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Avant-propos
Ce travail a été mené au cours d’un séjour au Politecnico di Milano, Italie, entre
les mois de février et de juin 2013. J’ai été supervisé par le Dr. Laura M. Sangalli,
chercheuse associée au laboratoire de modélisation et de calcul scientifique (MOX)
du département de mathématique Francesco Brioschi du Politecnico di Milano. Ce
projet s’inscrit dans le cadre de mon master en ingénierie mathématique entammé
à l’Ecole polytechnique fédérale de Lausanne en septembre 2011.

Foreword
This work has been done during a stay at the Politecnico di Milano, Italy, between
February and June 2013. I have been supervised by the Dr. Laura Sangalli, as-
sociate professor at the modelling and scientific calculus laboratory (MOX) of the
mathematical department “Francesco Brioschi” of the Politecnico di Milano. This
thesis is a part of my master initiated in September 2011 at the Ecole polytechnique
fédérale de Lausanne.
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Résumé
Nous proposons une méthode noavatrice pour l’analyse de données spatialement dis-
tribuées sur des surfaces dont les bords sont irréguliers et qui sont la réalisation d’une
variable exponentielle. On considère le contexte des modèles additifs généralisés et l’on
étend le travail de Sangalli et al. (2013) à des distributions autres que gaussiennes. En
particulier, on peut alors considérer les distributions de famille exponentielle (par exem-
ple des données binomiales, de Poisson ou de distribution gamma), et ainsi disposer d’un
modèle avec un fort potentiel d’application. Pour l’ajustement du modèle, on maximise
une fonction de log-vraisemblance pénalisée. Le terme de pénalisation tient compte d’un
opérateur différentiel appliqué à la fonction que l’on cherche à estimer. Le modèle permet
aussi d’inclure des informations auxiliaires telles que des variables explicatives. Le modèle
proposé utilise des méthodes issues du domaine du calcul scientifique et fait en particulier
usage de la méthode des éléments finis, qui permet d’imposer des conditions au bord à la
fonction recherchée. Finalement, on étend de manière théorique le modèle développé pour
des données distribuées sur une surface non planaire.

Abstract
We propose a novel method for the analysis of spatially distributed data from an expo-
nential family distribution, able to efficiently treat data occurring over irregularly shaped
domains. We consider a generalized linear framework and extend the work of Sangalli
et al. (2013) to distributions other than the Gaussian. In particular, we can handle all
distributions within the exponential family, including binomial, Poisson and Gamma out-
comes, hence leading to a very broad applicability of the proposed model. We maximize
a penalized log-likelihood function. The roughness penalty term involves a suitable differ-
ential operator of the spatial field over the domain of interest. This maximization is done
via a penalized iterative least square approach (see Wood (2006)). Covariate information
can also be included in the model in a semi-parametric setting. The proposed models
exploit advanced scientific computing techniques and specifically make use of the Finite
Element Method, that provides a basis for piecewise polynomial surfaces and allows to im-
pose boundary conditions on the space distribution of the probability. Finally, we extend
theoretically the model to deal with data occurring on a two dimensional manifold.

Key words
Generalized additive models, spatial spline regression, finite element method, penalized
regression
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Notations

For a vector, bold lower case is used, for example µ. When a similar symbol in normal font
and with an index i is used, e.g µi, it denotes the ith component of the vector µ. Bold upper
case is used to denote a matrix. For example X denotes the design matrix. Normal lower case
usually denotes functions. Maximum likelihood, or maximum penalized likelihood estimates
are denoted with a hat, e.g., β̂. When a single variable function is applied to vector, it results
in vector whose components are the evaluation of the function at the components. For example,
g(µ) = (g(µ1), . . . , g(µn))t.
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Chapter 1

Introduction

Many datasets are considered as realizations of functions disturbed by random noise. These
data, called functional data, suggest that we seek to estimate the underlying function that
generated such a process. This type of analysis is relatively recent and is a very active field of
research in statistics (Ramsay and Silverman, 2005).

In this context, we aim to estimate a function. This unusual since we generally aims to
estimate parameters lying in a finite dimensional space. In the case of an estimation of a
function, the estimation process is generally in two stages. First, a subspace of finite dimension
of the functional space in which the function f (or is assumed to lie) the true function is chosen.
Then, the problem of estimating becomes a parametric estimation. The choice of this finite
dimensional subspace is then crucial and is usually subjective. As examples of finite dimensional
spaces, we can mention the subspace spanned by the Fourier basis, usually used for periodic
functions, or the subspace spanned by polynomials of a finite degree.

This project aims to extend the methodology developed in Sangalli et al. (2013). The finite
dimensional space used is generated by the finite element method. The finite element method
is widely used in the field of numerical approximation of partial differential equations (PDE’s).
It allows to make approximations which are piecewise polynomial surfaces. In addition, they
are suitable for estimates over complex domains, which is common in the field of PDE’s, and
allow to take into account boundary conditions. These characteristics make them particularly
suited to the context of functional data analysis (for an introduction to finite elements, see
Quarteroni (2009)).

The model developed in Sangalli et al. (2013) uses a least square error formulation which
can be also viewed as the log-likelihood of normally distributed data to approximate spatial
functions. This is not well suited for spatial distributed binary data, for example. The pur-
pose of this project is to extend this model to other distributions such as Bernoulli, Poisson
or Gamma. We use a methodology inspired from the one used to extend linear models to
generalized linear models. In addition, as it is commonly done in the area of functional data
analysis, a penalty ensures that the estimated function is smooth enough.
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Chapter 2

Model and Motivation

In this project, our aim is to extend the model developed in Sangalli et al. (2013) to other
distributions than normal distribution. We propose a generalized additive model (GAM), also
called as generalized semiparametric regression model, (see Hastie and Tibshirani (1986, 1990);
Wood (2006); Bickel et al. (1993)).

Let {pi = (p1i, p2i); i = 1, . . . , n} be a set of n points on a bounded regular domain Ω ⊂ R2,
zi the corresponding value of the observed variable at the point pi and let xi = (x1i, . . . , xqi)t
be a q-vector of covariates associated to the observation yi. The goal is to deal with models of
the type:

g (E [Yi | xi,pi]) = xtiβ + f(pi), Yi | xi,pi ∼ exponential family distribution (2.1)

where g(.) is a link function (see section 2.2 for details about exponential family distribution).
We aim to estimate both β ∈ Rq and f ∈ F , a function which belongs to a functional space F
to be defined. Many different methods have been developed to deal with this kind of problems.
Since the function f belongs to a functional space, it is usual to estimate the function f using
FK , a finite dimensional approximation of the (hilbertian) functional space F of dimension K ∈
N. Using a basis {ψ1, . . . , ψK} of FK , the problem (2.1) simplifies to a traditional generalized
linear model (GLM).

The goal of this project is to find an efficient way to compute estimates of the vector β and
of the function f . As for a traditional GLM, we will use an iterative algorithm to approximate
the solution of the maximum likelihood, called Iterative Reweighted Least Squares (IRLS, see
McCullagh and Nelder (1989, p. 40-43)). In this case, we will use particular case of this
algorithm to take into account the penalization of the functions that must ensure a sufficient
smoothness of the approximation of the function f .

2.1 Data and model
We wish to estimate the parameter β and the function f , according to model (2.1).

A roughness penalization of the function f is needed in order to avoid overfitting of the
function. The iterative procedure aims to compute, for a given value of λ, the maximum
likelihood estimates β̂ ∈ Rq and f̂ ∈ FK of the model, corresponding to the maximum of the
penalized log-likelihood function:

Lp(β, f) =
n∑
i=1

l(yi; ηi(β, f))− λ
∫

Ω
(∆f)2, (2.2)

where, l(·) is the log-likelihood, ηi = xtiβ + f(pi) and λ is a positive constant. In the case
where the distribution of Yi is normal, the log-likelihood function is easy to optimize because
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of the quadratic form of the penalized log-likelihood function. Actually, this functional can be
written as:

LGaussian(β, f) = ‖y−Xβ − fn‖2 − λ
∫

Ω
(∆f)2,

where fn = (f(p1), . . . , f(pn))t. In the Gaussian case, the optimum is simply the solution
of a linear system which is obtained after discretization of the functional space F (Sangalli
et al., 2013). In the more general case of a distribution belonging to the exponential family, the
penalized log-likelihood function may not be a quadratic form. We use an iterative algorithm to
find this optimum. One of the well-known methods used in the context of GLM is the Iterative
Reweighted Least Square (IRLS, (McCullagh and Nelder, 1989)). The idea is to compute at
each step a weighted least square estimation. In our case, due to the penalization term, we
will use a slightly different form of this algorithm, called Penalized Iterative Reweighted Least
Squares (PIRLS, see Wood (2006) or Wood (2011)). This allows us to use the procedure
developed in Sangalli et al. (2013) at each step of the algorithm.

2.2 The framework: the exponential family
A random variable Y is said to belong to the exponential family if its distribution can be written
as:

fY (y) = exp {(yθ − b(θ))/a(φ) + c(φ, y)} ,
where a(·), b(·) and c(·) are arbitrary functions subject to some regularity constraints (McCul-
lagh and Nelder, 1989). The parameter θ is called canonical parameter and φ is called scale
parameter. In the context of GLM, we have g(µ) = η, where µ is the mean, g(·) a link function
and η = xtβ is called the natural parameter. So η is modelled as a linear combination of the
observation x and thus, influence the modelling of the distribution. Link functions are con-
tinuous, strictly monotonic functions and are therefore invertible. On one hand, we have the
following properties, for general maximum likelihood estimates:

E0

[
∂l

∂θ

∣∣∣∣
θ=θ0

]
= 0,

var
(
∂l

∂θ

∣∣∣∣
θ=θ0

)
= E0

[
∂l

∂θ

∣∣∣∣2
θ=θ0

]
,

E
[
∂l

∂θ

∣∣∣∣2
θ=θ0

]
= E0

[
∂2l

∂θ2

∣∣∣∣
θ=θ0

]
,

(2.3)

where θ0 is the maximum likelihood estimate and the subscript 0 is to emphasize that the
expectation is taken with respect to the density function f(y; θ0). On the other hand, simple
calculations show that, for an exponential family distribution, we have:

E
[(

∂l

∂θ

)]
= E[Y ]− b′(θ)

a(φ) .

