Introduction	wodel and baseline	Climate	Energy demand	Energy supply	Conclusion

Adding climate impacts and adaptation possibilities to an economic computable general equilibrium model

Camille Gonseth and Marc Vielle

Research Lab on the Economics and Management of the Environment (EPFL) reme.epfl.ch

01/06/2012

Swiss Climate Research

	Model and baseline	Climate		Conclusion
Outline				

- Introduction
- 2 Model and baseline
- Climate change scenarios
- Inergy demand
- 5 Energy supply
- 6 Conclusion

Introduction	Model and baseline	Climate		Conclusion
Outline				

Introduction

- 2 Model and baseline
- Olimate change scenarios
- Energy demand
- **5** Energy supply
- 6 Conclusion

- The research project is a mandate from the FOEN which aims at:
 - identifying the Swiss sectors most at risk from climate change
 - introducing and detailing these sectors in the CGE model GEMINI-E3
 - using GEMINI-E3 to assess the general equilibrium costs of specific climate change impacts for Switzerland
 - studying the role of adaptation processes and measures to alleviate climate change costs

- The research project focuses on the following sectors:
 - Agriculture ; Energy ; Tourism ; Water
- Motives for using GEMINI-E3:
 - $\bullet\,$ General equilibrium effects $\Rightarrow\,$ market driven adaptation
 - Representation of the tax system \Rightarrow simulate exogenous adaptation measures (e.g. subsidies)
 - International dimension \Rightarrow indirect impacts of climate change

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
The GE	MINI-E3 mod	del			

- World computable general equilibrium model
- Fifth version
- Dedicated to the analysis of climate change & energy policies
- Recursive dynamic model
- 28 regions (including Switzerland)
- 5 energy sectors
- 13 non-energy sectors
- All GHG emissions (EMF 21 US-EPA)
- Database GTAP 6 (2001)
- gemini-e3.epfl.ch

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
An aggr	regated region	nal classi	fication		

- Switzerland (CHE)
- European Union (EUR)
- United States of America (USA)
- Other industrialized countries: Canada+Japan+Australia+New Zealand (OEC)
- BRIC: Brazil+Russia+India+China (BRI)
- Rest of the World (ROW)

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
New cla	ssification of	GEMINI	-E3		

• We have used a new classification concerning goods/sectors described by the model by adding sectors/activities that will be affected by climate change in Switzerland

1	Coal	15	Paper products publishing
2	Oil	16	Transport nec
3	Gas	17	Sea Transport
4	Petroleum Products	18	Air Transport
5	Electricity	19	Consuming goods
6	Crops n.e.c.	20	Equipment goods
7	Raw milk	21	Winter overnight tourism
8	Animal products	22	One-day winter tourism
9	Vegetables, fruits and nuts	23	Other forms of tourism
10	Other agricultural products	24	Insurance and pension funding
11	Forestry	25	Health and social work
12	Mineral product	26	Services
13	Chemical	27	Dwelling
14	Metal and metal products	28	Water distribution

TABLE 1: Sectoral classification

	Model and baseline	Climate		Conclusion
Database				

Like other CGE models, GEMINI-E3 is based on Social Accounting Matrices which have been built on several statistical sources:

- Swiss Input-output table: SIOT (2001)
- GTAP 6 (2001)
- With other various sources (IMF, IEA, OECD)
- For some sectors, we have done an extensive work to integrate them into the SAM (tourism and water distribution)
 - Tourism: tourism satellite accounts, tourism balance of payments, etc.
 - Distribution water: GTAP & Swiss Gas and Water Industry Association
- We have added into the SAM new natural resources (snow, raw water)
- Raw water: industrial uses (Swiss Gas and Water Industry Association), irrigation water (Federal Office for Agriculture)

	Model and baseline	Climate		Conclusion
11 1	11	· ·	. •	

Household consumption function

FIGURE 1: Structure of Household Consumption

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
Circuit in		the to be			
Structur	e of Product	ion in Ing	dustrial Sec	tors	

