
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. M. Paolone, président du jury
Prof. F. Rachidi-Haeri, directeur de thèse

Prof. J. R. Mosig, rapporteur 
Prof. M. Rubinstein, rapporteur 
Prof. R. Thottappillil, rapporteur 

Analytical Methods for the Study and Design of Integrated 
Switched Oscillators and Antennas for Mesoband Radiation

THÈSE NO 5775 (2013)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 21 JUIN 2013

À LA  FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE DE RÉSEAUX ÉLECTRIQUES

PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE

Suisse
2013

PAR

Jose Felix Vega Stavro



Résumé 
 
Cette thèse a été réalisée dans le cadre d'un projet de coopération scientifique 

intitulé “Application of High Power Electromagnetics to Human Safety” dévelop-
pé par l'EPFL, l'Université Nationale de la Colombie et l’Université des Andes, 
Colombie. Le projet a été financé par l'Agence Suisse pour le Développement et la 
coopération (SDC) et par le Centre Coopération & Développement (CODEV) de 
l'EPFL. 

La coopération scientifique visait l'étude et le développement des techniques 
pour la génération de signaux électromagnétiques à haute puissance, capables de 
perturber ou activer préventivement des engins explosifs improvisés (en anglais 
IEDs, Improvised Explosive Devices) lors des activités de déminage humanitaire. 

Les résultats de la thèse seront appliqués à la construction d'un système rayon-
nant de type résonant, qui peut être utilisé pour sécuriser des opérations de démi-
nage humanitaire en Colombie. 

La thèse est dédiée à l’analyse des oscillateurs à commutation (en anglais, 
Switched Oscillators – SWO).  Un SWO est un système rayonnant constitué par 
un circuit de charge à haute tension qui alimente un résonateur formé par une ligne 
de transmission quart d'onde, connecté à une antenne. Un SWO peut produire des 
champs électromagnétiques de forte amplitude et de courte durée, avec une largeur 
de bande modérée par rapport à la fréquence de résonance principale. 

   Les résultats de la thèse peuvent également être utilisés pour la production de 
champs électromagnétiques résonants de haute puissance dans des applications de 
compatibilité électromagnétique, avec le but de tester l'immunité des systèmes 
électroniques contre les interférences électromagnétiques intentionnelles (IEMI). 

 La thèse est divisée en trois parties. La première partie traite de la conception  
électrostatique du SWO. Une méthode pour une conception optimisée des élec-
trodes constituant l’éclateur du SWO a été proposée. La méthode est basée sur la 
génération d'un espace de coordonnées curvilignes dans lequel les électrodes sont 
conformes à l'un des axes de coordonnées de l'espace. L'équation de Laplace est 
résolue dans l'espace interelectrodique et une solution analytique pour la distribu-
tion électrostatique est obtenue. En utilisant des procédures mathématiques, une 
expression analytique de l'impédance de la ligne de transmission formée par les 
électrodes a été développée. 

La deuxième partie de la thèse est consacrée à l'analyse des SWO dans le do-
maine fréquentiel. Une approche originale d'analyse, basée sur la technique de pa-
ramètres de chaîne est proposée. Le SWO et l'antenne connectée y sont décrits à 
l'aide d'un quadripôle, grâce auquel une fonction de transfert entre la tension d'en-
trée et le champ rayonné est établie. Une expression analytique de la fréquence de 
résonance du SWO est également obtenue. La technique développée permet d'étu-
dier la réponse d'un SWO lorsqu'il est connecté à une antenne arbitraire avec une 
impédance d'entrée dépendante de la fréquence. 

La dernière partie de la thèse présente la construction et le test d'un prototype 
de SWO. La conception du prototype est basée sur les développements théoriques 
présentés dans les deux premières parties de la thèse. Le prototype a été conçu 



ii 
 

pour être résonant à 433 MHz, avec une tension d'entrée de 30 kV. Les mesures 
des champs rayonnés par le prototype indiquent des amplitudes de l’ordre de 10 
kV/m à une distance de 1.5 m.   

Le prototype est utilisé pour tester la validité du modèle électrodynamique pour 
l'analyse des SWO. Les champs rayonnés par le SWO connecté à différentes an-
tennes monopoles sont mesurés et comparés avec les calculs théoriques. 

Il a été montré que le modèle théorique développé est capable de reproduire 
avec une bonne précision le comportement du SWO connecté à une antenne en te-
nant compte de la dépendence fréquentielle de son impédance d’entrée. 

 
Liste de mots-clés:  

 
Champs électromagnétique d’haute puissance, résonateurs, Equation de La-

place dans de coordonnées curvilinéaires, Interférence Electromagnétique Inten-
tionnel (IEMI), systèmes de test de compatibilité électromagnétique.  
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Abstract 
 
This thesis was carried out within the framework of a scientific cooperation 

project entitled “Application of High Power Electromagnetics to Human Safety” 
developed by the EPFL, the National University of Colombia and Los Andes Uni-
versity, Colombia. The project was funded by the Swiss Agen-
cy for Development and Cooperation (SDC) through the EPFL Centre Coopé-
ration & Développement (CODEV). 

The Scientific Cooperation aimed at the study and development of techniques 
for the generation of high power electromagnetic signals for the disruption or 
preemptive activation of Improvised Explosive Devices (IEDs) during humanitari-
an clearance activities. 

The results and conclusions of the thesis will be applied to the construction of a 
resonant radiator, which can be used for securing humanitarian demining opera-
tions in Colombia.  

The thesis is devoted to the analysis of a specific type of resonant radiators 
known as Switched Oscillators (SWO). An SWO is a radiator constituted by a 
high voltage charging circuit that drives a quarter-wave transmission line resona-
tor connected to an antenna. An SWO can produce high-amplitude, short duration, 
electromagnetic fields, with a moderate bandwidth, when compared to the main 
resonance frequency. 

The outcome of the thesis can be also be used in electromagnetic compatibility 
applications, for the production of resonant, high power electromagnetic fields, 
with the aim of testing the immunity of electronic systems against Intentional 
Electromagnetic Interference (IEMI) attacks.  

The thesis is divided in three parts. The first part deals with the electrostatic de-
sign of an SWO. A method for producing an optimized design of the electrodes 
forming the spark gap of the SWO is presented. The method is based on the gen-
eration of a curvilinear coordinate space on which the electrodes are conformal to 
one of the coordinate axis of the space. Laplace equation is solved in the interelec-
trodic space, obtaining an analytical solution for the electrostatic distribution. Fur-
thermore, using appropriate mathematical manipulations, we derive an analytical 
expression for the impedance of the transmission line formed by the proposed 
electrodes. 

The second part of the thesis is devoted to the analysis of SWOs in the frequen-
cy domain.  An original analysis approach, based on the chain-parameter tech-
nique, is proposed in which the SWO and the connected antenna are described us-
ing a two-port network using which a transfer function between the input voltage 
and the radiated field is established. A closed form expression of the resonance 
frequency of the SWO is also obtained. The developed technique makes it possi-
ble to study the response of an SWO when connected to an arbitrary antenna with 
a frequency-dependent input impedance.  

The final part of the thesis presents the construction and test of an SWO proto-
type. The prototype design is based on the theoretical developments presented in 
the first two parts of the thesis. The realized SWO is experimentally characterized 
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using different antennas. It is characterized by an input voltage of 30 kV and a 
resonance frequency of 433 MHz. Radiated electric fields using monopole anten-
nas were in the order of 10 kV/m at a distance of 1.5 m.  

The prototype is used for testing the validity of the electrodynamic model for 
the analysis of SWOs connected to frequency dependent antennas. Different mon-
opole antennas connected to the SWO are considered and the radiated fields are 
measured and compared with theoretical calculations. 

It is shown that the developed theoretical model is able to reproduce with a 
good accuracy the behavior of the SWO connected to a frequency dependent an-
tenna. 

 
 
List of Keywords: 
 
High power electromagnetic fields, resonators, Laplace equation in curvilinear 

coordinates, Intentional electromagnetic interference (IEMI), tests systems for 
electromagnetic compatibility. 
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2    Introduction 

 

1.1. THESIS FRAMEWORK 
 
This thesis was carried out within the framework of a scientific cooperation 

project entitled “Application of High Power Electromagnetics to Human Safety” 
involving EPFL, the National University of Colombia and Los Andes University, 
Colombia. The project was funded by the Swiss Agen-
cy for Development and Cooperation (SDC) through the EPFL Centre Coopé-
ration & Développement (CODEV) [1] .  

The project aimed at the study and development of techniques for the genera-
tion of high power electromagnetic signals for the disruption or preemptive activa-
tion of Improvised Explosive Devices (IEDs) during humanitarian clearance activ-
ities. 

IEDs, also known as improvised landmines, produce an increasing number of 
victims among civilians and militaries in Colombia [2]. Several campaigns of 
clearance in rural territories have been initiated by the Colombian government, us-
ing detection techniques such as metal detectors, dogs and manual detection. 
These techniques are effective only in part, due to the low metal content of the 
IEDs. 

 The approach proposed by the scientific cooperation project can reduce the 
cost and duration of the demining activities and can increase the safety of the op-
erations. 

The project was divided in two main work packages. The first one considered 
the modeling of the IEDs and its triggering mechanisms as electromagnetic targets 
susceptible of interference, see for example [3].  

The second work package dealt with the design and construction of high power 
electromagnetic radiators, able to couple electromagnetic energy into the IED, per-
turbing its normal functioning. The theory and experimental validation for analyz-
ing, studying and optimizing the design of an electromagnetic radiator able to ful-
fill this task are presented in this thesis.  

The results and conclusions of the thesis will be applied to the construction of a 
resonant radiator, which can be used for securing humanitarian demining opera-
tions in Colombia.  

 
The results of the scientific cooperation project can also be applied in a devel-

oped country as Switzerland. The EPFL EMC-Laboratory participates in a Euro-
pean project on the evaluation of vulnerabilities of critical infrastructures against 
Intentional Electromagnetic Interference (IEMI) [4]. The source developed in this 
thesis will be used in this project as a source of electromagnetic disturbances for 
system immunity testing. 

IEMI attacks are a matter of increasing interests in both, civilian and military 
contexts.  This topic have been the subject of numerous studies sponsored by gov-
ernmental institutions of several countries (e.g. [5, 6]). International organisms 
such as URSI [7], and IEC [8] recognize IEMI as a risk for the civilian society. 
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The effects of IEMI on electronic systems depend on the level of voltages and 
currents coupled into the system: they can range from noise coupling causing mal-
functioning, to physical destruction of the components of the system. 

The validation of studies on the effects of radiated IEMI on systems and the 
test of the relevant countermeasures require the use of high power electromagnetic 
radiators, capable of producing high power illuminating fields. The amplitude, 
bandwidth and beam width of the fields are determined by the type of the required 
tests.  

 
1.2. BACKGROUND 

1.2.1. Classification of radiating systems 
Giri [9] proposed a classification of radiating systems based on the percent 

bandwidth (pbw) and the bandratio (br) of the radiated signal, defined respectively 
as 

 
2( )

100%h l

h l

f f
pbw

f f

−=
+

 (1.1) 

 h

l

f
br

f
=  (1.2) 

where fl and fh are the cut-off frequencies of the spectrum of the radiated signal, 
defined as the limits of the band containing the 90% of the radiated energy  [9, 
10]. 

Table I shows the classification of the radiating systems based on the val-
ues pbw and br [9]. 
 

Table I. Definitions for bandwidth classification. 

Band type  Percent bandwidth (pbw) Bandratio (br) 
Hypoband or Narrowband < 1% <1.010 
Mesoband 1% < pbw ≤100% 1.010 < br ≤3 
Sub-hyperband 100%<pbw≤163.4% 3 < br ≤10 
Hyperband 163.4%<pbw≤200% br >10 

 
High power sub-hyperband and hyperband fields, for instance, are required 

when the susceptibility of the Device Under Test (DUT) or target is tested over a 
large frequency band. On the other hand, resonant or mesoband sources are re-
quired when the DUT is tested at a higher level of signal at a particular frequency. 
A more specific classification of the radiators was established in [11]. 
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1.2.2. The Switched Oscillator  
In this study, we investigate a type of mesoband radiator called Switched Oscil-

lator (SWO), proposed by Carl Baum in 2000 [12]. An SWO consists of a low-
impedance transmission line initially charged at high voltage and connected to a 
high-impedance antenna at one end. The other end of the transmission line is con-
nected to a self-breaking gas switch that short-circuits the line once the breakdown 
threshold is reached. The equivalent circuit representing an SWO system is pre-
sented in Figure 1. 

 
Figure 1.1 Schematic representation of a Switched Oscillator (SWO). A low impedance 
(Zo) charged line is short-circuited at one end and discharged on a high impedance antenna 
(ZA). The line is charged through a high impedance element Zch, preventing the interaction 
of the impulse and the charging source (HV). Eventually a blocking capacitor Cb is used in 
order to prevent DC charges on the antenna. 

 
The closing of the switch produces a fast transient that propagates through the 

line and reaches the antenna. Due to the mismatch between the antenna and the 
transmission line, only part of this signal is radiated. The rest of the pulse is re-
flected and propagates back to the switch. If we assume that the switch is still 
closed when the reflected wave arrives, a second reflection with inversed sign will 
be sent back towards the antenna.  

At the terminals of the antenna this will appear as a series of pulses, of positive 
and negative amplitudes and with a decreasing magnitude, separated by a time de-
lay corresponding to the round trip time of the transmission line. Thus, it can be  
said that the SWO is a quarter-wave oscillator, with a fundamental frequency (fo) 
given by: 

 0 4
pv

f
L

=  (1.3) 

where: vp is the wave propagation velocity and L is the length of the line. 
The idea presented by Baum in his seminal publication is appealing due to its 

simplicity and feasibility by using existing technology from ultrawideband appli-
cations. Several successful implementations of this concept have been reported in 
the past years. In [13], Baum proposed the construction of a coaxial SWO con-
nected to a Half Impulse Radiating Antenna (HIRA). The construction of a similar 
system, called the MATRIX was reported in [14]. The coaxial structure forming 
the MATRIX was pressurized with hydrogen at 110 bars, permitting a charging 
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voltage of 300 kV. The reported resonance frequency of this system was 180 
MHz. Giri [15] presented the design and operation of SWOs connected to helical 
antennas. Two different coaxial SWOs, pressurized with Nitrogen at 40 bars and 
operating at 200 MHz and 500 MHz with a charging voltage of 30 kV were re-
ported. In [16], Armanious et. al. presented the design of a coaxial SWO with var-
iable resonance frequency. This SWO was connected to a conical antenna and its 
reported central frequency was about 1.5 GHz. Santamaría et al. proposed  in [17] 
a study on the influence of the parameters of the SWO on the produced signal.  

In parallel with these contributions and reports on practical implementations, 
several theoretical aspects of the SWO have been considered. In [18], Baum pre-
sented the concept of differential SWO. In [15], Giri proposed to model the coaxi-
al SWO as a cascade of two transmission lines: a radial transmission line (RTL), 
formed by the electrodes of the switch, followed by a second transmission line 
corresponding to the main body of the coaxial line. The RTL has a non-uniform 
impedance affecting the nominal resonance frequency and the quality factor (Q) of 
the SWO. The measured resonance frequency of the radiated wave corresponds to 
a length L that appears to be longer than the actual physical length of the SWO. 
This has been clearly demonstrated in [19]. In order to accurately estimate the re-
sulting resonance frequency and quality factor of the SWO, different numerical 
methods have been used (e.g. [15]). However, to the best of the author’s 
knowledge, no closed-form expressions have been derived for this purpose.  

Another important theoretical aspect is the design of the electrodes of the 
SWO. Armanious et. al. presented in [19] an iterative method for the design of 
electrodes that results in a given distribution of the electric field. The design 
methodology reduces the effects of the non-uniformities of the RTL on the Q of 
the radiated signal. 

 
1.3. RESEARCH QUESTIONS 

Despite all the efforts mentioned in the previous section, there are still some 
open questions that deserve to be addressed.  

