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Our Contributions

Practical Results:

• Set a DLP record in F26120 = F
(28·3)28−1 , in 750 core-hours:

• Bitlength is 50% bigger than the previous record, set by Joux
in F24080 = F

(28·2)28−1 , but required only 5% of the core-hours

Theoretical Results:

• Optimised Joux’s LQ(1/4 + o(1)) algorithm to give an
LQ(1/4, (ω/8)1/4) algorithm for Q ≈ (qk)q , k ≥ 2, q →∞



Big Field Hunting Solving the DLP in F
26120

Complexity Considerations

Our Contributions

Practical Results:

• Set a DLP record in F26120 = F
(28·3)28−1 , in 750 core-hours:

• Bitlength is 50% bigger than the previous record, set by Joux
in F24080 = F

(28·2)28−1 , but required only 5% of the core-hours

Theoretical Results:

• Optimised Joux’s LQ(1/4 + o(1)) algorithm to give an
LQ(1/4, (ω/8)1/4) algorithm for Q ≈ (qk)q , k ≥ 2, q →∞



Big Field Hunting Solving the DLP in F
26120

Complexity Considerations

Our Contributions

Practical Results:

• Set a DLP record in F26120 = F
(28·3)28−1 , in 750 core-hours:

• Bitlength is 50% bigger than the previous record, set by Joux
in F24080 = F

(28·2)28−1 , but required only 5% of the core-hours

Theoretical Results:

• Optimised Joux’s LQ(1/4 + o(1)) algorithm to give an
LQ(1/4, (ω/8)1/4) algorithm for Q ≈ (qk)q , k ≥ 2, q →∞



Big Field Hunting Solving the DLP in F
26120

Complexity Considerations

Our Contributions

Practical Results:

• Set a DLP record in F26120 = F
(28·3)28−1 , in 750 core-hours:

• Bitlength is 50% bigger than the previous record, set by Joux
in F24080 = F

(28·2)28−1 , but required only 5% of the core-hours

Theoretical Results:

• Optimised Joux’s LQ(1/4 + o(1)) algorithm to give an
LQ(1/4, (ω/8)1/4) algorithm for Q ≈ (qk)q , k ≥ 2, q →∞



Big Field Hunting Solving the DLP in F
26120

Complexity Considerations

Our Contributions

Practical Results:

• Set a DLP record in F26120 = F
(28·3)28−1 , in 750 core-hours:

• Bitlength is 50% bigger than the previous record, set by Joux
in F24080 = F

(28·2)28−1 , but required only 5% of the core-hours

Theoretical Results:

• Optimised Joux’s LQ(1/4 + o(1)) algorithm to give an
LQ(1/4, (ω/8)1/4) algorithm for Q ≈ (qk)q , k ≥ 2, q →∞



Big Field Hunting Solving the DLP in F
26120

Complexity Considerations

Overview

Big Field Hunting

Solving the DLP in F26120

Complexity Considerations



Big Field Hunting Solving the DLP in F
26120

Complexity Considerations

Polynomial Time Relation Generation [GGMZ13]

Setup for F(qk )n with k ≥ 3, n ≤ qd1 and d1 ≥ 1 (cf. [JL06]):

• Search for g1(X ) ∈ Fqk [X ] s.t. X − g1(X q) ≡ 0 (mod f (X ))
with deg(g1) = d1 , f irreducible and deg(f ) = n

• Let F(qk )n = Fqk (x) with x a root of f (X )

• Let y = xq , so that one has x = g1(y) in F(qk )n

• Factor base is {x − a | a ∈ Fqk}

Relation generation:

• Considering elements xy + ay + bx + c with a, b, c ∈ Fqk ,
one obtains the F(qk )n -equality

xq+1 + axq + bx + c = yg1(y) + ay + bg1(y) + c

• When both sides split over Fqk one obtains a relation
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Bluher Polynomials

Consider the l.h.s. polynomial xq+1 + axq + bx + c .

