCTION

ptimal controls of power systems are often based on the
O solution of linear problems that link control variables
to controlled quantities by means of sensitivity coefficients.
Typical optimization problems refer to scheduling of gener-
ators, voltage control, losses reduction etc. So far, these
categories of problems have been commonly investigated in
the domain of high voltage transmission networks. However,
during the past years, the increased penetration of distributed
energy resources (DERs) in power distribution systems has
raised the importance of developing optimal control strategies
specifically applied to the operation of these networks (e.g. [1],
[2], [3], [4], [5], [6]). Within this context, it is worth noting
that the solution of optimal problems becomes of interest only
if it meets the stringent time constraints required by real-
time controls and imposed by the higher dynamics of these
networks compared to the transmission ones.
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Typical examples of optimal controls that are not yet de-
ployed in active distribution networks (ADNs) are voltage and
power flow controls. Usually this category of problems has
been addressed in the literature by means of linear-approaches
applied to the dependency between voltages and power flows
as a function of the power injections (e.g. [4], [5], [7], [8]).

The typical approach for the solution of this class of control
problems is the use of the sensitivity coefficients through an
updated Jacobian matrix derived from the load flow problem
[9], [10], [11], [12], [13]. However, from the computational
point of view, the main disadvantage of such a method is
that, for every change in the operation conditions of the
network, an updated Jacobian matrix needs to be built on the
basis of the network state and needs, then, to be inverted.
This procedure involves non-trivial computation constraints for
the implementation in real-time centralized or decentralized
controllers.

For this reason, the authors of [14] have proposed the
direct computation of voltages and network losses sensitivity
coefficients, based on the Gauss-Seidel formulation of the load
flow problem, by making use of the [Z] matrix of a balanced
network. Also, in [7] it has been proposed the use of the [Z]
matrix along with the constant-current model for loads and
generators. In [8] the sensitivity coefficients are proposed to
be calculated starting from the network branch currents.

In order to increase the computational efficiency of this
category of approaches, and to extend it to the inherent multi-
phase unbalanced configuration of distribution networks, this
paper aims at providing a straightforward derivation of node
voltages and line currents sensitivities as a function of the
power injections. To this end, we propose to use the network
[Y] compound matrix, which has the advantage of being
sparse. The main contribution of this paper is the analytical
derivation of the sensitivity coefficients. A further contribution
of the paper is the estimation of the computational benefits
of the proposed method quantified versus the traditional ap-
proach. Finally the paper shows an application of the proposed
method to optimal voltage control applied to the IEEE test
feeders unbalanced distribution networks [15].

The structure of the paper is the following: Section II
focuses on the problem formulation by describing, in detail,
the analytical procedure at the base of the proposed method.
It also includes a uniqueness proof of the solution of the linear
system used to calculate the sensitivity coefficients. The same
section also provides a computational cost analysis of the



proposed method versus traditional approaches. Section III
validates the proposed method using the IEEE 13 and 34 node
test feeders. Section IV shows a typical application example of
sensitivity coefficients related to the optimal voltage control in
unbalanced distribution systems. Section V provides the final
remarks and future applications of the proposed method.

II. PROBLEM FORMULATION

A. Classical Computation of Sensitivity Coefficients in Power
Networks

In this paragraph we make reference to a balanced network
composed by K busses.

Traditionally, there are three proposed ways to calculate
the sensitivity coefficients of our interest. The first method
consists of estimating them by a series of load flow calcula-
tions each performed for a small variation of a single control
variable (i.e. nodal power injections, P}, ;) [4]:
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where E; is the direct sequence phase-to-ground voltage of
node ¢ and f,J is the direct sequence current flow between
nodes i and j (i,j € {1--- K}).

The second method uses the Newton Raphson formulation
of the load flow calculation to directly infer the voltage
sensitivity coefficients as submatrices of the inverted Jacobian
matrix (e.g.[9], [10], [11], [12], [13]):
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As known, the submatrix 8|(]§ is usually adopted to express

voltage variations as a function of reactive power injections
when the ratio of longitudinal line resistance versus reactance
is negligible. It is worth noting that such an assumption is
no longer applicable to distribution systems that require in
addition to take into account active power injections.

