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Abstract
This thesis addresses three challenges in algorithmic mechanism design, which seeks to devise

computationally efficient mechanisms consisting of an outcome rule and a payment rule that

implement desirable outcomes in strategic equilibrium.

The first challenge that we address is the design of expressive mechanisms, i.e., mechanisms

that allow the participating agents to express rich preferences. We focus on multi-item auc-

tions with unit demand. For this setting we present the most expressive polynomial-time

mechanism known to date that is incentive compatible for non-degenerate inputs. This mech-

anism can, e.g., be used in ad auctions with per-click and per-impression valuations and it

can handle a large variety of soft and hard budget constraints.

The second challenge that we consider is the analysis of simplicity-expressiveness tradeoffs. We

develop tools for analyzing how simplification, i.e., restricting the message space, affects the

set of equilibria of a mechanism. We use these tools to analyze two representative settings,

sponsored search auctions and combinatorial auctions. We find that in both cases simplifica-

tion can be beneficial, either by ruling out undesirable equilibria or by promoting desirable

ones. In the case of sponsored search auctions our analysis leads to a strong argument in favor

of the mechanism that is used by all major search engines.

Finally, and this is the third challenge, we consider the design of approximately strategyproof

mechanisms. We present a framework that exploits a remarkably close connection between

discriminant-based classification and the design of strategyproof mechanisms. For a given

algorithmically specified outcome rule our framework finds a payment rule that makes the

resulting mechanism maximally strategyproof. We support our theoretical findings by applying

our framework to a multi-minded combinatorial auction with a greedy outcome rule and to

an assignment problem with egalitarian outcome rule.

Keywords
Algorithmic game theory, algorithmic mechanism design, expressiveness, simplicity, approxi-

mate strategyproofness
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Résumé
Cette thèse aborde trois défis dans la théorie algorithmique des mécanismes d’incitation dont

le but est de concevoir des mécanismes computationnels efficaces qui implémentent des

résultats souhaités dans un équilibre stratégique.

Le premier défi que nous abordons est la conception de mécanismes expressifs, c’est-à-dire des

mécanismes qui permettent d’exprimer des préférences riches. Nous nous concentrons sur

les enchères à plusieurs articles avec demande unitaire. Dans ce cadre, nous présentons le

mécanisme le plus expressif en temps polynomial connu à ce jour qui soit compatible avec

les mesures d’incitation pour des entrées non-dégénérées. Ce mécanisme peut être utilisé

dans des enchères pour des emplacements publicitaires avec valorisation par click ou par

impression et il peut gérer une large variété de contraintes budgétaires.

Le deuxième défi que nous considérons est l’analyse du compromis simplicité-expressivité.

Nous développons des outils pour analyser comment la simplification, c’est-à-dire la restric-

tion de l’espace des messages, influence l’ensemble des équilibres d’un mécanisme. Nous

utilisons ces outils pour analyser les enchères de recherche sponsorisée et les enchères combi-

natoires. Nous montrons que dans les deux cas la simplification peut être bénéfique, soit en

excluant les équilibres non-désirables soit en promouvant ceux qui sont souhaités. Dans le

cas des enchères de recherche sponsorisée, notre analyse mène à un argument fort en faveur

du mécanisme utilisé par la plupart des moteurs de recherche.

Finalement, le troisième défi que nous considérons concerne la conception de mécanismes

d’incitation approximative. Nous présentons une méthode qui exploite une similarité remar-

quable entre la classification discriminante et la conception des mécanismes d’incitation.

Pour une règle de résultat donnée de façon algorithmique, notre méthode trouve une règle

de paiement qui rend le mécanisme résultant maximalement compatible avec les mesures

d’incitation. Nous renforçons notre conclusion théorique en appliquant la méthode à une

enchère combinatoire à intentions multiples avec une règle de résultat « gloutonne » ainsi

qu’à un problème d’attribution avec une règle de résultat égalitaire.

Mot-Clés
Théorie algorithmique des jeux, théorie algorithmique des mécanismes d’incitation, simplicité,

expressivité, incitation approximative
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Zusammenfassung
Diese Dissertation befasst sich mit drei Herausforderungen des algorithmischen Mecha-

nismenentwurfs, dessen Ziel effizient berechenbare Mechanismen mit erstrebenswerten

strategischen Gleichgewichten sind.

Die erste Herausforderung ist der Entwurf ausdrucksstarker Mechanismen, welche die Spe-

zifikation vielfältiger Präferenzen ermöglichen. Der Fokus liegt dabei auf Versteigerungen

mehrerer Gegenstände, in denen jeder Bieter höchstens einen Gegenstand erhalten kann. Es

wird ein effizient berechenbarer Mechanismus für bisher nicht zu bewältigende Präferenzen

entwickelt, der ausser für degenerierte Eingaben nicht manipulierbar ist. Dieser Mechanismus

kann zur Versteigerung von Werbeflächen im Internet verwendet werden, bei der die Bieter

teilweise an Klicks und teilweise an der Häufigkeit der Darstellung interessiert sind. Ausserdem

ermöglicht er die Spezifikation diverser Budgetbeschränkungen.

Die zweite Herausforderung ist das Abwägen von Vor- und Nachteilen der Ausdruckstärke. Es

werden Techniken entwickelt, um die Auswirkung von Vereinfachung (Einschränkung der

erlaubten Gebote) auf die Gleichgewichte eines Mechanismus zu analysieren. Die Techniken

werden auf zwei Probleme angewendet, Versteigerungen von Suchergebnissen und kombina-

torische Auktionen. In beiden Fällen zeigt die Analyse, dass Vereinfachung hilfreich sein kann,

entweder durch den Ausschluss schlechter oder die Begünstigung guter Gleichgewichte. Im

ersten Fall führt die Analyse zu einem überzeugenden Argument für den Mechanismus, der

von allen grösseren Suchmaschinenbetreibern verwendet wird.

Schliesslich und das ist die dritte Herausforderung, wird der Entwurf von annähernd wahr-

heitsgemässen Mechanismen betrachtet. Es wird eine Methode vorgestellt, die einen überra-

schenden Zusammenhang zwischen diskriminantenbasierter Klassifikation einerseits und

dem Entwurf wahrheitsgemässer Mechanismen andererseits ausnutzt. Diese Methode findet

zu einer algorithmisch spezifizierten Ausgaberegel automatisch eine Zahlungsregel, die den

resultierenden Mechanismus so wahrheitsgemäss wie möglich macht. Die Methode wird auf

kombinatorische Auktionen mit einer Heuristik zur Maximierung des Gemeinwohls und auf

ein Zuweisungsproblem mit egalitärer Ausgaberegel angewendet.

Schlüsselwörter
Algorithmische Spieltheorie, algorithmischer Mechanismenentwurf, Ausdrucksstärke, Verein-

fachung, annähernd wahrheitsgemässe Mechanismen
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Introduction

Computer science and game theory developed almost at the same time, namely in the 1950s.

And some of the most important researchers at that time, such as von Neumann, contributed

to computer science and game theory. Still, somewhat surprisingly, both disciplines developed

more or less separately from each other after their conception. This did not change until the

emergence and popularization of the Internet in the 1990s. As of today computer science and

game theory are intertwined again, and problems at the intersection of the two fields are an

active area of research.

An important area of computer science is algorithm design, which aims at devising step-

by-step descriptions, or algorithms, for how given a certain input a certain output can be

computed. A representative problem is sorting, where a given set of numbers has to be sorted

in, say, increasing order. A main concern of algorithm design is computational efficiency. For

this it analyzes how many steps an algorithm takes for an input of a given size, in the worst case

over all inputs with that size, until it has found the output. Of particular interest are so-called

polynomial-time algorithms, for which the number of steps is bounded by a polynomial in the

input size.

An important branch of game theory is mechanism design. The main object of study of

mechanism design are mechanisms that consist of an outcome rule and a payment rule. The

input to both is provided by agents, who employ preferences over outcomes and payments,

and can misreport the input if they find it beneficial to do so. A canonical example is the

auction of a single item, where the input are the values that the agents have for the item,

the agents’ utility is value minus price paid if they win the item and zero otherwise, and the

objective is to assign the item to the agent with the highest value. The goal of mechanism

design is more generally to implement desirable outcomes taking the strategic behavior of the

agents into account, which typically involves incentivizing the agents to truthfully report their

preferences.

In this thesis we address three challenges in algorithmic mechanism design, which—just

as algorithm design—insists on polynomial-time computability and—just as mechanism

design—works under the premise that the input is provided by selfish agents and therefore

seeks to incentivize agents to report truthfully.

1



Introduction

Challenge 1: Design of Expressive Mechanisms

The first challenge that we address is the design of expressive mechanisms, i.e., mechanisms

that allow agents to express rich preferences via their utility functions. Motivated by the ever

increasing demand for expressive auctions in applications on the Web, such as Google’s and

Microsoft’s ad auctions or auctions on platforms such as eBay, we focus on the domain of

multi-item auctions with unit demand.

The problem solved by these auctions is essentially a matching and a pricing problem in which

the goal is to find a bidder optimal, envy free solution. A solution to this problem is envy free

if every bidder is assigned an item that maximizes his utility at the current prices, and it is

bidder optimal if it gives each bidder the highest utility among all envy free solutions. From an

economic point of view a bidder optimal, envy free solution is desirable as it corresponds to

the competitive equilibrium with maximum payoffs to the bidders. Maximizing the payoffs to

the bidders is also a reasonable design goal for the auctioneer as it guarantees participation

and thus revenue in the long run.

Standard mechanisms for this problem typically restrict the bidders’ ability to express their

preferences by forcing them to submit utility functions that are (1) linear, with identical slopes

across the items, and (2) continuous in the price. More recently, a mechanism was proposed

that adds a single discontinuity per bidder-item pair. Still, as we show, these mechanisms

cannot be applied to many problems, including ad auctions in which some of the bidders

have per-click valuations and others have per-impression valuations or auctions on eBay in

which the bidders have soft and hard budgets.

We overcome these limitations by presenting the first polynomial-time mechanism for comput-

ing a bidder optimal, envy free solution for piece-wise linear utility functions with non-identical

slopes and multiple discontinuities. We also analyze under which conditions mechanisms

that compute a bidder optimal, envy free solution incentivize truthful reporting. We show

that under a certain non-degeneracy assumption regarding the input no bidder can gain by

misreporting his utility functions, no matter what the other bidders report. Mechanisms with

this property are incentive compatible (or strategyproof).

To summarize, we present the most expressive polynomial-time mechanism for the problem of

finding a bidder optimal, envy free solution in multi-item auctions with unit demand that is

incentive compatible for non-degenerate inputs.

Challenge 2: Analysis of Simplicity-Expressiveness Tradeoffs

The second challenge that we address is the analysis of simplicity-expressiveness tradeoffs.

We contribute to this challenge by analyzing simplified mechanisms, i.e., mechanisms that

are derived from another mechanism by restricting the ability of the agents to express their

preferences. We refer to these restrictions as restrictions of the message space. The study

2
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of simplified mechanisms is motivated by the fact that in many practical situations truthful

direct-revelation mechanisms, in which the agents truthfully reveal their preferences, are

either unattainable or undesirable. They may be unattainable because of computational

limitations, and they may be undesirable because of the existence of other, non-truthful,

equilibria with undesirable economic properties.

We develop tools that enable the analysis of how simplifications, i.e., restrictions of the message

space, affect the set of equilibria of a mechanism. One important property in this context is

tightness, which requires that the restriction does not introduce new equilibria. Tightness is

desirable as it precludes the introduction of new and potentially bad equilibria. Orthogonal to

tightness is totality, which requires that the restriction preserves all equilibria. To the end of

equilibrium selection, however, totality needs to be relaxed. A meaningful relaxation that we

consider is the preservation of desirable equilibria.

We apply these tools to two representative settings, sponsored search auctions and combina-

torial auctions, each being a canonical example for complete information and incomplete

information analysis, respectively. For sponsored search auctions we observe that expressive

versions of the standard mechanisms for this problem always permit an efficient, zero revenue

equilibrium, while the restrictions on the message space used in practice are tight, preserve

desirable equilibria, and rule out zero revenue equilibria. This shows that these restrictions

strictly improve the set of equilibria. We also show that the mechanism used in practice guar-

antees the existence of a desirable equilibrium and good revenue in all equilibria for a broader

class of inputs than alternative mechanisms. For combinatorial auctions we characterize

precisely which simplifications of the standard mechanism for this problem are tight, and as

such guarantee that the worst equilibrium of the simplified mechanism is no worse than the

worst equilibrium of the original mechanism. We also show that each of these simplifications

provides a different focal (truthful) equilibrium, and that this can have a significant impact on

social welfare at equilibrium.

We also observe that the amount of information available to the agents plays an important role

for the tradeoff between simplicity and expressiveness. In the sponsored search setting, both

the existence of a zero revenue equilibrium in the expressive mechanism, and the existence

of a desirable equilibrium in the simplified mechanism, rely on the assumption of complete

information. For combinatorial auctions, there exist other tight simplifications provided that

the agents have complete information.

To summarize we develop a toolbox for the analysis of simplified mechanisms and apply

it to sponsored search auctions and combinatorial auctions. We show that in both cases

simplification can be beneficial, either by precluding bad or by promoting good equilibria. In

the case of sponsored search auctions our analysis leads to a strong argument in favor of the

mechanism that is used by all major search engines.

3
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Challenge 3: Design of Approximately Strategyproof Mechanisms

The third and last challenge that we address is the design of approximately strategyproof mech-

anisms. Adopting approximate strategyproofness as a design goal is motivated by the fact that

the classical approach of deriving the optimal mechanism subject to exact strategyproofness

is associated with several disadvantages. First, it requires a de novo design for each domain

and in some domains it can be analytically cumbersome to derive the optimal mechanism.

Second, adopting incentive compatibility as a hard constraint may preclude mechanisms with

useful economic properties. Third, the optimal mechanism may have an outcome rule or

payment rule that is computationally intractable.

The notion of approximate strategyproofness that we adopt is minimization of expected ex

post regret. The ex post regret an agent has for truthful reporting in a given instance is the

maximum amount by which his utility could be increased through a misreport holding the

reports of others fixed. The expected ex post regret is the average ex post regret over all agents

and all preferences, calculated with respect to a distribution on preferences. The expected ex

post regret quantifies the potential gain from manipulation. A mechanism with zero expected

ex post regret is strategyproof.

By replacing the incentive compatibility requirement with the goal of minimizing expected

ex post regret, we are able to adapt statistical machine learning techniques to the design of

payment rules. Specifically, given an algorithmically specified outcome rule and a distribution

over preferences we train a discriminant-based classifier with a special structure to predict

the outcome rule. We then use the learned discriminant to define a payment rule. We show

that if the discriminant-based classifier is exact, then the resulting mechanism is strategyproof.

We also show that if the discriminant-based classifier minimizes classification error, then the

resulting mechanism minimizes expected ex post regret.

We support our theoretical findings by applying our framework to two applications, a multi-

minded combinatorial auction with a greedy outcome rule and an assignment problem with

an outcome rule that maximizes egalitarian welfare. For the former it can be shown that no

payment rule exists that makes it strategyproof, and for the latter it is not clear whether such a

payment rule exists. Our experiments are encouraging in that they show that in both cases our

framework produces mechanisms with low expected ex post regret.

To conclude, we propose a new paradigm for the design of approximately strategyproof mecha-

nisms that exploits a remarkably direct connection between discriminant-based classification

and strategyproof mechanism design. Specifically, given an algorithmically specified outcome

rule our framework automatically finds a payment rule that makes the resulting mechanism

maximally strategyproof.

4
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Organization

The rest of this thesis is organized as follows. We present our results regarding the first

challenge in Chapter 1, our results regarding the second challenge in Chapter 2, and our

results regarding the third challenge in Chapter 3. We conclude with some remarks on the

challenges treated in this thesis and directions for future work.
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1 An Expressive Mechanism for Auc-
tions on the Web

1.1 Introduction

Auctions are widely used on the Web. They are, e.g., used by Google and Microsoft for selling

sponsored search results and on platforms such as eBay for selling a broad variety of goods

and services. In these and in many other applications the auctions in use restrict the bidders

to receive at most one item. In other words, the auctions in use are often multi-item auctions

with unit demand.

The problem solved by these auctions is essentially a matching and pricing problem. In this

problem n bidders have to be matched to k items. Each bidder i has a utility function ui , j (p j )

that expresses his utility for being matched to item j at price p j . A solution (µ, p) consisting of

a matching µ and prices p is said to be envy free if at the current prices every bidder (weakly)

prefers the item that he is currently matched to over every other item. An envy free solution

(µ, p) is said to be bidder optimal if the utility of every bidder is at least as high as in every

other envy free solution (µ′, p ′).

From an economic point of view an envy free solution in which the price of every unsold

item is identical to the item’s reserve price is desirable because it represents a competitive

equilibrium.1 Under the additional requirement on the prices of unsold items the bidder

optimal, envy free solution is the competitive equilibrium with maximum payoffs to the

bidders. Maximizing the payoffs to the bidders is also a reasonable objective for the auctioneer

as it guarantees participation and thus revenue in the long run.

1.1.1 Limitations of Current Mechanisms

Standard mechanisms for auctions on the Web such as the Vickrey-Clarke-Groves (VCG)

mechanism [27, 9, 17] or the Generalized Second Price (GSP) mechanism [15, 25] nicely fit into

1The additional requirement regarding the prices of unsold items is needed to ensure that the auctioneer prefers
not to sell these items.
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the above model. For linear utilities of the form ui , j (p j ) = vi , j −p j , where vi , j is a bidder-

item dependent valuation, the VCG mechanism finds a bidder optimal, envy free solution

[21]. (Locally) envy free equilibria of the GSP mechanism for linear utilities of the form

ui , j (p j ) =α j · vi −p j , where α j is an item-dependent constant and vi is an agent-dependent

valuation, are discussed in [15, 25]. A main drawback of these mechanisms, however, is the

limited expressiveness that they offer to the bidders: (1) They typically restrict the utilities to be

linear in the price, with identical slopes across the items. (2) They usually require the utilities

to be continuous in the price.

The General Auction Mechanism (GAM) of Aggarwal et al. [1] takes a first step towards ad-

dressing the problem of limited expressiveness. It applies to linear utilities with identical

slopes and a single discontinuity per bidder-item pair. More specifically, the utilities are of the

form ui , j (p j ) = vi , j −p j if p j ≤ mi , j and ui , j (p j ) =−∞ otherwise, where mi , j is a so-called

bidder-item dependent maximum price. GAM requires the input to be in general position.

For inputs in general position it finds a bidder optimal, envy free solution in polynomial time.

It also preserves another desirable property of the original model. Namely, no bidder can

misreport his valuations and/or maximum prices to achieve a higher utility. Mechanisms with

this property are incentive compatible (or strategyproof).

The general position assumption mandates that in a certain weighted multi-graph defined on

the basis of the input no two walks have exactly the same weight. As this is rather unlikely for

generic weights, e.g., randomly generated ones, inputs that are not in general position can be

regarded as degenerate.2

Despite its generality GAM has two major limitations: (1) It can only handle linear utility

functions with identical slopes. (2) It can only handle a single discontinuity with a jump to

−∞ per bidder-item pair. We illustrate why and when these shortcomings are problematic by

means of two examples.

Example 1. Per-click vs. per-impression valuations (This example motivates linear utilities

with non-identical slopes.) Consider an ad auction with bidders with per-click valuations

vcl i ck
i , j and bidders with per-impression valuations v i mp

i , j . The former are envy free if ucl i ck
i ≥

vcl i ck
i , j −pcl i ck

j for all j and the latter are envy free if ui mp
i ≥ v i mp

i , j −p i mp
j for all j . Suppose that

the mechanism collects per-click valuations and charges per-click prices. That is,

ui , j (pcl i ck
j ) = vcl i ck

i , j −pcl i ck
j . (1.1)

A bidder with per-impression valuations can translate his valuations into per-click valua-

tions using the click trough rate ctri , j as follows: vcl i ck
i , j = v i mp

i , j /ctri , j . That is, he reports

ui , j (pcl i ck
j ) = v i mp

i , j /ctri , j −pcl i ck
j . Now suppose that given the per-click valuations, the mech-

2General position can also be defined as algebraic independence meaning that no non-tautological equations
relating the input values are satisfied. As we only require certain equations to be violated this alternate definition
of general position is sufficient but not necessary for us.
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anism computes an envy free solution (µ, pcl i ck ) consisting of a matching µ and per-click

prices pcl i ck . That is, for every matched bidder-item pair (i , j ) ∈µ and all items j ′ 6= j we have:

vcl i ck
i , j −pcl i ck

j ≥ vcl i ck
i , j ′ −pcl i ck

j ′ . (1.2)

What we actually want for bidders i with per-impression valuations v i mp
i , j is that for (i , j ) ∈µ

and all j ′ 6= j :

v i mp
i , j −p i mp

j ≥ v i mp
i , j ′ −p i mp

j ′ (1.3)

But if we take (1.2), replace vcl i ck
i , j with v i mp

i , j /ctri , j , pcl i ck
j with p i mp

j /ctri , j , and multiply by

ctri , j , then we get

v i mp
i , j −p i mp

j ≥C · (v i mp
i , j ′ −p i mp

j ′ ), (1.4)

where C = ctri , j /ctri , j ′ . That is, if C < 1, then (1.4) is not strong enough to guarantee envy

freeness for per-impression bidders. With non-identical slopes this can be sidestepped by

having bidders with per-impression valuations report

ui , j (pcl i ck
j ) = v i mp

i , j − ctri , j ·pcl i ck
j . (1.5)

In this case the solution (µ, pcl i ck ) computed by the mechanism will be envy free for both

types of bidders, i.e., the above problem does not arise.

Example 2. Soft and hard budgets (This example motivates piece-wise linear utilities with

non-identical slopes and multiple discontinuities.) Suppose that bidder i wants to buy a car

on eBay. In the current system it would be dangerous for bidder i to bid on more than one

car at the same time due to the risk of winning and having to pay for several cars when one is

already enough. With a GAM-like auction bidder i could bid on many cars at the same time

while still being guaranteed that he gets at most one.

With expensive items, such as cars, bidder i ’s valuation vi , j for item j may exceed the amount

c of cash that he possesses. In this case i might be willing to take out a loan if the price p j

of item j exceeds c. Assume that bidder i is offered a loan with a maximum amount of a, an

interest rate of r , and a fixed fee of f . Then bidder i ’s utility for item j has the following form:

(1) Because no interest is due for the first c dollars the utility function drops linearly with a

slope of −1 from 0 to c. (2) At c it drops by the fixed fee f . (3) Afterwards, due to the interest

rate r , every dollar spent causes 1+ r dollars in actual cost. Hence the utility function drops

linearly with a slope of −(1+ r ) from c to c +a.

In addition to the soft budget constraint c , bidder i may have a hard budget constraint b < c+a,

which is typically modeled by a jump to −∞ at p j = b. Hence bidder i ’s utility function for

item j ultimately looks like this:
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Figure 1.1: Piece-wise linear utility function with non-identical slopes and multiple disconti-
nuities that arises from soft and hard budget constraints.

1.1.2 Our Contribution

We overcome the limitations of GAM by presenting a polynomial-time mechanism that com-

putes a bidder optimal, envy free solution for piece-wise linear utilities with non-identical

slopes and multiple discontinuities. Our mechanism is more expressive than GAM as it can

be used in an ad auction to simultaneously auction off items to bidders with per-click and

per-impression valuations (Example 1) and it can handle a large variety of soft and hard budget

constraints (Example 2).

Our mechanism computes an envy free solution whose prices are minimal across all envy

free solutions, which is sufficient for bidder optimality (Lemma 1). It starts by initializing the

price of each item to the item’s reserve price. Afterwards it tries to match one bidder after the

other. For this it considers the first choice graph. The first choice graph consists of one node

per bidder, one node per item, and an edge between a bidder and an item if the item is among

the items that gives this bidder the highest utility. Given this graph our mechanism computes

a maximal alternating tree whose root is the bidder that is to be matched. In a maximal

alternating tree all paths from the root to a leaf alternate between unmatched and matched

edges and none of these paths can be extended. If there is an alternating path from the bidder

that is to be matched to an unmatched item, then the matching can be augmented by flipping

the matched and unmatched edges along the alternating path (Lemma 3). Otherwise all items

in the maximal alternating tree are strictly overdemanded, i.e., every subset of the items is

wanted by strictly more bidders than there are items (Lemma 3). In this case our mechanism

computes speeds at which the prices of these items need to be raised so that (i) all bidders
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that were matched to these items can still be matched to these items (possibly in a different

way), (ii) there is a maximal alternating tree rooted at the unmatched bidder with respect

to this matching that covers the same bidders and items, and (iii) the edges of the maximal

alternating tree remain in the first choice graph. It can be shown that if the prices are raised

according to these speeds then envy freeness and strict overdemand are preserved (Lemma 4

and Lemma 6). Our mechanism raises the prices according to these speeds until either (a)

some bidder becomes interested in an item in which he was not interested before or (b) the

end of a constant-slope interval of a utility function is reached. We show that if the prices

were minimal before this update, then they are still minimal after this update (Lemma 7).

To establish that this process finds a bidder optimal, envy free solution (Theorem 1) we

argue as follows: The process terminates because (1) in updates according to (a) the maximal

alternating tree under consideration grows which ensures that eventually there will be an

alternating path along which the matching can be augmented and (2) updates according to

(b) which can cause previously matched bidders to become unmatched can only occur a

limited number of times. Envy freeness follows from termination because the matching is

contained in the first choice graph at all times. For bidder optimality we argue inductively

(using Lemma 7) that the prices are minimal.

We also analyze under which conditions on the input mechanisms that compute a bidder

optimal, envy free solution for piece-wise linear utilities with non-identical slopes and multiple

discontinuities are incentive compatible. We first provide an example that shows that no

mechanism that computes a bidder optimal, envy free solution is incentive compatible for

all inputs. We then show how to generalize the general position concept of Aggarwal et al. [1].

Finally, we prove that every mechanism that computes a bidder optimal, envy free solution is

incentive compatible for inputs in general position.

Our main insight regarding incentive compatibility is that for inputs in general position at

most one discontinuity is reached in each price increase of our mechanism (Lemma 9). In

this case items that get unmatched due to a discontinuity in some iteration can get matched

again in the subsequent iteration (Lemma 10). If our mechanism is biased towards matching

previously matched items that got unmatched then it finds a bidder optimal, envy free solution

(µ, p) in which (i) p j = r j for all unmatched items j and (ii) p j = r j for at least one matched

item j (Proposition 1).3 We use the existence of a bidder optimal, envy free solution with

these properties to establish that (a) no solution can have higher utilities for all bidders

(Lemma 11) and (b) if some solution gives higher utilities to some bidders, then there must be

a bidder which does not get a higher utility that envies one of the bidders who gets a higher

utility (Lemma 12). For incentive compatibility (Theorem 2) we then argue that, by (a), it is

impossible that all bidders benefit from misreporting and, by (b), if only some bidders benefit

from misreporting then at least one of the bidders who did not misreport is not envy free

which contradicts the fact that the mechanism finds an envy free solution for the reported

utility functions.

3Note that in this case the bidder optimal solution corresponds to the competitive equilibrium with maximum
payoffs to the bidders.
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1.1.3 Related Work

Continuous Utility Functions Linear utility functions with identical slopes were studied by

Shapley and Shubik [23]. They formulated the problem of finding a matching that maximizes

the social welfare as a linear program and observed that the dual program yields envy free

prices. With the help of this formulation they proved the existence of a bidder optimal, envy

free solution. Later Leonard [21] examined the incentives for misreporting the utility functions

and found that the bidder optimal, envy free solution is identical to the solution of the VCG

mechanism [27, 9, 17] and therefore incentive compatible. The “classic” mechanism for linear

utilities with identical slopes is the Multi-Item Auction of Demange et al. [11], which is a

variant of the Hungarian Method by Kuhn [20]. The basic idea of this mechanism is to start

with prices all zero and to repeatedly raise the prices of overdemanded items by the same

amount. This idea was generalized to piece-wise linear utility functions with non-identical

slopes by Alkan [3, 4], who showed that the prices of overdemanded items need to be raised

by different amounts.4 The existence of a bidder optimal, envy free solution for general non-

linear utilities was shown by Demange and Gale [10] using a lattice-theoretic argument. They

also proved that any mechanism that finds a bidder optimal, envy free solution is incentive

compatible. Recently, Alaei et al. [2] presented a novel, inductive characterization of the

bidder optimal, envy free solution in this setting, which yields a constructive proof of existence.

Although hardness results have been established for related problems (see, e.g., [12, 26]), it

is not clear whether or under which conditions a bidder optimal, envy free solution can be

found efficiently for such general utility functions.

Discontinuous Utility Functions Linear utilities with identical slopes and a single discon-

tinuity were studied by Aggarwal et al. [1]. They gave a mechanism, which—for inputs in

general position—is incentive compatible and finds a bidder optimal, envy free solution in

polynomial time. Similar results to that of [1] were obtained by [5, 6] and [13]. In [19] it was

shown how to find the smallest envy free prices for a given matching. Recently, Chen et al. [8]

gave a polynomial-time mechanism for consistent utility functions. Note that all these results

either assume identical slopes [1, 6, 13, 19], just a single discontinuity [1, 6, 13, 19, 8], or both.

Also note that the utility functions that we study here are not consistent. The existence of a

bidder optimal, envy free solution for more general, non-linear utility functions with multiple

discontinuities was established in [14] using a lattice-theoretic argument. They also present

conditions on the input under which every mechanism that computes a bidder optimal, envy

free solution is incentive compatible. As in the continuous case, however, no polynomial-time

mechanism for finding a bidder optimal, envy free solution for these general, non-linear utility

functions is known.

4We adopt some of the techniques developed in [3, 4] for piece-wise linear utilities with non-identical slopes,
but we adapt them to be able to cope with discontinuities and we also refine them to significantly improve upon the
running time. In [3, 4] the running time is stated as O(n2 ·k4 ·∏i , j ti , j ), where ti , j is the number of constant-slope
intervals of ui , j (·).
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1.2 Problem Statement

We are given a set I of n bidders and a set J of k items. The set of items J contains a dedicated

dummy item that we denote j0. For each bidder i we are given a constant oi , called the outside

option, which is the utility that bidder i derives from not getting any non-dummy item. For

each item j we are given a constant r j ≥ 0, called the reserve price, which is a lower bound on

p j . Finally, for each bidder-item pair (i , j ) we are given a utility function ui , j (p j ), where p j

denotes the price of item j . The utility functions are piece-wise linear. That is, each ui , j (·) is

composed of ti , j constant-slope intervals

u(t )
i , j (p j ) = v (t )

i , j − c(t )
i , j ·p j for p j ∈ [s(t )

i , j ,e(t )
i , j ), (1.6)

where t ∈ {1, . . . , ti , j }, s(1)
i , j = r j , e

(ti , j )
i , j = ∞, s(t )

i , j < e(t )
i , j (∀t), and e(t )

i , j = s(t+1)
i , j (∀t 6= ti , j ). Where

possible we omit (t) to improve readability. We make the following assumptions regarding

the utility functions: (1) They are strictly monotonically decreasing. (2) They need not be

globally continuous. (3) For every bidder-item pair (i , j ) there exists a threshold value p̄i , j

such that ui , j (p̄i , j ) ≤ oi . (4) The utility functions ui , j0 (·) for the dummy item j0 are of the form

ui , j0 (p j0 ) = oi −p j0 for p j0 ∈ [0,∞) and r j0 = 0.5

Our goal is to compute a bidder optimal solution. A solution (µ, p) consists of (1) a matching

µ, i.e., a subset µ⊆ I × J of the bidder-item pairs, in which (a) every bidder i appears in exactly

one pair (i , j ) ∈ µ and (b) every non-dummy item j 6= j0 appears in at most one pair, and (2)

per-item prices p = (p1, .., pk ).6 A solution (µ, p) is feasible if

p j0 = 0 and p j ≥ r j for all j 6= j0. (1.7)

A solution is envy free if it is feasible and for all i and (i , j ) ∈ I × J ,

ui ,µ(i )(pµ(i )) ≥ ui , j (p j ), (1.8)

where µ(i ) denotes the item bidder i is matched to. A solution (µ, p) is bidder optimal if it is

envy free and for every bidder i and every envy free solution (µ′, p ′) we have

ui ,µ(i )(pµ(i )) ≥ ui ,µ′(i )(p ′
µ′(i )). (1.9)

We also analyze under which circumstances a mechanism that computes a bidder optimal

solution is incentive compatible. A mechanism is incentive compatible if for every bidder i

with utility functions ui , j (·) and every two sets of utility functions u′
i , j (·) and u′′

i , j (·), where

u′
i , j (·) = ui , j (·) for i and all j and u′

k, j (·) = u′′
k, j (·) for all k 6= i and all j , and corresponding

5This definition together with the requirement that in every feasible solution the price of the dummy item j0 is
p j0 = 0 ensures that in every envy free solution every bidder i has utility at least oi .