If ab 6= c and aq 6= b , this may be transformed into

FB(x) = xq+1 + Bx + B , with B =
(b − aq)q+1

(c − ab)q
,

via x = c−ab
b−aq x − a .

Theorem (Bluher 2004, Helleseth-Kholosha 2010)

The number of elements B ∈ F×
qk

such that the polynomial

FB(X ) ∈ Fqk [X ] splits completely over Fqk equals

qk−1 − 1

q2 − 1
if k is odd ,

qk−1 − q

q2 − 1
if k is even .
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Polynomial Time Relation Generation [GGMZ13]

• Let SB = {B ∈ F×
qk
| X q+1 + BX + B splits over Fqk}

• Since B = (b − aq)q+1/(c − ab)q , for any a, b ∈ Fqk s.t.
b 6= aq , and B ∈ SB , there exists a unique c ∈ Fqk s.t.
xq+1 + axq + bx + c splits over Fqk

• For each such (a, b, c), test if r.h.s. yg1(y) + ay + bg1(y) + c
splits; if so then have a relation

• If q3k−3 > qk(d1 + 1)! then expect to compute logs of degree
1 elements in time

Õ(q2k+1)
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Kummer Extensions =⇒ More Efficient Attacks

The solution of DLPs in Fp47 , Fp57 , F21778 , F21971 ,F23164 and F24080

all used Kummer extensions.

Why? Factor base-preserving automorphisms reduce effective size
of factor base =⇒ relation finding & linear algebra become faster.

Observe that F21778 and F24080 are of the form F(q2)q−1 , for which:

• Degree 1 logs cost Õ(q3) for K.E., or Õ(q5) otherwise

• Degree 2 logs cost Õ(q6) for K.E., or Õ(q7) otherwise

However, for F(qk )q±1 with k ≥ 4 one can compute logs of degree
two elements on the fly [GGMZ13].
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New Degree 2 elimination for K.E.’s and k ≥ 3

Let q(x) := x2 + q1x + q0 ∈ F(qk )q−1 be an element to be written
as a product of linear elements.

• When possible, compute a, b, c ∈ Fqk s.t. in F×
(qk )q−1/F×

qk
,

q(x) = x2 + q1x + q0 = xq+1 + axq + bx + c

where r.h.s splits over F×
qk

• As xq−1 = γ , we have r.h.s. = γ(x2 + (a + b
γ )x + c

γ ):
=⇒ γq0 = c , γq1 = γa + b

• For any B ∈ SB , using (aq + b)q+1 = B(ab + c)q we arrive
at the condition

(aq + γa + γq1)q+1 + B(γa2 + γq1a + γq0)q = 0

• Considering Fqk/Fq gives a quadratic system in the Fq -
components of a , solvable with a Gröbner basis computation
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Big Field Hunting Solving the DLP in F
26120

Complexity Considerations

New Degree 2 elimination for K.E.’s and k ≥ 3

Let q(x) := x2 + q1x + q0 ∈ F(qk )q−1 be an element to be written
as a product of linear elements.

• When possible, compute a, b, c ∈ Fqk s.t. in F×
(qk )q−1/F×

qk
,

q(x) = x2 + q1x + q0 = xq+1 + axq + bx + c

where r.h.s splits over F×
qk

• As xq−1 = γ , we have r.h.s. = γ(x2 + (a + b
γ )x + c

γ ):
=⇒ γq0 = c , γq1 = γa + b

• For any B ∈ SB , using (aq + b)q+1 = B(ab + c)q we arrive
at the condition

(aq + γa + γq1)q+1 + B(γa2 + γq1a + γq0)q = 0

• Considering Fqk/Fq gives a quadratic system in the Fq -
components of a , solvable with a Gröbner basis computation
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Cost of Computing Factor base Logs for K.E.’s

For q = 2l and n = q − 1, F(qk )n has bitlength:

l \ k 2 3 4 5 6

6 756 1134 1512 1890 2268
7 1778 2667 3556 4445 5334
8 4080 6120 8160 10200 12240
9 9198 13797 18396 22995 27594

