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Abstract Finite deformations of planar slender
beams for which shear strain can be neglected are
described by the extensible- elastica model, where the
strain-displacement relation is geometrically exact and
the Biot stress–strain relation is linear. However, if
the formulation is expressed in terms of displacements
without rotation, the kinematics are described by a par-
tial differential equation involving a fourth-order spa-
tial operator,which cannot be approximatedby the clas-
sicalC0-continuousFEmethod in the standardGalerkin
framework. In thiswork,wepropose the spatial approx-
imation of such high-order PDE by means of NURBS-
based isogeometric analysis (IGA) which allows the
use of globally high-order continuous basis functions.
The employed IGA approach possesses three advan-
tages: first, it facilitates the encapsulation of the exact
geometric representation of the beams in the spatial
approximation with fewer discrete points, especially
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useful for curved structures; second, it allows the dis-
cretization of high-order spatial operators; and third, it
provides an efficient numerical solution of the discrete
problem by using a limited number of degrees of free-
dom since the employed standardGalerkin formulation
does not require rotational degrees of freedom. Yet this
approach has not been directly compared to appropriate
analytical solutions. To this end, we compare and val-
idate numerical results from FE with the closed-form
solutions for a set of static beam problems, including
a newly derived solution for an initially curved beam,
based on the extensible-elastica theory, by estimating
the convergence orders of the errors. We also highlight
the advantages of this formulation with the numerical
solution of three dynamic problems: the swinging of
a pinned beam, the propagation of solitons (nonlinear
waves) in post-buckled beams, and snap-through buck-
ling of a pinned beam that is axially buckled before
transverse loading.

Keywords Extensible-elastica · Isogeometric
rotation-free discretization · NURBS · Nonlinear
beams · Dynamic snap-through

1 Introduction

Finite deformation of slender structures is of interest
for many problems ranging from buckling of structural
frames to curling of cables and human hair, for which
linear beam theories based on infinitesimal displace-
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ment cannot be used. The geometrically exact beam
formulation, firstly introduced by Reissner [1,2], takes
into account large nonlinear deformations of bend-
ing, axial, and shear type; the term exact refers to
the fact that the strain follows directly from geometri-
cal considerations without approximations. The finite-
element (FE) formulation introduced by Simo [3,4]
contributed to the popularity of this theory (see a more
recent detailed implementation in [5]), and computa-
tional aspects arising from new formulations are still
of interest [6–8]. However, the formulation proposed
by Simo requires, in addition to the two degrees of
freedom (dofs) corresponding to the components of the
position vector, the introduction of a third dof describ-
ing the local rotation in order to enforce equilibrium.
In addition to increasing the computational cost in
dynamic problems, rotary dofs lead to a nonconstant
mass matrix restricting time integration schemes to
implicit ones [9]. The absolute nodal coordinate formu-
lation (ANCF) [10–13] has been developed to improve
these drawbacks even if it involves higher-order spatial
operators.

For slender structures such as cables or rods,
shear deformations can be neglected using the Euler–
Bernoulli assumption of beam cross sections remain-
ing normal to the elastic axis and plane after defor-
mation. This leads to the formulation of extensible-
elastica, for which the kinematics are often expressed
in terms of trigonometric functions involving one dis-
placement component and the rotation of the cross sec-
tion of the beam [14]. If expressed in terms of both
displacement components, the kinematics are mathe-
matically represented by high-order partial differential
equations (PDEs) and specifically a fourth-order spatial
differential operator is involved.As consequence, in the
weak formulation, the problem involves second-order
derivatives for which a numerically approximated solu-
tion based on the standard Galerkin method requires
the use of at least globally C1-continuous basis func-
tions. Conversely, when considering FE approxima-
tions based onLagrangian polynomialswhich are glob-
ally C0-continuous in the computational domain, the
use of mixed formulations with auxiliary variables rep-
resents one of the most viable approaches. A simi-
lar problem arises in linear beam theory, where the
curvature, proportional to the moment, is given by
the second derivative of the transverse displacement.
This problem is often solved by using C1-continuous
cubic Hermite basis functions with the addition of an

explicit dof physically corresponding to the rotation
[15]. However, this approach cannot be used for the
rotation-free extensible-elastica, since second deriva-
tives of displacements are not physically meaningful
quantities. In the literature, different techniques have
been used to solve the rotation-free extensible-elastica
formulation. In [16], the Hu-Washizu variational prin-
ciple is employed for which the rotation is numerically
approximated with the aim of removing the second-
order derivative. More recently, this problem has been
solved by the quaternion-based method [17] and the
weak-form quadrature element method [18].

Isogeometric analysis (IGA), firstly introduced by
Hughes et al. [19], aims at filling the gap exist-
ing between computational mechanics for engineering
applications and computational geometry, specifically
computer-aided design (CAD) systems. The key fea-
ture of IGA consists in generalizing the FE method by
considering an isoparametric approach for which the
same basis functions used to represent the geometry are
then used for the approximation of the unknown solu-
tion field of the governing PDEs. As a consequence, the
representation of the computational domain is encapsu-
lated in the numerical approximation of the governing
PDEs. Since nonuniform rational B-splines (NURBS)
are especially used in CAD systems, we will consider
NURBS-based IGA for the approximation of the gov-
erning PDEs. A crucial property of NURBS basis func-
tions is the possibility to increase their degree of con-
tinuity through the k-refinement procedure [20]. The
smoothness of the NURBS basis functions leads in
many cases to better accuracy and reduced computa-
tional cost compared to the standard FE method [19].
In addition, in vibration analysis, IGA based on smooth
NURBS basis functions improves the representation of
optical branches of the frequency spectrum [21,22].

If the nonlinear response of initially curved slender
structures is desired, discretization requires many ele-
ments with undesirable geometric characteristics, such
as low thickness-to-length ratio, leading to erroneously
increased stiffness. In this paper, we take advantage of
properties of NURBS basis functions and IGA to solve
the shear-free, high-order-formulation problem in the
standard Galerkin framework. By employing an appro-
priate constitutive law, we are able to directly compare
NURBS-based IGA models to analytical solutions of
a certain class of beam problems, thus validating the
performance of the considered computational method.
The computational domain representing a beam with a
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single NURBS patch in particular is used. We remark
that for multiple NURBS patches (typical of problems
with piecewise continuous geometry), the rotation-free
extensible-elastica formulation cannot be directly used,
for which rigid constrains or stiff simplified elements
(bending strip method [23]) between patches need to
be added.

In the field of nonlinear isogeometric beams, avail-
able formulations in literature are based on elastica [20]
and nonlinear Euler–Bernoulli [22–24] theories. Beam
models including shear are proposed in [25,26] for
Timoshenkobeams and in [27] for the third-order, shear
deformation theory (TSDT). For isogeometric nonlin-
ear plates and shells, we refer the reader to [28,29] for
Kirchhoff-Love rods, to [30–32] for Kirchhoff–Love
shells, to [33,34] for Reissner–Mindlin shells, and to
[35] for modified Reissner–Mindlin shells including
variable thickness.