6Note that although we refer to µ as matching multiple bidders i can be matched to the dummy item j0. This
could be avoided by having one dummy item per bidder, but the formulation with only one dummy item has
advantages in terms of computational complexity.
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solutions (µ′, p ′) and (µ′′, p ′′) of the mechanism we have

ui ,µ′(i )(p ′
µ′(i )) ≥ ui ,µ′′(i )(p ′′

µ′′(i )). (1.10)

Note that this definition does not involve the reserve prices r j or outside options oi . This

makes sense because the reserve prices r j are typically set by the seller and misreporting oi is

never beneficial to i .7

1.3 Mechanism

In this section we describe and analyze our polynomial-time mechanism for piece-wise linear

utilities with non-identical slopes and multiple discontinuities. We begin by showing how to

reduce the problem of finding a bidder optimal solution for an input with reserve prices to

the problem of finding such a solution for a different input in which the reserve prices are all

zero. Afterwards we prove that the bidder optimal solution has minimal prices among all envy

free solutions. We then formulate the problem as a graph problem. This allows us to define

strict overdemand and to prove that an envy free solution exists if and only if no set of items is

strictly overdemanded using Hall’s Theorem [18]. Our mechanism starts with prices all zero

and iteratively raises the prices of strictly overdemanded items. To ensure envy freeness and

minimality of the resulting prices it raises the prices in an envy freeness and strict overdemand

preserving manner.

1.3.1 Standard Form

We say that the input is in standard form if r j = 0 for all j . The following lemma shows that we

can without loss of generality assume that the input is in standard form as for any problem

instance that is not in standard form there is a linear-time reduction to an instance in standard

form. This reduction is similar to the reduction for continuous utility functions described in [3].

The lemma also shows that a sufficient condition for a solution (µ∗, p∗) to be bidder optimal

is that the prices p∗ are the minimum prices at which an envy free solution exists.8 This was

already known for continuous utility functions (see, e.g., [10]), but it is a novel observation for

discontinuous utility functions.

Lemma 1. (1) If the solution (µ, p) is bidder optimal for u′
i , j (p j ) = ui , j (p j + r j ) and r ′

j = 0 for

all bidders i and all items j , then the solution (µ, p ′) with p ′
j = p j + r j for all items j is bidder

optimal for ui , j (p j ) and r j for all bidders i and all items j . (2) If the solution (µ∗, p∗) is envy free

and p∗
j ≤ p j for all items j and every envy free solution (µ, p), then (µ∗, p∗) is bidder optimal.

Proof. First we show that if the solution (µ, p) is bidder optimal for u′
i , j (p j ) = ui , j (p j + r j )

7Over-reporting can only lead to a missed chance of being assigned an item and under-reporting can only lead
to a utility below the true outside option.

8Minimality of the prices is not a necessary condition for bidder optimality because the prices of unmatched
items need not be minimal.
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and r ′
j = 0 for all bidders i and all items j , then the solution (µ, p ′) with p ′

j = p j + r j for all

items j is bidder optimal for ui , j (p j ) and r j for all bidders i and all items j . The solution

(µ, p ′) is feasible for ui , j (p j ) and r j for all bidders i and all items j because p ′
j0
= p j0 + r j0 =

p j0 = 0 for the dummy item j0 and p ′
j = p j + r j ≥ r j for all other items j 6= j0. It is envy free

because ui ,µ(i )(p ′
µ(i )) = ui ,µ(i )(pµ(i ) + rµ(i )) = u′

i ,µ(i )(pµ(i )) ≥ u′
i , j (p j ) = ui , j (p j + r j ) = ui , j (p ′

j )

for all bidders i and all items j . To see that it is bidder optimal assume by contradiction

that there exists a solution (µ′′, p ′′) that is envy free for ui , j (p j ) and r j for all bidders i and

all items j and has ui ,µ′′(i )(p ′′
µ′′(i )) ≥ ui ,µ(i )(p ′

µ(i )) for all bidders i ; with at least one of the

inequalities strict. Then the solution (µ′′, p ′′′) with p ′′′
j = p ′′

j − r j for all items j is (a) feasible

for u′
i , j (p j ) and r ′

j = 0 for all bidders i and all items j because p ′′′
j0
= p ′′

j0
− r j0 = 0 for the

dummy item j0 and p ′′′
j = p ′′

j − r j ≥ 0 for all other items j 6= j0 and (b) envy free for u′
i , j (p j )

and r ′
j = 0 for all bidders i and all items j because u′

i ,µ′′′(i )(p ′′′
µ′′(i )) = u′

i ,µ′′(i )(p ′′
µ′′(i ) − rµ′′(i )) =

ui ,µ′′(i )(p ′′
µ′′(i )) ≥ ui , j (p ′′

j ) = u′
i , j (p ′′

j − r j ) = u′
i , j (p ′′′

j ) for all bidders i and all items j . Hence

u′
i ,µ′′(i )(p ′′′

µ′′(i )) = ui ,µ′′(i )(p ′′
µ′′(i )) ≥ ui ,µ(i )(p ′

µ(i )) = u′
i ,µ(i )(pµ(i )) for all bidders i ; with at least one

of the inequalities strict. This contradicts the bidder optimality of (µ, p) for u′
i , j (p j ) and r ′

j = 0

for all bidders i and all items j .

Next we show that if the solution (µ∗, p∗) is envy free and p∗
j ≤ p j for all items j and every envy

free solution (µ, p), then (µ∗, p∗) is bidder optimal. By contradiction assume that there is an

envy free solution (µ′, p ′) with ui ,µ′(i )(p ′
µ′(i )) > ui ,µ∗(i )(p∗

µ∗(i )) for some bidder i . Since (µ∗, p∗)

is envy free, we have ui ,µ∗(i )(p∗
µ∗(i )) ≥ ui ,µ′(i )(p∗

µ′(i )). It follows that ui ,µ′(i )(p ′
µ′(i )) > ui ,µ′(i )(p∗

µ′(i )),

which implies p ′
µ′(i ) < p∗

µ′(i ). This gives a contradiction.

1.3.2 Graph-Theoretic Formulation

Next we formulate the problem of computing an envy free solution as a graph problem. Central

to this formulation is the first choice graph Gp = (I ∪ J ,Fp ) at prices p, which consists of one

node per bidder i , one node per item j , and an edge from i to j if and only if item j gives bidder

i the highest utility at the current prices. For each bidder i ∈ I we use Fp (i ) = { j : ∃ (i , j ) ∈ Fp }

to denote the items demanded by this bidder at prices p and for each item j ∈ J we use

Fp ( j ) = {i : ∃ (i , j ) ∈ Fp } to denote the bidders demanding this item at prices p. Analogously,

for every subset of bidders T ⊆ I we use Fp (T ) =∪i∈T Fp (i ) to denote the set of items demanded

by bidders in T at prices p and for every subset of items S ⊆ J we use Fp (S) = ∪ j∈SFp ( j ) to

denote be the set of bidders demanding items in S at prices p. We say that a set of non-dummy

items S ⊆ J \ { j0} is strictly overdemanded at prices p with respect to the set of bidders T ⊆ I

if (a) each of the bidders in T demands only items in S, i.e., Fp (T ) ⊆ S, and (b) for every

non-empty subset R of the items in S there is more demand from bidders in T than there are

items, i.e., |Fp (R)∩T | > |R|. We say that S is strictly overdemanded at prices p if it is strictly

overdemanded at prices p with respect to some set of bidders T . Our definition of strict

overdemand is stronger than the definition of overdemand [11], which only requires that the

number of bidders T demanding only items in the set S is greater than the number of items in

the set. It is different from the definition of minimal overdemand [11], which requires that the
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set itself but no proper subset is overdemanded. It also differs from the definition of directional

overdemand in [4], which is identical to our definition except that it applies to the first choice

graph after the envisioned price increase. The advantage of our definition will become clear in

the next subsection.

Lemma 2. The following statements are equivalent: (1) The solution (µ, p) is envy free. (2) There

exists a matching µ in the first choice graph Gp at prices p. (3) No set of items S ⊆ J \ { j0} is

strictly overdemanded at prices p.

Proof. We begin by showing that (1) and (2) are equivalent. A solution (µ, p) is envy free if

and only if (a) p j0 = 0 and p j ≥ 0 for j 6= j0 and (b) ui ,µ(i )(pµ(i )) ≥ ui , j (p j ) for all (i , j ) ∈ I × J .

Conditions (a) and (b) are in turn satisfied if and only if all edges (i , j ) ∈µ belong to the first

choice graph Gp at prices p with p j0 = 0 and p j ≥ 0 for j 6= j0.

The equivalence between (2) and (3) follows from Hall’s Theorem [18], which shows that there

exists a matching µ in the first choice graph at prices p with p j0 = 0 and p j ≥ 0 for j 6= j0 if and

only if ∀T ⊆ I : |Fp (T )| ≥ |T | or j0 ∈ Fp (T ).

Next we show that (2) implies (3). For this assume that ∀T ⊆ I : |Fp (T )| ≥ |T | or j0 ∈ Fp (T )

and, by contradiction, that there exists a set of items S′ ⊆ J \ { j0} that is strictly overdemanded

with respect to the set of bidders T ′. Since S′ ⊆ J \ { j0} is strictly overdemanded with respect

to T ′ we have that (a) Fp (T ′) ⊆ S′ and (b) ∀R ⊆ S′ : |Fp (R)∩T ′| > |R|. Let T ′′ = Fp (S′)∩T ′.
From (a) we know that |Fp (T ′)| ≤ |S′|. From (b) we know that |T ′′| = |Fp (S′)∩T ′| > |S′|. Since

T ′′ = Fp (S′)∩T ′ ⊆ T ′, we have Fp (T ′′) ⊆ Fp (T ′) and, thus, |Fp (T ′′)| ≤ |Fp (T ′)|. It follows that

|T ′′| > |Fp (T ′′)|. Since Fp (T ′′) ⊆ Fp (T ′) ⊆ S′ ⊆ J \{ j0}, we have j0 6∈ Fp (T ′′). Hence for T ′′ neither

|Fp (T ′′)| ≥ |T ′′| nor j0 ∈ Fp (T ′′). This gives a contradiction.

Finally we show that (3) implies (2). For this assume that no set of items S′ ⊆ J \ { j0} is strictly

overdemanded and, by contradiction, that there exists T ′′ ⊆ I : |Fp (T ′′)| < |T ′′| and j0 6∈ Fp (T ′′).

Consider the smallest such T ′′ and some i ∈ T ′′. For all proper subsets T ′′′ ⊂ T ′′ : |Fp (T ′′′)| ≥
|T ′′′|. Hence all bidders in T ′′ \ {i } can be matched to items in Fp (T ′′ \ {i }) by Hall’s Theorem

[18]. Let µ′ be such a matching. Let µ′(T ′′ \ {i }) denote the items matched to bidders in T ′′ \ {i }

under µ′. Compute a maximal alternating tree T with respect to µ′ with root i . Denote the

bidders and items in this tree by T ′ ⊆ T ′′ and S′ = Fp (T ′) ⊆ Fp (T ′′). It follows that (a) j0 6∈ S′

because S′ = Fp (T ′) ⊆ Fp (T ′′) ⊆ J \ { j0} and (b) all items in Fp (T ′′) ⊇ Fp (T ′) = S′ are matched

because otherwise |Fp (T ′′)| > |µ′(T ′′)| = |µ′(T ′′ \ {i })| = |T ′′ \ {i }| = |T ′′|−1, i.e., |Fp (T ′′)| ≥ |T ′′|.
Hence Lemma 3 shows that S′ is strictly overdemanded with respect to T ′. This gives a

contradiction.

1.3.3 Alternating Paths and Trees

To identify strictly overdemanded items our mechanism makes use of alternating paths and

trees: Let µ be a partial matching. That is, a matching in which not all of the bidders have to
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be matched. An alternating path P with respect to µ in the first choice graph Gp at prices p

from an unmatched bidder i0 to some item or bidder j is a sequence of edges that alternates

between unmatched and matched edges and in which all items except j are non-dummy

items. An alternating tree T with respect to µ with root i0 is a tree in the first choice graph Gp

at prices p which is rooted at an unmatched bidder i0 and in which all paths from the root i0

to a leaf j are alternating. An alternating tree is maximal if the first choice items of all bidders

in the tree are contained in the tree and all matched items in the tree are matched to bidders

in the tree. Formally: If T ⊆ I and S ⊆ J are the bidders and items in the tree T , then Fp (T ) ⊆ S

and µ(S) ⊆ T. The fact that a partial matching can be augmented along an alternating path

from an unmatched bidder to an unmatched item has been used before (see, e.g., [11]). The

new insight of the following lemma is that there is a close correspondence between maximal

alternating trees and our definition of strict overdemand.

Lemma 3. For any maximal alternating tree T with respect to µ with root i0 in Gp : (1) If the

dummy item j0 or some unmatched item j 6= j0 is contained in T , then the matching µ can

be augmented along an alternating path P from i0 to j0 resp. j . (2) If all items S in T are

non-dummy items and matched, then S is strictly overdemanded with respect to the bidders T

in the tree and |T | = |S|+1.

Proof. We first show that if the dummy item j0 or some unmatched item j 6= j0 is contained in

T , then the matching µ can be augmented along an alternating path P from i0 to j0 resp. j .

The path P is the path in the maximal alternating tree T that leads from i0 to j0 resp. j . All

bidders on this path except i0 are incident to two edges, one matched and one unmatched,

and they are indifferent between the two. Hence we can swap the matched and unmatched

edges along P to augment the size of the matching by one.

Next we show that if all items S in T are non-dummy items and matched, then (a) S is strictly

overdemanded with respect to the bidders T in the tree and (b) |T | = |S|+1. For (a) we argue

as follows: We know that j0 6∈ S. From the maximality of the tree T we get Fp (T ) ⊆ S. We still

have to show that for all R ⊆ S : |Fp (R)∩T | > |R|. For every item set R ⊆ S we know that there

exists a node x ∈ R such that no other node of R lies on the path P from x to the root i0. Note

that x is not the root because the root does not belong to R. Let y be the neighbor of x on P.

Then y belongs to Fp (R)∩T , but it is not matched to any node in R . Thus, counting the nodes

matched to nodes in R and y , there are at least |R|+1 nodes in Fp (R)∩T. For (b) we argue as

follows: By maximality of the alternating tree the items that the bidders in T are matched to

must be contained in S. That all items in S are non-dummy items and matched implies that

the only unmatched bidder in T is i0. Hence |T | = |T \ i0|+1 = |S|+1.

1.3.4 Envy Freeness Preserving Price Increases

Once we have identified a strictly overdemanded set of items we need to determine how to

increase the prices of the items in the set: A price increase d is a k-dimensional vector with
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entries d j for j ∈ {1, . . . ,k}. A price increase preserves envy freeness with respect to a set of first

choice edges E ⊆ Fp \ (I × { j0}) at prices p if it satisfies the following conditions:

(a) The entry d j is strictly larger than zero for items j that are the end point of at least one

edge in E and it is zero otherwise.

(b) At prices p +λ ·d , for small enough λ> 0, each bidder i that is the end point of at least

one edge in E weakly prefers each item j to which he has an edge in E to each item k

that is currently among his first choice items.

Note that the dummy item j0 is not the end point of an edge in E and so (a) implies that d j0 = 0.

Also note that it is sufficient to require (b) for all items that are currently among the first choice

items of bidder i as bidder i will prefer each item j to which he has an edge in E to every item

that was not among his first choice items at prices p +λ ·d as long as λ> 0 is small enough.

Our definition of an envy freeness preserving price increase is similar to the definition of a

competitive direction for continuous utility functions in [3]. The next two lemmata are proved

in [3] for competitive directions and continuous utility functions, we generalize them to envy

freeness preserving price increases and discontinuous utility functions. The first lemma is

an immediate consequence of the definition of price increases that preserve envy freeness.

The second lemma gives a sufficient and necessary condition for a price increase d 6= 0 to

preserve envy freeness for a set of first choice edges E ⊆ Fp \ (I × { j0}). It shows that a price

increase d preserves envy freeness for a first choice edge (i , j ) ∈ Fp with j 6= j0 if and only if the

“utility drop” ci , j ·d j on this edge is minimal across the first choice edges (i ,k) ∈ Fp incident to

i . We exploit this characterization in the computation of price increases described in the next

subsection.

Lemma 4. If d is an envy freeness preserving price increase with respect to the set of first choice

edges E ⊆ Fp \(I ×{ j0}) at prices p, then E belongs to the set of first choice edges at prices p+λ ·d
for all sufficiently small λ> 0.

Proof. Consider an arbitrary bidder-item pair (i , j ) ∈ E . If (i ,k) ∈ Fp : Since d preserves envy

freeness for E and (i , j ) ∈ E , we have ui , j (p j +λ ·d j ) ≥ ui ,k (pk +λ ·dk ) for all λ> 0 sufficiently

small. If (i ,k) ∈ (I × J ) \ Fp : Since ui , j (p j ) > ui ,k (pk ), we have ui , j (p j +λ ·d j ) ≥ ui ,k (pk +λ ·dk )

for all λ > 0 sufficiently small.9 We conclude that ui , j (p j +λ ·d j ) ≥ ui ,k (pk +λ ·dk ) for all

(i ,k) ∈ I × J and all λ> 0 sufficiently small. Since d j ≥ 0 for all j s.t. there is a bidder i with

(i , j ) ∈ E and d j = 0 otherwise, we have p j0 +λ·d j0 = p j0 = 0 and p j +λ·p j ≥ 0 for all j 6= j0.

Lemma 5. A price increase d 6= 0 preserves envy freeness for the set of first choice edges E ⊆
Fp \ (I × { j0}) at prices p if and only if ci , j ·d j ≤ ci ,k ·dk for all (i , j ) ∈ E and all (i ,k) ∈ Fp , where

−ci , j and −ci ,k are the slopes of the utility functions ui , j (·) and ui ,k (·) at prices p.

9There is no discontinuity in the utility function ui , j (·) within the range [p j , p j +λ ·d j ] for all λ> 0 sufficiently
small because the utility function ui , j (·) is locally right-continuous.
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Proof. For the if-part assume that ui , j (p j +λ ·d j ) ≥ ui ,k (pk +λ ·dk ) for all sufficiently small

λ> 0, all (i , j ) ∈ E , and all (i ,k) ∈ Fp . Consider arbitrary edges (i , j ) ∈ E and (i ,k) ∈ Fp . By piece-

wise linearity, ui , j (p j +λ ·d j ) = ui , j (p j )−ci , j ·λ ·d j and ui ,k (pk +λ ·dk ) = ui ,k (pk )−ci ,k ·λ ·dk

for all sufficiently small λ> 0. From this and the fact that ui , j (p j +λ ·d j ) ≥ ui ,k (pk +λ ·dk ) it

follows that ui , j (p j )− ci , j ·λ ·d j ≥ ui ,k (pk )− ci ,k ·λ ·dk . Since (i , j ) ∈ E and (i ,k) ∈ Fp , we have

ui , j (p j ) = ui ,k (pk ) and, thus, ci , j ·d j < ci ,k ·dk .

For the only if-part assume that ci , j ·d j ≤ ci ,k ·dk for all (i , j ) ∈ E and all (i ,k) ∈ Fp . Consider

arbitrary edges (i , j ) ∈ E and (i ,k) ∈ Fp . By piece-wise linearity, ui , j (p j +λ·d j ) = ui , j (p j )−ci , j ·
λ ·d j and ui ,k (pk +λ ·dk ) = ui ,k (pk )−ci ,k ·λ ·dk for all sufficiently small λ> 0.10 Since (i , j ) ∈ E

and (i ,k) ∈ Fp , we have ui , j (p j ) = ui ,k (pk ). It follows that ui , j (p j +λ·d j ) = ui , j (p j )−ci , j ·λ·d j ≥
ui ,k (pk )− ci ,k ·λ ·dk = ui ,k (pk +λ ·dk ) for all sufficiently small λ> 0.

1.3.5 Strict Overdemand Preserving Price Increases

It is not difficult to see that envy freeness preserving price increases are not enough to guaran-

tee minimality of the prices. To achieve this goal we define a stronger notion of price increases,

which exploits the correspondence between maximal alternating trees and strict overdemand:

A strict overdemand preserving price increase d for a maximal alternating tree T with respect

to µwith root i0 in Gp with item set S ⊆ J \{ j0} and bidder set T in which all items are matched,

is a price increase d such that

(a) there is some partial matching µ′ that matches the same bidders and items as µ and

that is identical to µ on I \ T × J \ S,

(b) there is a maximal alternating tree T ′ with respect to µ′ with root i0 that has the same

item and bidder set as T , and

(c) d preserves envy freeness for the edges of the maximal alternating tree T ′.

We say that µ′ is the matching that corresponds to d . Note that µ′ can be different from µ on

T ×S. The crucial and new fact is that by (b) all items in the tree, i.e., all items whose price is

increased, remain strictly overdemanded for any small enough price increase.

Lemma 6. If d is a strict overdemand preserving price increase for a maximal alternating tree

T with respect to µ with root i0 in Gp with item set S ⊆ J \ { j0} and bidder set T in which all

items are matched, then S is strictly overdemanded with respect to T in Gp+λ·d for all sufficiently

small λ> 0.

Proof. Denote the partial matching and the maximal alternating tree corresponding to d by

µ′ and T ′. Since d preserves envy freeness for T ′, Lemma 4 shows that all edges in T ′ belong

to the first choice graph Gp+λ·d at prices p +λ ·d for all λ> 0 sufficiently small. Since T ′ is

a maximal alternating tree with item set S and bidder set T in which all items are matched,

10For this we need that the intervals are closed on the left, but open on the right.
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Lemma 3 shows that (1) the set of items S is strictly overdemanded with respect to the set of

bidders T and (2) |T | = |S|+1.

The following lemma—our key lemma and main technical improvement over [3, 4]—shows

that if strict overdemand preserving price increases are used, then the resulting prices will be

minimal across all envy free solutions.

Lemma 7. Let d be a strict overdemand preserving price increase for a maximal alternating

tree T in Gp with item set S and bidder set T in which all items are matched. Let λ> 0 be the

smallest scalar such that at p +λ ·d (a) a bidder-item pair (i , j ) ∈ T × J \ S enters Gp+λ·d or (b)

the end of a constant-slope interval u(t )
i , j (·) of the utility of a bidder-item (i , j ) ∈ T ×S is reached.

Then for any envy free solution (µ′′, p ′′) with p ′′ ≥ p we have p ′′ ≥ p +λ ·d.

Proof. For a contradiction suppose that p ′′
s < ps +λ ·ds for some s ∈ S. Choose ε> 0 such that

p ′′
s = ps + (λ−ε) ·ds . Note that ε≤λ because p ′′

s ≥ ps . Let A = { j ∈ S | p ′′
j −p j ≤ (λ−ε) ·d j } and

let B = Fp+(λ−ε)·d (A)∩T. Note that A 6= ; because s ∈ A.

Since d preserves envy freeness for T ′ and p j ≤ p j + (λ−ε) ·d j < p j +λ ·d j ≤ e j for all j ∈ S,

i.e., for no (i , j ) ∈ T ×S there is a discontinuity in ui , j (·) within the range [p j , p j + (λ−ε) ·d j ],

we have T ′ ⊆ Fp+(λ−ε)·d . Since T ′ covers all bidders in T and items in S and A ⊆ S and S is

strictly overdemanded with respect to T , we have that |B | = |Fp+(λ−ε)·d (A)∩T | > |A|.

Next we show that |A| ≥ |Fp ′′(B)|. For this it suffices to show that Fp ′′(i ) ⊆ A for all i ∈ B. For a

contradiction assume that there exists an i ∈ B and a k 6∈ A with k ∈ Fp ′′(i ). It follows that

p ′′
k −pk > (λ−ε) ·dk , and (1.11)

ui ,k (p ′′
k ) ≥ ui , j (p ′′

j ) for all j . (1.12)

But by the definition of B , and since i ∈ B , there must be a j ∈ A such that j ∈ Fp+(λ−ε)·d (i ). It

follows that

p ′′
j −p j ≤ (λ−ε) ·d j , and (1.13)

ui , j (p j + (λ−ε) ·d j ) ≥ ui ,k (pk + (λ−ε) ·dk ). (1.14)

Using the fact that the utility functions are strictly monotonically decreasing we get

ui , j (p ′′
j ) ≥ ui , j (p j + (λ−ε) ·d j ) (from (1.13))

≥ ui ,k (pk + (λ−ε) ·dk ) (from (1.14))

> ui ,k (p ′′
k ). (from (1.11))

Since this would give a contradiction to (1.12), we must have Fp ′′(B) ⊆ A, i.e., |A| ≥ |Fp ′′(B)|. It

follows that |B | > |A| ≥ |Fp ′′(B)|. But this shows that in (µ′′, p ′′) not all bidders can be matched

in an envy free manner. This gives a contradiction.
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1.3.6 Computing a Strict Overdemand Preserving Price Increase

Next we present a subroutine that computes a strict overdemand preserving price increase

d and a corresponding matching µ′ for a maximal alternating tree T with respect to µ with

root i0 in Gp with item set S ⊆ J \ { j0} and bidder set T in which all items are matched. The

computation consists of three steps:

(1) The subroutine computes a matching σ between T \ {i0} and S consisting of first choice

edges, which minimizes
∏

(i , j )∈µ ci , j , or equivalently,
∑

(i , j )∈µ log(ci , j ). It also computes

an envy freeness preserving price increase d for σ. This can be accomplished by solving

a linear program (LP) and its dual (DP). The duality between slopes and utility drops

exploited here is reminiscent of the duality between matchings that maximize social

welfare and envy free prices in [23].

(2) The subroutine extends d to an envy freeness preserving price increase for a maximal

alternating tree T ′ with respect to σ with root i0 in Gp with bidder set T and item set S.

(3) The subroutine extends σ to µ′ by adding to it the bidder-item pairs from I \ T × J \ S

that were matched in µ.

While (1) is essentially an application of Lemma 5 (and has been used in a similar form in

[3, 4]), (2) and (3) exploit the newly established correspondence between maximal alternating

trees and strict overdemand.

Subroutine for Computing a Strict Overdemand Preserving Price Increase

Input: Maximal alternating tree T with respect to µ with root i0 in Gp with item set S

and bidder set T in which all items are matched

Output: Strict overdemand preserving price increase d for T with corresponding

matching µ′

1 Compute x as optimal solution to the following LP and let σ= {(i , j ) ∈ T \ {i0}×S | xi , j = 1}

min
∑

i , j xi , j · log(ci , j )

sb
∑

j∈Fp (i ) xi , j = 1 (∀i ∈ T \ {i0})∑
i∈Fp ( j ) xi , j = 1 (∀ j ∈ S)

xi , j ≥ 0 (∀(i , j ) ∈ Fp ∩ (T \ {i0}×S))

2 Compute ω, ρ as optimal solution to the following DP

max
∑

i ωi +∑
j ρ j

sb ωi +ρ j ≤ log(ci , j ) (∀(i , j ) ∈ Fp ∩ (T \ {i0}×S))

3 Extend ω from T \ {i0} to T by setting ωi0 = min j∈S log(ci0, j )−ρ j

4 Let Hρ = (T ∪S,Eρ), where Eρ = {(i , j ) ∈ Fρ∩ (T ×S) | ωi +ρ j = log(ci , j )}
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5 Let T ′ be a maximal alternating tree in Hρ with respect to σ with root i0

6 Let S′ ⊆ S and T ′ ⊆ T denote the items and bidders in T ′

7 while T ′ 6= T or S′ 6= S do

8 Let δ= min(i , j )∈Fp :i∈T ′, j∈S\S′ log(ci , j )−ωi −ρ j

9 Set ρ j = ρ j +δ for all j ∈ S \ S′ and ωi =ωi −δ for all i ∈ T \ T ′

10 Recompute T ′, T ′, and S′

11 end while

12 Set d j = e−ρ j for all j ∈ S and d j = 0 otherwise

13 Set µ′ =σ∪ (µ∩ (I \ T × J \ S))

14 Output d and µ′

Lemma 8. This subroutine finds a strict overdemand preserving price increase and a corre-

sponding matching. It can be implemented to run in time O(min(n,k)3).

Proof. Let x, ω, and ρ be defined as in the mechanism. The constraint matrix of LP is totally

unimodular, i.e., xi , j ∈ {0,1} for all (i , j ) ∈ Fp ∩ (T \ {i0}×S) [22]. Hence
∑

j∈Fp (i ) xi , j = 1 (∀i ∈
T \{i0}) and

∑
i∈Fp ( j ) xi , j = 1 (∀ j ∈ S) ensure thatσ= {(i , j ) ∈ T \{i0}×S | xi , j = 1} matches every

bidder i ∈ T \ {i0} and every item j ∈ S exactly once. From duality:

1. For all i ∈ T \ {i0} and all j ∈ S with (i , j ) ∈σ: ωi +ρ j = log(ci , j ).

2. For all i ∈ T \ {i0} and all j ∈ S: ωi +ρ j ≤ log(ci , j ).

If we extend ω from T \ {i0} to T as described in l. 3, then we also have:

3. There exists a j ∈ S: ωi0 +ρ j = log(ci0, j ).

4. For all j ∈ S: ωi0 +ρ j ≤ log(ci0, j ).

Let Hρ = (S ∪T,Eρ), Eρ , T ′, T ′ and S′ be defined as in ll. 4-6. It is not difficult to see that the

while-loop in ll. 7-11 has the following properties:

a. For all i ∈ T ′ and all j ∈ S′ : If we had ωi +ρ j < (resp. =) log(ci , j ) before the update, then

we have ωi +ρ j < (resp. =) log(ci , j ) after the update.

b. For all i ∈ T \ T ′ and all j ∈ S \ S′ : If we had ωi +ρ j < (resp. =) log(ci , j ) before the update,

then we have ωi +ρ j < (resp. =) log(ci , j ) after the update.

c. For all i ∈ T \ T ′ and all j ∈ S′ : If we had ωi +ρ j ≤ log(ci , j ) before the update, then we

have ωi +ρ j < log(ci , j ) after the update.

d. For all i ∈ T ′ and j ∈ S \ S′ : If we had ωi +ρ j < log(ci , j ) before the update, then we have

ωi +ρ j ≤ log(ci , j ) after the update.

e. There exist at least one i ∈ T ′ and j ∈ S \ S′ : ωi +ρ j = log(ci , j ) after the update.

