Solving a 6120-bit DLP on a Desktop Computer

Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel

Claude Shannon Institute Complex & Adaptive Systems Laboratory School of Mathematical Sciences University College Dublin, Ireland

15th August, SAC 2013

Big Field Hunting

Solving the DLP in \mathbb{F}_{26120}

Complexity Considerations

Our Contributions

Practical Results:

Solving the DLP in \mathbb{F}_{26120}

Complexity Considerations

Our Contributions

Practical Results:

- Set a DLP record in $\mathbb{F}_{2^{6120}}=\mathbb{F}_{(2^{8\cdot3})^{2^8-1}}$, in 750 core-hours:

Solving the DLP in \mathbb{F}_{26120}

Our Contributions

Practical Results:

- Set a DLP record in $\mathbb{F}_{2^{6120}}=\mathbb{F}_{(2^{8\cdot3})^{2^8-1}}$, in 750 core-hours:
- Bitlength is 50% bigger than the previous record, set by Joux in $\mathbb{F}_{2^{4080}} = \mathbb{F}_{(2^{8\cdot 2})^{2^8-1}}$, but required only 5% of the core-hours

Solving the DLP in $\mathbb{F}_{2^{6120}}$

Our Contributions

Practical Results:

- Set a DLP record in $\mathbb{F}_{2^{6120}}=\mathbb{F}_{(2^{8\cdot3})^{2^8-1}}$, in 750 core-hours:
- Bitlength is 50% bigger than the previous record, set by Joux in $\mathbb{F}_{2^{4080}} = \mathbb{F}_{(2^{8\cdot 2})^{2^8-1}}$, but required only 5% of the core-hours

Theoretical Results:

Solving the DLP in $\mathbb{F}_{2^{6120}}$

Our Contributions

Practical Results:

- Set a DLP record in $\mathbb{F}_{2^{6120}}=\mathbb{F}_{(2^{8\cdot3})^{2^8-1}}$, in 750 core-hours:
- Bitlength is 50% bigger than the previous record, set by Joux in $\mathbb{F}_{2^{4080}}=\mathbb{F}_{(2^{8\cdot2})^{2^8-1}}$, but required only 5% of the core-hours

Theoretical Results:

• Optimised Joux's $L_Q(1/4 + o(1))$ algorithm to give an $L_Q(1/4, (\omega/8)^{1/4})$ algorithm for $Q \approx (q^k)^q$, $k \ge 2$, $q \to \infty$

Big Field Hunting

Solving the DLP in \mathbb{F}_{26120}

Complexity Considerations

Big Field Hunting

Solving the DLP in $\mathbb{F}_{2^{6120}}$

Complexity Considerations

Setup for $\mathbb{F}_{(q^k)^n}$ with $k \geq 3$, $n \leq qd_1$ and $d_1 \geq 1$ (cf. [JL06]):

Setup for $\mathbb{F}_{(q^k)^n}$ with $k \geq 3$, $n \leq qd_1$ and $d_1 \geq 1$ (cf. [JL06]):

- Search for $g_1(X) \in \mathbb{F}_{q^k}[X]$ s.t. $X g_1(X^q) \equiv 0 \pmod{f(X)}$ with $\deg(g_1) = d_1$, f irreducible and $\deg(f) = n$
- Let $\mathbb{F}_{(q^k)^n} = \mathbb{F}_{q^k}(x)$ with x a root of f(X)
- Let $y = x^q$, so that one has $x = g_1(y)$ in $\mathbb{F}_{(q^k)^n}$

• Factor base is
$$\{x - a \mid a \in \mathbb{F}_{q^k}\}$$

Setup for $\mathbb{F}_{(q^k)^n}$ with $k \geq 3$, $n \leq qd_1$ and $d_1 \geq 1$ (cf. [JL06]):

- Search for $g_1(X) \in \mathbb{F}_{q^k}[X]$ s.t. $X g_1(X^q) \equiv 0 \pmod{f(X)}$ with $\deg(g_1) = d_1$, f irreducible and $\deg(f) = n$
- Let $\mathbb{F}_{(q^k)^n} = \mathbb{F}_{q^k}(x)$ with x a root of f(X)
- Let $y = x^q$, so that one has $x = g_1(y)$ in $\mathbb{F}_{(q^k)^n}$

• Factor base is
$$\{x - a \mid a \in \mathbb{F}_{q^k}\}$$

Relation generation:

