Snowmaking	Partial equilibrium	General equilibrium	Conclusion

The economic aspects of artificial snow production in the perspective of climate change

Camille Gonseth

Research group on the Economics and Management of the Environment (EPFL) $reme.epfl.ch \label{eq:epsilon}$

24/04/2012

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
A U			

Outline

Quantifying future snowmaking production

2 Graphing the issue in partial equilibrium

Assessing the effects of snowmaking in general equilibrium : the Swiss case

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
000			
Outline			

Quantifying future snowmaking production

2 Graphing the issue in partial equilibrium

Assessing the effects of snowmaking in general equilibrium : the Swiss case

Snowmaking	90
000	

Most common approach in the literature

- Quantifying future snowmaking needs
 - Compensate the snow deficit to preserve ski season length
 - Daily snowmaking capacity (time-invariant)
 - Threshold air temperature to start snowmaking
 - In general, however, no limit due to water scarcity
- Oiscussing/computing the increase in costs
 - Needs often double by 2050
 - Energy costs increase more than proportionately with the volume of artificial snow production
 - Combined with revenue losses (i.e. shorter ski season)
- Feasible but hardly profitable

Snowmaking	90
000	

Most common approach in the literature

- Quantifying future snowmaking needs
 - Compensate the snow deficit to preserve ski season length
 - Daily snowmaking capacity (time-invariant)
 - Threshold air temperature to start snowmaking
 - In general, however, no limit due to water scarcity
- Oiscussing/computing the increase in costs
 - Needs often double by 2050
 - Energy costs increase more than proportionately with the volume of artificial snow production
 - Combined with revenue losses (i.e. shorter ski season)
- Feasible but hardly profitable

Snowmaking	90
000	

Most common approach in the literature

- Quantifying future snowmaking needs
 - Compensate the snow deficit to preserve ski season length
 - Daily snowmaking capacity (time-invariant)
 - Threshold air temperature to start snowmaking
 - In general, however, no limit due to water scarcity
- Oiscussing/computing the increase in costs
 - Needs often double by 2050
 - Energy costs increase more than proportionately with the volume of artificial snow production
 - Combined with revenue losses (i.e. shorter ski season)
- Feasible but hardly profitable

Snowmaking	g
000	

Most common approach in the literature

Pros

- Mimic choices made by ski area operators concerning snow production
- Technical constraints are included (with the exception of water scarcity)
- Intra-seasonal patterns of snow-reliability

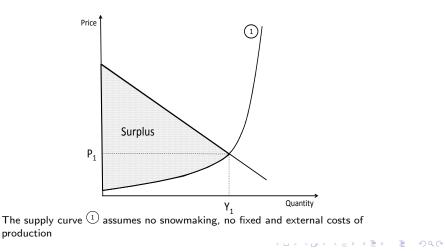
Cons

- Focus nearly exclusively on energy costs
- Too simple estimations of revenue changes
- Above all, only the supply side is dealt with ; no interactions with the demand side that determine equilibrium quantity and price

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
	000000		
A B			
Outline			
Outmic			

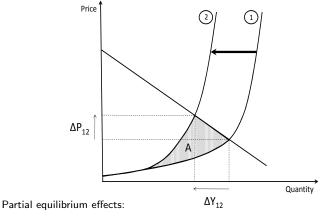
Quantifying future snowmaking production

2 Graphing the issue in partial equilibrium


Assessing the effects of snowmaking in general equilibrium : the Swiss case

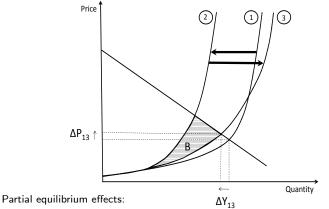
▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Onclusion


Snowmaking	Partial equilibrium	General equilibrium	Conclusion
	00000		

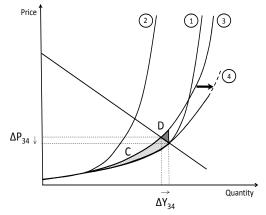
Initial situation: a winter tourism sector produces one good for which there is a demand

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
	00000		


Climate change shifts the supply curve from \bigcirc to \bigcirc :

- $\Delta P_{12} \nearrow, \Delta Y_{12} \searrow$
- Welfare (surplus) losses = A