Thus, we have:
b′(θ) = µ.

Using the second and the third property of (2.3), we have then:

var(Y ) = b′′(θ)a(φ).

Until now, we have made no restrictions about the function a(·). Actually, it is usual to consider
distribution where a(φ) is of the form a(φ) = φ/r, which allows heteroscedastic models and
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covers all the cases of practical interest (Wood, 2011, p.63). More complex forms of a(·) won’t
be considered here. Usually r is set to 1. Thus in this case the variance can be written as:

var(Y ) = b′′(θ)φ
r

.

Since θ depends on the mean µ, we can always define a function V (·) such that

var(Y ) = V (µ)φ.

This function is called variance function. Under regularity conditions, and since we have b′(θ) =
µ, we have:

V (µ) = b′′((b′)−1(µ)),

where, (b′)−1(·) is the reciprocal function of the first derivative with respect to θ of the function
b(·).

On one hand we have b′(θ) = µ and the other hand, we have g(µ) = η = xtβ. In the case
where η = θ, that is b′(·) = g−1(·), the link function is said to be canonical. Therefore, for
every exponential distribution, there is a canonical link function. For the binomial distribution,
the canonical link function is the logit function. Other link functions are available for binary
responses such as the probit or the c-loglog. The choice of the link function is not discussed
since it is not the purpose of this work.

2.3 Penalized iterative reweighted least squares algorithm
The goal of this algorithm is to approximate the optimum of the functional given in (2.2). To
achieve this, we approximate at each step of the algorithm the penalized negative log-likelihood
(up to a scale factor) with a quadratic form and we solve a simpler least square problem. The
main problem is that the penalized log-likelihood optimisation problem is complex to solve
since the link function g is usually not linear (except in the Gaussian case) and therefore, we
use this iterative procedure. Let λ be a positive smoothing parameter. For a given vector µj,
we define:

ηj = g(µj), X =


xt1
...

xtn

 , Wj = diag
(

1
V (µj)(g′(µj))2

)
, fn = (f(p1), . . . , f(pn))t,

where V (·) is the variance function associated to the distribution of the observations, and g is
the link function1. We can then approximate the solution of minimizing (2.2) as the minimum
of (see section 4 for a rigorous justification):

J̃λ(β, f) = ‖(Wj)1/2(zj −Xβ − fn)‖2 + λ
∫

Ω
(∆f)2,

where zj = ηj + g′(µj)(y − µj) is called “pseudo-data”, i.e., the first order approximation of
g(y), assuming that y is in the neighbourhood of µj.

Given µj, the algorithm is the following:

1. Compute ηj, zj and Wj.
1When a univariate function, such as g here is applied to a vector, it is meant to apply element wise.
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2. Solve the problem of finding β̃j and f̃ j that
minimize ‖(Wj)1/2(zj −Xβ − fn)‖2 + λ

∫
Ω

(∆f)2 (or a finite dimensional approximation
of this functional)

3. Set µj+1 = g−1(Xβ̃j + f̃ jn)

For the initialization, we set µ0 = y except in the logistic case where µ0 = 1/2(y + 1/2).
There are various convergence criteria to detect convergence of the process, here we use one

based on a sufficiently small variation of the objective function between two iterations.
Such an iterative process is usual in the context of GAM and the particularity of our method

is in finding an efficient way to solve the minimization problem at the step 2 of the algorithm.

2.4 Weighted penalized least square minimization prob-
lem

Given the current (diagonal) weight matrix W and a design matrix X, we want to minimize
the following functional with respect to (β, f):

J̃λ(β, f) = ‖W1/2(z−Xβ − fn)‖2 + λ
∫

Ω
(∆f)2. (2.4)

We will add a tilde over variables which achieve the minimum of the functional J̃λ. First, we
need to recall a classical result known as the Lax-Milgram lemma, which will be used later:

Proposition 1
Let F be a Hilbert space, G(·, ·) : F × F → R a continuous and coercive bilinear form,
F (·) : F → R a linear and continuous functional. Then there exists a unique solution to the
problem:

find u ∈ F such that: G(u, v) = F (v), ∀v ∈ F .

Moreover, if G(·, ·) is symmetric, then u characterize the unique minimizer in F of the functional
J(·) : F → R, defined as

J(v) = G(v, v)− 2F (v).

The Lax-Milgram lemma states an equivalence between two problems. We will use this
fact to solve a equivalent problem instead of minimizing (2.4). Now we can show the following
result:

Proposition 2
If X is a full-rank matrix, and if Wii 6= 0, i = 1, . . . , n, the solution (β̃, f̃) to the minimization
problem (2.4) satisfies:

1. β̃ = (X tWX)−1X tW (z− f̃n),

2. f̃ satisfies:
utnQ f̃n + λ

∫
Ω

(∆u)(∆f̃) = utnQ z, ∀u ∈ F .

where Q = (I − H)tW(I − H) and H = X(XtWX)−1XtW. Moreover, the solution
(
β̃, f̃

)
exists and is unique.
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Proof. First of all, given f , the unique minimizer of the functional J̃λ(β, f) is given by:

β̃(f) = (XtWX)−1XtW(z− fn). (2.5)

To show that, we take the derivative of J̃λ(β, f) with respect to β:

∂J̃λ(β, f)
∂β

= −2XtW(z− fn) + (XtWX)β.

Since X is assumed to be a full-rank matrix and since W is invertible (Wii is assumed to be
strictly positive, because Wii 6= 0 and Wii ≥ 0 by construction), XtWX is invertible. Finally
the necessary condition ∂J̃λ(β̃, f)/∂β = 0 is satisfied if and only if β̃ is given by (2.5). Since
for fixed f , J̃λ(β, f) is clearly convex, β̃ is a minimum. For vector and matrices derivation
rules, see for example Felippa (2012).

Setting H = X(XtWX)−1XtW, Q = (I−H)tW(I−H), and plugging β̃ into the objective
function, we have the following form of the functional:

J̃λ(f) = ztQ z− 2fnQ z + f tnQ fn + λ
∫

Ω
(∆f)2. (2.6)

Since we want to optimize this functional with respect to the function f only, we can rewrite
the problem (2.6) as:

find f̃ ∈ F that minimizes: Jλ(f) = f tnQ fn + λ
∫

Ω
(∆f)2 − 2fnQ z, (2.7)

which could be written as G(f, f)− 2F (f), where G is a symmetric, coercive and continuous,
bilinear form on F×F and F a linear and continuous functional on F . Using the Lax-Milgram
lemma and thanks to the symmetry of G(·, ·), the problem (2.7) is equivalent to the problem of

find f̃ ∈ F such that: G(f̃ , u) = F (u) ∀u ∈ F .

The hypotheses of the Lax-Milgram lemma are fulfilled since the bilinear form G is coercive and
continuous and since the linear form F is also continuous. The verification of these hypotheses
are very simple and we do not address this issue. A rigorous proof of the equivalence of the
problems and of the uniqueness of f̃ , applied to this particular case can also be found in
Azzimonti (2013). In our case, we can identify the bilinear form G as:

G(v, u) = utnQ vn + λ
∫

Ω
(∆u)(∆v),

where un = (u(p1), . . . , u(pn))t, and the linear functional F as:

F (v) = vtnQ z.

So finally the solution of minimizing (2.7) is given by:

find f̃ ∈ F such that: utnQ f̃n + λ
∫

Ω
(∆u)(∆f̃) = utnQ z ∀u ∈ F . (2.8)

The uniqueness of the minimizer is also stated by the Lax-Milgram lemma. We conclude that
f̃ exists and is unique hence β̃ exists and is unique.
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Chapter 3

Finite Elements Formulation

3.1 A very short introduction
The Finite Elements Method (FEM) is a widely used method to compute numerical solutions
of physical problems driven by partial differential equations. The idea is to find the best
approximation belonging to a given finite dimensional space. First of all, we divide the domain,
embedded in R2, into triangular subdomains. The set of triangles resulting from this process is
called a mesh. The mesh generation is a very complicated procedure and a abundant literature
is dedicated to this subject (see, for example Cheng et al. (2013)). Then we impose that
finite element solution must be polynomial in x and y (in this case, polynomial of order 1 or
2) over all triangles and continuous across edges and vertices. For every node ξj, we define
a function ψj which is piecewise polynomial of the prescribed order and such that we have
ψi(ξj) = δij, ∀j = 1, . . . , K. The dimension of the finite element space is then the number of
nodes, that is K. This kind of basis is referred to as Lagrangian finite elements. We will use
a finite element basis to get a finite dimensional approximation FK of the functional space F .
Then, we will compute the “best” approximation f̂ ∈ FK of the function f . The meaning of
the word “best” is the following: since we are looking for the solution of the problem (2.7) and
that G(u, v) is bilinear, symmetric and positive definite over F ×F , it can be proven that the
error is orthogonal to the solution in the sense of the inner product G(., .), that is the finite
element solution is the projection of the true solution on FK . This property is called Galerkin
orthogonality.

For more informations about FEM, see for example Quarteroni (2009).

3.2 Reformulation of the problem
We have seen that we have to solve at each step of the PIRLS algorithm a minimisation problem.
It has been shown that such a problem can be reduced to solving a linear system (Sangalli et al.,
2013). We describe this procedure in the following discussion.

First of all, we recall the minimization problem to be solved at each step of the algorithm:

min
(β,f)∈Rq×F

J̃λ(β, f) = ‖W1/2(z−Xβ − fn)‖2 + λ
∫

Ω
(∆f)2,

where W is the diagonal weight matrix and z is the pseudo-data at the current step of the
algorithm. The functional J̃λ(β(f), f) can be expressed as G(f, f) − 2F (f), as previously
stated (see equation 2.7). The minimization problem is then equivalent to solve the problem
G(f, u) = F (u), ∀u ∈ F . This equivalent problem is called weak formulation. We will describe
the computations yielding to the solution of this problem.
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First of all, given a function f , the maximizer of Jλ(β, f) is given by

β̃ = (X tWX)−1X tW (z− fn).