Setup for $\mathbb{F}_{(q^k)^n}$ with $k \geq 3$, $n \leq qd_1$ and $d_1 \geq 1$ (cf. [JL06]):

- Search for $g_1(X) \in \mathbb{F}_{q^k}[X]$ s.t. $X g_1(X^q) \equiv 0 \pmod{f(X)}$ with $\deg(g_1) = d_1$, f irreducible and $\deg(f) = n$
- Let $\mathbb{F}_{(q^k)^n} = \mathbb{F}_{q^k}(x)$ with x a root of f(X)
- Let $y = x^q$, so that one has $x = g_1(y)$ in $\mathbb{F}_{(q^k)^n}$
- Factor base is $\{x a \mid a \in \mathbb{F}_{q^k}\}$

Relation generation:

• Considering elements xy + ay + bx + c with $a, b, c \in \mathbb{F}_{q^k}$, one obtains the $\mathbb{F}_{(q^k)^n}$ -equality

$$x^{q+1} + ax^{q} + bx + c = yg_1(y) + ay + bg_1(y) + c$$

• When both sides split over \mathbb{F}_{q^k} one obtains a relation

Complexity Considerations

Bluher Polynomials

Consider the l.h.s. polynomial $x^{q+1} + ax^q + bx + c$.

Bluher Polynomials

Consider the l.h.s. polynomial $x^{q+1} + ax^q + bx + c$.

If $ab \neq c$ and $a^q \neq b$, this may be transformed into

$$F_B(\overline{x}) = \overline{x}^{q+1} + B\overline{x} + B$$
, with $B = \frac{(b-a^q)^{q+1}}{(c-ab)^q}$,

via
$$x = \frac{c-ab}{b-a^q}\overline{x} - a$$
.

Bluher Polynomials

Consider the l.h.s. polynomial $x^{q+1} + ax^q + bx + c$.

If $ab \neq c$ and $a^q \neq b$, this may be transformed into

$$F_B(\overline{x}) = \overline{x}^{q+1} + B\overline{x} + B$$
, with $B = \frac{(b-a^q)^{q+1}}{(c-ab)^q}$,

via $x = \frac{c-ab}{b-a^q}\overline{x} - a$.

Theorem (Bluher 2004, Helleseth-Kholosha 2010)

The number of elements $B \in \mathbb{F}_{q^k}^{\times}$ such that the polynomial $F_B(X) \in \mathbb{F}_{q^k}[X]$ splits completely over \mathbb{F}_{q^k} equals

• Let
$$S_B = \{B \in \mathbb{F}_{q^k}^{\times} \mid X^{q+1} + BX + B \text{ splits over } \mathbb{F}_{q^k}\}$$

- Let $S_B = \{B \in \mathbb{F}_{q^k}^{\times} \mid X^{q+1} + BX + B \text{ splits over } \mathbb{F}_{q^k}\}$
- Since $B = (b a^q)^{q+1}/(c ab)^q$, for any $a, b \in \mathbb{F}_{q^k}$ s.t. $b \neq a^q$, and $B \in S_B$, there exists a unique $c \in \mathbb{F}_{q^k}$ s.t. $x^{q+1} + ax^q + bx + c$ splits over \mathbb{F}_{q^k}

- Let $S_B = \{B \in \mathbb{F}_{q^k}^{\times} \mid X^{q+1} + BX + B \text{ splits over } \mathbb{F}_{q^k}\}$
- Since $B = (b a^q)^{q+1}/(c ab)^q$, for any $a, b \in \mathbb{F}_{q^k}$ s.t. $b \neq a^q$, and $B \in S_B$, there exists a unique $c \in \mathbb{F}_{q^k}$ s.t. $x^{q+1} + ax^q + bx + c$ splits over \mathbb{F}_{q^k}
- For each such (a, b, c), test if r.h.s. $yg_1(y) + ay + bg_1(y) + c$ splits; if so then have a relation