The first one of these questions deals with the electrostatic design of the SWO. 
Presently, the profile of the electrodes is generated either using some trial and er-
ror scheme or using an iterative method, as the one proposed in [19]. In both cas-
es, electrostatic simulations are needed in order to validate the obtained solution. 
Although a single electrostatic simulation is not an issue in terms of computational 
effort, the actual process of the development of an SWO requires several simula-
tions in order to test intermediate solutions and alternatives. This process can be 
extremely simplified if the electrodes are generated using a pre-defined profile 
with a known, analytical electrostatic field distribution. Naturally, the produced 
electrostatic distribution should fulfill some constraints, such as the field ampli-
tude should be maximum at the spot where the discharge is desired to occur.  

As discussed in [15], the variation of the impedance along the RTL results in a 
shift on the expected resonance frequency of the SWO. However, this influence 
can only be estimated by numerically solving the system formed by the RTL and 
the connected coaxial line. The second open challenge consists in finding a closed 
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form expression relating the parameters of the radial transmission line to the reso-
nance frequency of the SWO. This question is related to the previous one, in the 
sense that an analytical expression for the characteristic impedance of the RTL can 
be obtained from the electrostatic field distribution. The solution of this question 
will also result in an improvement on the design process of SWOs. 

The third open question is related to the integration of frequency dependent an-
tennas to SWOs. Existing publications consider the response of SWOs connected 
to HIRAs, discones or helical antennas, which have nearly constant impedance 
over a considerable bandwidth. Therefore, the development of a technique allow-
ing the analysis of the response of an SWO connected to an antenna with arbitrary 
frequency response for its input impedance would be of great interest.  

The aim of this thesis is to address these three questions. 
 

1.4. OUTLINE AND ORIGINAL CONTRIBUTIONS 
This work is organized as follows.  
Chapter 2 considers the electrostatic design of the SWO, corresponding to the 

first of the stated questions. In this chapter, the design of a new profile for the 
electrodes of SWOs is derived. The adopted approach to solve this problem con-
sists in generating the shape of the electrodes conformal to the axis of a curvilinear 
orthogonal space of coordinates. The profiles of the electrodes are based on the 
Inverse of Prolate Spheroid (IPS) coordinate system, derived from a conformal 
transformation proposed by Moon and Spencer in [20]. The Laplace equation is 
solved in this space and an analytical expression for the electrostatic field distribu-
tion is obtained. Numerical simulations confirming the analytical solutions are al-
so presented in this same chapter. 

In Chapter 3, the results of the solution of the Laplace equation, obtained in 
Chapter II, are applied to the derivation of an analytical expression for the imped-
ance of the radial transmission line formed by the IPS electrodes.  

Chapter 4 addresses questions 2 and 3 and presents the electrodynamic analysis 
of SWOs in the frequency domain. A novel analysis, based on the chain-parameter 
technique, permitting the extraction of the resonance frequency of an SWO is pre-
sented. This technique describes the SWO and the connected antenna using a two-
port network from which a transfer function between the input voltage and the ra-
diated field is established. A closed form expression of the resonance frequency of 
the SWO is also obtained. The developed technique makes it possible to study the 
response of an SWO when connected to an arbitrary antenna with a frequency de-
pendent input impedance.  

Chapter 5 reports on the design of an SWO prototype using the proposed IPS 
profile. The realized SWO is experimentally characterized when connected to a 
frequency dependent antenna. The intended frequency of operation is f0=433 
MHz, which corresponds to one of the open Industrial Scientific and Medical 
bands. Measurements of signals radiated by the prototype are presented and dis-
cussed. 

Finally, Chapter 6 presents the general conclusions of the work, as well as an 
outlook for future studies. 
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2.1. INTRODUCTION 

The overall geometry of a coaxial SWO is depicted in Figure 2.1. As described 
in the introduction, the SWO is composed of a charged transmission line (coaxial 
in this case) connected to a higher impedance antenna at one end and to a closing, 
self-breaking switch gas at the opposite end.  

The electrodes of the spark gap form a radial transmission line (RTL) that pro-
gressively becomes coaxial.  

As it can be inferred from the figure, on the axis of symmetry the electric field 
in the gap is parallel to the z axis, whereas in the coaxial region it points in the di-
rection of the coordinate r. The electrostatic field distribution of the structure 
(previous to the discharge) should guarantee the occurrence of a fast discharge be-
tween the electrodes, on the symmetry axis of the SWO. The geometry of the elec-
trodes must maximize the electric field at the discharge point and prevent field en-
hancements or distortions that could lead to the occurrence of unwanted 
discharges in other points of the geometry.  

 
Figure 2.1 Quarter wave coaxial switched oscillator (SWO). Notice the presence of the RTL 

at the low impedance end of the SWO. Any type of antenna can be connected to the SWO. The 
one showed here is only for illustrative purposes. 

 
We propose in this chapter a new profile for the electrodes forming the RTL of 

the SWO. The profile is formed using a curvilinear orthogonal space, generated 
from a 2-D transformation, called Inverse Prolate Spheroid (IPS), proposed by 
Moon and Spencer in [1] (page 115).  

The advantage of using the IPS profile is that it ensures that the maximum am-
plitude of the electric field occurs on the axis of symmetry, while the field intensi-
ty decreases as we move away from the discharge point towards the coaxial 
transmission line.  
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On the other hand, the Laplace Equation is r-separable in this coordinate sys-
tem. This implies that an analytical expression for the electrostatic potential can be 
derived from which a closed form solution for the electrostatic field can be calcu-
lated.  

 
2.2. BACKGROUND 

Assuming isotropic and time invariant conditions, the electrostatic field distri-
bution between the electrodes of a gas spark gap depends mainly on the shape of 
the metallic surface of the electrodes. The occurrence of dielectric breakdown de-
pends on many factors such as gas density, distance between the electrodes and 
electric field intensity. An optimal choice on the profile of the electrodes permits, 
for example, to control the occurrence of field enhancements in specific regions.   

The design of electrodes for spark gaps used in applications such as Marx gen-
erators and Ultra Wide Band (UWB) pulsers rely mostly on the profiles proposed 
by Rogowski [2], Ernst [3] and Bruce [4], which are intended to produce an uni-
form field distribution in a defined volume of the interelectrodic space. These pro-
files improve the repeatability of the discharge and distribute the point of origin of 
the arc homogeneously on the surface of the electrodes, assuring a uniform wear-
ing of the metallic surface. In general, in such applications the size of the elec-
trodes is much smaller than the smallest wavelength of the discharge pulse; there-
fore, propagation effects can be neglected.  

In the case of a coaxial SWO, the situation is quite different. In order to prevent 
distortion of the signal transmitted to the antenna, the discharge should be pro-
duced on the axis of symmetry of the SWO so that all the points on the wavefront 
originated at the discharge point would get simultaneously to the antenna.  

The problem of the distribution of the electrostatic field in an SWO has been 
discussed by Giri et al. in [5]. A more detailed discussion and a design technique 
was proposed by Armanious et al. in [6], where an iterative method, based on the 
equivalent charge distribution principle, permitted the generation of two exponen-
tial profiles forming the electrodes. The formed geometry produces an electric 
field that is maximum on the axis of symmetry. However, the resulting electric 
field is not monotonically decreasing as we move away from the axis.  

In [7], an equation was proposed for the generation of a new set of electrodes 
producing an electric field which is maximum on the axis of symmetry and mono-
tonically decreasing along the RTL.  However, the proposed approach did not 
make it possible to obtain an analytical expression for the field between the elec-
trodes, as we intent to do in the present chapter. 

 
2.3. CONDITIONS FOR OPTIMAL ELECTROSTATIC 

DISTRIBUTION IN A COAXIAL SWO 
The probability of producing breakdown on the axis of symmetry maximizes if 

the magnitude of the electrostatic field at the time of occurrence of the discharge is 
maximum on the axis of symmetry of the SWO, between the electrodes. We could 
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summarize the conditions necessary to produce the desired field distribution as 
follows: 

  
i) The distance between the electrodes should be minimum at the axis 

of symmetry.  
ii) The distance between the electrodes should monotonically increase 

as we move towards the coaxial line. 
iii) The profile of the electrodes as well as its first space derivative 

should be continuous. 
 
On the other hand, the profile of the electrodes must fulfill the geometric con-

straints of the design, which are the interlectrodic distance at the axis (dgap) and the 
cross section of the coaxial transmission line ri, ro (as defined in Figure 2.1). This 
can be included in the analysis as two additional conditions:  

 
iv) The distance between the electrodes at the axis of symmetry should 

be dgap 
v) The distance between the electrodes at the junction with the coaxial 

line should be Δr = ro – ri, coinciding with the dimensions of the co-
axial transmission line. 

 
A set of curves fulfilling these conditions can be formed using an orthogonal 

curvilinear space, based on the conformal Inverse Prolate Spheroid (IPS) trans-
formation proposed by Moon and Spencer in [1]. 

The electrodes are generated by two parallel surfaces, conformal to one of the 
axis of the curvilinear coordinates. This idea is analogous to the one used by 
Rogowski in [2], with the difference that he used the Maxwell transformation in-
stead. 

 
2.4.  A METHOD FOR GENERATING A CURVILINEAR 

COORDINATE SPACE FROM CONFORMAL 
TRANSFORMATIONS 

The method of generating a curvilinear space starting from a conformal trans-
formation was proposed by Moon and Spencer in [8]. They started by performing 
a conformal transformation from the W to the Z plane. The orthogonal curved lines 
produced on the Z plane can be regarded as a 2-D curvilinear coordinate system, 
which can be either translated or rotated, in order to generate a 3-D coordinate 
system. The procedure can be summarized as follows: 

The transformation from the W to the Z complex planes is; 

 ( )Z f W=  (2.1)  

where:  
f is an analytical function, W and Z are complex planes: 
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W u iv

Z x iy

= +
= +

 (2.2) 

As the angles are preserved by the transformation, the function f maps the rec-
tangular grid defined by the lines u=const and v=const in the W plane, into an or-
thogonal curvilinear grid in the Z plane. 

The parametric form of this new set of orthogonal curves can be obtained from 
the real and imaginary parts of Equation (2.1) as:  

 1

2

( , ) Re[ ( )]

( , ) Im[ ( )]

x f u v f W

y f u v f W

= =
= =

 (2.3) 

The resulting curvilinear grid can be used to generate a new coordinate sys-
tems. For example, if the Z plane is extruded in a perpendicular direction, a cylin-
drical coordinate system (u, v, w) can be obtained, where the relationship with the 
Cartesian coordinates is: 

 
1

2

( , )

( , )

x f u v

y f u v

z w

=
=
=

 (2.4) 

If, on the other hand, the Z map is rotated around the original y axis, we obtain 
a rotational coordinate system (u, v, w). The new relationships with the Cartesian 
coordinates will be given by: 

 
1

1

2

( , ) ( )

( , ) ( )

( , )

x f u v sin w

y f u v cos w

z f u v

=
=
=

 (2.5) 

A similar procedure can be applied if the map is rotated around the x axis. 
 

2.5.  THE INVERSE PROLATE SPHEROIDAL COORDINATE 
SYSTEM 

The Inverse Prolate Spheroidal (IPS) coordinate system is generated by rotating 
the IPS transformation around one of the axis of the Z space. The procedure is as 
follows. 

The starting point is the IPS conformal transformation (also called inverse el-
lipse transformation) defined as:  

  sech( )Z a W=  (2.6) 

where sech( ) is the hyperbolic secant, and: 
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' '

W u iv

Z x iy

= +
= +

  (2.7) 

a>0 is a constant,  
(x’, y’) are auxiliary variables (and not the final x, y coordinates of the Carte-

sian space) and (u,v) are defined in the range: 

 
0

0

u

v π
≤ < +∞
≤ ≤

 (2.8) 

The IPS name comes from the fact that the IPS is the multiplicative inverse of 
the transformation Z=cosh(W), which represents a prolate spheroid. 

The real and imaginary parts of Equation (2.6) can be separated and the space 
coordinates can be calculated in terms of u, v and a: 

 ( ) ( )
( ) ( )2 2

cosh cos
'

cosh sin

u u
x a

u v
=

−
 (2.9) 

 ( ) ( )
( ) ( )2 2

sinh sin
'

cosh sin

u v
y a

u v
=

−
 (2.10) 

 
Figure 2.2 Inverse Prolate Spheroid (IPS) map in the (x’, y’) plane. The parametric family of 
curves in red corresponds to the v-set. The u-set is represented in blue. For the example here pre-
sented a=1. 

Equations (2.9) and (2.10) form two sets of orthogonal, parametric curves on 
the (x’, y’) plane. If u=constant, the curves on the (x’, y’) plane are inverted pro-
late spheroids. When v is held constant, the curves on the (x’, y’) form inverted 
double sheet hyperboloids. The set of curves when u=constant is called here the 
u-set. Consequently, we call v-set the set of curves when v=constant. Figure 2.2 
shows the base transformation. 
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Figure 2.3 Constant surfaces in the Inverse Prolate Spheroidal coordinate system. The surfaces 
were generated with parameter a=1. Notice the surfaces corresponding to u-set and v-set. 
 

The 3D curvilinear system (u, v, w) can be generated by rotating the (x’, y’) 
plane around the x’ axis. Applying Equation (2.5) to Equations (2.9) and (2.10), 
we can find the relationships between (u, v, w) and (x, y, z), the coordinates of the 
Cartesian space: 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )2 2 2 2 2 2

sinh sin cos sinh sin sin cosh cos

cosh sin cosh sin cosh sin

u v w u v w u v
x a y a z a

u v u v u v
= = =

− − −
 (2.11) 

where the range of (u, v, w) is defined as: 
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0

0

0 2

u

v

w

π
π

≤ < +∞
≤ ≤
≤ ≤

 (2.12) 

 

 
Figure 2.4 2D cut of the IPS coordinates at w=0. The u-set is colored in blue, the v-set is colored 
in red, for the case of this example a=1. The electrodes can be formed by rotating two curves be-
longing to bottom half of the u-set around the z axis. In order to respect the geometric constraints 
of the problem, the distance of the curves at the axis x=0 should be dgap. The intersection of the 
surfaces with the axis z=0, should correspond to the radii of the coaxial line ro, ri. 

 
A 3D representation of the curvilinear system is shown in Figure 2.3. It can be 

seen that the surface u=constant forms an inverted prolate spheroid of revolution, 
while the surface v=constant forms an inverted double sheet hyperboloid of revo-
lution and the surface w=constant forms a plane.  

Figure 2.4 presents a 2-D cut of the IPS coordinate system, obtained at w=0. 
The figure suggests that the distance between the curves belonging to the u-set is 
minimum at the axis of symmetry, and maximum at the horizontal axis.  

We propose to form the electrodes of the SWO taking a pair of surfaces be-
longing to the bottom half of the u-set, defined between v=0, v=π/2. The coaxial 
line section can be connected at the extremities of the curves (which corresponds 
to the horizontal plane z=0).  

By doing so, the isopotential lines will be conformal to the u-set, and the elec-
tric field lines will be conformal to the v-lines. Notice that the direction of the 
electric field will be smoothly changed from its vertical (z) direction on the axis of 
symmetry to a radial direction at plane z=0, coinciding with the electric field dis-
tribution within the coaxial line. 

The surface of the outer and inner electrodes, connected to the outer and inner 
conductors of the coaxial, are defined by the constants u2 and u1 respectively. 
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The internal and external surfaces, called here surfaces u1 and u2 respectively, 
are defined by the following parametric expression: 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

1 2
2 2 2 2

1 2

1 21 2
2 2 2 2

1 21 2

1 2

1
2 2

1

sinh sin cos sinh sin cos

cosh sin cosh sin

sinh sin sin sinh sin sin

cosh sin cosh sin

cosh cos

cosh sin

u v w u v w
a a

u v u v

x xu v w u v w
a a

u v u vy y

z z

u v
a

u v

 
 − − 
 
 

    
    − −= =    
       

 
 
 −
  
 

( ) ( )
( ) ( )

2
2 2

2

cosh cos

cosh sin

u v
a

u v

 
 
 
 
 
 
 
 
 
 
 
 −
  
 

 (2.13) 

where: 

3

2 2
0 2

v

w

π π

π

≤ ≤

≤ ≤  

The constants u1, u2 and the scaling parameter a are calculated taking into ac-
count the conditions iv and v defined in Section 2.3.  