FIGURE 2: Structure of Production in Industrial Sectors

	Model and baseline	Climate		Conclusion
Structure	of Electricity	Produc	ction	

FIGURE 3: Structure of Electricity Production

Introduction Model and baseline Climate Energy demand Energy supply

Energy prices and GDP assumptions

Energy Prices (\$ 2009): based on World Energy Outlook 2010 (*current policies scenario*), International Energy Agency

	Unit	2009	2015	2020	2030	2040	2050
IEA Crude oil imports	Baril	60.4	94.0	110.0	130.0	135.0	135.0
Natural gas imports Europe	Mbtu	7.4	10.7	12.1	13.9	14.4	14.4
OECD Steam coal imports	Tonne	97.3	97.8	105.8	112.5	115.0	115.0

GDP Assumptions: mainly based on International Energy Outlook 2011, Energy Information Administration, DOE USA.

	2010-2020	2020-2030	2030-2040	2040-2050
Switzerland	1.7%	0.8%	0.9%	0.8%
European Union	1.5%	1.8%	1.7%	1.7%
USA	2.3%	2.7%	2.5%	2.4%
Other OECD Countries	1.3%	1.1%	1.1%	1.0%
BRIC	6.3%	4.5%	3.6%	3.6%
Rest of the World	3.9%	3.6%	3.3%	3.3%
World	2.8%	2.8%	2.6%	2.6%

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
<u>с · г</u>	u				
Swiss H	lectricity gen	eration			

- Nuclear moratorium after the decommission of all Swiss nuclear power plants (with an operating life of 50 years)
- No new hydraulic sites available in Switzerland
- Cost of renewable electricity generation based on the last Swiss energy perspectives

FIGURE 4: Electricity generation in Switzerland (in TWh)

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
Swiss F	ossil Energy (consumpt	tion		

FIGURE 5: Fossil energy consumption in Switzerland (in Mtoe)

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
Outline					

Introduction

2 Model and baseline

3 Climate change scenarios

Energy demand

5 Energy supply

6 Conclusion

	Model and baseline	Climate		Conclusion
Regionali	zation of cli	imate cha	ange	

- Our baseline is built on a storyline comparable to the A1B scenario. Therefore, GHG emissions are close to the ones in this scenario
- We downscale our climate change impacts by using data from the ENSEMBLES European project and from the new Swiss climatic scenarios CH2011
- ENSEMBLES: grid with a mesh of 25x25km over Europe
- CH2011: regional scenarios at daily resolution based on probabilistic method
- ENSEMBLES and CH2011 scenarios differ in terms of geographical scope, variable coverage, reference period, emissions scenarios

TABLE 2: Four GCM-RCM couplings from the ENSEMBLES project (with indication of the simulation period)

- 1. KNMI ECHAM5-r3 avec RACMO (1951-2100)
- 2. SMHI BCM-RCA (1961-2100)
- 3. C4I HadCM3Q16-RCA3 (1951-2099)
- 4. DMI ARPEGE-HIRHAM (1951-2100)
- The models have the same rotated grid
- Maximize the diversity of models represented
- The "Model Mean" scenario is built by averaging the prediction values from the four aforementioned models

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
The EN	SEMBLES g	rid			

 ${\rm Figure}$ 6: The ENSEMBLES grid together with a set of weights representing the distribution of the population across Switzerland

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
The clir	natic variable	S			

 $\ensuremath{\operatorname{TABLE}}$ 3: Climatic variables and their fields of application

Energy Heating energy demand in buildings Cooling energy demand in buildings Hydro power supply Nuclear power supply	Daily mean temperature Monthly precipitation Monthly mean temperature			
Tourism Snow-dependent winter tourism segments	Fractional snow cover			
Agriculture				
Crops (Barley, Maize, Wheat)	Monthly precipitation Monthly mean temperature			
Water resource and the water distribution sector Water resource Monthly precipitation				