A third approach typically derived from circuit theory is
based on the use of the so-called adjoint network (e.g.[16],
[171, [18], [19], [20]).

B. Analytical Derivation of Voltage and Current Sensitivity
Coefficients

This subsection contains the main analytical development

of this paper related to the derivation of the voltage sensitivity

coefficients .

'as shown in subsection II-B2 the current sensitivities can be straightfor-
wardly derived from the voltage ones

1) Voltage Sensitivity Coefficients: the analysis starts with
the voltage sensitivity coefficients. To this end, we derive
mathematical expressions that link bus voltages to bus active
and reactive power injections. For this purpose, a K-bus 3-
phase generic electrical network is considered. The following
analysis treats each phase of the network separately and, thus,
it can be applied to unbalanced networks.

As known, the equations that link the voltage of each phase
of the busses to the corresponding injected current are in total
M = 3K and they are given by:

[Iabc] = [Yabc] . [Eabc] (3)
where [Lape] = [IL, I IE IE TKT, [Eape =
(B} ELEL. EK EE EXIT. We denoted by a, b, c the

three network phases. The [Y apc] matrix is formed by using

the so-called compound admittance matrix (e.g. [21]) as
follows:
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In order to simplify the notation, in what follows we will
assume the following correspondences: Mabe] = [I1, -y Inr] T,
[Eabc] = [El, ...,EM]T and
Y1 Yinr
[Yabe] = | : :
Yim
For the rest of the analysis we will consider the network as
composed by S slack busses and N busses with P(Q) injections,
(.e{l,2,-- M} =SUN with SNN =0).
It is well known that the ¢-th element of the above system
of equations (3) can be expressed as:
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and, the link between power injections and bus voltages reads:

S, = E, Z Vi;E; ,ieN. (5)
FESUN

The derived system of equations (5) holds for all the phases
of each bus of the network. Since the objective is to calculate
the partial derivatives of the voltage magnitude over the active
and reactive power injected in the other busses, we have to
consider separately the slack bus of the system. As known,
the assumptions for the slack bus equations are to keep its
voltage constant and equal to the network rated value, by also
fixing its phase equal to zero. Hence, for the three phases of
the slack bus, it holds that:
OF;

oP,

At this point, by using equation (5) as a starting point one
can derive closed-form mathematical expressions to define

0 ,Vies. (6)



and quantify voltage sensitivity coefficients with respect to
active and reactive power variations in correspondence of
the N busses of the network. To derive voltage sensitivity
coefficients, the partial derivatives of the voltages with respect
to the active and reactive power P, and Q; of a bus [ € NV
have to be computed. The partial derivatives with respect to
active power satisfy the following system of equations:
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where it has been taken into account that:
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The system of equations (7) is not linear over complex
numbers, but it is linear with respect to 8 P g By therefore

it is linear over real numbers with respect to rectangular
coordinates. As we show next, it has a unique solution and
can therefore be used to compute the partial derivatives in
rectangular coordinates to reduce the computational effort.

A similar system of equations holds for the sensitivity
coefficients with respect to the injected reactive power Q.
With the same reasoning, by taking into account that:
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we obtain that:
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By observing the above linear systems of equations (7) and
(10), we can see that the matrix that needs to be inverted in
order to solve the system is fixed independently of the power
of the [-th bus with respect to which we want to compute the
partial derivatives. The only element that changes is the left
hand side of the equations.

Once ‘Z%,Z% are obtained, the partial derivatives of the
voltage magnitude can be expressed as:
O|E;| 1 OE;
= Re(E, 11
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and similar equations hold for derivatives with respect to
reactive power injections.

Theorem 1: The system of equations (7), which is linear
with respect to rectangular coordinates, has a unique solution
for every electrical network. The same holds for the system
of equations (10).