From a. to e. we get that no edge from σ and T ′ in Eρ is lost. From e. we get that at least one

edge from some i ∈ T ′ to some j ∈ S \ S′ is added to Eρ . Since this item j was matched under σ
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along an edge in Eρ to an item i ′ ∈ T \ T ′, we know that after each iteration of the while-loop

the maximal alternating tree T ′ with respect to σ with root i0 in Hρ will at least cover the

bidders and items in T ′∪ {i ′} and S′∪ { j }. Hence, after at most |S| ≤ k iterations, T ′ will cover

the same bidders and items as T .

Let d be defined as in l. 12. Then d 6= 0 preserves envy freeness for T ′ by Lemma 5 because:

1. For all (i , j ) ∈ T ′ and all (i ,k) ∈ Fp we have that ci , j · d j ≤ ci ,k · dk because eωi =
e log(ci , j )−ρ j = ci , j ·e−ρ j = ci , j ·d j and eωi ≤ e log(ci ,k )−ρk = ci ,k ·e−ρk = ci ,k ·dk .

2. For all (i , j ) ∈µ′\T ′ and (i ,k) ∈ Fp we trivially have that ci , j ·d j ≤ ci ,k ·dk because d j = 0,

dk ≥ 0, and ci ,k ≥ 0.

Let µ′ be defined as in l. 13, then µ′ matches the same bidders and items as µ because (1) µ′ is

identical to σ on T ×S and (2) µ′ is identical to µ on I \ T × J \ S.

The LP and the DP can be solved in time O(min(n,k)3) [16, 24]. The maximal alternating tree

T ′ can be computed in time O(min(n,k)2) using a breadth-first search approach. The while-

loop in ll. 7-11 can be implemented using “slack variables” δ j = min(i , j )∈Fp :i∈T ′(log(ci , j )−ωi −
ρ j ) for each item j ∈ S \ S′ so that all iterations of the while loop take total time O(min(n,k)2):

The initialization of the δ j ’s takes time O(min(n,k)2) as for each of the up to min(n,k) items

in S \ S′ the minimum is computed over the up to min(n,k) bidders in T ′. In each iteration

of the while-loop at least one bidder-item pair (i , j ) ∈ T ′× S \ S′ is added to T ′× S′. Since

|S \ S′| ≤ min(n,k) it follows that there are at most min(n,k) iterations. Using the δ j ’s for

j ∈ S \S′ the δ in l.8 can be computed in time O(min(n,k)). When theωi ’s and ρ j ’s are updated

in l. 9, the δ j ’s are adapted in time O(min(n,k)) by subtracting δ from each δ j . Thus, ll. 8 and

9 take time O(min(n,k)) per iteration for a total of O(min(n,k)2). Instead of re-computing the

maximal alternating tree T ′ in l. 10 from scratch we can keep the old one and add the required

edges. Thus maintaining T ′ takes only time O(min(n,k)2) for all iterations of the while loop.

Additionally the δ j ’s must be updated. For each bidder that is added to T ′ all δ j ’s must be

updated. This takes time O(min(n,k)) per bidder. But this happens at most once for each

of the up to min(n,k) bidders that are added to T ′, since no bidder is ever removed from T ′.
Thus, all the updates to the δ j ’s that are required when bidders are added to T ′ take total time

O(min(n,k)2).

1.3.7 Computing a Bidder Optimal Solution

Our mechanism starts with an empty matching µ=; and prices p = 0. It then matches one

bidder after the other until eventually all bidders are matched. For this it computes a maximal

alternating tree T with respect to µ with root i0, where i0 is the bidder to be matched, in the

first choice graph Gp . If the alternating tree contains the dummy item j0 or an unmatched

item j , then by Lemma 3 the current matching µ can be augmented along an alternating

path from i0 to j0 resp. j . If this is not the case, then—again by Lemma 3—the items S in

the tree are strictly overdemanded with respect to the bidders T in the tree. In this case
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the mechanism computes a strict overdemand preserving price increase d together with a

corresponding matching µ′ and raises the prices in compliance with d until (a) a bidder-item

pair (i , j ) ∈ T × J \ S enters the first choice graph Gp+λ·d or (b) the end of a constant-slope

interval u(t )
i , j (·) of the utility of a bidder-item pair (i , j ) ∈ T ×S is reached. In either case the

current matching µ is replaced with µ′ and the minimality of the new prices is guaranteed by

Lemma 7. If at least one of the new prices p j +λ ·d j corresponds to a discontinuity, then one

or multiple edges might drop out of the first choice graph. The mechanism corrects for this by

removing such edges from the matching if necessary. If no discontinuity is reached, then the

maximal alternating tree T rooted at i0 grows by at least one item.

Mechanism for Computing a Bidder Optimal Solution

Input: Bidders I , items J , piece-wise linear utilities ui , j (·) with non-identical slopes

and multiple discontinuities, reserve prices r j = 0, outside options oi

Output: Bidder optimal solution (µ, p)

1 Set p j = 0 for all j and set µ=;
2 while There exists an unmatched bidder i0 do

3 Compute maximal alternating tree T wrt µ in the first choice graph Gp with root i0

4 Let T and S be the bidders and items in T

5 while All items in S are matched and S does not contain the dummy item j0 do

6 Compute a strict overdemand preserving price increase d for T and a correspon-

ding matching µ′ (using the subroutine from the previous subsection)

7 Let λ> 0 be the smallest scalar such that at prices p +λ ·d

(a) a bidder-item pair (i , j ) ∈ T × J \ S enters the first choice graph Gp+λ·d or

(b) the end of a constant-slope interval u(t )
i , j (·) of the utility of a bidder-item

pair (i , j ) ∈ T ×S is reached

8 Set p j = p j +λ ·d j for all j ∈ J and set µ=µ′

9 Remove bidder-item pairs from µ that do not belong to the first choice graph Gp

10 Compute maximal alternating tree T wrt µ in the first choice graph Gp with root i

11 Let T and S be the bidders and items in T

12 end while

13 Augment µ along alternating path P from i0 to unmatched item j or dummy item j0

14 end while

15 Output (µ, p)

Theorem 1. This mechanism finds a bidder optimal solution. It can be implemented to run in

time O((n ·min(n,k)+D ·min(n,k)+T ) ·min(n,k) · (min(n,k)2 +k)), where D =∑
i , j di , j and

T =∑
i , j ti , j denote the total number of discontinuities and constant-slope intervals.

Proof. The matching µ is a subset of the first choice edges at prices p. Hence Lemma 2 shows

that (µ, p) is envy free. By Lemma 1 (µ, p) is bidder optimal if p j ≤ p ′′
j for every item j and

every envy free solution (µ′′, p ′′). Let p(t ) denote the prices after the t-th update. We prove that
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p(t )
j ≤ p ′′

j for every item j , every envy free solution (µ′′, p ′′), and all time steps t by induction

over t .

Induction basis: For t = 0 the claim follows from the fact that every envy free solution (µ′′, p ′′)
has p ′′

j ≥ 0 for all j .

Inductive step: To prove the claim for t assume that it holds for t −1. Let T be the maximal

alternating tree with respect to the current matching µ(t−1) with root i0 right before the t-

th update. Let S and T denote the items and bidders in T . Let d be a strict overdemand

preserving price increase for T with corresponding alternating tree T ′ and matching µ′. Let

λ be defined as in the mechanism. Note that λ can be computed in time O(min(n,k) ·k) by

iterating over all bidders in T , of which there are at most min(n,k), and all items in J . The

mechanism sets p(t+1)
j = p(t )

j for j 6∈ S and p(t+1)
j = p(t )

j +λ ·d j for j ∈ S. Lemma 7 shows

that any envy free solution (µ′′, p ′′) with p ′′ ≥ p(t ) must have p ′′
j ≥ p(t ) +λ ·d j . It follows that

p ′′
j ≥ p(t+1)

j for all j .

We bound the total time required by (1) the outer while-loop without the inner while-loop

(ll. 2-4 & 13-14) and the inner while-loop corresponding to Case (a) (ll. 5-12) separately from

the total time required by (2) the inner while-loop corresponding to Case (b) (ll. 5-12).

To obtain a bound for (1) observe that: (i) In each iteration of the outer while-loop exactly

one bidder gets matched. (ii) Bidders can get unmatched only if the boundary of a box is

reached that corresponds to a discontinuity in at least one of the utility functions ui , j (·). (iii)

A discontinuity in ui , j (·) can only unmatch bidder i . (iv) Since the prices are monotonically

increasing at most O(D) discontinuities are reached. From (i) to (iv) we deduce that there are at

most O(n+D) iterations of the outer while-loop without the inner while-loop. Each iteration of

the outer while-loop without the inner while-loop takes time O(min(n,k)2). From (i) to (iv) it

also follows that there are at most O(n+D) iterations of the inner while corresponding to Case

(a) such that right before their execution either the outer while-loop was executed or the inner

while-loop was executed and a discontinuity was reached. Between any two such iterations

there can be at most O(min(n,k)) iterations of the inner while-loop corresponding to Case (a)

because each of these iterations adds at least one item to the maximal alternating tree under

consideration. Each iteration of the inner while-loop takes time O(min(n,k) · (min(n,k)2 +k)),

namely O(min(n,k)3) for computing the overdemand preserving price increase (see Lemma 8)

and O(min(n,k) ·k) for computing the λ value. Hence a bound for (1) is O((n ·min(n,k)+D ·
min(n,k)) ·min(n,k) · (min(n,k)2 +k)).

To obtain a bound for (2) observe that because the prices are monotonically increasing there

are at most O(T ) iterations of the inner-while loop that correspond to Case (b). As argued

above each iteration of the inner while-loop takes time O(min(n,k) · (min(n,k)2+k)). Hence a

bound for (2) is O(T ·min(n,k) · (min(n,k)2 +k)).
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1.4 Incentive Compatibility

In this section we analyze under which conditions mechanisms that compute a bidder optimal

solution for piece-wise linear utilities with non-identical slopes and multiple discontinuities

are incentive compatible. We begin by providing an example that shows that for unrestricted

inputs bidder optimality does not imply incentive compatibility. In this example, if our

mechanism is used to compute a bidder optimal solution, two discontinuities are reached

in the same price increase. Motivated by this observation we develop a condition on the

input, which we refer to as general position, that ensures that at most one discontinuity is

reached in each price increase of our mechanism. Afterwards, we show that this is enough

to guarantee the existence of a bidder optimal solution with a specific structure. Finally, we

use the existence of this specific bidder optimal solution to show that for inputs in general

position bidder optimality implies incentive compatibility.

1.4.1 Counterexample

The following example shows that in the presence of discontinuities our mechanism, although

it finds a bidder optimal solution, need not be incentive compatible. It even shows that this

is true for any mechanism that computes a bidder optimal solution as the bidder optimal

utilities for both the truthful input as well as the falsified input are unique.11

Example 3. Lying pays off (This example shows that bidder optimality does not imply incen-

tive compatibility.) There are two bidders i ∈ {1,2} and two items j ∈ {1,2}. The utility functions

for i ∈ {1,2} are:

ui ,1(p1) =
{

20−p1 for p1 ∈ [0,5),and

−∞ otherwise,

ui ,2(p2) = 1−p2 for p2 ∈ [0,∞).

The reserve prices are r j = 0 for j ∈ {1,2} and the outside options are oi = 0 for i ∈ {1,2}.

Given this input our mechanism computes a bidder optimal solution as follows: Starting from

prices all zero, at which both bidders strictly prefer item 1 over item 2, it raises the price of

the first item to 5. At this point both bidders lose their interest in item 1 and demand item 2

instead. The mechanism continues by raising the price of item 2 to 1. Now both bidders are

indifferent between item 2 and the dummy item. Hence the mechanism can assign bidder

1 the dummy item and bidder 2 item 2 (or vice versa). For this solution both bidders have a

utility of zero.

Next suppose bidder 1 lies about his utility function for item 1 by reporting u1,1 = 0−p1 for

p1 ∈ [0,∞). In this case bidder 1 (presumably) prefers item 2 over item 1 and bidder 2 prefers

11Note that although the bidder optimal utilities are unique the bidder optimal solutions are not. For the truthful
input, for example, at the prices computed by our mechanism we can either match bidder 1 to item 2 and leave
bidder 2 unmatched or vice versa.
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item 1 over item 2 when prices are all zero. Hence our mechanism will leave the price of all

items at 0 and assign item 1 to bidder 2 and item 2 to bidder 1. Bidder 1’s utility for this solution

is 1 and, thus, strictly higher than the utility that he would get if he reported truthfully.

The crucial point—as we will show below—is that in the computation of the bidder optimal

solution for the original utility functions the first choice edges from bidder 1 to item 1 and

from bidder 2 to item 1 broke away in the same price increase because the corresponding

discontinuities were reached.

1.4.2 Price-Independent Formulation

We define next a condition on the input that ensures that in each price increase of our mecha-

nism at most one edge breaks away due to a discontinuity. Which edges break away depends

on the current prices and the price increases. However, using the following idea we can write

down a condition that does not depend on the current prices: Suppose that the edges (i , j ),

(i ′, j ), and (i ′, j ′) belong to the first choice graph Gp at prices p. Then,

vi ′, j − ci ′, j ·p j = vi ′, j ′ − ci ′, j ′ ·p j ′ . (1.15)

Suppose further that d is an envy free price increase for the set of first choice edges E =
{(i , j ), (i ′, j ), (i ′, j ′)}. Then,

vi ′, j − ci ′, j · (p j +λd j ) = vi ′, j ′ − ci ′, j ′ · (p j ′ +λd j ′). (1.16)

By subtracting (1.15) from (1.16), dividing by λ> 0, and after rearranging we get

ci ′, j ·d j = ci ′, j ′ ·d j ′ . (1.17)

Now suppose that the discontinuities Di , j and Di ′, j ′ are reached simultaneously. Then by

(1.16):

vi ′, j − ci ′, j ·Di , j = vi ′, j ′ − ci ′, j ′ ·Di ′, j ′ . (1.18)

Equation (1.17) lets us divide the left hand side of this equation by ci ′, j ·d j and the right hand

side by ci ′, j ′ ·d j ′ . Subtracting (1/d j ) · (vi , j /ci , j ) from both sides of the resulting equation and

rearranging terms gives

1

d j

(
Di , j −

vi , j

ci , j

)
=− 1

d j

vi , j

ci , j
+ 1

d j

vi ′, j

ci ′, j
+ 1

d j ′

(
Di ′, j ′ −

vi ′, j ′

ci ′, j ′

)
.

Below we will define a weighted multigraph and alternating walks in this multigraph such

that the left and right hand side of the preceding equation correspond to the weights of two

alternating walks in this multigraph, namely P = (i , j ) and Q = (i , j , i ′, j ′). Note that neither

the weight of P nor the weight of Q depends on the prices.
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1.4.3 General Position

For a given input we define a multigraph, called input graph, as follows: There is one node per

bidder i and one node per item j . There are three types of edges: (1) There is a forward edge

from bidder i to item j for each constant-slope interval of ui , j (·). (2) There is a backward edge

from item j to bidder i for each constant-slope interval of ui , j (·). (3) There is a discontinuity

edge from bidder i to item j for each discontinuity Di , j of ui , j (·).

Let P = (i0, j1, . . . , is , js) be a walk in the input graph that alternates between forward and

backward edges, and ends with a discontinuity edge. Let d be a price increase such that

d j = (ci , j ′/ci , j ) ·d j ′ for any two edges (i , j ) and (i , j ′) on P . Define the weight of each forward

edge (i , j ) on P with respect to d as (−1/d j ) · (vi , j /ci , j ), of each backward edge ( j , i ) as (1/d j ) ·
(vi , j /ci , j ), and of the discontinuity edge (i , j ) as (1/d j ) · (Di , j − vi , j /ci , j ). Here vi , j and ci , j are

the constants of the corresponding constant-slope interval. Define the weight wd (P ) of P with

respect to d as the sum of these weights.

An input is in general position if for no two walks P and Q that start with the same bidder and

end with a distinct discontinuity edge and for no price increase d such that d j = (ci , j ′/ci , j ) ·d j ′

for any two edges (i , j ) and (i , j ′) on P resp. Q we have wd (P ) = wd (Q).12

1.4.4 Properties of the Bidder Optimal Solution

We now show that for inputs in general position at most one discontinuity is reached in

each price increase of our mechanism. Afterwards, we argue that in this case items that get

unmatched can get matched again in the subsequent iteration. Finally, we show that if our

mechanism is modified accordingly, then it finds a bidder optimal solution with the following

properties: (i) The price p j of all unmatched items j is p j = r j . (ii) There is at least one

matched item j with p j = r j .13

Lemma 9. If the input is in general position, then in each price increase of our mechanism at

most one discontinuity is reached.

Proof. For a contradiction suppose that two discontinuities are reached in the same price

increase. Without loss of generality assume that they are reached on (i1, j1) and (it , jt−1),

and denote them by Di1, j1 and Di t , jt−1 . Consider the alternating walks P = (i1, j1) and Q =
(i1, j1, i2, j2, . . . , it−1, jt−1, it , jt−1) in the maximal alternating tree corresponding to the price

increase. Note that these walks always exist because (1) either j1 lies on the path from i1 to it

or i2 = i1 and (2) either jt−1 lies on the path from i1 to it or it = it−1. Since the discontinuities

are reached at the same time there must be a price increase d 6= 0 that preserves envy freeness

for the maximal alternating tree containing P and Q and a positive scalar λ > 0 such that

12This definition is more general than the definition of general position in [1] in that it also applies to piece-wise
linear utilities with non-identical slopes and multiple discontinuities.

13Note that the first condition is exactly what is needed to ensure that the bidder optimal solution coincides with
the competitive equilibrium that maximizes the payoffs to the bidders.
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λ ·d j1 = Di1, j1 −p j1 and λ ·d jt−1 = Di t , jt−1 −p jt−1 . Dividing the former by d j1 and the latter by

d jt−1 and equating the resulting equations gives

1

d j1

·Di1, j1 −
1

d jt−1

·Di t , jt−1 =
1

d j1

·p j1 −
1

d jt−1

·p jt−1 . (1.19)

From the fact that P and Q belong to the first choice graph Gp at prices p we get that

vis+1, js − cis+1, js ·p js = vis+1, js+1 − cis+1, js+1 ·p js+1 for s = 1..t −2. (1.20)

Solving for p js we get that

p js =
vis+1, js

cis+1, js

− vis+1, js+1

cis+1, js

+ cis+1, js+1

cis+1, js

·p js+1 for s = 1..t −2. (1.21)

From the fact that P and Q also belong to the first choice graph Gp+λ·d at prices p+λ ·d we get

that vis+1, js −cis+1, js ·(p js +λ·d js ) = vis+1, js+1 −cis+1, js+1 ·(p js+1 +λ·d js+1 ) for s = 1..t−2. Subtracting

(1.20) and solving for d js+1 we get that

d js+1 =
cis+1, js

cis+1, js+1

·d js for s = 1..t −2. (1.22)

Solving the recurrence (1.21) for p j1 , substituting (1.22), and rearranging gives:

1

d j1

·p j1 −
1

d jt−1

·p jt−1 =
t−2∑
s=1

(
1

d js+1

· vis+1, js

cis+1, js+1

− 1

d js+1

· vis+1, js+1

cis+1, js+1

)
.

We combine this with (1.19) to get

1

d j1

·Di1, j1 −
1

d jt−1

·Di t , jt−1 =
t−2∑
s=1

(
1

d js+1

· vis+1, js

cis+1, js+1

− 1

d js+1

· vis+1, js+1

cis+1, js+1

)
.

We add (−1/d j1 )·(vi1, j1 /ci1, j1 ) to both sides and (1/d jt )·(vi t , jt−1 /ci t , jt )−(1/d jt−1 )·(vi t , jt−1 /ci t , jt−1 ) =
0 to the right hand side. After rearranging we get

1

d j1

·
(
Di1, j1 −

vi1, j1

ci1, j1

)
=

t−1∑
s=1

(
− 1

d js

· vis , js

cis , js

+ 1

d js+1

· vis+1, js

cis+1, js+1

)
+ 1

d jt−1

·
(
Di t , jt−1 −

vi t , jt−1

ci t , jt−1

)
.

Since the left hand side corresponds to wd (P ) and the right hand side to wd (Q), we get a

contradiction to the fact that the input is in general position.

Lemma 10. If the input is in general position and our mechanism is used, then every item that

gets unmatched can get matched again in the subsequent iteration.

Proof. Consider an arbitrary price increase in which a matched item gets unmatched. Let i0

be the bidder and let µ be the matching under consideration. Denote the maximal alternating

tree with respect to µ with root i0 by T . Let d be the overdemand preserving price increase
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for T computed by our mechanism. Denote the corresponding maximal alternating tree and

matching by T ′ resp. µ′. We know that µ′ matches the same set of bidders and items as µ. A

matched item j can get unmatched only if the edge along which this item is matched under

µ′ drops out of the first choice graph Gp+λ·d for some λ> 0. Lemma 9 shows that apart from

this edge no other edge can drop out of the first choice graph at this point. But then, because

all items in T ′ are closer to the root i0 than the bidder they are matched to, there must be

an alternating path P from the unmatched item j to the root i0. Hence in the subsequent

iteration item j can get matched again.

Proposition 1. Suppose that the input is in general position and that our mechanism is modi-

fied so that items that get unmatched get matched again in the subsequent iteration. Then in

the bidder optimal solution (µ, p) computed by our mechanism (i) p j = r j for all unmatched

items j and (ii) p j = r j for at least one matched item j .

Proof. Suppose that our mechanism is used to compute a bidder optimal solution (µ, p). By

Lemma 10 we can assume that items that get unmatched get matched again in the subsequent

iteration. This assumption has two implications: (a) Every item that ever got matched will be

matched in the end. (b) The last item that gets matched was not matched before.

Our mechanism initializes the prices of all items to the reserve prices, and it raises the price

of an item strictly above its reserve price only if the item belongs to the set of items S in a

maximal alternating tree T in which all items are matched. Together with (a) this shows that

p j > r j implies that item j is matched or, conversely, that all unmatched items j have p j = r j .

Together with (b) this shows that the last item j that gets matched has p j = r j , which proves

the claim about the matched items.

1.4.5 Characterization

Next we prove that for inputs in general position every mechanism that computes a bidder

optimal solution is incentive compatible. Using the existence of a bidder optimal solution with

a specific structure established in the previous subsection we first show that (a) no feasible

solution can be strictly better than the bidder optimal solution for all bidders and (b) if a

feasible solution is strictly better for some bidders, then there must be a bidder that is not

better off that is not envy free. Afterwards, we observe that if we assume that a subset of

the bidders benefits from misreporting their utilities, then the bidder optimal solution for

the reported utilities is feasible for the true utilities. Hence (a) leads to a contradiction if

all bidders benefitted from misreporting. Otherwise, if only some bidders benefitted from

misreporting, (b) shows that there must be a bidder that is not better off that is not envy free,

which contradicts the fact that the mechanism computes a bidder optimal and, a forteriori,

envy free solution for the reported utilities.14

14Note that this argument actually shows the stronger claim that for inputs in general position no group of
bidders can misreport their utilities to achieve a strictly higher utility.
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Lemma 11. Suppose that the input is in general position and that the solution (µ∗, p∗) is bidder

optimal. Then no feasible solution (µ′, p ′) can have ui ,µ′(i )(p ′
µ′(i )) > ui ,µ∗(i )(p∗

µ∗(i )) for all i .

Proof. Since the input is in general position Proposition 1 shows the existence of a bidder

optimal solution (µ, p) such that (i) p j = r j for all unmatched items j and (ii) p j = r j for

at least one matched item j . For a contradiction assume that there is a feasible solution

(µ′, p ′) with ui ,µ′(i )(p ′
µ′(i )) > ui ,µ∗(i )(p∗

µ∗(i )) for all i . Since ui ,µ(i )(pµ(i )) = ui ,µ∗(i )(p∗
µ∗(i )) for all i ,

it follows that ui ,µ′(i )(p ′
µ′(i )) > ui ,µ(i )(pµ(i )) for all i . Consider any pair (i , j ) ∈µ′. Then ui , j (p ′

j ) =
ui ,µ′(i )(p ′

µ′(i )) > ui ,µ(i )(pµ(i )) ≥ ui , j (p j ) and, thus, p j > p ′
j ≥ r j . Hence, by condition (i), item j

must be matched under µ. We conclude that (a) all items that are matched under µ′ are also

matched under µ and (b) p ′
j < p j for all of these items j .

Case 1: At least one bidder i is matched to the dummy item j0 under µ′. By condition (b)

p j0 > p ′
j0
≥ 0, which contradicts the feasibility of the solution (µ, p).

Case 2: All bidders i are matched to non-dummy items j under µ′. By condition (a) all bidders

are matched to non-dummy items under µ. Condition (ii) shows that at least one item j is

matched under µ at price p j = r j . But then condition (b) shows that p ′
j < p j = r j , which

contradicts the feasibility of the solution (µ′, p ′).

Lemma 12. Suppose the input is in general position, the solution (µ∗, p∗) is bidder optimal,

the solution (µ′, p ′) is feasible, and I+ = {i ∈ I | ui ,µ′(i )(p ′
µ′(i )) > ui ,µ∗(i )(p∗

µ∗(i ))} 6= ;. Then there

exists a bidder-item pair (i , j ) ∈ I \ I+× J such that ui ,µ′(i )(p ′
µ′(i )) < ui , j (p ′

j ).

Proof. Since the input is in general position Proposition 1 shows the existence of a bidder

optimal solution (µ, p) such that (i) p j = r j for all unmatched items j and (ii) p j = r j for at

least one matched item j . Since ui ,µ(i )(pµ(i )) = ui ,µ∗(i )(p∗
µ∗(i )) for all i , we have I+ = {i ∈ I |

ui ,µ′(i )(p ′
µ′(i )) > ui ,µ(i )(pµ(i ))}. Let µ(I+) resp. µ′(I+) denote the set of items matched to bidders

in I+ under µ resp. µ′. From Lemma 11 we know that I+ 6= I .

Case 1: µ(I+) 6=µ′(I+). There must be an item j ∈µ′(I+) such that j 6∈µ(I+). Let i ′ ∈ I+ be the

bidder that is matched to item j in µ′. Since i ′ ∈ I+ and the solution (µ, p) is envy free we have

that ui ′, j (p ′
j ) = ui ′,µ′(i ′)(p ′

µ′(i ′)) > ui ′,µ(i ′)(pµ(i ′)) ≥ ui ′,µ′(i ′)(pµ′(i ′)) = ui ′, j (p j ) which shows that

p j > p ′
j ≥ r j . Thus, by condition (i), item j is matched under µ. Let i ∈ I \ I+ be the bidder

that is matched to item j under µ. Since i 6∈ I+ it follows that ui ,µ′(i )(p ′
µ′(i )) ≤ ui ,µ(i )(pµ(i )) =

ui , j (p j ) < ui , j (p ′
j ).

Case 2: µ(I+) = µ′(I+). Let J+ = µ(I+) = µ′(I+). Consider the following restricted problem:

The set of bidders is I+, the set of items is J+, the utility functions are u+
i , j (·) = ui , j (·) for all

(i , j ) ∈ I+× J+, the reserve prices are r+
j = max(r j ,maxi 6∈I+(u−1

i , j (ui ,µ(i )(pµ(i ))),0)) for all j ∈ J+,

and the outside options are o+
i = oi for all i ∈ I+.15 Since the solution (µ, p) is envy free for

15If ui , j (·) is continuous then u−1
i , j (·) is indeed the inverse function. More generally, it is defined for u ∈ [oi ,∞)

by u−1
i , j (u) := minp j ∈[r j ,∞){ui , j (p j ) ≤ u}, and is merely a one-sided inverse function satisfying u−1

i , j (ui , j (p j )) = p j .
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the original problem it is also envy free for the restricted problem. It is even bidder optimal

because the existence of an envy free solution (µ′′, p ′′) for the restricted problem in which

at least one bidder i ∈ I+ has a strictly higher utility would imply the existence of an envy

free solution (µ′′′, p ′′′) for the original problem with this property and therefore contradict the

bidder optimality of (µ, p).

Case 2.1: The solution (µ′, p ′) is feasible for the restricted problem. That the input for the

original problem is in general position implies that the input for the restricted problem

is in general position. Hence Lemma 11 shows that there exists a bidder i ∈ I+ for which

ui ,µ(i )(pµ(i )) ≥ ui ,µ′(i )(p ′
µ′(i )). This contradicts the definition of I+.

Case 2.2: The solution (µ′, p ′) is not feasible for the restricted problem. This can only happen

if p ′
j < r+

j for some item j ∈ J+. Since the solution (µ′, p ′) is feasible for the original problem

this can only happen if r+
j > r j and, thus, r+

j = maxi 6∈I+(u−1
i , j (ui ,µ(i )(pµ(i ))),0). We cannot have

r+
j = 0 as this would imply p ′

j < r+
j = 0. Hence we must have r+

j = u−1
i , j (ui ,µ(i )(pµ(i ))) for some i ∈

I \I+. It follows that p ′
j < r+

j = u−1
i , j (ui ,µ(i )(pµ(i ))) ≤ u−1

i , j (ui ,µ′(i )(p ′
µ′(i ))) and, thus, ui ,µ′(i )(p ′

µ′(i )) <
ui , j (p ′

j ).

Theorem 2. If the input is in general position, then every mechanism that computes a bidder

optimal solution is incentive compatible.

Proof. For a contradiction suppose some subset of bidders I+ ⊆ I strictly benefits from

misreporting their utility functions. Denote the true input by (ui , j (·),r j ,oi ), and the fal-

sified one by (u′
i , j (·)),r j ,oi ). Note that u′

i , j (·) = ui , j (·) for all (i , j ) ∈ I \ I+ × J . Let (µ∗, p∗)

resp. (µ′, p ′) denote the bidder optimal solution for the true resp. falsified input. Then

I+ = {i ∈ I | ui ,µ′(i )(p ′
µ′(i )) > ui ,µ∗(i )(p∗

µ∗(i ))}. Note that (µ′, p ′) is feasible for the true input

(ui , j (·),r j ,oi ) because p ′
j0
= 0 and p ′

j ≥ 0 for all j 6= j0.

Case 1: I+ = I . Lemma 11 shows that no feasible solution (µ′, p ′) can give all bidders a strictly

higher utility than the bidder optimal solution (µ∗, p∗). This gives a contradiction.

Case 2: I+ 6= I . Lemma 12 shows that if some feasible solution (µ′, p ′) gives only some of the

bidders a strictly higher utility than the bidder optimal solution (µ∗, p∗), then there must be at

least one bidder i ∈ I \ I+ and an item j ∈ J for which ui ,µ′(i )(p ′
µ′(i )) < ui , j (p ′

j ). But since i 6∈ I+

this implies that u′
i ,µ′(i )(p ′

µ′(i )) = ui ,µ′(i )(p ′
µ′(i )) < ui , j (p ′

j ) = u′
i , j (p ′

j ) and contradicts the fact

that (µ′, p ′) is bidder optimal and therefore envy free for the falsified input (u′
i , j (·)),r j ,oi ).