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
Outline					

Introduction

- 2 Model and baseline
- Climate change scenarios
- Inergy demand
- **5** Energy supply

6 Conclusion

- Derive the evolution of two climatic indicators:
 - Heating Degree-Days (HDD) for heating
 - Cooling Degree-Days (CDD) for cooling
- Compute ex-ante changes in energy demand compared to the baseline
- Generation of a set of scenarios where the different changes in energy demand are introduced sequentially

	Model and baseline	Climate	Energy demand	Conclusion
Heating -	- evolution o	f HDD		

• HDD computation (using the standard SIA formula):

$$HDD(\theta_i, \theta_{th}) = \sum_{k=1}^{365} m_k (\theta_i - \theta_{e,k})$$
(1)
with $m_k = 1$ if $\theta_{e,k} \le \theta_{th}$
 $m_k = 0$ if $\theta_{e,k} > \theta_{th}$

- Standard values for CH: $\theta_i = 20^{\circ}C$ et $\theta_{th} \in \{8, 10, 12^{\circ}C\}$
- The lower the value of the threshold temperature, the better the insulation of buildings

	Model and baseline Climate Litergy demand	
Heating – evolution of HDD	g – evolution of HDD	

 T_{ABLE} 4: Percentage changes in HDD between 1961-1990 and 2050 for the scenario "Model Mean" and different threshold values

Threshold	$(\Delta_{2050}/HDD_{ref})^*$
$\theta_{th} = 8^{\circ} C$	-18.1%
$\theta_{th} = 10^{\circ} C$	-14.6%
$\theta_{th} = 12^{\circ} \mathrm{C}$	-12.9%

* reference period: 1961-1990

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
Heating -	- evolutions c	of HDD			

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
11	1				
Heating	 evolutions 	of HUU			

 TABLE 5: Percentage changes in HDD between 1980–2009 and 2050 based on the CH2011 scenarios

		$\theta_{th}=8^{\circ}\mathrm{C}$	$\theta_{th} = 10^{\circ} \rm C$	$\theta_{th} = 12^{\circ} \mathrm{C}$
Reference period (1980–2009)	Observed	2836.1	3101.7	3328.3
	A2 lower	2548.7 -10.1%	2870.6 -7.4%	3057.4 <i>-8.1%</i>
	A2 medium	2304.0 - <i>18.8%</i>	2646.4 -14.7%	2844.4 -14.5%
CH2011 (2050)	A2 upper	2068.2 -27.1%	2409.9 <i>-22.3%</i>	2643.4 <i>-20.6%</i>
	A1B lower	2533.9 -10.7%	2855.2 <i>-7.9%</i>	3041.9 <i>-8.6%</i>
	A1B medium	2282.4 -19.5%	2625.8 - <i>15.3%</i>	2825.1 <i>-15.1%</i>
	A1B upper	2040.1 <i>-28.1%</i>	2380.2 <i>-23.3%</i>	2617.0 <i>-21.4%</i>

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
Heating -	- evolutions	of HDD			

TABLE 6: Percentage changes in HDD between 1980–2009 and 2050 based on the CH2011 scenarios

		$\theta_{th} = 8^{\circ} \mathrm{C}$	$\theta_{th} = 10^{\circ} \mathrm{C}$	$\theta_{th} = 12^{\circ} \mathrm{C}$
Reference period (1980–2009)	Observed	2836.1	3101.7	3328.3
	A2 lower	2548.7 -10.1%	2870.6 -7.4%	3057.4 <i>-8.1%</i>
	A2 medium	2304.0 - <i>18.8%</i>	2646.4 -14.7%	2844.4 -14.5%
CH2011 (2050)	A2 upper	2068.2 -27.1%	2409.9 <i>-22.3%</i>	2643.4 <i>-20.6%</i>
	A1B lower	2533.9 -10.7%	2855.2 <i>-7.9%</i>	3041.9 <i>-8.6%</i>
	A1B medium	2282.4 - 19.5%	2625.8 -15.3%	2825.1 -15.1%
	A1B upper	2040.1 <i>-28.1%</i>	2380.2 <i>-23.3%</i>	2617.0 -21.4%

