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Abstract
Cytokinesis in fission yeast is controlled by the Septation Initiation Network (SIN), a protein

kinase signaling network using the spindle pole body as scaffold. In order to describe

the qualitative behavior of the system and predict unknown mutant behaviors we decided

to adopt a Boolean modeling approach. In this paper, we report the construction of an

extended, Boolean model of the SIN, comprising most SIN components and regulators as

individual, experimentally testable nodes. The model uses CDK activity levels as control

nodes for the simulation of SIN related events in different stages of the cell cycle. The

model was optimized using single knock-out experiments of known phenotypic effect as a

training set, and was able to correctly predict a double knock-out test set. Moreover, the

model has made in silico predictions that have been validated in vivo, providing new insights

into the regulation and hierarchical organization of the SIN.

Introduction
Schizosaccharomyces pombe, commonly referred as fission yeast, has long been used as a model
organism for the study of conserved, essential functions in the eukaryotic cell. It has proved
highly informative in the study of the cell cycle, particularly the control of the G2/M transition.
Like many somatic higher eukaryotic cells, it divides by binary fission. Cytokinesis in fission
yeast is controlled by the Septation Initiation Network (SIN), a protein kinase signaling net-
work, which uses the spindle pole body (SPB; the functional counterpart of the centrosome in
yeast), as a scaffold from which to initiate signaling. Elements of the SIN signaling architecture
have been conserved throughout evolution. In Saccharomyces cerevisiae the corresponding
pathway is known as the mitotic exit network (MEN), and controls both cytokinesis and
mitotic exit. In higher eukaryotes the equivalent signaling network is the hippo pathway, which
regulates cell growth and proliferation [1,2].
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The SIN comprises a group of protein kinases and their regulators that induce cytokinesis
when CDK activity drops in anaphase [3–5]. Signaling failure results in multinucleated cells, as
cytokinesis fails while growth and the nuclear cycle continue [6], which is referred to as the
SIN phenotype. Failure to turn off SIN signaling produces multiseptated cells that remain
uncleaved and contain one or two nuclei [7]. Ppc89p, Cdc11p and Sid4p form the scaffold
upon which signaling proteins are assembled at the SPB [8–11]. SIN signaling requires the
action of three kinase complexes. The association properties of SIN proteins with the SPB differ
in early and late mitosis (see [12], and references for each protein cited below). The kinase
Cdc7p associates with the signaling GTPase Spg1p [13,14], Sid1p associates with its regulatory
subunit Cdc14p [4,15] and the kinase Sid2p associates with its regulator Mob1p [16–18]. Asso-
ciation of the SIN kinase modules with the SPB during mitosis is considered to indicate that
the kinase in question is active (reviewed by [19,20]). The nucleotide status of Spg1p is regu-
lated by a bipartite GAP, composed of a catalytic subunit (Cdc16p), which interacts with Spg1p
in the context of a scaffold, Byr4p [21,22]. Etd1p regulates the nucleotide status of Spg1p, per-
haps by modulating Rho1p signaling [23–26]. Plo1p acts upstream of the SIN [27,28] and coor-
dinates SIN activity with other mitotic events. The SIN controls many aspects of cytokinesis
including the assembly of the contractile ring and synthesis of the division septum [29].

Our goal is to describe the qualitative behavior of the system, investigate the role of each
SIN regulator and potentially predict unknown mutant behaviors. Towards this end we
adopted a Boolean modeling approach. The choice of qualitative modeling was based on their
suitability to simulate systems with restricted kinetic data, as well as their computational effi-
ciency, that permits large numbers of in silico experiments even in networks with hundreds of
nodes.

Computational models find their origins in engineering science, and have proved to be useful
tools with which to analyze complex biological systems (for example [30–32]). The different
types of modeling techniques can vary from qualitative Boolean models, to quantitative kinetic-
based models; which of them is chosen depends on the type and amount of knowledge and
experimental data available for the specific system, as well as the size of the network [33,34].

The cell cycles of fission and budding yeast have long been popular fields of research and
several modeling strategies have been employed to understand them [30,35–40]. Models
focused on the fission yeast SIN have already been generated by Csikasz-Nagy et al. (2007) and
Bajpai et al. (2013) [41,42]. In the study by Csikasz-Nagy et al. the timing of septation in wild
type and mutant cells was described using a minimal, continuous model. The SIN components
were treated as two groups, the “Top of SIN” and “Bottom of SIN”, with Sid1p localization to
the SPB being the pivotal event that differentiates the two groups [42]. In the subsequent
model [41], the asymmetric distribution of molecules at the SPBs was analyzed using a simple,
non-linear model of two antagonistic molecules. The model was also extended to incorporate
key regulators of the SIN [41].

In this work, we present an extended, Boolean model of the SIN, comprising most known
SIN components and regulators as individual, experimentally testable nodes. The Boolean
framework allows us to perform in silico knock-out and “constant activation” experiments for
every combination of molecules present in the model, and to assess phenotypic predictions
that could be subsequently validated experimentally. Our model provided useful insights for
several aspects of SIN regulation such as the role of Fin1p, the inhibitory function of Nuc2p in
interphase, as well as an in silico, counter-intuitive, double mutant phenotypic prediction. The
model predicted that Sid4p mutant cells would septate if they express Cdc7p in high levels. The
prediction has been experimentally confirmed. This work serves as a good example of the use
of qualitative modeling in hypotheses generation and prediction of experimental outcomes in
otherwise complicated and long experiments.
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Results

Model construction through expert biocuration
An overview of the workflow used for the model construction, optimization and use is pre-
sented in Fig 1. For the gene regulatory network construction of the SIN we chose an expert
biocuration approach [43,44], taking advantage of the long-term expertise in the Swiss-Prot
group. Experimentally determined interactions specific to the SIN, were retrieved, structured,
curated and annotated from the literature and from available knowledge databases (for exam-
ple Pubmed, iHOP, UniProtKB/Swiss-Prot, ChEBI). To generate the model, we started by add-
ing the main SIN signaling regulators such as the GTPase Spg1p, its effector kinase Cdc7p and
the GAP Byr4p and Cdc16p [13,21,45]. We then added the SPB scaffold for the SIN, which is
comprised of Ppc89p, Sid4p and Cdc11p [10,45]. Subsequently, additional regulators were
added to this core unit, to complete a first working model. The collected knowledge was stored
in a structure formed of pairwise interactions and regulations that include information about
participating components, the origin of publications (PMID), the evidence used to evaluate the
interaction was mentioned and a confidence assessment as an evidence tag from the biocurator
(a full interaction table provided in S1 Table).

The constructed prior knowledge network (PKN) consists of 50 nodes (gene products, pro-
teins and complexes) and 124 directed edges (Fig 2A). The regulatory information is the result
of the curation of 67 published scientific papers (S1 table). The most recently published interac-
tion contained in this model is the inhibitory regulation of CDK and Plo1p upon Byr4p
recently published by [46].

The model interactions were classified as activations or inhibitions and they were repre-
sented in the network as a combination of Boolean functions that can include AND, OR and
NOT [40,47–51].

Qualitative model simulation
Despite the intensive study of the SIN over the past decades, there is little kinetic data for the
protein interactions described in the literature that form the basis for our model. Obtaining
such spatiotemporal data is experimentally difficult and represents one of the major challenges
in systems biology research. For the simulation of the SIN model we adopted a qualitative Bool-
ean approach, which has been successfully used in several other contexts [30,40,52–62].

In Boolean formalism, each node is characterized by an activation state that can take the val-
ues 1 for “active” or 0 for “inactive”, corresponding to the logical values TRUE and FALSE. The
activation state can refer to transcription, localization, phosphorylation or other post-transla-
tional modifications. For the construction of the SIN model we assumed that for scaffold pro-
teins “TRUE” corresponds to a state that permits the assembly of signaling complexes.

The state of each node depends on the state of the nodes regulating it, that is, the state of all
the incoming edges, and the rules that govern their interaction. The state of all the nodes at a
given moment defines the network state. The network transitions from state to state are dic-
tated by the underlying Boolean functions, until it reaches a steady state or a cyclic attractor
[48]. The possible trajectories in the state space can be represented by the state transition graph
[34,63,64].

In Boolean modeling, time is abstract and can be simulated using diverse strategies such as
in a continuous manner, with discrete updates or using probabilistic transitions. In the case of
discrete time representation, two main updating schemes can be used during model simulation;
synchronous and asynchronous update. The former assumes that all biological events in the
system have similar timescales, and all functions are updated simultaneously. In the latter, one
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function is updated at each time step, which can be deterministic (deterministic asynchronous)
or randomly selected (stochastic asynchronous) [65,66]. The asynchronous behavior can be
controlled by setting additional rules for time delays and priorities [67,68]. Alternatively, all
possible transitions can be generated [33,34,67,69].