A isogeometric method for slender beams under-
going large deformations and free of shear is pro-
posed in [23]. With respect to this work, our formu-
lation differs in the choice of the constitutive material
model. In order to explain this difference, we recall
that Irschik and Gerstmayr [36] presented an interpre-
tation of the strain measures and stress resultants of
the extensible-elastica formulation in terms of nonlin-
ear continuummechanics.A linear relation between the
second Piola–Kirchhoff stress and the Green-Lagrange
strain, as given by the Saint Venant–Kirchhoff model,
results in a nonlinear relationship between stress resul-
tants (axial force and moment) and strain (axial strain
and curvature), thus introducing a nonlinear material
model. The former is the formulation considered in
[23]. Conversely, in this paper, we consider a linear
constitutive law between Biot Stress and Biot strain
resulting in a linear material model. Indeed, the axial
force and moment are only a function of axial strain
and curvature, respectively [36] (see [37] for a com-
parison with the Saint Venant–Kirchhoff model). Such
linear constitutive law at the beam level is a key fea-
ture of the extensible-elastica theory [14], allowing
closed-form solutions of simple nonlinear beam prob-
lems with coupled axial and transverse displacements
(the term closed form refers to the fact that solutions are
expressed in terms of known functions such as elliptical
integrals). Closed-form solutions of known problems
provide an ideal setting to evaluate the numerical per-
formance of the IGA formulation, which we consider
by using “patch tests.” Static analytical solutions for the

extensible-elastica method have already been applied
to buckling [14,38], variable-length beams under con-
centrated/distributed forces [37,39], and snap-through
buckling [40,41]. However, to the best of our knowl-
edge, patch tests for initially curved extensible-elastica
have not been considered yet; currently available tests
differ in the constitutive laws and strain measurement
[42,43]. In the present paper, we derive a new closed-
form solution for a tip-loaded curved cantilever beam
using the extensible-elastica to expand available bench-
mark cases.

Closed-form solutions of patch tests for static beams
are used to verify the convergence orders of the errors
under h-refinement associated with the IGA approxi-
mations using a-priori error estimates [44,45], includ-
ing high-order PDEs [46,47]. Despite the fact that the
error estimates are derived for linear problems, the
same convergence orders are often observed for non-
linear PDEs also (see, e.g., [20]). Moreover, we remark
that the considered formulation is free of shear lock-
ing by design even for initially curved structures [48],
but may exhibit membrane locking when beam ele-
ments possess very low aspect ratio, which is often the
case in discretizing curved structures. This phenom-
enon is well known in FE formulations [15,49] and
has received renewed attention in the context of IGA
for Timoshenko beam formulations, using different
locking-free methods, namely the collocation method
[25], the selective reduced integration, the reduced inte-
gration with hourglass mode control, the B̄ strain pro-
jection, and the discrete strain gap (DSG) method [26].
Moreover, the IGA formulation can be conveniently
used for the spatial approximation of dynamic beam
problems, as we illustrate by means of several numeri-
cal tests: the swinging of a pinned beam [23], the prop-
agation of solitons (nonlinear waves) in post-buckled
beams [50,51], and snap-through buckling of a pinned
beam that is axially buckled before transverse loading
[41].

This paper is organized as follows. In Sect. 2, the
rotation-free extensible-elastica formulation is recalled
and the different terms of the weak formulation and
its linearization are given; the isogeometric concept is
applied to the present problem. Closed-form solutions
for different static beam problems are presented and
derived in Sect. 3; then, the a-priori error estimates are
recalled in Sect. 4. In Sect. 5, static beam problems
are solved, and convergence order is numerically esti-
mated and compared with the a-priori error estimates.
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In Sect. 6, dynamic problems are solved. Conclusions
follow.

2 Rotation-free extensible-elastica formulation

2.1 Strain measurement and constitutive law

The derivation of the rotation-free extensible-elastica
formulation follows from the geometrically exact beam
theory including shear and is described in [5].However,
contrarily to [5], the beam formulation is provided in
the global coordinate frame allowing initial deforma-
tions and is not rotated back to the local frame in order
to compute strain and stress resultants [18] (Fig. 1).
Indeed, the rotation to a local frame is not compatible
with rotation-free formulations.

In the initial configuration of the beam, r0 ∈ R
2 is

referred to as the position vector of a material point of
the beam; e0,i , i = 1, 2 is an orthonormal basis vec-
tor of the Euclidean space R2 such that e0,1 represents
the normal direction of the cross section and θ0 ∈ R

the orientation angle of the initial configuration with
respect to the reference configuration.We indicate with
s0 ∈ R the arc-length parameter of the elastic axis of
the beam (i.e., the curvilinear coordinate) andwith l0 its
total length. Correspondingly, r , ei , θ , and s represent
the position vector, the orthonormal basis vectors, the
rotation, and the curvilinear coordinate in the current
configuration of the beam, respectively. These quanti-
ties are shown in Fig. 1 and are defined as:

r0 = {r0,x , r0,y
}T

, r = {rx , ry
}T

,

e0,1 = {cos θ0, sin θ0}T , e1 = {cos θ, sin θ}T ,

e0,2 = {− sin θ0, cos θ0}T , e2 = {− sin θ, cos θ}T .

(1)

where r0 = r0(s0), r = r(s), e0,i = e0,i (s0), ei =
ei (s), θ0 = θ0(s0), and θ = θ(s).

r0

0

e0,2
e0,1

e2

e1

x

y
r

Fig. 1 Beamkinematics: reference (dotted lines), initial (dashed
lines), and current configuration (full lines)

The strain relation proposed by Reissner [1]
extended to global coordinates reads:

ε = r ′
x cos θ + r ′

y sin θ −
(
r ′
0,x cos θ0 + r ′

0,y sin θ0

)
,

γ = r ′
y cos θ − r ′

x sin θ −
(
r ′
0,y cos θ0 − r ′

0,x sin θ0

)
,

κ = θ ′ − θ ′
0.

(2)

where ε is the axial strain, γ the shear strain, and κ

the curvature. The notation ( )′ denotes the deriva-
tive with respect to the initial curvilinear coordinate
s0 (Lagrange formulation). The Euler–Bernoulli beam
model assumes that the cross section remains planar
and normal to the tangent of the elastic axis of the beam
after deformation, which corresponds to assuming that
the shear γ is identically zero. By substituting the rota-
tions θ and θ0 in Eq. (2), the axial strain ε and the
curvature κ can be rewritten in terms of r0, r , and their
derivatives 1:

ε = ‖r ′ ‖2 − ‖r ′
0‖2,

κ = r ′′TΘ r
′

‖r ′ ‖22
− r ′′T

0 Θ r ′
0

‖r ′
0‖22

,
(3)

where ‖r ′‖2 =
√
r ′2
x + r ′2

y is the Euclidean norm and

Θ is a 90◦ rotation matrix given by:

Θ =
[
0 −1
1 0

]
. (4)

By assuming that the strain is finite but small, even
for large displacements, it is possible to describe mate-
rial behavior byHooke’s law. By using the Youngmod-
ulus E , the constitutive law between the force and the
strain after the integration over the cross section of the
beam is [1,5,36]:
{
Nε

Nκ

}
=
[
E A 0
0 E Iz

]{
ε

κ

}
, (5)

where A and Iz are the area and moment of inertia of
the beam, respectively; Nε and Nκ indicate the internal
axial force and bendingmoment, respectively. The con-
stitutive lawEq. (5) is equivalent in continuummechan-
ics to the linear relationship between the Biot’s stress
and strain. For an overview of alternative constitutive
laws, see [36].