- Let $S_B = \{B \in \mathbb{F}_{q^k}^{\times} \mid X^{q+1} + BX + B \text{ splits over } \mathbb{F}_{q^k}\}$
- Since $B = (b a^q)^{q+1}/(c ab)^q$, for any $a, b \in \mathbb{F}_{q^k}$ s.t. $b \neq a^q$, and $B \in S_B$, there exists a unique $c \in \mathbb{F}_{q^k}$ s.t. $x^{q+1} + ax^q + bx + c$ splits over \mathbb{F}_{q^k}
- For each such (a, b, c), test if r.h.s. $yg_1(y) + ay + bg_1(y) + c$ splits; if so then have a relation
- If $q^{3k-3} > q^k(d_1+1)!$ then expect to compute logs of degree 1 elements in time $\widetilde{O}(a^{2k+1})$

The solution of DLPs in $\mathbb{F}_{p^{47}}$, $\mathbb{F}_{p^{57}}$, $\mathbb{F}_{2^{1778}}$, $\mathbb{F}_{2^{1971}}$, $\mathbb{F}_{2^{3164}}$ and $\mathbb{F}_{2^{4080}}$ all used Kummer extensions.

The solution of DLPs in $\mathbb{F}_{p^{47}}$, $\mathbb{F}_{p^{57}}$, $\mathbb{F}_{2^{1778}}$, $\mathbb{F}_{2^{1971}}$, $\mathbb{F}_{2^{3164}}$ and $\mathbb{F}_{2^{4080}}$ all used Kummer extensions.

Why? Factor base-preserving automorphisms reduce effective size of factor base \implies relation finding & linear algebra become faster.

The solution of DLPs in $\mathbb{F}_{p^{47}}$, $\mathbb{F}_{p^{57}}$, $\mathbb{F}_{2^{1778}}$, $\mathbb{F}_{2^{1971}}$, $\mathbb{F}_{2^{3164}}$ and $\mathbb{F}_{2^{4080}}$ all used Kummer extensions.

Why? Factor base-preserving automorphisms reduce effective size of factor base \implies relation finding & linear algebra become faster.

Observe that $\mathbb{F}_{2^{1778}}$ and $\mathbb{F}_{2^{4080}}$ are of the form $\mathbb{F}_{(q^2)^{q-1}}$, for which:

The solution of DLPs in $\mathbb{F}_{p^{47}}$, $\mathbb{F}_{p^{57}}$, $\mathbb{F}_{2^{1778}}$, $\mathbb{F}_{2^{1971}}$, $\mathbb{F}_{2^{3164}}$ and $\mathbb{F}_{2^{4080}}$ all used Kummer extensions.

Why? Factor base-preserving automorphisms reduce effective size of factor base \implies relation finding & linear algebra become faster.

Observe that $\mathbb{F}_{2^{1778}}$ and $\mathbb{F}_{2^{4080}}$ are of the form $\mathbb{F}_{(q^2)^{q-1}}$, for which:

- Degree 1 logs cost $\widetilde{O}(q^3)$ for K.E., or $\widetilde{O}(q^5)$ otherwise
- Degree 2 logs cost $\widetilde{O}(q^6)$ for K.E., or $\widetilde{O}(q^7)$ otherwise

The solution of DLPs in $\mathbb{F}_{p^{47}}$, $\mathbb{F}_{p^{57}}$, $\mathbb{F}_{2^{1778}}$, $\mathbb{F}_{2^{1971}}$, $\mathbb{F}_{2^{3164}}$ and $\mathbb{F}_{2^{4080}}$ all used Kummer extensions.

Why? Factor base-preserving automorphisms reduce effective size of factor base \implies relation finding & linear algebra become faster.

Observe that $\mathbb{F}_{2^{1778}}$ and $\mathbb{F}_{2^{4080}}$ are of the form $\mathbb{F}_{(q^2)^{q-1}}$, for which:

- Degree 1 logs cost $\widetilde{O}(q^3)$ for K.E., or $\widetilde{O}(q^5)$ otherwise
- Degree 2 logs cost $\widetilde{O}(q^6)$ for K.E., or $\widetilde{O}(q^7)$ otherwise

However, for $\mathbb{F}_{(q^k)^{q\pm 1}}$ with $k \ge 4$ one can compute logs of degree two elements *on the fly* [GGMZ13].

New Degree 2 elimination for K.E.'s and $k \ge 3$

Let $q(x) := x^2 + q_1 x + q_0 \in \mathbb{F}_{(q^k)^{q-1}}$ be an element to be written as a product of linear elements.