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
	000000		


Snowmaking shifts the supply curve from ② to ③:

- $|\Delta Y_{13}| < |\Delta Y_{12}|$; $\Delta P_{13} < \Delta P_{12}$
- Welfare increases, resp. loss is reduced, by an amount of B (before fixed cost)
- Δ welfare = Δ surplus investment costs in snowmaking

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
	000000		

The supply curve ④ integrates subsidies on snowmaking:

• Subsidies cover the variable costs of snowmaking (=C+D)

- $\Delta P_{34} \searrow$, $\Delta Y_{34} \nearrow$; $(Y_4, P_4) = (Y_1, P_1)$; snow production \nearrow
- Welfare is decreased by D when moving to the new equilibrium

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
000	00000	000	000

- Main insights from the partial equilibrium analysis:
 - Climate change will lead to higher equilibrium price and lower quantity which implies a loss of surplus
 - Snowmaking will relax the effects of climate change on price and quantity thereby reducing surplus losses. The net effect on total welfare also depends upon investment costs
 - Maintaining the pre-CC consumption with subsidies to artificial snow production generates a loss of surplus
- Climate change may also impact the demand curve:
 - Changes in the number of domestic tourists (backyard hypothesis, non renewal of skiers)
 - Changes in international tourist flows due to differentiated impacts of climate change across countries

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
000	00000	000	000

- Main insights from the partial equilibrium analysis:
 - Climate change will lead to higher equilibrium price and lower quantity which implies a loss of surplus
 - Snowmaking will relax the effects of climate change on price and quantity thereby reducing surplus losses. The net effect on total welfare also depends upon investment costs
 - Maintaining the pre-CC consumption with subsidies to artificial snow production generates a loss of surplus
- Climate change may also impact the demand curve:
 - Changes in the number of domestic tourists (backyard hypothesis, non renewal of skiers)
 - Changes in international tourist flows due to differentiated impacts of climate change across countries

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
		000	
Outline			

Quantifying future snowmaking production

2 Graphing the issue in partial equilibrium

Assessing the effects of snowmaking in general equilibrium : the Swiss case

Conclusion

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
		000	
<u> </u>			
Simulation	scenarios		
Sinalation	Jeenanos		

We perform 5 scenarios using the GEMINI-E3 model:

- Scenario CHE-: a reduced snow resource is simulated for Switzerland only. No adaptation from the Swiss producers (no increase in the production of artificial snow)
- Scenario CHE: same as scenario CHE- but with adaptation from the Swiss producers
- 3 Scenario WORLD: reduced snow resources are simulated worldwide
- Scenario WORLD ART: in 2050, the cost of artificial snow in the scenario WORLD ART is exogenously raised by 25% compared to the baseline
- Scenario WORLD SUB: in 2050, Swiss authorities implement subsidies on the cost of artificial snow sufficient to maintain the baseline levels of winter sports production. In the model, subsidies are financed through lump sum transfers

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
000	000000	○●○	000
Simulation	scoporios		

We perform 5 scenarios using the GEMINI-E3 model:

- Scenario CHE-: a reduced snow resource is simulated for Switzerland only. No adaptation from the Swiss producers (no increase in the production of artificial snow)
- Scenario CHE: same as scenario CHE- but with adaptation from the Swiss producers
- 3 Scenario WORLD: reduced snow resources are simulated worldwide
- Scenario WORLD ART: in 2050, the cost of artificial snow in the scenario WORLD ART is exogenously raised by 25% compared to the baseline
- Scenario WORLD SUB: in 2050, Swiss authorities implement subsidies on the cost of artificial snow sufficient to maintain the baseline levels of winter sports production. In the model, subsidies are financed through lump sum transfers

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
		000	

Simulation scenarios

We perform 5 scenarios using the GEMINI-E3 model:

- Scenario CHE-: a reduced snow resource is simulated for Switzerland only. No adaptation from the Swiss producers (no increase in the production of artificial snow)
- Scenario CHE: same as scenario CHE- but with adaptation from the Swiss producers

Scenario WORLD: reduced snow resources are simulated worldwide

- Scenario WORLD ART: in 2050, the cost of artificial snow in the scenario WORLD ART is exogenously raised by 25% compared to the baseline
- Scenario WORLD SUB: in 2050, Swiss authorities implement subsidies on the cost of artificial snow sufficient to maintain the baseline levels of winter sports production. In the model, subsidies are financed through lump sum transfers