Moreover, f̃ must satisfy (2.7).
Now, we can recall a simple property of real hilbertian vector spaces. Let a,b ∈ V , where

V is a real hilbertian vector space. We have the following property:

a = b⇔ 〈a, c〉 = 〈b, c〉 , ∀c ∈ V. (3.1)

Therefore, we can characterize any vector of F since F is a real vector space. Thanks to this
characterization, we will reformulate the problem (2.8) substituting ∆f̃ by another function g̃.
Problem (2.8) then becomes:


utnQ f̃n + λ

∫
Ω

(∆u)g̃ = utnQ z, ∀u ∈ F ,∫
Ω

(∆f̃) v =
∫

Ω
g̃ v, ∀v ∈ F .

(3.2)

This justification is only formal since the functional spaces used are Sobolev spaces. Actually
all the functions considered are defined up to a set of null measure. We only want to give an
intuition to the reader. For a more rigorous development, see Azzimonti (2013, chapter 2).

From the Green formula we get:∫
Ω

(∆u)g̃ = −
∫

Ω
∇u · ∇g̃ +

∫
∂Ω
g̃
∂u
∂n

,

where n denotes the outward-pointing normal vector to the boundary. In our case, we consider
functions whose normal derivative vanishes on the boundary, hence we have

∫
∂Ω
g̃
∂u

∂n
= 0. We

get then: 
utnQ f̃n − λ

∫
Ω
∇u · ∇g̃ = utnQ z ∀u ∈ F ,

−
∫

Ω
∇f̃ · ∇v =

∫
Ω
g̃ v ∀v ∈ F .

(3.3)

In this setting, we will find two different functions, f̃ and g̃. In a finite dimensional space, (3.3)
results in a sparse linear problem.

These computations, apparently easy, are only formal. To justify this development, strong
and subtle hypotheses are required. Such a rigorous approach is done in Azzimonti (2013).

3.3 From weak formulation to linear systems
We will show how the weak formulation problem leads to a linear problem using finite elements.
Let F̂ be a K dimensional finite element subspace of F . Then both equations of the problem
(3.3) could be written in the form:

G̃(h, u) = F̃ (u) ∀ũ ∈ FK , (3.4)

where G̃ is a symmetric, bilinear form and F̃ is linear functional. Since FK is finite dimensional,
there exists a basis, {ψ1, . . . , ψK} of the vector space FK . If (3.4) is satisfied for any element

20



of the basis, thanks to the bilinearity of G̃ and to the linearity of F̃ , then it will be satisfied for
any element of FK . We can expand any function h ∈ FK in the basis of FK as:

h(x) =
K∑
i=1

hiψi(x), hi ∈ R, ∀i = 1, . . . , K,

which can also be written as:

h̃ = htψ, where h = (h1, . . . , hK)t, and Ψ = (ψ1(x), . . . , ψK(x)) .

Finally, we get the following linear system:
K∑
i=1

hi G̃(ψi, ψj) = F̃ (ψj), ∀j = 1, . . . , K.

Using this, we only have to compute the values G̃(ψi, ψj) and F̃ (ψj), i, j = 1, . . . , K and solve
the system.

In our case, for the first equation, we have:

G1(s, t) = stnQ tn − λ
∫

Ω
∇s · ∇t, F1(s) = stnQ z.

and for the second one:

G2(s, t) =
∫

Ω
∇s · ∇t+

∫
Ω
s t, F2(s) = 0.

Instead of Ω, we will use ΩT , a polygonal approximation of the domain, resulting in a regular
triangulation of Ω.

Finally, this allows us to construct the linear system. We define the K × K matrices R0
and R1, called mass and stiffness matrix respectively, as:

(R0)ij =
∫

ΩT
ψi ψj, (R1)ij =

∫
ΩT
∇ψi · ∇ψj.

We introduce the order K block matrix L and the K × n block matrix P1, defined as:

L =

 Q On×(K−n)

O(K−n)×n O(K−n)×(K−n)

 and P1 =

 In

O(K−n)×n

 .
Finally, if f̃ and g̃ denote the vectors of coefficients of the expansion of the functions f̃ and g̃
in the basis ψ, we can write the linear system corresponding to the problem (3.4) as:[

−L λR1
λR1 λR0

] [
f̃
g̃

]
=
[
−LP1z

0

]
. (3.5)

For computational reasons, we have symmetrised the problem. In this context, g̃ = g̃tψ is an
approximation of the function ∆f̃ . In order to get the vector f̃n which is the vector of the values
of f̃ evaluated at the points p1, . . . ,pn, we need the values of the coefficients of the vector f̃
corresponding to these points. We choose a triangulation such that the vertices of the triangles
coincide with the locations of the observation. Hence thanks to the fact that, for a given node
ξi, we have ψj(ξi) = δij, where δij is the Kronecker symbol, we have f̃(pi) = f̃i. We can then
estimate the value of the functional that we have minimized at the current estimates as:

J̃λ(β̃, f̃ , g̃) =
(
z−Xβ̃ − f̃n

)t
Q

(
z−Xβ̃ − f̃

)
+ λ g̃t R1 g̃
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3.4 Explicit form of the estimates
Thanks to (3.5), we can give the explicit forms of the estimates:

f̃ =
(
L + λR1R−1

0 R1
)−1

LP1z.

Since we have chosen a mesh whose internal nodes coincide with the data, writing, P2 =
[In On×K−n], we have:

f̃n = P2f̃ = P2
(
L + λR1R−1

0 R1
)−1

LP1z.

Replacing that value in (2.5), we get:

β̃ = (XtWX)−1XtW(z− f̃n) =
(

(XtWX)−1XtW−P2
(
L + λR1R−1

0 R1
)−1

LP1

)
z.

We can then conclude that both estimates, β̃ and f̃ depend linearly on the pseudo-data z.
However, since the pseudo-data do not depend linearly of the data themselves, we cannot use
this fact to give closed expressions for the mean and for the variance, as it is done in Sangalli
et al. (2013).

We can finally define the hat matrix R for the generalized additive model (see Hastie and
Tibshirani (1990, p. 156)) as the matrix such that, at convergence:

η̂ = Rz, (3.6)

where η̂ is the natural parameter at the convergence and z is, in this context, the last pseudo-
data, i.e., the pseudo data at the convergence. In this case, the hat matrix is given by:

R =
(

(XtWX)−1XtW + (I−X)P2
(
L + λR1R−1

0 R1
)−1

LP1

)
.

This hat matrix is important because it is the matrix which define the equivalent degree of
freedom. See section 5.2 for more details.

3.5 Generalization to a mesh independent of the data
points

We saw that it might be convenient to use a mesh whose internal nodes are exactly the location
of the data points. Obviously, it is useless to refine the mesh where there is no data points and
at the contrary, it seems reasonable to have a finer mesh where there is higher density of data
points. In this case the finite element subspace becomes then dependent of the location points.

If we use a constrained mesh where the internal nodes coincide with the location of the
data, setting that for i = 1, . . . , n, ψi is the basis function corresponding to the location pi, the
unknown f̃n, defined as:

f̃n = (f̃(p1), . . . , f̃(pn))t,
is also the n first components of the unknown vector f̃ . We can then easily solve the system
(3.5).

On the contrary, if the location points do not coincide with nodes, we do not have the fact
that f̃i = f̃(pi),∀i = 1, . . . , n. So we have to compute the value of fn related to the vector f̃ .
Let Ψ be the n×K matrix defined as:

(Ψ)ij = ψj(pi).
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Then f̃n = Ψf̃ . The system becomes (3.5):[
−Ψt Q Ψ λR1
λR1 λR0

] [
f̃
g̃

]
=
[
−ΨtQ z

0

]
. (3.7)

Indeed, the penalization matrix is not influenced by this modification and the other blocks of
the matrix (3.7) are identical to those of (3.5).

The computation of the estimates then becomes:

f̃ =
(
Ψt Q Ψ + λR1R−1

0 R1
)−1

ΨtQz,

and

β̃ = (XtWX)−1XtW(z− f̃n) =
(

(XtWX)−1XtW−Ψ
(
Ψt Q Ψ + λR1R−1

0 R1
)−1

ΨtQ
)

z.

As in the case of data constrained mesh, we can easily define a matrix R such that η̂ = Rz,
where z is the pseudo-data at convergence.
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Chapter 4

Justification of the PIRLS algorithm
and penalized log-likelihood

Since our model can be seen as a generalized additive model, we will use methods developed
in this context (Hastie and Tibshirani, 1986, 1990; Wood, 2006). In particular, the PIRLS
algorithm is suitable for our model. PIRLS aims to compute the maximum penalized likelihood
estimates β ∈ Rq and f̂ ∈ FK . Let m(., .) be a bilinear, symmetric and positive definite form
on F × F that represents the penalization. In our case, we are seeking to find the maximizer
of the following penalized log-likelihood:

Lp(β, f) = L(β, f)− λ m (f, f) , (4.1)

where, L(β, f) is the log-likelihood of the model. Until now, we do not have made precise
assumptions about the functional space F in which lies the function f . A necessary condition
to ensure the existence of a solution to the problem of minimizing (4.1) is that f ∈ H2(Ω).
Moreover, suitable boundary conditions are required to ensure well-posedness of the problem.
For more precise references about the functional framework, we refer to Azzimonti (2013). In
particular, the use of a mixed finite elements approach for a 4 order minimization problem is
discussed.