Fig 1. Model construction and optimization workflow. The Prior Knowledge Network (PKN) is constructed
after collecting relevant information from various sources, including network databases and literature. The
PKN is translated into logical functions, describing the regulatory relations among gene products. The logical
model is simulated under the preferred conditions, resulting in one or more steady states, where all logical
rules are satisfied. The model goes then through an optimization procedure, where the goal is to fit the
resulting steady states with available experimental data by altering regulatory rules. The optimization typically
includes removing outdated / low confidence links, adjusting their representation and adding new regulatory
rules. The process is iterated until the simulation fits the available data. The model can then be used as a
predictive tool, by performing in silico perturbations. Validation of the predictions can lead to discovery of
missing regulatory links that are then added to the PKN.

doi:10.1371/journal.pone.0134214.g001
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Fig 2. The extended Boolean SINmodel. (A) The initial, prior knowledge network, manually re-constructed from the literature. Purple nodes represent
proteins and complexes that take part in the regulation of the SIN, and pink nodes represent AND gates. Blue arrows indicate activation events and orange
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Asynchronous deterministic updating was chosen for the SIN model simulation in this
study, since it assumes non-synchronous regulatory events, which is likely to reflect the in vivo
situation. However, the challenge in asynchronous update lies in interpreting the simulation
trajectories; in stochastic asynchronous simulations, the same initial state can lead to different
trajectories in the state space, due to the stochasticity of the updating scheme [34]. The simula-
tion algorithm used was based on genysis, a tool for synchronous and asynchronous modeling
of gene regulatory networks, based on reduced ordered binary decision diagrams (ROBDDs)
[69]. The algorithm identifies all steady states / attractors that can be reached, by efficiently
investigating all possible asynchronous state transitions.

The use of nodes representing CDK levels as input nodes for SIN
activity modeling
Cdc2p/CDK1 influences the SIN both positively and negatively. Active Cdc2p inhibits the SIN
early in mitosis; its inactivation is required for septum formation and to establish SIN protein
asymmetry [3,4,70–72]. Furthermore, Cdc2p and the Byr4p-Cdc16p GAP may cooperate to
prevent septation in interphase [73]. However, Cdc2p and Plo1p also collaborate positively to
ensure removal of Byr4p from the SPBs and facilitate SIN signaling in anaphase [46]. Failure to
increase CDK levels during early mitosis will block cytokinesis, since the cells do not enter
mitosis. However, constant, high CDK levels through mitosis will block cytokinesis. Thus,
CDK levels need to increase to permit entry into mitosis, after which cytokinesis will occur.
However, this will only happen once CDK activity decreases to a very low level, and cells exit
mitosis. The model must therefore accommodate these CDK-dependent regulatory events.

Towards this goal, we introduced three independent nodes for CDK, representing the CDK
levels before, during and after mitosis. CDK-L corresponds to the low CDK levels during inter-
phase; these prevent re-replication of DNA, but are insufficient for entry to mitosis [74,75],
CDK-H represents the high level of CDK activity found in early mitosis. Finally, CDK-0 repre-
sents the very low CDK activity in late mitosis as cells undergo the M-G1 transition. This
multi-node representation of CDK allows us to describe the SIN-related phenotypes corre-
sponding to several stages of the cell cycle, using the CDK nodes as inputs. For example, setting
CDK-L constantly on, indicates that we are simulating the events during interphase, while,
CDK-H on represents early mitosis and CDK-0 on represents late mitosis (Fig 2B). It should
be stressed that the 3 CDK nodes are not regulated themselves, but are rather used as control
(i.e. input) nodes for the system’s simulation. For this reason, there are no incoming regulatory
links towards the CDK nodes (CDK-L, CDK-H and CDK-0) (Fig 2B).

Model refinement and simulation results
This model configuration that uses CDK levels as control nodes for the simulation of cell cycle
events, allowed us to clearly define the expected steady states of the system and set our refine-
ment strategy. First, we attributed the PKN interactions involving CDK to the correct CDK
node. For example, an activation link from CDK-H was added towards Plo1p (Fig 2B), which
in turn will reinforce the activity of CDK in a positive feedback loop [28,76]. Following the
attribution step, the model was evaluated using a number of well characterized in silico

circles inhibition events. Other logical functions, such as AND, OR and NOT regulatory gates are also encoded in the model. SAC: spindle assembly
checkpoint, APC: anaphase-promoting complex, PP: protein phosphatase. (B) The final, optimized model, which uses a 3-node representation of CDK
activity. Nodes in green are used as switches, and they are turned on to represent different stages of the cell cycle: interphase, early mitosis and late mitosis.
Pink nodes represent AND gates. In the case of the Cdc42p regulatory link towards Byr4p, the regulatory rule can be phrased as “NOT Cdc42p activates
Byr4p”.

doi:10.1371/journal.pone.0134214.g002

Boolean Model of the S. pombe SIN

PLOSONE | DOI:10.1371/journal.pone.0134214 August 5, 2015 6 / 22



perturbations whose phenotypic consequences are known; knock-out of cdc11, spg1, cdc16,
byr4, and cdc7. For the evaluation, the above 5 knock-out perturbations were simulated, by set-
ting the corresponding node to 0 throughout simulation. A fixed set of nodes, with activation
states indicative of the expected phenotype was selected to score the model’s ability to correctly
reproduce the mutation outcomes. The scoring set includes sid4, cdc11, byr4-cdc16, spg1, cdc7,
sid2-mob1 and sid1-cdc14. For each in silico perturbation, the resulting steady states were eval-
uated according to the number of the scoring set nodes that had the expected activation state
(see S1 Fig for a list of the scoring set expected states).

We proceeded by refining the connections within the network. A refinement cycle consisted
of altering an edge of the network, perturbing the model and evaluating the simulation out-
come of the perturbations test set. The alterations could involve additions and deletions of reg-
ulatory edges, or modifications of the existing regulatory rules. The reasoning behind each
change of the model’s regulatory rules was based on several factors, such as the confidence
level of each interaction, coupled with information from the published literature, as well as
forming alternative logical rules of the given information to better represent the biological real-
ity of the interaction. For example, “A inhibits B” can be alternatively encoded as “NOT A acti-
vates B”, and is more suited for cases where the inhibition is not dominant. During this process
we maintained the known, required connections of the model and minimized the model’s com-
plexity by removing nodes that no longer served any regulatory role in the model. An example
of the latter is the removal of cell cycle regulatory elements such as Cdc25p, Wee1p, Slp1p and
Rum1p, to simplify the cell cycle representation by using multi-node CDK. The final, opti-
mized network is presented in Fig 2B. A full list of the edges comprising the final network,
together with the justification for the inclusion of each edge, can be found at the supplementary
material (S2 Table), as well as the model in genYsis and SBML-Qual format (S1 and S2 Files
respectively) [77].

The optimized model was used for in silico experiments in which a combination of nodes
was perturbed and the phenotypic outcome in the interphase, early mitosis and late mitosis
CDK-states were determined. A simulation of the wild type model, where no perturbation is
introduced, is presented in Fig 3.

To simulate interphase, CDK-L is set to 1, and Ppc89p is set to 1 as well, to permit “binding”
of scaffold proteins to the SPB. In interphase, the model simulation results in a steady state
where Byr4p and Cdc16p are present and able to form the GAP complex, therefore active. The
scaffold proteins Sid4p and Cdc11p are also present (therefore “active” according to our initial
assumption for scaffold molecules), but no SIN signaling occurs due to the inhibitory effect of
the Byr4p-Cdc16p GAP.

Early mitosis is simulated by setting CDK-H and Ppc89p to 1. The SIN scaffold is still
formed, as expected. Cdc16p is absent from the SPBs in early mitosis, preventing formation of
the GAP. This allows SIN signaling to initiate, and we observe that all the main components of
the SIN are active (Plo1p, Spg1p, Cdc7p, Sid2p-Mob1p), apart from Cdc14p-Sid1p, which is
inhibited by high CDK activity [4,70].

Late mitosis is represented by setting CDK-0 and Ppc89p to 1 during the simulation. There
are 2 resulting steady states of the system simulation. In one state, the SIN signaling scaffold is
present, the Byr4p-Cdc16p complex is formed, and all SIN components, except Plo1p are inac-
tive. In the other state, Byr4p-Cdc16p is not active, and all proteins of the SIN scaffold and sig-
naling including Cdc14p-Sid1p are active. Intriguingly, these resemble the asymmetric
constellation of proteins observed at the old and new SPBs in late anaphase B (see [19,20,29]
for review), with the exception of Sid2p-Mob1p, which is present on both SPBs, but only active
in one of the two states of the model. Setting GAP function to 0 abolishes the state that resem-
bles the old SPB. Though it is often assumed to be the case, there is scant evidence to support
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the view that localization of SIN proteins to the SPB is a faithful readout of their in vivo activity.
There is no data addressing whether Sid2p signals from one or two SPBs in late anaphase.

Fig 3. In silico steady states of the SIN, in wild type andmutated cells. Steady states deriving from simulations performed on the final model. The boxes
on the left indicate the experiments performed, which can be knock-out (KO) or over-expression (OE). When there is more than one gene in the box, it is a
double perturbation. For each perturbation, 3 experiments were performed: interphase simulation (indicated as i), early mitosis (eM) and late mitosis (lM, with
suffixes new and oldwhen there are 2 resulting steady states, indicative of late mitosis asymmetry). Blue boxes correspond to active proteins, white to
inactive and light blue to proteins that can be either active or inactive at the resulting steady states of the system.

doi:10.1371/journal.pone.0134214.g003
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Future experiments will investigate this. A detailed heatmap showing the activation state of all
nodes of the model for all experiments presented herein can be found in the supplementary
material (S2 Fig).