1 r ′′TΘ r
′
is sometimes expressed as a norm of a cross-product

‖r ′ × r ′′‖2 (e.g., [18]); however, in this convention, the sign is
lost.
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2.2 The weak formulation

The weak formulation of the equilibrium equation is
obtained from the principle of virtual work and is
expressed in terms of the current configuration r =
r0+u, where u = {ux uy}T is the displacement vector,
and δu = δr the virtual displacement vector; f ∈ R

2

and F ∈ R
2 are the distributed and concentrated force

vectors, respectively. The distributed and concentrated
moments are indicated by m ∈ R and M ∈ R, respec-
tively. Transverse and axial follower loads are not taken
into account in our formulation, but can be derived sim-
ilarly to what is done for the moment. By considering
a dynamic problem, the weak formulation of the equi-
librium equation is given by [5]:

find u ∈ V : G(r(u))(δu) = 0 ∀ δu ∈ V,

∀t ∈ (0, t f ), (6)

given suitable initial conditions at the time t = 0, with
t f is the final time, and V ⊂ H2(Ω) (Ω ∈ (0, l0))
a suitable subset of the Hilbert function space H2(Ω)

carrying the essential boundary conditions and:

G(r(u))(δu) =
l0∫

0

(Nεδε + Nκδκ)ds0

−
l0∫

0

((
f T + ρAüT

)
δu + mδθ

)
ds0

−
[
FT δu + Mδθ

]l0
0

, (7)

for which

δε = Rε′δu′,
δκ = Rκ ′δu′ + Rκ ′′δu′′,
δθ = Rθ ′δu′,

(8)

where:

Rε′ := r
′T

‖r ′‖2 ,

Rκ ′ := r ′′TΘ
[‖r ′‖22 I − 2r ′r ′T ]

‖r ′‖42
,

Rθ ′ := Rκ ′′ = r ′TΘT

‖r ′‖22
,

(9)

with I the identity matrix and Θ the rotation matrix
(Eq. (4)); ρ is the density, and ¨( ) denotes the sec-
ond derivative with respect to time. Since there are
no rotation dofs in the current formulation, we do not

include rotary-inertia terms in Eq. (7), thus avoiding
mass matrices with possibly bad conditioning [15].
Note also that in Eq. (7), we have omitted for simplic-
ity the explicit dependency of the unknown u on the
time variable t . The equilibrium equation (7) is nonlin-
ear in the first argument, for which, in order to solve
the problem, theNewton-Raphson scheme is used [15].
The linearization of the functional G(r(u))(δu) reads:

DG(r(u))(δu, δv) =
l0∫

0

(
(E A + Nε)δ̂ε

+(E Iz + Nκ)δ̂κ − mδ̂θ
)
ds0

−
[
M δ̂θ

]l0
0

(10)

where:

δ̂ε = (δu′)T Gε′ε′δv′,
δ̂κ = (δu′)T Gκ ′κ ′δv′ + (δu′′)T Gκ ′′κ ′δv′

+ (δu′)T Gκ ′κ ′′δv′′,
δ̂θ = (δu′)T Gθ ′θ ′δv′,

(11)

and:

Gε′ε′ := ‖r ′‖22 I − r ′r ′T

‖r ′‖32
,

Gκ ′κ ′ := −2

[
r ′r ′′T Θ+ΘT r ′′r ′T ] ‖r ′‖22+

[‖r ′‖22 I − 4r ′r ′T ] r ′′T Θ r ′

‖r ′‖62
,

Gθ ′θ ′ := Gκ ′κ ′′ = Gκ ′′κ ′ = Θ
[‖r ′‖22 I − 2r ′r ′T ]

‖r ′‖42
,

(12)

being Θ
[‖r ′‖22 I − 2r ′r ′T ] a symmetric matrix. Note

that although the proposed formulation is valid for
large deformations, inertia terms are independent of
the deformed configuration so no inertia term appears
in Eq. (10). The finite dimensional approximation of
Eq. (6) reads:

find uh ∈ Vh : G(rh(uh))(δuh) = 0 ∀ δuh ∈ Vh,

∀t ∈ (0, t f ), (13)

given suitable initial conditions at the time t = 0, and
Vh is a finite dimensional subspace ofV , such thatVh ⊂
V .We remark that the spatial approximation of problem
(13) bymeans of the standardGalerkinmethod requires
basis functions which belong to the spaceV ⊂ H2(Ω),
a requirement that is satisfied when considering glob-
ally C1-continuous functions across the mesh elements
in the choice of the functions space Vh ⊂ V . Contrar-
ily to classical FEmethods, NURBS-based IGA can be
successfully used to fulfill this requirement.
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2.3 Isogeometric formulation

We consider the representation of the geometry of a
curved beam by means of NURBS [19]. We say that
the geometrymapping r0 possesses a p-degreeNURBS
representation when there exist n ∈ N control points
Bi ∈ R

2, weights wi ∈ R, i = 1, . . . , n, and a set of
knots 
 = {0 = ξ1 ≤ . . . ≤ ξn+p+1 = 1} such that:

r0(ξ) =
n∑

i=1

Ri,p(ξ)Bi , (14)

where Ri,p(ξ) is theNURBSbasis defined at ξ ∈ (0, 1)
by:

Ri,p(ξ) = Ni,p(ξ)wi
n∑

j=1
N j,p(ξ)w j

, (15)

with Ni,p(ξ) the i-th B-spline basis function defined
by the Cox-De Boor recursive formula [52]:

Ni,0(ξ) =
{
1 if ξi ≤ ξ < ξi+1,

0 otherwise,

Ni,p(ξ) = ξ − ξi

ξi+p − ξi
Ni,p−1(ξ)

+ ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ), for p ≥ 1.

(16)

The use of weights wi for i = 1, . . . , n allows
the exact representation of conical sections. The so-
called knot vector 
 defines a partition of the para-
meter domain (0, 1) similar to the classic FE subdi-
vision yielding the so-called mesh of the parametric
domain. A nonuniform knot vector and repeated knots
are the key of the NURBS flexibility, allowing locally
refined, geometric descriptions and reduced continuity
of the basis functions. In particular, a knot of multiplic-
ity q such that 1 ≤ q ≤ p yield basis functions C p−q -
continuous across the knot. In the present paper, for the
purposes of the proposed formulation, at least globally
C p−q basis functions are used with 1 ≤ q ≤ p − 1 for
p ≥ 2.