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
Heating -	- evolutions	of HDD			

 $TABLE\ 7:$ Percentage changes in HDD between 1980–2009 and 2050 based on the CH2011 scenarios

		$\theta_{th} = 8^{\circ} \mathrm{C}$	$\theta_{th} = 10^{\circ} \mathrm{C}$	$\theta_{th} = 12^{\circ} \mathrm{C}$
Reference period (1980–2009)	Observed	2836.1	3101.7	3328.3
	A2 lower	2548.7 -10.1%	2870.6 - 7.4%	3057.4 <i>-8.1%</i>
	A2 medium	2304.0 - <i>18.8%</i>	2646.4 -14.7%	2844.4 -14.5%
CH2011 (2050)	A2 upper	2068.2 -27.1%	2409.9 <i>-22.3%</i>	2643.4 <i>-20.6%</i>
	A1B lower	2533.9 -10.7%	2855.2 <i>-7.9%</i>	3041.9 <i>-8.6%</i>
	A1B medium	2282.4 -19.5%	2625.8 - <i>15.3%</i>	2825.1 <i>-15.1%</i>
	A1B upper	2040.1 - 28.1%	2380.2 <i>-23.3%</i>	2617.0 <i>-21.4%</i>

- We assume heating demand to be approximately proportional to the number of HDD (*Christenson et al., 2005*)
- Therefore, % decreases in HDD are assumed to give ex-ante % decreases in annual heating energy demand (compared to the baseline in 2050)

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
Heating :	Simulation	results			

TABLE 8: Impacts of a climate change induced reduction in heating energy consumption (-14.6%) in 2050^*

	Impacted	Impacted sector ($\theta_{th} = 10^{\circ}$ C)				
	Housing	Service	Industry	All sectors		
Energy consumption						
Petroleum products	-2.4%	-1.2%	-0.1%	-3.7%		
Natural gas	-1.8%	-0.7%	-0.5%	-3.0%		
Electricity	0.8%	-0.2%	0.0%	0.5%		
CO_2 emissions	-2.5%	-1.1%	-0.1%	-3.6%		
Welfare change in Mio USD ₂₀₁₀ As a % of consumption	668 0.16%	254 0.06%	55 0.01%	976 0.23%		

* percentage change with respect to the reference scenario

	Model and baseline	Climate	Energy demand	Conclusion
Cooling -	- evolutions	of CDD		

• CDD computation using the ASHRAE formula (cf. *Howell et al., 2005*):

$$CDD(\theta_{bp}) = \sum_{k=1}^{365} m_k (\theta_{e,k} - \theta_{bp})$$
(2)
with $m_k = 1$ if $\theta_{e,k} \ge \theta_{bp}$
 $m_k = 0$ if $\theta_{e,k} < \theta_{bp}$

- CDD are computed using $\theta_{bp} = 18.3 \degree$ (ASHRAE standard numerical value)
- Percentage changes in CDD between 1961-1990 and 2050 for the scenario "Model Mean": +138%

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
Cooling –	• evolutions o	f CDD			

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
Cooling –	evolutions o	f CDD			

 TABLE 9: Percentage changes in CDD between 1980–2009 and 2050 based on the CH2011 scenarios

		$ heta_{\textit{bp}} = 18.3^{\circ}\mathrm{C}$	$\theta_{\textit{bp}} = 20^{\circ} \mathrm{C}$	$\theta_{bp} = 22^{\circ} \mathrm{C}$
Reference period (1980–2009)	Observed	45.4	7.2	0.3
	A2 lower	109.0 <i>140.1%</i>	29.9 317.1%	3.3 <i>834.6%</i>
	A2 medium	158.3 248.5%	55.7 676.3%	7.9 2161.9%
CH2011 (2050)	A2 upper	216.1 375.8%	93.3 1201.6%	17.9 5052.6%
	A1B lower	113.6 <i>150.2%</i>	32.0 345.9%	3.6 933.3%
	A1B medium	165.4 264.2%	60.2 740.0%	8.8 2428.3%
	A1B upper	226.4 398.4%	100.9 <i>1307.3%</i>	20.5 5802.5%