Proof: Since the linear system of equations has as many
unknowns as equations, the theorem is equivalent to showing
that the corresponding homogeneous system of equations has
only the trivial solution. The homogeneous system can be

written as:
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where A; are the unknown complex numbers, defined for ¢ €
N. We want to show that A; = 0 for all 4 € NV. Let us
consider two electrical networks with the same topology, i.e.

same [Yapc| matrix; in the first network, the voltage at the
ith non slack bus is F; — A;; in the second network, it is
E; + A;. Voltage profiles at slack busses are identical. Let
S; be the absorbed power at the ith bus in the first network,
and S/ in the second. Apply equation (5) to each network,
subtract and apply equation (12). It follows that S} = S/
for all i € S UN. Thus the two networks have the same
active and reactive powers at all busses. It follows that the
voltage profile of these networks must be exactly the same,
ie. B;,—A;j=F;+A;and thus A; =0 foralliecN. N

2) Current Sensztzvzty Coefficients: From the previous ana-
lysis, the sensitivity coefficients linking the power injections
to the voltage variations are known. Thus, it is straightforward
to express the branch current sensitivities with respect to the
same power injections. Assuming to represent the lines that
compose the network by means of m models, the current flow
I; ; between nodes 7 and j can be expressed as a function of the
phase-to-ground voltages of the relevant ¢, j nodes as follows:

Lij = Yi;(Ei — Ej) (13)
where Yij is the generic element of [Yabc] matrix between
node 4 and node j.

Since the voltages can be expressed as a function of the
power injections into the network busses, the partial derivatives
of the current with respect to the active and reactive power
injections in the network can be expressed as:
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Applying the same reasoning as earlier, the branch current
sensitivity coefficients with respect to an active power P, can
be computed using the following expressions:
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Similar expressions can be derived for the current coefficients
with respect to the reactive power in the busses as:
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C. Computational Cost Analysis

The aim of this subsection is to show the computational
advantage of the proposed method compared to the classical
approach with respect to the network size. Furthermore, the
two methods are applied to the IEEE 13 and 34 node test
feeders and compared in terms of CPU time necessary to
calculate the voltage sensitivity coefficients.

We are assuming that:

1) there are loads/injections in all three phases of the
system

2) the phasors of phase-to-ground voltages in all the net-
work are known (e.g. coming from a state estimation
process)



In the following table, Algorithm 1 shows the steps required
to calculate the voltage sensitivity coefficients using the tradi-
tional method and Algorithm 2 shows the corresponding steps
using the analytical method proposed here.

For the traditional method an updated Jacobian needs to
be built, and its inverse will provide the desired voltage
sensitivities. For the analytical method the corresponding steps
refer to invert a square matrix of size 2N and multiply the
inverse matrix with one column vector for each P(Q bus in
the network.

In Table I the mean value of the CPU time necessary to
calculate the voltage sensitivity coefficients is presented for
the IEEE 13 and 34 node test feeders respectively, when 1000
iterations of the method are executed. It can be observed that
the analytical approach is more than 2.5 times faster than the
traditional method. In Fig. 1 the mean CPU time necessary to
calculate the voltage sensitivity coefficients is depicted for the
two feeders. One can observe the advantage of the proposed
analytical method as the number of busses in the network
increases.

Algorithm 1 Computation of voltage sensitivity coefficients
using the Jacobian method
1: build Jacobian matrix associated to the Newton Raphson
method
2: invert matrix J of size 2N x 2N
3: extract the sub-matrices corresponding to the desired sen-
sitivity coefficients

Algorithm 2 Computation of voltage sensitivity coefficients
using the analytical method
1: build the matrix of the linear system of equations
2: invert matrix of size 2N x 2N
3: do N multiplications of the inverse matrix with vectors of
size 2N x 1

Table I
CPU TIME NECESSARY FOR CALCULATING VOLTAGE SENSITIVITY
COEFFICIENTS IN THE IEEE 13 AND THE 34 NODE TEST FEEDERS WHEN
ALL PHASES OF ALL BUSSES HAVE LOADS

Jacobian Analytical
13 node test feeder 29.6msec 12.1msec
34 node test feeder | 207.9msec 78.1msec

III. NUMERICAL VALIDATION

The numerical validation of the proposed method for the
computation of voltage/current sensitivities is performed with
two different approaches. In particular, as the inverse of the
load flow Jacobian matrix provides the voltage sensitivities, the
comparison reported below makes reference to such a method
for the voltage sensitivity only.