• When possible, compute $a, b, c \in \mathbb{F}_{q^k}$ s.t. in $\mathbb{F}^{\times}_{(a^k)^{q-1}}/\mathbb{F}^{\times}_{a^k}$,

$$q(x) = x^{2} + q_{1}x + q_{0} = x^{q+1} + ax^{q} + bx + c$$

where r.h.s splits over $\mathbb{F}_{q^k}^{\times}$

• When possible, compute $a, b, c \in \mathbb{F}_{q^k}$ s.t. in $\mathbb{F}^{\times}_{(q^k)^{q-1}}/\mathbb{F}^{\times}_{q^k}$,

$$q(x) = x^{2} + q_{1}x + q_{0} = x^{q+1} + ax^{q} + bx + c$$

where r.h.s splits over $\mathbb{F}_{a^k}^{\times}$

• As $x^{q-1} = \gamma$, we have r.h.s. $= \gamma (x^2 + (a + \frac{b}{\gamma})x + \frac{c}{\gamma})$: $\implies \gamma q_0 = c, \gamma q_1 = \gamma a + b$

• When possible, compute $a, b, c \in \mathbb{F}_{q^k}$ s.t. in $\mathbb{F}^{\times}_{(q^k)^{q-1}}/\mathbb{F}^{\times}_{q^k}$,

$$q(x) = x^{2} + q_{1}x + q_{0} = x^{q+1} + ax^{q} + bx + c$$

where r.h.s splits over $\mathbb{F}_{a^k}^{\times}$

- As $x^{q-1} = \gamma$, we have r.h.s. $= \gamma (x^2 + (a + \frac{b}{\gamma})x + \frac{c}{\gamma})$: $\implies \gamma q_0 = c, \gamma q_1 = \gamma a + b$
- For any $B \in S_B$, using $(a^q + b)^{q+1} = B(ab + c)^q$ we arrive at the condition

$$(a^{q} + \gamma a + \gamma q_{1})^{q+1} + B(\gamma a^{2} + \gamma q_{1}a + \gamma q_{0})^{q} = 0$$

• When possible, compute $a,b,c\in \mathbb{F}_{q^k}$ s.t. in $\mathbb{F}^{ imes}_{(q^k)^{q-1}}/\mathbb{F}^{ imes}_{q^k}$,

$$q(x) = x^{2} + q_{1}x + q_{0} = x^{q+1} + ax^{q} + bx + c$$

where r.h.s splits over $\mathbb{F}_{a^k}^{\times}$

- As $x^{q-1} = \gamma$, we have r.h.s. $= \gamma (x^2 + (a + \frac{b}{\gamma})x + \frac{c}{\gamma})$: $\implies \gamma q_0 = c, \gamma q_1 = \gamma a + b$
- For any $B \in S_B$, using $(a^q + b)^{q+1} = B(ab + c)^q$ we arrive at the condition

$$(a^{q} + \gamma a + \gamma q_{1})^{q+1} + B(\gamma a^{2} + \gamma q_{1}a + \gamma q_{0})^{q} = 0$$

Considering 𝔽_{q^k} /𝔽_q gives a quadratic system in the 𝔽_qcomponents of *a*, solvable with a Gröbner basis computation

$I\setminus k$	2	3	4	5	6
6	756	1134	1512	1890	2268
7	1778	2667	3556	4445	5334
8	4080	6120	8160	10200	12240
9	9198	13797	18396	22995	27594

For $q = 2^{l}$ and n = q - 1, $\mathbb{F}_{(q^{k})^{n}}$ has bitlength:

$I\setminus k$	2	3	4	5	6
6	756	1134	1512	1890	2268
7	1778	2667	3556	4445	5334
8	4080	6120	8160	10200	12240
9	9198	13797	18396	22995	27594

• Degree 1: #variables $\approx q^{k-1}$ so for $k \geq 2$, cost is $\widetilde{O}(q^{2k-1})$

$I\setminus k$	2	3	4	5	6
6	756	1134	1512	1890	2268
7	1778	2667	3556	4445	5334
8	4080	6120	8160	10200	12240
9	9198	13797	18396	22995	27594

- Degree 1: #variables $\approx q^{k-1}$ so for $k \geq 2$, cost is $\widetilde{O}(q^{2k-1})$
- Degree 2: For k = 2,3 cost is $\widetilde{O}(q^{2k+2})$, and free for $k \ge 4$

$I\setminus k$	2	3	4	5	6
6	756	1134	1512	1890	2268
7	1778	2667	3556	4445	5334
8	4080	6120	8160	10200	12240
9	9198	13797	18396	22995	27594