• Degree 1: #variables ≈ qk−1 so for k ≥ 2, cost is Õ(q2k−1)

• Degree 2: For k = 2, 3 cost is Õ(q2k+2), and free for k ≥ 4

k 2 3 4 5 6

Cost Õ(q6) Õ(q8) Õ(q7) Õ(q9) Õ(q11)
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• Degree 2: For k = 2, 3 cost is Õ(q2k+2), and free for k ≥ 4
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Complexity Considerations

Field Setup and Target Element

• Let F28 = F2[T ]/((T 8 + T 4 + T 3 + T + 1)F2[T ]) = F2(t)

• Let F224 = F28 [W ]/((W 3 + t)F28 [W ]) = F28(w)

• Let F26120 = F224 [X ]/((X 255 + w + 1)F224 [X ]) = F224(x)

• Our generator is g = x +w , which has proven order 26120− 1

Our target element βπ was derived as usual from the 224 -ary
expansion of π .
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Degree 1 Logarithms

• Used the only Bluher polynomial for k = 3, namely
X 257 + X + 1 and our relation generation method

• Via automorphisms, reduced the #variables to 21, 932 and
obtained 22, 932 relations in 15 seconds using C++/NTL on
a 2.0GHz AMD Opteron 6128

• For linear algebra, took as modulus the product of the largest
35 prime factors of 26120 − 1, which has bitlength 5121

• Ran a parallelised C/GMP implementation of Lanczos’
algorithm on four of the Intel (Westmere) Xeon E5650
hex-core processors of ICHEC’s SGI Altix ICE 8200EX Stokes
cluster, completed in 60.5 core-hours (2.5 hours wall time)
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Complexity Considerations

Degree 2 Logarithms

Since there is only one Bluher polynomial for k = 3, elimination
probability is 1/2.

• When it fails, exploit the fact that 6 | 24 and (8− 6) | 24 and
the 64 Bluher polynomials of the form X 65 + BX + B /F224

• Results in a probabilistic method to eliminate any given
degree 2 element with probability p = 1− 6.3× 10−15

• =⇒ probability that at least one degree 2 irreducible is not
eliminable is 1− p2

22
= 2.7× 10−8

• Implemented in MAGMA V2.16-12 on a 2.0GHz AMD
Opteron 6128: each took on average 0.03 seconds
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Eliminating Degrees 3,4,5 and 6

We used an analogue of Joux’s method [J13], but with the Bluher
polynomial X 257 + X + 1 rather than X 256 + X .

• Let f (X ), g(X ) ∈ F224 [X ] have degrees δf and δg

• Substitute f (X )
g(X ) into Bluher polynomial, giving the numerator

P(X ) := f (X )257 + Bf (X ) g(X )256 + Bg(X )257

• P(X ) is δ -smooth with δ = max{δf , δg}
• Since x256 = (w + 1)x holds in F(224)255 , the element P(x)

can also be represented by a polynomial of degree 2δ

• For Q(x) of degree 2δ or 2δ − 1 set P(x) = Q(x) or
(x + a)Q(x) and solve resulting quadratic system over F28
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DLP Solution
On 11/4/13 we announced that βπ = g log , with log =

138587598363978692625475711283123171009236361503896992366495931704517700280127178022234894098617

581360131441835074256363730624426814293233474272521598166126957928116825443110965404253837938808

595404111035238027107772178822939281873403451999731815140073481766513715358449279314556797352446

246860317946750124475689474406274942356035936501674050933448909201029834522226732247771897083223

217282051573645013603613042367782716361877817938374393824313019073624786387618414037541681120284

044659383192907436852526392087724304775451631271825250968111451400502733404381769675255289127346

639350098221570844400380788516332496583882522436381918008200167032186350245107751346979596314696

153666716168951481948091060066730184766758137773944303875429830867205463918144256843911730747265

146154193438041627833661739775057161236346096236566875251277843062329973044475486561062204356908