Assessing experimentally validated in silico perturbations for the model
evaluation
The optimized model can describe the SIN related events during interphase, early and late
mitosis. In order to evaluate the model’s ability to describe current knowledge regarding S.
pombemutants, we performed a series of in silico knock-out and constant activation experi-
ments mimicking those described in the literature that have an established phenotype. Fig 3
summarizes the steady states yielded after simulating interphase, early and late mitosis behav-
ior of core gene mutants. Interestingly, in all the in silico experiments we obtained steady states
where the nodes displayed, overall, the expected activation state. More specifically, cdc11
knock-out completely blocks septation. Both, byr4 knock-out and cdc16 knock-out have the
same effect, which is failure to inhibit SIN signaling, and therefore SIN triggering in interphase.
In a knock-out of either spg1 or cdc7, signaling fails, with Spg1p still getting activated in cdc7
deletion, indicating that Spg1p acts upstream of Cdc7p, as experimentally proven.

Apart from the experiments that were used as training set for the model refinement, we per-
formed double mutant experiments towards which the model had not been optimized (test
set). These experiments assess the predictive value of the model, as the in silico predictions are
in accordance with the expected results. Specifically, the double deletion of cdc11 and cdc16
simulation predicts that cells should not septate, as shown in Fig 3, with supporting evidence
from the literature [78]. A Cdc7p over-expression in an spg1 deletion mutant will septate, in
agreement with in vivo studies [13]. Moreover, Cdc7p over-expression will produce septation
in the absence of Cdc11p (Fig 4A), as confirmed by the literature [79]. In this project, setting a
node to 1 throughout the simulation has been used to simulate over-expression in silico, except
in cases where it is known that the over-expression phenotype results from an indirect effect,
such as the titration of another protein.

Other in silico experiments performed during the optimization provided us with great
insights into potential knowledge gaps regarding SIN regulation, as well as the limitations of
our model. One such example was a prediction that a byr4-null sid4-null should septate. When
this was tested in vivo, the double mutant cells did not septate. This allowed us to refine the
model, by identifying regulatory links that would permit this state to be achieved and target
them as candidates for edge deletion. Moreover, the nuc2 inhibitory links that were present in
the PKN revealed our limitation of describing events that occur at the end of septation and the
incomplete regulatory inputs to cdc16 helped us discover a potential link with fin1. The nuc2
and fin1 cases are discussed in detail below.

Does Nuc2p have a role in interphase?
Increased expression of the APC/C component nuc2 blocks septation, while incubation of
nuc2-663 at low restrictive temperature results in cutting of the cell [82,83]. Analysis of how
the SIN is reset at the end of mitosis revealed an APC/C-independent role for Nuc2p [84].
Nuc2p interferes with formation of the Cdc7p-Spg1p complex, possibly by stimulating the
GAP activity of Byr4p-Cdc16p. Since our current model does not include resetting of the SIN,
we tested whether the inhibitory link of nuc2 towards the Cdc7p-Spg1p complex should be
maintained. If it is required, then it might indicate a role for Nuc2p in regulating septation in
interphase, once the cell has completed the M-G1 transition. We therefore modeled the effect
of inactivating Nuc2p in silico upon SIN behavior in interphase. The predicted outcome when
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including the Nuc2p inhibitory link was two steady states; one with inactive SIN and one with
cells that septate in interphase.

To test whether this could be the case in vivo, the strain nuc2-663 atb2-mCherry leu1-32 was
arrested in S-phase by growth in medium containing 12mM hydroxyurea (HU). After 5h at
25°C, cells were shifted to 36°C to inactivate Nuc2p, and samples were analyzed at hourly inter-
vals. Before shift to 36°C nuc2-663 (97%; N = 403 cells) and nuc2+ cells (97%; N = 480) were
mononucleate with no septum; the interphase arrest was confirmed by the presence of an inter-
phase array of microtubules (data not shown). Following shift of the cultures to 36°C, the
majority of nuc2+ cells remained in interphase for three hours, as judged by the continued pres-
ence of interphasic microtubules and the absence of a spindle (97%; N = 498, and 90%; N = 400

Fig 4. Cdc7p over-expression in a sid4mutant will result in septation. (A) Steady states of in silico, double mutation experiments. The model predicts
that in the absence of SIN scaffold proteins (Cdc11p or Sid4p) and over-expression of Cdc7p, the cell will septate. (B) sid4-SA1 leu1-32was transformed with
a REP1-based plasmids [80] expressing cdc7; empty vector served as a control. Cells were grown to exponential phase in EMM2medium at 25°C containing
2mM thiamine. Expression was induced by washing with EMM2 and growth for 16h at 25°C; cells were then shifted to 36°C for 5h, fixed, and stained with
DAPI and Calcofluor as described [81]. Note that the cells carrying empty vector have become elongated and multinucleated, while 75% of cells expressing
cdc7 have one or more septa. The scale bar represents 10 μm. (C) The strain leu1::pADH1-cdc7was grown to exponential phase in YEmedium at 19°C. A
sample was taken and cells were fixed and stained with DAPI and Calcofluor. The remainder of the culture was incubated for 5h at 36°C before fixation. Note
the elevated percentage of septated cells. The scale bar represents 10 μm. (D) The indicated strains were grown to exponential phase in YE medium,
counted, and diluted to 106 ml-1. 10 μl of serial 5-fold dilutions were spotted on plates, allowed to dry and then incubated at the indicated temperature until the
wild-type control had formed colonies.

doi:10.1371/journal.pone.0134214.g004
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at, 1 and 2h respectively;). The nuc2-663 cells maintained the hydroxyurea arrest less effi-
ciently, (89%; N = 319, and 86%; N = 636 at 1, and 2h, respectively). When nuc2-663 cells
entered mitosis, they arrested with a mitotic spindle (not shown). A fraction of both nuc2+ and
nuc2-663 cells septated in the first two hours, but this did not exceed 5%. In contrast, previous
studies from this lab [73] and the Hagan lab [85] showed that activation of the SIN in inter-
phase-arrested cells by incubation of the cdc16-116mutant at 36°C produced >50% of type II
(mononucleated, septated cells; defined by Minet et al. [7]) within 100 minutes. The levels of
septation observed in this experiment are far lower, and, given the similar levels in nuc2+ and
nuc2-663, most likely reflect slippage of the hydroxyurea arrest. This leads us to conclude that
Nuc2p does not play a major role in preventing septation in interphase, once the M-G1 transi-
tion has been completed.

Contrary to traditional studies, where models are constructed from available data and are
then used for the experimental design of predictive simulations, our modeling approach is bidi-
rectional: in vivo experiments were performed to choose among refinement strategies during
model optimization, as well as the model was used to predict experimental outcomes (Fig 1).
The case of nuc2 regulation is an example of the former. Keeping all nuc2 SIN-related prior
knowledge in the multi-node CDK level model required the presence of a dual inhibitory con-
trol of the SIN in interphase by both Byr4p-Cdc16p and Nuc2p. In vivo experiments were per-
formed to identify the events that can be described by the model and, consequently, guide its
refinement strategy. The in vivo data argue against a post START role for Nuc2p, in addition to
that ascribed to it at the M-G1 transition. Therefore, nuc2 was removed from the final, model
presented here, which does not describe the M-G1 transition in its current form.

Fin1p over-expression may contribute to inactivation of the GAP for
Spg1p at mitotic onset
Fission yeast has a single orthologue of the conserved never-in-mitosis (nimA) kinase, called
fin1 [86]. Fin1p is not essential, but is important for spindle formation and regulates the affin-
ity of Plo1p to the SPB [87]. Fin1mutant cells are delayed in the G2-M transition and Fin1p is
in part regulated by Sid2p [88]. This link between fin1 and the SIN prompted us to include fin1
in the SIN regulatory circuit.

In the PKN of the model there were no negative regulators targeting GAP components dur-
ing early mitosis, which resulted in suboptimal outcomes during the simulations of early mito-
sis; i.e. the simulation would produce a steady state where the GAP remained active in early
mitosis. Since removal of the SIN GAP from the SPB is an early step in the activation of the
SIN after entry into mitosis [12,74,89], we modeled whether GAP components could be regu-
lated by fin1. Since Cdc16p contains several sites matching the established consensus for mam-
malian Nek2 (one of the orthologues of nimA), the effect of increased expression of fin1 on
Cdc16p localization was investigated by in vivo experiments. Expression of fin1 from the
medium strength nmt-41 promoter [80] resulted in partial displacement of Cdc16p-GFP from
SPBs in interphase cells (Fig 5A). Quantification of the SPB-associated signal of Cdc16p-GFP
in interphase cells revealed that it was significantly decreased upon expression of fin1 (Fig 5B).
This was not due to a significant alteration of the steady state level of Cdc16p (Fig 5C).

Interestingly, the decreased level of Cdc16p-GFP at the SPB resulted in 24% of REP41-fin1
cells forming one or more septa in interphase, compared to<1% in the empty-vector control.
This is consistent with previous studies [73,85], which demonstrated that inactivation of cdc16-
116 in interphase cells promotes septation in interphasic cells. Therefore, the reduced level of
Cdc16p-GFP at the SPB may decrease the extent to which the SIN is inhibited by lowering the
amount of GAP available to inhibit Spg1p signaling.
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Previous studies have shown that in the absence of GAP function, Fin1p acts as an inhibitor
of the SIN [85]. This study suggests that increased levels of Fin1p result in the reduction of
Cdc16p levels at the SPB, and therefore potentially to the activation of the SIN at the entry into
mitosis. This may point to a dual role of Fin1p in SIN regulation, which will be addressed in
future studies. Fin1p is implicated both in mitotic commitment, and in SIN regulation [85,88].
Expression of fin1 promotes recruitment of Plo1p to the SPB in interphase cells [87], and
Plo1p is involved in the displacement of Byr4p from the SPB in anaphase [46]. Future studies
will examine the mechanism by which Fin1p contributes to the decrease in Cdc16p at the SPB.