The problem of maximizing the penalized log-likelihood is non-trivial since we deal with
functional spaces. As already mentioned, solving this problem is a two step process. The two
steps are the discretization and the optimization. If we first discretize and then optimize, we
seek an optimum in a finite dimensional space, which is a well-known problem. We can also
first optimize in the functional space and then find a finite dimensional approximation of this
optimum. These approaches are well-known in the context of optimal control theory. In this
work, we develop both approaches. Obviously, the so-called optimize-discretize approach is
more complex since the optimization is done in a functional space. In our case, this allows us
to reformulate the problem in order to use a similar approach to the one used in Sangalli et al.
(2013). Without that, we would not have obtained the problem of minimizing (2.4).

4.1 Functional derivation of the PIRLS algorithm
We know that the maximum values (β̂, f̂) of the functional (4.1) satisfy the following equations:

∂L(β̂, f̂)
∂βj

= 0, ∀j = 1, . . . , q,

lim
t→0

1
t

[
L(β̂, f̂ + tu)− L(β̂, f̂)

]
− λ m(u, f̂) = 0 ∀u ∈ F .

(4.2)
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Actually, since f̂ ∈ F , and F is infinite dimensional, we would have to consider the maximiza-
tion problem in an infinite dimensional space. We aim to compute the Gâteaux derivative of
the penalized log-likelihood to get the variational formulation of the minimization problem seen
in (2.4). The Gâteaux derivative is defined for functions in locally convex topological vector
spaces, such as Banach spaces and is a generalization of the concept of directional derivative.
Actually, the functional spaces used in our context are Sobolev spaces. The log-likelihood func-
tion L depends on β and f because the natural parameter θ depends on β and f . Given any
function u ∈ F , and any real number t, we then have:

L(β, f + tu)− L(β, f) =

=
n∑
i=1

ri
φ

[(yiθi(β, f + tu)− b(θi(β, f + tu))− yiθi(β, f) + b(θi(β, f)))]

=
n∑
i=1

ri
φ

(yiθi(β, f + tu)− yiθi(β, f)− (b(θi(β, f + tu))− b(θi(β, f))) .

Dividing this expression by t and taking the limit as t tends to 0 gives the Gâteaux derivative.
We have then:

∂L(β, u)
∂f

= lim
t→0

1
t

[L(β, f + tu)− L(β, f)]

= lim
t→0

1
t

(
n∑
i=1

ri
φ

[yiθi(β, f + tu)− yiθi(β, f)− (b(θi(β, f + tu))− b(θi(β, f))]
)

=
n∑
i=1

ri
φ

[
yi
∂θi(β, u)

∂f
− b′(θi(β, f))∂θi(β, u)

∂f

]
.

where b′(·) stands for ∂b
∂θ
. We have then to compute the value of ∂θi(β, u)

∂f
. Recalling that we

have E [Yi] = µi = b′(θi) and taking the derivative, we get:

∂µ

∂θ
= b′′(θ)⇒ ∂θ

∂µ
= 1
b′′(θ)

and hence:
∂θi(β, u)

∂f
= 1
b′′(θi)

∂µi(β, u)
∂f

.

We can conclude that we have:
∂L(β, u)

∂f
= 0⇔

n∑
i=1

ri
φ

(yi − b′(θi))
b′′(µi)

∂µi(β, u)
∂f

=
n∑
i=1

(yi − b′(θi))
var(Yi)

∂µi(β, u)
∂f

= 0.

Since we have var(Yi) = V (µi)φ and b′(θi) = µi, we have:

∂L(β, u)
∂f

= 0⇔
n∑
i=1

(yi − µi)
V (µi)

∂µi(β, u)
∂f

= 0.

On the other hand, we have to compute the derivative of the functional Lp with respect to
β. Hence we have:

∂Lp(β)
∂βj

=
n∑
i=1

ri
φ

(
yi
∂θi
∂βj
− b′(θi)

∂θi
∂βj

)
.

Since we have
∂θi
∂βj

= ∂θi
∂µi

∂µi
∂βj

= 1
b′′(θi)

∂µi
∂βj

,
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We finally get:
∂L(β)
∂βj

= 0⇔
n∑
i=1

(yi − µi)
V (µi)

∂µi
∂βj

= 0.

Putting all these results together and assuming that V (µi) is fixed, the solution of (4.2) is
equivalent to finding µ that satisfies

n∑
i=1

(yi − µi)
V (µi)

∂µi
∂βj

= 0, ∀j = 1, . . . , q,
n∑
i=1

(yi − µi)
V (µi)

∂µi(β, u)
∂f

+ λ m(f, u) = 0 ∀u ∈ F ,

which is itself equivalent to find the solution of minimizing the functional S:

S = ‖V−1/2 (y− µ) ‖2 + λ

2 m(f, f),

where V = diag(V (µ1), . . . , V (µn)), but considering this fixed and hence suggesting an iterative
computation.

We then develop a first order approximation of µ in the neighbourhood of the current value
(β0, f 0). We have:

µ(β, f) = g−1(Xβ0 + f0
n)︸ ︷︷ ︸

=µ0

+∂µ(β, f)
∂β

(β − β0) + ∂µ(β, f)
∂f

.

We have the to compute the partial derivatives of µ with respect to both variables β and f .
Since we have

g(µ0
i ) = xtiβ

0 + [f0
n]i ⇒

∂

∂βj
g(µ0

i ) = g′(µ0
i )
∂µ0

i

∂βj
= ∂

∂βj
xtiβ

0 = Xij ⇒ Jij = Xij

g′(µ0
i )
,

we get then:
µ(β, f)
∂β

= (G0)−1X,

where G0 = diag(g′(µ0)) and X is the design matrix.
Since µ(β, f) = g−1(η(β, f), η = (Xβ + fn), for the Gâteaux derivative of µ(β, f), in the

direction f , we have for ith component:

lim
t→0

µi(β0, f 0 + tf)− µi(β0, f 0)
t

= lim
t→0

g−1(ηi(β0, f 0 + tf))− g−1(ηi(β0, f 0))
ηi(β0, f 0 + tf)− ηi(β0, f 0)

ηi(β0, f 0 + tf)− ηi(β0, f 0)
t

= 1
g′(µ0

i )
[fn]i,

and thus we finally have a first order approximation of S in the neighbourhood of the current
value (β0, f 0):

S ≈ ‖V−1/2(G0)−1(G0(y− µ0)− η0 − fn)‖2 + λ

2 m(f, f),
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where η0 = Xβ0. Setting z0 = η0 + G0(y − µ0), and W0 the diagonal matrix such that
(W0)ii = 1

V (µ0
i )g′(µ0

i )2 , we can write S as:

S ≈ ‖(W0)1/2(z−Xβ − fn)‖2 + λ

2 m(f, f).

Since W0 is positive definite, S is approximately a quadratic form whose minimum exists and
is unique.

The likelihood of an exponential family distribution is strictly concave if a canonical pa-
rameter is used. Since the penalization term is concave too (it is minus a positive term), the
maximum of the penalized log-likelihood is unique, when it exists. Therefore, if the convergence
of the PIRLS is reached, it always results in the maximum penalized log-likelihood estimate.

4.2 Derivation of the penality matrix
If we consider the problem of minimizing the functional (4.1), it leads to an infinite dimensional
minimization problem. To avoid this problem, we discretize the penalization operator, in our
case the integral of the square of the Laplacian.

We consider any function h ∈ FK , where FK is K-dimensional finite element space with
basis functions {ψ1(x), . . . , ψK(x)}. We consider ΩT , a triangulation of the domain Ω. Our
penalization of the function is then written as:

p(h) =
∫

ΩT
(∆h)2 =

∫
ΩT

∆h ∆h.

Setting g = ∆h we can write:

p(h) =
∫

ΩT
∆h g, such that g = ∆h.

Using the characterization of (3.1), we can write:

p(h) =
∫

ΩT
∆h g, such that

∫
ΩT
g v =

∫
ΩT

∆h v ∀v ∈ FK .

Using the Green formula and thanks to the homogeneous Neumann boundary conditions, we
obtain:

p(h) = −
∫

ΩT
∇h · ∇g such that

∫
ΩT
g v = −

∫
ΩT
∇f · ∇v ∀v ∈ FK .

Since
∫

ΩT
g v = −

∫
ΩT
∇h · ∇v must be satisfied for all v ∈ FK , it is sufficient to satisfies this

condition for any element of the basis. We define the K ×K matrices R0 and R1 as in section
(3.3). Writing h and g as htψ and gtψ, we get:

p(h) = −htR1 g such that R1 h + R0 g = 0.

Finally, we can write the penalization of the function h as:

p(h) = ht Rt
1 R−1

0 R1 h.

We can conclude that the penalization matrix can be written as:

S̃ = Rt
1 R−1

0 R1 (4.3)
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4.3 Finite dimensional derivation of the PIRLS algo-
rithm

We are looking for the minimum of the penalized log-likelihood function. Let be β∗ = (β, f)t,
where β ∈ Rq and f t is the vector containing the values of coefficients defining the function
f̂ ∈ FK . For sake of simplicity let N = q+K be the dimension of the vector β∗. We can write
the finite dimensional approximation of the penalized log-likelihood as:

lp(β∗) = l(β∗)− λ β∗t

S β∗,

where S is a N ×N penalization matrix defined as:

S =

 Oq×q Oq×K

OK×q S̃

 .
Since we consider realizations of an exponential family distribution, we can write the density
of yi, with natural parameter θi, which depends of β∗, and scale parameter φ, as:

fθi
(yi) = exp {(yiθi − b(θi))/ai(φ) + c(φ, yi)} .

The functions b(·) and c(·), are arbitrary defined and we set that a has the form ai(φ) = ri

φ

and, in this case ri = 1. This choice is explained in the section 2.2. The log-likelihood of the
model is then:

l(β∗) =
n∑
i=1

ri [(yiθi − b(θi))/φ+ c(φ, yi)] .

Hence, the derivative of l(β∗) with respect to β∗j is:

∂l(β∗)
∂β∗j

= 1
φ

n∑
i=1

ri

(
yi
∂θi
∂β∗j
− b′(θi)

∂θi
∂β∗j

)
.

Using the chain rule, we have:
∂θi
∂β∗j

= ∂θi
∂µi

∂µi
∂β∗j

.