The general position concept serves as an argument to qualify inputs that are not in general

position as degenerate. The argument is that for generic inputs, e.g., randomly generated ones,

it is rather unlikely that two walks in the input graph have exactly the same weight. It would

still be interesting, though, to be able to test whether a given input is in general position and

to know how to deal with inputs that are not in general position.

The minimum is indeed contained in the set itself as we only consider right-continuous utility functions.
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1.5 Conclusion and Future Work

The demand for more expressive mechanisms is reflected in the “richness of preference

expression offered by businesses as diverse as matchmaking sites, sites like Amazon and

NetFlix, and services like Google’s AdSense” [7]. Standard mechanisms often do not meet

this demand. Providing mechanisms that do meet this demand and that at the same time

(1) guarantee the existence of a stable solution, (2) are computationally tractable, and (3)

have good incentive properties is one of the major challenges that the field of algorithmic

mechanism design is currently facing.

In this chapter we contributed to this agenda by considering the domain of multi-item auctions

with unit demand and by providing the most expressive mechanism for this setting so far.

This mechanism, which can be seen as a generalization of the General Auction Mechanism

of [1], can handle piece-wise linear utility functions with non-identical slopes and multiple

discontinuities. These utility functions allow the bidders to explicitly specify conversion rates

(enabling, e.g., per-click auctions that are simultaneously envy free for bidders with per-click

and per-impression valuations) and a variety of soft and hard budget constraints (which, e.g.,

arise when bidders have a limited amount of cash and have to take out loans).

An interesting direction for future work would be to devise even more expressive mechanisms

for the domain studied here, or to devise expressive mechanisms for more general domains

(e.g., one-to-many or many-to-many matchings).
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2 Simplicity-Expressiveness Tradeoffs in
Mechanism Design

2.1 Introduction

The revelation principle states that any equilibrium outcome of any mechanism can be

obtained in a truthful equilibrium of a direct-revelation mechanism, i.e., an equilibrium in

which agents truthfully reveal their types. In practice, however, the assumptions underlying

the revelation principle often fail: other equilibria may exist besides the truthful one, or

computational limitations may interfere. As a consequence, many practical mechanisms use

a restricted message space. This motivates the study of the tradeoffs involved in choosing

simplified mechanisms, which can sometimes bring benefits in precluding bad or promoting

good equilibria, and other times impose costs on welfare and revenue. Despite their practical

importance, these tradeoffs are currently only poorly understood.

In sponsored search auctions, and adopting a complete information analysis, allowing every

agent i to submit a valuation vi j for each slot j means that both the Vickrey-Clarke-Groves

(VCG) mechanism and the Generalized Second Price (GSP) mechanism always admit an

efficient Nash equilibrium with zero revenue [23]. In fact, if agents face a small cost for

submitting a positive bid, then all Nash equilibria yield zero revenue. If instead agent i is

asked for a single bid bi , and his bid for slot j is derived by multiplying bi with a slot-specific

click-through rate α j , the zero-revenue equilibria are eliminated. More surprisingly, this

simplification does not introduce new equilibria (even if α j is not correct for every agent i ),

so minimum revenue over all Nash equilibria is strictly greater for the simplification than

for the original mechanism. Moreover, if valuations can actually be decomposed into an

agent-specific valuation vi and click-through rates α j , the simplification still has an efficient

Nash equilibrium. Milgrom [23] concluded that simplification can be beneficial and need not

come at a cost.

For combinatorial auctions, and adopting an incomplete information analysis, the maximum

social welfare over all outcomes of a mechanism strictly increases with expressiveness, for a

particular measure of expressiveness based on notions from computational learning theory [4].

Implicit in the result of Benisch et al. [4] is the conclusion that more expressiveness is generally
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desirable, as it allows a mechanism to achieve a more efficient outcome in more instances of

the problem.

Each of these results tells only part of the story. While Milgrom’s results on the benefits of

simplicity are developed within an equilibrium framework and can be extended beyond spon-

sored search auctions, they critically require settings with complete information amongst

agents in order to preclude bad equilibria while retaining good ones. In particular, Milgrom

does not consider the potential loss in efficiency or revenue that can occur when agents are

ignorant of each other’s valuations when deciding how to bid within a simplified bidding

language. Benisch et al., on the other hand, develop their results on the benefits of expres-

siveness (and thus the cost of simplicity) in an incomplete information context, but largely

in the absence of equilibrium considerations.1 In particular, these authors do not consider

the potential problems that can occur due to the existence of bad equilibria in expressive

mechanisms.

2.1.1 Our Contribution

Our contribution is twofold. On a conceptual level, we analyze how different properties of a

simplification affect the set of equilibria of a mechanism in both complete and incomplete

information settings and argue that well-chosen simplifications can have a positive impact

on the set of equilibria as a whole; either by precluding undesirable equilibria or by pro-

moting desirable equilibria. We thus extend Milgrom’s emphasis on simplification as a tool

that enables equilibrium selection. On a technical level, we analyze simplified mechanisms

for sponsored search auctions with complete information and combinatorial auctions with

incomplete information.

An important property when analyzing the impact of simplification on the set of equilibria is

tightness [23], which requires that no additional equilibria are introduced. We observe that

tightness can be achieved equally well in complete and incomplete information settings and

give a sufficient condition.2 Complementary to tightness is a property we call totality, which

requires all equilibria of the original mechanism to be preserved. To the end of equilibrium

selection, totality needs to be relaxed. Particular relaxations we consider are the preservation

of the VCG outcome, i.e., the outcome obtained in the dominant strategy equilibrium of the

fully expressive VCG mechanism, and the existence of an equilibrium with a certain amount

of social welfare or revenue relative to the VCG outcome. In addition, one might require that

the latter property holds for every equilibrium of the simplified mechanism.

In the context of sponsored search, one reason to prefer a simplification is to preclude the

zero-revenue equilibria discussed above. Another interesting property of a simplified GSP

1The equilibrium analysis that Benisch et al. provide is in regard to identifying a particular mechanism design
in which the maximum social welfare achievable in any outcome can be achieved in a particular Bayes-Nash
equilibrium.

2This condition was already considered by Milgrom, but only in the complete information case.
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mechanism is that it preserves the VCG outcome even when the assumed click-through rates

α j are inexact. Recognizing that this claim cannot be made for the VCG mechanism under

the same simplification, Milgrom [23] uses this as an argument for the superiority of the GSP

mechanism. But, this result that GSP is Vickrey-preserving requires an unnatural condition

on the relationship between the assumed click-through rates and prices and thus agents’

bids, and moreover does not preclude alternate simplifications of VCG that succeed in being

Vickrey-preserving. In addition, we observe that the simplifications can still suffer arbitrarily

low revenue in some equilibrium, in comparison with the VCG revenue. In our analysis of

sponsored search, we identify a simplified GSP mechanism that preserves the VCG outcome

without requiring any knowledge of the actual click-through rates, precludes zero-revenue

equilibria, and always recovers at least half of the VCG payments for all slots but the first. For

simplified VCG mechanisms, we obtain a strong negative result: every simplification of VCG

that supports the (efficient) VCG outcome in some equilibrium also has an equilibrium in

which revenue is arbitrarily smaller than in the VCG outcome.

In the context of combinatorial auctions, paradigmatic of course of settings with incomplete

information, we first recall the previous observations by Holzman et al. [16, 17] in regard to the

existence of multiple, non-truthful, ex-post equilibria of the VCG mechanism, each of which

offers different welfare and revenue properties. In particular, if one assumes that participants

will select equilibria with a particular (maximum) number of bids, social welfare can differ

greatly among the different equilibria, revenue can be zero for some of them, and the existence

of multiple Pareto optimal equilibria can make equilibrium selection hard to impossible for

participants. Focusing again on tight simplifications, we connect the analysis of Holzman

et al. [16, 17] with tightness, by establishing that a simplification is tight if and only if bids are

restricted to a subset Σ of the bundles with a quasi-field structure [16, 17], with values for the

other bundles derived as the maximum value of any contained bundle. Through insisting on a

tight simplification, we ensure that the worst-case behavior is no worse than that of the fully

expressive VCG mechanism, even when Σ (although simplified) contains too many bundles for

agents to bid on all of them. Moreover, using a quasi-field simplification ensures that agents

do not experience regret with respect to the bidding language, in the sense of wanting to send

a message ex post that was precluded. Finally, as any restriction of the bids to a subset of the

bundles, restricting the bids to a quasi-fieldΣ yields a mechanism that is maximal in range [24]

and makes it a dominant strategy equilibrium for the agents to bid truthfully on these bundles.

Simplification thus enables the mechanism designer to guide equilibrium selection, and our

results suggest that the presence or absence of such guidance can have a significant impact

on the economic properties of the mechanism.

The informational assumptions underlying our analysis are crucial, and the amount of in-

formation available to the agents plays an important role for the tradeoff between simplicity

and expressiveness. In the sponsored search setting, both the existence of a zero-revenue

equilibrium in the expressive mechanism, and the existence of the desirable equilibrium in

the simplification, rely on the assumption of complete information. In other words, agents can

on one hand use information about each others’ types to coordinate and harm the auctioneer,
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but on the other hand, the same information guarantees that simplified mechanisms retain

the desirable equilibria of the expressive mechanism. In combinatorial auctions the contrast

is equally stark: while bids on every single package may be required to sustain an efficient

equilibrium in the incomplete information setting, we show that such an equilibrium can

be obtained with a number of bids that is quadratic in the number of agents, and poten-

tially exponentially smaller than the number of bundles, given that agents have complete

information.

2.1.2 Related Work

Several authors have criticized the revelation principle because it does not take computational

aspects of mechanisms into account. In this context, Conitzer and Sandholm [10] consider

sequential mechanisms that reduce the amount of communication, and non-truthful mecha-

nisms that shift the computational burden of executing the mechanism, and the potential loss

when it is executed suboptimally, from the designer to the agents. Hyafil and Boutilier [18, 19]

propose to circumvent computational problems associated with direct type revelation via the

automated design of partial-revelation mechanisms, and in particular study approximately

incentive compatible mechanisms that do not make any assumptions about agents’ prefer-

ences. This approach is very general, but also hard to analyze theoretically, with complex,

regret-based algorithms.

Blumrosen et al. [6] and Feldman and Blumrosen [12] consider settings with one-dimensional

types and ask how much welfare and revenue can be achieved by mechanisms with a bounded

message space. By contrast, we study mechanisms with message spaces that grow in some

parameter of the problem and may even have infinite size, and obtain results both for one-

dimensional and multi-dimensional types.

A different notion of simplicity of a mechanism was considered by Babaioff and Roughgarden

[3]: the authors show that among all payment rules that guarantee an efficient equilibrium

when ranking agents according to their bids, the GSP payment rule is optimally simple in the

sense that prices depend on bids in a minimal way.

Shakkottai et al. [26] study the tradeoff between simplicity and revenue in the context of

pricing rules for communication networks and define the “price of simplicity” as the ratio

between the revenue of a very simple pricing rule and the maximum revenue that can be

obtained.

2.2 Preliminaries

A mechanism design problem is given by a set N = {1,2, . . . ,n} of agents that interact to select

an element from a setΩ of outcomes. Agent i ∈ N is associated with a type θi from a setΘi of

possible types, representing private information held by this agent. We write θ = (θ1, . . . ,θn)
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for a profile of types for the different agents,Θ=∏
i∈N Θi for the set of possible type profiles,

and θ−i ∈ Θ−i for a profile of types for all agents but i . Each agent i ∈ N further employs

preferences over Ω, represented by a valuation function vi :Ω×Θi → R. The quality of an

outcome o ∈Ω is typically measured in terms of its social welfare, which is defined as the sum∑
i∈N vi (o,θi ) of agents’ valuations. An outcome that maximizes social welfare is also called

efficient.

A mechanism is given by a tuple (N , X , f , p), where X = ∏
i∈N Xi is a set of message profiles,

f : X →Ω is an outcome function, and p : X →Rn is a payment function. In this chapter, we

mostly restrict our attention to direct mechanisms, i.e., mechanisms where Xi ⊆Θi for every

i ∈ N . A direct mechanism (N , X , f , p) with X =Θ is called efficient if for every θ ∈Θ, f (θ) is

an efficient outcome. Just as for type profiles, we write x−i ∈ X−i for a profile of messages by

all agents but i . We assume quasilinear preferences, i.e., the utility of agent i given a message

profile x ∈ X is ui (x,θi ) = vi ( f (x),θi )−pi (x). The revenue achieved by mechanism (N , X , f , p)

for a message profile x ∈ X is
∑

i∈N pi (x).

Game-theoretic reasoning is used to analyze how agents interact with a mechanism, a desirable

criterion being stability according to some game-theoretic solution concept. We consider two

different settings. In the complete information setting, agents are assumed to know the type of

every other agent. A strategy of agent i in this setting is a function si :Θ→ Xi . In the (strict)

incomplete information setting, agents have no information, not even distributional, about

the types of the other agents. A strategy of agent i in this setting thus becomes a function

si :Θi → Xi .

The two most common solution concepts in the complete information setting are dominant

strategy equilibrium and Nash equilibrium. A dominant strategy equilibrium consists of a

dominant strategy si :Θ→ Xi for each agent i ∈ N . A strategy si :Θ→ Xi is a dominant strategy

for agent i ∈ N if for every θ ∈Θ, every x−i ∈ X−i , and every xi ∈ Xi ,

ui ((si (θ), x−i ),θi ) ≥ ui ((xi , x−i ),θi ).

A profile s ∈∏
i∈N si of strategies si :Θ→ Xi is a Nash equilibrium if for every θ ∈Θ, every i ∈ N ,

and every s′i :Θ→ Xi ,

ui ((si (θ), s−i (θ)),θi ) ≥ ui ((s′i (θ), s−i (θ)),θi ).

The existence of a dominant strategy si :Θ→ Xi always implies the existence of a dominant

strategy s′i :Θi → Xi that does not depend on the types of other agents. The solution concept

of dominant strategy equilibrium thus carries over directly to the incomplete information

setting. Formally, a dominant strategy equilibrium in this setting consists of a dominant

strategy si :Θi → Xi for each agent i ∈ N . A strategy si :Θi → Xi is a dominant strategy for

agent i ∈ N if for every θi ∈Θi , every x−i ∈ X−i , and every xi ∈ Xi ,

ui ((si (θi ), x−i ),θi ) ≥ ui ((xi , x−i ),θi ).
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The appropriate variant of the Nash equilibrium concept in the incomplete information setting

is that of an ex-post equilibrium. A profile s ∈∏
i∈N si of strategies si :Θi → Xi is an ex-post

equilibrium if for every θ ∈Θ, every i ∈ N , and every s′i :Θi → Xi ,

ui ((si (θi ), s−i (θ−i )),θi ) ≥ ui ((s′i (θi ), s−i (θ−i )),θi ).

We conclude this section with a direct mechanism due to Vickrey [28], Clarke [9], and Groves

[15]. This mechanism starts from an efficient outcome function f and computes each agent’s

payment according to the total value of the other agents, thus aligning his interests with that of

society. Formally, mechanism (N , X , f , p) is called Vickrey-Clarke-Groves (VCG) mechanism3

if X =Θ, f is efficient, and

pi (θ) = max
o∈Ω

∑
j 6=i

v j (o,θ j )− ∑
j 6=i

v j ( f (θ),θ j ).

In the VCG mechanism, revealing types θ ∈Θ truthfully is a dominant strategy equilibrium [15].

We will refer to the resulting outcome as the VCG outcome for θ, and write RVCG(θ) for the

revenue obtained in this outcome.

2.3 Simplifications

Our main object of study in this chapter are simplifications of a mechanism obtained by

restricting its message space. Consider a mechanism M = (N , X , f , p). A mechanism M̂ =
(N , X̂ , f̂ , p̂) will be called a simplification of M if X̂ ⊆ X , f̂ |X̂ = f |X̂ , and p̂|X̂ = p|X̂ . We will

naturally be interested in the set of outcomes that can be obtained in equilibrium, both in the

original mechanism M and the simplified mechanism M̂ .4

Milgrom [23] defines a property he calls tightness, which requires that the simplification

does not introduce any additional equilibria. More formally, simplification M̂ will be called

tight if every equilibrium of M̂ is an equilibrium of M .5 Tightness ensures that the simplified

mechanism is at least as good as the original one with respect to the worst outcome obtained

in any equilibrium. It does not by itself protect good equilibrium outcomes, and we will in

fact see examples of tight simplifications that eliminate all ex-post equilibria. A property that

will be useful in the following is a variant of Milgrom’s outcome closure for exact equilibria. It

requires that for every agent, and for every choice of messages from the restricted message

spaces of the other agents, it is optimal for the agent to choose a message from his restricted

message space. More formally, a simplification (N , X̂ , f̂ , p̂) of a mechanism (N , X , f , p) satisfies

3Actually, we consider a specific member of a whole family of VCG mechanisms, namely the one that uses the
Clarke pivot rule.

4In the following, we will simply talk about equilibria without making a distinction between the different
equilibrium notions. Unless explicitly noted otherwise, our results concern Nash equilibria in the complete
information case and ex-post equilibria in the incomplete information case.

5Milgrom [23] considers a slightly stronger notion of tightness defined with respect to (pure-strategy) ε-Nash
equilibria.
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outcome closure if for every θ ∈Θ, every i ∈ N , every x̂−i ∈ X̂−i , and every xi ∈ Xi there exists

x̂i ∈ X̂i such that ui ((x̂i , x̂−i ),θi ) ≥ ui ((xi , x̂−i ),θi ). This turns out to be sufficient for tightness

in both the complete and incomplete information case.6

Proposition 1 (Milgrom [23]). Every simplification that satisfies outcome closure is tight with

respect to both Nash and ex-post equilibria.

Proof. Fix θ ∈Θ. Consider a mechanism M = (N , X , f , p), a simplification M̂ = (N , X̂ , f̂ , p̂) that

satisfies outcome closure, and an equilibrium x̂ of M̂ . Assume for contradiction that x̂ is not an

equilibrium of M . Then, for some i ∈ N , there exists x ′
i ∈ Xi such that ui ((x ′

i , x̂−i ),θi ) > ui (x̂,θi ).

Since M̂ satisfies outcome closure, there further exists x̂ ′
i ∈ X̂i such that ui ((x̂ ′

i , x̂−i ),θi ) ≥
ui ((x ′

i , x̂−i ),θi ). It follows that ui ((x̂ ′
i , x̂−i ),θi ) > ui (x̂,θi ), which contradicts the assumption

that x̂ is an equilibrium of M̂ .

One way to guarantee good behavior in the best case is by requiring that a simplification

M̂ preserves all equilibria of the original mechanism M , in the sense that for every Nash

equilibrium of M , there exists a Nash equilibrium of M̂ that yields the same outcome and

payments. We will call a simplification satisfying this property total. A useful property in this

context is outcome reducibility, which requires that there exists a way of mapping messages of

the original mechanism to messages of the simplification such that (i) outcomes and payoffs

are preserved, and such that (ii) for every agent the utility that he can achieve with a mes-

sage from the original message space against messages of the other agents from the original

message space is at least as high as the utility that he can achieve with a message from the

restricted message space against the corresponding mapped messages of the other agents.

More formally, a simplification (N , X̂ , f̂ , p̂) of a mechanism (N , X , f , p) satisfies outcome re-

ducibility if there exists a mapping h : X → X̂ such that (i) for every x ∈ X , f (x) = f (h(x)) and

p(x) = p(h(x)) and (ii) for every i ∈ N , every x ∈ X , and every x̂ ′
i ∈ X̂i , there exists x ′

i ∈ Xi such

that ui ((x ′
i , x−i ),θi ) ≥ ui ((x̂ ′

i ,h−i (x)),θi ). Outcome reducibility is sufficient for totality, but

only with respect to Nash equilibria.

Proposition 2. Every simplification that satisfies outcome reducibility is total with respect to

Nash equilibria.

Proof. Fix θ ∈ Θ. Consider a mechanism M = (N , X , f , p), a simplification M̂ = (N , X̂ , f̂ , p̂)

that satisfies outcome reducibility, and a Nash equilibrium x of M . Assume for contradiction

that h(x) ∈ X̂ is not a Nash equilibrium of M̂ . Then, for some i ∈ N , there exists x̂ ′
i ∈ X̂i such

that ui ((x̂ ′
i ,h−i (x)),θi ) > ui (h(x),θi ). Since M̂ satisfies outcome reducibility, there further

exists x ′
i ∈ Xi such that ui ((x ′

i , x−i ),θi ) ≥ ui ((x̂ ′
i ,h−i (x)),θi ). It follows that ui ((x ′

i , x−i ),θi ) >
ui (h(x),θi ) = ui (x,θi ), which contradicts the assumption that x is a Nash equilibrium of

M .

6Milgrom stated the result only for complete information, but the proof goes through for incomplete information
as well.
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To the end of equilibrium selection totality clearly needs to be relaxed, by requiring that only

certain desirable outcomes are preserved. A typical desirable outcome in many settings is the

VCG outcome. This outcome has some shortcomings in fully general combinatorial auction

domains [2], but it remains of significant interest in settings with unit-demand preferences,

such as sponsored search. We will call simplification M̂ Vickrey-preserving if for every θ ∈Θ, it

has an equilibrium that yields the VCG outcome for θ.

2.4 Sponsored Search Auctions

In sponsored search (see, e.g., [21]), the agents compete for elements of a set S = {1, . . . ,k} of

slots, where k ≤ n. Each outcome corresponds to a one-to-one assignment of agents to slots,

i.e.,Ω⊆ {1, . . . ,n}N such that oi 6= o j for all o ∈Ω and i , j ∈ {1, . . . ,n} with i 6= j . We will assume

that v(o,θi ) = 0 if oi > k, and that there are no externalities, i.e., vi (o,θi ) = vi (o′,θi ) if oi = o′
i .

In slight abuse of notation, we will write vi ( j ,θi ) for the valuation of agent i for slot j .

We consider simplifications of two mechanisms, the Vickrey-Clarke-Groves (VCG) mechanism

and the Generalized Second Price (GSP) mechanism, and analyze their behavior for different

spaces of type profiles, which we denote byΘ,Θ>, andΘα. InΘ, valuations can be arbitrary

non-negative numbers. Θ> adds the restriction that valuations are strictly decreasing, i.e.,

vi ( j ,θi ) > vi ( j+1,θi ) for every θ ∈Θ>, i ∈ N , and j ∈ {1, . . . ,k−1}. Valuations inΘα are assumed

to arise from “clicks” associated with each slot and a valuation per click. In other words, there

exists a fixed click-through rate vector α ∈ Rn> = {α′ ∈ Rn
≥0 : α′

i >α′
j if i < j and i ≤ k}, which

may or may not be known to the mechanism, and vi ( j ,θi ) =α j · vi (θi ) for some vi (θi ) ∈R≥0.

Thus, α j = 0 if j > k, and it will be convenient to assume that α1 = 1. We finally define

Ψ=⋃
α∈Rn>Θ

α, and observe thatΨ⊂Θ> ⊂Θ.

The message an agent i ∈ N submits to the mechanism thus corresponds to a vector of bids

xi ∈ Rn specifying a bid xi , j ∈ R for each slot j ∈ S. Given a message profile x ∈ X , the VCG

mechanism assigns each agent i a slot fi (x) = oi so as to maximize
∑

i xi ,oi , and charges that

agent pi (x) = maxo′∈Ω
∑

j 6=i x j ,o′
j
−∑

j 6=i x j ,o j . The GSP mechanism is defined via a sequence of

second-price auctions for slots 1 through k: slot j is assigned to an agent i with a maximum

bid for that slot at a price equal to the second highest bid, both with respect to the set of agents

who have not yet been assigned a slot, i.e., fi (x) = oi such that xi , j = maxi ′∈N :oi ′≥ j xi ′, j and

pi (x) = maxi ′∈N :oi ′> j xi , j .

2.4.1 Envy Freeness and Efficiency

The original analysis of GSP due to Edelman et al. [11] and Varian [27] focuses on equilibria

that are “locally envy free.”7 Assume that θ ∈Θα, and consider an outcome in which agent i

is assigned slot i , for all i ∈ N . Such an outcome is called locally envy free if, in addition

to being a Nash equilibrium, no agent could increase his utility by exchanging bids with

7Varian calls these equilibria “symmetric equilibria.”
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the agent assigned the slot directly above him, i.e., if for every i ∈ {2, . . . ,n}, αi · vi (θi )−pi ≥
αi−1 · vi (θi )−pi−1. Restricting attention to envy free equilibria immediately solves all revenue

problems: as Edelman et al. point out, revenue in any locally envy free equilibrium is at

least as high as that in the dominant-strategy equilibrium of the VCG auction. Conversely,

Milgrom’s observation concerning zero-revenue equilibria contains an implicit critique of the

assumptions underlying the restriction to equilibria that are envy free. It will be instructive to

make this critique explicit.

Edelman et al. argue that an equilibrium where some agent i envies some other agent j

assigned the next higher slot is not a reasonable rest point of the bidding process because

agent i might increase the price paid by agent j without the danger of harming his own utility

should j retaliate. There are two problems with this line of reasoning. First, it is not clear why

agent j should retaliate, especially if he is worse off by doing so. Second, agent i might in fact

have a very good reason not to increase the price paid by j , like a desire to keep prices low in

the long run through tacit collusion.

We may instead ask under what conditions there exists a bid xi , j for agent i on slot j < i such

that (i) agent j is forced out of slot j , in the sense that it becomes a better response for j to

underbid i , and (ii) agent i is strictly better off after this response by j than at present. This is

the case exactly when

αi · v j (θ j )−pi >α j · v j (θ j )−xi , j and α j · vi (θi )−xi , j >αi · vi (θi )−pi , (2.1)

where pi is the price currently paid by agent i . The second inequality assumes that j will

respond by bidding just below the bid xi , j of agent i , such that this becomes i ’s new price.

An equilibrium that does not allow deviations as above will be called two-step stable. It turns

out that two-step stability exactly characterizes the set of efficient equilibria.

Proposition 3. Let α ∈ Rn>, θ ∈ Θα. Then, an equilibrium is two-step stable if and only it is

efficient.

Proof. Consider agents i > j . Suppose agent i is assigned slot i and agent j is assigned slot j .

Rewriting (2.1), it must hold that

xi , j > (α j −αi ) · v j (θ j )+pi and xi , j < (α j −αi ) · vi (θi )+pi .

Clearly, a bid xi , j with this property exists if and only if vi (θi ) > v j (θ j ). In turn, agents i and j

such that vi (θi ) > v j (θ j ) exist if and only if the current assignment is inefficient.

This result provides a very strong argument against inefficient equilibria as rest points of the

bidding process, much stronger than the argument against equilibria that are not envy free. In

the context of sponsored search auctions we will therefore restrict our attention to efficient

equilibria. It is worth noting at this point that the set of efficient equilibria forms a strict
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superset of the set of locally envy free equilibria, and in particular contains the zero-revenue

equilibria identified by Milgrom and discussed next.

2.4.2 Comments on Milgrom’s Analysis

Milgrom [23] observed that for every profile of agent types, both expressive VCG and expressive

GSP have an efficient equilibrium that yields zero revenue, and that all equilibria yield zero

revenue if there is a small cost associated with submitting a positive bid. To alleviate this fact,

he proposed to restrict the message space of both VCG and GSP to X̂ = {(α1 ·bi , . . . ,αk ·bi ) :

bi ∈R≥0} for some α ∈Rn>.

The following proposition summarizes our knowledge about the resulting simplifications,

which we will refer to as α-VCG and α-GSP. Most of these observations were already proved or

at least claimed by Milgrom, but a proof of the proposition is given for the sake of complete-

ness.

Proposition 4. Let α ∈Rn>. Then, α-GSP and α-VCG are tight on Θ, have positive revenue on

Θ> if n,k ≥ 2, and are Vickrey-preserving onΘα.

Proof. First we prove that α-GSP and α-VCG are tight on Θ. By Proposition 1 it suffices to

show that for every θ ∈Θ, every i ∈ N , every x̂−i ∈ X̂−i and every xi ∈ Xi there exists x̂i ∈ X̂i

such that ui ((x̂i , x̂−i ),θi ) ≥ ui ((xi , x̂−i ),θ). Denote the outcome of GSP resp. VCG on (xi , x̂−i )

by o. For l 6= i let bl ∈ R≥0 be such that x̂l = (α1 ·bl , . . . ,αk ·bl ). Let bi be the oi -th highest

value among the bl ’s. Then in the outcome o′ of α-GSP and α-VCG on (x̂i , x̂−i ) we have

o′
i = oi and, thus, vi (o′

i ,θi ) = vi (oi ,θi ). Since i ’s payment pi (oi ) and pi (o′
i ) in GSP resp. VCG

and α-GSP resp. α-VCG only depends on x̂−i and is therefore the same, we conclude that

ui ((x̂i , x̂−i ),θi ) ≥ ui ((xi , x̂−i ),θ).

Next we show that α-GSP and α-VCG have positive revenue onΘ> for n,k ≥ 2. Suppose x̂ is an

equilibrium of α-GSP resp. α-VCG. For i ∈ N let bi ∈R≥0 be such that x̂i = (α1 ·bi , . . . ,αk ·bi ).

Renumber the agents by non-increasing bi . The revenue achieved by α-GSP resp. α-VCG

is
∑

i αi ·bi+1 resp.
∑

i
∑

j>i (α j−1 −α j ) ·b j , where the sums are over all i , j ≤ min(n,k) with

bi ,b j > 0. Hence in both, α-GSP and α-VCG, we can only have zero revenue if bi = 0 for

all i > 1. In this case all agents but the first remain unassigned and any agent i > 1 can bid

0 < b′
i < b1 to be assigned slot 2 at price 0. Since θi ∈Θ>

i we have vi (2,θi ) > 0 and, thus, agent

i ’s utility would strictly increase. We conclude that in both, α-GSP and α-VCG, the revenue

associated with x̂ must be strictly positive.

Finally, we show that α-GSP and α-VCG are Vickrey compatible on Θα. For this denote the

outcome and payments computed by VCG for the true types θ ∈Θα by o and p. Recall that

i < j implies that pi > p j . We have to argue that there are equilibria x̂ ∈ X̂ ofα-GSP andα-VCG

in which the outcome and payments are identical to o and p.

For α-GSP we construct x̂ ∈ X̂ as follows: 1. Renumber the agents by the slot they are assigned
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to in o. 2. Set b1 = v1(1,θ1) and for i > 1 set bi =α−1
i−1 ·p(i −1). 3. For all i let x̂i = (α1 ·bi , . . . ,αk ·

bi ). We have chosen x̂ ∈ X̂ such that the outcome and payments computed by α-GSP on x̂ are

identical to o and p. To see that x̂ is an equilibrium of α-GSP observe that if agent i deviates

from x̂ to win slot j , then the price p ′′( j ) that he would have to pay for slot j is at least as large

as the price p ′( j ) = p( j ) of slot j in the outcome computed by α-GSP resp. VCG on x̂ resp. θ.

That is, if i would strictly benefit from the deviation that gives him slot j , then we would have

vi ( j ,θi )−p( j ) ≥ vi ( j ,θi )−p ′′( j ) > vi (i ,θi )−p ′(i ) = vi (i ,θi )−p(i ). But this would contradict

the fact that the outcome and payments computed by VCG are envy free [22].

