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Abstract—We present a method to automatically detect shadows in a fast and accurate manner by taking advantage of the inherent
sensitivity of digital camera sensors to the near-infrared (NIR) part of the spectrum. Dark objects, which confound many shadow
detection algorithms, often have much higher reflectance in the NIR. We can thus build an accurate shadow candidate map based on
image pixels that are dark both in the visible and NIR representations. We further refine the shadow map by incorporating ratios of
the visible to the NIR image, based on the observation that commonly encountered light sources have very distinct spectra in the NIR
band. The results are validated on a new database, which contains visible/NIR images for a large variety of real-world shadow creating
illuminant conditions, as well as manually labelled shadow ground truth. Both quantitative and qualitative evaluations show that our
method outperforms current state-of-the-art shadow detection algorithms in terms of accuracy and computational efficiency.

Index Terms—Shadow detection, near-infrared.
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1 INTRODUCTION

A Shadow is created when an object lies in the path
of a light source. Shadows are cast by the occluding

object, or the object itself can be shaded; a phenomenon
known as “self-shading”. Due to the difference between
the light intensity reaching a shaded region and a
directly lit region, shadows are often characterized by
strong brightness gradients. While non-shadow regions
are illuminated by both direct (e.g., sunlight, flashlight)
and diffuse (e.g., skylight, fluorescent, incandescent) light
sources, shadow regions are only illuminated by diffuse
light. The change between shadow and non-shadow
regions is thus not only a brightness difference, but a
color one as well. In outdoor scenes, for example, the lit
areas are illuminated by sunlight and skylight, while the
shadow regions are illuminated by skylight alone, which
creates a bluish color cast. This property of shadows,
together with the fact that a certain color can exist in
both lit and shaded objects, makes them problematic
in a number of different computer vision applications
such as tracking [1], object (or people) recognition [2],
and white-balancing [3]. In image manipulation or
compositing, shadows are often unwanted artefacts that
are unavoidable due to image capture conditions (e.g.,
photographs taken in an urban environment).
While shadow compositing and removal has
dramatically improved in recent years [4], [5], [6],
[7], automatic shadow detection is still a challenge and
requires additional assumptions or information. Our
proposed approach starts with the fact that camera
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sensors are inherently sensitive to the near-infrared (NIR)
spectrum (700–1100 nm). The algorithm is based on
three observations: First, shadows are generally darker
than their surroundings, in both the visible and the
NIR. Second, the majority of objects that are dark in the
visible spectrum are much brighter in NIR. Third, most
of the considered illuminants in the shadow formation
process have a distinct behavior in the NIR. These
observations lead to a shadow detection framework that
takes visible and NIR images as input and produces
accurate binary shadow masks. Comparing our results
with two state-of-the-art shadow detection methods
[8], [9], we show that our algorithm performs better
on average, is more robust (less performance variation
image-wise), and is faster.
The algorithm works best with unprocessed (linear)
RAW images. The method, however, also provides very
good results on images already processed in-camera.
Thus, the only requirement is that both visible and NIR
information is available.
Combining visible and NIR images has been successfully
used to improve various image processing and computer
vision tasks, such as skin smoothing [10], high dynamic
range image rendering [11], haze removal [12], [13],
scene recognition [14], and semantic region labeling
[15]. In addition, enabling simultaneous capture of
both visible and NIR radiation with a single sensor
[16], [17] is currently being researched. Because our
method is computationally inexpensive and works on
RAW images, it can easily be implemented in-camera to
provide assistance where shadow detection is beneficial,
e.g., white-balancing or automatic image enhancement.
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2 RELATED WORK

Image-based shadow detection algorithms can loosely be
classified into two categories based on the type of addi-
tional information they employ: Semi-automatic methods
that require some type of user input, and fully automatic
methods, which often make additional, constraining as-
sumptions about the scene in order to work properly.

