Solving a 6120-bit DLP on a Desktop Computer

Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel

Claude Shannon Institute
Complex \& Adaptive Systems Laboratory
School of Mathematical Sciences
University College Dublin, Ireland
15th August, SAC 2013

Our Contributions

Practical Results:

Our Contributions

Practical Results:

- Set a DLP record in $\mathbb{F}_{2^{6120}}=\mathbb{F}_{\left(2^{8 \cdot 3}\right)^{2^{8}-1}}$, in 750 core-hours:

Our Contributions

Practical Results:

- Set a DLP record in $\mathbb{F}_{2^{6120}}=\mathbb{F}_{\left(2^{8.3}\right)^{2^{8}-1}}$, in 750 core-hours:
- Bitlength is 50% bigger than the previous record, set by Joux in $\mathbb{F}_{2^{4080}}=\mathbb{F}_{\left(2^{8 \cdot 2}\right)^{2^{8}-1}}$, but required only 5% of the core-hours

Our Contributions

Practical Results:

- Set a DLP record in $\mathbb{F}_{2^{6120}}=\mathbb{F}_{\left(2^{8 \cdot 3}\right)^{2^{8}-1}}$, in 750 core-hours:
- Bitlength is 50% bigger than the previous record, set by Joux in $\mathbb{F}_{2^{4080}}=\mathbb{F}_{\left(2^{8 \cdot 2}\right)^{2^{8-1}}}$, but required only 5% of the core-hours
Theoretical Results:

Our Contributions

Practical Results:

- Set a DLP record in $\mathbb{F}_{2^{6120}}=\mathbb{F}_{\left(2^{8 \cdot 3}\right)^{3^{8}-1}}$, in 750 core-hours:
- Bitlength is 50% bigger than the previous record, set by Joux in $\mathbb{F}_{2^{4080}}=\mathbb{F}_{\left(2^{8 \cdot 2}\right)^{2^{8}-1}}$, but required only 5% of the core-hours
Theoretical Results:
- Optimised Joux's $L_{Q}(1 / 4+o(1))$ algorithm to give an $L_{Q}\left(1 / 4,(\omega / 8)^{1 / 4}\right)$ algorithm for $Q \approx\left(q^{k}\right)^{q}, k \geq 2, q \rightarrow \infty$

Overview

Big Field Hunting

Solving the DLP in $\mathbb{F}_{2^{6120}}$

Complexity Considerations

Polynomial Time Relation Generation [GGMZ13]

Setup for $\mathbb{F}_{\left(q^{k}\right)^{n}}$ with $k \geq 3, n \leq q d_{1}$ and $d_{1} \geq 1$ (cf. [JLO6]):

Polynomial Time Relation Generation [GGMZ13]

Setup for $\mathbb{F}_{\left(q^{k}\right)^{n}}$ with $k \geq 3, n \leq q d_{1}$ and $d_{1} \geq 1$ (cf. [JLO6]):

- Search for $g_{1}(X) \in \mathbb{F}_{q^{k}}[X]$ s.t. $X-g_{1}\left(X^{q}\right) \equiv 0(\bmod f(X))$ with $\operatorname{deg}\left(g_{1}\right)=d_{1}, f$ irreducible and $\operatorname{deg}(f)=n$
- Let $\mathbb{F}_{\left(q^{k}\right)^{n}}=\mathbb{F}_{q^{k}}(x)$ with x a root of $f(X)$
- Let $y=x^{q}$, so that one has $x=g_{1}(y)$ in $\mathbb{F}_{\left(q^{k}\right)^{n}}$
- Factor base is $\left\{x-a \mid a \in \mathbb{F}_{q^{k}}\right\}$

Polynomial Time Relation Generation [GGMZ13]

Setup for $\mathbb{F}_{\left(q^{k}\right)^{n}}$ with $k \geq 3, n \leq q d_{1}$ and $d_{1} \geq 1$ (cf. [JLO6]):

- Search for $g_{1}(X) \in \mathbb{F}_{q^{k}}[X]$ s.t. $X-g_{1}\left(X^{q}\right) \equiv 0(\bmod f(X))$ with $\operatorname{deg}\left(g_{1}\right)=d_{1}, f$ irreducible and $\operatorname{deg}(f)=n$
- Let $\mathbb{F}_{\left(q^{k}\right)^{n}}=\mathbb{F}_{q^{k}}(x)$ with x a root of $f(X)$
- Let $y=x^{q}$, so that one has $x=g_{1}(y)$ in $\mathbb{F}_{\left(q^{k}\right)^{n}}$
- Factor base is $\left\{x-a \mid a \in \mathbb{F}_{q^{k}}\right\}$

Relation generation:

Polynomial Time Relation Generation [GGMZ13]