For the sake of simplicity, the independent variable
ξ is omitted in the rest of the paper. The first and second
derivatives of NURBS basis functions are given by:

dRi,p

dξ
= 1

W

(
dNi,p

dξ
wi − Ri,p

dW

dξ

)
, (17)

d2Ri,p

dξ2
= 1

W

(
d2Ni,p

dξ2
wi −2

dRi,p

dξ

dW

dξ
−Ri,p

d2W

dξ2

)
,

(18)

where W =
n∑

j=1
N j,pw j . Derivatives of NURBS basis

functions with respect to the initial curvilinear coordi-
nate s0 are:

R′
i,p = 1

‖J0‖2
dRi,p

dξ
, (19)

R′′
i,p = 1

‖J0‖22
d2Ri,p

dξ2
− JT

0 H0

‖J0‖42
dRi,p

dξ
, (20)

where H0 = d J0
dξ

and the Jacobian J0 = d r0
dξ

is such
that:

s0 =
ξ∫

0

‖J0‖2dξ. (21)

The main idea of the isogeometric approach is to use
the same basis functions that represent the geometry
also for the approximation of the displacement field as:

r =
n∑

i=1

Ri,p(Bi + ui ), (22)

where ui is the discretized displacement for which in
Eq. (13) we set Vh = V ∩ span

{
Ri,p, i = 1, . . . , n

}
.

Note that in dynamics, the control variables ui = ui (t)
are time dependent.

The integrals involved in the weak formulation
(Eq. (7)) are evaluated in the parametric space using
the change of variables given in Eq. (21), and suitable
Gauss-quadrature rules (more efficient quadrature rules
can be eventually used for NURBS-based IGA [53]).
For dynamic beamproblems, the generalized-αmethod
is employed as the time integration scheme, which can
be second-order accurate and unconditionally stable in
linear problems [54]. This method is implemented in
the form of a predictor–multicorrector algorithm [55].
Specifically, we consider the parameters used for the
method as dependent on ρ∞ ∈ [0 1], which is the high-
frequency dissipation parameter. We refer the reader
to [23] for the details of the method and choice of the
parameters. Moreover, it has been shown in [56] that
for dynamic problems solved with the generalized-α
scheme, k-refinement speeds up the convergence and
improves energy conservation.
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3 Set of static problems and exact/closed-form
solutions

We consider a set of static extensible-elastica classi-
cal problems, found in the literature, for which exact
or closed-form solutions are known [14,18,38,39]. In
addition, we propose the closed-form solution of a
clamped, initially curved, extensible-elastica subject to
a transverse tip load.

3.1 Test A: straight beam under pure axial load with
nonconstant Young modulus

The first problem we propose is a cantilever beam
stretched by an axial force P taken as P = 3E A.
All the properties of the beam are assumed constant
except the Youngmodulus, which is chosen as E(s0) =
E/(1 + 0.5 sin(2πs0/ l0)), with l0 the length of the
beam. The strain equation (Eq. (3)) is pure axial and
becomes linear:

ε = r ′
x − 1,

κ = 0,
(23)

and the weak form (Eq. (7)) only involves first-order
derivatives. The exact solution for the displacement is:

ux (s0) = P

E A

(
s0 − 1

4π

(
cos

(
2πs0
l0

)
− 1

))
,

uy(s0) = 0.

(24)

3.2 Tests B: straight and curved beams with pure
bending

We consider two similar problems where a clamped
beam initially straight or curved is subjected to a
moment M applied at the tip (Fig. 2). This problem is
of pure bending type, and the curvature remains homo-
geneous along the beam [18]. In the first problem (test
B1), the initially straight beam is bent until a quarter of
a circle is obtained, while for the second problem (test
B2), the initially curved beam is bent until a straight
beam is obtained. The applied moment to obtain the
final configuration reads:

M = ± E Iz
R0

= ±πE Iz
2l0

, (25)

where the sign+ and− indicate testsB1 andB2, respec-
tively. The strain equation (Eq. (3)) simplifies:

M

M

R
R0

(a) (b)

Fig. 2 Straight (test B1) (a) and quarter circle beam (test B2)
(b); the moment M is applied to obtain a quarter circle and a
straight beam, respectively

ε = 0,

κ = 1

R
− 1

R0
,

(26)

where R and R0 are the current and initial radius of the
beam, respectively. Since κ is a constant through the
radius R, the weak formulation (Eq. (7)) involves only
the first-order operator. The displacement is given by:

ux (s0) = ±
(
2l0
π

sin

(
πso
2l0

)
− s0

)
,

uy(s0) = ±2l0
π

cos

(
πso
2l0

)
.

(27)

3.3 Test C: cantilever straight beam under transverse
tip load

The transverse tip load of a straight cantilever beam
(Fig. 3) induces both axial and bending deformations.
The force applied at the extremity is chosen as P =
2E Iz/ l20 . By rewriting, the weak form in terms of θ

gives with the extensible-elastica method [39]:

dθ

ds0
= −

√
P

E Iz

√

(sin θ − sin θl )

(
2− P

E A
(sin θ+sin θl )

)
,

(28)

where θl , the angle at the tip of the beam, is determined
by integration of:

l0 =
∫ l0

0
ds0 =

∫ θl

0

ds0
dθ

dθ. (29)

Similarly, the angle in the deformed (current) config-
uration θ is linked to the original curvilinear coordinate
s0 as:

s0 =
∫ s0

0
ds0 =

∫ θ

0

ds0
dθ

dθ. (30)
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P
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l

Fig. 3 Test C: cantilever straight beam under transverse tip load

P

P’

Fig. 4 Test D: buckling of a pinned-roller beam

The displacement is given by:

ux (s0) =
∫ θ

0

(
cos θ + P

E A
cos θ sin θ

)
ds0
dθ

dθ − s0,

uy(s0) =
∫ θ

0

(
sin θ + P

E A
sin2 θ

)
ds0
dθ

dθ.

(31)

Note that l0 and s0 are evaluated bymeans of numer-
ical integration; alternatively, they can be expressed in
terms of incomplete elliptical integrals as in [39].

3.4 Test D: buckling of a pinned-roller beam

Beam buckling is an additional test involving axial and
bending deformations (Fig. 4). The applied load is P =
1.4Pc where Pc is the critical load defined as:

Pc = π2E Iz
l20

. (32)

In order to follow the stable path from the initial
configuration without adding any initial imperfections
to the geometry, a second load P ′ (P ′ � P) is applied
in the middle of the beam until P ≤ Pc and removed
afterward. The analytical closed-form solution of this
problem has been derived using again the extensible-
elastica equation and can be found in [14,38].

P

R0

P

s0

s

l0

0

0

l0

l

Fig. 5 Test E: clamped arc under a transversal tip load

3.5 Test E: clamped arc under a transversal tip load

A clamped, curved beam under concentrated load is
used to test the formulation for curved beams with
axial and bending deformations (Fig. 5). By using the
same method as [14,38] for beam buckling, or the
straight beam under transverse loads [39], we derive
the extensible-elastica equation for an initially curved
beam. By inserting Eq. (3), expressed in terms of θ and
r ′
x , into Eq. (7), and by using the constitutive law (5),
we obtain:

dθ

ds0
=
√

1

R2
0

+ 2P

EIz
(cos θl−cos θ)+ P2

EAEIz

(
cos2 θl−cos2 θ

)
,

(33)

where the angles θl and θ in terms of l0 and s0 are
found using Eqs. (29) and (30), respectively. The dis-
placement is given by:

ux (s0) =
∫ s0

0
r ′
xds0 − r0,x

=
∫ θ

0

(
cos θ+ P

EA
cos2 θ

)
ds0
dθ

dθ−R0 sin θ0,

uy(s0) =
∫ s0

0
r ′
yds0 − r0,y

=
∫ θ

0

(
sin θ + P

EA
cos θ sin θ

)
ds0
dθ

dθ

− R0(1 − cos θ0).