2.1 Semi-Automatic Methods
A common way to sidestep the difficulty of automatic
shadow detection is to assist the detection algorithm
with user-supplied information. A number of recent
and well-performing methods incorporate user input to
either “seed” or correct the detection process. In Wu et
al. [6], users are asked to submit a quad-map containing
shadow, non-shadow, and penumbra regions of simi-
lar textures. Simplifications of these user requirements
are focused towards reducing the time spent selecting
shadow and non-shadow regions. Wu and Tang [18]
employ user-supplied context that indicates candidate
shadow regions. Arbel and Hel-Or’s method [4] allows
a shadow mask to be calculated using only a few key-
points, and Shor and Lischinski [5] proposed reducing
external information to one user-supplied keypoint per
shadow region. Instead of “growing” a shadow region
based on a few keypoints, Drew and Reza [19] calculate
invariant images based on a few selected patches in
the image. While these detection algorithms can pro-
vide very accurate results for still images and deliver
good subsequent shadow removal, their requirements
are strongly dependent on the complexity of the image.
Moreover, even minimal user interaction prevents a de-
tection algorithm to be incorporated in a fully automatic
workflow, such as in-camera image processing.

2.2 Fully Automatic Methods
2.2.1 Single-Image Approaches
Automatic shadow detection on single images has been
addressed in a variety of approaches. Gradient-based
methods, where edges are classified as either shadow
or material transitions depending on their direction and
magnitudes, have been proposed in [20], [21]. Assuming
Planckian illumination, Finlayson et al. [22], [23] showed
that greyscale illumination-invariant images could be
obtained by projecting an image’s log chromaticities in
an appropriate direction, found by either calibration
[22] or entropy minimization [23]. Comparing the edge
content of the original image with the edges of the
invariant one effectively yields shadow edges. Despite
their relatively simple assumptions, these methods often
work well and still are among state-of-the-art regard-
ing automatic shadow detection from a single image.
However, they do not account for simultaneous mate-
rial/illumination changes, which can limit their useful-
ness in more complex scenes. Lalonde et al. [7] propose
an algorithm that automatically detects ground shadows

in consumer-grade photographs. Limiting the algorithm
to cast shadows on the ground allows them to focus on a
limited set of materials and learn the shadow appearance
on those materials from a labelled set of images. Tian et
al. [24] make similar assumptions to [22], but in addi-
tion employ a trichromatic attenuation model (TAM). They
first oversegment the image, and then apply the TAM
model to decide whether a segment is in the shadow or
not. The use of several thresholds, however, makes this
approach fairly unstable. In [8], they improve the TAM
model, no longer use segmentation and only compute
a single threshold, which yields much improved results.
Different to the previous methods, Guo et al. [9] explicitly
model the material and illumination relationships of
pairs of regions. They employ a segmentation-based
approach, and learn their classifiers from training data.
Both [8] and [9] compute a binary shadow mask, which
allows for a fair comparison to our method.

2.2.2 Multi-Image Approaches

To minimize the ambiguities induced by simultaneous
material and illumination changes, some research has
focused on multi-image methods. For instance, flash/no-
flash image pairs can be combined to either estimate the
illuminant [25], [26], or to remove shadows [27]. The
chromagenic illuminant estimation of Finlayson et al. [28]
postulates that capturing two images of a given scene,
using a broadband colored filter to capture the second
image, and comparing them adequately, produces accu-
rate illumination maps. In the right context, these multi-
image algorithms perform remarkably well, although
their context can be limited: flash cannot illuminate
all outdoor shadows, and the chromagenic approach
requires image segmentation, an accurate training step,
and every pair of trained illuminants needs to be tested.
On the other hand, the chromagenic approach is not
limited to shadows, and can incorporate a number of
multi-illuminant scenes.
Closer to our method, Teke et al. [29] create a false-
color image of satellite imagery by replacing the blue
channel of the RGB image with NIR. By analyzing the
difference between saturation and intensity of the false-
color image, and subsequent independent processing of
vegetation regions, they are able to obtain shadow maps
for remote sensing applications. While their method
employs near infrared information, it does not make use
of its relationship to the visible spectrum and is limited
to remote sensing environments.
Currently, we use a multi-image approach, as we capture
the visible and the NIR part of the spectrum separately.
The feasibility of a visible plus NIR sensor shown in
[16], [17] motivates our belief that in the near-future,
digital camera sensors will jointly capture visible and
NIR, which will turn our method into a single-image
approach.
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Fig. 1: Our proposed framework. We use both information from the visible and the NIR part of the spectrum to compute a shadow candidate map.
The results are refined by combining this map with a color to NIR ratio map. The shadow map is thresholded to obtain a binary shadow mask.