- Degree 1: #variables $\approx q^{k-1}$ so for $k \geq 2$, cost is $\widetilde{O}(q^{2k-1})$
- Degree 2: For k = 2, 3 cost is $\widetilde{O}(q^{2k+2})$, and free for $k \ge 4$

$I\setminus k$	2	3	4	5	6
6	756	1134	1512	1890	2268
7	1778	2667	3556	4445	5334
8	4080	6120	8160	10200	12240
9	9198	13797	18396	22995	27594

- Degree 1: #variables $\approx q^{k-1}$ so for $k \geq 2$, cost is $\widetilde{O}(q^{2k-1})$
- Degree 2: For k = 2, 3 cost is $\widetilde{O}(q^{2k+2})$, and free for $k \ge 4$

Field Setup and Target Element

- Let $\mathbb{F}_{2^8} = \mathbb{F}_2[T]/((T^8 + T^4 + T^3 + T + 1)\mathbb{F}_2[T]) = \mathbb{F}_2(t)$
- Let $\mathbb{F}_{2^{24}} = \mathbb{F}_{2^8}[W]/((W^3 + t)\mathbb{F}_{2^8}[W]) = \mathbb{F}_{2^8}(w)$
- Let $\mathbb{F}_{2^{6120}} = \mathbb{F}_{2^{24}}[X]/((X^{255} + w + 1)\mathbb{F}_{2^{24}}[X]) = \mathbb{F}_{2^{24}}(x)$
- Our generator is g = x + w, which has proven order $2^{6120} 1$

Field Setup and Target Element

- Let $\mathbb{F}_{2^8} = \mathbb{F}_2[T]/((T^8 + T^4 + T^3 + T + 1)\mathbb{F}_2[T]) = \mathbb{F}_2(t)$
- Let $\mathbb{F}_{2^{24}} = \mathbb{F}_{2^8}[W]/((W^3 + t)\mathbb{F}_{2^8}[W]) = \mathbb{F}_{2^8}(w)$
- Let $\mathbb{F}_{2^{6120}} = \mathbb{F}_{2^{24}}[X]/((X^{255} + w + 1)\mathbb{F}_{2^{24}}[X]) = \mathbb{F}_{2^{24}}(x)$
- Our generator is g = x + w, which has proven order $2^{6120} 1$

Our target element β_π was derived as usual from the $2^{24}\text{-}\mathrm{ary}$ expansion of π .

Degree 1 Logarithms

- Used the only Bluher polynomial for k = 3, namely $X^{257} + X + 1$ and our relation generation method
- Via automorphisms, reduced the #variables to 21,932 and obtained 22,932 relations *in* 15 *seconds* using C++/NTL on a 2.0GHz AMD Opteron 6128
- For linear algebra, took as modulus the product of the largest 35 prime factors of $2^{6120} 1$, which has bitlength 5121
- Ran a parallelised C/GMP implementation of Lanczos' algorithm on four of the Intel (Westmere) Xeon E5650 hex-core processors of ICHEC's SGI Altix ICE 8200EX Stokes cluster, completed *in 60.5 core-hours* (2.5 hours wall time)

Degree 2 Logarithms

Since there is only one Bluher polynomial for k = 3, elimination probability is 1/2.

Degree 2 Logarithms

Since there is only one Bluher polynomial for k = 3, elimination probability is 1/2.

• When it fails, exploit the fact that $6 \mid 24$ and $(8-6) \mid 24$ and the 64 Bluher polynomials of the form $X^{65} + BX + B / \mathbb{F}_{2^{24}}$

Degree 2 Logarithms

Since there is only one Bluher polynomial for k = 3, elimination probability is 1/2.

- When it fails, exploit the fact that $6 \mid 24$ and $(8-6) \mid 24$ and the 64 Bluher polynomials of the form $X^{65} + BX + B / \mathbb{F}_{2^{24}}$
- Results in a probabilistic method to eliminate any given degree 2 element with probability $p = 1 6.3 \times 10^{-15}$
- \implies probability that at least one degree 2 irreducible is not eliminable is $1 p^{2^{22}} = 2.7 \times 10^{-8}$
- Implemented in MAGMA V2.16-12 on a 2.0 GHz AMD Opteron 6128: *each took on average 0.03 seconds*

Eliminating Degrees 3,4,5 and 6

We used an analogue of Joux's method [J13], but with the Bluher polynomial $X^{257} + X + 1$ rather than $X^{256} + X$.