An unexpected prediction: cells overexpressing Cdc7p will septate in the
absence of Cdc11p or Sid4p
The final, optimized model describes the existing knowledge of the SIN, in wild type and known
mutants. One of the main goals of developing this Boolean model was to use it predictively by
performing in silico perturbations of interesting and/or experimentally challenging mutants.
The regulatory relationships described in this model predict that increased expression of Cdc7p
should produce septation in the absence of Cdc11p and Sid4p (Fig 4A). Previous studies have
shown that Spg1p overexpression will induce septation and permit colony formation in a cdc11
mutant [13], but not a sid4mutant [91]. Moreover, increased expression of Cdc7p will permit
cdc11mutants to form colonies [79]. In contrast to the situation with Spg1p overexpression,
induction of Cdc7p expression from the very strong nmt1 promoter in sid4-SA1 at 36°C did not
permit colony formation, but septa were formed in the cells (Fig 4B). To test whether increased
expression of Cdc7p would permit growth of a sid4mutant, cdc7 was expressed from the ADH1
promoter, integrated at leu1. The leu1::pADH1-cdc7 strain has a very high septation index at
19°C (>90%) and is barely capable of colony formation at 25°C and above (Fig 4D), with cells
dying multiseptated at higher temperatures (Fig 4C). The strain sid4-SA1 leu1::pADH1-cdc7 was
capable of colony formation at 27°C and 29°C (Fig 4D), where neither parental strain could do
so. Previous studies have shown that increased expression of cdc7 increases the level of kinase
activity in immunoprecipitates of Cdc7p [79]. This shows that septation can occur if the function
of the scaffold proteins is compromised, provided the expression of Cdc7p is sufficiently elevated.
This raises the intriguing possibility that SIN signaling in this case originates in the cytoplasm,
bypassing the need for assembly on a SPB-associated scaffold. The nature of the SIN protein sig-
naling complexes present in these cells will be the subject of future studies.

Discussion
In this paper we use qualitative Boolean modeling to represent and explore the regulatory rela-
tionships of genes participating in the Septation Initiation Network of fission yeast. Qualitative

Fig 5. Fin1p over-expression results in Cdc16p disassociation from the SPB. (A) Cells expressing the
labeled tubulin marker leu1::m-Cherry-atb2 and cdc16-GFPwere induced to express fin1 from the medium
strength nmt41 promoter [80]. Cells transformed with empty vector served as control. Cells were grown in
medium without thiamine for 27h at 25°C. Cells were imaged and the intensity of SPB associated cdc16-GFP
signal was analyzed as described in [12]. The panel showsm-Cherry-atb2 leu1::cdc16-GFP(ura4+) cells
bearing REP41 or REP41-fin1. The scale bar is 10 μm. (B) The SPB associated signal was determined in
interphase cells in each strain. Since REP41-fin1 eventually leads to a mitotic arrest [87] interphase cells
were identified by the presence of an interphasic microtubule array. The box shows 25%-75% range for the
population, the line indicates the median. The bars indicate 10% and 90% range for the population, and dots
indicate more extreme individual values. The y-axis shows fluorescence intensity on an arbitrary scale. (C)
Cells bearing the leu1::cdc16-HA allele were induced to express fin1 (ON) by growing them in defined
minimal medium [81] in the presence (OFF) or absence (ON) of 2mM thiamine. Protein extracts were
prepared 27h after induction and analyzed by western blotting using monoclonal antibody 12CA5. The anti-α-
tubulin monoclonal antibody TAT-1 [90] was used as a control.

doi:10.1371/journal.pone.0134214.g005
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modeling is a powerful method for systems with restricted kinetic information and it is compu-
tationally efficient, allowing for thousands of in silico experiments in a short time, even in net-
works with hundreds of nodes. Moreover, it can be used predictively, to test combination of
mutations that would otherwise be time consuming, expensive and/or experimentally challeng-
ing to undertake. The value of such models increases significantly when the model is coupled
with in vivo experiments. Such experiments can be used to evaluate the regulatory rules, help
the optimization procedure and test the predictions of the model (Fig 1).

We report the construction of an extended, Boolean model of the SIN network that uses
CDK levels as control nodes to simulate SIN related events in interphase, early mitosis and late
mitosis. The prior knowledge network was manually curated, providing a trustworthy initial
framework that could then be further optimized (Fig 1). Information reported in literature
(and used in network databases) can be conflicting, outdated, incomplete or based on in vitro
knowledge only. Therefore, expert biocuration provides a significant advantage in order to fil-
ter the available information and construct a comprehensive network.

We optimized the model using in silico experiments with well-established outcomes based
on in vivo data, in order to recapitulate the SIN state in different stages of the cell cycle (Fig 1).
A challenging aspect of qualitative modeling, and especially of asynchronous update, is to
interpret the resulting steady states of the simulations. This is because the simulation might
result in a number of steady states that are theoretically possible but never reached in vivo. Our
approach was to use CDK levels as an initial condition for the simulation, indicating the stage
of the cell cycle that the simulation corresponds, to reduce unrealistic simulation outcomes.
We further restricted the simulation space by taking as a fact that the scaffold has the potential
to be constructed at all times by setting the SIN-SPB linker protein Ppc89p to 1.

The optimization process under the controlled environment of CDK switches provided
important insights into SIN regulation during the cell cycle. In the case of the fin1, the incorrect
simulation results that were obtained in early mitosis helped us locate a potential missing link
in the PKN. Increased expression of fin1 removes Cdc16p from the SPB. At present we do not
know whether this is by direct phosphorylation of Cdc16p or an indirect effect; this will be the
subject of future analysis. However, the important point in this context is that the modeling
revealed the requirement for an additional control point to turn off the GAP in early mitosis.
The optimization strategy was also useful in evaluating the limitations of our model. An exam-
ple of this is the role of Nuc2p in SIN regulation. In the PKN there were several inhibitory links
from Nuc2p to SIN kinases, indicating the events in SIN resetting, after septation [84]. The use
of CDK switches restricts the cell cycle events that can be modeled, and our model does not
presently incorporate resetting of the SIN at the M-G1 transition. Our modeling predicted that
if Nuc2p continued to activate the GAP in interphase, extending the role proposed for it at the
M-G1 transition [84], then its inactivation in post-START cells could result in septum forma-
tion; in vivo analysis showed this was not the case. Thus, the modeling was useful in this case to
define the possible limits of the extent of the time-window in which Nuc2p is active towards
the SIN.

The great value of creating an optimized qualitative model is that it can then be used predic-
tively to perform difficult or iconoclastic experiments in silico. We focused on testing whether
an over-expression of SIN kinases would rescue SIN scaffold mutants. The model’s prediction
was that over-expression of Cdc7p in a cdc11 or sid4 knock-out will still septate, a prediction
that was experimentally validated. The model can be used in the future for any combination of
gene mutants, and hopefully provide interesting hypotheses that can be tested experimentally.
Future studies will aim to model the M-G1 transition, and to incorporate spatial components
into the model (protein localization to one or both SPB, cytoplasm or division site). This will
be facilitated by the incorporation of the cell cycle Boolean module of fission yeast, by Davidich
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& Bornholdt [30]. We will also incorporate multivariate nodes to simulate the effect of changes
in the post-translational modifications of SIN proteins during the cell cycle [41,92,93]. This
should allow modeling of the role of the asymmetry of SPBs with regard to SIN protein associa-
tion, building upon the analysis performed by Bajpai et al. [41]. Future versions of the model
will attempt to incorporate Etd1p. Though its effects upon SIN signaling are clear, the pub-
lished analyses do not provide a sufficiently clear, direct link to SIN components to permit its
unequivocal incorporation into the model presented here.

Our extended, Boolean model of the SIN can be used by the scientific community for testing
various hypotheses in silico, including multiple gene perturbations that can be experimentally
challenging. The model can be reduced to a minimum number of nodes and still capture the
system steady states (see S3 File). Though a reductive approach can be a useful aid in under-
standing the information flow in the system, the greater complexity of the extended model sys-
tem increases the predictive value of the model, as we can use the model nodes for testing the
desired experimental scenarios.

Finally, it is worth noting that qualitative models such as the one presented here are over-
simplifications of the actual regulatory processes; in our case of the regulation of the SIN. With
advances in live monitoring of cell division and development of new fluorescent probes, we
should be able to generate more accurate quantitative models for such a system. Our approach
is nevertheless an important step towards a more comprehensive model that recapitulates
known biology of the SIN and can be used as a hypothesis generator for complex experimental
design.

Materials and Methods

Literature database construction
For the construction of the PKN, several online resources were curated to retrieve SIN relevant
information, such as Pathguide, Pubmed, iHOP, iRefWeb, Scholar Google, PriME and Uni-
ProtKB/Swiss-Prot. The collected information was stored in a structure formed of pairwise
interactions and regulations that includes information about participating components, the
origin of publications (PMID) where the interaction was mentioned and a confidence level as
an evidence tag from the biocurator. In detail, the database contains the following columns:

1. Node 1: The name of the first element of the interaction, the one that acts as activator or
inhibitor

2. Action: A symbol characterizing the type of interaction as activation (->) or inhibition (-|)

3. Node 2: The name of the second element of the interaction, the one that gets activated or
inhibited

4. Node 1 type: The type of node 1. Can be protein, complex or miRNA

5. Node 2 type: The type of node 2. Can be protein or miRNA

6. UniProt ID 1: Reference of node 1

7. UniProt ID 2: Reference of node 2

8. PMID: Literature reference of the interaction

9. Class: A letter characterizing the confidence level of the interaction. It can be one of the
following:
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Sure (S), when the interaction is confirmed or known in textbook, and/or already in the Uni-
Prot general annotation lines. Sure interactions are generally associated with many PMIDs.