3 NEAR-INFRARED IMAGING

Silicon, the photosensitive component of a digital cam-
era’s sensor, is intrinsically sensitive not only to visible
light (∼400–700 nm), but also to NIR (∼700–1100 nm).
In fact, its sensitivity is such that a specifically designed
filter (often called a hot mirror) has to be placed in front
of the sensor to prevent NIR contamination of the visible
images. This filter is necessary for both monochromatic
and color cameras, because the filter colorants employed
to create the color filter array (CFA) are also transparent
to the NIR. Fig. 2a shows the normalized quantum
efficiencies we measured of a Canon EOS 5D Mark II
without its hot mirror. By removing the hot mirror, both

(a) (b) (c)

Fig. 2: Measured quantum efficiencies of red, green, and blue of a
Canon EOS 5D Mark II without hot mirror and (a) no filter, (b) with a
NIR-blocking filter (B+W 486), and (c) with a visible light blocking filter
(B+W 093). The quantum efficiencies are normalized to 1.

the visible and NIR part of the spectrum can be captured.
However, in order to obtain useful information, the
visible and NIR signals that reach the imaging sensor
need to be separated. One way of doing so is to employ
a beamsplitter to separate visible wavelengths from NIR
ones and two (or more) cameras or sensors to capture
a portion of the spectrum only [11]. This method is
quite expensive, and has a substantial light loss induced
by the beamsplitter. Another, single camera approach
consists in first capturing a color image by putting a
NIR-blocking filter in front of the lens, and then an NIR
image by placing a visible light blocking filter in front
of the lens. In this work, we used a characterized Canon

EOS 5D Mark II with a sequential approach to capture
the visible/NIR image pairs. Figures 2b and 2c show the
measured quantum efficiency of the camera with filters
placed in front of the lens. Samples of color/NIR image
pairs can be found in Fig. 7.

4 SHADOW DETECTION ALGORITHM

Shadows are, almost by definition, darker than their sur-
roundings. However, just equating shadows with dark
regions is shortsighted because all dark objects will be-
come potential shadows and result in imprecise shadow
masks. NIR possesses some important properties that
make the shadow candidate selection more accurate.
Spectral studies of natural and man-made surfaces and
colorants [30], [31], [32] show that in general:∫

V IS

S(λ)QR,G,B(λ)dλ <

∫
NIR

S(λ)QNIR(λ)dλ, (1)

i.e., the reflectance S(λ) times quantum efficiency Q(λ) in
the NIR is greater than in any of the RGB channels. Two
notable exceptions are water, which has an absorption
band in the NIR, and carbon black, a colorant often
encountered in black plastic objects, where both NIR and
the visible bands have a similar, almost zero reflectance.
The implication of Equation 1 is that NIR information
can disambiguate a number of otherwise problematic
dark objects/surfaces.
Fig. 1 shows a block diagram of our shadow detec-
tion algorithm. The input: the averages of the three
RGB channels (Eq. 3) of unprocessed, linear RAW color
and NIR images are normalized and compressed by
applying a non-linear mapping function f and inverted
(green path). These two maps are then multiplied to
form a shadow candidate map. To refine the results, we
additionally compute a color to NIR ratio map (orange
path), which ensures that these candidates are indeed
shadow-related instead of simply being dark objects. The
shadow candidate map and the color to NIR ratio map are
then multiplied to form a shadow map (purple path).
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A binary shadow mask can be obtained by adaptively
thresholding the shadow map.