(34)

4 A-priori error estimation: convergence order

Since the exact/closed-form solutions for the consid-
ered static problems are now detailed, the efficiency of
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the IGA formulation can be verified by using a-priori
error estimates under h-refinement [46]. We consider
the convergence orders of the errors inHilbert spaces by
ensuring that numerical quadrature errors in Eqs. (29)
and (30) are negligible compared to the approximation
error of the Galerkin method. Similarly, we consider a
sufficiently small tolerance for the convergence crite-
rion of the Newton-Raphson method used to solve the
tangent problem associated with Eq. (13).

4.1 Error norms

Convergence plots of the curve under h-refinement are
obtainedby comparing analytical andFEsolutions.The
standard error in norm L2 (L2(Ω) ≡ H0(Ω)), where
Ω = (0, l0), reads:

‖u − uh‖L2(Ω) =
⎛

⎝
l0∫

0

(u − uh)2 ds0

⎞

⎠

1/2

. (35)

When considering high-order PDEs, namely of
order 2m with m ≥ 1, the Hilbert norm for σ ≥ 1
is given by:

‖u − uh‖Hσ (Ω)

=
⎛

⎜
⎝‖u − uh‖2H (σ−1)(Ω)

+
l0∫

0

(
dσ

dsσ0
(u − uh)

)2
ds0

⎞

⎟
⎠

1/2

.

(36)

4.2 A-priori error estimation

The a-priori error estimate in the norm Hσ for lin-
ear high-order elliptic PDEs provides the convergence
order of the errors under h-refinement; we refer the
reader to [46] for the derivation. Specifically, the error
in the Hilbert norm Hσ can be estimated as:

‖u − uh‖2Hσ (Ω) ≤ Chβ‖u‖Hr (Ω), (37)

if u ∈ V ∩ Hr (Ω), where h is the characteristic mesh
size of the elements, C a constant independent of u
and h, β is the order of convergence defined as β =
min{δ − σ, 2(δ − m)} with δ = min{r, p + 1} and p
the NURBS degree.

We remark that the a-priori error estimates have been
derived for linear problems, which is not the case of
Eq. (7). However, in several instances, the convergence

Table 1 Control points B = {Bx By}T and weights w of the
straight (tests A, B1, B∗

1, C, and D) and quarter of circle (tests
B2 and E) geometries with globally C1-continuous NURBS cor-
responding to the knot vector 
 = {0, 0, 0, 1, 1, 1}
Geometry Straigth Quarter of circle

Bx 0 l0
2 η l0 0 0 R0

By 0 0 0 0 R0 R0

w 1 wη 1 1 1√
2

1

order of the error is often achieved also for nonlinear
problems as, e.g., in [20]. Therefore, we will use the
a-priori error estimate (Eq. (37)) for verification pur-
poses.

5 Static numerical results and discussion

For all tests presented in Sect. 3, we assume that the
beam has a square cross section (A = k20 and Iz =
k40/12) of thickness k0 = 0.02 m, length l0 = 1 m,
and Young modulus E = 200 GPa. The convergence
criterion for the Newton–Raphson method is defined
by ‖R j‖2/‖R0‖2 < 10−8 where R j is the residual
vector at the Newton iteration j . Numerical quadrature
is performed using p + 1 Gauss-Legendre quadrature
points per element.

The geometry representing the beam in the initial
configuration is h-refined starting from a straight or
a quarter circle and exactly represented by globally
C1-continuous NURBS associated with the knot vector

 = {0, 0, 0, 1, 1, 1}. The control points and weights
for both geometries are given in Table 1. Note that we
arbitrarily expressed the straight beam in terms of two
parameters associated with the second control point: η
(0 < η < 2) and wη (wη > 0), which are taken equal
to 1 to yield a linearly geometrical map. This is the
case for all tests with initially straight geometry (tests
A, B1, C, and D), with the exception of test B∗

1, defined
from test B1, for which η �= 1 and/or wη �= 1 are
considered.

5.1 Convergence orders

We verify by means of numerical tests that the con-
vergence orders of the errors under h-refinement are
in agreement with expected theoretical ones. Plots of
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Fig. 6 Error versus mesh
size h for test A in norms
L2 (a) and H1 (b). NURBS
basis of degree p ∈ {2, 3, 4}
is represented by dotted,
dashed, and full lines,
respectively, and globally
C p−q -continuous basis
functions with q ∈ {1, 2, 3}
are represented by
{◦,×,+}, respectively
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the errors versus the mesh size h are reported for
each norm Hσ with 0 ≤ σ ≤ m for globally C p−q -
continuous NURBS basis of degree p ∈ {2, 3, 4}, and
1 ≤ q ≤ p − 1. Theses plots are given in Figs. 6, 7,
and 8 for pure axial (test A), pure bending (tests B1,
B2, and B∗

1), and mixed constraints (tests C, D, and E),
respectively.

When the mesh size h is decreased, the error
decreases linearly in the log–log scale for h suffi-
ciently small. The convergence order αX with X ∈
{A, B1, B2, B∗

1, C, D, E} for the different tests is
estimated by using the two last points of the conver-
gence curves presented in Figs. 6, 7, and 8, and is given
in Table 2. The convergence order β of Eq. (37) is eval-
uated by considering r ≥ p+1 since the exact/closed-
form solutions of the tests under considerations are suf-
ficiently smooth. The theoretical convergence order β

for m = 1 (β1) and m = 2 (β2) is also given in Table 2
where 2m is the order of the differential spatial operator
in the strong form of the PDE.

For the case of linear, purely axial deformations (test
A), we get αA = β1 from Table 2, in agreement with
Eq. (37) and the fact that the problem is first order and
linear (m = 1).

For problems in pure bending (Sect. 3.2), we have
shown that the exact weak form involves only first-
order operators. However, this is not the case for
approximated solutions since discretization leads to
spurious axial terms and nonconstant curvature. For
tests B1 and B2, the convergence orders are αB1 �
αB2 � β2, except for curves in the norm L2 with
NURBS of degree p = 2. Indeed, the convergence
orders are higher than expected (β2 = 2), being
αB1 � 4 and αB2 � 3 yielding a convergence order
higher than the expected one. For test B∗

1, the results are
obtained for η = 1 and wη = 1√

2
but can be extended

to any case with η �= 1 and/or wη �= 1. We find that
αB∗

1
� β2 even for p = 2 in the L2 norm.

For the results where both axial and bending terms
are activated (tests C, D, and E), we have from Table 2
that αC � αD � αE � β2.

In passing, we emphasize that for a given NURBS
basis degree p and a fixed mesh size h, increasing
the continuity increases the error. Indeed, for the same
mesh size, smoother basis functions use fewer dofs than
the basis functions with lower continuity, which have
more degrees of freedom to fit the solution.