Since we have µi = b′(θi), for any distribution belonging to the exponential family, we have:

∂µi
∂θi

= b′′(θi)⇒
∂θi
∂µi

= 1
b′′(θi)

.

We have then:
∂l(β∗)
∂β∗j

= 1
φ

n∑
i=1

(yi − b′(θi))
b′′(θi)/ri

∂µi
∂βj

.

Since we have var(yi) = b′′(θi)φ = V (µi)φ, we get:

∂l(β∗)
∂β∗j

= 1
φ

n∑
i=1

(yi − µi)
V (µi)

∂µi
∂βj

.

Hence the estimate have to satisfy the following equations:

∂lp(β∗)
∂β∗j

= 0 ∀j ⇔ 1
φ

n∑
i=1

(yi − µi)
V (µi)

∂µi
∂βj
− λ [Sβ]i = 0, ∀j = 1, . . . , N. (4.4)
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where [Sβ]i is the ith component of the vector Sβ. Let S be defined as:

S =
n∑
i=1

(yi − µi)2

V (µi)
+ λ

2 β
∗t S β∗

If we consider V (µi) as fixed, the solution of (4.4) is equivalent to minimizing the functional S
with respect to µ = (µ1, . . . , µn)t. This suggests then the following iterative procedure. Given
a starting value µ0 = g−1(β0), we compute the value of V (µ0). We then have to minimize the
value of S:

S =
n∑
i=1

(yi − µi)2

V (µi)
+ λ

1
2 β

∗t S β∗ = ‖V−1/2 (y− µ(β∗)) ‖2 + λ
1
2 β

∗t S β∗,

where V = diag(V (µ0
1), . . . , V (µ0

n)). Since β0 is supposed to be in the vicinity of the true value
β∗, using a first order Taylor approximation, we can write:

µ(β0) ≈ µ0 + Dµ (β∗ − β0) ,

where (Dµ)ij = ∂µi
∂βj

(β0) and so we have:

S ≈ ‖V−1/2 (y− µ0 −Dµ (β∗ − β0)) ‖2 + λ
1
2 β

∗t S β∗.

Since we have

g(µi) = xtiβ
∗ ⇒ ∂

∂βj
g(µi) = g′(µi)

∂µi
∂βj

= ∂

∂βj
xtiβ

∗ = Xij ⇒ (Dµ)ij = Xij

g′(µ0
i )

Defining G0 = diag(g′(µ0
1), . . . , g′(µ0

n)), we note that we have Dµ = (G0)−1 X. We can then
finally write:

S ≈ ‖V−1/2(G0)−1(G0(y− µ0)− η0 −Xβ∗)‖2 + λ
1
2 β

∗t S β∗,

where η0 = Xβ0. Setting z0 = η0 + G0(y − µ0), and W0 the diagonal matrix such that
(W0)ii = 1

V (µi)g′(µi)2 , we can write S as:

S ≈ ‖(W0)1/2(z−Xβ∗)‖2 + λ
1
2 β

∗t S β∗. (4.5)

Since W0 is positive definite, S is approximately a quadratic form whose minimum exists and
is unique.

The algorithm aims to minimize this approximation to get the value β1 of the parameter
and then iterate the procedure until convergence. The solution of minimization problem (4.5)
is the solution of a linear system which, under mild conditions, admits a unique solution (see
proposition 2).

Actually, the value of

− 1
2φ‖(W

0)1/2(z−Xβ∗)‖2 + λ
1
2 β

∗t S β∗,

evaluated after convergence of the algorithm can be viewed as a quadratic approximation of
the penalized log-likelihood function. For a detailed development of this argument, see Wood
(2011, p.66).

An alternative of the log-likelihood as measure of goodness-of-fit is given by the deviance.
The deviance is the difference between the log-likelihood of the estimated model and of the
full model, i.e., the model with as many variables as observations. Usually, maximizing the
log-likelihood or minimizing the deviance leads to the same estimates. Actually, we can notice
that the term ‖(W0)1/2(z−Xβ∗)‖2 is an approximation of the deviance of the model.
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Chapter 5

Smoothing parameter choice and
variance estimation

5.1 Choosing the smoothing parameter: a bias/variance
trade-off

The choice of the smoothing parameter is crucial for the estimation. This choice express the
classical bias/variance trade-off. Let Sλ be a smoothing matrix, i.e., a matrix such that for
a given observation y, we have that ŷ is given by Sλy = ŷ. In our case, since we consider
generalized additive models, the smoothing matrix is the matrix such that applied to the last
pseudo-data, it gives the estimation of the natural parameter η (Hastie and Tibshirani, 1990,
p.156).

To illustrate the bias/variance trade-off, we will take the simplest case. Let’s consider
y1, . . . , yn ∈ R observations at points x1, . . . , xn ∈ R and assume that we consider them as
realizations of a sufficiently smooth function g with Gaussian noise:

yi = g(xi) + εi, ε ∼ N (0, σ2).

We would like to ensure a sufficiently smoothness of the estimated function ĝ. To do this, we
will consider the following problem:

find g ∈ C2 that minimize
n∑
i=1

(yi − g(xi))2 + λ
∫

(g′′(x))2dx

The term λ
∫

(g′′(x))2dx represent a roughness penalty. We aim to estimate the function g using
a finite dimensional space with basis (ψ1(x), . . . , ψK(x)). In this case, defining P and X as

(P)ij =
∫
ψ′′i (x)ψ′′j (x)dx and (X)ij = ψj(xi),

the estimation problem becomes:

find β̂ ∈ RK such that β̂ = argmin‖y−Xβ‖2 + λ βtPβ

and ĝ is given by:

ĝ(x) =
K∑
i=1

βiψi(x).
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Setting g = (g(x1), . . . , g(xn)) and ĝ = (ĝ(x1), . . . , ĝ(xn)), we can decompose the mean square
error in the bias and in the variance components as:

E[‖g− ĝ‖2] = var(ĝ) + (E[ĝ]− g)2.

In our case, we can write this as:

E[‖g− ĝ‖2] = tr(SλStλ)σ2 + (g− Sλg)t(g− Sλg).

Finally, we can notice that if λ increase, the variance decrease but the bias increase and at the
contrary, if λ decrease, the variance increase but the bias decrease. The optimal λ depends of
the unknown function g.

In the more general context of generalized additive models and if the function to be estimated
is a function of several variables, the same kind of reasoning applies.

5.2 Choosing the smooth parameter: the generalized
cross validation

To choose the best parameter, we use a prediction error criterion. The basic idea of the
prediction error is to fit the model using all the observations except one and to compute the
error between the observed value which was not used to fit the model and the predicted value
of the model for this observation. Doing this for all the observations, and summing these errors
we obtain, for a given model, a total prediction error criterion. Since, in this case, the model
vary only with the value of the smoothing parameter λ, we the choose the value of λ that
minimizes this total prediction error criterion. This kind of procedure is called cross validation.
We will use a slightly different version of the cross validation called generalized cross validation
(GCV) (Wahba, 1990). For more details about cross validation and generalized cross validation
we refer to Wood (2011, p. 172-187). But the GCV is not optimal in the kind of context we
consider since independence is required. We could use other kind of criterion as AIC or BIC
but no available criterion is optimal.

One of the main ingredient of the GCV procedure is defined as the equivalent degree of
freedom. Since we fit a function which is defined by K degree of freedom, one expects that it
should increase the degree of freedom of the entire model. We know that in the case of a linear
model, if R is the hat matrix (or influence matrix, see Wood (2011, p. 16-17)), one can notice
that number of identifiable parameter is given by tr(R). Analogously, we define the equivalent
degree of freedom for generalized additive model as the trace of the hat matrix (at convergence
of the PIRLS) R, as defined in the section 3.4. This measure of the degree of freedom is usual in
the context of functional data analysis but other measure are possible (Ramsay and Silverman,
2005).

An alternative of the log-likelihood as measure of goodness of fit is given by the deviance.
Actually the deviance is the difference between the log-likelihood of the estimated model and
of the full model, i.e., the model with as many variables as observations. Usually, maximizing
the log-likelihood or minimizing the deviance leads to the same estimates. We have seen at
the end of the section 4.3, that the value of ‖(W0)1/2(z −Xβ̂ + f̂n)‖2 can be seen as a scaled
approximation of the deviance, denoted by D(β) of the model. Finally, for the hat matrix R,
the value of the GCV criterion is given by (see Wood (2011, p.181)):

GCV(λ) = nD(β̂(λ))
[n− γ tr(R(λ))]2 , (5.1)
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where γ is a constant usually set to 1. In some case, the GCV optimum leads to overfitting so it
is sometimes usefull, as suggested in Wood (2011), to give more weight to the equivalent degree
of freedom setting γ ≥ 1. In our simulations, such a tuning constant was necessary to ensure
that the convexity of the GCV function. Not using such a constant can leads to misestimation
of smoothing parameters and then to misestimation of the other parameters.

A lot of aspects of smoothing parameter choice could be discussed. First, the parameter
estimation could be done as a step of the PIRLS algorithm, leading to an update of the value
of λ at each iteration of the PIRLS algorithm. Alternatively, the update of a new smoothing
parameter could be done at the convergence of the algorithm. These two different approaches
as refereed as performance iteration and outer iteration respectively. These two methods are
extensively discussed in Wood (2011, p.179-189). In our case, we simply tested a grid of values
and takes the best one, according to the value of the GCV criterion, which is a kind of outer
iteration.

Estimations are generally stable with respect to the smoothing parameter, that is a small
change in the smoothing parameter won’t induce a great change in the estimations of the
parameters. Sometimes a tuning constant is necessary to ensure the convexity of the GCV
function. In practice, it is useful to take a look at the GCV function to eventually detect such
a phenomenon. Not using such a constant can leads to the choice of smooth parameter close to
zero. In such cases, the estimated parameters can be totally false. This constant increase the
weight of the equivalent degree of freedom, which means that overfitting is more penalized that
if wouldn’t use such a constant. Adding this constant does not influence a lot the minimum
and tends to only increase the convexity of the GCV function.