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
		000	
-			

Simulation scenarios

We perform 5 scenarios using the GEMINI-E3 model:

- Scenario CHE-: a reduced snow resource is simulated for Switzerland only. No adaptation from the Swiss producers (no increase in the production of artificial snow)
- Scenario CHE: same as scenario CHE- but with adaptation from the Swiss producers
- Scenario WORLD: reduced snow resources are simulated worldwide
- Scenario WORLD ART: in 2050, the cost of artificial snow in the scenario WORLD ART is exogenously raised by 25% compared to the baseline
- Scenario WORLD SUB: in 2050, Swiss authorities implement subsidies on the cost of artificial snow sufficient to maintain the baseline levels of winter sports production. In the model, subsidies are financed through lump sum transfers

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
		000	
-			

Simulation scenarios

We perform 5 scenarios using the GEMINI-E3 model:

- Scenario CHE-: a reduced snow resource is simulated for Switzerland only. No adaptation from the Swiss producers (no increase in the production of artificial snow)
- Scenario CHE: same as scenario CHE- but with adaptation from the Swiss producers
- Scenario WORLD: reduced snow resources are simulated worldwide
- Scenario WORLD ART: in 2050, the cost of artificial snow in the scenario WORLD ART is exogenously raised by 25% compared to the baseline
- Scenario WORLD SUB: in 2050, Swiss authorities implement subsidies on the cost of artificial snow sufficient to maintain the baseline levels of winter sports production. In the model, subsidies are financed through lump sum transfers

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
000	000000	000	000

TABLE 1: Outcomes from GEMINI-E3 for 2050^* (Source: Gonseth and Vielle in review)

	CHE-	CHE	WORLD	WORLD ART	WORLD SUB
Higher lying ski reso	rts (snow	endowmen	t: -11.1%)		
Production Artificial snow Production price	-5.8% 0.0% 2.9%	-3.6% 11.6% 1.8%	-1.0% 20.7% 2.5%	-2.4% 9.5% 4.2%	
Lower and medium	located ski	resorts (s	now endowm	ent: -22.3%)	
Production Artificial snow Production price	-7.9% 0.0% 16.0%	-4.9% 23.1% 9.5%		-6.1% 13.9% 11.3%	0.0% 135.3% -0.6%
Welfare changes**	-23				

* percentage change with respect to the reference scenario

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
000	000000	000	000

TABLE 1: Outcomes from GEMINI-E3 for 2050^* (Source: Gonseth and Vielle in review)

	CHE-	CHE	WORLD	WORLD ART	WORLD SUB
Higher lying ski resc	orts (snow o	endowmen	t: -11.1%)		
Production	-5.8%	-3.6%	-1.0%	-2.4%	
Artificial snow	0.0%	11.6%			
Production price	2.9%	1.8%		4.2%	
Lower and medium	located ski	(now endowm	ent: -22.3%)	
Production	-7.9%	-4.9%		-6.1%	
Production Artificial snow	-7.9% 0.0%	-4.9% 23.1%			0.0% 135.3%

* percentage change with respect to the reference scenario

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
000	000000	000	000

TABLE 1: Outcomes from GEMINI-E3 for 2050^* (Source: Gonseth and Vielle in review)

	CHE-	CHE	WORLD	WORLD ART	WORLD SUB
Higher lying ski resc	orts (snow	endowmen	t: -11.1%)		
Production Artificial snow Production price		-3.6% 11.6% 1.8%	-1.0% 20.7% 2.5%	-2.4% 9.5% 4.2%	
Lower and medium	located ski	resorts (s	now endowm	ent: -22.3%)	
Production Artificial snow Production price		-4.9% 23.1% 9.5%	-5.0% 22.9% 9.5%	-6.1% 13.9% 11.3%	0.0% 135.3% -0.6%
Welfare changes**			83		

* percentage change with respect to the reference scenario

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
000	000000	000	000

TABLE 1: Outcomes from GEMINI-E3 for 2050^* (Source: Gonseth and Vielle in review)