For α-VCG we can use x̂ = θ ∈ X̂ . Applying α-VCG to x̂ gives, of course, the same assignment

and payments as applying VCG to θ. To see that x̂ is an equilibrium of α-VCG observe that any

beneficial deviation from x̂ in α-VCG would also be a beneficial deviation from θ in VCG and,

thus, would contradict the fact that truthtelling is a dominant strategy of VCG.

An additional observation that we make, in regard to the ability of the simplifications α-VCG

and α-GSP to eliminate zero-revenue equilibria, is that there exist type profiles for which the

minimum equilibrium revenue can be arbitrarily small compared to the revenue obtained in

the VCG outcome.

Theorem 1. Let ε,r > 0. Then there exist α ∈Rn> and θ ∈Θα such that RVCG(θ) ≥ r and α-VCG

has an equilibrium with revenue at most ε. Similarly, there exist α ∈Rn> and θ ∈Θα such that

RVCG(θ) ≥ r and α-GSP has an equilibrium with revenue at most ε.

Proof. We consider a setting with three agents and three slots. The construction can easily be

extended to an arbitrary number of agents and slots.

For α-VCG, let v1(θ1) = v2(θ2) = r + 1 and let v3(θ3) = ε. Let α1 = 1, α2 = 1/(r + 1), and

α3 = 1/(2r +2). It is easily verified that the bids b1 = r +1 and b2 = b3 = ε form an equilibrium

of α-VCG. Given these bids, α-VCG assigns slot 1 to agent 1 at price ε−ε/(r +1)+ε/(r +1)−
ε/(2r +2), and slots 2 and 3 to agents 2 and 3 at prices ε/(r +1)− ε/(2r +2) and zero. This

yields revenue ε. In the truthful equilibrium of the VCG mechanism, on the other hand, the

price is (r +1)− (r +1)/(r +1)+ε/(r +1)−ε/(2r +2) for the first slot, ε/(r +1)−ε/(2r +2) for

the second slot, and zero for the third slot, for an overall revenue of r +ε/(r +2).

For α-GSP, let vi (θi ) = r +1 for all i ∈ N . Let δ = ε/(r +2), α1 = 1, α2 = (1+δ)/(r +1), and

α3 = 1/(r + 1). It is easily verified that the bids b1 = r + 1 and b2 = b3 = δ/(1+δ) · (r + 1)

form an equilibrium of α-GSP. Given these bids, α-GSP assigns slot 1 to agent 1 at price

δ/(1+δ) · (r +1), and slots 2 and 3 to agents 2 and 3 at prices δ and zero. This yields revenue

δ/(1+δ) · (r +1)+δ≤ ε. In the truthful equilibrium of the VCG mechanism, on the other hand,

the price is r for the first slot, δ for the second slot, and zero for the third slot, for an overall

revenue of r +δ.

Assuming that the click-through rate vector α is known, both α-VCG and α-GSP look very ap-
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pealing: they eliminate all zero-revenue equilibria, without affecting the truthful equilibrium

and without introducing any new equilibria.

In practice, however, the relevant click-through rates may not be known. A somewhat more

realistic model assumes a certain degree of heterogeneity among the population generating

the clicks. More precisely, a certain fraction of this population is assumed to be “merely

curious,” such that clicks by this part of the population do not generate any value for the

agents. This introduces an information asymmetry, where the mechanism observes the overall

click-through rate vector α, while agents derive value from a different click-through rate

vector β.8 In the following we will assume that β is the same for all agents, and that β is again

normalized such that β1 = 1 and β j = 0 if j > k.

For a slight variation of our model, in which there is a dependence betweenα and β,9 Milgrom

established a separation between GSP and VCG: Suppose that the Vickrey price-per-click

sequence {p j (θ)/α j } j=1,...,k , where p j (θ) is the truthful VCG price for slot j , is decreasing.

Then α-GSP retains the VCG outcome while α-VCG fails to do so.

We obtain an analogous observation in our model.

Proposition 5. Let α,β ∈Rn>. Then, α-GSP is Vickrey-preserving onΘβ if and only if the Vickrey

price-per-click sequence is decreasing.

Proof. Fix α,β ∈ Rn> and θ ∈ Θβ. Order the agents so that v1(θ1) ≥ ·· · ≥ vn(θn). Efficiency

requires that agent i win position i . To get the Vickrey prices pi (θ) for all slots i it is necessary

that the equilibrium bid by agent i ∈ {2, . . . ,min(n,k+1)} be bi (θ) = pi−1(θ)/αi−1. Take b1(θ) =
α1 · v1(θ1) and bi (θ) = 0 for i > min(n,k +1).

First suppose that the sequence {p j /α j } j is not decreasing, e.g., because pi (θ)/αi < pi+1(θ)/αi+1.

It follows that bi+1(θ) = pi (θ)/αi < pi+1(θ)/αi +1 = bi+2(θ) and, thus, the bids are not ranked

in the order required for efficiency.

Next suppose that the sequence {p j /α j } j is decreasing. In this case the bids are ranked

in the correct order. For a contradiction suppose that some agent j could strictly benefit

from a deviation to θ′ = (θ1, . . . ,θ j−1,θ′j ,θ j+1, . . . ,θn). Suppose that given θ′ agent j is assigned

slot l at price pl (θ′). Since agent j strictly benefits from the deviation we must have that

βl · v j (θ j )−pl (θ′) >β j · v j (θ)−p j (θ). If l < j , then the price that agent j faces for slot l is at

least pl (θ′) ≥αl ·pl−1(θ)/αl−1 >αl ·pl (θ)/αl = pl (θ). If l > j , then the price that agent j faces

for slot l is exactly pl (θ′) = pl (θ). We conclude that βl · v j (θ j )−pl (θ) ≥ βl · v j (θ j )−pl (θ′) >
β j ·v j (θ j )−p j (θ). But this contradicts the envy freeness of the VCG assignment and payments

(see, e.g., [22]).

8As Milgrom [23] points out, “if the search company observes clicks but not sales or value for each position, its
auction rule can entail adjusting bids in proportion to clicks but not in proportion to value” (p. 68).

9Milgrom assumes that there is a fraction λ of shoppers with click-through rate vector α and a fraction (1−λ) of
curious searchers with click-through rate vector β. The click-through rate vector γ observed by the search provider
is then given by γ j =λ ·α j + (1−λ) ·β j .
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Proposition 6. There exist n,k ≥ 3 and α,β ∈Rn> such that the Vickrey price-per-click sequence

is decreasing, but α-VCG is not Vickrey-preserving.

Proof. Let α ∈ Rn> be such that α1 = 1, α2 = 0.5, and α3 = 0.4, and let β ∈ Rn> be such that

β1 = 1, β2 = 0.9, and β3 = 0.8. Let θ ∈ Θβ be such that v1(θ1) = 30, v2(θ2) = 20, v3(θ3) = 10,

and vi (θi ) = 0 if i > 3. In the VCG outcome, slot 1 is assigned to agent 1 at price p1(θ) =
(β1 −β2) · v2(θ2)+ (β2 −β3) · v3(θ3) = 3, slot 2 to agent 2 at p2(θ) = (β2 −β3) · v3(θ3) = 1, and

slot 3 to agent 3 at p3(θ) = 0. The Vickrey price-per-click sequence {p j /α j } j = {3,2,0} is

decreasing. Now assume that the same outcome is obtained in α-VCG, and denote by b ∈Rn a

bid profile that leads to this outcome. Since both VCG and α-VCG are efficient, it must hold

that b1 ≥ b2 ≥ b3. To get the same prices as in the VCG outcome, we must further have that

b2 = (β1 −β2)/(α1 −α2) · v2(θ2) = 4 and b3 = (β2 −β3)/(α2 −α3) · v3(θ3) = 10. Thus, b2 < b3,

which yields a contradiction.

This line of reasoning seems a bit problematic for two reasons. First, there seems no reason

to believe that the condition relating the Vickrey prices and click-through rates would be

satisfied in practice. Second, the above discussion only shows superiority of GSP over VCG

with respect to a particular simplification, and it might well be the case that there exists a

different simplification of the VCG mechanism with comparable or even better properties.

2.4.3 A Sense in which GSP is Superior to VCG

The above observations raise the following prominent question: does there exist a simplifica-

tion that preserves the VCG outcome despite ignorance about the true click-through rates that

affect bidders’ values, and if so, can this simplification achieve improved revenue relative to the

VCG outcome, in every equilibrium?

For GSP the answer is surprisingly simple: a closer look at the proofs of Proposition 4 and

Proposition 5 reveals that by ignoring the observed click-through rates α, and setting α= 1 =
(1, . . . ,1) instead, one obtains a simplification that is tight, guarantees positive revenue, and is

Vickrey-preserving on all ofΨ. This strengthens Proposition 4 over the claims for α-GSP and

α-VCG.

Corollary 1. α-GSP is tight onΨ, has positive revenue onΨ if n,k ≥ 2, and is Vickrey-preserving

onΨ, if and only if α= 1 = (1, . . . ,1).

The direction from left to right follows by observing that, for every α 6= 1, we can find a β such

that the condition of Proposition 5 is violated.

In light of Theorem 1, and given the arguments in favor of efficient equilibria, we may further

ask for the minimum revenue obtained by 1-GSP in any efficient equilibrium. It turns out that

1-GSP always recovers at least half of the VCG revenue for all slots but the first.
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Theorem 2. Let β ∈ Rn>, θ ∈ Θβ, and assume that v1(θ1) ≥ ·· · ≥ vn(θn). Then, every efficient

equilibrium of 1-GSP for θ yields revenue at least

1

2

(
RVCG(θ)−

k∑
j=1

(β j −β j+1) · v j+1(θ j+1)

)
.

Proof. Let b(θ) be a bid profile corresponding to an efficient equilibrium of 1-GSP. It then

holds that b1(θ) ≥ ·· · ≥ bn(θ), and for all i ∈ {1, . . . ,k}, 1-GSP assigns slot i to agent i at price

pi (θ) = bi+1(θ). A necessary condition for b(θ) to be an equilibrium is that for every agent

j ∈ N , b j (θ) is large enough such that none of the agents i > j would prefer being assigned

slot j instead of i . In particular, for every i ∈ N ,

βi+1 · vi+1(θi+1)−pi+1(θ) ≥βi · vi+1(θi+1)−bi (θ) and

βi+2 · vi+2(θi+2)−pi+2(θ) ≥βi · vi+2(θi+2)−bi (θ).

Since pi (θ) = bi+1(θ) and by rearranging,

bi (θ) ≥ (βi −βi+1) · vi+1(θi+1)+pi+1(θ) = (βi −βi+1) · vi+1(θi+1)+bi+2(θ) and

bi (θ) ≥ (βi −βi+2) · vi+2(θi+2)+pi+2(θ) ≥ (βi+1 −βi+2) · vi+2(θi+2)+bi+3(θ).

If we repeatedly substitute according to the first inequality, we obtain

bi (θ) ≥
⌊

k−i
2

⌋∑
j=1

(βi+2· j−2 −βi+2· j−1) · vi+2· j−1(θi+2· j−1) and

bi (θ) ≥
⌊

k−i
2

⌋∑
j=1

(βi+2· j−1 −βi+2· j ) · vi+2· j (θi+2· j ).

By adding the two inequalities,

2 ·bi (θ) ≥
k∑

j=i
(β j −β j+1) · v j+1(θ j+1),

and, since pi (θ) = bi+1(θ),

2 ·pi (θ) ≥
k∑

j=i+1
(β j −β j+1) · v j+1(θ j+1).

Now recall that RVCG(θ) =∑
i∈N ri (θ), where

ri (θ) =
k∑

j=i
(β j −β j+1) · v j+1(θ j+1).

Thus, ∑
i∈N

2 ·pi (θ) ≥ ∑
i∈N

ri (θ)−
k∑

j=1
(β j −β j+1) · v j+1(θ j+1).
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The revenue obtained in any efficient equilibrium of 1-GSP is therefore at least∑
i∈N

pi (θ) ≥ 1

2

(
RVCG(θ)−

k∑
j=1

(β j −β j+1) · v j+1(θ j+1)

)
.

Our analysis also leads to a satisfactory contrast between 1-GSP and simplifications of VCG:

any simplification of VCG that does not observe the value-generating click-through rates,

and is Vickrey-preserving for all possible choices of these click-through rates, must admit an

efficient equilibrium with arbitrarily low revenue.

Theorem 3. Let M̂ be a simplification of the VCG mechanism that is Vickrey-preserving onΨ.

Then, for every θ ∈Ψ and every ε> 0, there exists an efficient equilibrium of M̂ with revenue at

most ε.

Proof. Fix β ∈Rn> and consider an arbitrary type profile θ ∈Θβ ⊆Ψ. Order the agents such that

v1(θ1) ≥ ·· · ≥ vn(θn).

The proof proceeds in two steps. First we will argue that for some c ≥ 0, every δ> 0, and all

i ∈ N , X̂i must contain a message xδi corresponding to bids bi j such that bi i =βi · vi (θi )+ c,

bi j ≤ βi · vi (θi )+ c +δ for 1 ≤ j < i and bi j ≤ c +δ for i < j ≤ k. These messages will then be

used to construct an equilibrium with low revenue.

To show that the restricted message spaces X̂i must contain messages as described above, we

show that these messages are required to reach the VCG outcome for a different type profile

θ′ ∈Θβ′ ⊆Ψ for a particular β′ ∈Rn>. Denote by pi (θ′) the price of slot i for type profile θ′. We

know that for j ∈ {2, . . . ,k}, β′
j · v j (θ′j ) = β′

j−1 · v j (θ′j )−p j−1(θ′) (see, e.g., [23]). Consider an

arbitrary δ> 0. If we choose β′ such that β′
1 −β′

i and β′
i+1 are small enough, we can choose θ′

as above such that

p j (θ′)−pi (θ′) ≤ δ for j < i and

pi (θ′)−p j (θ′) ≥βi · vi (θi )−δ for j > i .

A well-known property of the VCG outcome in the assignment problem is its envy freeness (see,

e.g., [22]): denoting by bi j the bid of agent i on slot j and by p j the price of slot j , it must hold

for every agent i that

bi i −pi ≥ bi j −p j for all j ∈ S.

For type profile θ′, we thus obtain

bi j −bi i ≤ p j (θ′)−pi (θ′) ≤ δ for j < i and

bi i −bi j ≥ pi (θ′)−p j (θ′) ≥βi · vi (θi )−δ for j > i .
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Using messages xδi , we now construct an efficient equilibrium with low revenue. Clearly, the

allocation that assigns slot i to agent i is still efficient under message profile xδ. Furthermore,

for all j ∈ {1, . . . ,k}, the VCG price of slot j under xδ goes to zero as δ goes to zero. In particular,

we can choose δ such that the overall revenue is at most ε. We finally claim that there exists

some δ′ > 0 such that xδ is an equilibrium for every δ with δ′ > δ> 0. To see this, recall that

βi · vi (θi ) > β j · vi (θi ) for j > i , so ui (xδ,θi ) > β j · vi (θi ) for some small enough δ. If, on the

other hand, agent i was assigned a slot j < i , his payment would be at least β j · v j (θ j )−δ>
β j · vi (θi )−δ. This would leave him with utility at most δ, which can be chosen to be smaller

than ui (xδ,θi ).

It is worth noting that despite having a reasonably good lower bound on revenue, 1-GSP does

not quite succeed in circumventing Theorem 1: there exists a type profile for which only the

first slot generates a significant amount of VCG revenue, and an equilibrium of 1-GSP for

this type profile in which revenue is close to zero. On the other hand, for a wide range of

click-through rates, there will be a large gap between the minimum revenue of 1-GSP and

simplifications of VCG in efficient equilibria.

Moreover, the revenue separation between simplifications of GSP and VCG only applies to

simplifications of the latter that are Vickrey-preserving. Given how central the VCG outcome

has been to the analysis of sponsored search auctions, this seems a reasonable property to

impose. Nevertheless, it is an interesting question whether the result can be strengthened

further.

2.5 Combinatorial Auctions

Mechanisms for combinatorial auctions allocate items from a set G to the agents, i.e., Ω =∏
i∈N 2G such that for every o ∈Ω and i , j ∈ N with i 6= j , oi ∩o j =;. We make the standard

assumption that the empty set is valued at zero and that valuations satisfy free disposal, i.e.,

for all i ∈ N , θi ∈Θi , and o,o′ ∈Ω, vi (o,θi ) = 0 if oi =; and vi (o,θi ) ≤ vi (o′,θi ) if oi ⊆ o′
i . The

latter condition also implies that each agent is only interested in the package he receives, and

we sometimes abuse notation and write vi (C ,θi ) for the valuation of agent i for any o ∈Ωwith

oi =C . We further write k = |G| for the number of items, W (o, x) =∑
j∈N v j (o, x j ) for the social

welfare of outcome o ∈Ω under message profile x ∈ X , and Wmax(x) = maxo∈ΩW (o, x) for the

maximum social welfare of any outcome. Finally, for every agent i ∈ N , message xi ∈ X , and

bundle of items B ⊆G we write xi (B) for agent i ’s bid on bundle B .

The VCG mechanism makes it a dominant strategy for every agent to bid his true valuation

for every bundle of items. Since the number of such bundles is exponential in the number of

items, however, computational constraints might prevent agents from playing this dominant

strategy (even for a well-crafted bidding language [25, 20]). In light of these results, and in light

of the observation that simplifications can help to isolate useful equilibria, it is interesting to

ask which other (ex-post) equilibria the VCG auction can have. Holzman and Monderer [16]
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showed that these equilibria are precisely the projections of the true types to those subsets

of the set of all bundles that form a quasi-field. Let Σ⊆ 2G be a set of bundles of items such

that ;∈Σ. Σ is called a quasi-field if it is closed under complementation and union of disjoint

subsets, i.e., if

• B ∈Σ implies B c ∈Σ, where B c =G \ B and

• B ,C ∈Σ and B ∩C implies B ∪C ∈Σ.

For a message xi ∈ Xi , write xΣi for the projection of xi to Σ, i.e., for the unique message such

that for every bundle B ⊆G of items,

xΣi (B) = max
B ′∈Σ,B ′⊆B

xi (B ′).

The characterization given by Holzman and Monderer is subject to the additional constraint

of variable participation: a strategy profile s for a set N of agents is an equilibrium of a VCG

mechanism under variable participation if for every N ′ ⊆ N , the projection of s to N ′ is an

equilibrium of every VCG mechanism for N ′.

Theorem 4 (Holzman and Monderer [16]). Consider a VCG combinatorial auction with a set

N of agents and a set G of items. Then, a strategy profile s = (s1, . . . , sn) is an ex-post equilibrium

of this auction under variable participation if and only if there exists a quasi-field Σ⊆ 2G such

that for every type profile θ and every agent i ∈ N , si (θi ) = θΣi .

Intuitively, the social welfare obtained in these “bundling” equilibria decreases as the set of

bundles becomes smaller. A simple argument shows, for example, that welfare in the bundling

equilibrium for Σ, where |Σ| = 2m for some m ≤ k, can be smaller by a factor of k/m than

the maximum welfare. For this, consider a setting with k agents such that each agent desires

exactly one of the items, i.e., values this item at 1, and each item is desired by exactly one of

the agents. Clearly, maximum social welfare in this case is k. On the other hand, since Σ is a

quasi-field, it cannot contain more than m bundles that are pairwise disjoint. Therefore, by

assigning only bundles in Σ, one can obtain welfare at most m.

Welfare can also differ tremendously among quasi-fields of equal size, which suggests an

opportunity for simplification.

Proposition 7. Let G be a set of items, k = |G|, and m ≤ k. Then there exist quasi-fieldsΣ,Σ′ ⊆ 2G

with |Σ| = |Σ′| = 2m and a type profile θ such that

Wmax(θΣ)

Wmax(θΣ′)
≥ m⌈

m2/k
⌉ .

Proof. Consider a partition of G into sets G1, . . . ,Gm of size d k
m e or b k

m c, and letΣ be the closure

of {G1, . . . ,Gm} under complementation and union of disjoint sets. For every i , 1 ≤ i ≤ m,
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choose an arbitrary gi ∈ Gi , and define θ = (θ1, . . . ,θm) such that for every i with 1 ≤ i ≤ m,

vi (X ,θi ) = 1 if gi ∈ X and vi (X ,θi ) = 0 otherwise. Clearly, Wmax(θΣ) = m. Now consider a

second partition of G into sets G ′
1, . . . ,G ′

m of size d k
m e or b k

m c such that G ′
j ⊇ {gi : ( j −1)bk/mc+

1 ≤ i ≤ j bk/mc }, and let Σ′ be the closure of {G1, . . . ,Gm} under complementation and union

of disjoint sets. It is then easily verified that Wmax(θΣ
′
) ≤ dm/(k/m)e = dm2/ke, and the claim

follows.

Agents might also disagree about the quality of the different bundling equilibria of a given

maximum size. In particular, the set of these equilibria might contain several Pareto undomi-

nated equilibria, but no dominant strategy equilibrium. From the point of view of equilibrium

selection, this is the worst possible scenario.

Example 1. Let N = {1,2,3}, G = {A,B ,C }, and consider a type profile θ = (θ1,θ2,θ3) such that

v1(X ,θ1) =


4 if {A,C } ⊆ X ,

3 if A ∈ X and C ∉ X

1 otherwise;

v2(X ,θ2) =
3 if {A,C } ⊆ X or {B ,C } ⊆ X and

0 otherwise;

v3(X ,θ3) =
1 if B ∈ X

0 otherwise.

Clearly, at least four bids are required to express θ1. Since a quasi-field on G must contain

both the empty set and G itself, there are four quasi-fields of size four or less:

Σ1 = {;, {A}, {B ,C }, {A,B ,C }} Σ2 = {;, {B}, {A,C }, {A,B ,C }}

Σ3 = {;, {C }, {A,B}, {A,B ,C }} Σ4 = {;, {A,B ,C }}

For i ∈ {1,2,3,4}, write θi = (θΣ
i

1 ,θΣ
i

2 ,θΣ
i

3 ) for the projection of θ to Σi . The following is now

easily verified. In the VCG outcome for θ1, agent 1 is assigned {A} at price 0 for a utility of 3,

and agent 2 is assigned {B ,C } at price 1 for a utility of 2. In the VCG outcome for θ2, agent 1

is assigned {A,C } at price 3 for a utility of 1, and agent 3 is assigned {B} at price 0 for a utility

of 1. Finally, in the VCG outcome for θ3 and θ4, agent 1 is assigned {A,B ,C } at price 3 for a

utility of 1. The outcomes for θ1 and θ2 are both Pareto undominated. Also observe that social

welfare is greater for θ1, while θ2 yields higher revenue.

Finally, the projection to a quasi-field can result in an equilibrium with revenue zero, even

if revenue in the dominant strategy equilibrium is strictly positive. This is illustrated in the

following example. It should be noted that this example, as well as the previous one, can easily

be generalized to arbitrary numbers of agents and items and a large range of upper bounds on

the size of the quasi-field.
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Example 2. Let N = {1,2,3}, G = {A,B ,C ,D}, and consider a type profile θ = (θ1,θ2,θ3) such

that

v1(X ,θ1) =
2 if {A,D} ⊆ X and

0 otherwise;

v2(X ,θ2) =


2 if {A,B} ⊆ X ,

1 if B ∈ X and A ∉ X , and

0 otherwise;

v3(X ,θ3) =
2 if C ∈ X , and

0 otherwise.

In the VCG outcome for θ, agent 1 is assigned {A,D} at price 1, agent 2 is assigned {B} at price 0,

and agent 3 is assigned {C } at price 0, for an overall revenue of 1. In the VCG outcome for

θΣ, on the other hand, where Σ= {;, AB ,C D, ABC D}, agent 2 is assigned {A,B} and agent 3 is

assigned {C ,D}, both at price 0. Revenue is 0 as well.

In theory, one way to solve these problems is to simplify the mechanism, and artificially

restrict the set of bundles agents can bid on. Given a set Σ⊆ 2G of bundles, call Σ-VCG the

simplification of the VCG mechanism obtained by restricting the message spaces to X̂i ⊆ Xi

such that for every x̂i ∈ X̂i and every bundle of items B ⊆G ,

x̂i (B) = max
B ′∈Σ,B ′⊆B

x̂i (B ′).

In other words, Σ-VCG allows agents to bid only on elements of Σ and derives bids for the

other bundles as the maximum bid on a contained bundle. It is easy to see that Σ-VCG is

maximal in range [24], i.e., that it maximizes social welfare over a subset ofΩ. It follows that

for each agent, truthful projection onto Σ is a dominant strategy in Σ-VCG.

This shows that simplification can focus attention on a focal (truthful) equilibrium and thus

avoid equilibrium selection along a Pareto frontier. As Proposition 7 and the above examples

suggest, this can have a significant positive impact on both social welfare and revenue. It

does not tell us, of course, how Σ should be chosen in practice. One understood approach for

maximizing social welfare without any knowledge about the quality of different outcomes,

and without consideration to Σ being a quasi-field, is to partition G arbitrarily into m sets

of roughly equal size, where m is the largest number of bundles agents can bid on. The

welfare thus obtained is smaller than the maximum social welfare by a factor of at most

k/
p

m [17]. If additional knowledge is available, however, it may be possible to improve the

result substantially, as the above results comparing the outcomes for different values of Σ

show.

With that being said, there are (at least) two additional properties that are desirable for a
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simplification: that Σ-VCG is tight, and that Σ is a quasi-field. Tightness ensures that no

additional equilibria are introduced as compared to the fully expressive VCG mechanism, such

that the quality of the worst equilibrium outcome of the simplification is no worse than that

of the original mechanism. This remains important when Σmay still be too large for agents

to use its full projection, in which case agents would again have to select from a large set of

possible ex-post equilibria. By requiring thatΣ is a quasi-field, in addition to being a dominant

strategy equilibrium of Σ-VCG, truthful projection to Σ is also an ex-post equilibrium of the

fully expressive VCG mechanism, and thus stable against unrestricted unilateral deviations.

This ensures that agents do not experience regret, in the sense of being prevented from sending

a message they would want to send given the messages sent by the other agents.

It turns out that these two requirements are actually equivalent, i.e., that Σ-VCG is tight if and

only if Σ is a quasi-field. The following result holds with respect to both Nash equilibria and

ex-post equilibria.

Theorem 5. Let Σ⊆ 2G such that ;∈Σ. Then, Σ-VCG is a tight simplification if Σ is a quasi-

field, and this condition is also necessary if n ≥ 3.

Proof. For the direction from right to left, assume that Σ is a quasi-field. By Proposition 1 it

suffices to show that Σ-VCG satisfies outcome closure. Fix valuation functions v j and types θ j

for all j ∈ N , and consider an arbitrary agent i ∈ N . We claim that for every xi ∈ Xi and every

x̂−i ∈ X̂−i ,

ui ((θΣi , x̂−i ),θi ) ≥ ui ((xi , x̂−i ),θi ).

To see this, observe that there exists θ̂−i ∈Θ−i such that θ̂Σ−i = x̂−i , and consider the type profile

(θi , θ̂−i ). Holzman et al. [17] have shown that the projection of the true types to a quasi-field Σ

is an ex-post equilibrium of the (fully expressive) VCG mechanism. Thus, in particular, θΣi is a

best response to θ̂Σ−i = x̂−i , which proves the claim.

For the direction from left to right, assume that Σ is not a quasi-field. Holzman et al. [17] have

shown that in this case, θΣ is not an ex-post equilibrium of the VCG mechanism. On the other

hand, θΣ is a dominant-strategy equilibrium of Σ-VCG, because Σ-VCG is maximal in range.

This shows that Σ-VCG is not tight.

Together with Theorem 4, this yields a characterization of the ex-post equilibria of Σ-VCG for

the case when Σ is a quasi-field.

Corollary 2. Let Σ be a quasi-field. Then, x̂ is an ex-post equilibrium of Σ-VCG under variable

participation if and only if x̂ = θΣ′
for some quasi-field Σ′ ⊆Σ.

Since a quasi-field of size m can contain at most logm bundles that are pairwise disjoint,

insisting that a simplification be tight does come at a cost, decreasing the worst-case social
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welfare in the truthful projection by an additional factor of up to
√

m/logm. Still, as discussed

above, tightness brings other advantages to the simplified mechanism.

2.6 The Role of Information

Like most of the literature on sponsored search auctions, we have assumed that agents have

complete information about each others’ valuations for the different slots. It turns out that

this assumption is crucial, and that the positive results for α-GSP do not extend to incomplete

information settings.

In particular,α-GSP admits an ex-post equilibrium only in very degenerate cases. This comple-

ments a result of Gomes and Sweeney [14], who showed thatα-GSP has an efficient Bayes-Nash

equilibrium on type space Θα if and only if α decreases sufficiently quickly. Of course, ex-

post equilibrium is stronger than Bayes-Nash equilibrium, but on the other hand our result

precludes the existence of the former for a significantly larger type space.

Theorem 6. Let α,β ∈Rn>. Then, α-GSP has an efficient ex-post equilibrium on type spaceΘβ if

and only if n ≤ 2 or k ≤ 1, even if α=β.

Proof. If n = 1 or k = 1, strategies si with si (θi ) =β1/α1 · vi (θi ) ensure that the agent with the

highest valuation is assigned the first slot at a price equal to the second-highest valuation. It is

easy to see that this is efficient and constitutes an ex-post equilibrium.

Now consider the case where n = 2 and k ≥ 2. We claim that si (θi ) = (β1 −β2)/α1 · vi (θi ) for

i ∈ {1,2} is the unique efficient ex-post equilibrium in this case. To see this, observe that s1 is

an equilibrium strategy if and only if for all θ1 ∈Θ1 and θ2 ∈Θ2,

β1 · v2(θ2)−α1 · s1(θ1) ≥β2 · v2(θ2) if agent 2 is assigned the first slot, and

β1 · v2(θ2)−α1 · s1(θ1) ≤β2 · v2(θ2) if agent 2 is assigned the second slot.

For s1 to be part of an efficient equilibrium, the first inequality has to hold if v2(θ2) = v1(θ1)+ε
for any ε > 0, and the second inequality has to hold if v2(θ2) = v1(θ1)− ε for any ε > 0. By

rearranging, we get that for every θ1 ∈Θ1 and every ε> 0,

s1(θ1) ≤ β1 −β2

α1
· (v1(θ1)+ε) and s1(θ1) ≥ β1 −β2

α1
· (v1(θ1)−ε).

Since analogous conditions have to hold for s2, the claim follows.

Finally consider the case where n ≥ 3 and k ≥ 2, and assume for contradiction that s is an

efficient ex-post equilibrium. Observe that s must remain an equilibrium if we restrict the

types in such a way that v`(θ`) > 0 if ` ∈ {1,2} and v`(θ`) = 0 otherwise. Strategies s1 and

s2 thus have to be of the form described above, i.e., si (θi ) = (β1 −β2)/α1 · vi (θi ) for i ∈ {1,2}.

Similarly, s remains an equilibrium if we restrict the valuations such that v`(θ`) > 0 if `= 3
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and v`(θ`) = 0 otherwise. It follows that s3(θ3) > 0 if v3(θ3) > 0. Let v1(θ1) = v2(θ2) = v for

some v > 0, choose θ3 such that 0 < v3(θ3) < (β1 −β2)/α1 · v , and let v`(θ`) = 0 for ` > 3.