5.3 Variance and scale parameter estimation
In some cases of the exponential family, the distribution depends on two parameters, the mean
and another parameter usually called scale parameter. In the Gaussian case, that is in a
traditional linear model, we estimate the variance σ2 as, which is unbiased:

σ̂2 = 1
n− tr(R)‖y− ŷ‖2,

which is unbiased and where R is the hat matrix, ŷ the fitted values and y the observed values.
Analogously, we can define a scale parameter φ, which is the variance in the Gaussian case,
that can fully characterize the distribution.

If Y belongs to the exponential family (with canonical link function) with distribution fY ,
we have seen in the section 2.2 that we can implicitly define φ as:

var(Y ) = V (µ)φ.

So a natural estimator of φ is given by:

φ̂ = ‖V
−1(y− µ̂)‖2

n− tr(R) , (5.2)

where V = diag(V (µ̂1), . . . , V (µ̂n)), µ̂ is the estimated mean at the convergence and R the hat
matrix.
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Chapter 6

Simulations

The simulations have been done on a C-shaped domain, which has been used in various pub-
lications (Ramsay, 2002; Wood et al., 2008; Sangalli et al., 2013), with various test functions.
We have randomly generated data points according to a uniform distribution on the C-shaped
domain shown in Figure 6.1. The number of points, denoted by n, is 200 for all the simulations
on the C-shaped domain. For each case, we did 100 repetitions. We have tested different types
of responses, such as binary or gamma.

We use only in one case an automatic selection of the smoothing parameter, in the case of a
gamma responses with covariates. This case is the most complex since the scale parameter must
also be estimated. We did not use the automatic selection of the smoothing parameter mainly
because the simulations are long. The way we implemented smoothing parameter selection is
far from optimal. We choose it among a grid of value and choose the parameter which minimize
the GCV criterion.

All of the codes are written in R (R Core Team, 2012), excepted the one used for the mesh
generation, which is a matlab code (MATLAB, 2013). In the future, we could probably use
only R code, since the package geometry is being developed and should be able to make the
needed routines available in R.
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Figure 6.1: Plot of the C-shaped domain used in the simulations.

6.1 Meshes and data
It has been mentioned (section 3.5) that we have used two different types of meshes. The first
is referred to as a “data constrained” mesh. It is actually a Delaunay constrained mesh with
nodes at the location of the data points and with some other nodes on the boundaries (for
more information about meshes and Delaunay triangulation, see Cheng et al. (2013)). In all
the simulations, we add the same nodes on the boundaries whatever is the kind of mesh. In the
case of data constrained meshes, the vertices of the triangulation are exactly the data points
and the 108 points on the boundaries. Since we usually have 200 data points, the dimension of
the finite element space is of 308 in this situation. The computational cost of the estimations
with data constrained mesh is quite small. Moreover, it makes sense that the precision of the
estimation of the function increase with the density of data points.

When we do not use a data constrained, we use a uniform mesh, that is a constrained
Delaunay mesh with nodes in a lattice over the domain. In this case, we have more nodes and
so we increase the dimension of the finite element space and hence, the size of the system to
be solved. Furthermore, we have to construct the matrix Ψ, as defined in the section 3.5. We
can see in Figure 6.2 the two different types of meshes that we have used.

We have used two different types of responses in our simulations, realizations of a Bernoulli
distribution, i.e., binary responses and realizations of a gamma distribution.
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Figure 6.2: Plot of the two different types of meshes. Red bullets are the data points, in both Figures.
Blue bullets are the internal nodes of the meshes.
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6.2 Simulations without covariates
First, we did simulations not including any covariates. We have then generated data of the
type:

E[yi|pi] = g−1(f(pi)), i = 1, . . . , n

where g(·) denotes a link function and pi is the location of the data yi. Here, the function
used is the one considered in Sangalli et al. (2013); Wood et al. (2008), which is shown on the
Figure 6.3 and is denoted as f0. We also used another test function denoted fΓ, defined as
fΓ = f0 + 100. We used fΓ since only positive values were allowed in some cases.

The simulation without covariates allows to compare both estimates of the test function and
of the spatial distribution of the mean, which is actually estimated. In the case of covariates,
since they are not defined for every point of domain, it is not possible to make this type of
comparisons.
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Figure 6.3: Plot of the test function f0 defined over the C-shaped domain.

6.2.1 Binary responses
To deal with binary responses, we have to choose an appropriate link function. There are
several possibilities of link functions in the case of binary responses, such as those referred to
as logit, probit or c-loglog. We used the logit function, defined as:

glogit(x) = log
(

x

1− x

)
.

It is obvious that links function, in the binary case, have to map the interval ]0, 1[ onto R and
to be bijective. Most of the link functions are symmetric but not all. The choice of the link
function won’t be discussed here. When a link function is applied to the test function, it returns
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Figure 6.4: Plot of the spatial distribution of the true probability of success over the C-shaped domain.

the probability of success. The spatial distribution of the probability of success corresponding
to the test function is shown on the Figure 6.4.

If we denote by pi the probability of success of the observation associated to the point pi,
we generated the response yi according the following model:

yi ∼ Bernoulli(pi), pi = g−1
logit(f(pi)), i = 1, . . . , 200

where f0 is the test function showed in Figure 6.3, and pi is the location of the observation yi.
The summary of these simulations is presented in Figures 6.5 and Figure 6.6. First we can

see that the estimator has a reasonable variance, as the spatial distribution of the standard
error and the percentiles shows, in Figures 6.7 and 6.8. The choice of the smoothing parameter
has been made before the simulation and is the same for all the simulations, that is λ = 1.2.
This choice is not optimal for all the simulations but is reasonable.

It is interesting to notice the effect of the link function on the spatial distribution of the
standard errors. Actually, the pattern of the spatial distribution of the sample standard error
on the estimated function is not the same as on the estimated probability, as we can see in
Figures 6.7 and 6.8. In both case, the standard error is reasonable but the spatial distributions
are not similar, mainly because of the behaviour of the link function.

We can see in Figure 6.9 that the estimator seems to be unbiased almost everywhere on the
domain. There are two small zones where it fails to be unbiased. It is probably due to the fact
that the spatial variation of the true probability in these zones is too strong to be captured by
our penalized smooth function. We can actually see in Figure 6.4 how important is the spatial
variation of the true probability in these zones. We can also see in Figure 6.6 that the mean
estimation have a symmetric behaviour, as we could expect.

Figure 6.9 shows that the difference between unconstrained and constrained meshes seems
not to be significant.
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Figure 6.5: Binary responses, without covariates. Mean, 95% and 5% of percentile of the estimated
f . The smoothing parameter λ was set to 1.2.
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Figure 6.6: Binary responses, without covariates. Mean, 95% and 5% of percentile of estimated
probability. The smoothing parameter λ was set to 1.2.

41



We can conclude that our model have good performance in the logistic case without covari-
ates.
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Figure 6.7: Binary responses, without covariates. Empirical standard error of the estimated f . The
smoothing parameter λ was set to 1.2.
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Figure 6.8: Binary responses, without covariates. Empirical standard error of the estimated proba-
bility. The smoothing parameter λ was set to 1.2.
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Figure 6.9: L1 error between true probability and mean estimated probability with two type of
meshes. The smoothing parameter λ was set to 1.2.
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6.2.2 Gamma responses
We present here the results with realizations of a gamma distribution. A random variable Y
following a gamma distribution with shape parameter k and scale parameter θ, has distribution
given by:

fY (x; k, θ) = xk−1 e
−x/θ

Γ(k)θk .

We then have:
E[Y ] = kθ and var(Y ) = kθ2.

We choose as test function the already mentioned fΓ. We then set that θ is constant over the
domain and k vary over the domain as:

k = k(x) = fΓ(x),⇒ E[Y ](x) = k(x)θ = fΓ(x)θ.

Since the variance depends on the shape parameter too, the realizations of our simulations are
not homoscedastics that is we have a space varying variance.

We start by show how the mean is evaluated, with and without estimation of the scale
parameter in Figure 6.10. We can see on the Figure 6.10 that the mean seems to be well
estimated in both case. As in the case with binary response, the estimated mean is not able to
fully capture the variation of the mean in the radial direction, due to the uniform penalization.

Adding the estimation of the scale parameter does not influence the estimation, as we we
can see on the Figure 6.10 and the standard error of the estimator seems to be reasonable.

The performance of our model is quite good, even when an estimation of the scale parameter
is needed.
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Figure 6.10: Gamma responses, without covariates. Comparison between mean estimates with and
without scale parameter estimation. Smoothing parameter λ was set to 9000.
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6.3 Simulations with covariates
As our model allows the use of covariates, we made simulations in this case too. We used two
kind of responses, binary and gamma.

6.3.1 Binary responses with covariates
First, for i = 1, . . . , n we generated realizations of two random variables x1i ∼ N (3, 1) and
x2i ∼ N (7, 2), defining xi = (x1i, x2i)t which are the covariates. X is the n × 2 matrix whose
ith line is xi. We set β1 = −1

2 and β2 = 1
5 , defining β as β = (β1, β2)t. For the spatial

dependency, we use the same test function f0 as defined in section 6.2.1. So finally, for each
data point pi, we generate an observation according to the following model:

yi ∼ Bernoulli(pi), pi = g−1
logit(xtiβ + f(pi)).

As already mentioned, we cannot compare estimation of probabilities but only the underly-
ing function since covariates are not defined for every point of the domain. First, we can see in
Figure 6.11 that the accuracy of the estimation seems not to be affected by including covariates.
The standard error of the estimation seems to be reasonable too, as it can be seen in Figure
6.12. Since it is not possible to compare the estimated probability and the true probability
except on data points, we have separated the domain in regions and we compare the estimated
and the true probability for all the simulations but region by region. We can see in Figure 6.13
that the errors in terms of probability seems to have a similar pattern as in the case without
covariates.

The estimation of the coefficients seems to be unbiased or at least to have small bias as we
can see in Figure 6.14. Finally, we can conclude that our model shows good performance in the
logistic case, with covariates.