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
Cooling –	evolutions	of CDD			

 T_{ABLE} 10: Percentage changes in CDD between 1980–2009 and 2050 based on the CH2011 scenarios

		$\theta_{bp} = 18.3^{\circ}\mathrm{C}$	$\theta_{bp} = 20^{\circ} \mathrm{C}$	$\theta_{bp} = 22^{\circ} \mathrm{C}$
Reference period (1980–2009)	Observed	45.4	7.2	0.3
	A2 lower	109.0 140.1%	29.9 317.1%	3.3 <i>834.6%</i>
	A2 medium	158.3 248.5%	55.7 676.3%	7.9 2161.9%
CH2011 (2050)	A2 upper	216.1 375.8%	93.3 1201.6%	17.9 5052.6%
	A1B lower	113.6 <i>150.2%</i>	32.0 345.9%	3.6 933.3%
	A1B medium	165.4 264.2%	60.2 740.0%	8.8 2428.3%
	A1B upper	226.4 398.4%	100.9 <i>1307.3%</i>	20.5 5802.5%

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
Cooling –	ex-ante chan	ges in er	nergy deman	d	

- Cooling demand is proportional to CDD only under strong assumptions
- Climate change entails higher specific electricity use per square meter of cooled surface *and* a higher proportion of cooled surfaces compared to the baseline
 - Specific electricity use: empirical linear relationship with CDD for office building (*Aebischer et al., 2007*)
 - Cooled surfaces in the service sector: % of surface according to *Aebischer et al., 2007*
 - Cooled surfaces in the residential sector: in 2050, the % of cooled surface is equal to 1.1% in the baseline and ranges from 2% to 10% in the variant with climate change (own estimations)

Cooling – ex-ante changes in ene	ergy deman	d	

- The hypothesis are used to derive ex-ante increases in the energy demand for cooling in 2050 compared to the baseline
- Service sector:
 - ENSEMBLES: +0.6 TWh
 - CH2011: +0.6 to +1.2 TWh
- Residential sector:
 - ENSEMBLES: +0.1 to +0.8 TWh
 - $\bullet~$ CH2011: +0.1 to +1.3 TWh

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
Cooling :	Simulation r	esults			

TABLE 11: Impacts of a climate change induced increase in cooling electricity consumption in 2050*

	Housing	Service	Total	Housing
				high hypothesis
Energy consumptions				
Petroleum products	-0.06%	0.03%	-0.04%	-0.14%
Natural gas	0.13%	0.27%	0.40%	0.28%
Electricity	0.41%	0.58%	0.99%	0.92%
CO ₂ emissions	-0.04%	0.05%	0.00%	-0.10%
Welfare change in Mio USD ₂₀₁₀ As a % of consumption	-46 -0.01%	-50 -0.01%	-96 -0.02%	-101 -0.02%

* percentage change with respect to the reference scenario

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
Outline					

Introduction

- 2 Model and baseline
- Climate change scenarios
- Energy demand
- 5 Energy supply
- 6 Conclusion

We use the following equations to estimate the effect of a temperature change on the monthly production of nuclear power plants (based on estimation results provided in *Linnerud et al., 2011*).