5.2 Membrane locking

The formulation considered in this paper is free of
shear locking bydesign based onEuler–Bernoulli beam
assumptions [48], but not of membrane locking. Mem-
brane locking is attributed to the inability of the basis
functions to reproduce the inextensible bending due to
the appearance of spurious axial (membrane) terms that
constitute the major part of the strain energy. Indeed,
in Eq. (3), the axial strain ε is composed of two terms
of different order which are integrated using the same
Gauss rule, leading, in the case of pure bending, to the
inability to satisfy exactly ε = 0. This is also the reason
for which the discretized weak form cannot be simpli-
fied to a first-order problem in the case of pure bending.
By defining the slenderness parameter as:

λ =
√

Iz
Al20

, (38)

the membrane-locking phenomenon is shown for test

B2 in Fig. 9 by setting λ = k0/
(
l0

√
12
)

= 0.001/
√
12

(here k0 = 0.001). This phenomenon does not occur
for the test in Fig. 7d where λ = 0.02/

√
12.Membrane
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Fig. 7 Error versus mesh size h for tests B1 (a, b, c), B2 (d, e,
f) and B∗

1 (g, h, i) in norms L2 (a, d, g), H1 (b, e, h) and H2

(c, f, i). NURBS basis of degree p ∈ {2, 3, 4} is represented by

dotted, dashed, and full lines, respectively, and globally C p−q -
continuous basis functions with q ∈ {1, 2, 3} are represented by
{◦,×,+}, respectively

locking appears when the slenderness is small since
the membrane and bending terms are proportional to
k0 and k30, respectively. Contrarily to the Timoshenko
beam [25,26], membrane locking is present also for
initially straight beams since the constant terms of ε in
Eq. (3) are not zero. As shown in Fig. 9, the increased
NURBS degree alleviates membrane locking as it has
been already observed in FE and IGA [15,26,49].How-
ever, by increasing the degree p, the number of dofs
and the computational cost increases; we remark that
for NURBS-based IGA, the dof number only moder-
ately increases when increasing p and the smoothness

of the basis function (k-refinement). Alternative meth-
ods completely free of locking are presented in [25,26]
in the framework of isogeometric Timoshenko beams.

Finally, even though shear-free assumptions are vio-
lated for large thickness ratio (for k0 ≈ 1, we have
λ ≈ 1/

√
12), we have analyzed convergence rates for

such conditions. We find that the computed conver-
gence order is reduced with respect to the one expected
for linear PDEs (Eq. (37)). This phenomenon is not due
to membrane locking but appears to be sensitive to the
NURBS basis global continuity, and deserves further
investigations.
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Fig. 8 Error versus mesh size h for tests C (a, b, c), D (d, e,
f) and E (g, h, i) in norms L2 (a, d, g), H1 (b, e, h) and H2

(c, f, i). NURBS basis of degree p ∈ {2, 3, 4} is represented by

dotted, dashed, and full lines, respectively, and globally C p−q -
continuous basis functions with q ∈ {1, 2, 3} are represented by
{◦,×,+}, respectively

6 Dynamic problems

We consider now three different dynamic beam prob-
lems.

6.1 Swinging of a pinned beam

An initially straight beam, pinned at one extremity, is
oscillating under the action of gravity. In this example,
both stiff and soft beams are considered. The oscillating
period of the stiff beam is compared to that of a bar
(rigid beam) pendulum of constant cross section given
by [57]:

TBar = 4

√
2Iθ
ml0g

K (c), (39)

where g is the gravitational constant, Iθ = ml20/3
the inertia of the beam around the rotational point,
m the mass of the bar, and l0 its length; K (c) is
the complete elliptic integral of the first kind where
c = sin(θ0/2) and θ0 is the initial inclination of the
pendulum for which the speed is null (Fig. 10a). The
parameters used for the simulation are the same as in
[23]: g = 9.81 m s−2, E = 100 MPa, ρ = 3000 Kg
m−3, θ0 = π/2 rad, l0 = 1 m, and circular cross sec-
tion of radius r = 0.5 m and 0.001 m for the stiff and
soft beams, respectively (A = πr2 and Iz = πr4/4).
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Table 2 Convergence order α for the different tests compared to the estimated convergence orders β1 or β2 in norm Hσ , for globally
C p−q -continuous NURBS basis of degree p

Norm L2 H1 H2

p 2 3 4 2 3 4 2 3 4

C p−q C1 C1 C2 C1 C2 C3 C1 C1 C2 C1 C2 C3 C1 C1 C2 C1 C2 C3
β1 3 4 4 5 5 5 2 3 3 4 4 4

αA 3.01 3.99 4.00 5.01 4.99 4.99 2.00 2.99 3.00 4.01 4.00 4.00

β2 2 4 4 5 5 5 2 3 3 4 4 4 1 2 2 3 3 3

αB1 4.00 4.00 4.00 4.97 5.01 5.00 2.01 3.99 3.00 3.99 3.99 4.00 1.00 1.99 2.00 3.00 3.00 3.00

αB2 3.00 3.99 3.99 5.00 5.01 5.01 2.00 2.99 3.00 4.00 4.00 4.00 1.00 2.00 2.00 3.00 3.00 3.00

αB∗
1

2.04 3.99 4.04 5.01 4.99 5.04 2.03 2.98 3.00 3.99 3.98 4.00 1.00 1.98 2.00 3.98 3.00 3.00

αC 2.03 4.09 4.06 4.96 5.00 5.00 2.02 2.99 3.00 3.95 4.00 3.98 1.00 2.00 2.01 3.00 2.99 2.99

αD 2.09 4.03 4.03 4.99 4.96 5.05 2.08 2.96 3.00 3.96 3.97 4.00 1.00 1.96 2.00 2.97 2.99 3.01

αE 2.02 4.00 4.00 4.96 5.00 5.00 2.00 2.99 3.00 3.96 3.99 4.00 1.00 2.01 2.00 2.99 2.99 3.00
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Fig. 9 Error versus mesh size h for test B1 in norms L2. Glob-
ally C p−1-continuous NURBS basis of degree p ∈ {2, 3, 4} is
represented by dotted, dashed, and full lines, respectively. The
slenderness is λ = 0.001/

√
12. The simulations for which mem-

brane locking happens are highlighted with a dashed ellipse

The time step used for the time discretization with the
generalized-α method is �t = 0.0025 s, and the high-
frequency dissipation parameter is ρ∞ = 0.5. For the
spatial discretization, as in [23], we consider NURBS
basis functions of degree p = 3 and globally C2-
continuous across the ne = 10 mesh elements. In the
case of the stiff beam, the first five periods TBeam are
compared to Eq. (39) and results are found in excellent
agreement (see Table 3).

For the case of the swinging soft beam, snapshots
of the first five seconds of the simulation are shown in
Fig. 10. Results are found to be similar to those in [23],
even if some discrepancies arise due to the differences
in the formulation.

In order to show the convergence of the results, snap-
shots at time t = 1.5 s of the soft beam are given in
Fig. 11 andwe find that bothmesh refinement and order
elevation converge to the same solution. Note that the
mesh size in Fig. 10 is the same as in [23] in order to
allow direct comparison, even if it is too large to be
sufficiently accurate.