6.3.2 Gamma responses with covariates
In order to assess our model in the case of a Gamma response, we used a similar setting as in
the binary case. Since the results are similar to those of binary case, we do not show all the
plots but the essentials ones only. In these simulations, we use an automatic selection of the
smoothing parameter λ.

First, for i = 1, . . . , n we generated realizations of two random variables x1i
iid∼ Γ(9, 1/3) and

x2i
iid∼ Γ(49/2, 2/7) 1 defining xi = (x1i, x2i)t. X is the n× 2 matrix whose ith line is xi. We set

β1 = −1
2 and β2 = 1

5 , defining β as β = (β1, β2)t. For the spatial dependency, we use the a test
function denoted by fΓ1 and defined as

fΓ1 = − 1
10(f0 + 10).

For each data point pi, we generate an observation according to the following model:

yi ∼ Γ(k = µ2
i /ν

2, θ = ν/µi), µi = g−1
recip(xtiβ + fΓ1(pi)), ν = 0.8,

where grecip denotes the canonical link function associated to the gamma distribution, i.e.,
the reciprocal (grecip(x) = −1/x = g−1

recip(x)). We used a gamma distribution to generate the
covariates to ensure the positivity of them. There is a non-null probability that µi < 0 then

1for a distribution Γ(k, θ), k is the scale parameter and θ the shape parameter
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Figure 6.11: Binary responses, with covariates. Mean of the estimated f . The smoothing parameter
λ was set to 1.2
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Figure 6.12: Binary responses, without covariates. Standard error of the estimated f . The smoothing
parameter λ was set to 1.2
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Figure 6.13: Binary responses, with covariates. Top: subdivision of the C-shaped domain. Bottom:
for the 20000 points of all the simulations, L1 error between true and estimated probability per region.
The smoothing parameter λ was set to 1.2.
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Figure 6.14: Boxplots of the coefficient estimates in the case of binary responses. The meshes were
constrained by the location points and the smoothing parameter λ was set to 1.2.
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covariates are generated following the model until µi > 0. We used the canonical link function
which is natural choice. We have only implemented canonical link functions but other link
could be useful and easily implemented.

First, we show the estimated function. We can see in Figure 6.15 that the mean of the
function is close to the real function but seems not to be unbiased everywhere. the estimations
at the extremes of the C-shaped domain are more biased than in the middle. Moreover, the
bias is not symmetric, since the underlying function is not either. We can see the errors in L1
norm between the true and the estimated mean by regions on the Figure 6.16. We see that the
errors are not uniformly distributed over the domain. Again, we can see how important the
link function influence the estimated mean.

Since the parameter was automatically chosen, we had to use a tuning constant γ that
penalizes the equivalent degree of freedom (see section 5.2), set in this case to 1.8.

Finally, we can see on the Figure 6.17 that the parameters estimation are quite good.
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Figure 6.15: Mean of the estimated spatial function and of true function for gamma distributed data,
with covariates. The meshes were constrained by the location points and the smoothing parameter λ
was chosen by GCV selection.
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Figure 6.16: Gamma responses with covariates. Top: subdivision of the C-shaped domain. Bottom:
for the 20000 points of all the simulations, L1 error between true and estimated mean per region. The
smoothing parameter λ was chosen using the GCV criterion.
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Figure 6.17: Boxplots of the coefficient estimates in the case of gamma responses. The meshes were
constrained by the location points and the smoothing parameter λ was chosen using the GCV criterion.

6.4 Confidence intervals and distributional results
In this section (and only in this section), we denote by β the total vector of parameter containing
the parametric part, that is (β, f)t in the notation used until now. So we do not make any
difference between the parametric part and the functional part.

Since the parameter estimates can be written as a linear transformation of the pseudo-data
at convergence (see section 3.4), we can assume that asymptotically, the distribution of the
estimates are normally distributed. We investigate this assumption only via a simulation since
a theoretical result is not available (yet?). We assume that

E[β̂] = β

and that
var(β̂) = Ve =

(
XtWX + λS

)−1
XtWX

(
XtWX + λS

)−1
φ.

We compare a normal distribution with such mean and variance to the empirical distribution
of a sample.

We test the normality of the estimates. Using a same framework as the one presented in
the section 6.3.1, we simulate 100 repetitions of a given simulation that is, we generated 200
points and a design matrix for these points. So, for i = 1, . . . , 200, we have,

pi = g−1
logit(xtiβ + f(pi)), xti

i.i.d.∼ N
((

3
7

)
,

(
1 0
0 2

))
.

Then, we have simulated 100 repetitions for every point, that is we generated

yki
i.i.d.∼ Bernoulli(pi), ∀i = 1, . . . , 200, ∀k = 1, . . . , 100.

Finally, we choose at random 4 component (i.e., 4 points in the domain) of the estimated
function to examine the distribution of the estimates. First we examine the normality of the
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empirical distribution of these estimates using a QQ-plot. We can see in Figure 6.18 that
approximately the hypothesis of normality seems to be reasonable. We then examine how good
are the estimates of the mean and the variance for the components we choose.

We can see on the Figure 6.19 that the estimates are usually close to the true value of the
function. So the estimation of the mean seems to be good. So even if it seems not to be always
unbiased, the estimation of the mean seems to be reasonable.

We then examine the performance of the estimation of the variance. First, we compute the
variance-covariance matrix Ve. We need to compute the weight matrix W for the true value
of the mean, which is known. We can see in Figure 6.20 that the variance estimate are very
good. We can then conclude that the normality seems to be a good approximation. The main
problem is the lack of theoretical arguments to assess this approximation.
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Figure 6.18: QQ-plots for 4 components of the estimates of the function.
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Figure 6.19: Boxplots of the estimates of 4 components of the function.
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Figure 6.20: Boxplots of the variance of the estimates of 4 components of the function. The true
value is the one according to the asymptotic normal distribution.

An alternative is to consider a bayesian approach. This is natural since the penalization
represent a prior belief of the parameter to be estimated. This alternative is developed in
details in Wood (2006).

It is important to mention the recent work of Marra and Wood (2012) about coverage
properties of the confidence intervals for the GAM components. This explore new methods to
derive confidence intervals for the context we are studying.

6.5 Comparison with other methods
The challenge of our method is to choose a suitable finite dimensional space to approximate the
functional space F , where f lies. Several possibilities exist. The mainly used in this context
are the thin plates regressions splines (TPRS) (Duchon, 1977). A more recent possibility is the
so called soap film smoothing (Wood et al., 2008). Actually, all of these methods can be seen
as a particular case of a GAM, since only the finite dimensional space used is different. For
the GAM estimation with TPRS and soap film, we used the R package mgcv (Wood, 2000,
2003, 2004, 2006; Wood et al., 2008; Wood, 2011) in wich all the methods to fit a GAM are
available. We compare only the Rooted Mean Square Errors (RMSE) of the three methods, for
each replications.

We used the a similar experimental design as in section 6.3.1, i.e., binary responses with
covariates and automatic selection of the smoothing parameter.

First, we can see in Figure 6.21 that FEM and soap film are clearly better than TPRS. We
can also see that soap film smoothing is a bit better than FEM. Since in the case of Gaussian
distribution, soap film smoothing method and FEM splines have similar results (Sangalli et al.,
2013), we suppose that the difference between the RMSE is mainly due to the smoothing
parameter choice. The way we implemented the smoothing parameter choice is far from optimal
on the contrary of the implementation in the package mgcv. That could explain this small
difference between the RMSE of both methods.
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Figure 6.21: Boxplots of the RMSE in the case of binary responses with binary covariates. The
meshes were constrained by the location points and the smoothing parameter λ was chosen using the
GCV criterion.
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Chapter 7

Application: Pennsylvania lung cancer

In order to illustrate our method, we use a classical data set available in the R package
SpatialEpi (Chen et al., 2013). We used the R package maps (Becker et al., 2013) to get
a the map of the Pennsylvania.

The data contains the number of lung cancer for every county of the Pennsylvania, per
category of age, gender and race (white people/non white people), for the year 2002. Moreover,
the total population and smoking rates in each county is also supplied. We modelled the number
of cases of lung cancer per county, denoted Nj as the following:

log((E[Nj])) = smoking ratesj β1 + populationj β2 + f(pj),

where smoking ratesj is the smoking rate (not in percent), populationj is the population of
the county j in thousands and pj is the centroid of the county j (GPS coordinates). We can
see in Figure 7.1 the mesh of the Pennsylvania corresponding to our data.
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Figure 7.1: Map and mesh of the Pennsylvania State. The true boundaries are in red. We used 50
nodes on the boudaries and there is 67 internal observations, coinciding with internal nodes.

First, we have to note that since the smoking rates are in a very small interval, they will
probably have the same effect for every county and not be significant. Actually, classical
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hypotheses tests are not available since we consider penalized likelihood. In these cases, they
are not so justified as in classical contexts.

We can see a boxplot of the estimation for each covariate and for the spatial component for
each observation in Figure 7.2. We can see that the greater component is due to the spatial
component. The estimated coefficients are:

β̂1 β̂2
-2.146 0.001883

It is a bit surprising that the estimates β1 is negative. But, since there is small variations in the
variable smoking rates, the estimation of β1 acts almost as an intercept. This could explain
why the estimate is negative. Moreover, the spatial part clearly dominates the part due to the
smoking rates, as it can be seen on the Figure 7.2. Finally, we can see in Figure 7.3 the spatial
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Boxplot of components of the model for the observations

Figure 7.2: Boxplots of the different components of the estimation of the log of the mean for the
counties of the Pennsylvania.

contribution to the log of the mean of the intensity of the Poisson process. We can compare
this with a map of the Pennsylvania shown in Figure 7.4. We can see that the more rural is
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the location the higher is the spatial contribution to the intensity. Since we use the population
as covariate, this is not only due to density of the population. We can the presume that urban
environment seems to increase the number of lung cancer. Actually the zone with the lower
spatial contribution is a zone with natural parks and the zone with a higher contributions
are the urban zones of Philadelphia and Pittsburgh, the biggest urban agglomerations of the
Pennsylvania. We can then assume that a natural environment decrease the expected number
of lung cancers.
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Figure 7.3: Spatial variation of the spatial component of the mean, with FEM splines. Smoothing
parameter is chosen according to GCV criterion.
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Figure 7.4: Map of the Pennsylvania, from Google map.
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Chapter 8

A first approach to non planar domains

As it is done in Ettinger et al. (2012), we extend the model developed until now to surface
embedded in R3. Let’s precise the framework, the same as in Ettinger et al. (2012). We
consider a surface Σ ∈ R3 defined by a uniformly regular continuously differentiable map X
(not to be confused with a design matrix, usually denoted by X):

X : Ω ⊂ R2 → Σ ⊂ R3,
u = (u1, u2) 7→ s = (s1, s2, s3),

where Ω is an open and bounded set of R2 and the boundary ∂Ω is piecewise C∞. We will
denote by u = (u1, u2) a point of Ω and by s = (s1, s2, s3) a point of Σ.