4.1 Shadow Candidates
In the following, we use the notation aij to denote the
value of pixel at location (i, j) of an image/map A of m
rows and n columns. Let pkij be the normalized sensor
response, i.e.,

0 ≤ pkij ≤ 1, k ∈ {R,G,B,NIR}. (2)

In other words, pkij are the normalized RAW measure-
ments of the camera sensor, without any processing
applied. We first create a brightness image L from the
visible image by calculating for each pixel lij the average
over the three color channels:

lij =
pRij + pGij + pBij

3
. (3)

The pixels of the temporary dark maps DV IS and DNIR

are computed as follows:

dV ISij = f(lij) ; d
NIR
ij = f(pNIRij ), (4)

where f is a non-linear mapping function that com-
presses the shadows and highlights, which allows us
to mark fewer but better controlled pixels as shadow
candidates. At the same time, we invert the image so
that shadows are found in the bright parts of the shadow
map. Formally, the non-linear mapping function can be
written as:

f(x) =
1

1 + e−α(1−x
1
γ −β)

, (5)

where α influences the slope of the sigmoid function, β
sets the inflection point, and γ(> 1.0) allows to stretch
the histogram in the dark parts before applying the sig-
moid function. All of the results obtained and presented
here have the same values for the three parameters.
β = 0.5 to keep the inflection point centered, and γ = 2.2
to mimick the non-linearity of common color encodings.
The value for α = 14 was obtained by optimization over
our dataset.

(a) (b) (c)

Fig. 3: Effect of the non-linear mapping function. (a) is the input NIR
image, (b) the non-linear mapping function f , and (c) is the output image
with compressed dark (and bright) parts.

The non-linear mapping function f acts as a tone map-
ping function in addition to reversing the tonal values
to obtain a map where the shadow candidates have high
value. In digital camera processing, RAW images, which
are linear with respect to scene radiance, are always
non-linearly mapped to obtain the conventional sRGB

output images. This step is called tone mapping, and is
usually scene dependent [33]. There are many ways to
implement the non-linear scaling [34], such as applying
a power (gamma) function or a sigmoid function, as is
used here. Fig. 3 shows our non-linear mapping function,
as well as the result of applying it to a sample image.
Note that the dark and bright parts are inverted and
more pronounced after the non-linear mapping function
has been applied.
Because darkness in both visible and NIR images is a
condition of shadow presence, we compute the pixels
dij of the shadow candidate map D as:

dij = dV ISij dNIRij . (6)

The importance NIR images can have in disambiguation
is evidenced in Fig. 4. A black sweater lies partly in the

(a) (b)

(c) (d)

Fig. 4: (a) Visible image, (b) Visible shadow candidate map DV IS , (c)
NIR shadow candidate map DNIR, and (d) the shadow candidate map
D. Even though the presence of a black object in the scene confounds
DV IS , D is quite accurate thanks to DNIR. Images are tone mapped
for better visibility.

shade, but since its colorant is transparent to the NIR
wavelengths, the shadow is clearly seen in DNIR.

4.2 Color to NIR Ratios
The shadow candidate map D provides encouraging
results. In order to refine the map, we calculate color
to NIR ratios. The key insight here is that the difference
between the visible and NIR bands for many shadow
creating illuminants is distinctive [35].

In this work, we consider the most common
shadow creating scenarios for outdoor scenes (i.e., sun-
light/skylight), and indoor scenes (i.e., flash/fluorescent,
flash/incandescent, and uncontrolled indoor illumina-
tion). Let us focus in the following on the case of
outdoor shadows, noting that the arguments are similar
for indoor illumination. Irrespective of the difference in
light intensity due to occluding objects, we note that
skylight emits less in the NIR compared to the visible,
while sunlight actually emits approximatively as much
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energy in the NIR than in the visible band. It follows
that: ∫

V IS

Esky(λ)Q
k(λ) �

∫
NIR

Esky(λ)Q
k(λ) (7)∫

V IS

Esun(λ)Q
k(λ) ≈

∫
NIR

Esun(λ)Q
k(λ), (8)

where E(λ) is the illuminant spectral power and Qk(λ)
is the sensor sensitivity, k = {R,G,B}. We use this
observation and calculate image ratios that can have a
significant impact on shadow detection. Specifically, we
compute the pixel tij of a ratio image T as:

tkij =
pkij
pNIRij

(9)

tij =
1

τ
min(max

k
(tkij), τ); (10)

where τ sets an upper bound to the value tij can take,
since tkij goes to infinity when pNIRij approaches 0. We
obtained the best results for a value of τ = 10. The max
operator is there because scene reflectances can often
have very low values in one or two of the color channels,
although rarely in all three. From Equations 7 and 8 we
can deduce that for sunlit regions tkij ≈ 1, while for skylit
regions tkij > 1, because the difference in illumination far
outstrips the difference in reflectances in the shade. We
normalize tij to be between [0, 1]. An example of the
resulting ratio map is shown in Fig. 5c:

(a) (b) (c)

Fig. 5: (a) Visible image, (b) near-infrared image, and (c) the ratio image
T that already outlines the shadows (images tone mapped for better
visibility).