568471471279383781038538818884463796989906076079843248127252020839705886436071213650575186707456

948584072378916942925369140868417196479573481032711481021729162865973588174096389913305607677858

033996361734905537150362024720515772660781208855505434331055766570014211875602940633575763850457

503079087074376585304470520411320246292255375711457573555286060236699317039454479326718281128961

423275142787569425690532833283344049635521302596000897192512036695298807294032964530959691377087

204546348960132760095544105980198255245493202412831593891984788152417957691939817112366182063687

529915365150361180214451234387656883256149355994405051149585969163075307026647956035683671589546

448539955132726112034938655961291856203422247680387029078473520951160334472525475071680672623661

587292720329606182512044312194357156139201340952037872975243254476081554937002122953415949407262

137232099852298394838422907643191397673290238344183046040975859915928536530445697145317668044973

7096483324156185041
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Complexity Considerations

The quadratic systems we obtain using X q+1 + BX + B are not
bilinear =⇒ we can’t argue for the same LQ(1/4 + o(1))
complexity that arises when using X q − X .

However, when using X q − X , with judiciously chosen parameters,
the complexity can be improved.

• Consider F(qk )n with k ≥ 2 fixed, n ≈ q and q →∞
• Assume degree 1 logs are known and degree 2 logs are either

known or are efficiently computable (on the fly)
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Complexity Considerations

The Descent

Want to compute logg h . The descent consists of 3 parts:

• Stage 0: Choose random i until hg i is α0q
3/4 -smooth. This

costs

C0 := Lqkq

(
1/4,

1

4α0k1/4

)
• Stage 1: Perform classical descent (with degree balancing)

until elements are α1q
1/2 -smooth. For 0 < µ < 1, this costs

C1 := Lqkq

(
1/4,

1

µk1/4
√

8α1

)
• Stage 2: Perform Joux’s descent until elements are 2-smooth.

This costs
C2 := Lqkq

(
1/4, k1/4

√
ωα1

)
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The Descent

• Balancing Stages 1 and 2 gives the optimal α1 as 1/(µ
√

8kω)

• Choosing α0 > 1/(32kω)1/4 means Stage 0 is ignorable

• In the limit as µ→ 1− , we obtain an overall complexity of

Lqkq(1/4, (ω/8)1/4)



Big Field Hunting Solving the DLP in F
26120

Complexity Considerations

The Descent

• Balancing Stages 1 and 2 gives the optimal α1 as 1/(µ
√

8kω)

• Choosing α0 > 1/(32kω)1/4 means Stage 0 is ignorable

• In the limit as µ→ 1− , we obtain an overall complexity of

Lqkq(1/4, (ω/8)1/4)



Big Field Hunting Solving the DLP in F
26120

Complexity Considerations

The Descent

• Balancing Stages 1 and 2 gives the optimal α1 as 1/(µ
√

8kω)

• Choosing α0 > 1/(32kω)1/4 means Stage 0 is ignorable

• In the limit as µ→ 1− , we obtain an overall complexity of

Lqkq(1/4, (ω/8)1/4)



Big Field Hunting Solving the DLP in F
26120

Complexity Considerations

A Final Remark

• Barbulescu, Gaudry, Joux and Thomé have proposed a
quasi-polynomial algorithm for the DLP in finite fields of small
characteristic (eprint.iacr.org/2013/400)

• Our relation generation method gives an analogous
quasi-polynomial algorithm; in fact ours and Joux’s method
based on Möbius transforms of X q − X are equivalent

For BGJT algorithm, one setup issue is to find a set of coset
representatives for PGL2(Fqk )/PGL2(Fq):

• |PGL2(Fqk )/PGL2(Fq)| = (q3k − qk)/(q3 − q) ≈ q3k−3

• For k ≥ 3 our search space has cardinality

qk(qk − 1)(qk − {q, q2})/(q3 − q) ≈ q3k−3

• Cost of finding all Bluher polynomials is only Õ(qk)
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