Thus s1(θ1) = (β1 −β2)/α1 · v , s2(θ2) = (β1 −β2)/α1 · v , and s`(θ`) = 0 for ` > 3. It further

holds that v3(θ3) < v , because β1 > β2 and α1 = 1. We may now assume without loss of

generality that for this bid profile, α-GSP assigns slot 1 to agent 1, slot 2 to agent 2, and slot 3

to agent 3; the case where slot 1 is assigned to agent 2 and slot 2 to agent 1 is symmetric.

Agent 2 thus obtains utility u2 = β2 · v − s3(θ3) < β2 · v . If he changed his bid to b′
2 > b2, he

would be assigned slot 1 at price p ′
1 = α1 · (β1 −β2)/α1 · v = (β1 −β2) · v , and obtain utility

u′
2 =β1 · v −p ′

1 =β1 · v − (β1 −β2) · v =β2 · v > u2. This contradicts the assumption that s is an

equilibrium.

The α-VCG mechanism does only slightly better: it has an ex-post equilibrium only when it

allows agents to bid truthfully (it is thus not a meaningful simplification, in that the language

is in this sense exact).

Theorem 7. Let α,β ∈Rn>. Then, α-VCG has an efficient ex-post equilibrium on type spaceΘβ

if and only if α=β, or n ≤ 2, or k ≤ 1.

Proof. If α = β, agent i can bid truthfully on all slots by letting si (θi ) = vi (θi ). If n = 1 or

k = 1, only one slot will be assigned, and agent i can bid truthfully on this slot by letting

si (θi ) =β1/α1 ·vi (θi ). In both cases, truthful bidding constitutes an efficient dominant strategy

equilibrium and, a fortiori, an efficient ex-post equilibrium.

Now consider the case where n = 2 and k ≥ 2. We claim that strategy profile s where si (θi ) =
(β1 −β2)/(α1 −α2) · vi (θi ) for i ∈ {1,2} is the unique efficient ex-post equilibrium in this case.

To see this, observe that s1 is an equilibrium strategy if and only if for all θ1 ∈Θ1 and θ2 ∈Θ2,

β1 · v2(θ2)− (α1 −α2) · s1(θ1) ≥β2 · v2(θ2) if agent 2 is assigned the first slot, and

β1 · v2(θ2)− (α1 −α2) · s1(θ1) ≤β2 · v2(θ2) if agent 2 is assigned the second slot.

For s1 to be part of an efficient equilibrium, the first inequality has to hold if v2(θ2) = v1(θ1)+ε
for any ε > 0, and the second inequality has to hold if v2(θ2) = v1(θ1)− ε for any ε > 0. By

rearranging, we get that for every θ1 ∈Θ1 and every ε> 0,

s1(θ1) ≤ β1 −β2

α1 −α2
· (v1(θ1)+ε) and s1(θ1) ≥ β1 −β2

α1 −α2
· (v1(θ1)−ε).

Since analogous conditions have to hold for s2, the claim follows.

Finally consider the case where n ≥ 3, k ≥ 2, and α 6=β, and assume for contradiction that s is

an efficient ex-post equilibrium. We first claim that s is symmetric. For a contradiction assume

that there exist agents i and j such that si 6= s j . Observe that s must remain an equilibrium if

we restrict the valuations of all other agents such that in every efficient assignment, agents i

and j are assigned the last two slots. This means, however, that si and s j induce an efficient
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ex-post equilibrium for the case where n = 2 and k ≥ 2. By assumption, this equilibrium is

asymmetric, contradicting an observation we have made in the previous paragraph.

Since s is symmetric, there must exist a function s∗ :R→R such that for every i ∈ N and every

θi ∈ Θi , si (θi ) = s∗(vi (θi )). It is not hard to see that s∗(v) > 0 if v > 0 and s∗(v) = 0 if v = 0.

Since by convention α1 =β1 = 1 and αk+1 =βk+1 = 0, and since α j 6=β j for some j < k, there

must further exist i > 1 such that (i) α j −α j+1 ≤β j −β j+1 for all j < i and αi −αi+1 >βi −βi+1,

or (ii) α j −α j+1 ≥ β j −β j+1 for all j < i and αi −αi+1 < βi −βi+1. Since the two cases are

symmetric, it suffices to consider the first one.

Consider an arbitrary v > 0. We distinguish two cases.

First assume that s∗(v) > (βi −βi+1)/(αi −αi+1) · v . Let v`(θ`) = v for `≤ i +1 and v`(θ`) = 0

for ` > i + 1. It then holds that s`(θ`) = s∗(v) > 0 for ` ≤ i + 1 and s`(θ`) = s∗(0) = 0 for

` > i + 1. Assume without loss of generality that for this bid profile, α-VCG assigns slot `

to agent ` for ` ≤ i + 1, and that the remaining agents are not assigned a slot. The utility

of agent i in this case is ui = βi · v − pi (θ) = βi · v − (αi −αi+1) · s∗(v). If he changed his

bid to b with 0 < b < s∗(v), he would be assigned slot i + 1 at price 0 and obtain utility

βi+1 · v = βi+1 · v + (αi −αi+1) · s∗(v)−pi > βi · v −pi = ui . This contradicts the assumption

that s is an equilibrium.

Now assume that s∗(v) ≤ (βi −βi+1)/(αi −αi+1) · v , and observe that in this case s∗(v) < v .

Let v`(θ`) = v for `≤ i and v`(θ`) = 0 for `> i . It then holds that s`(θ`) = s∗(v) > 0 for `≤ i

and s`(θ`) = s∗(0) = 0 for ` > i . Assume without loss of generality that for this bid profile,

α-VCG assigns slot ` to agent ` for ` ≤ i , and that the remaining agents are not assigned a

slot. The utility of agent i under this assignment is ui = βi · v −pi (θ) = βi · v . If he changed

his bid to b > s∗(v), he would be assigned slot 1 at price
∑

j<i (α j −α j+1) · s∗(v) and obtain

utility u′
i =β1 · v −∑

j<i (α j −α j+1) · s∗(v) >β1 · v −∑
j<i (β j −β j+1) · v =βi · v = ui . This again

contradicts the assumption that s is an equilibrium.

These results indicate that simplification is not very useful in sponsored search auctions with-

out the assumption of complete information amongst bidders. Interestingly, simplification is

also not necessary in this case to preclude equilibria with bad properties, at least in the special

case of our model where the valuations are proportional to some (possibly unknown) vector

of value-generating click-through rates. In particular, payments in every efficient ex-post equi-

librium of the fully expressive VCG mechanism equal the VCG payments. Moreover, truthful

reporting is the only efficient ex-post equilibrium when the number of agents is greater than

the number of slots.

Proposition 8. Consider a VCG sponsored search auction with type profile θ ∈Θα, and assume

that s = (s1, . . . , sn) is an efficient ex-post equilibrium. Then, for all i with 1 ≤ i ≤ k, the payment

for slot i in the outcome for strategy profile s equals pi =∑min(k,n−1)
j=i ((α j −α j+1) · v j+1(θ j+1)).

Moreover, if n > k, then si (k,θi ) =αk · vi (θi ) for all i with 1 ≤ i ≤ n.
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Proof. Consider two agents i , i ′ ∈ N and two consecutive slots j and j +1. Fix θi . Since the

strategy si of agent i does not depend on the types of the other agents, we can choose the

types of the agents in N \ {i , i ′} in such a way that an efficient outcome assigns slot j to agents

i and slot j +1 to agent i ′, or vice versa. Doing so also fixes the bids of all agents in N \ {i , i ′},
and thus the payment p j+1 associated with slot j +1.

For si to be part of an ex-post equilibrium it must hold that

α j · vi ′(θi ′)− (si ( j ,θi )− si ( j +1,θi ))−p j+1 ≥α j+1 · vi ′(θi ′)−p j+1

if agent i ′ is assigned slot j , and

α j+1 · vi ′(θi ′)−p j+1 ≥α j · vi ′(θi ′)− (si ( j ,θi )− si ( j +1,θi ))−p j+1

if agent i ′ is assigned slot j +1. For the equilibrium to be efficient the first inequality must hold

if vi ′(θi ′) = vi (θi )+ε for any ε> 0, and the second inequality must hold if vi ′(θi ′) = vi (θi )−ε for

any ε> 0. By substituting vi ′(θi ′) accordingly in the two inequalities and considering arbitrarily

small ε> 0 we obtain

si ( j ,θi ) = (α j −α j+1) · vi (θi )+ si ( j +1,θi ).

Since this equality must hold for every agent, the payment for slot i equals

pi =
min(k,n−1)∑

j=i
(s j+1( j ,θ j+1)− s j+1( j +1,θ j+1)) =

min(k,n−1)∑
j=i

((α j −α j+1) · v j+1(θ j+1)),

which is exactly the VCG payment for that slot.

The stronger claim for n > k follows by setting αk+1 = 0 and si (k +1,θi ) = 0, and deriving

strategies inductively from slot k through 1 according to the above equality.

In considering simplifications for combinatorial auctions, we have adopted the standard

approach to assume incomplete information amongst agents, and in particular discussed a

family of simplifications of the VCG mechanism that offers a tradeoff between social welfare

and the amount of information agents have to communicate.

One may wonder why this tradeoff is necessary, and in how far it depends on the amount of

information agents have about each others’ types. It turns out that in the complete information

case a much smaller number of bids is enough to preserve an efficient equilibrium, and in fact

all equilibria, of the fully expressive VCG mechanism.

We show this using a simplification of the VCG mechanisms that we call n-VCG. The message

space of n-VCG consists of all bid vectors with at most n non-zero entries, where n is the

number of agents. This reduces the number of bids elicited from each agent from 2k to at
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most n, which can be exponentially smaller. Surprisingly, this simplification is both tight and

total, i.e., the set of Nash equilibria is completely unaffected by this restriction of the message

space.

Theorem 8. The n-VCG mechanism is tight and total with respect to Nash equilibria.

Proof. We first prove that n-VCG is tight. By Proposition 1 it suffices to show that n-VCG

satisfies outcome closure. Fix valuations v j and types θ j for all j ∈ N , and consider an

arbitrary agent i ∈ N . We claim that for every xi ∈ Xi and every x̂−i ∈ X̂−i , there exists x̂i ∈ X̂i

such that

ui ((x̂i , x̂−i ),θi ) ≥ ui ((xi , x̂−i ),θi ).

Denote the outcome of VCG for (xi , x̂−i ) by o. Let x̂i (C ) = xi (C ) for C = oi and let x̂i (C ) = 0

otherwise. We know that o achieves the same social welfare under (x̂i , x̂−i ) as under (xi , x̂−i ).

Since x̂i (C ) ≤ xi (C ) for all C , we also know that the social welfare achieved by any outcome

o′ 6= o under (x̂i , x̂−i ) is weakly smaller than the social welfare achieved by o under (x̂i , x̂−i ).

Hence agent i gets the same bundle of items, namely oi , under (x̂i , x̂−i ) and (xi , x̂−i ). Since i ’s

payment depends only on x̂−i we conclude that ui ((x̂i , x̂−i ),θi ) ≥ ui ((xi , x̂−i ),θi ).

Now we turn to totality. By Proposition 2 it suffices to show that n-VCG satisfies outcome

reducibility. We compute h(x) as follows: 1. Denote the outcome of VCG for x by o. For all

agents i and B = oi mark xi (B). 2. For each agent j let o′ denote the outcome of VCG if j was

removed. For each such outcome o′, all agents i , and B = o′
i mark xi (B). 3. For all agents i and

all bundles B set x̂i (B) = xi (B) if xi (B) was marked and x̂i (B) = 0 otherwise.

To (i): The outcome that maximizes welfare under x also maximizes welfare under h(x) and

the welfare achieved by this outcome is the same under x and h(x). Similarly, for each agent i ,

the welfare achieved by the outcome that maximizes welfare if agent i is removed is the same

under x and h(x). Hence the outcomes f (h(x)) and f (x) and the prices p(h(x)) and p(x) for

h(x) and x are the same.

To (ii): Consider x̂ ′
i . Denote the outcome computed by VCG for (x̂ ′

i ,h−i (x)) by ô. We claim

that there exists x ′
i such that in the outcome o computed by VCG for (x ′

i , x−i ) we have

oi = ôi . Let x ′
i (C ) = Wmax(x̂ ′

i ,h−i (x))+ ε for C = oi and some ε > 0 and let x ′
i (C ) = 0 other-

wise. If oi = ôi , then the social welfare Wmax(x ′
i , x−i ) of the outcome of VCG for (x ′

i , x−i ) is

at least Wmax(x̂ ′
i ,h−i (x))+ ε. Otherwise, the social welfare is Wmax(x ′

i , x−i ) = Wmax(0, x−i ) =
Wmax(0,h−i (x)) ≤Wmax(x̂ ′

i ,h−i (x)) and, thus, strictly smaller. We conclude that oi = ôi .

We further claim that the price pi (oi ) that agent i has to pay for oi under (x ′
i , x−i ) is at

most the price p̂i (oi ) that agent i has to pay for oi under (x̂ ′
i ,h−i (x)). Since Wmax(0, x−i ) =

Wmax(0,h−i (x)) and W oi
max(0, x−i ) ≥W oi

max(0,h−i (x)), where W oi
max(. . . ) denotes the maximal so-

cial welfare for the corresponding message profile if all items in oi are removed from the set of

items, we have that pi (oi ) =Wmax(0, x−i )−W oi
max(0, x−i ) ≤Wmax(0,h−i (x))−W oi

max(0,h−i (x)) =
p̂i (oi ).
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We conclude that ui ((x ′
i , x−i ),θi ) ≥ ui ((x̂ ′

i ,h−i (x)),θi ).

2.7 Conclusion and Future Work

In this chapter we have studied simplifications of mechanisms obtained by restricting their

message space, and have found that they can be used to solve different kinds of equilibrium

selection problems that occur in practice. Direct revelation mechanisms typically have several

equilibria, which might be more or less desirable from the point of view of the designer. Com-

putational constraints might also imply that only a subset of the equilibria of a mechanisms

can actually be achieved, in which case agents might have to select among several Pareto

optimal equilibria. On the other hand, restricting the message space of a mechanism often

reduces the amount of social welfare that can be achieved theoretically, and this seems to pivot

on whether or not agents have complete information about each others’ types. The choice

between mechanisms with different degrees of expressiveness therefore involves a tradeoff

between a benefit of simplicity and a price of simplicity.

The price of simplicity can easily be quantified, for example, by the loss in social welfare

potentially incurred by a simplification, and has been studied in the context of both sponsored

search and combinatorial auctions. Abrams et al. [1] and Blumrosen et al. [7], among others,

have given bounds on the loss of social welfare incurred by α-GSP for different classes of valu-

ations that are not proportional to the click-through rates. Christodoulou et al. [8], Bhawalkar

and Roughgarden [5], and Feldman et al. [13] have studied the potential loss in welfare when a

set of items is sold through a simplification of the combinatorial auction in which only bids

that are additive in items are allowed. This bidding language requires only a small number of

bids, and welfare in equilibrium turns out to be smaller by at most a constant factor in the

number of agents than the optimum achieved by the fully expressive mechanism.

The benefit of simplicity is much harder to grasp as a concept. In this chapter we have argued

that simplification can improve the economic properties of a mechanism by precluding bad or

promoting good equilibria. A remaining challenge is to understand the benefit of simplicity in

the context of simplified mechanisms for which the computation of an equilibrium might be

an intractable problem, like the ones of Christodoulou et al., Bhawalkar and Roughgarden, and

Feldman et al. described above. In contrast to the simplifications considered in the present

paper, these mechanisms may not be able to solve the computational or informational prob-

lem of enabling agents to bid in a straightforward way. More generally, it is far from obvious

how “straightforwardness” of a mechanism should be measured, but it seems reasonable to

require that agents’ strategies can be computed in polynomial time.
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3 Payment Rules through Discriminant-
Based Classifiers

3.1 Introduction

Mechanism design studies situations where a set of agents each hold private information

about their preferences over different outcomes. The designer chooses a center that receives

claims about such preferences, selects and enforces an outcome, and optionally collects

payments. The classical approach is to impose incentive compatibility, ensuring that agents

truthfully report their preferences in strategic equilibrium. Subject to this constraint, the goal

is to identify a mechanism, i.e., a way of choosing an outcome and payments based on agents’

reports, that optimizes a given design objective like social welfare, revenue, or some notion of

fairness.

There are, however, significant challenges associated with this classical approach. First of

all, it can be analytically cumbersome to derive optimal mechanisms for domains that are

“multi-dimensional” in the sense that each agent’s private information is described through

more than a single number, and few results are known in this case. An example of a multi-

dimensional domain is a combinatorial auction, where an agent’s preferences are described

by a value for each of several different bundles of items. Second, incentive compatibility

can be costly, in that adopting it as a hard constraint can preclude mechanisms with useful

economic properties. For example, imposing the strongest form of incentive compatibility,

truthfulness in a dominant strategy equilibrium or strategyproofness, necessarily leads to poor

revenue, vulnerability to collusion, and vulnerability to false-name bidding in combinatorial

auctions where valuations exhibit complementarities among items [2, 23]. A third difficulty

occurs when the optimal mechanism has an outcome or payment rule that is computationally

intractable.

3.1.1 Our Contribution

In the face of these difficulties, we adopt statistical machine learning to automatically infer

mechanisms with good incentive properties. Rather than imposing incentive compatibility
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as a hard constraint, we start from a given outcome rule, typically expressed as an algorithm,

and then use machine learning techniques to identify a payment rule that minimizes agents’

expected ex post regret. The ex post regret (or just regret where it causes no confusion) of an

agent for truthful reporting in a given instance is the maximum amount by which its utility

could be increased through a misreport holding constant the reports of others. The expected

ex post regret is the average ex post regret over all agents and all preference types, calculated

with respect to a distribution on types.

While a mechanism with zero regret for all agents on all inputs is strategyproof, we are es-

pecially interested in settings where the outcome rule does not allow for exact incentive

compatibility. In this sense, the approach adopted here is not an equilibrium approach. But,

there are two important comments to make in this regard. First, we insist that an agent’s

payment, conditioned on an outcome, is independent of its report. The only way an agent can

improve its utility is by changing its report in a way that changes the outcome. Generically,

this ensures mechanisms that provide zero marginal benefit to deviation from truthful reports.

This property is seen in practice in the Generalized Second Price (GSP) mechanism used for

sponsored search. This local stability property has been emphasized by Erdil and Klemperer

[9] in the context of combinatorial auctions. In addition, a bound on expected regret implies a

bound of the form “interim regret is at most ε with probability at least 1−δ," where interim

regret is the ex post regret to an agent for a particular type, averaged over all types of other

agents. Based on this, support for expected regret can be developed through a simple model

of costly manipulation, where agents face some cost for trying to engage in strategic behavior,

and choose not to engage in manipulation if this cost is greater than the expected gain. In this

model, if the cost associated with strategic behavior is at least ε, an agent will find it beneficial

to engage in manipulation with probability at most δ.

Our approach is applicable to domains that are multi-dimensional or for which the compu-

tational efficiency of outcome rules is a concern. Given the implied relaxation of incentive

compatibility, the intended application is to domains in which incentive compatibility is

unavailable or undesirable for outcome rules that meet certain economic and computational

desiderata. The payment rule is learned on the basis of a given outcome rule, and as such the

framework is most meaningful in domains where revenue considerations are secondary to

outcome considerations.

The essential insight is that the payment rule of a strategyproof mechanism can be thought of

as a classifier for predicting the outcome: the payment rule implies a price to each agent for

each outcome, and the selected outcome must be one that simultaneously maximizes reported

value minus price for every agent. The discriminant function of a classifier provides a score to

different outcomes for a given input, with the outcome with the highest score corresponding

to the prediction of the classier. By limiting classifiers to discriminant functions with this

“value-minus-price” structure, where the price can be an arbitrary function of the outcome

and the reports of other agents, we obtain a remarkably direct connection between multi-class

classification and mechanism design. For an appropriate loss function, the discriminant
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function of a classifier that minimizes generalization error over a hypothesis class has a

corresponding payment rule that minimizes expected ex post regret among all payment rules

corresponding to classifiers in this class. Conveniently, an appropriate method exists for

multi-class classification with large outcome spaces that supports the specific structure of the

discriminant function, namely the method of structural support vector machines [26, 12]. Just

like standard support vector machines, this also allows us to adopt non-linear kernels, thus

enabling discriminant functions and thus price functions that depend in a non-linear way on

the outcome and the reported types of agents.

In illustrating the framework, we focus on two situations where strategyproof payment rules

are not available: a greedy outcome rule for a multi-minded combinatorial auction in which

each agent is interested in a constant number of bundles, and an assignment problem with

an egalitarian outcome rule, i.e., an outcome rule that maximizes the minimum value of any

agent. The experimental results we obtain are encouraging, in that they demonstrate low

expected ex post regret even when the 0/1 classification accuracy is only moderately good,

and in particular better regret properties than those obtained through simple Vickrey-Clarke-

Groves (VCG) based payment rules that we adopt as a baseline. In addition, we give special

consideration to the failure of ex post individual rationality, and introduce methods to bias

the classifier to avoid these kinds of errors as well as post hoc adjustments that eliminate

them. As far as scalability is concerned, we emphasize that the computational cost associated

with our approach occurs offline during training. The learned payment rules have a succinct

description and can be evaluated quickly in a deployed mechanism.

3.1.2 Related Work

Conitzer and Sandholm [7] introduced the agenda of automated mechanism design (AMD) and

formulated mechanism design as the search for an outcome rule and a payment rule among a

class of rules satisfying incentive constraints. While the basic idea of optimal design is familiar

from the seminal work of Myerson [20], a novel aspect of AMD is to formulate search over the

space of all possible mappings from discrete type profiles to outcomes and payments. AMD is

intractable when formulated on an explicit representation of the outcome and payment rules,

because the type space is exponential in the number of agents.

One way to make AMD more tractable is to search through a parameterized space of incentive-

compatible mechanisms [10]. More recently, advances in AMD have been made by considering

domains with additive valuations and symmetry among agents, and by adopting Bayes-Nash

incentive compatibility (BIC) rather than strategyproofness [5]. Still, these approaches seem

limited to domains in which the outcome rule can be succinctly represented, which likely is

not the case for the kinds of combinatorial auction problems considered here.

Lavi and Swamy [15] describe a method that takes any approximation algorithm for a set

packing problem with a matching integrality gap and turns it into a mechanism with the

same approximation guarantee that is strategyproof in expectation. Set packing includes
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combinatorial auctions as a special case. Bei and Huang [3] and Hartline et al. [11] describe

an approach for turning an outcome rule into a mechanism that yields essentially the same

expected amount of social welfare or social surplus and satisfies BIC. The approach computes

an outcome and prices based on types sampled from probability distributions derived from

the revealed types, and is applicable to both single-parameter and multi-parameter domains.

The target of minimizing expected ex post regret and the imposition of agent-independent

prices make the incentive properties of mechanisms designed through our approach incompa-

rable to BIC. On one hand, we are interested in minimizing statistics of ex post regret, and thus

provide stronger guarantees than those of BIC. On the other hand, we don’t guarantee zero

expected regret (which would correspond to strategyproofness, and thus also BIC). Another

distinction is that our approach can accommodate objectives that are non-separable across

agents, such as in the egalitarian assignment problem.

In addition, in determining the outcome and payments for a given instance, the approach

of Bei and Huang and Hartline et al. evaluates the outcome rule on a number of randomly

perturbed replicas of that instance that is polynomial in the number of agents, the desired

approximation ratio, and a notion capturing the complexity of the type spaces. When type

spaces are large, as in the case of combinatorial auctions, this may become intractable. By

contrast, our approach evaluates the outcome rule and the trained payment rule once for a

given instance and incurs additional computational costs only during training.

The work of Lahaie [13, 14] precedes our work in adopting a kernel-based approach for

combinatorial auctions, but focuses not on learning a payment rule for a given outcome rule

but rather on solving the winner determination and pricing problem for a given instance of a

combinatorial auction. Lahaie introduces the use of kernel methods to compactly represent

non-linear price functions, which is also present in our work, but obtains incentive properties

more indirectly through a connection between regularization and price sensitivity. The main

difference is that Lahaie focuses on the design of scalable methods for clearing and pricing

approximately welfare-maximizing combinatorial auctions, while we advance a framework

for the automated design of payment rules that provide good incentive properties for a given

outcome rule, which need not be welfare-maximizing.

Carroll [6] and Lubin and Parkes [19] provide surveys of related work on approximate incentive

compatibility, or incentive compatibility in the large-market limit. A fair amount of attention

has been devoted to regret-based metrics for quantifying the incentive properties of mecha-

nisms (e.g., [21, 8, 17, 6]). Pathak and Sönmez [22] provide a qualitative ranking of different

mechanisms without payments in terms of the number of manipulable instances. Budish [4]

introduces an asymptotic, absolute design criterion regarding incentive properties in a large

replica economy limit. Lubin and Parkes [18] provide experimental support that relates the

divergence between the payoffs in a mechanism and the payoffs in a strategyproof “reference”

mechanism to the amount by which agents deviate from truthful bidding in the Bayes-Nash

equilibrium of a mechanism.
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3.2 Preliminaries

A mechanism design problem is given by a set N = {1,2, . . . ,n} of agents that interact to select

an element from a setΩ⊆ "i∈NΩi of outcomes, whereΩi denotes the set of possible outcomes

for agent i ∈ N . Agent i ∈ N is associated with a type θi from a set Θi of possible types,

corresponding to the private information available to this agent. We write θ = (θ1, . . . ,θn) for a

profile of types for the different agents, Θ= "i∈NΘi for the set of possible type profiles, and

θ−i ∈ Θ−i for a profile of types for all agents but i . Each agent i ∈ N is further assumed to

employ preferences overΩi , represented by a valuation function vi :Θi ×Ωi →R. We assume

that for all i ∈ N and θi ∈Θi there exists an outcome o ∈Ωwith vi (θi ,oi ) = 0.

A (direct) mechanism is a pair (g , p) of an outcome rule g :Θ→ "i∈NΩi and a payment rule

p : Θ→ Rn
≥0. The intuition is that the agents reveal to the mechanism a type profile θ ∈ Θ,

possibly different from their true types, and the mechanism chooses outcome g (θ) and charges

each agent i a payment of pi (θ) = (p(θ))i . We assume quasi-linear preferences, so the utility of

agent i with type θi ∈Θi given a profile θ′ ∈Θ of revealed types is ui (θ′,θi ) = vi (θi , gi (θ′))−
pi (θ′), where gi (θ) = (g (θ))i denotes the outcome for agent i . A crucial property of mechanism

(g , p) is that its outcome rule is feasible, i.e., that g (θ) ∈Ω for all θ ∈Θ.

Outcome rule g satisfies consumer sovereignty if for all i ∈ N , oi ∈Ωi , and θ′−i ∈ Θ−i , there

exists θ′i ∈ Θi such that gi (θ′i ,θ′−i ) = oi ; and reachability of the null outcome if for all i ∈ N ,

θi ∈Θi , and θ′−i ∈Θ−i , there exists θ′i ∈Θi such that vi (θi , gi (θ′i ,θ′−i )) = 0.

Mechanism (g , p) is dominant strategy incentive compatible, or strategyproof, if each agent

maximizes its utility by reporting its true type, irrespective of the reports of the other agents,

i.e., if for all i ∈ N , θi ∈Θi , and θ′ = (θ′i ,θ′−i ) ∈Θ, ui ((θi ,θ′−i ),θi ) ≥ ui ((θ′i ,θ′−i ),θi ); it satisfies

individual rationality (IR) if agents reporting their true types are guaranteed non-negative

utility, i.e., if for all i ∈ N , θi ∈ Θi , and θ′−i ∈ Θ−i , ui ((θi ,θ′−i ),θi ) ≥ 0. Observe that given

reachability of the null outcome, strategyproofness implies individual rationality.

It is known that a mechanism (g , p) is strategyproof if and only if the payment of an agent

is independent of its reported type and the chosen outcome simultaneously maximizes the

utility of all agents, i.e., if for every θ ∈Θ,

pi (θ) = ti (θ−i , gi (θ)) for all i ∈ N , and (3.1)

gi (θ) ∈ argmax
o′

i∈Ωi

(
vi (θi ,o′

i )− ti (θ−i ,o′
i )

)
for all i ∈ N , (3.2)

for a price function ti : Θ−i ×Ωi → R. This simple characterization is crucial for the main

results in this chapter, providing the basis with which the discriminant function of a classifier

can be used to induce a payment rule.

In addition, a direct characterization of strategyproofness in terms of monotonicity properties

of outcome rules explains which outcome rules can be associated with a payment rule in

order to be “implementable” within a strategyproof mechanism [24, 1]. These monotonicity
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properties provide a fundamental constraint on when our machine learning framework can

hope to identify a payment rule that provides full strategyproofness.

We quantify the degree of strategyproofness of a mechanism in terms of the regret experienced

by an agent when revealing its true type, i.e., the potential gain in utility by revealing a different

type instead. Formally, the ex post regret of agent i ∈ N in mechanism (g , p), given true type

θi ∈Θi and reported types θ′−i ∈Θ−i of the other agents, is

rgti (θi ,θ′−i ) = max
θ′i∈Θi

ui
(
(θ′i ,θ′−i ),θi

)−ui
(
(θi ,θ′−i ),θi

)
.

Analogously, the ex post violation of individual rationality of agent i ∈ N in mechanism (g , p),

given true type θi ∈Θi and reported types θ′−i ∈Θ−i of the other agents, is

irvi (θi ,θ′−i ) = |min(ui ((θi ,θ′−i ),θi ),0)|.

We consider situations where types are drawn from a distribution with probability density

function D : Θ→ R such that D(θ) ≥ 0 and
∫
θ∈ΘD(θ) = 1. Given such a distribution, and

assuming that all agents report their true types, the expected ex post regret of agent i ∈ N in

mechanism (g , p) is Eθ∼D [rgti (θi ,θ−i )].

Outcome rule g is agent symmetric if for every permutation π of N and all types θ,θ′ ∈Θ such

that θi = θ′
π(i ) for all i ∈ N , gi (θ) = gπ(i )(θ′) for all i ∈ N . Note that this specifically requires

that Θi =Θ j and Ωi =Ω j for all i , j ∈ N . Similarly, type distribution D is agent symmetric if

D(θ) = D(θ′) for every permutation π of N and all types θ,θ′ ∈ Θ such that θi = θ′
π(i ) for all

i ∈ N . Given agent symmetry, a price function t1 :Θ−1 ×Ωi → R for agent 1 can be used to

generate the payment rule p for a mechanism (g , p), with

p(θ) = (
t1(θ−1, g1(θ)), t1(θ−2, g2(θ)), . . . , t1(θ−n , gn(θ))

)
,

so that the expected ex post regret is the same for every agent.

We assume agent symmetry in the sequel, which precludes outcome rules that break ties

based on agent identity, but obviates the need to train a separate classifier for each agent while

also providing some benefits in terms of presentation. Because ties occur only with negligible

probability in our experimental framework, the experimental results are not affected by this

assumption.

3.3 Payment Rules from Multi-Class Classifiers

A multi-class classifier is a function h : X → Y , where X is an input domain and Y is a discrete

output domain. One could imagine, for example, a multi-class classifier that labels a given

image as that of a dog, a cat, or some other animal. In the context of mechanism design, we

will be interested in classifiers that take as input a type profile and output an outcome. What
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distinguishes this from an outcome rule is that we will impose restrictions on the form the

classifier can take.