Unsure (U), when the interaction is shown once and/or not confirmed by others, or when the
authors are not confident about the results.

Inferred (I), when there are no results for the network in question, but the interaction was
found in different cell types and/or organisms. It may also refer to cases where the informa-
tion is inferred to all protein isoforms of a gene without confirmed results. Inferred interac-
tions might be associated with more than one PMIDs.

Contradictory (C), when the interaction is based on contradictory results.

10. Evidence tag: Short extract from the publication where the interaction is mentioned.

GenYsis Boolean modeling toolbox
All Boolean simulations of the SIN model, including the identification of wild type attractors
and in silico perturbation experiments, we performed using the genYsis Boolean modeling tool-
box. GenYsis uses reduced ordered binary decision diagrams (ROBDDs) in order to efficiently
compute attractors and steady states of large networks. ROBDDs are directed acyclic graphs
that can represent Boolean functions efficiently, and are computationally suitable for complex
Boolean operations. To map gene regulatory networks on ROBDDs the network has to be
transformed into Boolean functions that represent the dynamics of the model. All the opera-
tions that can be performed on Boolean functions can also be performed on their correspond-
ing ROBDD representations [69]. The simulation modes available with genYsis include
synchronous and asynchronous updating. In both cases, the user has the possibility of perform-
ing in silico perturbations by fixing the activation state of one or multiple components during
simulation. The perturbation possibilities comprise (a) knock-out experiments, were the
selected components are set to be inactive during the whole simulation, (b) over-expression
experiments, were the selected components are set to be active during the whole simulation,
and (c) initial state experiments, where the selected components have a fixed activation state at
the beginning of the simulation that is thereafter allowed to change according to the regulatory
rules. The software binaries of genYsis are available for Linux (64 bits gcc version 4.4.5, Debian
4.4.5–8) and Mac OS X (64 bits gcc version 4.2.1, Mac OS X 10.8.5) at http://www.vital-it.ch/
software/genYsis.

Fission yeast techniques
(A) Media. Growth and manipulation of S. pombe was performed according to standard

protocols [81]. Defined medium was EMM2 with supplements at 100 mg/l as required,
and complete medium was YE [81]. Cell number was determined using a hemocytometer.
For the induction of nmt1 regulated genes, cells were grown to exponential phase (approx.
2-3x 106 ml-1) in EMM2 containing 2 μM thiamine with additional supplements as required.
Cells were washed twice in medium without thiamine, and then grown for the time indicated
in the Fig legends.

(B) Molecular and Genetic analyses. Strains were constructed by standard genetic meth-
ods. Vectors [80,94] and cdc7 plasmids [79] have been described previously.

(C) Imaging and image analysis. Living cells were imaged using a U-Plan-S-Apo 60× N.
A. 1.42 objective lens mounted on an Olympus IX-81 spinning disc confocal microscope. The
temperature was maintained using a custom-built heating system. Fixed cells were photo-
graphed on a Zeiss Axiophot microscope using a Zeiss 100x NA 1.4 PLAN-apochromat lens.
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Images were captured on a Nikon Coolpix camera. Level adjustment and cropping were per-
formed using Adobe Photoshop CS6.

DAPI and Calcofluor staining was performed on cells that had been harvested by centrifu-
gation, washed, and fixed with cold 70% (v/v) ethanol, as described previously [95]. Micros-
copy analysis of living cells was performed as described in [12], using the RodcellJ imageJ
plugin [96]. Data were plotted using GraphPad Prism v6. In the whisker plots the box shows
25%-75% range for the population, the line indicates the median. The bars indicate 10% and
90% range for the population, and dots indicate more extreme individual values.

Supporting Information
S1 File. The SIN model in genYsis format. The final model in genYsis format can be used for
any combination of in silico experiments using the genYsis software.
(ZIP)

S2 File. The SIN model in SMBL qual format. The final model in SBML qual format can be
used to perform additional analyses in most qualitative modeling platforms.
(ZIP)

S3 File. Model reduction analysis. A reduction analysis performed using GINsim [97],
highlighting the information flow that is necessary for the maintenance of the system’s steady
states.
(PDF)

S1 Fig. The model optimization scoring set. The experiments used to score the model candi-
dates during the optimization phase are represented in the y axis and the proteins used for
scoring in the x axis. The table uses the same color coding as the article figures: blue for Bool-
ean state 1, white for Boolean state 0 and light blue for oscillation or, in this case, two alterna-
tive steady states with different activation states of the given protein.
(TIF)

S2 Fig. Detailed in silico results of final model simulations. A detailed heatmap showing the
activation state of all nodes of the final model for all experiments presented in this paper.
(TIF)

S1 Table. Prior Knowledge Network interaction table. A complete list of the interactions
included in the Prior Knowledge Network of the SIN.
(PDF)

S2 Table. Final model interaction list. The list of interactions comprising the final, optimized
model, together on comments justifying their alteration / addition.
(PDF)

Acknowledgments
We thank Iain Hagan (Paterson institute for Cancer Research, Manchester, UK) for the fin1
expression plasmids and Keith Gull (Oxford, UK), for TAT-1. A special thanks to Julien Dorier
(SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland) for the constructive discussions
all along this project.

Boolean Model of the S. pombe SIN

PLOSONE | DOI:10.1371/journal.pone.0134214 August 5, 2015 17 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0134214.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0134214.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0134214.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0134214.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0134214.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0134214.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0134214.s007


Author Contributions
Conceived and designed the experiments: IX VS. Performed the experiments: AC PW AN VS
PC AK EC. Analyzed the data: AC PW PC. Wrote the paper: AC VS PW IX.

References
1. Bardin AJ, Amon A (2001) Men and sin: what's the difference? Nat Rev Mol Cell Biol 2: 815–826.

PMID: 11715048

2. Seshan A, Amon A (2004) Linked for life: temporal and spatial coordination of late mitotic events. Curr
Opin Cell Biol 16: 41–48. PMID: 15037303

3. Chang L, Morrell JL, Feoktistova A, Gould KL (2001) Study of cyclin proteolysis in anaphase-promoting
complex (APC) mutant cells reveals the requirement for APC function in the final steps of the fission
yeast septation initiation network. Mol Cell Biol 21: 6681–6694. PMID: 11533255

4. Guertin DA, Chang L, Irshad F, Gould KL, McCollum D (2000) The role of the sid1p kinase and cdc14p
in regulating the onset of cytokinesis in fission yeast. EMBO J 19: 1803–1815. PMID: 10775265

5. Simanis V (2015) Pombe's thirteen—control of fission yeast cell division by the septation initiation net-
work. J Cell Sci 128: 1465–1474. doi: 10.1242/jcs.094821 PMID: 25690009

6. Mitchison JM, Nurse P (1985) Growth in cell length in the fission yeast Schizosaccharomyces pombe. J
Cell Sci 75: 357–376. PMID: 4044680

7. Minet M, Nurse P, Thuriaux P, Mitchison JM (1979) Uncontrolled septation in a cell division cycle
mutant of the fission yeast Schizosaccharomyces pombe. J Bacteriol 137: 440–446. PMID: 762020

8. Tomlin GC, Morrell JL, Gould KL (2002) The spindle pole body protein Cdc11p links Sid4p to the fission
yeast septation initiation network. Mol Biol Cell 13: 1203–1214. PMID: 11950932

9. Krapp A, Schmidt S, Cano E, Simanis V (2001) S. pombe cdc11p, together with sid4p, provides an
anchor for septation initiation network proteins on the spindle pole body. Curr Biol 11: 1559–1568.
PMID: 11676915

10. Rosenberg JA, Tomlin GC, McDonald WH, Snydsman BE, Muller EG, et al. (2006) Ppc89 links multiple
proteins, including the septation initiation network, to the core of the fission yeast spindle-pole body.
Mol Biol Cell 17: 3793–3805. PMID: 16775007

11. Chang L, Gould KL (2000) Sid4p is required to localize components of the septation initiation pathway
to the spindle pole body in fission yeast. Proc Natl Acad Sci U S A 97: 5249–5254. PMID: 10805785

12. Wachowicz P, Chasapi A, Krapp A, Cano Del Rosario E, Schmitter D, et al. (2015) Analysis of S.
pombe SIN protein association to the SPB reveals two genetically separable states of the SIN. J Cell
Sci 128: 741–754. doi: 10.1242/jcs.160150 PMID: 25501816

13. Schmidt S, SohrmannM, Hofmann K, Woollard A, Simanis V (1997) The Spg1p GTPase is an essen-
tial, dosage-dependent inducer of septum formation in Schizosaccharomyces pombe. Genes Dev 11:
1519–1534. PMID: 9203579

14. Mehta S, Gould KL (2006) Identification of functional domains within the septation initiation network
kinase, Cdc7. J Biol Chem 281: 9935–9941. PMID: 16469735

15. Guertin DA, McCollum D (2001) Interaction between the noncatalytic region of Sid1p kinase and
Cdc14p is required for full catalytic activity and localization of Sid1p. J Biol Chem 276: 28185–28189.
PMID: 11384993

16. Salimova E, Sohrmann M, Fournier N, Simanis V (2000) The S. pombe orthologue of the S. cerevisiae
mob1 gene is essential and functions in signalling the onset of septum formation. J Cell Sci 113 (Pt
10): 1695–1704.