Eliminating Degrees 3,4,5 and 6

We used an analogue of Joux's method [J13], but with the Bluher polynomial $X^{257} + X + 1$ rather than $X^{256} + X$.

- Let $f(X), g(X) \in \mathbb{F}_{2^{24}}[X]$ have degrees δ_f and δ_g
- Substitute $\frac{f(X)}{g(X)}$ into Bluher polynomial, giving the numerator

$$P(X) := f(X)^{257} + Bf(X)g(X)^{256} + Bg(X)^{257}$$

- P(X) is δ -smooth with $\delta = \max\{\delta_f, \delta_g\}$
- Since $x^{256} = (w + 1)x$ holds in $\mathbb{F}_{(2^{24})^{255}}$, the element P(x) can also be represented by a polynomial of degree 2δ
- For Q(x) of degree 2δ or $2\delta 1$ set P(x) = Q(x) or (x + a)Q(x) and solve resulting quadratic system over \mathbb{F}_{2^8}

DLP Solution

On 11/4/13 we announced that $\,eta_\pi=g^{\log}$, with $\,\log=$

Solving the DLP in \mathbb{F}_{26120}

Complexity Considerations

The quadratic systems we obtain using $X^{q+1} + BX + B$ are not bilinear \implies we can't argue for the same $L_Q(1/4 + o(1))$ complexity that arises when using $X^q - X$.

Solving the DLP in \mathbb{F}_{26120}

Complexity Considerations

The quadratic systems we obtain using $X^{q+1} + BX + B$ are not bilinear \implies we can't argue for the same $L_Q(1/4 + o(1))$ complexity that arises when using $X^q - X$.

However, when using $X^q - X$, with judiciously chosen parameters, the complexity can be improved.

Solving the DLP in \mathbb{F}_{26120}

Complexity Considerations

The quadratic systems we obtain using $X^{q+1} + BX + B$ are not bilinear \implies we can't argue for the same $L_Q(1/4 + o(1))$ complexity that arises when using $X^q - X$.

However, when using $X^q - X$, with judiciously chosen parameters, the complexity can be improved.

- Consider $\mathbb{F}_{(q^k)^n}$ with $k\geq 2$ fixed, npprox q and $q
 ightarrow\infty$
- Assume degree 1 logs are known and degree 2 logs are either known or are efficiently computable (on the fly)

Want to compute $\log_g h$. The descent consists of 3 parts:

Want to compute $\log_g h$. The descent consists of 3 parts:

• Stage 0: Choose random *i* until hg^i is $\alpha_0 q^{3/4}$ -smooth. This costs

$$C_0 := L_{q^{kq}}\left(1/4, rac{1}{4lpha_0 k^{1/4}}
ight)$$

Want to compute $\log_g h$. The descent consists of 3 parts:

• Stage 0: Choose random *i* until hg^i is $\alpha_0 q^{3/4}$ -smooth. This costs

$$C_0 := L_{q^{kq}}\left(1/4, \frac{1}{4\alpha_0 k^{1/4}}\right)$$

• Stage 1: Perform classical descent (with degree balancing) until elements are $\alpha_1 q^{1/2}$ -smooth. For $0 < \mu < 1$, this costs

$$C_1 := L_{q^{kq}}\left(1/4, \frac{1}{\mu k^{1/4}\sqrt{8\alpha_1}}\right)$$

Want to compute $\log_g h$. The descent consists of 3 parts:

• Stage 0: Choose random *i* until hg^i is $\alpha_0 q^{3/4}$ -smooth. This costs

$$C_0 := L_{q^{kq}}\left(1/4, \frac{1}{4\alpha_0 k^{1/4}}\right)$$

• Stage 1: Perform classical descent (with degree balancing) until elements are $\alpha_1 q^{1/2}$ -smooth. For $0 < \mu < 1$, this costs

$$C_1 := L_{q^{kq}}\left(1/4, \frac{1}{\mu k^{1/4}\sqrt{8\alpha_1}}\right)$$

• Stage 2: Perform Joux's descent until elements are 2-smooth. This costs

$$C_2 := L_{q^{kq}} \left(1/4, k^{1/4} \sqrt{\omega \alpha_1} \right)$$

• Balancing Stages 1 and 2 gives the optimal α_1 as $1/(\mu\sqrt{8k\omega})$

- Balancing Stages 1 and 2 gives the optimal α_1 as $1/(\mu\sqrt{8k\omega})$
- Choosing $\alpha_0 > 1/(32k\omega)^{1/4}$ means Stage 0 is ignorable