Classification typically assumes an underlying target function h∗ : X → Y , and the goal is to

learn a classifier h that minimizes disagreements with h∗ on a given input distribution D on X ,

based only on a finite set of training data {(x1, y1), . . . , (x`, y`)} = {(x1,h∗(x1)), . . . , (x`,h∗(x`))}

with x1, . . . , x` drawn from D. If h(x) = h∗(x) for all x ∈ X , we say that h is a perfect classifier

for h∗.

The classifier h typically comes from a certain class of functions, referred to as the hypothesis

class H . We consider classifiers that are defined in terms of a discriminant function f : X ×Y →
R, which assigns a score to each input-output pair. The corresponding discriminant-based

classifier h chooses for a given input x an output y with maximal score, i.e.,

h(x) ∈ argmax
y∈Y

f (x, y)

for all x ∈ X . More specifically, we will be concerned with linear discriminant functions of the

form

fw (x, y) = wTψ(x, y)

for a weight vector w ∈ Rm and a feature map ψ : X ×Y → Rm , where m ∈ N∪ {∞}.1 The

function ψ maps input-output pairs into an m-dimensional space in a not necessarily linear

manner. Hence, although fw is linear in ψ(x, y), it need not be linear in (x, y), which generally

allows for non-linear classification.

3.3.1 Mechanism Design as Classification

Assume that we are given an outcome rule g and access to a distribution D over type profiles,

and want to design a corresponding payment rule p that gives the mechanism (g , p) the best

possible incentive properties. Assuming agent symmetry, we focus on a partial outcome rule

g1 :Θ→Ω1 and train a classifier to predict the outcome to agent 1. To train a classifier, we

generate examples by drawing a type profile θ ∈Θ from distribution D and applying outcome

rule g to obtain the target class g1(θ) ∈Ω1.

We impose a special structure on the hypothesis class. A classifier hw :Θ→Ω1 is admissible if

it is defined in terms of a discriminant function fw of the form

fw (θ,o1) = w1v1(θ1,o1)+wT
−1ψ(θ−1,o1)

for weights w such that w1 ∈ R>0 and w−1 ∈ Rm , and a feature map ψ : Θ−1 ×Ω1 → Rm for

1We allow w to have infinite dimension, but require the inner product between w and ψ(x, y) to be defined in
any case. Computationally the infinite-dimensional case is handled through the kernel trick, which is described in
Section 3.4.1.
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m ∈N∪ {∞}.

Only the first term of fw (θ,o1) depends on the type θ1 of agent 1, while the remaining terms

ignore agent 1’s type θ1 entirely. This restriction allows us to directly infer agent-independent

prices from a trained classifier. For this, define the associated price function of an admissible

classifier hw as

tw (θ−1,o1) =− 1

w1
wT

−1ψ(θ−1,o1),

where we again focus on agent 1 for concreteness. By agent symmetry, we obtain the mecha-

nism (g , pw ) corresponding to classifier hw by letting

pw (θ) = (
tw (θ−1, g1(θ)), tw (θ−2, g2(θ)), . . . , tw (θ−n , gn(θ))

)
.

Even with admissibility, appropriate choices for the feature map ψ will produce rich families

of classifiers, and thus ultimately useful payment rules. Moreover, this form is compatible

with structural support vector machines, discussed in Section 3.4.1.

3.3.2 Example: Single-Item Auction

Before proceeding further, we illustrate the ideas developed so far in the context of a single-

item auction. In a single-item auction, the type of each agent is a single number, corresponding

to its value for the item being auctioned, and there are two possible allocations from the point

of view of agent 1: one where it receives the item, and one where it does not. Formally,Θ=Rn

andΩ1 = {0,1}.

Consider a setting with three agents and a training set

(θ1,o1
1) = ((1,3,5),0), (θ2,o2

1) = ((5,4,3),1), (θ3,o3
1) = ((2,3,4),0),

and note that this training set is consistent with an optimal outcome rule, i.e., one that assigns

the item to an agent with maximum value. Our goal is to learn an admissible classifier

hw (θ) = argmax
o1∈{0,1}

fw (θ,o1) = argmax
o1∈{0,1}

w1v1(θ1,o1)+wT
−1ψ(θ−1,o1)

that performs well on the training set. Since there are only two possible outcomes, the outcome

chosen by hw is simply the one with the larger discriminant. A classifier that is perfect on the

training data must therefore satisfy the following constraints:

w1 ·0+wT
−1ψ((3,5),0) > w1 ·1+wT

−1ψ((3,5),1),

w1 ·5+wT
−1ψ((4,3),1) > w1 ·0+wT

−1ψ((4,3),0),

w1 ·0+wT
−1ψ((3,4),0) > w1 ·2+wT

−1ψ((3,4),1).
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This can for example be achieved by setting w1 = 1 and

wT
−1ψ((θ2,θ3),o1) =

−max(θ2,θ3) if o1 = 1 and

0 if o1 = 0.
(3.3)

Recalling our definition of the price function as tw (θ−1,o1) =−(1/w1)wT
−1ψ(θ−1,o1), we see

that this choice of w and ψ corresponds to the second-price payment rule. We will see in the

next section that this relationship is not a coincidence.2

3.3.3 Perfect Classifiers and Implementable Outcome Rules

We now formally establish a connection between implementable outcome rules and perfect

classifiers.

Theorem 1. Let (g , p) be a strategyproof mechanism with an agent symmetric outcome rule

g , and let t1 be the corresponding price function. Then, a perfect admissible classifier hw for

partial outcome rule g1 exists if argmaxo1∈Ω1 (v1(θ1,o1)− t1(θ−1,o1))) is unique.

Proof. By the first characterization of strategyproof mechanisms, g must select an outcome

that maximizes the utility of agent 1 at the current prices, i.e.,

g1(θ) ∈ argmax
o1∈Ω1

(v1(θi ,o1)− t1(θ−1,o1)).

Consider the admissible discriminant f(1,1)(θ,o1) = v1(θ1,o1)−t1(θ−1,o1), which uses the price

function t1 as its feature map. Clearly, the corresponding classifier h(1,1) maximizes the same

quantity as g1, and the two must agree if there is a unique maximizer.

The relationship also works in the opposite direction: a perfect, admissible classifier hw for

outcome rule g can be used to construct a payment rule that turns g into a strategyproof

mechanism.

Theorem 2. Let g be an agent symmetric outcome rule, hw :Θ→Ω1 an admissible classifier,

and pw the payment rule corresponding to hw . If hw is a perfect classifier for the partial outcome

rule g1, then the mechanism (g , pw ) is strategyproof.

We prove this result by expressing the regret of an agent in mechanism (g , pw ) in terms of

the discriminant function fw . LetΩi (θ−i ) ⊆Ωi denote the set of partial outcomes for agent

i that can be obtained under g given reported types θ−i from all agents but i , keeping the

dependence on g silent for notational simplicity.

2In practice, we are limited in the machine learning framework to hypotheses that are linear in ψ((θ2,θ3),o1),
and will not be able to guarantee that (3.3) holds exactly. In Section 3.4.1 we will see, however, that certain choices
of ψ allow for very complex hypotheses that can closely approximate arbitrary functions.
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Lemma 1. Suppose that agent 1 has type θ1 and that the other agents report types θ−1. Then

the regret of agent 1 for bidding truthfully in mechanism (g , pw ) is

1

w1

(
max

o1∈Ω(θ−1)
fw (θ,o1)− fw (θ, g1(θ))

)
.

Proof. We have

rgt1(θ) = max
θ′1∈Θ1

(
v1(θ1, g1(θ′1,θ−1))−pw,1(θ′1,θ−1)

)− (
v1(θ1, g1(θ))−pw,1(θ)

)
= max

o1∈Ω1(θ−1)

(
v1(θ1,o1)− tw (θ−1,o1)

)− (
v1(θ1, g1(θ))− tw (θ−1, g1(θ))

)
= max

o1∈Ω1(θ−1)

(
v1(θ1,o1)+ 1

w1
wT

−1ψ(θ−1,o1)
)− (

v1(θ1, g1(θ))+ 1

w1
wT

−1ψ(θ−1, g1(θ))
)

= 1

w1

(
max

o1∈Ω1(θ−1)
fw (θ,o1)− fw (θ, g1(θ))

)
.

Proof of Theorem 2. If hw is a perfect classifier, then the discriminant function fw satisfies

argmaxo1∈Ω1 fw (θ,o1) = g1(θ) for every θ ∈ Θ. Since g1(θ) ∈ Ω1(θ−1), we thus have that

maxo1∈Ω1(θ−1) fw (θ,o1) = fw (θ, g1(θ)). By Lemma 1, the regret of agent 1 for bidding truthfully

in mechanism (g , pw ) is always zero, which means that the mechanism is strategyproof.

It bears emphasis that classifier hw is only used to derive the payment rule pw , while the

outcome is still selected according to g . In principle, classifier hw could be used to obtain an

agent symmetric outcome rule gw and, since hw is a perfect classifier for itself, a strategyproof

mechanism (gw , pw ). Unfortunately, outcome rule gw is not in general feasible. Mechanism

(g , pw ), on the other hand, is not strategyproof when hw fails to be a perfect classifier for g .

While payment rule pw always satisfies the agent-independence property (3.1) required for

strategyproofness, the “optimization” property (3.2) might be violated when hw (θ) 6= g1(θ).

3.3.4 Approximate Classification and Approximate Strategyproofness

A perfect admissible classifier for outcome rule g leads to a payment rule that turns g into a

strategyproof mechanism. We now show that this result extends gracefully to situations where

no such payment rule is available, by relating the expected ex post regret of a mechanism (g , p)

to a measure of the generalization error of a classifier for g .

Fix a feature map ψ, and denote by Hψ the space of all admissible classifiers with this feature

map. The discriminant loss of a classifier hw ∈ Hψ with respect to a type profile θ and an

outcome o1 ∈Ω1 is given by

∆w (o1,θ) = 1

w1

(
fw (θ,hw (θ))− fw (θ,o1)

)
.

Intuitively the discriminant loss measures how far, in terms of the normalized discriminant,
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hw is from predicting the correct outcome for type profile θ, assuming the correct outcome

is o1. Note that for all θ ∈Θwe have ∆(o1,θ) ≥ 0 for all o1 ∈Ω1, and ∆(o1,θ) = 0 if o1 = hw (θ).

Note further that for all θ ∈ Θ and any two hw ,hw ′ ∈ Hψ the fact that hw (θ) = hw ′(θ) does

not imply that ∆w (o1,θ) = ∆w ′(o1,θ) for all o1 ∈Ω1: even if two classifiers predict the same

outcome, one of them may still be closer to predicting the correct outcome.

The generalization error of classifier hw ∈ Hψ with respect to a type distribution D and a

partial outcome rule g1 :Θ→Ω1 is then given by

Rw (D, g ) =
∫
θ∈Θ

∆w
(
g1(θ),θ

)
D(θ)dθ.

The following result establishes a connection between the generalization error and the ex-

pected ex post regret of the corresponding mechanism.

Theorem 3. Consider an outcome rule g , a space Hψ of admissible classifiers, and a type

distribution D. Let hw∗ ∈Hψ be a classifier that minimizes generalization error with respect to

D and g among all classifiers in Hψ. Then the following holds:

1. If g satisfies consumer sovereignty, then (g , pw∗) minimizes expected ex post regret with

respect to D among all mechanisms (g , pw ) corresponding to classifiers hw ∈Hψ.

2. Otherwise, (g , pw∗) minimizes an upper bound on expected ex post regret with respect to

D amongst all mechanisms (g , pw ) corresponding to classifiers hw ∈Hψ.

Proof. For the second property, observe that

∆w (g1(θ),θ) = 1

w1

(
fw (θ,hw (θ))− fw (θ, g1(θ))

)
= 1

w1

(
max
o1∈Ω1

fw (θ,o1)− fw (θ, g1(θ))
)

≥ 1

w1

(
max

o1∈Ω(θ−1)
fw (θ,o1)− fw (θ, g1(θ))

)
= rgt1(θ),

where the last equality holds by Lemma 1. If g satisfies consumer sovereignty, then the

inequality holds with equality, and the first property follows as well.

It should be noted at this point that while exact classifiers hw generally induce mechanisms

(g , pw ) that satisfy individual rationality, this ceases to be true for mechanisms (g , pw ) induced

by inexact classifiers hw . We discuss ways to bias the classifier to avoid errors that lead to IR

violations as well as post hoc adjustments that eliminate them in Section 3.4.2.
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3.4 A Solution using Structural Support Vector Machines

In this section we discuss the method of structural support vector machines (structural

SVMs) [26, 12], and show how it can be adapted for the purpose of learning classifiers with

admissible discriminant functions.

3.4.1 Structural SVMs

Given an input space X , a discrete output space Y , a target function h∗ : X → Y , and a

set of training examples {(x1,h∗(x1)), . . . , (x`,h∗(x`))} = {(x1, y1), . . . , (x`, y`)}, structural SVMs

learn a multi-class classifier h that on input x ∈ X selects an output y ∈ Y that maximizes

fw (x, y) = wTψ(x, y). For a given feature map ψ, the training problem is to find a vector w for

which hw has low generalization error.

Given examples {(x1, y1), . . . , (x`, y`)} and a parameter C , training is achieved by solving the

following convex optimization problem:

min
w,ξ≥0

1

2
wT w + C

`

∑̀
k=1

ξk (Training Problem 1)

s.t. wT (
ψ(xk , yk )−ψ(xk , y)

)≥L (yk , y)−ξk for all k = 1, . . . ,`, y ∈ Y

ξk ≥ 0 for all k = 1, . . . ,`.

The goal is to find a weight vector w and slack variables ξk such that the objective function

is minimized while satisfying the constraints. The learned weight vector w parameterizes

the discriminant function fw , which in turn defines the classifier hw . The k-th constraint

states that the value of the discriminant function on (xk , yk ) should exceed the value of the

discriminant function on (xk , y) by at least L (yk , y) for all y ∈ Y , where L is a loss function

that penalizes misclassification, with L (y, y) = 0 and L (y, y ′) ≥ 0 for all y, y ′ ∈ Y . We generally

use a 0/1 loss function, but consider an alternative in Section 3.4.2 to improve ex post IR

properties. Positive values for the slack variables ξk allow the weight vector to violate some of

the constraints.

The other term in the objective, the squared norm of w , penalizes scaling of w . This is

necessary because scaling of w can arbitrarily increase the margin between fw (xk , yk ) and

fw (xk , y) and make the constraints easier to satisfy. Smaller values of w , on the other hand,

increases the ability of the learned classifier to generalize by decreasing the propensity to

over-fit to the training data. Parameter C is therefore a regularization parameter: larger values

of C encourage small ξk and larger w , such that more points are classified correctly, but with a

smaller margin.
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The Feature Map and the Kernel Trick

Given a feature map ψ, the feature vector ψ(x, y) for x ∈ X and y ∈ Y provides an alternate

representation of the input-output pair (x, y). It is useful to consider feature maps ψ for which

ψ(x, y) =φ(χ(x, y)), where χ : X ×Y →Rs for some s ∈N is an attribute map that combines x

and y into a single attribute vector χ(x, y) compactly representing the pair, and φ :Rs →Rm

for m > s maps the attribute vector to a higher-dimensional space in a non-linear way. In this

way, SVMs can achieve non-linear classification in the original space.

While we work hard to keep s small, the so-called kernel trick means that we do not have

the same problem with m: it turns out that in the dual of Training Problem 1, ψ(x, y) only

appears in an inner product of the form 〈ψ(x, y),ψ(x ′, y ′)〉, or, for a decomposable feature map,

〈φ(z),φ(z ′)〉 where z = χ(x, y) and z ′ = χ(x ′, y ′). For computational tractability it therefore

suffices that this inner product can be computed efficiently, and the “trick” is to choose φ such

that 〈φ(z),φ(z ′)〉 = K (z, z ′) for a simple closed-form function K , known as the kernel.

We consider polynomial kernels Kpolyd, parameterized by d ∈N+, and radial basis function

(RBF) kernels KRBF , parameterized by γ= 1/(2σ2) for σ ∈R+:

Kpolyd(z, z ′) = (z · z ′)d ,

KRBF (z, z ′) = exp
(−γ(‖z‖2 +‖z ′‖2 −2z · z ′)) .

Both polynomial and RBF kernels use the standard inner product of their arguments, so their

efficient computation requires that χ(x, y) ·χ(x, y ′) can be computed efficiently.

Dealing with an Exponentially Large Output Space

Training Problem 1 hasΩ(|Y |`) constraints, where Y is the output space and ` the number

of training instances, and enumerating all of them is computationally prohibitive when Y is

large. Joachims et al. [12] address this issue for structural SVMs through constraint generation:

starting from an empty set of constraints, this technique iteratively adds a constraint that is

maximally violated by the current solution until that violation is below a desired threshold

ε. Joachims et al. show that this will happen after no more than O(C
ε ) iterations, each of

which requires O(`) time and memory. However, this approach assumes the existence of an

efficient separation oracle, which given a weight vector w and an input x finds an output y ∈
argmaxy ′∈Y fw (x, y ′). The existence of such an oracle remains an open question in application

to combinatorial auctions; see Section 3.5.1 for additional discussion.

Required Information

In summary, the use of structural SVMs requires specification of the following:

1. The input space X , the discrete output space Y , and examples of input-output pairs.
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2. An attribute map χ : X ×Y →Rs .This function generates an attribute vector that com-

bines the input and output data into a single object.

3. A kernel function K (z, z ′), typically chosen from a well-known set of candidates, e.g.,

polynomial or RBF. The kernel implicitly calculates the inner product 〈φ(z),φ(z ′)〉, e.g.,

between a mapping of the inputs into a high dimensional space.

4. If the space Y is prohibitively large, a routine that allows for efficient separation, i.e., a

function that computes argmaxy∈Y fw (x, y) for a given w, x.

In addition, the user needs to stipulate particular training parameters, such as the regulariza-

tion parameter C , and the kernel parameter γ if the RBF kernel is being used.

3.4.2 Structural SVMs for Mechanism Design

We now specialize structural SVMs such that their learned discriminant function will manifest

as a payment rule for a given symmetric outcome function g and distribution D . For this we

specify the input domain X and the output domain Y , and we impose a special structure on

the attribute map ψ.

The input domain X is the space of type profilesΘ, and the output domain Y is the spaceΩ1

of outcomes for agent 1. Thus we construct training data by sampling θ ∼ D and applying

g to these inputs: {(θ1, g1(θ1)), . . . , (θ`, g1(θ`))} = {(θ1,o1
1), . . . , (θ`,o`1 )}. For admissibility of the

learned hypothesis hw (θ) = argmaxo1∈Ω1 wTψ(θ,o1), we require that

ψ(θ,o1) = (v1(θ1,o1),ψ′(θ−1,o1))

When learning payment rules, we therefore use an attribute map χ′ :Θ−1 ×Ω1 → Rs rather

than χ :Θ×Ω1 →Rs , and the kernel φ′ we specify will only be applied to the output of χ′.

This results in the following more specialized training problem:

min
w,ξ≥0

1

2
wT w + C

`

∑̀
k=1

ξk (Training Problem 2)

s.t. (w1v1(θk
1 ,ok

1 )+wT
−1ψ

′(θk
−1,ok

1 ))− (w1v1(θk
1 ,o1)+wT

−1ψ
′(θk

−1,o1)) ≥L (ok
1 ,o1)−ξk

for all k = 1, . . . ,`, o1 ∈Ω1

ξk ≥ 0 for all k = 1, . . . ,`.

If w1 > 0 then the weights w together with the feature map ψ′ define a price function

tw (θ−1,o1) =−(1/w1)wT
−1ψ

′(θ−1,o1) that can be used to define payments pw (θ), as described

in Section 3.3.1. In this case, we can also relate the regret in the induced mechanism (g , pw ) to

the classification error as described in Section 3.3.3.

Theorem 4. Consider training data {(θ1,o1
1), . . . , (θ`,o`1 )}. Let g be an outcome function such

that g1(θk ) = ok
1 for all k. Let w,ξk be the weight vector and slack variables output by Training
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Problem 2, with w1 > 0. Consider the corresponding mechanism (g , pw ). For each θk ,

rgt1(θk ) ≤ 1

w1
ξk

Proof. Consider input θk . The constraints in the training problem impose that for every

outcome o1 ∈Ω1,

w1v1(θk
1 ,ok

1 )+wT
−1ψ

′(θk
−1,ok

1 )− (
w1v1(θk

1 ,o1)+wT
−1ψ

′(θk
−1,o1)

)≥L (ok
1 ,o1)−ξk

Rearranging,

ξk ≥L (ok
1 ,o1)+ (

w1v1(θk
1 ,o1)+wT

−1ψ
′(θk

−1,o1)
)− (

w1v1(θk
1 ,ok

1 )+wT
−1ψ

′(θk
−1,ok

1 )
)

⇒ ξk ≥L (ok
1 ,o1)+ fw (θk ,o1)− fw (θk ,ok

1 )

This inequality holds for every o1 ∈Ω1, so

ξk ≥ max
o1∈Ω1

(
L (ok

1 ,o1)+ fw (θk ,o1)− fw (θk ,ok
1 )

)
≥ max

o1∈Ω1

(
fw (θk ,o1)− fw (θk ,ok

1 )
)

≥ w1rgt1(θk )

where the second inequality holds because L (ok
1 ,o1) ≥ 0, and the final inequality follows from

Lemma 1. This completes the proof.

We choose not to enforce w1 > 0 explicitly in Training Problem 2, because adding this con-

straint leads to a dual problem that references ψ′ outside of an inner product and thus makes

computation of all but linear or low-dimensional polynomial kernels prohibitively expensive.

Instead, in our experiments we simply discard hypotheses where the result of training is

w1 ≤ 0. This is sensible since the discriminant function value should increase as an agent’s

value increases, and negative values of w1 typically mean that the training parameter C or

the kernel parameter γ (if the RBF kernel is used) are poorly chosen. It turns out that w1 is

indeed positive most of the time, and for every experiment a majority of the choices of C and

γ yield positive w1 values. For this reason, we do not expect the requirement that w1 > 0 to be

a problem in practice.3

Payment Normalization

One issue with the framework as stated is that the payments pw computed from the solution

to Training Problem 2 could be negative.

3For multi-minded combinatorial auctions, 1049/1080 > 97% of the trials had positive w1, for the assignment
problem all of the trials did; see Section 3.5 for details.
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We solved this problem by normalizing payments, using a baseline outcome ob : if there exists

an outcome o′ such that v1(θ1,o′) = 0 for every θ1, this “null outcome” is used as the baseline;

otherwise, we use the outcome with the lowest payment. Let tw (θ−1,o1) be the price function

corresponding to the solution w to Training Problem 2. Adopting the baseline outcome, the

normalized payments t ′w (θ−1,o1) are defined as

t ′w (θ−1,o1) = max(0, tw (θ−1,o1)− tw (θ−1,ob)).

Note that ob is only a function of θ−1, even when there is no null outcome, so t ′w is still only a

function of θ−1 and o1.

Individual Rationality Violation

Even after normalization, the learned payment rule pw may not satisfy IR. We offer three

solutions to this problem, which can be used in combination.

Payment offsets One way to decrease the rate of IR violation is to add a payment offset,

which decreases all payments (for all type reports) by a given amount. We apply this payment

offset to all bundles other than ob ; as with payment normalization, the adjusted payment is set

to 0 if it is negative.4 Note that payment offsets decrease IR violation, but may increase regret.

For instance, suppose there are only two outcomes o11,o12, where o12 is the null outcome.

Suppose agent 1 values o11 at 5 and receives the null outcome if he reports truthfully. Suppose

further that payments tw are 7 for o11 and 0 for the null outcome. With no payment offset, the

agent experiences no regret, since he receives utility 0 from the null outcome, but negative

utility from o11. However, if the payment offset is greater than 2, the agent’s regret becomes

positive (assuming consumer sovereignty) because he could have reported differently and

received o11 and received positive utility.

Adjusting the loss function We incur an IR violation when there is a null outcome onull such

that g1(θ) 6= onull and fw (θ,onull) > fw (θ, g1(θ)) for some type θ, assuming truthful reports.

This happens because fw (θ,o1) is a scaled version of the agent’s utility for outcome o1 under

payments pw . If the utility for the null outcome is greater than the utility for g1(θ), then the

payment tw (θ−1, g1(θ)) must be greater than v1(θ1, g1(θ)), causing an IR violation. We can

discourage these types of errors by modifying the constraints of Training Problem 2: when

ok
1 6= onull and o1 = onull, we can increase L (ok

1 ,o1) to heavily penalize misclassifications of

this type. With a larger L (ok
1 ,o1), a larger ξk will be required if fw (θ,ok

1 ) < fw (θ,onull). As with

payment offsets, this technique will decrease IR violations but is not guaranteed to eliminate

all of them. In our experimental results, we refer to this as the null loss fix, and the null loss

refers to the value we choose for L (ok
1 ,onull) where ok

1 6= onull.

4It is again crucial that ob depends only on θ−1, so that the payment remains independent of θ1 given o1.
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Deallocation In settings that have a null outcome and are downward closed (i.e., settings

where a feasible outcome o remains feasible if oi is replaced with the null outcome), we

modify the function g to allocate the null outcome whenever the price function tw creates

an IR violation. This reduces ex post regret and in particular ensures ex post IR. On the other

hand, the total value to the agents necessarily decreases under the modified allocation. In our

experimental results, we refer to this as the deallocation fix.

3.5 Applying the Framework

In this section, we discuss the application of our framework to two domains: multi-minded

combinatorial auctions and egalitarian welfare in the assignment problem.

3.5.1 Multi-Minded Combinatorial Auctions

A combinatorial auction allocates items {1, . . . ,r } among n agents, such that each agent receives

a possibly empty subset of the items. The outcome spaceΩi for agent i thus is the set of all

subsets of the r items, and the type of agent i can be represented by a vector θi ∈Θi =R2r
that

specifies its value for each possible bundle. The set of possible type profiles is thenΘ=R2r n ,

and the value vi (θi ,oi ) of agent i for bundle oi is equal to the entry in θi corresponding to oi .

We require that valuations are monotone, such that vi (θi ,oi ) ≥ vi (θi ,o′
i ) for all oi ,o′

i ∈Ωi with

o′
i ⊆ oi , and normalized such that vi (θi ,;) = 0. Assuming agent symmetry and adopting the

view of agent 1, the partial outcome rule g1 :Θ→Ω1 specifies the bundle g1(θ) allocated to

agent 1; we require feasibility, so that no item is allocated more than once.

In a multi-minded combinatorial auction (multi-minded CA), each agent is interested in at

most b bundles for some constant b. The special case where b = 1 is called a single-minded CA.

In our framework, the restriction to multi-minded CAs leads to a number of computational

advantages. First, valuation profiles and thus the training data can be represented in a compact

way, by explicitly writing down the valuations for the constant number of bundles each agent

is interested in. Second, inner products between valuation profiles, which are required to

apply the kernel trick, can be computed in constant time.

Attribute Maps

To apply structural SVMs to multi-minded CAs, we need to specify an appropriate attribute

map χ. In our experiments we use two attribute maps χ1 and χ2. The purpose of both attribute

maps is to encode θ−1 and o1. The first attribute map χ1 :Θ−1 ×Ω1 →R2r (2r (n−1)) achieves this

by putting θ−1 into a particular position of a high-dimensional vector depending on o1. The

second attribute map χ2 :Θ−1 ×Ω1 →R2r (n−1) achieves this by restricting θ−1 to an outcome
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space without o1. Formally,

χ1(θ−1,o1) =



0

· · ·
0

θ−1

0

· · ·
0



dec(o1)(2r (n −1))

 (2r −dec(o1)−1)(2r (n −1))

, χ2(θ−1,o1) =


θ2 \ o1

θ3 \ o1

. . .

θn \ o1

 .

Here, dec(o1) = ∑r
j=1 2 j−1I j∈o1 is a decimal index of bundle o1, where I j∈o1 = 1 if j ∈ o1 and

I j∈o1 = 0 otherwise. Attribute map χ1 thus stacks the vector θ−1, which represents the valua-

tions of all agents except agent 1, with zero vectors of the same dimension, where the position

of θ−1 is determined by the index of bundle o1. The resulting attribute vector is simple but

potentially restrictive. It precludes two instances with different allocated bundles from sharing

attributes, which provides an obstacle to generalization of the discriminant function across

bundles. Attribute map χ2 stacks vectors θi \ o1 for agents i 6= 1, where for each agent i the

vector θi \ o1 is obtained from θi by setting the entries for all bundles that intersect with o1 to

0. This captures the fact that agent i cannot be allocated any of the bundles that intersect with

o1 if o1 is allocated to agent 1.5

Efficient Computation of Inner Products

For both χ1 and χ2, computing inner products reduces to the question of whether inner

products between valuation profiles are efficiently computable. For χ1, we have that

〈
χ1(θ−1,o1),χ1(θ′−1,o′

1)
〉= Io1=o′

1

n∑
i=2

〈
θi ,θ′i

〉
,

where indicator Io1=o′
1
= 1 if o1 = o′

1 and Io1=o′
1
= 0 otherwise. For χ2,

〈
χ2(θ−1,o1),χ2(θ′−1,o′

1)
〉= n∑

i=2

〈
θi \ o1,θ′i \ o1

〉
.

We next develop efficient methods for computing the inner products
〈
θi ,θ′i

〉
on compactly

represented valuation functions. The computation of
〈
θi \ o1,θ′i \ o1

〉
can be done through

similar methods.

In the single-minded setting, let θi correspond to a bundle Si ⊆ {1, . . . ,r } of items with value vi ,

and θ′i correspond to a set S′
i ⊆ {1, . . . ,r } of items valued at v ′

i .

5Both χ1 and χ2 are defined for a particular number of items and agents, and in our experiments we train a
different classifier for each number of agents and items. In practice, one can pad out items and agents by setting
bids to zero and train a single classifier.

82



3.5. Applying the Framework

Each set containing both Si and S′
i contributes vi v ′

i to θT
i θ

′
i , while all other sets contribute 0.

Since there are exactly 2r−|Si∪S′
i | sets containing both Si and S′

i , we have θT
i θ

′
i = vi v ′

i 2r−|Si∪S′
i |.

This is a special case of the formula for the multi-minded case.

Lemma 2. Consider a multi-minded CA and two bid vectors x1 and x ′
1 corresponding to sets

S = {S1, . . . ,Ss} and S′ = {S′
1, . . . ,S′

t }, with associated values v1, . . . , vs and v ′
1, . . . , v ′

t . Then,

xT
1 x ′

1 =
∑

T⊆S,T ′⊆S′

(
(−1)|T |+|T ′| · (min

Si∈T
vi ) · (min

S′
j∈T ′

v ′
j ) ·2

r−|(⋃Si ∈T Si )∪(
⋃

S′
j
∈T ′ S′

j )|)
. (3.4)

Proof. The contribution of a particular bundle B of items to the inner product is (maxSi∈S,Si⊆B vi )·
(maxS′

j∈S′,S′
j⊆B v ′

j ), and thus

xT
1 x ′

1 =
∑
B

(
(max

Si ∈S
Si ⊆B

vi ) · (max
S′

j
∈S′

S′
j
⊆B

v ′
j )

)
.