For a data point pi, i = 1, . . . , n, we consider realizations of an exponential family distri-
bution yi (see section 2.2) with natural parameter ηi. Moreover ηi depends on covariates xti
and on the value f(pi) of a function f , where f : Σ → R. Since f is defined on Σ, the frame-
work defined in the previous sections does not hold. We have to modify the concept of the
penalization and to find a suitable way to adapt the methodology already described.

In order to impose a smoothness to the function f defined on Σ, we have first to think about
the meaning of smoothness when we deal with functions defined on a riemannian manifold.
Actually, we have to consider a kind of space-varying Laplacian take accounts the variation of
the curvature of the manifold, which is the traditional Laplacian but defined on the tangent
plan of the manifold. This generalization of the Laplace operator, called Laplace-Beltrami
operator and denoted by ∆Σ, is suitable to be the penalization term.

So in this framework the penalized log-likelihood of the model can the be written as:

LΣ(β, f) =
n∑
i=1

l(yi; ηi(β, f))− λ
∫

Σ
(∆Σf)2dΣ. (8.1)

First, we have to notice that, in the case where Σ = Ω, i.e., when X is the identity, the
penalized log-likelihood (8.1) coincides with the penalized log-likelihood in a planar domain
(2.2). Hence, this framework is clearly a generalization of the methodology developed in the
previous sections.

In the following, we will assume that the map X is bijective and conformal. A confor-
mal map is a map that preserves angles. This property is important for the development of
the methodology. In particular, a regular triangulation of the surface Σ should be also an
approximative triangulation of the domain Ω.
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8.1 A geometric framework
We define the Jacobian matrix, denoted by ∇X(u), as the matrix with components

(∇X(u))ij = ∂uj
∂xi

(u).

We then define the columns of the jacobian matrix ∇X(u) as X1 and X2, such that ∇X(u) =
(X1, X2). We can then define the metric tensor of the map X, defined for every u ∈ Ω as:

G(u) = ∇X(u)t∇X(u) =

 ‖X1(u)‖2 〈X1(u), X2(u)〉

〈X1(u), X2(u)〉 ‖X2(u)‖2

 .
The metric tensor gives a lot of geometrical information, in particular about length and angles
of mapped vectors. We can already notice that the metric tensor con be viewed as a symetric,
positive definite, bilinear form and then can be considered as an inner product defined on the
tangential plan at point X(u) of the surface Σ. Actually, as any inner product, it also induces a
metric on the riemannian manifold defined by the map X. In the same way as in the vectorial
space Rn, we can define an angle ϑ between two tangent vectors l1 and l2 to the manifold at a
point X(u) as:

cos(ϑ) =
〈l1, l2〉G(u)

‖l1‖G(u) |l2‖G(u)
,

where
〈l1, l2〉G(u) = lt1G(u)l2,
‖l1‖G(u) = lt1G(u)l1.

Now, thanks to the following proposition, we can characterize a map that preserves angle (called
sometimes conformal map):

Proposition 3
Let be Ω a open and bounded subset of R2 and a map X,X : Ω ⊂ R2 → Σ ⊂ R3 such that
X ∈ C1(Ω). Let G be the metric tensor of X. Then, the map X preserves the angles if and
only if the metric tensor G is of the form:

G(u) = r(u)I2, ∀u ∈ Ω,

where r is a scalar continuous function defined on Ω.

We do not give a proof of this classical result of geometry (see Troyanov (2009)).
Since we have set that X is a uniformly regular map, it exists a positive constant α ∈ R

such that:

W(u) = ‖X1 ∧X2‖ =
√
‖X2

1‖‖X2‖2 − 〈X1,X2〉2 ≥ α > 0, ∀u ∈ Ω.

This is equivalent to impose that the tangents vectors exists and are not collinear for every
point surface Σ.

We can now define the various differential operators needed. Since the function f we consider
is defined on the manifold Σ, we have to consider different kind of differential operators, suitable
to be used in this situation. Let f ◦X ∈ C2(Ω). First, we define the Σ-gradient of f , denoted
∇Σf as:

∇Σf(s) = ∇X(u)G−1(u)∇f(X(u)),∀s ∈ Σ,
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where u = X−1(s). We can define the Σ-divergence for a tangential vector field Y as:

divΣY (s) =
2∑
i=1

∂

∂ui
W(u)Y i(X(u)),

where Y i denotes the ith direction of the tangential vector field. Analogously of the traditional
Laplace operator, we can define the Σ-Laplace operator, also called Laplace-Beltrami operator,
as:

∆Σf(s) = divΣ(∇Σf(X(u))

= 1
W(u)

2∑
i,j=1

∂

∂ui
(kij

∂

∂uj
∇f(X(u))) = 1

W(u)div(K∇f(X(u))),

where the matrix K is defined as K(u) = W(u)G−1(u), whose components are denoted by
kij(u).

Since we assume that X is a conformal map, the metric tensor G(u) is a multiple of the
identity and hence is also a multiple of the identity (see proposition 3). Then, we get that
K(u) = I2 and hence, we get:

∆Σf(s) = 1
W(u)∆(f ◦X)(u),∀s ∈ Σ,

where, u = X−1(s). We can reformulate the penalized log-likelihood in terms of the function
f ◦X ∈ C2(Ω) as:

LΩ(β, f ◦X) =
n∑
i=1

l(yi; ηi(β, f ◦X))− λ
∫

Ω

(
1

W1/2(u)∆(f ◦X)
)2

dΩ. (8.2)

We have then showed our previous problem simplifies to the problem of finding a function f ◦X
that maximize this penalized log-likelihood. Since f ◦X is a function defined on Ω, the problem
of finding f that maximize (8.1) is of the same form as the problem (2.2). So we can apply the
methodology developed in the previous sections.

We notice that this extension strongly depends on the assumption of the existence of a
conformal map. Two facts must then be highlighted. The first is that we need the map to
be bijective. For a same surface, it exists infinitely different parametrisations. So for a given
surface, a suitable map must be used. The suitability, in this context, is the requirement of
conformity and invertibility. The conformity has two advantages. The first is that the mesh
used on the surface Σ is not deformed by the map. In practice, since we work with a mesh of
the surface, without a conformal map, the image on Ω of the mesh could not be a suitable mesh
for the domain Ω. The second is that the penalization simplifies to a traditional Laplacian
operator (up to a factor 1/W(u)).

8.2 Finite element solution in the case of surface embed-
ded in R3

From now, we assume that we have a bijective and conformal map X : Ω ⊂ R2 → Σ ⊂ R3. We
use the same notation as in section 8.1. We have to minimize the penalized log-likelihood (8.2).
Following a similar derivation as in section 4.1, we identify the symmetric, bilinear m(·, ·) form
which represent the penalization as:

m(s, t) =
∫

Ω

1
W(u)∆(s ◦X)∆(t ◦X)dΩ.
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For a given smoothing parameter λ and a given estimation µ, this leads to minimize at each
step of the PIRLS algorithm the following functional:

J̃Ω(β, f ◦X) = ‖W1/2(z−Xβ − f(X(u))n)‖2 + λ
∫

Ω

1
W(u)(∆(f ◦X))2dΩ,

where

f(X(u))n = ((f ◦X)(u1), . . . , (f ◦X)(un))t, and ui = X−1(pi), ∀i = 1, . . . , n,

and

z = η + G−1(y− µ), G = diag(g(µ)), and W = diag
(

1
V (µ1)g′(µ1)2 , . . . ,

1
V (µn)g′(µn)2

)t
.

Now, setting h = f ◦X, and hn = f(X(u))n, the problem then becomes similar to (2.4). The
derivation of the finite element formulation of the problem is then straightforward, following a
similar methodology as in the section 3.3.
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Chapter 9

Conclusion and perspective

This work extends the methodology developed in Sangalli et al. (2013) to other distribution
than the Gaussian. It is broadly applicable and hence very interesting. The model seems to
have very good inferential properties. Moreover, it is computationally very efficient despite
the iterative method used in the estimation process. From a theoretical point of view, the use
of a finite element space is very useful for different reasons. First, it can deal with complex
geometries, such as we have seen. Moreover, it can take account of different boundary conditions
(even if we do not adress this issue in this work, see (Azzimonti, 2013) for more details), can
be extended to surfaces embedded R3 and can deal with different kind of penalization terms
(Ettinger et al., 2012; Azzimonti, 2013).

Future work could be done in two directions. First, in a practical direction. According to
the author, it is essential to create a R package that implement all the methods developed
in this work and in the field of spline regression using finite element spaces. A patch to the
package mgcv that implement the finite element spaces could be a smart (and easier) alternative
to the creation of a R package. In this way, all the routines developed in the package mgcv
such as (multiple) smoothing parameter estimation could also be available.

The second direction of a future work is more theoretical. First, demonstration of consistence
of the estimators developed in the field of spatial spline regression with finite element spaces
would be a great contribution. But extension of the model developed in this thesis to other
kind of penalization could also be done.
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