On the contrary, as the inverse of the load flow Jacobian
matrix does not provide current sensitivity coefficients, their
accuracy is evaluated by using a numerical approach where
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Figure 1. Mean CPU time necessary to calculate the voltage sensitivities as a
function of the network size, the error bars show the relevant 95% confidence
intervals.

the load flow problem is solved by applying small injection
perturbations into a given network (see Section II-A).

Fig.2 shows the IEEE 13 nodes test feeder implemented in
the EMTP-RV simulation environment [22], [23], [24] adopted
to perform the multiphase load flow.
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Figure 2. IEEE 13 node test feeder represented in the EMTP-RV simulation
environment.

For the sake of brevity we limit the validation of the
proposed method to a reduced number of busses exhibiting
the largest voltage sensitivity against P() load/injections. In
particular, we refer to the variation of voltages at bus 8 with
respect to load/injection in bus 9, i.e.
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Figure 3.
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Figure 4.  Current sensitivity coefficients with respect to power absorption
at phase a of node 13

In Fig.3(a) the voltage sensitivity of phase a bus 8 is shown
with respect to active power absorption at phase a of bus
9. Fig.3(b) shows for the same busses as Fig.3(a), the same
sensitivity but referring to voltage and power belonging to
different phases. Additionally, Fig. 3(c) and 3(d) show the
voltage sensitivity of bus 8 with respect to reactive power
absorption at bus 9. In all these four figures the dashed line
represents the relative error between the traditional approach
(i.e. based on the inverse of the Jacobian matrix) and the
analytical method proposed here. As it can be observed, it is
in the order of 1076,

In Fig.4(a) and Fig.4(b) the current sensitivity coefficient
of phase a of branch 10 — 13 is presented with respect to
active and reactive power absorption in phase a of bus 13. In
the same figures, the dashed lines represent the relative error
between the analytical values and the numerical ones. Even
for these coefficients extremely low errors are obtained.

Finally, Fig.5 depicts the variation of voltage sensitivity
coefficients in all the network with respect to active and
reactive power absorption at phase a of node 13 as a function
of the distance from the slack bus in feet.

This type of representation allows to observe the over-
all network behavior against specific PQ nodes absorp-
tions/injections. In particular, we can see that larger sensitiv-
ities are observed when the distance between the considered
voltage and the slack bus increases. Furthermore, a lower, but
quantified dependency between coefficients related to different
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phases, can be observed. Also, as expected, reactive power

Voltage sensitivity coefficients with respect to power absorption
at phase a of node 13 as a function of the distance from the slack bus

LF, L oad17

has a larger influence on voltage variations although the
active power exhibits a non negligible influence. From the
operational point of view it is worth observing that, figures
as Fig.5, provide to network operators an immediate view
of the response of the electrical network against specific
loads/injections that could also be used for closed loop control
or contingency analysis.

IV. APPLICATION OF THE PROPOSED PROCEDURE TO THE
PROBLEM OF OPTIMAL VOLTAGE CONTROL

For the application part, the IEEE 34 test node feeder is
considered as depicted in Fig.6. In busses 18, 23, 24 and
33 we assume to have distributed energy resources that the
Distribution Network Operator (DNO) can control in terms of
active and reactive power. Their initial operating values, as
well as their rated power outputs, are shown in Table II.
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Figure 6. IEEE 34 node test feeder represented in the EMTP-RV simulation
environment

Table II
INITIAL AND MAXIMUM OPERATIONAL SET POINTS OF THE DERS IN THE
34 TEST NODE FEEDER

Pinitial(kW) | Pmax(kW)
DER;s 210 300
DER23 100 600
DER24 250 600
DER33 150 300




The optimal control problem is formulated as a linear
one taking advantage of the voltage sensitivity coefficients.
The controlled variables are the bus node voltages and the
control variables are the active and reactive power injec-
tions of the DER under the control of the DNO, Ax =
[APprR, AQpgg]- The objective of the linear optimization
problem relevant to the problem is:

min || £ — E | (17)
The linearized relationship that links bus voltages with control
variables is expressed in the following way (e.g. [4]):