By the maximum-minimums identity, which asserts that for any set {x1, . . . , xn} of n numbers,
max{x1, . . . , xn} =∑

Z⊆X ((−1)|Z |+1 · (minxi∈Z xi )),

max
Si ∈S
Si ⊆B

vi =
∑
T⊆S⋃

Si ∈T Si ⊆B

(
(−1)|T |+1 · (min

Si∈T
vi )

)
and max

S′
j
∈S′

S′
j
⊆B

v ′
j =

∑
T ′⊆S′⋃

S′
j
∈T ′ S′j ⊆B

(
(−1)|T

′|+1 · (min
S′

j∈T ′
v ′

j )
)
.

The inner product can thus be written as

θT
1 θ

′
1 =

∑
B

∑
T⊆S,T ′⊆S′⋃
Si ∈T Si ⊆B⋃

S′
j
∈T ′ S′

j
⊆B

(
(−1)|T |+|T ′| · (min

Si∈T
vi ) · (min

S′
j∈T ′

v ′
j )

)
.

Finally, for given T ⊆ S and T ′ ⊆ S′, there exist exactly 2
r−|(⋃Si ∈T Si )∪(

⋃
S′

j
∈T ′ S′

j )|
bundles B such

that
⋃

Si∈T Si ⊆ B and
⋃

S′
j∈T ′ S′

j ⊆ B , and we obtain

θT
1 θ

′
1 =

∑
T⊆S,T ′⊆S′

(
(−1)|T |+|T ′| · (min

Si∈T
vi ) · (min

S′
j∈T ′

v ′
j ) ·2

m−|(⋃Si ∈T Si )∪(
⋃

S′
j
∈T ′ S′

j )|)
.

If S and S′ have constant size, then the sum on the right hand side of (3.4) ranges over a

constant number of sets and can be computed efficiently.

Dealing with an Exponentially Large Output Space

Recall that Training Problems 1 and 2 have constraints for every training example (θk ,ok
1 ) and

every possible bundle of items o1 ∈Ω1, of which there are exponentially many in the number

of items in the case of CAs. In lieu of an efficient separation oracle, a workaround exists when

the discriminant function has additional structure, such that the induced payment weakly
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increases as items are added to a bundle. Given this item monotonicity, it would suffice to

include constraints for bundles that have a strictly larger value to the agent than any of their

respective subsets.

Still, it remains an open problem whether item monotonicity itself can be imposed on the

hypothesis class with a small number of constraints.6 An alternative is to optimistically assume

item monotonicity, only including the constraints associated with bundles that are explicit

in agent valuations. The baseline experimental results in Section 3.6 do not assume item

monotonicity and instead use a separation oracle that iterates over all possible bundles o1 ∈Ω1.

We also present results which test the idea of optimistically assuming item monotonicity, and

while there is a degradation in performance, results are mostly comparable.

3.5.2 The Assignment Problem

In the assignment problem, we are given a set of n agents and a set {1, . . . ,n} of items, and wish

to assign each item to exactly one agent. The outcome space of agent i is thusΩi = {1, . . . ,n},

and its type can be represented by a vector θi ∈Θi =Rn . The set of possible type profiles is then

Θ=Rn2
. We consider an outcome rule that maximizes egalitarian welfare in a lexicographic

manner: first, the minimum value of any agent is maximized; if more than one outcome

achieves the minimum, the second lowest value is maximized, and so forth. This outcome

rule can be computed by solving a sequence of integer programs. As before, we assume agent

symmetry and adopt the view of agent 1.

Attribute Map

We need to define an attribute map χ3 :Rn2−n ×N→Rs , where the first argument is the type

profile of all agents but agent 1, the second argument is the item assigned to agent 1, and s is a

dimension of our choosing. A natural choice for χ3 is to set

χ3(θ−1, j ) = (θ2[− j ],θ3[− j ], . . . ,θn[− j ]) ∈R(n−1)2
,

where θi [− j ] denotes the vector obtained from θi by removing the j th entry. The attribute

map thus reflects the agents’ values for all items except item j , capturing the fact that the item

assigned to agent 1 cannot be assigned to any other agent.

Note that in the case of the assignment problem neither the computation of inner products

nor searching the outcome space poses a computational problem.

6For polynomial kernels and certain attribute maps, a possible sufficient condition for item monotonicity is to
force the weights w−1 to be negative. However, as with the discussion of enforcing w1 > 0 directly, these weight
constraints do not dualize conveniently and results in the dual formulation no longer operate on inner products
〈ψ′(θ−1,o1),ψ′(θ′−1,o′

1)〉. As a result, we would be forced to work in the primal, and incur extra computational
overhead that increases polynomially with the kernel degree d . We have performed some preliminary experiments
with polynomial kernels, but we have not looked into reformulating the primal to enforce item monotonicity.
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3.6 Experimental Evaluation

We perform a series of experiments to test our theoretical framework. To run our experiments,

we use the SVMstructpackage [12], which allows for the use of custom kernel functions, attribute

maps, and separation oracles.

3.6.1 Setup

We begin by briefly discussing our experimental methodology, performance metrics, and

optimizations used to speed up the experiments.

Methodology

For each of the settings we consider, we generate three data sets: a training set, a validation

set, and a test set. The training set is used as input to Training Problem 2, which in turn yields

classifiers hw and corresponding payment rules pw . For each choice of the parameter C of

Training Problem 2, and the parameter γ if the RBF kernel is used, a classifier hw is learned

based on the training set and evaluated based on the validation set. The classifier with the

highest accuracy on the validation set is then chosen and evaluated on the test set. During

training, we take the perspective of agent 1, so a training set size of ` means that we train an

SVM on ` examples. Once a partial outcome rule has been learned, however, it can be used

to infer payments for all agents. We exploit this fact during testing, and report performance

metrics across all agents for a given instance in the test set.

Metrics

We employ three metrics to measure the performance of the learned classifiers. These metrics

are computed over the test set {(θk ,ok )}`k=1.

Classification accuracy Classification accuracy measures the accuracy of the trained classi-

fier in predicting the outcome. Each instance of the ` instances has n agents, so in total we

measure accuracy over n` instances:7

accuracy = 100 ·
∑`

k=1

∑n
i=1 I (hw (θi ,θ−i ) = ok

i ))

n`
.

7For a given instance θ, there are actually many ways to choose (θi ,θ−i ) depending on the ordering of all agents
but agent i . We discuss a technique we refer to as sorting in Section 3.6.1, which will choose a particular ordering.
When this technique is not used, for example in our experiments for the assignment problem, we simply fix an
ordering of the other agents for each agent i and use the same ordering across all instances.
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Ex post regret We measure ex post regret by summing over the ex post regret experienced by

all agents in each of the ` instances in the dataset, i.e.,

regret =
∑`

k=1

∑n
i=1 rgti (θk

i ,θk
−i )

n`
.

Individual rationality violation This metric measures the fraction of individual rationality

violation across all agents:

ir-violation =
∑`

k=1

∑n
i=1 I (irvi (θi ,θ−i ) > 0)

n`
.

Optimizations

In the case of multi-minded CAs we map the inputs θ−1 into a smaller space, which allows us

to learn more effectively with smaller amounts of data.8 We use instance-based normalization,

which normalizes the values in θ−1 by the highest observed value and then rescales the

computed payment appropriately, and sorting, which orders agents based on bid values.

Instance-Based Normalization The first technique we use is instance-based normalization.

Before passing examples θ to the learning algorithm or learned classifier, they are normalized

by a positive multiplier so that the value of the highest bid by agents other than agent 1 is

exactly 1, before passing it to the learning algorithm or classifier. The values and the solution

are then transformed back to the original scale before computing the payment rule pw . This

technique leverages the observation that agent 1’s allocation depends on the relative values of

the other agent’s reports (scaling all reports by a factor should not affect the outcome chosen).

Sorting The second technique we use is sorting. With sorting, instead of choosing an arbi-

trary ordering of agents in θ−i , we choose a specific ordering based on the maximum value the

agent reports. In the single-item setting, this amounts to ordering agents by their value. In the

multi-minded CA setting, agents are ordered by the value they report for their most desired

bundle. The intuition behind sorting is that we can again decrease the space of possible θ−i

reports the learner sees and learn more quickly. In the single-item case, we know that the

second price payment rule only depends on the maximum value across all other agents, and

sorting places this value in the first coordinate of θ−i .

8The barrier to using more data is not the availability of the data itself, but the time required for training,
because training time scales quadratically in the size of the training set due to the use of non-linear kernels.
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3.6.2 Single-Item Auction

As a sanity check, we perform experiments on the single-item auction with the optimal

outcome rule, where the agent with the highest bid receives the item. For this outcome rule

g we know that the associated payment rule p that makes (g , p) strategyproof is the second

price payment rule.

For our experiments we draw the values of the agents from the uniform distribution D on

[0,1]. We use a training set size of 300 and validation and test set sizes of 1000. We use the

attribute maps χ1 and χ2, which can be applied to this setting because single-item auctions

are a special case of multi-minded CAs. In particular, letting z be the 0 vector of dimension

n −1, χ1(θ−1,o1) = (θ−1, z) if o1 =; and χ1(θ−1,o1) = (z,θ−1) if o1 = {1} and χ2(θ−1,o1) = θ−1 if

o1 =; and χ2(θ−1,o1) = z if o1 = {1}. We use the regularization parameter C ∈ {104,105} and

the RBF kernel with parameter γ ∈ {0.01,0.1,1}.

Table 3.1 and Figure 3.1 show that for both attribute maps we obtain excellent accuracy and

very close approximation to the second price payment rule. This shows that the framework is

able to automatically learn the payment rule of Vickrey’s auction.

n
accuracy regret ir-violation
χ1 χ2 χ1 χ2 χ1 χ2

2 99.7 93.1 0.000 0.003 0.00 0.07
3 98.7 97.6 0.000 0.000 0.01 0.00
4 98.4 99.1 0.000 0.000 0.00 0.01
5 97.3 96.6 0.001 0.001 0.02 0.00
6 97.6 97.4 0.000 0.001 0.00 0.02

Table 3.1: Basic performance metrics for single-item auction.
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Figure 3.1: Learned payment rule vs. second price payment rule in a single-item auction with
two agents for χ1 (left) and χ2 (right).
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3.6.3 Multi-Minded Combinatorial Auctions

Type Distribution

Recall that in a multi-minded setting, there are r items, and each agent is interested in exactly

b bundles. For each bundle, we use the following procedure (inspired by Sandholm’s decay

distribution for the single-minded setting [25]) to determine which items are included in the

bundle. We first assign an item to the bundle uniformly at random. Then with probability

α, we add another random item (chosen uniformly from the remaining items), and with

probability (1−α) we stop. We continue this procedure until we stop or have exhausted the

items. We use α= 0.75 to be consistent with [25], as they report that the winner determination

problem (finding the feasible allocation that maximizes total value) is difficult for this setting

of α.

Once the bundle identities have been determined, we sample values for these bundles. Let c

be an r -dimensional vector with entries chosen uniformly from (0,1]. For each agent i , let di

be an r -dimensional vector with entries chosen uniformly from (0,1]. Each entry of c denotes

the common value of a specific item, while each entry of di denotes the private value of a

specific item for agent i . The value of bundle Si j is then given by

vi j = min
Si j ′≤Si j

( 〈Si j ′ ,βc + (1−β)di 〉
r

)ζ
for parameters β ∈ [0,1] and ζ. The inner product in the numerator corresponds to a sum over

values of items, where common and private values for each item are respectively weighted

with β and (1−β). The denominator normalizes all valuations to the interval (0,1]. Parameter

ζ controls the degree of complementarity among items: ζ> 1 implies that goods are comple-

ments, whereas ζ< 1 means that goods are substitutes. Choosing the minimum over bundles

Si j ′ contained in Si j finally ensures that the resulting valuations are monotonic.

Outcome Rules

We use two outcome rules in our experiments. The optimal outcome rule gopt assigns the

bundles such that the social welfare is maximized. In the case of the optimal outcome rule

there is a payment rule pvcg that makes the mechanism (gopt , pvcg ) strategyproof. From agent

1’s perspective this payment rule is given by

pvcg ,1(θ) =
(

max
o∈Ω

∑
i 6=1

vi (θi ,oi )

)
− ∑

i 6=1
vi (θi , gopt ,i (θ)).

The second outcome rule with which we experiment is a generalization of the greedy outcome

rule for single-minded CA Lehmann et al. [16]. Our generalization of the greedy outcome

rule is as follows. Let θ be the agent valuations and oi ( j ) denote the j -th bundle desired by

88



3.6. Experimental Evaluation

agent i . For each bundle oi ( j ), assign a score vi (θi ,oi ( j ))/
√|oi ( j )|, where |oi ( j )| indicates the

total items in bundle oi ( j ). The greedy outcome rule orders the desired bundles by this score,

and takes the bundle oi ( j ) with the next highest score as long as agent i has not already been

allocated a bundle and oi ( j ) does not contain any items already allocated. While this greedy

outcome rule has an associated payment rule that makes it strategyproof in the single-minded

case, it is not implementable in the multi-minded case as the following example shows.

Example 1. Consider a setting with a single agent and four items.

If the valuations θ1 of the agent are

v1(θ1,o1) =


20 if o1 = {1,2,3,4}

12 if 1 ∈ o1 and j ∉ o1 for some j ∈ {2,3,4}, and

0 else

then the allocation is {1}.

If the valuations are θ′1 such that

v1(θ′1,o1) =


12 if o1 = {1,2,3,4}

5 if 1 ∈ o1 and j ∉ o1 for some j ∈ {2,3,4}, and

0 else

then the allocation is {1,2,3,4}.

We have v1(θ′1, {1,2,3,4})− v1(θ′1, {1}) < v1(θ1, {1,2,3,4})− v1(θ1, {1}) contradicting weak mono-

tonicity.

Description of Experiments

We experiment with training sets of sizes 100, 300, and 500, and validation and test sets of size

1000. All experiments we report on are for a setting with 5 agents, 5 items, and 3 bundles per

agent, and use β= 0.5, the RBF kernel, and parameters C ∈ {104,105} and γ ∈ {0.01,0.1,1}.

Basic Results

Table 3.2 presents the basic results for multi-minded CAs with a training set size of 500 for

both the optimal and the greedy outcome rule. For both outcome rules, we present the results

for pvcg as a baseline. Because pvcg is the strategyproof payment rule for the optimal outcome

rule, pvcg always has accuracy 100, regret 0, and IR violation 0 for the optimal outcome rule.

Across all instances, as expected, accuracy is negatively correlated with regret and ex post

IR violation. The degree of complementarity between items, ζ, as well as the outcome rule

chosen, has a major effect on the results. Instances with low complementarity (ζ= 0.5) yield
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Optimal outcome rule Greedy outcome rule
accuracy regret ir-violation accuracy regret ir-violation

n ζ pvcg χ1 χ2 pvcg χ1 χ2 pvcg χ1 χ2 pvcg χ1 χ2 pvcg χ1 χ2 pvcg χ1 χ2

2 0.5 100 70.7 91.9 0 0.014 0.002 0 0.06 0.03 50.9 59.1 40.6 0.079 0.030 0.172 0.22 0.12 0.33
3 0.5 100 54.5 75.4 0 0.037 0.017 0 0.19 0.10 55.4 57.9 54.7 0.070 0.030 0.088 0.18 0.21 0.36
4 0.5 100 53.8 67.7 0 0.042 0.031 0 0.22 0.18 61.1 58.2 57.9 0.056 0.033 0.056 0.14 0.20 0.31
5 0.5 100 15.8 67.0 0 0.133 0.032 0 0.26 0.19 64.9 61.3 63.0 0.048 0.027 0.042 0.13 0.19 0.24
6 0.5 100 61.1 68.2 0 0.037 0.032 0 0.22 0.20 66.6 63.8 63.8 0.041 0.034 0.045 0.12 0.20 0.24
2 1.0 100 84.5 93.4 0 0.008 0.001 0 0.08 0.02 87.8 86.6 84.0 0.007 0.005 0.008 0.04 0.06 0.09
3 1.0 100 77.1 83.5 0 0.012 0.005 0 0.13 0.09 85.3 86.7 85.7 0.006 0.006 0.006 0.04 0.07 0.05
4 1.0 100 74.6 81.1 0 0.014 0.009 0 0.16 0.12 82.4 86.5 84.2 0.006 0.006 0.007 0.05 0.08 0.08
5 1.0 100 73.4 77.4 0 0.018 0.011 0 0.19 0.12 82.7 85.8 84.9 0.007 0.009 0.009 0.04 0.10 0.10
6 1.0 100 75.0 77.7 0 0.020 0.013 0 0.20 0.16 80.0 87.4 88.1 0.006 0.007 0.005 0.04 0.08 0.07
2 1.5 100 91.5 96.9 0 0.004 0.000 0 0.06 0.02 94.7 91.1 91.7 0.002 0.002 0.002 0.02 0.04 0.04
3 1.5 100 91.0 93.4 0 0.004 0.001 0 0.05 0.03 97.1 92.8 93.2 0.001 0.002 0.001 0.01 0.02 0.04
4 1.5 100 92.5 94.2 0 0.003 0.001 0 0.03 0.04 96.4 91.5 92.1 0.001 0.003 0.002 0.02 0.07 0.07
5 1.5 100 91.7 93.9 0 0.004 0.002 0 0.06 0.03 97.5 90.5 91.4 0.001 0.004 0.002 0.01 0.06 0.04
6 1.5 100 91.9 93.7 0 0.003 0.001 0 0.05 0.04 98.4 92.2 92.8 0.000 0.003 0.002 0.01 0.06 0.06

Table 3.2: Basic performance metrics for multi-minded CA.

payment rules with higher regret, and χ1 performs better on the greedy outcome rule while χ2

performs better on the optimal outcome rule. For high complementarity between items the

greedy outcome tends to allocate all items to a single agent, and the learned price function

sets high prices for small bundles to capture this property. For low complementarity the

allocation tends to be split and less predictable. Still, the best classifiers achieve average ex

post regret of less than 0.032 (for values normalized to [0,1]) even though the corresponding

prediction accuracy can be as low as 67%. For the greedy outcome rule, the performance of

pvcg is comparable for ζ ∈ {1.0,1.5} but worse than the payment rule learned in our framework

in the case of ζ= 0.5, where the greedy outcome rule becomes less optimal.

Effect of Training Set Size

Table 3.3 charts performance as the training set size is varied for the greedy outcome rule.

While training data is readily available (we can simply sample from D and run the outcome

rule g ), training time becomes prohibitive for larger training set sizes. Table 3.3 shows that

regret decreases with larger training sets, and for a training set size of 500, the best of χ1 and

χ2 outperforms pvcg for ζ= 0.5 and is comparable to pvcg for ζ ∈ {1.0,1.5}.

Individual Rationality Violations

Table 3.4 summarizes our results regarding the various fixes to IR violations for the greedy

outcome rule with attribute map χ2 and the particularly challenging case ζ= 0.5. Each row

corresponds to a different payment offset and each column represents a different null loss. The

extent of IR violation decreases with larger payment offset and null loss. Regret tends to move
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n ζ
accuracy 100 300 500 regret 100 300 500

pvcg χ1 χ2 χ1 χ2 χ1 χ2 pvcg χ1 χ2 χ1 χ2 χ1 χ2

2 0.5 50.9 54.3 48.2 57.0 46.9 59.1 40.6 0.079 0.045 0.195 0.032 0.098 0.030 0.172
3 0.5 55.4 50.1 49.8 55.7 54.4 57.9 54.7 0.070 0.054 0.078 0.038 0.082 0.030 0.088
4 0.5 61.1 53.4 56.2 56.4 58.5 58.2 57.9 0.056 0.050 0.059 0.040 0.061 0.033 0.056
5 0.5 64.9 14.2 57.9 61.0 61.8 61.3 63.0 0.048 0.173 0.064 0.038 0.048 0.027 0.042
6 0.5 66.6 58.4 58.8 62.2 63.9 63.8 63.8 0.041 0.039 0.059 0.037 0.049 0.034 0.045
2 1.0 87.8 80.7 80.5 84.4 84.1 86.6 84.0 0.007 0.010 0.010 0.009 0.008 0.005 0.008
3 1.0 85.3 74.9 78.0 83.0 80.6 86.7 85.7 0.006 0.020 0.011 0.009 0.009 0.006 0.006
4 1.0 82.4 78.5 80.1 84.2 83.1 86.5 84.2 0.006 0.015 0.014 0.008 0.009 0.006 0.007
5 1.0 82.7 81.0 81.8 84.3 84.3 85.8 84.9 0.007 0.020 0.014 0.010 0.009 0.009 0.009
6 1.0 80.0 81.8 83.7 87.6 88.3 87.4 88.1 0.006 0.062 0.018 0.008 0.005 0.007 0.005
2 1.5 94.7 83.3 88.1 89.3 89.8 91.1 91.7 0.002 0.008 0.003 0.003 0.002 0.002 0.002
3 1.5 97.1 86.9 87.6 90.3 91.5 92.8 93.2 0.001 0.005 0.004 0.003 0.002 0.002 0.001
4 1.5 96.4 88.4 90.7 89.3 90.8 91.5 92.1 0.001 0.005 0.003 0.004 0.003 0.003 0.002
5 1.5 97.5 87.2 88.5 91.4 90.5 90.5 91.4 0.001 0.006 0.004 0.003 0.003 0.004 0.002
6 1.5 98.4 86.3 86.8 91.4 92.5 92.2 92.8 0.000 0.011 0.007 0.004 0.002 0.003 0.002

Table 3.3: Effect of training set size on accuracy and regret in a multi-minded CA with a greedy
outcome rule.

payment
offset

accuracy regret ir-violation ir-fix-welfare-avg
0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5

0 59.7 61.8 61.7 0.065 0.048 0.042 0.35 0.26 0.21 0.27 0.43 0.52
0.05 61.7 61.2 60.1 0.054 0.045 0.044 0.29 0.20 0.15 0.37 0.54 0.65
0.10 62.1 59.3 56.7 0.048 0.047 0.051 0.23 0.14 0.10 0.48 0.66 0.75
0.15 60.4 55.1 52.2 0.047 0.055 0.064 0.17 0.10 0.06 0.59 0.75 0.84
0.20 57.8 51.7 48.5 0.052 0.067 0.079 0.12 0.06 0.03 0.70 0.83 0.90
0.25 54.3 47.7 44.3 0.061 0.082 0.096 0.08 0.03 0.02 0.79 0.89 0.93

Table 3.4: Impact of payment offset and null loss fix in a multi-minded CA with a greedy
outcome rule.
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Figure 3.2: Impact of payment offset and null loss fix in a multi-minded CA with a greedy
outcome rule for ζ= 0.5 (left) and ζ= 1.0 (right).
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n ζ
accuracy regret ir-violation

χ2 χ2 (i-mon) χ2 χ2 (i-mon) χ2 χ2 (i-mon)
2 0.5 46.9 46.3 0.098 0.232 0.28 0.38
3 0.5 54.4 8.6 0.082 0.465 0.33 0.06
4 0.5 58.5 48.2 0.061 0.811 0.31 0.25
5 0.5 61.8 57.0 0.048 0.136 0.26 0.26
6 0.5 63.9 61.3 0.049 0.078 0.25 0.20
2 1.0 84.1 82.2 0.008 0.010 0.06 0.08
3 1.0 80.6 80.1 0.009 0.010 0.10 0.09
4 1.0 83.1 79.7 0.009 0.012 0.11 0.11
5 1.0 84.3 77.2 0.009 0.020 0.10 0.11
6 1.0 88.3 83.9 0.005 0.013 0.08 0.11
2 1.5 89.8 89.1 0.002 0.003 0.03 0.06
3 1.5 91.5 91.3 0.002 0.003 0.04 0.04
4 1.5 90.8 89.7 0.003 0.003 0.06 0.06
5 1.5 90.5 87.3 0.003 0.005 0.04 0.05
6 1.5 92.5 70.8 0.002 0.081 0.06 0.17

Table 3.5: Comparison of performance with and without optimistically assuming item mono-
tonicity in a multi-minded CA with a greedy outcome rule.

in the opposite direction, but there are cases where IR violation and regret both decrease. The

three rightmost columns of Table 3.4 list the average ratio between welfare after and before the

deallocation fix, across the instances in the test set. With a payment offset of 0, a large welfare

hit is incurred if we deallocate agents with IR violations. However, this penalty decreases with

increasing payment offsets and increasing null loss. At the most extreme payment offset and

null loss adjustment, the IR violation is as low as 2% and the deallocation fix incurs a welfare

loss of only 7%.

Figure 3.2 shows a graphical representation of the impact of payment offsets and null losses

for the greedy outcome rule with attribute map χ2. The left plot is for ζ = 0.5 and the right

plot is for ζ= 1. Each line in the plot corresponds to a payment rule learned with a different

null loss, and each point on a line corresponds to a different payment offset. The payment

offset is zero for the top-most point on each line, and equal to 0.29 for the lowest point on

each line. Increasing the payment offset always decreases the rate of IR violation, but may

decrease or increase regret. Increasing null loss lowers the top-most point on a given line,

but arbitrarily increasing null loss can be harmful. Indeed, in the figure on the left, a null loss

of 1.5 results in a slightly higher top-most point but significantly lower regret at this top-most

point compared to a null loss of 2.0. It is also interesting to note that these adjustments have

much more impact for ζ= 0.5.

Item Monotonicity

Table 3.5 presents a comparison of a payment rule learned with explicit enumeration of all

bundle constraints (the default that we have been using for our other results) and a payment

rule learned by optimistically assuming item monotonicity (see Section 3.5.1). Performance is
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n
accuracy regret ir-violation

vcg tot-vcg eg-vcg pw vcg tot-vcg eg-vcg pw vcg tot-vcg eg-vcg pw

2 64.3 67.5 67.5 89.0 0.018 0.015 0.015 0.023 0.03 0.01 0.01 0.03
3 48.0 52.1 42.5 77.9 0.070 0.077 0.127 0.041 0.06 0.07 0.03 0.04
4 40.6 43.1 30.8 71.0 0.111 0.123 0.199 0.054 0.07 0.09 0.03 0.02
5 32.4 35.3 24.5 63.9 0.157 0.169 0.254 0.071 0.10 0.12 0.03 0.01
6 27.1 29.9 20.0 59.0 0.189 0.208 0.290 0.074 0.10 0.13 0.03 0.01

Table 3.6: Basic Performance metrics for assignment problem with egalitarian outcome rule

affected when we drop constraints and optimistically assume item monotonicity, although

the effects are small for ζ ∈ {1.0,1.5} and larger for ζ= 0.5. Because item monotonicity allows

for the training problem to be succinctly specified, we may be able to train on more data, and

this seems a very promising avenue for further consideration (perhaps coupled with heuristic

methods to add additional constraints to the training problem).

3.6.4 The Assignment Problem

In the assignment problem, agents’ values for the items are sampled uniformly and indepen-

dently from [0,1]. We use a training set of size 600, validation and test sets of size 1000, regular-

ization parameter C ∈ {10,1000,100000}, and the RBF kernel with parameter γ ∈ {0.1,0.5,1.0}.

The performance of the learned payment rules is compared to that of three VCG-based

payment rules. Let W be the total welfare of all agents other than i under the outcome chosen

by g , and Weg be the minimum value any agent other than i receives under this outcome. We

then consider the following payment rules: (1) the vcg payment rule, where agent i pays the

difference between the maximum total welfare of the other agents under any allocation and

W ; (2) the tot-vcg payment rule, where agent i pays the difference between the total welfare

of the other agents under the allocation maximizing egalitarian welfare and W ; and (3) the

eg-vcg payment rule, where agent i pays the difference between the minimum value of any

agent under the allocation maximizing egalitarian welfare and Weg .

The results for attribute map χ3 are shown in Table 3.6. We see that the learned payment rule

pw yields significantly lower regret than any of the VCG-based payment rules, and average

ex post regret less than 0.074 for values normalized to [0,1]. Since we are not maximizing the

sum of values of the agents, it is not very surprising that VCG-based payment rules perform

rather poorly. The learned payment rule pw can adjust to the outcome rule, and also achieves

a low fraction of ex post IR violation of at most 3%.

3.7 Conclusion and Future Work

We have introduced a new paradigm for computational mechanism design in which statistical

machine learning is adopted to design payment rules for given algorithmically specified
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outcome rules, and have shown encouraging experimental results. Future directions of interest

include (1) an alternative formulation of the problem as a regression rather than classification

problem, (2) constraints on properties of the learned payment rule, concerning for example

the core or budgets, (3) methods that learn classifiers more likely to induce feasible outcome

rules, so that these learned outcome rules can be used, (4) optimistically assuming item

monotonicity and dropping constraints implied by it, thereby allowing for better scaling of

training time with training set size at the expense of optimizing against a subset of the full

constraints in the training problem, and (5) an investigation of the extent to which alternative

goals such as regret percentiles or interim regret can be achieved through machine learning.
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Concluding Remarks

In this thesis we addressed three challenges in algorithmic mechanism design, which com-

bines the emphasis on computational complexity of algorithm design with the emphasis on

strategic behavior of mechanism design. The challenges that we addressed were the design of

expressive mechanisms, the analysis of simplicity-expressiveness tradeoffs, and the design of

approximately strategyproof mechanisms.

For the first challenge we considered the domain of multi-item auctions with unit demand

and presented the most expressive polynomial-time mechanism for this setting known to date

that is incentive compatible for non-degenerate inputs. An interesting direction for future

work would be to push the expressiveness frontier even further, i.e., find even more expressive

mechanisms that can be executed in polynomial time and have good incentive properties.

One possible avenue would be to consider more general non-linear and discontinuous utility

functions. Another possibility would be to consider more general domains, for example, one-

to-many or many-to-many matchings. In both cases a promising approach seems to be to

relax the requirements, either by replacing exact bidder optimality or exact envy freeness with

approximate bidder optimality or approximate envy freeness or by replacing exact incentive

compatibility with approximate incentive compatibility.

For the second challenge we considered simplified mechanisms that result from restricting the

message space of a reference mechanism, and analyzed the impact that these restrictions have

on the set of equilibria as a whole. An interesting target for future work would be to replace the

revelation principle, with its implied focus on direct-revelation mechanisms and blindness

towards computational aspects, with a more practical simplification principle that allows

to assess the advantages and disadvantages of simplification taking computational aspects

into account. A particularly interesting question is how the computational burden should be

shared between the mechanism and the agents. As a concrete example consider a domain in

which computing the outcome for the true preferences is a computationally hard problem.

The designer could sidestep the computational hardness on the mechanism’s side by a harsh

enough restriction of the message space, but what would the computational implications of

such a harsh restriction be for the agents? Specifically, if the decision is between computational

tractability of the mechanism or computational tractability of the strategic reasoning required

by the agents, which is to be preferred?
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For the third challenge we adopted expected ex post regret as a quantifiable target of ap-

proximate strategyproofness, and presented a framework that given an algorithmically speci-

fied outcome rule automatically finds a payment rule that makes the resulting mechanism

maximally strategyproof. An interesting direction for future work, apart from the obvious

improvements, such as trying to make the method more scalable, would be to exploit the struc-

tural similarity between discriminant-based classification and strategyproof mechanism design

in a different way. One could, for example, imagine to use the learned discriminant-based

classifier to derive both an outcome rule and a payment rule. The resulting mechanism would

be guaranteed to be strategyproof, but the learned outcome rule would only be close to the

original outcome rule. Similarly, one could imagine to adopt the framework to mechanism

design without money. The idea would again be to use the learned outcome rule instead of the

original outcome rule. In both cases the main obstacle seems to be that the learned outcome

rule, at least if it is learned on an per-agent basis, may not be feasible.
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