Condition iv specifies that at the axis of symmetry (v=0) the absolute distance 
between the curves must correspond to the gap distance (dgap).  

At the axis of symmetry v=0, we have:  

 

( ) ( )

1 2

1 2

1 2

1 2

0 0

0 0

cosh cosh

x x

y y

z a z a

u u

   
               = =         
      
   
   

 (2.14) 

Therefore: 

 
( ) ( )2 1cosh coshgap

a a
d

u u
= −  (2.15) 

Condition v specifies that at the horizontal plane (v= π/2), the radial distance 
between the curves u1, u2 and the axis of symmetry must be equal to the coaxial 
line inner and outer radii ri, ro, respectively. 
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( ) ( )1 21 2

1 2

1 2

sinh sinh

0 0

0 0

a a

u ux x

y y

z z

   
   

            = =               
   
   

 (2.16) 

Therefore: 

 ( )1 1 cscix r a h u= =  (2.17) 

 ( )2 2 cscox r a h u= =  (2.18) 

Equation (2.15) can be rearranged as: 

 
cosh csc cosh csc

gap
o i

a a
d

r r
arc h arc h

a a

= −
      

      
      

 (2.19) 

leading to: 

 
2 2

2 21 1
gap

o i

a a
d

a a

r r

− =
+ +

 (2.20) 

The constant a, obtained from this equation can be replaced in equations (2.17), 
(2.18) and the values u1, u2 can be calculated. 

We present as an example the design of the electrodes of an SWO. This geome-
try will also be used in the following chapters. The experimental part of the pre-
sent work, presented in Chapter 5 is based on this design.   

The inter-electrodic space of the SWO is dgap=0.5 mm and the dimensions of 
the coaxial transmission line are ro =16.5 mm and ri=17.5 mm, which correspond 
to an impedance of the coaxial line Zcoax=3.5 Ω. 

The constants defining the profiles are: 

 1 21.10507 1.05837, 22.1783, 3a eu u == −=  

The resulting geometry is shown in Figure 2.5. 
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Figure 2.5 Profile of the electrodes proposed as example 

2.6. DIFFERENTIAL OPERATORS IN CURVILINEAR 
COORDINATES 

The solution of the Laplace equation in the IPS system will be derived in order 
to obtain the potential distribution between the electrodes, from which the electric 
field will be determined. It is therefore necessary to introduce the differential op-
erators in arbitrary curvilinear coordinates. We borrow here the notation and pro-
cedure used by Moon and Spencer in [1]. Similar approaches, with different nota-
tions, can be found in [9]. 

2.6.1. ORTHOGONAL COORDINATE SYSTEM 
A set of orthogonal curvilinear coordinates (u, v, w), can be defined based on 

the Cartesian coordinate system by the relationship: 

 
1

2

3

( , , )

( , , )

( , , )

x f u v w

y f u v w

z f u v w

=
=
=

 (2.21) 

The metric coefficients (gii) of the coordinate system are defined by: 

 

2 2 2

11

2 2 2

22

2 2 2

33

x y z
g

u u u

x y z
g

v v v

x y z
g

w w w

∂ ∂ ∂     = + +     ∂ ∂ ∂     

∂ ∂ ∂     = + +     ∂ ∂ ∂     

∂ ∂ ∂     = + +     ∂ ∂ ∂     

 (2.22) 

In a rotational coordinate system the metric coefficients are of the form [8]: 
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11 1 2 22 1 2

33 33 1 2

( , ) ( , )

( , )

g u u g u u

g g u u

=

=
 (2.23) 

2.6.2. CONSTANT-COORDINATE CURVES  
Curves of constant coordinates are formed when two of the three components 

of the coordinate space are held constant and the third component is considered as 
a variable parameter. In this work, we call these curves Cu , Cv , Cw  as follows: 

 
1 1 2

1 2 2 1 2

3 1 2

( , , )

( , , ) ( , , )

( , , )
u

x f u k k

C u k k y f u k k

z f u k k

=
= =
 =

 (2.24) 

 
1 1 2

1 2 2 1 2

3 1 2

( , , )

( , , ) ( , , )

( , , )
v

x f k v k

C k v k y f k v k

z f k v k

=
= =
 =

 (2.25)  

 
1 1 2

1 2 2 1 2

3 1 2

( , , )

( , , ) ( , , )

( , , )
w

x f k k w

C k k w y f k k w

z f k k w

=
= =
 =

 (2.26) 

Notice that if the system has rotational symmetry, the curve Cw corresponds to 
a circle. 

2.6.3. DISTANCE ALONG CONSTANT-COORDINATE CURVES 
The infinitesimal length element (dl) of a curve can be expressed as: 

 2 2 2
11 22 33dl g du g dv g dw= + +  (2.27) 

The infinitesimal lengths of constant-coordinate curves (Cu , Cv , Cw) are, respec-
tively: 

 

11

22

33

u

v

w

dl g du

dl g dv

dl g dw

=

=

=

 (2.28) 

Consequently, the distance between two points (p1, p2) along Cu , Cv , or Cw  can 
be calculated as: 
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 2

1
1 2 11[ , ]

u

u u
R u u g du=   (2.29) 

 2

1
1 2 22[ , ]

v

v v
R v v g dv=   (2.30) 

 2

1
1 2 33[ , ]

w

v w
R w w g dw=   (2.31) 

In a rotational coordinate system the distance between two points w1, w2 is:  

 1 2 33 2 1[ , ] ( )vR w w g w w= −  (2.32) 

where w1, w2 are in radians.  

2.6.4.  DIFFERENTIAL OPERATORS 
In curvilinear coordinate system the gradient operator is defined as: 

 
11 22 33

1 1 1
( , , ) ( , , ) ( , , ) ( , , )V u v w V u v w u V u v w v V u v w w

u v wg g g

∂ ∂ ∂∇ = + +
∂ ∂ ∂

    (2.33) 

The Laplacian operator is defined as: 

2 22 33 11 33 11 22

11 22 3311 22 33

1 ( , , ) ( , , ) ( , , )
( , , )

g g g g g gV u v w V u v w V u v w
V u v w

u g u v g w w g wg g g

      ∂ ∂ ∂ ∂ ∂ ∂∇ = + +            ∂ ∂ ∂ ∂ ∂ ∂        (2.34) 

The CURL operator is defined as: 

 

22 33 11 33 11 22

11 22 33( , , ) ( , , ) ( , , )u V w

u v w

g g g g g g

E w
u v

g E u v w g E u v w g E u v w

 
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 (2.35) 

Divergence and vector Laplacian operators are not used in this particular ex-
ample and are not presented here.  

2.7. SOLUTION OF LAPLACE EQUATION 
As we explained in the introduction, one of the reasons for choosing the ISP 

system is that the Laplace equation is r-separable, as will be shown in the follow-
ing development. 
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Let us start from the Laplace equation, 

 2 ( , , ) 0V u v w∇ =  (2.36) 

This equation is said to be R-Separable if the assumption of a potential function 
of the form:  

 
( ) ( ) ( )

( , , )
( , , )

H u v w
V u v w

R u v w

Θ Ψ=  (2.37) 

leads to separate equation (2.36) into three ordinary differential equations  [1].  
If the function R(u, v, w), is a constant, the equation is called simple separable, 

see [1]. 
The metric coefficients for the ISP system can be obtained by replacing equa-

tions (2.11) into Equation (2.22): 
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 (2.39) 

Notice that the metric coefficients in this space are independent from the angu-
lar variable (w). 

The Laplace equation on this system can be obtained by replacing equations 
(2.38) and (2.39) into Equation (2.34): 
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 (2.40) 

where: 
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and V(u, v, w) is the potential function. 
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As the boundary conditions are imposed on the surface of the electrodes 
(u=constant) and the problem has rotational symmetry, the potential V is inde-
pendent from the functions Θ(v) and Ψ(w). This simplifies Equation (2.37) into: 

 ( , ) ( )V u v H u= Ω  (2.42) 

The differential equation resulting when replacing Equation (2.42) into Equa-
tion (2.40)  is: 

 ( )
2

2

( ) ( )
cosh 0

H u H u
v

u u

∂ ∂+ =
∂ ∂

 (2.43) 

The solution of which is of the form [1]: 
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2

u
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 (2.44) 

where A and B are terms independent from u and can be calculated using the 
boundary conditions of the problem, which are applied on the surface of the elec-
trodes: 
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The obtained expressions for A and B are: 

 

( ) ( )

1

1
2

2 2
2

1

ln coth
2

coth
2ln cosh sin

coth
2

u

A V
u

u v
u

  
  
  =

  
  
   −
  
    

 (2.46) 
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 (2.47) 

From this, the function for the potential can be fully specified: 
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where the constants k1,k2,k3 are: 
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 (2.49) 

2.8. ELECTROSTATIC FIELD CALCULATION 
The electrostatic field E(u, v, w) can be calculated from the potential V(u, v, w): 

 ( , , ) ( , , )E u v w V u v w= −∇  (2.50) 

 Applying the equation for the gradient in the ISP coordinate system de-
fined by Equation (2.33) to Equation (2.48) leads to: 
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The component in direction w vanishes, the other two components in directions 
u and v read as:  

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

1
2

1 1

coth / 2
ln sinh 2 2cosh coth 2csc sin

coth / 2
( , , )

cosh 2 cos 2 cos 2 cosh 2
u

u
V u u u h u v

u
E u v w

ak u v v u

  
Ω − +     =

− +
 (2.52) 

( ) ( ) ( ) ( ) ( )( ) ( )
( )

( ) ( ) ( ) ( )( )

1 1
2

3/2

1 1

coth / 2
sin 2 cos 2 cosh 2 cosh 2 cosh 2 ln

coth / 2
( , , )

2 cosh 2 cos 2 cos 2 cosh 2
v

u
V v v u u u

u
E u v w

ak u v v u

  
+ −      =

− +
  (2.53) 

The analytical expressions for the electric field and the potential, obtained 
through equations (2.48), (2.52) and (2.53) can be applied to the profiles calculat-
ed in Section 2.5, and presented in Figure 2.5.  

Figure 2.6 shows the electrostatic field distribution in u direction, for an applied 
voltage V1=1V. The field was calculated along the surface of the electrodes (u=u2, 
u=u1) and the along a constant surface u3=0.5(u2+u1), which corresponds to the 
midplane between the electrodes.  
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The Figure includes two horizontal axes: the distance along the electrodes and 
the parameter v divided by π. Notice the enhancement of the field at v=0, and the 
monotonous decreasing as v increases.  

 

 
Figure 2.6. Electrostatic field distribution (in V/m) along the internal (red curve) and external 
(blue curve) electrodes. The black curve shows the electric field along the mid plane between the 
electrodes. The bottom axis is the distance along the curves, the bottom axis is the v parameter 
normalized to π 

 
Figure 2.7 shows a contour plot of the electrostatic field distribution in u direc-

tion, as a function of the parametric coordinates (u, v). This graph covers the re-
gion u1<u<u1, 0<v<π, therefore it summarizes the electrostatic field distribution in 
the interlectrodic space. The figure shows that, as expected, the electric field in-
tensification occurs when u tends to u1, and v=0. 

A similar graph for the field in v direction (Ev(u,v)) is presented in Figure 2.8. 
It can be seen that the minimum amplitude of Eu is more than 2000 times bigger 
than the maximum absolute amplitude of Ev. Due to this, it can be said that the in-
fluence of the Ev can be considered as negligible.  

Figure 2.9 presents the electric field distribution within the interelectrodic 
space drawn in the x-z plane. Notice that the E-field is maximum on the axis of 
symmetry. The potential distribution on the (u,v) plane can be seen in Figure 2.10.  
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Figure 2.7 Contour plot of the electrostatic field distribution in direction u (Eu) vs. the parametric 
coordinates (u,v) 

 

 
Figure 2.8 Contour plot of the electrostatic field distribution in direction v (Ev) vs. the parametric 
coordinates (u,v) 
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Figure 2.9 Electrostatic field distribution in direction u (Eu) in the (x,z) plane. 

 

 
Figure 2.10 Potential distribution vs., parametric coordinates (u,v)  
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As a summary of the presented analysis, it can be said that the proposed IPS 
profile fulfills all the five conditions enunciated in Section 2.3; The most im-
portant being that the electric field amplitude maximizes at the axis of symmetry 
and decreases monotonically in the v direction.  

2.9. ELECTROSTATIC SIMULATION 
A simulation of the calculated profiles, attached to a coaxial transmission line 

was performed using the 2-D axis symmetrical electrostatic module in Comsol®. 
A potential difference of 1V was applied between the electrodes and the resulting 
electrostatic field distribution was computed. The boundary conditions of the ge-
ometry are presented in Figure 2.11. 

 
Figure 2.11 Geometry and boundary conditions of the electrostatic simulation. 

 
The resulting electrostatic field distribution is presented in Figure 2.12.  This 

result coincides with the analytical plot, presented in Figure 2.9. No field distor-
tion is observable at the interface between the coaxial and the electrodes. The iso-
potential lines are plotted in Figure 2.13 
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Figure 2.12 Electrostatic field amplitude in the interelectrodic space. The scale is in V/m. notice 
that the maximum amplitude occurs at the axis of symmetry 

 

 
Figure 2.13 Electric potential distribution, in Volts. Notice how the isopotential lines adapt 
smoothly to the coaxial section.  

 
The isopotential lines (without color scale) and the electric field stream lines 

are presented in Figure 2.14. As expected, the electric field stream lines are con-
formal to the v-set and the isopotential lines are conformal to the u-set. It can be 
seen that the stream lines are parallel to the z axis at the axis of symmetry, and 
parallel to the x axis at the connection point between the coaxial and the RTL. 
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Figure 2.14 Electric field stream lines (blue) and isopotential lines (red). Notice that the direction 
of the stream lines progressively changes and become radial at the beginning of the coaxial 
transmission line. The opposite change occurs for the isopotential line, which become progres-
sively adopt the direction z. 
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Figure 2.15  Constant u=u3 and v trajectories (A). Simulated and analytical electric field ampli-
tude along lines geodesic distance calculated along v=constant. The zero in the horizontal axis 
corresponds to the internal electrode (B). Simulated and analytical quantities are in excellent 
agreement.  
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Figure 2.16 Simulated and analytical electric field along a constant u line u3=0.5(u1+u2) vs the 
parameter v. Notice the monotonic decrease of the electric field. Both quantities are in excellent 
agreement.  

 
Figure 2.15 (A) shows different lines v=constant, u=constant, along the devel-

oped analytical equations for the electric field are compared to numerical simula-
tions. The results on the v-lines are shown in Figure 2.15 (B). It can be seen that 
the analytical solutions are in excellent agreement with numerical simulations.  

Figure 2.16 presents the theoretical and simulated electrostatic field amplitude 
along the midplane between the electrodes (the surface u3=0.5(u1+u2)), see Figure 
2.15 (A) for details. Both results are in excellent agreement.  

2.10. LIMITATIONS OF THE THEORETICAL MODEL 
The junction between the electrodes and the coaxial line is one of the critical 

points of the design. At the junction, the directions of the electric field between the 
electrodes and inside the coaxial are coincident, as shown in Figure 2.4. However, 
as we will see later in this section, simulation results show that a slight difference 
in the amplitude of the electric field exists at this point. A discussion on this point 
is presented here.  

On the x-z plane, the junction is located on the line defined between the points: 
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According to Equation (2.52), the electric field on the surface of the electrodes 
is: 
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The fields on the internal and external conductors of the surface of the coaxial 
line are: 
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Replacing Equations (2.17) and (2.18) into Equations (2.58) and (2.59) leads 
to: 
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 (2.60) 

 

( ) ( )
( )

1
o,Coax

2
2

1

-V
E =

csch u
csch u ln a

csch u

 
  
 

 (2.61) 

The difference between the fields at the electrodes and at the coaxial line can 
be estimated applying an error estimation figure, such as the percent error, to 
equations (2.60) , (2.56) and Equations  (2.61), (2.57).  

The percent error of the field on the inner and outer conductors is given, re-
spectively, by: 
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As analytical evaluation of these expressions is demanding, we’ll present a 
numerical evaluation of the error, as a function of u1, u2. Notice that a, the scale 
factor, doesn’t intervene in the equations for the percent error. 