17. Hou MC, Salek J, McCollum D (2000) Mob1p interacts with the Sid2p kinase and is required for cytoki-
nesis in fission yeast. Curr Biol 10: 619–622. PMID: 10837231

18. Hou MC, Guertin DA, McCollum D (2004) Initiation of cytokinesis is controlled through multiple modes
of regulation of the Sid2p-Mob1p kinase complex. Mol Cell Biol 24: 3262–3276. PMID: 15060149

19. Johnson AE, McCollum D, Gould KL (2012) Polar opposites: Fine-tuning cytokinesis through SIN
asymmetry. Cytoskeleton (Hoboken) 69: 686–699. doi: 10.1002/cm.21044 PMID: 22786806

20. Simanis V (2003) The mitotic exit and septation initiation networks. J Cell Sci 116: 4261–4262. PMID:
14514881

21. Furge KA, Wong K, Armstrong J, Balasubramanian M, Albright CF (1998) Byr4 and Cdc16 form a two-
component GTPase-activating protein for the Spg1 GTPase that controls septation in fission yeast.
Curr Biol 8: 947–954. PMID: 9742395

Boolean Model of the S. pombe SIN

PLOSONE | DOI:10.1371/journal.pone.0134214 August 5, 2015 18 / 22

http://www.ncbi.nlm.nih.gov/pubmed/11715048
http://www.ncbi.nlm.nih.gov/pubmed/15037303
http://www.ncbi.nlm.nih.gov/pubmed/11533255
http://www.ncbi.nlm.nih.gov/pubmed/10775265
http://dx.doi.org/10.1242/jcs.094821
http://www.ncbi.nlm.nih.gov/pubmed/25690009
http://www.ncbi.nlm.nih.gov/pubmed/4044680
http://www.ncbi.nlm.nih.gov/pubmed/762020
http://www.ncbi.nlm.nih.gov/pubmed/11950932
http://www.ncbi.nlm.nih.gov/pubmed/11676915
http://www.ncbi.nlm.nih.gov/pubmed/16775007
http://www.ncbi.nlm.nih.gov/pubmed/10805785
http://dx.doi.org/10.1242/jcs.160150
http://www.ncbi.nlm.nih.gov/pubmed/25501816
http://www.ncbi.nlm.nih.gov/pubmed/9203579
http://www.ncbi.nlm.nih.gov/pubmed/16469735
http://www.ncbi.nlm.nih.gov/pubmed/11384993
http://www.ncbi.nlm.nih.gov/pubmed/10837231
http://www.ncbi.nlm.nih.gov/pubmed/15060149
http://dx.doi.org/10.1002/cm.21044
http://www.ncbi.nlm.nih.gov/pubmed/22786806
http://www.ncbi.nlm.nih.gov/pubmed/14514881
http://www.ncbi.nlm.nih.gov/pubmed/9742395


22. Furge KA, Cheng QC, Jwa M, Shin S, Song K, et al. (1999) Regions of Byr4, a regulator of septation in
fission yeast, that bind Spg1 or Cdc16 and form a two-component GTPase-activating protein with
Cdc16. J Biol Chem 274: 11339–11343. PMID: 10196225

23. Alcaide-Gavilan M, Lahoz A, Daga RR, Jimenez J (2014) Feedback regulation of SIN by Etd1 and
Rho1 in fission yeast. Genetics 196: 455–470. doi: 10.1534/genetics.113.155218 PMID: 24336750

24. Daga RR, Lahoz A, Munoz MJ, Moreno S, Jimenez J (2005) Etd1p is a novel protein that links the SIN
cascade with cytokinesis. EMBO J 24: 2436–2446. PMID: 15933715

25. Garcia-Cortes JC, McCollum D (2009) Proper timing of cytokinesis is regulated by Schizosaccharo-
myces pombe Etd1. J Cell Biol 186: 739–753. doi: 10.1083/jcb.200902116 PMID: 19736319

26. Lahoz A, Alcaide-Gavilan M, Daga RR, Jimenez J (2010) Antagonistic roles of PP2A-Pab1 and Etd1 in
the control of cytokinesis in fission yeast. Genetics 186: 1261–1270. doi: 10.1534/genetics.110.
121368 PMID: 20876564

27. Krapp A, Cano E, Simanis V (2003) Mitotic hyperphosphorylation of the fission yeast SIN scaffold pro-
tein cdc11p is regulated by the protein kinase cdc7p. Curr Biol 13: 168–172. PMID: 12546793

28. Tanaka K, Petersen J, MacIver F, Mulvihill DP, Glover DM, et al. (2001) The role of Plo1 kinase in
mitotic commitment and septation in Schizosaccharomyces pombe. EMBO J 20: 1259–1270. PMID:
11250892

29. Goyal A, Takaine M, Simanis V, Nakano K (2011) Dividing the spoils of growth and the cell cycle: The
fission yeast as a model for the study of cytokinesis. Cytoskeleton (Hoboken) 68: 69–88.

30. Davidich MI, Bornholdt S (2008) Boolean network model predicts cell cycle sequence of fission yeast.
PLoS One 3: e1672. doi: 10.1371/journal.pone.0001672 PMID: 18301750

31. Friedman N, Linial M, Nachman I, Pe'er D (2000) Using Bayesian networks to analyze expression data.
J Comput Biol 7: 601–620. PMID: 11108481

32. Tyson JJ, Csikasz-Nagy A, Novak B (2002) The dynamics of cell cycle regulation. Bioessays 24:
1095–1109. PMID: 12447975

33. Kahlem P, DiCara A, Durot M, Hancock JM, Klipp E, et al. (2011) Strengths andWeaknesses of
Selected Modeling Methods Used in Systems Biology. In: Y N.S., editor. Systems and Computational
Biology InTech.

34. Wang RS, Saadatpour A, Albert R (2012) Boolean modeling in systems biology: an overview of meth-
odology and applications. Phys Biol 9: 055001. doi: 10.1088/1478-3975/9/5/055001 PMID: 23011283

35. Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, et al. (2004) Integrative analysis of cell
cycle control in budding yeast. Mol Biol Cell 15: 3841–3862. PMID: 15169868

36. Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, et al. (2000) Kinetic analysis of a molecular
model of the budding yeast cell cycle. Mol Biol Cell 11: 369–391. PMID: 10637314

37. Faure A, Naldi A, Lopez F, Chaouiya C, Ciliberto A, et al. (2009) Modular logical modelling of the bud-
ding yeast cell cycle. Mol Biosyst 5: 1787–1796. doi: 10.1039/B910101m PMID: 19763337

38. Ingalls BP, Duncker BP, Kim DR, McConkey BJ (2007) Systems level modeling of the cell cycle using
budding yeast. Cancer Inform 3: 357–370. PMID: 19455254

39. Irons DJ (2009) Logical analysis of the budding yeast cell cycle. J Theor Biol 257: 543–559. doi: 10.
1016/j.jtbi.2008.12.028 PMID: 19185585

40. Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. Proc
Natl Acad Sci U S A 101: 4781–4786. PMID: 15037758

41. Bajpai A, Feoktistova A, Chen JS, McCollum D, Sato M, et al. (2013) Dynamics of SIN asymmetry
establishment. PLoS Comput Biol 9: e1003147. doi: 10.1371/journal.pcbi.1003147 PMID: 23874188

42. Csikasz-Nagy A, Kapuy O, Gyorffy B, Tyson JJ, Novak B (2007) Modeling the septation initiation net-
work (SIN) in fission yeast cells. Curr Genet 51: 245–255. PMID: 17340144

43. Bateman A (2010) Curators of the world unite: the International Society of Biocuration. Bioinformatics
26: 991. doi: 10.1093/bioinformatics/btq101 PMID: 20305270

44. Poux S, Magrane M, Arighi CN, Bridge A, O'Donovan C, et al. (2014) Expert curation in UniProtKB: a
case study on dealing with conflicting and erroneous data. Database (Oxford) 2014: bau016.

45. Krapp A, Collin P, Cano Del Rosario E, Simanis V (2008) Homoeostasis between the GTPase Spg1p
and its GAP in the regulation of cytokinesis in S. pombe. J Cell Sci 121: 601–608. doi: 10.1242/jcs.
022772 PMID: 18252797

46. Rachfall N, Johnson AE, Mehta S, Chen JS, Gould KL (2014) Cdk1 Promotes Cytokinesis in Fission
Yeast through Activation of the Septation Initiation Network. Mol Biol Cell.