6.2 Solitons propagating in post-buckled beams

Post-buckled beams (Fig. 12a) possess a geometrically
nonlinear load-displacement relationship (P(�U ); see
Fig. 12c) and dispersion sources, such that these struc-
tures are capable of hosting solitons (nonlinear station-
ary waves) [50,51]. In [51], it is shown that the phase
velocity of linear waves is dispersive and may increase
or decrease, depending on the buckling level, type of
supports (necessary to ensure the stability), and curva-
ture.

Here we reproduce the theoretical results for soli-
tary wave propagation in a slender beam with peri-
odic pin supports [50]. The numerical simulation of
these beam problems is obtained in two distinct steps:
A static one in load control, where the beam, with a
large number of unit cells (q), is buckled (Fig. 12a),
and a dynamic one, in displacement control, where a
pulse is sent through the buckled structure (Fig. 12b).
We define the axial displacement of the support j by

Uj = ux (ξ j ) =
n∑

i=1
Ri (ξ j )ui,x , where ξ j is the posi-
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Fig. 10 Snapshots of the
oscillating, soft beam with
ne = 10 and p = 3:
a t ∈ [0.0, 0.9] s,
b t ∈ [0.9, 1.8] s,
c t ∈ [1.8, 2.7] s,
d t ∈ [2.7, 3.6] s,
e t ∈ [3.6, 4.5] s,
and f t ∈ [4.5, 5.0] s.
The arrows indicate
swing directions
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Table 3 Period error (|TBar − TBeam |/TBar ) of the first five
oscillations for the stiff beam (TBar = 1.9334s)

Period number 1st 2nd 3rd 4th 5th

Period error in % 0.078 0.065 0.074 0.000 0.067

tion of the pinned support in the knot vector. The strain
ζ j at the support j is defined as the variation of the
distance between two supports, and taken positive in
compression such that:

ζ j = Uj −Uj+1

L0
= �Uj

L0
, for j = 1, . . . , q − 1,

(40)

where L0 = L − �U0 = L (1 − ζ0), and L is the
length between two supports before buckling; �U0

and ζ0 are constant after the static buckling along the
beam and are the relative displacement between two
consecutive supports and strain, respectively. By mod-
eling the structure by a series of alternating masses
and nonlinear springs, and approximating locally the
load-displacement by polynomial of degree two, it is
shown in [50] that the homogenization of the discrete
system leads to the Korteweg de Vries (KdV) equation

(a canonical nonlinear PDE [58]) admitting a soliton
as solution, reading:

�ζ = �ζm sech2
(
�−1(x − V t)

)
, (41)

where�ζ = ζ−ζ0 is the dynamic strainwave and�ζm
its amplitude; in addition, V = C0 + σ�ζm/ (6C0) is
the soliton phase velocity and � = √

24C0γ / (σ�ζm)

its characteristic width, where C2
0 = P ′(�U0)L2

0/m,
σ = P ′′(�U0)L3

0/m, γ = C0L2
0/24, and m = ρAL .

The dynamic displacement applied at the left extremity
of the beam is obtained by integrating Eq. (41):

U1(t) = �ζm �
(
tanh

(
�−1V (t − t0)

)
+ 1
)

+q�U0, (42)

where t0 is arbitrary chosen as t0 = 5�V−1.
In order to properly pre-buckle the structure, imper-

fections in the initial configuration are used instead of
considering additional loads as done in Sec. 3.4. The
procedure used to construct the initial geometry with
imperfections reads:

– build a straight beam with globally C1-continuous
NURBS basis of degree p = 2 as defined in Table 1
with η = 1 and l0 = qL;

– h-refine the knot vector to get q mesh elements of
uniform length;
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Fig. 11 Snapshots of the
soft beam at time t = 1.5 s
for different meshes
(h-refinement). a p = 3 and
ne = 10, 20, 30, and 40
from large dashes to full
line, respectively. b ne = 20
and p = 2, 3, 4, and 5 from
large dashes to full line,
respectively
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– modify the y coordinates of the q+1 control points
such that

Bj,y =
{
0 if j = {1, q + 1},
(−1) j e otherwise,

(43)

where 0 < e � L0 is the parameter characterizing
the imperfection amplitude (Fig. 13a);

– perform order elevations and insert additional dis-
tinct knots (Fig. 13a, b) such that the NURBS basis
remains globally C1-continuous.
The applied boundary conditions are illustrated in

Fig. 12a. However, since the NURBS basis functions
are globally C1-continuous, the control points which
are not at the extremities of the beam do not lie on the
geometry. For each support j = 2, . . . , q − 1, the y
displacement is fixed by enforcing the condition:

ry(ξ j ) =
n∑

i=1

Ri (ξ j )(Bi,y + ui,y) =
n∑

i=1

Ri (ξ j )ui,y

= C ju = 0, (44)

where the position of the support in the knot vector is
given by ξ j = j/q and C j is a vector which has for
length the number of dofs, built from shape functions,
and completed by zeros. In order to enforce these condi-
tions,q−1Lagrangemultipliersλ j [59] are introduced,
thus resulting in a coupled system of two equations:

G(r(u))(δu) +
q−1∑

j=1

λ jC jδu = 0, (45)

q−1∑

j=1

C juδλ j = 0. (46)

Eq. (45) represents the virtual work (see Eq. (7)), and
Eq. (46) is the variation of the force necessary to con-
strain the displacement of the supports along y.

For the numerical simulation, the following parame-
ters are used: number of unit cells q = 150, rectangular
cross section of the beamwidth b0 = 12mm and thick-
ness k0 = 0.4 mm, L = 0.06 m, E = 200 GPa, and
ρ = 8000Kgm−3. The initial imperfection is e = 0.1
mm, the initial buckling compression �U0/L = 0.8
(Fig. 12c), and the amplitude of the dynamic strain
wave �ζm = 0.1. Each span (unit cell) is divided
into ne/q = 14 mesh elements, and the degree of the
NURBS basis is p = 3, such that these parameters
give a good approximation of the analytical elastica
equation [50] (see Fig. 12c). In the static part, the load
is incrementally applied in 1000 steps, while in the
dynamic part 1000 time steps are used with a total inte-
gration time t f = qL0V and ρ∞ = 0.9. The resulting
strain wave is shown in Fig. 13. While propagating, the
wave preserves its shape. Moreover, the strain wave
overlaps very well with the homogenized (and thus
approximate) analytical equation describing solitons
(Eq. (41)). This example shows that our formulation
can be conveniently adapted for nonlinear wave prop-
agation problems in initially curved slender structures
undergoing large dynamic deformations.