Contour plots of Equations (2.62) and (2.63) are presented in Figure 2.17 and 
Figure 2.18, respectively.  

 
Figure 2.17 percent error of the field on the inner conductor 

 
Figure 2.18 percent error of the field on the outer conductor 

 
From the graphs, it can be concluded that the difference of the fields at the 

junction depends on the difference between u2 and u1. 
Question arises on the range of geometries that can be generated without ex-

ceeding a certain threshold; let’s say a maximum percent error of 5%.  We can ad-
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dress this question by evaluating the range of impedances that can be connected to 
the electrodes with a low percent error.  

Replacing Equations (2.17) and (2.18) into the equation for the impedance of 
the coaxial leads to: 

 ( )
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20
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i 1
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Z =60ln =60ln

r csch u
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 (2.64) 

A graph of the percent error as a function of the impedance is presented in Fig-
ure 2.19. From this figure it can be concluded that good continuity between the 
coaxial transmission line and the corresponding IPS electrodes can be achieved for 
low values of the impedance of the coaxial line. In particular, it can be noticed that 
for impedances of 5 Ω or lower, the error is less than 6%.  

 

 
Figure 2.19 Percent error on the inner and outer conductor as a function of the impedance of the 
coaxial line. Notice that for low-value impedances the percent error is small. 

 
We will illustrate this with two examples. The first one is the set of electrodes 

shown in Figure 2.20, which have the following characteristics: 
 

• Zo=4.1 Ω, dgap =0.5 mm,  ri=14 mm, ro =15 mm. 

The constants defining the profiles are: 
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Figure 2.20 Example of IPS electrodes. The coaxial line has Zo=4.1, Ω, ri=14 mm, ro=15 mm. 

The gap distance is dgap=0.5 mm 

 
Figure 2.21 shows the electric field at the mid plane between the electrodes and 

the surface electric field, along the electrodes. The results were obtained by simu-
lation in Comsol ®.  

 

 
Figure 2.21 Electric field on the inner conductor (blue), outer conductor (red) and middle plane 
(black) of two IPS electrodes connected to a coaxial with Zo=4.1 Ω. The gap distance is 0.5 mm. 
The dimensions of the coaxial line are ri=14 mm ro =15 mm. The small bump on the electric field 
at the connecting point of the coaxial doesn’t represent an additional risk of disruption, as no lo-
cal enhancements of the fields are present. 

 
As comparison, we can refer to the IPS electrodes shown in Figure 2.22, hav-

ing: 
• Zo=10.9 Ω, dgap =0.5 mm,  ri=12.5 mm, ro =15 mm. 
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Figure 2.22 Example of IPS electrodes. The coaxial line has Zo=10.9 Ω, ri=12.5 mm, ro=15 mm. 
The gap distance is dgap=0.5 mm 

 
The electric field computed by simulation is shown in Figure 2.23. As ex-

pected, the percent error for this case is larger than in the previous case. On the 
same graph it can be observed that the electric field is higher on the outer elec-
trode, this is due to the fact that this surface has a higher radius of curvature near 
the axis of symmetry compared to the inner electrode. 

 

 
Figure 2.23 Electric field on the inner conductor (blue), outer conductor (red) and middle plane 
(black) of two IPS electrodes connected to a coaxial with Zo=10.9 Ω. The gap distance is 0.5 
mm. The dimensions of the coaxial line are ri=12.5 mm ro =15 mm. Notice the deformation of 
the electric field at the connecting point of the coaxial. It can be seen that, near the axis of sym-
metry, the magnitude of the electric field is higher on the outer conductor; this is due to a higher 
degree curvature of the u2 profile on this region. 

 
According to these results, the analytical expressions for the IPS should be used 

only in SWOs having low-impedance coaxial lines. However, this is not a major 
limitation on the applicability of the model, because most of the SWOs reported in 
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the literature are of this kind, having impedances in the order of 5 Ω [5, 6, 10, 11]. 
Low impedance lines have bigger capacitance and can store more electrostatic en-
ergy. On the other hand, the lower the impedance of the line the bigger the mis-
match with the antenna and therefore the higher the Q factor of the produced sig-
nal. 

2.11. CONCLUSIONS  
A new profile for the electrodes forming the radial transmission line (RTL) of a 

switched oscillator (SWO) was presented. The profile was formed using a curvi-
linear space called Inverse Prolate Spheroidal (IPS) coordinate system. We have 
derived design equations for producing the electrodes starting from the basic geo-
metric requirements of spark gap distance and radii of the coaxial transmission 
line. 

The IPS profile results in an optimal distribution of the electric field, with a 
peak amplitude occurring at the axis of symmetry of the SWO, and a smooth, 
monotonic decrease as one moves away from the discharge point towards the co-
axial transmission line.  

The Laplace equation was solved on this curvilinear space and analytical ex-
pressions for the electrostatic field and potential were obtained.  

An illustrated example was proposed, for which electrostatic numerical simula-
tions were performed. The resulting distributions of the electric field and potential 
were presented and discussed.  

It was shown that the derived analytical expressions are in very good agree-
ment with numerical simulations, especially for SWOs having a low impedance 
coaxial line. 
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3.1. INTRODUCTION 

Consider the geometry of the coaxial SWO proposed in Figure 3.1, consisting 
of a self-breaking spark gap followed by a low-impedance coaxial transmission 
line, a DC-blocking capacitor, and a frequency dependent antenna (in this case a 
monopole). Notice that the electrodes forming the spark gap at the bottom-end of 
the SWO configure a curved transmission line, whose model corresponds to a ra-
dial transmission line (RTL) [1].  

An equivalent circuit diagram associated to the system under study is presented 
in Figure 3.2. The circuit comprises an equivalent voltage source associated with 
the spark gap, connected to three cascaded transmission lines: (i) the non-uniform 
RTL line, (ii) the coaxial line, and (iii) a secondary transmission coaxial line that 
can represent the elements installed at the end of the SWO due to mechanical rea-
sons (for instance, dielectric supports, dielectric rings, pressure sealing, etc.). 

 

 
Figure 3.1 A monopole antenna integrated into a SWO 

 
 

 
Figure 3.2 Transmission line system representing the SWO. V1 is the voltage produced by break-
down of the spark gap. V2 is the voltage at the terminals of the antenna. Adapting coax denotes 
the adapting transmission line that might be installed at the end of the main coaxial. 
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In Chapter 4, we will introduce the calculation of the frequency-domain trans-
fer function between the voltage at the spark gap and the voltage at the terminals 
of the antenna. To do this, it is required to characterize each one of the elements 
appearing in Figure 3.2. More precisely, it is necessary to know the characteristic 
impedance of each element. 

For the case of the present work, the RTL is formed by the IPS electrodes de-
veloped in Chapter 2. Therefore, we will study the behavior of the fields corre-
sponding to this system. Starting from the electrostatic results for the IPS elec-
trodes, analytical expressions for the electric and magnetic fields in the frequency 
domain will be derived. Afterwards, an expression for the characteristic imped-
ance of this section will be obtained. This procedure follows the classical method-
ology described by Collin in Section 3.2 of [2].  

 
3.2. REVIEW OF THE IPS COORDINATE SYSTEM 

In Chapter 2, we presented a set of electrodes based on the Inverse Prolate 
Spheroidal coordinate system (IPS), proposed by Moon and Spencer in [3].  

We chose this coordinate system because its spheroidal surfaces satisfy the de-
sign criteria for the electrostatic distribution.  

On the other hand, the Laplace Equation is R-Separable in this coordinate sys-
tem. This implies that an analytical expression for the electrostatic potential can be 
found.  

For the sake of clarity and self-consistency of this chapter, we present a brief 
description of the concepts and results concerning the IPS electrodes. More details 
can be found in Chapter 2. 

The surface of IPS electrodes are defined in a three dimensional coordinate sys-
tem (u,v,w), where the following transformation with the Cartesian coordinates ex-
ists: 

 

( ) ( ) ( )
( ) ( )2 2

sinh u sin v cos w
x a

cosh u sin v
=

−
 (3.1) 

 ( ) ( ) ( )
( ) ( )2 2

sinh u sin v sin w
y a

cosh u sin v
=

−
 (3.2) 

 ( ) ( )
( ) ( )2 2

cosh u cos v
z a

cosh u sin v
=

−
 (3.3) 

where a>0 is a constant, and  

 0 0 0 2u v wπ π≤ < +∞ ≤ ≤ ≤ ≤  (3.4) 

In this system, the surfaces u=constant (called here the u-set) form inverted 
prolate spheroids of revolution, the surfaces v=constant (called here the v-set) 
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form inverted double sheet hyperboloids of revolution, and the surfaces 
w=constant form planes. Figure 3.3 shows a 2D cut of the IPS coordinates at w=0, 
corresponding to the Cartesian x-z plane. 

 
Figure 3.3 2D cut of the IPS coordinates at w=0. The u-set is colored in blue, the v-set is colored 
in red. In this example, the adopted value for the constant a is 1. The electrodes can be formed by 
rotating two curves belonging to bottom half of the u-set around the z axis. 

 
The profile of the inner and outer electrodes are formed respectively by the sur-

faces S1=(u1,v,w) and S2=(u2,v,w), where π/2<v< 3π/2. The constants u1, u2 and a 
are calculated from the 3x3 set of equations:  

 
( ) ( )2 1

gap

a a
d

cosh u cosh u
= −  (3.5) 

 ( )1ir a csch u= ×  (3.6) 

 ( )2or a csch u= ×  (3.7) 

where: ri, ro are the inner and outer radii of the coaxial line and dgap is the distance 
between the surfaces at the axis of symmetry, the point at which the discharge is 
supposed to occur.  

3.3. IMPEDANCE OF THE RTL AT THE COAXIAL END  
Due to various reasons such as the amount of electrostatic energy that can be 

stored in the SWO and the quality factor Q of the voltage at the antenna’s input, 
SWOs use low-impedance coaxial lines, with typical values in the order of 4 to 7 
Ohms [1, 4-7]. In the present work, we could define a round limit of 10 Ohms as 
the maximum impedance of a coaxial line to be connected to an SWO. The range 
of values u1, u2 defining this low-impedance zone can be found as follows: 

If the material at the interelectrodic space has permittivity a εr=1, the imped-
ance of the coaxial line is: 

-3 -2 -1 0 1 2 3
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 60 ( )o
coax

i

r
Z Log

r

 
= Ω 

 
 (3.8) 

Replacing equations (3.6) and (3.7) into (8) yields 

 ( )
( )

2

1

60 ( )coax

csch u
Z log

csch u

 
= Ω  

 
 (3.9) 

Setting the maximum value of the coaxial impedance to 10 Ω, we can say that 
the zone of low-impedance is defined by the range of values u1, u2 satisfying: 

 ( )
( )

2

1

60 10
csch u

log
csch u

 
<  

 
 (3.10) 

Figure 3.4 shows a parametric graph of the impedance of the RTL at the coaxi-
al end as a function of the parameters u1, u2. The diagonal of the graphs corre-
spond to zero impedance (u1=u2). As u1>u2, we only consider the part of the graph 
below the diagonal. The other half of the graph is colored in purple, indicating that 
the function is not defined. 

 

 
Figure 3.4 Impedance of the RTL at the coaxial end. Notice that the low impedance region is 
near the diagonal of the graph 
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The contour line representing the limit of 10 Ohms is in the vicinity of the di-

agonal; therefore we can say that, if a low impedance is desired at the coaxial end 
of the RTL, then we should have u1 ~ u2.  

The precise values of the pair u1, u2 will depend on the value dgap according to 
Equation (3.5). 

3.4. ELECTRIC FIELD DISTRIBUTION  
The discharge produced on the axis of symmetry of the RTL creates a wave 

that starts propagating in the v direction, towards the coaxial line. 
If time-harmonic propagation in the v direction is assumed, the electric field be-

tween the plates can be found as: 

 ( ) ( )( , ) ( , ) jkR vE u v u v e−= − ∇Φ  (3.11) 

where:  
-  k is the wave number, 
-  R(v), the geodesic distance,  is the length of a path of constant v, measured 

from the axis of symmetry (v=0) to the point v. R(v)  is calculated using the 
metric coefficients presented in Chapter 2: 

 ( ) ( )
( ) ( )

2 2

22 2 2
0 0

( )
v v sinh u sin v

R v g dv a dv
cosh u sin v

+
= =

−   (3.12) 

-  Φ(u, v) is the potential function, corresponding to the solution of the Laplace 
equation found in Chapter 2 (in [2] this function is called the quasipotential). 
As discussed in Chapter 2, Φ(u, v)  is of the form [3]: 

 ( ) ( )
( )

2 2

2
1

3 2
1 2

( , )
2

cosh u sin v

k k sin v

V u
u v log k coth

  Φ =   
−

−  
 (3.13) 

where the constants k1, k2 and k3 are function of u1, u2, the boundary conditions of 
the problem. V1 is the peak voltage applied at the surface u1. The surface u2 is 
grounded. 

 ( )
1

1 2 1 3
2 2

12

2 2

u
coth

k log k cosh u k
u u

coth coth

  
  
  = = =
    
        

 (3.14) 

Notice that, due to symmetry, E and Φ are independent from w. 
By applying the gradient in the IPS system, it can be found that the electric 

field has one component in the u direction, transversal to the direction of propaga-
tion, and another one in the v direction, longitudinal to the direction of propaga-
tion: 
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 ( ) ( )

11

1 ( , )
, jkR v

u

u v
E u v e

ug
−

 ∂Φ= −  ∂ 

 (3.15) 

 ( ) ( )

22

1 ( , )
, jkR v

v

u v
E u v e

vg
−

 ∂Φ= −  ∂ 

 (3.16) 

Inserting the expression for the potential function (3.13) into equations (3.15)
and (3.16), we obtain the analytical expressions for the transverse and longitudinal 
components of the electric fields: 

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( )

2

21

1 1

( )

( , , )

/ 2
2 2 2

/ 2

2 2 2

2 2

2 2

u

jkR v

E u v w

coth u
log sinh u cosh u coth u csch u sin v

coth uV

a k cosh u cos vcosh u cos v

cosh u cos v
e−

=

  
− +      =

+−

+

 (3.17) 
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=

  −  +
=      ++−   

 (3.18) 

Equations (3.17) and (3.18) imply, strictu sensu, that the wave propagating 
within the RTL is not a pure TEM. However, we can demonstrate that, in practice, 
the transverse component of the electric field is several orders of magnitude higher 
than the longitudinal component. Indeed, the ratio between the longitudinal and 
the transverse components of the electric field (RT) is: 

 

( ) ( )
( )
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( ) ( )
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( ) ( ) ( ) ( ) ( ) ( )

1

2 1

2
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2 2 2 2
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coth u cos v cosh u
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log sinh u cosh u coth u csch u sin v

coth u
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    −
      +    =

 
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 (3.19) 

This ratio maximizes when v=π/4: 
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coth u cosh uE u
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  
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  = =
 

−  
 

 (3.20) 

At the boundaries u1, u2, RT is zero, therefore it’s more relevant to evaluate this 
quantity at the coordinate u=u3=0.5*(u1+u2), corresponding to the mid plane be-
tween the surfaces: 
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 Figure 3.5 shows a contour plot of the absolute value of RT at the point (u=u3, 
v=π/4), as a function of u1 and u2. These graphs show that for values of u1 and u2 in 
the low-impedance zone (see Figure 3.4), the longitudinal component is more than 
2000 times smaller than the transversal component. 

 On the other hand, notice that: 

 ( ,0) ( , / 2) 0v vE u E u π= =  (3.22) 

This means that on the axis of symmetry (v=0) and at the beginning of the co-
axial transmission line (v=π/2), the longitudinal component of the electric field 
vanishes. The consequence of this is that, even though a longitudinal component 
exists at the RTL, it will vanish at the input of the coaxial transmission line, which 
will be excited with a pure TEM wave. 

3.5. ONE-DIMENSIONAL SIMPLIFICATION  
In this Section, we derive a simplified and more manageable version for the 

equations for the electric field.  
The complexity of the equations originates mainly from the impossibility to 

find a one-dimensional solution for the potential function Φ, as the Laplace equa-
tion is not simple separable in the IPS system. 