47. Akutsu T, Miyano S, Kuhara S (1999) Identification of genetic networks from a small number of gene
expression patterns under the Boolean network model. Pac Symp Biocomput: 17–28. PMID: 10380182

Boolean Model of the S. pombe SIN

PLOSONE | DOI:10.1371/journal.pone.0134214 August 5, 2015 19 / 22

http://www.ncbi.nlm.nih.gov/pubmed/10196225
http://dx.doi.org/10.1534/genetics.113.155218
http://www.ncbi.nlm.nih.gov/pubmed/24336750
http://www.ncbi.nlm.nih.gov/pubmed/15933715
http://dx.doi.org/10.1083/jcb.200902116
http://www.ncbi.nlm.nih.gov/pubmed/19736319
http://dx.doi.org/10.1534/genetics.110.121368
http://dx.doi.org/10.1534/genetics.110.121368
http://www.ncbi.nlm.nih.gov/pubmed/20876564
http://www.ncbi.nlm.nih.gov/pubmed/12546793
http://www.ncbi.nlm.nih.gov/pubmed/11250892
http://dx.doi.org/10.1371/journal.pone.0001672
http://www.ncbi.nlm.nih.gov/pubmed/18301750
http://www.ncbi.nlm.nih.gov/pubmed/11108481
http://www.ncbi.nlm.nih.gov/pubmed/12447975
http://dx.doi.org/10.1088/1478-3975/9/5/055001
http://www.ncbi.nlm.nih.gov/pubmed/23011283
http://www.ncbi.nlm.nih.gov/pubmed/15169868
http://www.ncbi.nlm.nih.gov/pubmed/10637314
http://dx.doi.org/10.1039/B910101m
http://www.ncbi.nlm.nih.gov/pubmed/19763337
http://www.ncbi.nlm.nih.gov/pubmed/19455254
http://dx.doi.org/10.1016/j.jtbi.2008.12.028
http://dx.doi.org/10.1016/j.jtbi.2008.12.028
http://www.ncbi.nlm.nih.gov/pubmed/19185585
http://www.ncbi.nlm.nih.gov/pubmed/15037758
http://dx.doi.org/10.1371/journal.pcbi.1003147
http://www.ncbi.nlm.nih.gov/pubmed/23874188
http://www.ncbi.nlm.nih.gov/pubmed/17340144
http://dx.doi.org/10.1093/bioinformatics/btq101
http://www.ncbi.nlm.nih.gov/pubmed/20305270
http://dx.doi.org/10.1242/jcs.022772
http://dx.doi.org/10.1242/jcs.022772
http://www.ncbi.nlm.nih.gov/pubmed/18252797
http://www.ncbi.nlm.nih.gov/pubmed/10380182


48. Garg A, Mohanram K, De Micheli G, Xenarios I (2012) Implicit methods for qualitative modeling of gene
regulatory networks. Methods Mol Biol 786: 397–443. doi: 10.1007/978-1-61779-292-2_22 PMID:
21938638

49. Garg A, Mohanram K, Di Cara A, De Micheli G, Xenarios I (2009) Modeling stochasticity and robust-
ness in gene regulatory networks. Bioinformatics 25: i101–109. doi: 10.1093/bioinformatics/btp214
PMID: 19477975

50. Kauffman SA (1993) The origins of order: self-organization and selection in evolution. New York;
Oxford: Oxford University Press. xviii, 709 p p.

51. Kochi N, Matache MT (2012) Mean-field Boolean network model of a signal transduction network. Bio-
systems 108: 14–27. doi: 10.1016/j.biosystems.2011.12.001 PMID: 22212351

52. Albert R, Othmer HG (2003) The topology of the regulatory interactions predicts the expression pattern
of the segment polarity genes in Drosophila melanogaster. J Theor Biol 223: 1–18. PMID: 12782112

53. Azpeitia E, Benitez M, Padilla-Longoria P, Espinosa-Soto C, Alvarez-Buylla ER (2011) Dynamic net-
work-based epistasis analysis: boolean examples. Front Plant Sci 2: 92. doi: 10.3389/fpls.2011.00092
PMID: 22645556

54. Giacomantonio CE, Goodhill GJ (2010) A Boolean model of the gene regulatory network underlying
Mammalian cortical area development. PLoS Comput Biol 6.

55. Li S, Assmann SM, Albert R (2006) Predicting essential components of signal transduction networks: a
dynamic model of guard cell abscisic acid signaling. PLoS Biol 4: e312. PMID: 16968132

56. Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA (2010) Logic-based models for the analy-
sis of cell signaling networks. Biochemistry 49: 3216–3224. doi: 10.1021/bi902202q PMID: 20225868

57. Saez-Rodriguez J, Simeoni L, Lindquist JA, Hemenway R, Bommhardt U, et al. (2007) A logical model
provides insights into T cell receptor signaling. PLoS Comput Biol 3: e163. PMID: 17722974

58. Samaga R, Saez-Rodriguez J, Alexopoulos LG, Sorger PK, Klamt S (2009) The logic of EGFR/ErbB
signaling: theoretical properties and analysis of high-throughput data. PLoS Comput Biol 5: e1000438.
doi: 10.1371/journal.pcbi.1000438 PMID: 19662154

59. Sanchez L, van Helden J, Thieffry D (1997) Establishement of the dorso-ventral pattern during embry-
onic development of drosophila melanogasater: a logical analysis. J Theor Biol 189: 377–389. PMID:
9446747

60. Schlatter R, Philippi N, Wangorsch G, Pick R, Sawodny O, et al. (2012) Integration of Boolean models
exemplified on hepatocyte signal transduction. Brief Bioinform 13: 365–376. doi: 10.1093/bib/bbr065
PMID: 22016404

61. Schlatter R, Schmich K, Avalos Vizcarra I, Scheurich P, Sauter T, et al. (2009) ON/OFF and beyond—a
boolean model of apoptosis. PLoS Comput Biol 5: e1000595. doi: 10.1371/journal.pcbi.1000595
PMID: 20011108

62. Veliz-Cuba A, Stigler B (2011) Boolean models can explain bistability in the lac operon. J Comput Biol
18: 783–794. doi: 10.1089/cmb.2011.0031 PMID: 21563979

63. Naldi A, Thieffry D, Chaouiya C (2007) Decision Diagrams for the Representation and Analysis of Logi-
cal Models of Genetic Networks. In: Calder M, Gilmore S, editors. Computational Methods in Systems
Biology: Springer Berlin Heidelberg. pp. 233–247.

64. Saadatpour A, Wang RS, Liao A, Liu X, Loughran TP, et al. (2011) Dynamical and structural analysis of
a T cell survival network identifies novel candidate therapeutic targets for large granular lymphocyte
leukemia. PLoS Comput Biol 7: e1002267. doi: 10.1371/journal.pcbi.1002267 PMID: 22102804

65. Chaves M, Sontag ED, Albert R (2006) Methods of robustness analysis for Boolean models of gene
control networks. Syst Biol (Stevenage) 153: 154–167.

66. Chaves M, Albert R, Sontag ED (2005) Robustness and fragility of Boolean models for genetic regula-
tory networks. J Theor Biol 235: 431–449. PMID: 15882705

67. Faure A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a generic Boolean model for the
control of the mammalian cell cycle. Bioinformatics 22: e124–131. PMID: 16873462

68. Helikar T, Rogers JA (2009) ChemChains: a platform for simulation and analysis of biochemical net-
works aimed to laboratory scientists. BMC Syst Biol 3: 58. doi: 10.1186/1752-0509-3-58 PMID:
19500393

69. Garg A, Di Cara A, Xenarios I, Mendoza L, De Micheli G (2008) Synchronous versus asynchronous
modeling of gene regulatory networks. Bioinformatics 24: 1917–1925. doi: 10.1093/bioinformatics/
btn336 PMID: 18614585

70. Dischinger S, Krapp A, Xie L, Paulson JR, Simanis V (2008) Chemical genetic analysis of the regulatory
role of Cdc2p in the S. pombe septation initiation network. J Cell Sci 121: 843–853. doi: 10.1242/jcs.
021584 PMID: 18303049

Boolean Model of the S. pombe SIN

PLOSONE | DOI:10.1371/journal.pone.0134214 August 5, 2015 20 / 22

http://dx.doi.org/10.1007/978-1-61779-292-2_22
http://www.ncbi.nlm.nih.gov/pubmed/21938638
http://dx.doi.org/10.1093/bioinformatics/btp214
http://www.ncbi.nlm.nih.gov/pubmed/19477975
http://dx.doi.org/10.1016/j.biosystems.2011.12.001
http://www.ncbi.nlm.nih.gov/pubmed/22212351
http://www.ncbi.nlm.nih.gov/pubmed/12782112
http://dx.doi.org/10.3389/fpls.2011.00092
http://www.ncbi.nlm.nih.gov/pubmed/22645556
http://www.ncbi.nlm.nih.gov/pubmed/16968132
http://dx.doi.org/10.1021/bi902202q
http://www.ncbi.nlm.nih.gov/pubmed/20225868
http://www.ncbi.nlm.nih.gov/pubmed/17722974
http://dx.doi.org/10.1371/journal.pcbi.1000438
http://www.ncbi.nlm.nih.gov/pubmed/19662154
http://www.ncbi.nlm.nih.gov/pubmed/9446747
http://dx.doi.org/10.1093/bib/bbr065
http://www.ncbi.nlm.nih.gov/pubmed/22016404
http://dx.doi.org/10.1371/journal.pcbi.1000595
http://www.ncbi.nlm.nih.gov/pubmed/20011108
http://dx.doi.org/10.1089/cmb.2011.0031
http://www.ncbi.nlm.nih.gov/pubmed/21563979
http://dx.doi.org/10.1371/journal.pcbi.1002267
http://www.ncbi.nlm.nih.gov/pubmed/22102804
http://www.ncbi.nlm.nih.gov/pubmed/15882705
http://www.ncbi.nlm.nih.gov/pubmed/16873462
http://dx.doi.org/10.1186/1752-0509-3-58
http://www.ncbi.nlm.nih.gov/pubmed/19500393
http://dx.doi.org/10.1093/bioinformatics/btn336
http://dx.doi.org/10.1093/bioinformatics/btn336
http://www.ncbi.nlm.nih.gov/pubmed/18614585
http://dx.doi.org/10.1242/jcs.021584
http://dx.doi.org/10.1242/jcs.021584
http://www.ncbi.nlm.nih.gov/pubmed/18303049


71. He X, Patterson TE, Sazer S (1997) The Schizosaccharomyces pombe spindle checkpoint protein
mad2p blocks anaphase and genetically interacts with the anaphase-promoting complex. Proc Natl
Acad Sci U S A 94: 7965–7970. PMID: 9223296

72. Yamano H, Gannon J, Hunt T (1996) The role of proteolysis in cell cycle progression in Schizosacchar-
omyces pombe. EMBO J 15: 5268–5279. PMID: 8895572

73. Cerutti L, Simanis V (1999) Asymmetry of the spindle pole bodies and spg1p GAP segregation during
mitosis in fission yeast. J Cell Sci 112 (Pt 14): 2313–2321.