Note that T alone is not sufficient to detect shadows
due to potential variability of reflectances in the visible
and NIR image.

4.3 Binary Shadow Mask
The shadow map D from Equation 7 contains all the
possible shadow pixels, but it can also include dark
objects. If both the visible and NIR pixel values of a
given object are dark, then T will adequately be able
to discriminate between a dark object and an actual
shadow. Since both D and T are in the range [0, 1], we
can compute the elements uij of the shadow map U in
the following way:

uij = (1− dij)(1− tij). (11)

Fig. 6b shows an example of a shadow map U .
We use the continuous shadow map U to derive a

binary shadow mask. We thus need to find the optimal

threshold θ that best separates the shadow from the non-
shadow pixels. In order to reduce the influence of noise,
we compute the histogram of U with Nbins:

Nbins = ηdlog2(mn) + 1e, (12)

where m and n are the height and the width of the image.
Note that if η = 1, the above formula corresponds to
Sturge’s rule. We found that best results are obtained with
η = 1.6. The threshold θ is set at the location of the first
valley in the histogram. Similar to Shor and Lischinski
[5], we define the first valley as the smallest valued
bin of the histogram where the two neighboring bins to
the left and the two to the right have larger, increasing
values. If there is no valley according to our definition,
we gradually increase the number of bins until such a
valley is found.

(a) (b)

(c) (d)

Fig. 6: (a) A visible image, (b) the shadow map U , (c) the histogram of
U showing the location of the first valley, and (d) its binary version Ubin,
obtained by thresholding at θ (red vertical line).

The shadow value of each pixel ubinij is given by:

ubinij =

{
1 if uij ≤ θ
0 otherwise (13)

The thresholding process is illustrated in Fig. 6, where
an accurate binary shadow mask is obtained.

5 RESULTS

We evaluate our algorithm both qualitatively and quan-
titatively, and compare it to the two state-of-the-art
shadow detection methods by Tian et al. [8] and Guo et
al. [9], which also output binary shadow masks. Guo’s
method is segmentation based, whereas Tian’s method is
pixel-based. Fig. 7 shows the shadow masks for all three
methods. We note that both [8] and [9] only require the
use of a single color image. We use the code provided by
the authors to produce the results reported in this paper.
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Fig. 7: Input images (visible and NIR, tone-mapped for better visibility), our manually labelled ground truth, as well as our resulting shadow masks,
compared to Tian et al. [8] and Guo et al. [9]. Additional results are shown on our website1.

5.1 Image Database and Ground Truth
As there is no standard dataset of visible-NIR images
for shadow detection, we created a new image dataset
in order to evaluate our method and compare it with
others. Our dataset consists of 74 images, under different
illumination pairs (42 outdoor, 32 indoor). All the images
were taken using a modified Canon EOS 5D Mark II
with the sequential technique described in Section 3. The
VIS/NIR pairs are aligned and subsampled by a factor
of 4 in both dimensions. In order to properly evaluate
our results and to arrive at an objective comparison, a
person naive to our research manually created binary
ground truth for the 74 images. All of the image dataset
and the ground truth, as well as the Matlab code used to
produce all reported results, are fully available online1.
A subset of the created ground truth maps is shown in
Fig. 7. We note that for outdoor images with complex
shadows, it can sometimes be difficult even for a human
to ascertain whether a specific pixel is a shadow or not.