 ( ) ( )
( ) ( )

2 2
1

3 2 2
1 1

( , )
2

cosh u sin v

k cosh u sin

V u
u v log k cot

v
h

  Φ =   
 

−
−

 (3.23) 

However, taking a closer look to the v dependent factor in Equation (3.23), it 
can be concluded that, if u~ u2, the following approximation applies: 

 
( ) ( )
( ) ( )

( )
( )

2 2

2 2
2 2

cosh u sin v cosh u

cosh u sin v cosh u

−
≈

−
 (3.24) 

And the potential could be rewritten as a one-dimensional function: 

 ( ) ( )1
3

1 2 2

V c u
u og k c

osh u
l

k k
oth

  Φ =   
  

 (3.25) 

Using this approximation, the electric field can be calculated as: 
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 (3.27) 

 

 
Figure 3.5 Ratio between the longitudinal and the transversal components of the electric field per 
1000.  Notice that in the zone of interest (low-impedance zone) the transverse component is 
about 2000 times bigger than the longitudinal component. 

 
The maximum percent error between the complete and the approximated poten-

tial functions described by Equations (3.23) and (3.25) respectively, can be calcu-
lated by: 
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−

Φ
 (3.28) 

notice that err maximizes when v=π/2: 
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Figure 3.6 shows a contour plot of the maximum percent error as a function of 
u1 and u2, calculated using Equation (3.29). Notice that the 5% zone error stretches 
out as u1 and u2 decrease. However, the 5% zone covers the low-impedance zone 
of interest of our study. A similar graph can be obtained if the error between the 
exact (3.17) and approximated expressions (3.27) for the electric field is comput-
ed. 

We can conclude that, in an IPS-RTL with a low-impedance at the coaxial end, 
the longitudinal component of the electric field can be neglected. Furthermore, the 
potential function can be simplified, providing a more compact expression for the 
transverse component of the electric field. The percent error produced by the pro-
posed approximation is less than 5%. 

3.6. MAGNETIC FIELD DISTRIBUTION  
The magnetic field can be derived from the curl of the electric field. We con-

sider the expression for the transverse electric field obtained from the one-
dimensional approximation: 
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where Eu(u,v) is given by Equation (3.26) 
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 (3.31) 
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Figure 3.6 Contour Plot of the percent error between approximation and the full model of the po-
tential function, as function of u1 and u2. Notice that the 5% zone error stretches as u1 and u2 de-
creases. 

 
The metric coefficient g11 and g22 being equal, we obtain 
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Taking the derivative of the exponential term leads to: 

 ( )

22

1 ( ) ( )
( , ) jkR v

w

k u R v
H u v e

g u vωμ
−∂Φ ∂=

∂ ∂
 (3.33) 

The factor R(v) given by Equation (3.12) is the distance traveled by the wave 
from the symmetry axis: 
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Replacing Equation (3.26) into (3.35) yields 

 ( , ) ( , )w uH u v E u v
ε
μ

=  (3.36) 

This equation corresponds to the typical relationship between the electric and 
magnetic fields in TEM lines. If the interelectrodic space has εr =μr =1, the ex-
pression for the magnetic field is given by: 
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3.7. CHARACTERISTIC IMPEDANCE 
The characteristic impedance of the RTL can be calculated as the ratio between 

the incident voltage and current waves on the line: 

 
0

( , )
( , )

( , )
i

i

V u w
Z u v

I v w
=  (3.38) 

The voltage can be obtained as the line integral of the electric field between the 
electrodes. The path of integration can be defined along a curve of constant v: 
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While the current wave is obtained by integrating the magnetic field around the 
inner conductor: 
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 Taking into account the magnetic field defined by Equation (3.35), the expres-
sion for the characteristic impedance reads:  
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Notice that the radial distance R, measured from the axis of symmetry to the 
point (x, y, z) is related to square root of the metric coefficient g33: 
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Replacing this expression into Equation (3.44) permits to see the radial de-
pendence of the impedance of the transmission line: 
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Finally, the analytical expression for the characteristic impedance of the RTL 
can be written as: 
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Notice that this expression is independent from the scale factor a.  

3.8. EXAMPLE 
The derived analytical result is applied to the same example discussed in Chap-

ter 2, for which a set of IPS electrodes was calculated. The inter electrodic space is 
dgap=0.5 mm and the dimensions of the coaxial transmission line are ro =16.5 mm 
and ri=17.5 mm, which correspond to a characteristic impedance for the coaxial 
line of Zcoax=3.5 Ω. 

The constants defining the profiles are: 
 

1 21.10507 1.05837, 22.1783, 3a eu u == −=  

The characteristic impedance, calculated along the trajectory u=u3 is shown in 
Figure 3.7. Note that Z0 tends smoothly to the characteristic impedance of the co-
axial line. 
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Figure 3.7 Characteristic impedance of the IPS-RTL example vs. geodesic distance (R(v)) 

3.9. CONCLUSIONS  
In this chapter, we derived analytical expressions for the harmonic electric and 

magnetic fields within the IPS-RTL of the SWO.  
A one-dimensional approximation for the potential and the fields was derived.  

This approximation was shown to be accurate for typical SWOs for which the 
characteristic impedance of the coaxial line is very low (lower than 5 Ohms or so).  

The one-dimensional approximation permits the treatment of the IPS-RTL as a 
TEM transmission line, whose characteristic impedance was obtained in a closed-
form analytical expression.  
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4.1. INTRODUCTION  

We investigate in this chapter the behavior of a switched oscillator (SWO) 
connected to an antenna with arbitrary frequency dependent response. The analy-
sis is performed using an approach based on the chain-parameter technique [1]1, 
proposed by the author in [2].   

The SWO is regarded as a frequency dependent two-port network, where the 
input signal is the transient voltage generated at the spark gap (VSG(f)) and the out-
put signal is the voltage at the input of the antenna (VA(f)). The ratio between these 
two quantities is the voltage transfer function of the SWO: 

 ( )
( )

( )
A

swo
SG

V f
T f

V f
=  (4.1) 

In this chapter, we will describe the procedure to evaluate the transfer function 
TSWO(f) starting from the geometry of the system and from the input impedance of 
the antenna.  

The radiated signal can also be calculated using a similar approach. The anten-
na is considered as a second two-port network, over which the transfer function of 
the antenna (TA(f)) is calculated as the ratio between the field radiated at certain 
distance and direction from the antenna (Er(f,r,θ,φ)) and the voltage applied at the 
input of the antenna (VA(f)): 

 
( , , , )

( )
( )A

A

E f r
T f

V f

θ φ=


 (4.2) 

The total transfer function of the system (T(f,r,θ,φ)), relating the radiated field 
and the voltage produced at the spark gap can be therefore calculated as: 

 ( , , , ) ( , , , ) ( )A SWOT f r T f r T fθ φ θ φ=  (4.3) 

4.2. BACKGROUND 
Consider the geometry of the SWO proposed in Figure 4.1, consisting of a self-

breaking spark gap followed by a low-impedance coaxial transmission line, an 
(optional) DC-blocking capacitor, and a frequency dependent antenna (in this case 
a monopole).  

An equivalent transmission line circuit diagram of this geometry is presented in 
Figure 4.2. 

                                                           
1 Also known as transmission or ABCD parameters. 
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Figure 4.1 A monopole antenna integrated into a SWO 

 
For the case of the present work, the electrodes of the spark gap forming the 

Radial Transmission Line (RTL) are designed using the Inverse Prolate Spheroid 
(IPS) coordinate system, described in Chapter 2.  

 
Figure 4.2 Transmission line system representing the SWO 

 
The effects of the RTL formed by the electrodes on the performance of the 

SWO were considered by Giri et al. in  [3], where the behavior of a coaxial SWO 
connected to a helical antenna was presented. In their analysis, the RTL was mod-
eled using a series of cascaded uniform transmission lines. The response of the 
system was obtained by simulations using traditional circuit codes. The model of 
Giri et al. [3] yielded accurate results in predicting the central frequency and the 
quality factor Q of the SWO. Note that in the analysis of Giri et al., the helical an-
tenna was represented by a constant, real impedance. A similar assumption was al-
so made by Armanious et al. in [4], when considering the connection of a mono-
cone antenna to an SWO. It is important to realize that this assumption is only 
valid for a set of frequencies at which the input impedance of the broadband an-
tenna, such as helices or monocones exhibit a low reactance and an almost con-
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stant resistance. However, if a narrowband antenna is connected to an SWO, the 
accurate simulation of the system requires taking into account the frequency de-
pendence of the input impedance of the antenna. Note that the work of Armanious 
et al. [4] was based on a full-wave analysis in which the frequency dependence of 
the antenna can in principle be taken into account. 

4.3. CHAIN (ABCD) MATRIX REPRESENTATION OF THE SWO 

The ABCD parameters of a two-port network can be defined using the diagram 
presented in Figure 4.3 [1].  

 
Figure 4.3 ABCD representation of a two-port network. V1(f), I1(f) are, respectively,  the in-

put voltage and current, V2(f), I2(f) are respectively the output voltage and current, ZL(f) is the 
load impedance. All the terms are frequency dependent 

 
The input and output parameters of the network are related by the equation: 

 1 2

1 2

( ) ( )( ) ( )

( ) ( )( ) ( )

V f V fA f B f

C f D fI f I f

    
=    
    

 (4.4) 

where:  
- V1(f), I1(f) are, respectively,  the input voltage and current,  
- V2(f), I2(f) are respectively the output voltage and current,  
- ZL(f) is the load impedance.  
All the terms are frequency dependent. 

 
The voltage at the output (V2(f)) and the voltage transfer function (TSWO(f)) can 

be obtained as: 

 1
2 1

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
L

SWO
L

Z f V f
V f T f V f

Z f A f B f
= =

+
 (4.5) 

This approach can be advantageously applied to the analysis of the SWO. The 
system (RTL + coaxial transmission line + antenna) is represented as a cascade of 
two-port networks, each one characterized by its chain parameters, as illustrated in 
Figure 4.4. On this diagram, VSG is the voltage produced by the spark gap, Zg is the 
spark gap impedance, VA is the input voltage on the antenna terminals, Cb is a (op-
tional) blocking capacitor, ZA(f) is the input impedance of the antenna, RA(f) is the 
real part of the impedance of the antenna and XA(f) is the reactance of the antenna. 
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After calculating the resulting overall ABCD matrix, TSWO(f) and VA(f) can be 
obtained from Equation (4.5). The time domain voltage at the entrance of the an-
tenna can then be obtained by an inverse Fourier transformation.  

 

 
Figure 4.4 Representation of the SWO using the cascade of the two-port networks character-

ized by their ABCD matrices.  

 

4.3.1. ABCD PARAMETERS OF THE COAXIAL TRANSMISSION 
LINE 

The ABCD matrix of the coaxial transmission line is given by [5] 
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 (4.6) 

where: 
- LCoax, is the length of the coaxial, 
− β=2πf/vp, 
- f is the frequency, 
- vp is the propagation velocity. 

 

4.3.2. ABCD PARAMETERS OF THE RTL 
As discussed in Chapter 3, the IPS-RTL is a non-uniform transmission line 

(NUTL), having a characteristic impedance: 
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 (4.7) 

where: 
- k1 ,k2 and k3 are constant terms: 
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- u1, u2, are the constants defining the profile of the electrodes,  
- v is the angular parameter, see Chapter 2 for details. 
- Z0(u3,v) is calculated along a u-curve, lying in the mid-plane between the elec-
trodes, this corresponds to the u-coordinate: u3=(u2+u1)/2 

In order to calculate its ABCD parameters, the line is sub-divided into N seg-
ments, the impedance of each segment is considered constant and the overall 
ABCD matrix is obtained by multiplying the cascaded ABCD matrices of the 
segments. This is analogous to the procedure for the calculation of NUTL present-
ed by Protonotarios and Wing in [6]. 

The ABCD matrix of the n-th segment of the RTL is given by [1]: 
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  (4.9) 

where:  
-Z0n(jβΔL) is the characteristic impedance of the segment,  
-ΔL is the length of the segment2. 

The resulting ABCD matrix of the RTL is 
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where the matrix Π operator is defined as [6]:  
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4.4. VOLTAGE TRANSFER FUNCTION OF THE SWO 

The total ABCD matrix of the SWO can be calculated as: 

1
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 (4.12) 

where Zg=Rg+jXg is the impedance of the spark gap3.  
                                                           

2 Note that it is not necessary for the segments to be equal; however, this facili-
tates the computation of the parameters. 
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The last matrix corresponds to the blocking capacitor, an optional element in-
serted between the antenna and the SWO. 

The relationship between the input and output voltages and currents can be 
therefore calculated using: 
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where the resulting ABCD parameters are: 
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The voltage on the antenna can be determined as: 
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The voltage transfer function of the SWO is defined by: 
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4.5. EIGENFREQUENCIES OF THE SWO 

In [6], Protonotarios and Wing showed that the eigenfrequencies  of a NUTL 
are related to the zeros of its ABCD parameters. Note that we are referring to the 
natural frequencies, or eigenfrequencies of the SWO, which are intrinsic proper-
ties of the device itself and are independent of the loads connected at the ends of 

                                                                                                                                     
3 It is worth noting that nonlinear effects were disregarded in the analysis. In 

Appendix 1, a time-domain model is presented in which such effects are included. 
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the device (which in this case correspond to the antenna and the impedance of the 
gap).  

 In particular, the eigenfrequencies of a NUTL terminated at one end by a short 
circuit and at the other end by an open circuit, are the frequencies (f0, f1, f2,…. ,fN) 
where the parameter A(f) vanishes.  

At these frequencies we have: 
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 (4.20) 

From which the eigenfrequencies can be calculated as the roots of the equation: 
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  (4.21) 

If Zg = 0 we have: 
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where N is an integer. 
If the losses in the system are negligible, the term Br(f) is an imaginary term 

and Equation (4.22) results in a real number. 
For a given first resonance frequency f0, the length of the coaxial line can be 

calculated 

 0
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 (4.23) 

This equation permits an initial dimensioning of LCoax during the design phase, 
having in mind that the obtained value is an approximation and further adjustment 
of the length of the coaxial line might be necessary.  

If Zg is different from zero, the roots of Equation (4.21) are complex and the ei-
genfrequencies are complex, indicating than a dumping factor exists in the SWO, 
even if ideal load conditions are considered. 

Note that the natural frequency is not affected by the blocking capacitor.  
It is worth noting that in the original idea presented by Baum in [7], the RTL 

was considered to be infinitely short (Ar(f)=Dr(f)=1, Br(f)=Cr(f)=0) and Zg was con-
sidered to be zero. In that context, the SWO was considered as a quarter-wave de-
vice: 
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4.6. SOURCE REPRESENTATION 
As we mentioned in Section 4.5, the impedance of the spark gap influences the 

resonance frequency and voltage transfer function of the SWO. However, the in-
tegration of a full electro-dynamic model of the spark into the ABCD equivalent 
model requires taking into account the time-dependent spark gap resistance and 
inductance, which is a non-trivial task (see e.g.[8]).  

In this chapter, we use the source model proposed in [9], which consists of a 
single source (VSG(f)) placed at the spark gap end of the SWO. The waveform of 
VSG(f) presents a long risetime (hundreds of ns long) simulating the charging phase 
of the SWO, followed by a fast decay time (hundreds of ps) representing the clos-
ing of the switch (see Figure 4.5 for details). 

The source is connected in series to a constant resistance Rg and a constant in-
ductance Lg corresponding to the losses in the spark gap. The values of these pa-
rameters depend on the length of the gap, the electric field previous to the dis-
charge, the type of gas, and the pressure. We use here the values proposed by  
Martin in [10]. 

 
Figure 4.5 Excitation source model 

The waveform representing VSG(f) was generated using a modified version of 
the function presented by Giri in [11]: 
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 (4.25) 

where: 
- V0 is the peak voltage, 
- td  is the closing time of the spark gap, 
− β is a constant related to the charging time, 
- ts is the time at which the switch closes,  
- f  is the frequency,  
and * is the conjugate operator. 
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Differently from other representations of double exponential signals, the time 
domain equivalent of Equation (4.25) is continuous for all time t. 