For the winter months:

$$\widehat{\Delta q/q} = \frac{-0.666 \cdot \Delta T - 0.023 \cdot ((T + \Delta T)^2 - T^2)}{92.440 - 0.666 \cdot T - 0.023 \cdot T^2}$$
(3)

For the summer months:

$$\widehat{\Delta q/q} = \frac{-0.666 \cdot \Delta T - 0.023 \cdot \left((T + \Delta T)^2 - T^2 \right)}{69.830 - 0.666 \cdot T - 0.023 \cdot T^2}$$
(4)

Climent	all and the second		1	and all and a	
Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion

Climate change impacts : nuclear/gas power plants

TABLE 12: Annual percentage changes in nuclear power production between 1980–2009 and 2050 based on the CH2011 scenarios

		2035	2050 ¹	2060	2085
CH2011	A2 lower	-0.7%	-1.3%	-2.3%	-4.3%
	A2 medium	-1.7%	-2.3%	-3.7%	-6.4%
	A2 upper	-2.7%	-3.3%	-5.1%	-8.7%
	A1B lower	-0.8%	-1.4%	-2.4%	-3.7%
	A1B medium	-1.9%	-2.4%	-3.8%	-5.5%
	A1B upper	-3.0%	-3.5%	-5.2%	-7.4%

¹ These values are obtained by interpolation.

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
C: 1			1		
Simulati	on results : t	hermal p	ower plants	5	

TABLE 13: Impacts of thermal power production losses (-4.4%) measured as percentage or absolute deviations from the 2050 baseline values

Energy consumption	
Oil refined products	0.00%
Natural gas	0.67%
Electricity	-0.16%
CO ₂ emissions	0.08%
Welfare impacts	
Surplus in Mio USD ₂₀₁₀	-9
As a % of total household consumption	0.00%
Variations in production (GWh)	
Natural gas	-432
Hydropower	0
Renewable energies	320
Total	-112
TOLAI	-112

Conclusion

Climate change impacts : hydropower

Based on the CCHydro project:

TABLE 14: Estimated variations in river runoffs at the 2050 time horizon

	% var
Model Mean	-2.2
C4I	-1.2
DMI	-9.4
KNMI	-1.9
SMHI	1.3

Introduction	Model and baseline	Climate	Energy demand	Energy supply	Conclusion
<u></u>					
Simulat	tion results : h	ivdropow	/er		

TABLE 15: Impacts of hydropower production losses (-2.2%) measured as percentage or absolute deviations from the 2050 baseline values

Energy consumption		
Oil refined products	0.00%	
Natural gas	0.52%	
Electricity	-0.04%	
CO ₂ emissions	0.06%	
Welfare impacts		
Surplus in Mio USD ₂₀₁₀	-5	
As a % of total household consumption	0.00%	
Variations in production (GWh)		
Natural gas	302	
Hydropower	-816	
Renewable energies	486	
Total	-29	

	Model and baseline	Climate		Conclusion
Conclusio	on			

- Sectoral disaggregation together with the introduction of the water and snow resources now allow using the GEMINI-E3 model to compute climate change costs for a set of important sectors
- Our results show that adaptation significantly reduces climate change costs
- In the tourism context, climate change impacts abroad have been shown to greatly influence the results. This result argues in favour of broadening this type of analysis to other sectors (e.g. agriculture)
- We found relatively moderate impacts because of adaptation, the chosen period scenario (2050), the emission scenario (A1B), and the fact that some important aspects of climate change impacts are missing in the analysis (e.g. extreme events, biodiversity, permafrost, health).
- We computed macroeconomic impacts which are aggregated at the national level. Regional impacts can be much more important.
- External costs of adaptation are not taken into account (artificial snow)

	Model and baseline	Climate		Conclusion
Conclusio	on			

- The most important impact of climate change on the Swiss energy sector is a lower demand of heating which dominates the other aspects
- Cooling demand also increases but the economic impact is rather limited in comparison to change in heating demand
- The impacts on electricity generation are moderate and entail small welfare losses
- Limitations and uncertainties
 - Some aspects are missing : extremes events with impacts on electricity network, impacts on renewable (wind, solar)
 - We do not integrate the impacts of climate change on the other regions
 - We use optimistic assumption on the cost of electricity generation done with renewable
 - The penetration of air conditioner in the reference case is uncertain (depends to socioeconomic factors and technological assumptions)