6.3 Dynamic snap-through buckling

We consider the snap-through buckling of a transver-
sally loaded arch, which is obtained from the buck-
ling of an initially straight beam (see Fig. 14a, b). This
problem is particularly interesting because it involves
internal resonances [60] and thus is good candidate to
demonstrate the robustness of the proposed methods.
In particular, we are interested in the transient response
of a buckled beam laterally loaded in its center by a step
load, as already studied in [41], andwe aim at reproduc-
ing the findings of [41]: the critical load is (1) smaller
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Fig. 12 Schematic post-buckled beam with q = 9 unit cells. a
Initial (dashed line) and post-buckled (solid line) configurations
after applying the static load PS = P(�U0). b Displacement
controlU1(t) (Eq. (42)) resulting in a propagating compressional

wave (solid line). c Nonlinear load–displacement relationship
P(�U0) with elastica solution [50] (∗) and results obtained by
a static simulation using the present formulation (full line)

Fig. 13 Four first unit cells
a before and b, c after the
refinement, and a, b before
and c after the static
buckling. Control points and
knot locations are
represented by • and ×,
respectively. d Snapshots at
time t = {0.07, 0.15, 0.22}
s of the strain wave �ζ vs.
the support number j
resulting from simulation
(full lines), and compared
with the analytical soliton
(Eq. (41)) (curves with ∗)
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in dynamics than in statics, and (2) it decreases with
extensibility (the extensibility is inversely proportional
to the slenderness parameter λ defined in Eq. (38)).
The construction of the initial geometry with the initial
imperfections follows themethod presented in Sect. 6.2
with a single unit cell (q = 1). The beam is divided
into ne = 150 mesh elements, and the degree of the
NURBS basis is p = 3 with NURBS basis functions

which are C2-continuous. The material and geometri-
cal parameters are the same as in Sect. 6.2 except the
initial length of the beam defined by l0 = √

Iz/A/λ.
We choose λ = 0.01 and 0.02 to compare the influence
of extensibility. The time step is �t = 0.001T , where
T = l20

√
ρA/E Iz , and ρ∞ = 0.9.

The static snapping critical load for the beam is
obtained from the nonmonotonic load-displacement
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Fig. 14 a Straight beam (large dashes) statically buckled (small
dashes) and b snap-through its second (gray line) or third (black
line) mode after the application of a load (Q) along the y axis
at the mid-span. c Resulting load (QS) midpoint-displacement

(ym ) curve. Points A and B are the static critical load of the sec-
ond and third modes, respectively; the ( )+ and ( )− give the sign
of the initial angle θ0. We set θ0 = 40◦ and λ = 0.01

Table 4 Nondimensional static critical load QS/Pc (Pc defined
in Eq. (32)) for snapping through the second and third bucking
modes and for two different levels of beam slenderness λ. Results
are compared to [41], if available

λ 0.01 0.02

Mode 2 3.31 (3.31 [41]) 3.21

Mode 3 4.92 4.65

curve (Fig. 14c), computed using the arc-lengthmethod
[61]. If the beam is perfectly symmetric and the load
is applied in its center, the second mode (asymmetric)
is not excited and the deformed beam “jumps” (point
B in Fig. 14c) directly to the third mode (symmetric);
whereas, if asymmetric imperfections are present (e.g.,
the load is not perfectly applied in the center), snapping
occurs at point A (see Fig. 14c) with deformation given
by the second mode (Fig. 14a,b). Values of the nor-
malized critical load (QS/PC ) are reported in Table 4
where we can already conclude that the critical load is
smaller in dynamics than in statics, in agreement with
[41].

In Fig. 15a, the midpoint deflection history of the
beam under a dynamic step load QD(t) = H(t)QD

is reported, where H(t) is the Heaviside function and
QD = 4Pc is chosen between the static critical load
(QS) of the second and third mode (see Table 4).

Both configurations of slenderness (λ) are considered.
Although the dynamic load is smaller than the static
critical load, snapping occurs directly through the third
mode for the most extensible beam (λ = 0.02) (see
deformed shapes inFig. 15d), showing that the dynamic
critical load is smaller than the static one. Conversely,
in the case λ = 0.01, the beam does not have enough
energy to snap directly through the excitedmode (mode
three). The beam starts oscillating (Fig. 15b) and then
snaps through the secondmode (Fig. 15c). For the same
load QD(t), since only the most extensible beam snaps
directly through the third mode, dynamic critical load
values become smaller and smaller for increasing val-
ues of extensibility, in agreement with [41].

Although we recover the same results, the point
here is to compare both methods. Indeed, in [41], the
extensible-elastica concept based on the same strain
kinematics and constitutive law is used, similarly to
the proposed formulation. Solutions of the extensible-
elastica are presented in terms of rotation and axial
displacements in [41], while we report in this paper
x and y displacement components. Accordingly, the
main difference lies in discretization of the prob-
lem; finite differences associatedwith the second-order
Crank-Nicolson time integration scheme are used in
[41], whereas the formulation presented here considers
NURBS-based IGAwith the second-order generalized-
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Fig. 15 Dynamic snap-through buckling of a beam with initial
angle θ0 = 40◦, of slenderness λ = 0.01 (gray), and λ = 0.02
(black) laterally loaded in its center by a step load (QD/Pc = 4).
a Time history of the normalized center deflection ym/ l0 and
b, c, d snapshots of the deformed shape. For the less exten-
sible case, the beam oscillates around its first mode (b) and
snaps through its second buckling mode after t/T ≈ 2 (c),
whereas for the most extensible case, the beam snaps directly

to its third mode (d). Snapshots starts at time t/T = 0 (b, d)
and t/T = 2.2 (c) with a time step between each snapshots
of �t/T = 0.04 (b), �t/T = 0.13 (c), and �t/T = 0.08
(d), and are represented in (a) by ∗, �, and ◦, respectively.
l0 = [0.0289, 0.0144] m, PC = [197.3921, 789.5684] N and
T = [5.8095, 1.4524] × 10−4 s for λ = [0.01, 0.02], respec-
tively

α scheme. Even if direct comparisons of the results are
not possible, since the smoothness of the displacement
field and rotation is ensured by the NURBS basis func-
tions which are globally C1-continuous, a small num-
ber of mesh elements and time steps are required in the
present work, leading to significant gains in computa-
tional efforts.

7 Conclusions

Rotation-free extensible-elastica formulations involve
fourth-order spatial derivatives of displacements not
available in classical FE methods. We propose the use
of IGA based on NURBS with high-degree continuous
basis functions for the finite-element approximation.
Owing to the linear relation between Biot stress and
strain we employ, we are able to directly evaluate the
performance of the discretized model by means of a-
priori error estimates of FE and analytical solutions for
several static benchmark problems with known analyt-
ical solution. This is to say we discretize the energy
functional of the rotation-free extensible-elastica. In
addition to problems available in the literature, we
derive the closed-formsolution basedon the extensible-
elastica theory for an initially curved cantilever beam
subject to transverse tip load.

We remark that NURBS-based IGA formulation
we investigated is advantageous to model finite defor-
mations of initially curved slender structures which
requiremany traditional elements to capture the nonlin-
ear coupling of axial and transverse deformations. This
leads to elements with poor aspect ratio and resulting
erroneously increased stiffness. Membrane locking is
typical. The high-degree, continuous basis functions
used here, while also leading to a formulation prone
to membrane locking, allow the use of many fewer
elements to exactly represent the geometry of curved
structures.

Another advantage is the reduced number of degrees
of freedom for a given problem, since the formulation is
rotation-free. The absence of the rotary degree of free-
dom is of great interest in dynamics, leading to constant
mass terms which contain the computational cost and
allow the simulation of complex, dynamic beam prob-
lems, as we did in the present paper.
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