As an example, Figure 4.6 presents the frequency-domain and time-domain 
representations of a wave with the following parameters: 

 
 β = 60e-3, td=1 ps, Vo= 40 kV, ts=2000 ns 
 

   
Figure 4.6  Example of excitation voltage in frequency domain (left) and time domain (right) 

4.7. ANTENNA MODELING  
We are interested in knowing the field radiated by the antenna at a certain dis-

tance and direction (E(r,φ,θ)). Using numerical simulation, it’s possible to estab-
lish the transfer function of the antenna (TA(r, φ, θ, f )), defined as the ratio be-
tween the radiated electric field and the voltage applied at the input of the antenna: 

 ( , , , )
( , , , )

( )A

AX

E r f
T r f

V f

θ φθ φ =  (4.26) 

where VAX(f) is an arbitrary voltage at the input of the antenna. Notice that the ra-
diated field in Equation (26) is not necessary the far field. 

The field radiated by the antenna when connected to the SWO can then be cal-
culated as: 

 ( , , , ) ( , , , ) ( ) ( , , , ) ( ) ( )SWO A A A SGE r f T r f V f T r f V f T fθ φ θ φ θ φ= =  (4.27) 
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+
 (4.28) 

where: VA(f) is calculated using Equation (4.18) and ZA(f) is the input impedance 
of the antenna. 
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4.8. APPLICATION EXAMPLE  

4.8.1. ABCD PARAMETERS 
In this section we will illustrate the implementation of the proposed modeling 

approach to the design of an SWO that uses the RTL formed by the IPS electrodes 
derived in previous chapter. 

The details of the design are: 
 

• Intended resonance frequency: fo=433 MHz 
• Inter electrodic space: dgap=0.5 mm  
• Coaxial impedance: Zcoax=3.5 Ω. 
• Radiuses of the Coaxial transmission line: ro =16.5 mm and ri=17.5 

mm 

 
Figure 4.7 Profile of the electrodes proposed as example 

 
The constants defining the profiles are: 

1 21.10507 1.05837, 22.1783, 3a eu u == −=  

The profile of the electrodes corresponding to this design are presented in Fig-
ure 4.7 

The length of the coaxial transmission line can be calculated from Equation 
(4.23). However, it is first necessary to segment the line and calculate the ABCD 
parameters of the resulting IPS-RTL. 

The segmentation of the line implies finding the points vs =(v1,…., vN-1), divid-
ing the total length of the line into N segments of equal length ΔL. 

The length of a segment of a u-curve, between the points vA and vB is: 
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The total length of the u-curve of the example is: 
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−

 (4.30) 

The line was segmented into N=50, segments, the length of each one being: 

 0.4866( )L mmΔ =  (4.31) 

This segmentation is done numerically, as the integral (4.29) does not possess 
analytical solution. 

The segmented IPS-RTL can be seen in Figure 4.8. 
 

 
Figure 4.8 Segmented IPS-RTL 

 
The variation of the impedance against the geodesic distance can be seen in 

Figure 4.9.  
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Figure 4.9 Characteristic impedance vs geodesic distance from the axis of symmetry  

 
The ARTL(f) and BRTL(f)  parameters of the IPS RTL vs. frequency can be seen 

in Figure 4.10. 
 

 
Figure 4.10 Magnitude of the A and B parameters of the IPS-RTL 

 
Replacing the results obtained for the ARTL(f) and BRTL(f) parameters in Equa-

tion (4.22), the length of the coaxial line can be obtained: 

 123.4( )CoaxL mm=  (4.32) 

The resulting ABCD parameters of the ensemble RTL + coaxial line can be 
seen in Figure 4.11. 
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Figure 4.11 ABCD parameters of the RTL+coaxial line. notice the resonance frequency at 
433 MHz. 

4.8.2. Monopole Antenna 
As explained in the introduction of this Chapter, the objective is to explore the 

response of an SWO connected to a frequency dependent antenna. We consider 
here the case of a monopole over a finite ground plane, as described in Figure 
4.12. The monopole was dimensioned to be resonant at f0, the resonance frequency 
of the SWO. The dimensions of the antenna for this case are: LA=159 mm, DA=5 
mm, Rp=200 mm.  

An electromagnetic simulation was performed in CST Microwave Studio®. A 
coaxial transmission line was connected at the entrance of the coaxial port of the 
antenna and a coaxial port was defined at the entrance of this line.  

 

 
Figure 4.12 Model of the monopole over finite ground plane antenna simulated in CST. The di-
mensions of the antenna LA=159 mm, DA=5 mm, Rp=200 mm. 
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The impedance measured at the coaxial port was calculated and multiplied by 
the de-embedding factor of the transmission line, obtaining the value of the input 
impedance of the monopole, shown in Figure 4.13.  

 

 
Figure 4.13  Input impedance of the monopole. Real part (black), imaginary part (dashed), abso-
lute value (red). Notice the resonance frequency at 433 MHz. 

 

 
Figure 4.14 Voltage transfer function of the SWO using the monopole antenna shown in Figure 
4.12 (solid line). Voltage transfer function using a constant load of 36 Ohms (dashed line).  

The voltage transfer function (Tswo(f)), calculated according to Equation (4.19)  
is plotted in Figure 4.14. As it can be seen from the figure, the resonance frequen-
cy is not the intended frequency. Indeed, there is a dip at the exact frequency of 
resonance. As comparison, the voltage transfer function was calculated consider-
ing a real, constant load corresponding to the value of the input impedance of the 
monopole at the resonance frequency. This is shown in the same figure (Figure 
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4.14) where it can be seen a clear resonance at 433 MHz. Notice that both func-
tions are equal at the resonance frequency. Note also the occurrence of a reso-
nance at the second harmonic of the intended frequency. 

A double exponential voltage wave with slow-rise and fast-decay time was ap-
plied as excitation, as explained in Section 4.6. The peak voltage is 10 kV. The 
rise time is 100 ns and the decay time is 500 ps. In a first attempt, the losses at the 
spark gap were considered to be zero. The source voltage in frequency domain 
(VSG(f)) can be seen in Figure 4.15 . On the same figure, the output voltage at the 
antenna is also shown. The resulting time-domain voltage on the antenna is plotted 
in Figure 4.16. 

 

 
Figure 4.15 Voltage on the antenna (black) and source voltage (red) 

 
Figure 4.16 Voltage on the antenna in time domain 

The dip at the resonance frequency (f0) can be explained as follows: XA(f) is ze-
ro at the resonance frequency, however it grows (and hence Za(f) grows) rapidly as 
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we move either above or below the resonance frequency. As a consequence, the 
mismatch between the antenna and the SWO at f0 will be smaller than the mis-
match at neighboring frequencies.  

 

4.8.3. Energy balance 
The validity of the model can be tested at this point by calculating the energy 

balance of the system, as follows. Before the discharge, the SWO can be assumed 
as a capacitance that gets charged by the source and acquires an amount of elec-
trostatic energy (UDC) given by: 

 

2
_

2
SG Peak

DC
SWO

V
U

C
=

 
(4.33)

 

where:  
VSG_Peak is the maximum voltage at which the SWO is charged 
CSWO is the capacitance of the SWO 
 
After the discharge, all this energy is dissipated by the antenna, if the losses in 

the spark-gap are zero.  
The total capacitance of the SWO was calculated in Comsol® 2D-axis-symetric 

module: 

 134SWOC pF=  (4.34) 

The electrostatic energy stored on the SWO previous to the discharge is: 

 
2

_ 6.7
2

SG Peak SWO
SWO

V C
U mJ= =

 
(4.35)

 

From t > 350 ns the antenna starts radiating and, assuming that the spark is as-
sumed lossless, all the radiated energy can be obtained as follows: 

 0
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U P f df

V f V f
U df

R f

∞

∞

=

=




 (4.36) 

where VAD(f) is the Fourier transform of the voltage on the antenna after the dis-
charge, in our case t > 350 ns, ( )ADV f is the complex conjugate of VAD(f) and 
PAD(f) is the power on the antenna after the discharge. VAD(f) and PAD(f) are shown 
in Figure 4.17. 



72     Electrodynamic Analysis of an SWO connected to a Frequency Dependent Load 

 

The result of the evaluation of the integral shown in Equation (4.36) is: 

 6.1 RadiatedU mJ=   (4.37) 

which is in agreement with Equation (4.35). From this result it can be said that, 
from the point of view of the energy balance, the method presented for the calcu-
lation of the voltage on the antenna is valid. 
 

 
Figure 4.17 Voltage on the antenna after the discharge (top) and power on the antenna after of the dis-
charge (bottom) vs. frequency. Notice that most of the frequency content is near the resonance. 

 
Figure 4.18 Antenna transfer function TA(f).  Relationship between the vertical component of the 
far field and the voltage applied to the antenna. The field was computed at coordinates 
(φ=0°,  θ=90°,  r=1 m). See Figure 4.12 for reference.  

4.8.4. Radiated field 
The vertical component of the far field radiated by the antenna was calculated 

in CST Microwave Studio and the transfer function of the antenna (TA(f)) was es-
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tablished as the ratio between the far field and the voltage applied to the entrance 
of the antenna. The far field component was calculated at coordinates 
(φ=0°,  θ=90°,  r=1 m), see Figure 4.12 for reference. The resulting transfer func-
tion is shown in Figure 4.18.   

The radiated field in the frequency domain and in the time domain are present-
ed in Figure 4.19 and Figure 4.20 respectively. 

 

 
Figure 4.19 Radiated Electric field in the frequency domain at φ=0°,  θ=90°,  r=1 m. The spark gap is 
supposed to be lossless.  Notice a vestigial resonance at the second harmonic of the fundamental fre-
quency  

 
Figure 4.20 Radiated field in the time domain at coordinates φ=0°,  θ=90°,  r=1 m. The spark gap is 
supposed to be lossless.  

The methodology presented in this chapter permits to study the effects of the 
impedance of the spark gap on the radiated signal. For the case of the present ex-
ample, the spark gap resistance was varied between 0 and 0.5 Ohms and the result-
ing electric field was calculated in both frequency and time domains.  
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The results in the frequency domain are presented in Figure 4.21. As it can be 
seen, the peak amplitude of the radiated signal reduces greatly as Rg increases.  

The results in the time domain are presented in Figure 4.22. The amplitude of 
the first peak is almost identical for all the considered values of Rg. However, due 
to the losses in the switch the amplitude of the subsequent signal reduces with the 
increasing of Rg. The number of cycles also reduces with the increasing of Rg.  
 

 
Figure 4.21 Radiated Electric field in frequency domain for different values of the spark gap re-
sistance 

 

 
Figure 4.22 Radiated field at coordinates φ=0°,  θ=90°,  r=1 m, for different values of the spark 
gap resistance. 

The model here presented only takes into account the static behavior of the 
spark gap. In order to include the dynamic variation of the impedance of the arc, 
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i.e. the closing time and the changes in the residual resistance, a time domain 
model might be preferable. In Appendix 1, we derive time domain equations for 
the calculation of an SWO connected to a spark gap at one end and to a frequency 
domain antenna at the other end. 

4.9. CONCLUSIONS 
We have presented in this chapter a methodology permitting the analysis and 

modeling of an SWO. The methodology permits the estimation of the response of 
the SWO, the resonance frequency, bandwidth and amplitude of the radiated sig-
nal connected to an antenna of arbitrary behavior in the frequency domain.  

The proposed methodology was applied to the design of an SWO connected to 
a monopole antenna.  

The voltage at the output of the SWO was calculated using as load the input 
impedance of a monopole antenna whose reactive part was zero at the intended 
resonance frequency of the SWO. For comparison, the same calculation was re-
peated using as load a pure resistor of the same value of the antenna at the intend-
ed resonance frequency.  In the case of the resistive load, it was found that the sys-
tem was resonant at the eigenfrequency of the SWO, namely the intended 
frequency.  

The methodology here presented permitted to show that, in the case of the 
monopole antenna, the resonance frequency of the produced voltage was different 
from the intended resonance frequency, this in spite the fact that both the SWO 
and the monopole antenna were resonant at the same frequency.  

The influence of the losses of the spark gap on the radiated signal was studied 
and discussed. It was shown that small changes in the resistance of the spark gap 
can reduce the amplitude of the radiated signal as well as the number of cycles. 
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5.1. INTRODUCTION 
We present in this chapter the design and realization of a coaxial Switched Os-

cillator (SWO).  
The design is based on the developments presented in Chapters 2 through 4, in-

cluding the proposed profile for the electrodes (IPS - Inverse Prolate Spheroidal).  
The performance of the realized SWO has been experimentally characterized 

and the experimental data are used to test the theoretical models presented in the 
previous chapters. 

The chapter is organized as follows. In Sections 5.2 and 5.3, we describe the 
mechanical design of the prototype. The experimental setup is described in Sec-
tion 5.4. Section 5.5 presents the experimental characterization, which comprises 
the breakdown voltage of the SWO and the radiated electric fields for different 
types of connected antennas, which are compared with simulation results. In Sec-
tion 5.6, we present a time-frequency analysis of the radiated signals using wave-
lets. Conclusions and discussion are presented in Section 5.7. 

5.2. MECHANICAL DESIGN 
The target frequency of the prototype is f0= 433 MHz, which is the central fre-

quency of one of the Industrial, Scientific and Medical (ISM) radio bands, used 
for several services, for instance Short-Range Device radio (SRD), Remote Key-
less Entry Systems (RKE), among others. 

The dimensions of the design are the same as the example presented in Chapter 
4. We present here a short summary of the requirements of the design. 

 
• Inter electrodic space: dgap=0.5 mm  
• Radiuses of the coaxial transmission line: outer radius, ro =16.5 mm, 

inner radius, ri=17.5 mm 
• Coaxial line impedance: Zcoax=3.5 Ω. 

The electrodes of the SWO were fabricated using the IPS profile, proposed in 
Chapter 2. The gap distance on the axis is half of the distance between the inner 
and outer conductor of the coaxial. This means that the discharge is more likely to 
occur on the symmetry axis rather than between the conductors of the coaxial. A 
way of quantify this is using the safety factor S, defined in [1] as the ratio between 
the electric field on the gap and the maximum electric field on the coaxial: 

 gap

coax

E
S

E
=  (5.1) 

Using the results of Chapter 2, 
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A smaller value of d increases the factor S. However a value d=0.5 mm, is the 
minimum distance that the EPFL mechanical workshop can fabricate with an ac-
ceptable tolerance.  

The profile of the electrodes was obtained using the Inverse of Prolate Spheroi-
dal system and is presented in Figure 5.1. 

 

 
Figure 5.1 Profile of the electrodes 

 
The calculated length of the coaxial line is: 

 123.4( )CoaxL mm=  (5.3) 

The IPS profiles were calculated in Matlab® and imported in Solidworks®. 
The resulting curves were loaded into a CNC machine and the electrodes were 
fabricated in stainless steel. A second version of the electrodes with Copper-
Tungsten (80%-20%) alloy is planned for manufacturing. 

The inner and outer conductors of the main coaxial section were custom ma-
chined in aluminum using a CNC lathe. The gas inlets were installed on the walls 
of the outer conductor. 

In order to support the inner and outer conductors in a proper place, a dielectric 
ring made of Ultem ® (amorphous thermoplastic polyetherimide PEI) was insert-
ed at the end of the main coaxial line. This section constitutes a secondary coaxial 
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section inserted between the SWO and the antenna. We will show in the next sec-
tion how to evaluate the effects of this section in the output signal. 

A 2-D view of the SWO detailing all its parts is presented in Figure 5.2. A sim-
ilar 2-D view, indicating the sizes of the parts can be seen in Figure 5.3. A view of 
the SWO with the monopole and the ground plane is shown in Figure 5.4. Pictures 
of the finished prototype can be seen in Figure 5.5, Figure 5.6 and Figure 5.7 

The mechanical design and specification of each one the parts of the SWO and 
the antenna were performed by the author of this work. The parts were manufac-
tured at the ISIC mechanical workshop at EPFL. 

 

 
Figure 5.2 2-D cut view of the SWO. Notice the electrodes, the main coaxial line and the sec-
ondary coaxial sections. 
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Figure 5.3 2-D cut view of the SWO. The units are in mm. 

 

 

 
Figure 5.4 Side view of the SWO with the ground plane and the monopole antenna (left). 