	CHE-	CHE	WORLD	WORLD ART	WORLD SUB
Higher lying ski resc	orts (snow	endowmen	t: -11.1%)		
Production Artificial snow Production price		-3.6% 11.6% 1.8%	-1.0% 20.7% 2.5%	-2.4% 9.5% 4.2%	
Lower and medium	located ski	resorts (s	now endowm	ent: -22.3%)	
Production Artificial snow Production price		-4.9% 23.1% 9.5%	-5.0% 22.9% 9.5%	-6.1% 13.9% 11.3%	0.0% 135.3% -0.6%
			83	116	

* percentage change with respect to the reference scenario

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
000	000000	000	000

TABLE 1: Outcomes from GEMINI-E3 for 2050^* (Source: Gonseth and Vielle in review)

	CHE-	CHE	WORLD	WORLD ART	WORLD SUB
Higher lying ski resc	orts (snow o	endowmen	t: -11.1%)		
Production Artificial snow Production price		-3.6% 11.6% 1.8%	-1.0% 20.7% 2.5%	-2.4% 9.5% 4.2%	0.0% 26.7% 2.0%
Lower and medium	located ski	resorts (s	now endowm	ent: -22.3%)	
Production Artificial snow Production price		-4.9% 23.1% 9.5%	-5.0% 22.9% 9.5%	-6.1% 13.9% 11.3%	0.0% 135.3% -0.6%
Froduction price					

* percentage change with respect to the reference scenario

Snowmaking	Partial equilibrium	General equilibrium	Conclusion	
000	000000	000	000	
Outline				

Quantifying future snowmaking production

2 Graphing the issue in partial equilibrium

Assessing the effects of snowmaking in general equilibrium : the Swiss case

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
000	000000	000	000
<u> </u>			
Conclusion			

- We derived climate change-induced rises in artificial snow production by 2050. Adaptation is at the sectoral level (i.e. no spillover effects). Our simulations ensure *economic* feasibility
- Are they *technically* feasible? This is a multidimensional issue that is handled in GEMINI-E3 through different paramaters: water resource price, technological progress, elasticities of substitution between natural and artificial snow
- We found that snowmaking helps reducing the costs of climate change both at the sectoral and aggregate levels
- However, there is a caveat: our analyses do not deal with the full social costs of snowmaking thereby tending to overestimate its beneficial effects for the Swiss economy and society

Snowmaking 000	Partial equilibrium 000000	General equilibrium 000	Conclusion OOO
Conclusion			

- We derived climate change-induced rises in artificial snow production by 2050. Adaptation is at the sectoral level (i.e. no spillover effects). Our simulations ensure *economic* feasibility
- Are they *technically* feasible? This is a multidimensional issue that is handled in GEMINI-E3 through different paramaters: water resource price, technological progress, elasticities of substitution between natural and artificial snow
- We found that snowmaking helps reducing the costs of climate change both at the sectoral and aggregate levels
- However, there is a caveat: our analyses do not deal with the full social costs of snowmaking thereby tending to overestimate its beneficial effects for the Swiss economy and society

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
000	000000		O●O
Conclusion			

- We derived climate change-induced rises in artificial snow production by 2050. Adaptation is at the sectoral level (i.e. no spillover effects). Our simulations ensure *economic* feasibility
- Are they *technically* feasible? This is a multidimensional issue that is handled in GEMINI-E3 through different paramaters: water resource price, technological progress, elasticities of substitution between natural and artificial snow
- We found that snowmaking helps reducing the costs of climate change both at the sectoral and aggregate levels
- However, there is a caveat: our analyses do not deal with the full social costs of snowmaking thereby tending to overestimate its beneficial effects for the Swiss economy and society

		000
Conclusion		

- We derived climate change-induced rises in artificial snow production by 2050. Adaptation is at the sectoral level (i.e. no spillover effects). Our simulations ensure *economic* feasibility
- Are they *technically* feasible? This is a multidimensional issue that is handled in GEMINI-E3 through different paramaters: water resource price, technological progress, elasticities of substitution between natural and artificial snow
- We found that snowmaking helps reducing the costs of climate change both at the sectoral and aggregate levels
- However, there is a caveat: our analyses do not deal with the full social costs of snowmaking thereby tending to overestimate its beneficial effects for the Swiss economy and society

Snowmaking	Partial equilibrium	General equilibrium	Conclusion
			000

Thank you for your attention !

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