74. Baum B, Wuarin J, Nurse P (1997) Control of S-phase periodic transcription in the fission yeast mitotic
cycle. EMBO J 16: 4676–4688. PMID: 9303312

75. Coudreuse D, Nurse P (2010) Driving the cell cycle with a minimal CDK control network. Nature 468:
1074–1079. doi: 10.1038/nature09543 PMID: 21179163

76. Grallert A, Patel A, Tallada VA, Chan KY, Bagley S, et al. (2013) Centrosomal MPF triggers the mitotic
and morphogenetic switches of fission yeast. Nat Cell Biol 15: 88–95. doi: 10.1038/ncb2633 PMID:
23222840

77. Chaouiya C, Berenguier D, Keating SM, Naldi A, van Iersel MP, et al. (2013) SBML qualitative models:
a model representation format and infrastructure to foster interactions between qualitative modelling
formalisms and tools. BMC Syst Biol 7: 135. doi: 10.1186/1752-0509-7-135 PMID: 24321545

78. Marks J, Fankhauser C, Simanis V (1992) Genetic interactions in the control of septation in Schizosac-
charomyces pombe. J Cell Sci 101 (Pt 4): 801–808.

79. Fankhauser C, Simanis V (1994) The cdc7 protein kinase is a dosage dependent regulator of septum
formation in fission yeast. EMBO J 13: 3011–3019. PMID: 8039497

80. Basi G, Schmid E, Maundrell K (1993) TATA box mutations in the Schizosaccharomyces pombe nmt1
promoter affect transcription efficiency but not the transcription start point or thiamine repressibility.
Gene 123: 131–136. PMID: 8422997

81. Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces
pombe. Methods Enzymol 194: 795–823. PMID: 2005825

82. Hirano T, Hiraoka Y, Yanagida M (1988) A temperature-sensitive mutation of the Schizosaccharo-
myces pombe gene nuc2+ that encodes a nuclear scaffold-like protein blocks spindle elongation in
mitotic anaphase. J Cell Biol 106: 1171–1183. PMID: 3283148

83. Kumada K, Su S, Yanagida M, Toda T (1995) Fission yeast TPR-family protein nuc2 is required for G1-
arrest upon nitrogen starvation and is an inhibitor of septum formation. J Cell Sci 108 (Pt 3): 895–905.

84. Chew TG, Balasubramanian MK (2008) Nuc2p, a subunit of the anaphase-promoting complex, inhibits
septation initiation network following cytokinesis in fission yeast. PLoS Genet 4: e17. doi: 10.1371/
journal.pgen.0040017 PMID: 18225957

85. Grallert A, Krapp A, Bagley S, Simanis V, Hagan IM (2004) Recruitment of NIMA kinase shows that
maturation of the S. pombe spindle-pole body occurs over consecutive cell cycles and reveals a role for
NIMA in modulating SIN activity. Genes Dev 18: 1007–1021. PMID: 15132994

86. Krien MJ, Bugg SJ, Palatsides M, Asouline G, Morimyo M, et al. (1998) A NIMA homologue promotes
chromatin condensation in fission yeast. J Cell Sci 111 (Pt 7): 967–976.

87. Grallert A, Hagan IM (2002) Schizosaccharomyces pombe NIMA-related kinase, Fin1, regulates spin-
dle formation and an affinity of Polo for the SPB. EMBO J 21: 3096–3107. PMID: 12065422

88. Grallert A, Connolly Y, Smith DL, Simanis V, Hagan IM (2012) The S. pombe cytokinesis NDR kinase
Sid2 activates Fin1 NIMA kinase to control mitotic commitment through Pom1/Wee1. Nat Cell Biol 14:
738–745. doi: 10.1038/ncb2514 PMID: 22684255

89. Li C, Furge KA, Cheng QC, Albright CF (2000) Byr4 localizes to spindle-pole bodies in a cell cycle-regu-
lated manner to control Cdc7 localization and septation in fission yeast. J Biol Chem 275: 14381–
14387. PMID: 10799520

90. Woods A, Sherwin T, Sasse R, MacRae TH, Baines AJ, et al. (1989) Definition of individual compo-
nents within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J Cell Sci
93 (Pt 3): 491–500.

91. Balasubramanian MK, McCollum D, Chang L, Wong KC, Naqvi NI, et al. (1998) Isolation and character-
ization of new fission yeast cytokinesis mutants. Genetics 149: 1265–1275. PMID: 9649519

92. Feoktistova A, Morrell-Falvey J, Chen JS, Singh NS, Balasubramanian MK, et al. (2012) The fission
yeast septation initiation network (SIN) kinase, Sid2, is required for SIN asymmetry and regulates the
SIN scaffold, Cdc11. Mol Biol Cell 23: 1636–1645. doi: 10.1091/mbc.E11-09-0792 PMID: 22419817

93. Singh NS, Shao N, McLean JR, Sevugan M, Ren L, et al. (2011) SIN-inhibitory phosphatase complex
promotes Cdc11p dephosphorylation and propagates SIN asymmetry in fission yeast. Curr Biol 21:
1968–1978. doi: 10.1016/j.cub.2011.10.051 PMID: 22119525

Boolean Model of the S. pombe SIN

PLOSONE | DOI:10.1371/journal.pone.0134214 August 5, 2015 21 / 22

http://www.ncbi.nlm.nih.gov/pubmed/9223296
http://www.ncbi.nlm.nih.gov/pubmed/8895572
http://www.ncbi.nlm.nih.gov/pubmed/9303312
http://dx.doi.org/10.1038/nature09543
http://www.ncbi.nlm.nih.gov/pubmed/21179163
http://dx.doi.org/10.1038/ncb2633
http://www.ncbi.nlm.nih.gov/pubmed/23222840
http://dx.doi.org/10.1186/1752-0509-7-135
http://www.ncbi.nlm.nih.gov/pubmed/24321545
http://www.ncbi.nlm.nih.gov/pubmed/8039497
http://www.ncbi.nlm.nih.gov/pubmed/8422997
http://www.ncbi.nlm.nih.gov/pubmed/2005825
http://www.ncbi.nlm.nih.gov/pubmed/3283148
http://dx.doi.org/10.1371/journal.pgen.0040017
http://dx.doi.org/10.1371/journal.pgen.0040017
http://www.ncbi.nlm.nih.gov/pubmed/18225957
http://www.ncbi.nlm.nih.gov/pubmed/15132994
http://www.ncbi.nlm.nih.gov/pubmed/12065422
http://dx.doi.org/10.1038/ncb2514
http://www.ncbi.nlm.nih.gov/pubmed/22684255
http://www.ncbi.nlm.nih.gov/pubmed/10799520
http://www.ncbi.nlm.nih.gov/pubmed/9649519
http://dx.doi.org/10.1091/mbc.E11-09-0792
http://www.ncbi.nlm.nih.gov/pubmed/22419817
http://dx.doi.org/10.1016/j.cub.2011.10.051
http://www.ncbi.nlm.nih.gov/pubmed/22119525


94. Fennessy D, Grallert A, Krapp A, Cokoja A, Bridge AJ, et al. (2014) Extending the Schizosaccharo-
myces pombemolecular genetic toolbox. PLoS One 9: e97683. doi: 10.1371/journal.pone.0097683
PMID: 24848109

95. Balasubramanian MK, McCollum D, Gould KL (1997) Cytokinesis in fission yeast Schizosaccharo-
myces pombe. Methods Enzymol 283: 494–506. PMID: 9251043

96. Schmitter D, Wachowicz P, Sage D, Chasapi A, Xenarios I, et al. (2013) A 2D/3D image analysis sys-
tem to track fluorescently labeled structures in rod-shaped cells: application to measure spindle pole
asymmetry during mitosis. Cell Div 8: 6. doi: 10.1186/1747-1028-8-6 PMID: 23622681

97. Chaouiya C, Naldi A, Thieffry D (2012) Logical modelling of gene regulatory networks with GINsim.
Methods Mol Biol 804: 463–479. doi: 10.1007/978-1-61779-361-5_23 PMID: 22144167

Boolean Model of the S. pombe SIN

PLOSONE | DOI:10.1371/journal.pone.0134214 August 5, 2015 22 / 22

http://dx.doi.org/10.1371/journal.pone.0097683
http://www.ncbi.nlm.nih.gov/pubmed/24848109
http://www.ncbi.nlm.nih.gov/pubmed/9251043
http://dx.doi.org/10.1186/1747-1028-8-6
http://www.ncbi.nlm.nih.gov/pubmed/23622681
http://dx.doi.org/10.1007/978-1-61779-361-5_23
http://www.ncbi.nlm.nih.gov/pubmed/22144167