Isometric view (right). Units are in mm. 
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Figure 5.5 The realized prototype with the external electrode removed. Notice the inner elec-

trode and part of the inner conductor of the main coaxial line. Notice also the sealing O-ring and 
the supports for the gas inlets in the wall of the coaxial line. 

 
 

 
Figure 5.6 The assembled SWO. Notice the outer electrode, the outer coaxial conductor with 

the two gas inlets and the outer conductor of the secondary coaxial line.  
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Figure 5.7 View of the SWO. Notice the point of connection of the monopole antenna. Addi-

tional insulation was added after manufacturing, in order to prevent flashover from the inner 
conductor to the ground plane 

5.3. GAS TYPE 
The experiments here reported were performed using SF6 as insulating gas. 

SF6 is used regularly in high voltage facilities and equipment and in pulse power 
applications. This gas presents one of the highest dielectric strengths among the 
gases available in the market.  

The realized SWO was tested to a maximum pressure of 40 bars with no de-
tectable leakage of gas.  

The breakdown voltage in a gap pressurized in SF6 depends on the pressure, 
the gap distance and the electric field in the interelectrodic space. If the field is 
uniform, the breakdown voltage (Vbd) is [2]: 

 =0.65+8.85  (kV)bd gapV pd  (5.4) 

where: 
p is the SF6 pressure in bar 
dgap is the inter-electrode distance in mm 
 
We saw in Chapter 2 that the field distribution is not uniform between the 

electrodes, having a maximum on the axis of symmetry, which is the most likely 
location for the discharge to occur. However, on the axis of symmetry the electric 
field is almost constant and its value coincides with the value of the electric field 
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on a uniform gap; therefore we consider valid the value of Equation (5.4) in our 
case. 

It’s worth noticing that SF6 is a greenhouse effect gas. It has been estimated 
that SF6 has a Global Warming Potential (GWP) 22600 times higher than that of 
CO2 [3]. It also has been mentioned that toxic byproducts are produced when high 
energy discharges occurs in SF6 [4]. 

5.4. EXPERIMENTAL SETUP 
The experimental setup is described in Figure 5.8. The SWO is charged using a 

constant-current, high-voltage source Model HCE 35. This source, conceived orig-
inally as a capacitor charger, can deliver up to 10 mA of current and a maximum 
voltage of 35 kV. In order to prevent high frequency signals transmitted to the 
source, a blocking coil was placed between the SWO and the source. The source 
was controlled using an external trigger generator. A picture of the setup is pre-
sented in Figure 5.9. 

The gas was connected to the SWO using a dielectric, rigid pipe; this means 
that there is not galvanic connection between the SWO, the gas bottle and the 
ground. The gas bottle was installed horizontally on the floor of the anechoic 
chamber, in to prevent unwanted reflections of the signals.  

 

 
Figure 5.8 Experimental setup. The SWO was installed inside an anechoic chamber. A constant 
current source charges the SWO. The radiated field was measured with a D-dot sensor. The radi-
ated signal was relayed to the oscilloscope outside the chamber using a fiber optic link.  
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Figure 5.9 Experimental setup. Notice the SWO on the left and the D-dot connected to the fiber 
optic transducer on the right. On this picture the sensor is 1.2 m above the ground floor, which is 
20 cm higher than the actual height of the sensor during the measurements.  

 
The signal was measured using a Thales-Melopée D-dot E-1602 sensor. The 

signal measured by the D-dot sensor was integrated by an analog integrator and 
relayed outside the chamber using a fiber optic link. The receiver of the fiber optic 
link was connected to a 1.5 GHz, 10 GS/s Lecroy-9362 oscilloscope. 

The SWO and the D-dot sensor were mounted on dielectric supports. The dis-
tance between the ground plane of the monopole antenna and the floor of the 
chamber was 1 m. The D-dot sensor was placed at a distance of 1.5 m from the 
monopole antenna and 1 m height above the ground floor of the chamber. 

 
5.5. MEASUREMENTS 

 
5.5.1. BREAKDOWN VOLTAGE 

The breakdown voltage of the SWO versus the applied pressure of SF6 was 
measured using a P6015A Tektronix high voltage probe, for voltages up to 20 kV. 
For voltages higher than 20 kV, the meter of the current source was used. Figure 
5.10 presents the measured values vs. theoretical values predicted by Equation 
(5.4). For each value of the pressure, three measurements were carried out and the 
breakdown voltage was measured. As it can be seen, additional to the typical vari-
ation of the breakdown voltage in a spark gap, the results suggest that the actual 
inter-electrodic gap distance is smaller than the expected value. A linear regres-
sion on the measured values indicates that the actual gap distance is dgap=0.47 mm, 
instead of 0.5 mm. 

Figure 5.11 shows the state of the electrodes after being in use. The marks pro-
duced on the metallic surface of the electrode by the discharges are visible on the 
picture. As it can be seen, most of the erosion is concentrated around the axis of 
the electrode. However, a few traces appear off axis, indicating that misfire oc-
curs. However, this happened only in the region near axis and never in the regions 
near the coaxial section.  
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Figure 5.10 Theoretical breakdown voltage (continuous line), measured breakdown voltage 
(dots). Three values of the breakdown voltage per applied pressure were taken. 

 

 
Figure 5.11 IPS electrode after being in use. Notice a high percentage the traces of the discharges 
near the center of the electrode. A small percentage of off-axis traces are visible. 

 

5.5.2.  Ultem Gasket Section 
In chapter 4, the SWO was represented using the system depicted in Figure 

5.12.  
The equation relating the radiated electric field at specific coordinates of the 

space (E(f,r,θ,φ)) and the voltage applied at the discharge point  VSG(f) was estab-
lished as: 
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where: 
ZA(f) is the impedance of the antenna 
Vsg(f) is the excitation voltage at the spark gap 
A(f) and B(f) are the total A and B parameters of the SWO 
VA(f) is the voltage at the input of the antenna 
TA(f) is the electric field to applied voltage transfer function of the antenna, cal-

culated as: 

   ( , , , )
( )

( )A

A

E f r
T f

V f

θ φ=  (5.6) 

 

 
Figure 5.12 Representation of the SWO using a cascaded two-port networks characterized by 
their ABCD matrices (see Chapter 4). 
 

The actual geometry of the realized SWO, however, has an additional transmis-
sion line between the main coaxial line and the antenna, corresponding to the re-
gion where the Ultem ring is inserted (see Figure 5.3). Figure 5.13 presents a mod-
ified version of the system presented in Figure 5.12. 

 

 
Figure 5.13 Modified version of the model presented in Chapter 4. Now the SWO sees a load 
impedance composed by the Ultem line terminated on the radiating antenna. 

 
The ABCD parameters of the Ultem line were calculated via numerical simula-

tion and included in the model in order to obtain a new set of ABCD parameters 
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for the SWO. The new A(f) and B(f) parameters can be included in Equation (5.5) 
and the resulting E field can be calculated.  

 

5.5.3.  Monopole Antennas 
The SWO was connected to two different monopole antennas. The dimensions 

of the monopoles are presented in Table I. Note that the resonance frequency of 
the first antenna coincides that of the SWO. The input impedance and the antennas 
are presented respectively in Figure 5.14(a) and Figure 5.15(a). The transfer func-
tion of each monopoles at coordinates (r=1.5 m, θ= 90°, φ= 0°) are presented re-
spectively in Figure 5.14(b) and Figure 5.15(b). All these results were obtained by 
numerical simulations (for the configuration shown in Figure 5.8). 

Table 1 Dimensions of the monopoles. 
Antenna Diameter Length Ground Plane 

Diameter 

1st Resonance frequency 

(Computed in CST) 

I 8 mm 159 mm 800 mm 433 MHz 
II 8 mm 260 mm 800 mm 262 MHz 

 

 
Figure 5.14 (a) Impedance of Antenna I. Notice the first resonance frequency at f=433 MHz. (b) 
Magnitude of the Transfer function of Antenna I at coordinates r=1.5 m, θ= 90°, φ= 0°. Notice 
the peak at 433 MHz. The dimensions of the antenna are LA=159 mm, dA= 8 mm. Both results 
were obtained by simulation. 
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Figure 5.15 (a) Simulated impedance of Antenna II. Notice the first resonance frequency at 
f=262 MHz. (b) Magnitude of the Transfer function of Antenna II at coordinates r=1.5 m, θ= 
90°, φ= 0°. Notice the peak at 262 MHz. The dimensions of the antenna are LA=260 mm, dA= 8 
mm. Both results were obtained by simulation. 

 
5.5.3.1. Field radiated by Antenna I 

The electric field measured with the D-dot sensor (after integration) is present-
ed in Figure 5.16 (a). The signal exhibits a modulated Gaussian waveform, fol-
lowed by a series of residual ripples. The measured peak amplitude is Epeak=10 
kV/m. The corresponding signal obtained by the proposed theoretical approach is 
shown in the same figure (lower panel). Notice that most of the energy of the sig-
nal is contained in the time interval between t = 5 ns to t = 16 ns, in which there is 
a very good agreement between the measured and the computed signals.  

The Power Spectrum Densities (PSD) of the measured and computed signals 
are plotted in Figure 5.17. The PSDs were evaluated using the Yule-Walker’s 
method [5]. As it can be seen from the graphs, the resonance frequency is 370 
MHz. The maximum amplitude of the PSD of the theoretical signal is 10% higher 
than that of the measured signal. Nevertheless, the proposed theoretical model is 
able to reproduce reasonably well the measured results. 

It is interesting to observe that the resonance frequency of the radiated field is 
different from the intended resonance frequency (433 MHz), despite the fact that 
both the SWO and the monopole antenna were resonant at this same frequency. 

 

0 200 400 600 800 1'000 1'200 1'400 1'600 1'800 2'000

-200

0

200

400

a) frequency (MHz)

Im
pe

da
nc

e 
( Ω

)

Antena Impedance

 

 

Resisitive Part
Reactive Part
Absolute Value

0 200 400 600 800 1'000 1'200 1'400 1'600 1'800 2'000
0

0.2

0.4

0.6

0.8

b) frequency (MHz)A
nt

en
na

 T
ra

ns
fe

r 
F

un
ct

io
n 

 
⏐ 

T
A
(f

) ⏐
 (

1/
m

)

Antena Transfer Function



90     Design, Realization and Experimental Characterization of a Coaxial SWO 

 
 

 

 
Figure 5.16Measured (a) and computed (b) electric field radiated by the SWO connected to An-
tenna I, at 1.5 m distance. The applied pressure is 7 bar of SF6. The peak amplitude is 10 kV/m. 
Notice the presence of some reflections on the measurement after 15 ns. The time t=0 corre-
sponds to the closing of the switch in the SWO. 
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Figure 5.17 Power Spectrum Density (PSD) of the measured electric field (a) and that of the 
computed electric field (b). Field radiated by the SWO connected to Antenna I, at 1.5 m distance. 
The applied pressure is 7 bar of SF6.  The resonance frequency is 370 MHz. 

 

5.5.3.2. Field radiated by Antenna II 
The dimensions of this antenna are: da= 5 (mm), La=260 (mm). The diame-

ter of the ground plane is dg=800 (mm).  
The measured electric field at 1.5 m distance and an applied pressure of 7 

bars of SF6 is shown in Figure 5.18. As it can be seen, the peak amplitude is al-
most -6 kV/m.  It can also be noticed that the late-time response of the measured 
field (beyond about 23 ns) suffers a faster attenuation than the theoretical one. 

 

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

 a) Frequency (MHz)

P
ow

er
 S

pe
ct

ru
m

 D
en

si
ty

 (
W

at
ts

/(
m

2  Ω
 G

H
z)

)

 

 

Measured

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

 b) Frequency (MHz)

P
ow

er
 S

pe
ct

ru
m

 D
en

si
ty

 (
W

at
ts

/(
m

2  Ω
 G

H
z)

)

 

 

Theoretical



92     Design, Realization and Experimental Characterization of a Coaxial SWO 

 

 

 
Figure 5.18 Radiated electric field at 1.5 m distance by the SWO connected to Antenna II. The 
applied pressure is 7 bar of SF6. The peak amplitude is -6 kV/m. Notice that beyond 23 ns, the 
measured signal attenuates faster than the theoretical wave. The time t=0 corresponds to the clos-
ing of the switch in the SWO. 
 
An estimation of the PSD of the signal, evaluated using the Yule-Walker method 
is presented in Figure 5.19. Two resonance frequencies can be distinguished, the 
first one at 240 MHz and the second one at 400 MHz. The two frequencies are 
clearly discernible in both, measured and theoretical signals. Note that the first 
resonance frequency is close to the resonance frequency of the antenna, while the 
second resonance frequency is close to the resonance frequency of the SWO.  
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Figure 5.19 Power Spectrum Density estimation of the electric field radiated at 1.5 m distance by 
the SWO connected to Antenna II. Notice a first resonance of the signal at 240 MHz and a sec-
ond resonance near 400 MHz 

 

5.6. TIME-FREQUENCY ANALYSIS OF THE RADIATED 
SIGNAL 

In this section, the time evolution of the frequency content of the radiated wave 
will be analyzed. Instead of classical algorithms such as the Short Fourier Trans-
form (SFT), a more efficient [6] approach based on Wavelets will be applied.  

The coefficients of the Continuous Wavelet Transform (CWT) of the radiated 
field E(t) can be calculated as [7]: 
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  (5.7) 

where:  
a >0 is the scale parameter, 
b is the translational value, 
Ψ(t) is the mother wavelet, in this case a fourth-order Gaussian wavelet.  
conj( ) is the conjugate operator 
 
The frequency at which the magnitude of the spectrum of the wavelet maxim-

izes is called fc. The pseudo-frequencies of the wavelet (fa) are then defined as: 

 c
a

s

f
f

af
=  (5.8) 

where fs is the sampling frequency of the signal E(t)  
 
Using these definitions, we can re-write Equation (5.7) and express CWT in 

terms of its pseudo-frequencies: 
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 Using Equation (5.9), a 2-D time-frequency diagram of the CWTF can be 
drawn. The horizontal axis is the time (t), the vertical axis is the pseudo-frequency 
axis (fa). A color-coded scale represents the normalized amplitude of the coeffi-
cients of the CWTF.  

Figure 5.20 shows the CWTF applied to the electric field radiated by Antenna 
I. Figure 5.21 presents the same analysis applied to the simulated signal. As it can 
be seen, the CWTF graphs show that most of the energy content of the signal is in 
the region originally intended, 433 MHz. The result of the CWTF applied to the 
signal calculated with the theoretical model coincides to a great extent to the result 
of the CWTF applied to the measured signal. 
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Figure 5.20 (a) Time domain signal radiated by Antenna I. (b) Normalized Continuous Wavelet 
Transform in terms of Frequency. The CWTF shows that most of the energy of the signal is con-
centrated around the second positive peak and has frequency components between 400-500 
MHz. The ripples afterwards contain energy in the 350-400 MHz region. 

 
Figure 5.21 (a) Simulated Time domain signal radiated by Antenna I. (b) Normalized Continuous 
Wavelet Transform in terms of Frequency. The computed CWTF agrees quite well with the ex-
perimental results shown in Figure 5.20 

 
Figure 5.22 shows the CWTF applied to the electric field radiated by Antenna 

II. Figure 5.23 presents the same analysis applied to the simulated signal. As it can 
be seen, the CWTF graph shows that most of the energy content of the signal is 
concentrated between 250-400 MHz. The result of the CWTF applied to the signal 
calculated with the theoretical model agrees to a great extent to the result of the 
CWTF applied to the measured signal. 
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Figure 5.22 (a) Time domain signal radiated by Antenna II. (b) Normalized Continuous Wavelet 
Transform in terms of Frequency. The CWTF shows that most of the energy of the signal is con-
centrated around the first negative peak and has frequency components between 250 – 400 MHz. 
The ripples afterwards contain energy in the 250 MHz region, in agreement with Figure 5.19 (a) 

 

 
Figure 5.23 (a) Simulated Time domain signal radiated by Antenna II. (b) Normalized Continu-
ous Wavelet Transform in terms of Frequency. The computed CWTF agrees well with the exper-
imental results shown in Figure 5.21. 