5.2 Quantitative Results
Our dataset contains a variety of images of both indoor
and outdoor scenes, ranging from simple scenes con-
taining few, clear shadows to very complex ones. Table
1 summarizes numerical results, which were obtained
by comparing the computed mask with the ground
truth mask on a pixel by pixel basis. We compute both

1. http://ivrg.epfl.ch/research/nir/shadowdetection

TABLE 1
Quantitative comparison of the three methods, on the outdoor (42

images), on the indoor (8 flash/fluorescent, 8 flash/incandescent), and
the indoor uncontrolled illumination (16 images) sets, as well as for all

74 images. Note that [8] and [9] only employ visible information.

Image set Stat Ours Tian [8] Guo [9]
Mean σ Mean σ Mean σ

Outdoor Acc 89.3 6.7 81.7 13.0 57.1 20.8
MCC 0.79 0.13 0.79 0.16 0.15 0.25

Indoor Flash Acc 86.4 12.6 64.5 23.6 81.7 10.9
MCC 0.72 0.13 0.58 0.18 0.31 0.21

Indoor unc. Acc 93.2 6.7 94.2 5.1 48.8 22.8
MCC 0.91 0.08 0.91 0.09 0.20 0.24

All images Acc 89.5 8.5 80.7 17.6 60.6 22.6
MCC 0.80 0.14 0.77 0.19 0.19 0.24

the overall accuracy (Acc, in percentage), as well as
Matthews correlation coefficient (MCC) [36], which is a
more balanced measure if the two classes have different
sizes.

MCC = TP∗TN−FP∗FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

,
(14)

where TP , TN , FP , and FN are the true positives, true
negatives, false positives, and false negatives, respec-
tively. The value of the MCC is between {−1, 1}, where
larger values indicate better prediction. We present
the results for all outdoor images (42 images), for in-
door images taken using a flash and both incandescent
and fluorescent as diffuse light source (16 images, 8
flash/fluorescent and 8 flash/incandescent), and uncon-
trolled indoor images that were shot indoors but without
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controlled illumination (16 images). The last row reports
the average accuracy over the entire dataset.

6 DISCUSSION
Our shadow detection method has the best overall accu-
racy and MCC for all images. Additionally, the standard
deviation of both the accuracy and the MCC is much
lower than for the two other methods (accuracy σ = 8.5
for our method compared to σ = 17.6 for [8] and σ = 22.6
for [9]), indicating that our method is more robust and
has fewer failure cases.
The inherent problem of shadow detection methods that
use segmentation, such as Guo et al., is that if the
segmentation fails to segment regions that are in the
shadow from regions that are not in the shadow, the
shadow detection will not be correct, as illustrated in
Fig. 7b, where the black sweater is completely missed.
Tian et al.’s method, on the other hand, labels the
whole sweater as being in shadow. Segmentation-based
shadow detection algorithms also tend to have problems
in highly textured regions, which are quite common,
especially in natural outdoor scenes. This is also reflected
in our results, where Guo et al. performed better on the
images of scenes that contain simpler shadows, such as
in Fig. 7a, d, and g, and fails for more complex ones such
as Fig. 7b, c, and f. While Tian et al.’s method is almost on
par with our method for outdoor images and performs
slightly better on the uncontrolled indoor images, our
method outperforms them on the flash indoor images.
This is due to the fact that their tricolor attenuation
model, which forms the basis for their shadow detection
algorithm, is computed based on outdoor light sources.
The reason their method is working very well on the
uncontrolled indoor image set is probably that the most
predominant light source in these scenes is still the sun,
as exemplified in Fig. 7g.

6.1 Limitations
Despite the high performance of our algorithm, there
are some limitations. For instance, current photographic
cameras are not designed to simultaneously capture vis-
ible and NIR information. Additionally, there are some
failure cases, inherent to the assumptions we make. In
particular, Equations (7) and (8) can be violated: if a
material has much lower reflectance in the NIR than
in the visible (e.g., water), it may be wrongly detected
as shadow. Similarly, for a material that has a much
higher reflectance in the NIR than the visible (e.g.,
vegetation), the shadows can be underestimated (tree
in Fig. 7f). Discriminating shadows from very dark, or
underexposed, regions is a common problem in shadow
detection. Finally, while generally reliable, the valley
detection process can overshoot (see Fig. 8).