AlE;| = Kp;AP; + Kq,AQ; (18)
where Kp; is the vector of sensitivity coefficients with respect
to the active powers of the DERs and Kgq, is the vector of
sensitivity coefficients with respect to the reactive powers of
the DERs. The imposed constraints on the operational points
of the DERs are the following:

0 < Ppgr, < Pper

QpErR,,,, <@pER, <QDER,,,,

19)
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In order to simplify the analysis, we have assumed that the
DER capability curves are rectangular ones in the PQ plane.

The formulated linearized problem is solved by using the
linear least squares method. The method used to calculate
analytically the sensitivity coefficient allows us to consider
two different optimization scenarios. In the first (opty), the
operator of the system is assumed to control the set points
of the DERs considering that they are injecting equal powers
into the three phases, whereas in the second case (opts) it
is assumed to have a more sophisticated control on each of
the phases independently. It is worth noting that this second
option, although far from a realistic implementation, allows
us to show the capability of the proposed method to deal
with the inherent unbalanced nature of distribution networks.
Table IIT and Table IV show the optimal operational set points
corresponding to these cases. Additionally, in Fig.7 the voltage
profile of the busses of the system is presented in the initial
and the optimal cases. The solid line in the figures shows the
initial voltage profile, the solid line with the markers the first
case optimal scenario (opt;) and the dashed line represents
the second case where the DNO has full control in each of
the phases of the DERS (opt2). What can be observed is that,
when the operator has control on each of the three phases of
the DERs output, the optimal voltage profile is better than the
one corresponding to control of the 3-phase output of the set
points of the DERs.

Table IIT
OPTIMAL OPERATIONAL SET POINTS OF THE DERS IN THE 34 TEST NODE
FEEDER WHEN THE SYSTEM OPERATOR HAS CONTROL ON THEIR 3-PHASE

OUTPUT
Popti (kW) | Qopti(kVar)
DER;s 300 120.66
DER23 600 600
DER24 600 19.5
DERg33 300 228.48
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Table IV
OPTIMAL OPERATIONAL SET POINTS OF THE DERS IN THE 34 TEST NODE
FEEDER WHEN THE SYSTEM OPERATOR HAS CONTROL ON EACH OF THE
THREE PHASES INDEPENDENTLY

Popt2(kW) | Qopta(kVar)

DER3, 99.77 99.32
DERY, 96.4 -83.43
DERS, 0.01 712

DER3, 196 137.77
DERS, 162.88 199.97
DERS, 146.93 153.94
DER3, 17833 130.28
DERS, 111.66 200

DERS, 114.23 150.10
DERj, 92.17 -38.56
DERY, 75.13 96.51
DERS, 99.77 71.97




V. CONCLUSION

In this paper we have proposed a new method for the
analytical computation of voltages and currents sensitivity
coefficients as a function of the nodal power injections. The
innovative aspects of the proposed method are the following:
(i) it is based on the use of the [Y] compound matrix and
(ii) it supports the computation of these sensitivities for a
generic unbalanced electrical network and is thus suitable for
distribution systems.

Compared to the traditional use of the jacobian load-flow
matrix, it allows us to reduce the computation time by almost
a factor of three, thus enabling in principle its implementation
in real-time optimal controllers.

The paper has also validated the proposed method by
making reference to typical IEEE 13 and 34 nodes distribution
test feeders. The former has been used to numerically validate
the computation of the coefficients whilst the latter has been
used to show an application example related to a possible
integration of the proposed method for the problem of optimal
voltage control in unbalanced distribution systems.

It is worth observing that the analytical computation of
voltages and currents sensitivities will reduce the compu-
tational time of several traditional power systems problems
involving non-negligible computational efforts, such as: real-
time centralized controls, contingency analysis or optimal
planning.
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