 
The presented analysis using wavelet transform permitted to characterize the 

time evolution of the frequency content of the radiated wave.  
The measured and theoretical signals present some differences in their late 

time. However, it was shown that the frequency content of the most energetic 
parts of the measured and theoretical signals are in good agreement. 
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5.7. CONCLUSIONS 
We reported in this chapter on the construction and test of a prototype coaxial 

quarter-wave switched oscillator.  
The SWO integrates electrodes fabricated using the Inverse of Prolate Spheroi-

dal profile presented in Chapters 2 and 3. The erosion produced on the surface of 
the electrodes by the discharges showed that a high percentage of the discharges 
occur near the axis of symmetry. This validates the design of the electrode, in spite 
the fact that a minor percentage of the traces appears off axis. 

The breakdown voltage of the SWO was measured and compared with the theo-
retical values. It was concluded that the actual interelectrodic distance is 4.7 mm 
instead of the intended 5 mm.  

The prototype was used for testing the validity of the model for the analysis of 
SWOs connected to frequency dependent antennas, proposed in Chapter 4. In par-
ticular, monopole antennas were connected to the SWO and the radiated field was 
measured and compared with theoretical calculations. 

It was shown that the theoretical model was able to reproduce with an accepta-
ble accuracy the behavior of the SWO connected to a frequency dependent load. 

A continuous wavelet transform analysis was carried out on the measured and 
simulated signals, showing that the frequency content of the most energetic parts 
of the measured and simulated signals are in agreement. 

The methodology permitted to show that, in the case of a monopole antenna, 
the resonance frequency of the radiated field is different from the intended reso-
nance frequency, despite the fact that both the SWO and the monopole antenna 
were resonant at the same intended frequency. 

Even though only monopole antennas were considered in this study, it is worth 
noting that the realized prototype can be used in conjunction with other types of 
antennas, such as directive antennas. Preliminary work for connecting a Half Im-
pulse Radiating Antenna to the SWO has already been carried out by the author. 

Finally, the base design of the prototype can easily be modified, in order to 
reach higher breakdown voltages. The resulting prototype can be used for produc-
ing high power, resonant, illuminating fields in IEMI testing. 
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The research work presented in this thesis was devoted to the design and analy-

sis of coaxial quarter-wave Switched Oscillators (SWO). This chapter highlights 
the main original contributions and conclusions of this work. 

6.1 ELECTROSTATIC DESIGN OF SWOs 
The main requirements for the electrostatic design of a Switched Oscillator 

(SWO) were presented. A new profile for the electrodes of the SWO was pro-
posed. The profile is based on a curvilinear coordinate system called Inverse Pro-
late Spheroidal (IPS) coordinate system. Design equations were derived for pro-
ducing the electrodes, starting from the basic geometric requirements of spark gap 
distance and radii of the coaxial transmission line. It was shown that the proposed 
IPS profile results in an optimal distribution of the electric field, with a peak am-
plitude occurring on the axis of symmetry of the SWO, and a smooth, monotonic 
decrease as one moves away from the discharge point towards the coaxial trans-
mission line. The Laplace equation was solved on this curvilinear space and ana-
lytical expressions for the electrostatic field and potential were obtained. 

Electrostatic numerical simulations were performed for an illustrative example. 
The resulting distributions of the electric field and potential were presented and 
discussed. It was shown that the derived analytical expressions are in excellent 
agreement with finite-element numerical simulations, especially for SWOs having 
a low impedance coaxial line. 

6.2 ELECTRODYNAMIC DESIGN OF SWOs 
Analytical expressions for the electric and magnetic fields within the radial 

transmission line formed by the IPS electrodes were derived. A one-dimensional 
approximation for the potential and the fields was proposed. This approximation 
was shown to be accurate for typical SWOs for which the characteristic imped-
ance of the coaxial line is very low (lower than 5 Ohms or so).  

It was analytically demonstrated that the radial transmission line (RTL) of an 
SWO can be treated as a non-uniform transmission line. For the first time, an ana-
lytical expression for the characteristic impedance of the RTL of SWOs was de-
rived. 

An original approach based on the chain matrix parameters was developed for 
the analysis and modeling of an SWO connected to a frequency dependent anten-
na. The developed methodology permits the estimation of the electric field radiat-
ed by an SWO connected to an antenna of arbitrary behavior in the frequency do-
main.  

The presented approach permitted to explain why in the case of a monopole an-
tenna, the resonance frequency of the produced wave is different from the intend-
ed resonance frequency, in spite the fact that both the SWO and the monopole an-
tenna were resonant at the same frequency.  
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The influence of the losses of the spark gap on the radiated signal was studied 
and discussed. It was shown that small changes in the resistance of the spark gap 
can reduce the amplitude of the radiated signal as well as the number of cycles. 

The general principles for developing a time domain model for the SWO were 
also presented and developed. 

6.3 APPLICATION OF THE PROPOSED DESIGN METHODOLOGY 
The developed models were used to design a prototype of a 433 MHz coaxial, 

quarter-wave SWO. The SWO integrates electrodes fabricated using the proposed 
IPS (Inverse of Prolate Spheroidal) profile. The erosion produced on the surface of 
the electrodes by the discharges showed that the majority of the discharges occur 
near the axis of symmetry, validating the electrostatic considerations developed in 
this work. 

The prototype was used for testing the validity of the electrodynamic model for 
the analysis of SWOs connected to frequency dependent antennas. Different mon-
opole antennas were connected to the SWO and the radiated fields were measured 
and compared with theoretical calculations. 

It was shown that the theoretical model was able to reproduce, with an accepta-
ble accuracy, the behavior of the SWO connected to a frequency dependent anten-
na. 

It is worth noting that the designed SWO can be connected in a straightforward 
way to more directive antennas. Preliminary work for connecting a Half Impulse 
Radiating Antenna (HIRA) to the SWO has already been performed by the author. 

The base design of the prototype can easily be modified, in order to reach high-
er breakdown voltages.  

 
The prototype realized in the framework of this research study and the resulting 

modified prototype will be used for producing illuminating fields for IEMI testing 
and assessments. Furthermore, they are also applied to research activities related 
to humanitarian demining and clearance operations in Colombia, carried out with-
in the framework of an international collaboration involving the EMC laboratory 
of EPFL and the EMC group of the National University of Colombia and co-
funded by the EPFL Centre Cooperation & Development (CODEV) ant the Swiss 
Agency for Development and Cooperation (SDC). 
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Equation Chapter 1 Section 1 

APPENDIX 1 
A TIME DOMAIN MODEL OF THE SWO 

APPENDIX 1. A Time Domain Model of the SWO 

The dynamic behavior of the spark gap discharge and its effects on the SWO 
cannot be fully characterized by the linear model presented in Chapter 4. We pre-
sent in this Appendix the basis of a time domain model for the analysis of SWOs. 

In [1] Santamaría et. al. presented a model for the calculation of the SWO using 
a time domain simulation in Alternative Transients Program (ATP). However the 
code works only for constant impedance antennas. The model we present on this 
section includes frequency dependent antennas. 

The starting point of the proposed approach is the two-port network model dis-
cussed in Chapter 4 and presented in Figure 1. 

 

Figure 1 Two-port representation of the SWO 
 

In this figure, V is the charging voltage, R is the high impedance charging re-
sistor, SG is the spark gap, and ZL(f) is the input impedance of the antenna. 

Notice that in this model we placed the charging voltage (V) on the left side of 
the two port network. This topology, even though not corresponding to the real 
situation in the SWO, can be considered as equivalent from a modeling point of 
view. 

We can calculate the input impedance of the two-port network seen by the SG, 
namely the impedance seen at the input of the ABCD two-port network. 

By definition: 

 

1 2

1 2

( ) ( )( ) ( )

( ) ( ) ( ) ( )

V f V fA f B f

I f C f D f I f

    =    
      (1) 

From which the input impedance can be calculated as: 

 1 2
1

1

2

( )

B
A

V Z
Z f

DI C
Z

+
= =

+
 (2) 
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The equivalent circuit of Figure 1 can therefore be reduced to the one shown in 
Figure 2. 

 
Figure 2 Equivalent circuit seen by the spark gap 

 
Notice that V and R are assumed to be constant in time and independent of fre-

quency. 
This circuit can be transformed into a time domain equivalent circuit where the 

spark gap is represented by a time-varying resistor (see Figure 3). 

 
Figure 4 Time domain equivalent of the circuit at the spark gap  

In this figure, z1(t) is the inverse Fourier transform of the impedance Z1(f) and  
RSG(t) is the time varying impedance of the spark gap. 

Several equivalent models for the behavior of the spark gap exists [2]. As an 
example we will the Toepler model [3], according to which the impedance of the 
spark gap is: 

 
0

( )

( )( )

g
SG tht

gSG

gOff SG th

i t
k if V V

i t dtR t

R if V V


≥= 

 <

  (3) 

where Vth is a threshold voltage, k is a constant and RgOff  is the open circuit re-
sistance of the spark gap, typically in the order of several Giga-Ohms.  

With these elements, the following equations can be established for the circuit 
of Figure 2: 

 1 1( ) ( ) * ( )V Ri t i t z t= +  (4) 
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This can be transformed into: 

 1 1 1( ) ( ) ( )* ( )gV Ri t Ri t i t z t= + +  (5) 

where * denotes the convolution operator 
The second equation is simply: 

 1 1 1( ) ( ) * ( ) ( )gv t i t z t v t= =  (6) 

If v1(t) < Vth, Equation (6) can be written as: 

 .. (7) 

If v1(t) > Vth, Equation (6) can be written as: 

 
1 1 0

0

( )
( ) * ( )

( )

g

t

g

i t
i t z t k

i t dt
=


 (8) 

Equations (5) and (7)-(8) can be solved for i1(t), from which v1(t) can be ob-
tained and the output of the two-port network can be obtained either convolving 
v1(t) with the time-domain transfer function of the SWO or by Fourier transform-
ing v1(t) into frequency domain and multiplying it by the frequency domain trans-
fer function of the SWO.  

The equations can be discretized and solved as follows: 
The discrete convolution operator is defined as: 

 
0

( )* ( ) ( ) ( )
i

i i k i k
k

x t y t t x t y t −
=

≈ Δ   (9) 

The integral appearing in Equation (8) can be discretized as: 

 
0

0

( ) ( )
it

g g k
k

i t dt t i t
=

≈ Δ   (10) 

The system is calculated at discrete times ti=0, Δt, 2Δt, …, iΔt.  
During times ti ,i=2n, where n is a positive integer, ig(ti) is considered to be 

constant and i1(ti) is calculated, 
During times ti, i=2n+1, where n is a positive integer, i1(ti) is considered to be 

constant and ig(ti) is calculated, as follows: 
 
At times ti=2n, where n is a positive integer, we can calculate i1(ti) assuming that 

ig(ti)= ig(ti-1): 
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 ( ) ( ) ( ) ( )1 1 1
0

i

g k i k
k

i iV Ri Ri tt t i t z t −
=

= + + Δ     (11) 

This equation can be solved using the time marching approach proposed by 
Tesche in [4]  

 
1

1 1 1 1 1 0
0

( ) ( ) ( ) ( ) ( ) ( )
i

g i i k i k i
k

V Ri t Ri t t i t z t ti t z t
−

−
=

= + + Δ + Δ   (12) 

and i1(ti) can be calculated as: 

 ( )
( ) ( ) ( )
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1 1

1
0

0

1

i

g i k i k
k

i

V Ri t t i t z t
i t

t Rtz
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− − Δ
=
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 (13) 

At times ti=2(n+1), where n is a positive integer, it can be assumed that  
i1(ti)= i1(ti-1), and ig(t) can be calculated: 
 
If vg(t) < Vth 

 

( ) ( )1 1
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k i k
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g i
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Δ
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 If vg(t)  > Vth  

 ( ) ( ) ( ) ( )1 1 0
0 0

i i

g i k i k g
k k

ki t t i t z t k tt i−
= =

= Δ Δ   (15) 

Equation (15) can be solved using: 
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The procedure can be repeated iteratively.  
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SINGULARITIES INTRODUCED BY CAPACITIVE LOADS 

If the load of the SWO, Z2(f), is an open circuit at f=0 (for example if the an-
tenna is a dipole or a monopole), the impedance Z1(f) will also be singular at f=0. 
This will be proven in what follows. 

The total ABCD parameters of the SWO (including only the RTL and the coax-
ial line) are calculated as the chain product of the ABCD parameters of multiple 
ABCD matrices: 

 
1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

m
Total Total n n Coax Coax

nTotal Total n n Coax Coax

A f B f A f B f A f B f

C f D f C f D f C f D f=

      
= ×             

∏  (19) 

where An(f), Bn(f), Cn(f), and Dn(f) are the ABCD parameters of the nth segment of 
the RTL and  ACoax(f), BCoax (f), CCoax (f), DCoax (f) are the ABCD parameters of the 
coaxial line. 

By definition, the ABCD parameters of a lossless transmission line of length L 
and characteristic impedance Zo are: 

 
0

0

cosh( ) sinh( )
( ) ( )

sinh( )
cosh( )( ) ( )

j L Z j L
A f B f

j L
j LC f D f

Z

β β
β β

Δ Δ 
   = Δ   Δ    

 (20) 

At frequency f=0: 

 (0) (0) 1 0

(0) (0) 0 1

A B

C D

   =   
   

 (21) 

And Equation (19) becomes: 

 (0) (0) 1 0

(0) (0) 0 1
Total Total

Total Total

A B

C D

   
=   
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 (22) 

 
From Equation (2) and knowing that 20

lim ( )
f

Z f
→

= ∞ , we have 

 2
10 0 0

2

( )
( )

( )( )
lim ( ) lim lim

( ) ( )( )
( )

f f f

B f
A f

A fZ f
Z f

D f C fC f
Z f

→ → →

+
= = = ∞

+

 (23) 

This singularity forbids the direct computation of the inverse Fourier transform 
of Z1(f). This discontinuity can be avoided using the following approach: 

If the singularity is of the type 1/f, we can express the input impedance as: 
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1 1

1
( ) ( )

2 AZ f Z f
j fπ

=  (24) 

leading to: 

 [ ]1 1
1 1 1

1
( ) ( ) ( )

2 Az t Z f Z f
j fπ

− −  
= =  

 
   (25) 

where ॲିଵ[		] is the inverse Fourier transform operator 

 [ ]1
1 1 10 0
( ) ( ) ( )

t t

A Az t Z f dt z t dt−= =   (26) 

Therefore, Equation (5) becomes: 

 1 1 10
( ) ( ) ( ) * ( )

t

g AV Ri t Ri t i t z t dt= + +   (27) 

which can be transformed into: 

 1 1 10
( ) ( ) ( ) * ( )

t

g AV Ri t Ri t i t z t dt= + +   (28) 

Taking the first derivative at both sides: 

 1
1 1

( )( )
( ) ( ) * ( )g

A

di tdi t
V t R R i t z t

dt dt
δ = + +  (29) 

Equation (6) becomes: 

 1( ) ( )gv t v t=  (30) 

If vg(t) < Vth we have  

 ( )1 10
( ) * ( ) ( )

t

A g gOffi t z t dt i t R=  (31) 

If vg(t) > Vth 

 ( )1 10

0

( )
( ) * ( )

( )

t g
A t

g

i t
i t z t dt k

i t dt
=


 (32) 

Equations (29), (30) can be solved iteratively, using the procedure presented in 
the previous section.  
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Using the discrete time definition for the convolution, Equation (29) becomes: 

 ( ) ( )11 1 1
1 1

0

( ) ( )( ) ( )
( ) ( ) ( )

i
g i g ii i

i k A i k
k

i t i ti t i t
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−−
= + + Δ

Δ Δ   (33) 

The convolution sum can be split to give 
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11 1 1
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Therefore, for times ti=2n, the current i1(t) can be calculated as: 
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For i=2n.  

 1 1 1( ) ( )i ii t i t −=  (36) 

For i=2n+1  
 
The current ig(t) can be calculated using: 
If vg(t) < Vth 
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If vg(t) > Vth 
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Equations (35) and (41) can be solved for i1(t), from which v1(t) can be ob-
tained. The output of the two-port network can be obtained either by convolving 
v1(t) with the time-domain transfer function of the SWO or by Fourier transform-
ing v1(t) into the frequency domain 
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