- Balancing Stages 1 and 2 gives the optimal α_1 as $1/(\mu\sqrt{8k\omega})$
- Choosing $\alpha_0 > 1/(32k\omega)^{1/4}$ means Stage 0 is ignorable
- In the limit as $\mu
 ightarrow 1^-$, we obtain an overall complexity of

$$L_{q^{kq}}(1/4,(\omega/8)^{1/4})$$

 Barbulescu, Gaudry, Joux and Thomé have proposed a quasi-polynomial algorithm for the DLP in finite fields of small characteristic (eprint.iacr.org/2013/400)

- Barbulescu, Gaudry, Joux and Thomé have proposed a quasi-polynomial algorithm for the DLP in finite fields of small characteristic (eprint.iacr.org/2013/400)
- Our relation generation method gives an analogous quasi-polynomial algorithm; in fact ours and Joux's method based on Möbius transforms of $X^q X$ are equivalent

- Barbulescu, Gaudry, Joux and Thomé have proposed a quasi-polynomial algorithm for the DLP in finite fields of small characteristic (eprint.iacr.org/2013/400)
- Our relation generation method gives an analogous quasi-polynomial algorithm; in fact ours and Joux's method based on Möbius transforms of $X^q X$ are equivalent

For BGJT algorithm, one setup issue is to find a set of coset representatives for $PGL_2(\mathbb{F}_{q^k})/PGL_2(\mathbb{F}_q)$:

- Barbulescu, Gaudry, Joux and Thomé have proposed a quasi-polynomial algorithm for the DLP in finite fields of small characteristic (eprint.iacr.org/2013/400)
- Our relation generation method gives an analogous quasi-polynomial algorithm; in fact ours and Joux's method based on Möbius transforms of $X^q X$ are equivalent

For BGJT algorithm, one setup issue is to find a set of coset representatives for $PGL_2(\mathbb{F}_{q^k})/PGL_2(\mathbb{F}_q)$:

• $|PGL_2(\mathbb{F}_{q^k})/PGL_2(\mathbb{F}_q)| = (q^{3k} - q^k)/(q^3 - q) \approx q^{3k-3}$

- Barbulescu, Gaudry, Joux and Thomé have proposed a quasi-polynomial algorithm for the DLP in finite fields of small characteristic (eprint.iacr.org/2013/400)
- Our relation generation method gives an analogous quasi-polynomial algorithm; in fact ours and Joux's method based on Möbius transforms of $X^q X$ are equivalent

For BGJT algorithm, one setup issue is to find a set of coset representatives for $PGL_2(\mathbb{F}_{q^k})/PGL_2(\mathbb{F}_q)$:

- $|PGL_2(\mathbb{F}_{q^k})/PGL_2(\mathbb{F}_q)| = (q^{3k} q^k)/(q^3 q) \approx q^{3k-3}$
- For $k \ge 3$ our search space has cardinality

$$q^k(q^k-1)(q^k-\{q,q^2\})/(q^3-q)pprox q^{3k-3}$$

- Barbulescu, Gaudry, Joux and Thomé have proposed a quasi-polynomial algorithm for the DLP in finite fields of small characteristic (eprint.iacr.org/2013/400)
- Our relation generation method gives an analogous quasi-polynomial algorithm; in fact ours and Joux's method based on Möbius transforms of $X^q X$ are equivalent

For BGJT algorithm, one setup issue is to find a set of coset representatives for $PGL_2(\mathbb{F}_{q^k})/PGL_2(\mathbb{F}_q)$:

- $|PGL_2(\mathbb{F}_{q^k})/PGL_2(\mathbb{F}_q)| = (q^{3k} q^k)/(q^3 q) \approx q^{3k-3}$
- For $k \ge 3$ our search space has cardinality

$$q^k(q^k-1)(q^k-\{q,q^2\})/(q^3-q)pprox q^{3k-3}$$

• Cost of finding all Bluher polynomials is only $\widetilde{O}(q^k)$