6.2 Computation Time
Shadow detection is usually a preprocessing step for var-
ious practical applications, including shadow removal,

(a) (b) (c)

Fig. 8: Failure case where the ”correct” valley is not found. (a) is the
histogram of U , (b) Ubin using automatic θ (red line), and (c) Ubin

using better θ (green line).

segmentation, and white balancing. Because some of
these applications have to be performed in camera, the
computation time of the shadow detection algorithm
matters. We ran all three algorithms on a computer with
Intel R© Core

TM
i7-2620M 2.7Ghz CPU with 4 GB RAM,

and using Matlab R2011b. The images have an average
resolution of 1404 x 932 pixels. Table 2 shows the average
computation time per image as well as the standard
deviation for the tested methods.

TABLE 2
Comparison of the computation time for the different methods.

Method Ours Tian et al. [8] Guo et al. [9]
Average 0.49s 15.38s 433.92s
σ 0.02s 8.00s 320.98s

Our method is an order of magnitude faster, and
computation time does not depend on image content as
it is a non-iterative method, which manifests itself by the
much smaller standard deviation. Tian et al.’s [8] takes
around 30 times longer than our method, and Guo et al.’s
[9] method is far away from real-time, even though the
time-consuming parts of their method are implemented
in optimized Mex-files.

6.3 Performance on Processed Images
We have explained our approach using RAW images.
Cameras, however, may only output processed visi-
ble/NIR image pairs. By processed we mean white-
balanced, gamma-corrected and black-/whitepoint cor-
rected images. For comparison, we thus processed our
RAW images to output-referred sRGB images [37]. As the
resulting images are already white-balanced, we applied
our algorithm without the color to NIR ratio map.

TABLE 3
Comparison of our method on RAW and processed sRGB images.

Image set Stat Ours RAW Ours proc.
Mean σ Mean σ

Outdoor Acc 89.3 6.7 88.3 7.9
MCC 0.79 0.13 0.73 0.18

Indoor Flash Acc 86.4 12.6 88.4 5.0
MCC 0.72 0.13 0.70 0.12

Indoor unc. Acc 93.2 6.7 89.6 12.7
MCC 0.91 0.08 0.80 0.22

All Images Acc 89.5 8.5 88.6 8.6
MCC 0.80 0.14 0.74 0.18

We also changed the value of γ to 1.0 in the non-
linear mapping function of Equation 5 in order to reflect
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that the processed sRGB images are already gamma-
corrected. The results are shown in Table 3.

7 CONCLUSIONS

While intrinsically available to digital cameras, near-
infrared information is currently not acquired nor used.
In this paper, we have presented a shadow detection
algorithm that outputs high-quality shadow maps by
employing conjoint visible and near-infrared images. The
relative transparency of colorants to NIR and the physics
of common light sources enable us to compute color
to NIR ratio maps that, coupled with simple heuristics,
provide binary shadow masks that are reliably more
precise than existing state-of-the-art techniques. Because
of its simplicity, our shadow detection method runs
significantly faster than competing techniques. Our al-
gorithm can detect shadows in a variety of complex
illumination conditions, as shown in the content of our
visible-NIR image pairs dataset (available online).
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[14] M. Brown and S. Süsstrunk, “Multi-spectral sift for scene category
recognition,” Proc. IEEE Computer Vision and Pattern Recognition,
2011.

[15] N. Salamati, D. Larlus, G. Csurka, and S. Süsstrunk, “Semantic
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“A new in-camera imaging model for color computer vision and
its application,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 34, no. 12, pp. 2289–2302, 2012.

[34] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic
tone reproduction for digital images,” ACM Trans. Graph., vol. 21,
no. 3, pp. 267–276, 2002.

[35] G. Wyszecki and W. Stiles, Color science: Concepts and Methods,
Quantitative Data and Formulae. Wiley and Sons, 1982.

[36] B. Matthews, “Comparison of the predicted and observed sec-
ondary structure of t4 phage lysozyme,” Biochimica et Biophysica
Acta (BBA) - Protein Structure, vol. 405, no. 2, pp. 442 – 451, 1975.

[37] R. Ramanath, W. Snyder, Y. Yoo, and M. Drew, “Color image
processing pipeline,” IEEE Signal Processing Magazine, vol. 22, pp.
34–43, 2005.