Setup for $\mathbb{F}_{\left(q^{k}\right)^{n}}$ with $k \geq 3, n \leq q d_{1}$ and $d_{1} \geq 1$ (cf. [JLO6]):

- Search for $g_{1}(X) \in \mathbb{F}_{q^{k}}[X]$ s.t. $X-g_{1}\left(X^{q}\right) \equiv 0(\bmod f(X))$ with $\operatorname{deg}\left(g_{1}\right)=d_{1}, f$ irreducible and $\operatorname{deg}(f)=n$
- Let $\mathbb{F}_{\left(q^{k}\right)^{n}}=\mathbb{F}_{q^{k}}(x)$ with x a root of $f(X)$
- Let $y=x^{q}$, so that one has $x=g_{1}(y)$ in $\mathbb{F}_{\left(q^{k}\right)^{n}}$
- Factor base is $\left\{x-a \mid a \in \mathbb{F}_{q^{k}}\right\}$

Relation generation:

- Considering elements $x y+a y+b x+c$ with $a, b, c \in \mathbb{F}_{q^{k}}$, one obtains the $\mathbb{F}_{\left(q^{k}\right)^{n}}$-equality

$$
x^{q+1}+a x^{q}+b x+c=y g_{1}(y)+a y+b g_{1}(y)+c
$$

- When both sides split over $\mathbb{F}_{q^{k}}$ one obtains a relation

Bluher Polynomials

Consider the I.h.s. polynomial $x^{q+1}+a x^{q}+b x+c$.

Bluher Polynomials

Consider the I.h.s. polynomial $x^{q+1}+a x^{q}+b x+c$.
If $a b \neq c$ and $a^{q} \neq b$, this may be transformed into

$$
F_{B}(\bar{x})=\bar{x}^{q+1}+B \bar{x}+B, \quad \text { with } \quad B=\frac{\left(b-a^{q}\right)^{q+1}}{(c-a b)^{q}}
$$

via $x=\frac{c-a b}{b-a^{q}} \bar{x}-a$.

Bluher Polynomials

Consider the I.h.s. polynomial $x^{q+1}+a x^{q}+b x+c$.
If $a b \neq c$ and $a^{q} \neq b$, this may be transformed into

$$
F_{B}(\bar{x})=\bar{x}^{q+1}+B \bar{x}+B, \quad \text { with } \quad B=\frac{\left(b-a^{q}\right)^{q+1}}{(c-a b)^{q}}
$$

via $x=\frac{c-a b}{b-a^{q}} \bar{x}-a$.

Theorem (Bluher 2004, Helleseth-Kholosha 2010)

The number of elements $B \in \mathbb{F}_{q^{k}}^{\times}$such that the polynomial $F_{B}(X) \in \mathbb{F}_{q^{k}}[X]$ splits completely over $\mathbb{F}_{q^{k}}$ equals

$$
\frac{q^{k-1}-1}{q^{2}-1} \quad \text { if } k \text { is odd, }, \quad \frac{q^{k-1}-q}{q^{2}-1} \quad \text { if } k \text { is even } .
$$

Polynomial Time Relation Generation [GGMZ13]

- Let $S_{B}=\left\{B \in \mathbb{F}_{q^{k}}^{\times} \mid X^{q+1}+B X+B\right.$ splits over $\left.\mathbb{F}_{q^{k}}\right\}$

Polynomial Time Relation Generation [GGMZ13]

- Let $S_{B}=\left\{B \in \mathbb{F}_{q^{k}}^{\times} \mid X^{q+1}+B X+B\right.$ splits over $\left.\mathbb{F}_{q^{k}}\right\}$
- Since $B=\left(b-a^{q}\right)^{q+1} /(c-a b)^{q}$, for any $a, b \in \mathbb{F}_{q^{k}}$ s.t. $b \neq a^{q}$, and $B \in S_{B}$, there exists a unique $c \in \mathbb{F}_{q^{k}}$ s.t. $x^{q+1}+a x^{q}+b x+c$ splits over $\mathbb{F}_{q^{k}}$

Polynomial Time Relation Generation [GGMZ13]

- Let $S_{B}=\left\{B \in \mathbb{F}_{q^{k}}^{\times} \mid X^{q+1}+B X+B\right.$ splits over $\left.\mathbb{F}_{q^{k}}\right\}$
- Since $B=\left(b-a^{q}\right)^{q+1} /(c-a b)^{q}$, for any $a, b \in \mathbb{F}_{q^{k}}$ s.t. $b \neq a^{q}$, and $B \in S_{B}$, there exists a unique $c \in \mathbb{F}_{q^{k}}$ s.t. $x^{q+1}+a x^{q}+b x+c$ splits over $\mathbb{F}_{q^{k}}$
- For each such (a, b, c), test if r.h.s. $y g_{1}(y)+a y+b g_{1}(y)+c$ splits; if so then have a relation

Polynomial Time Relation Generation [GGMZ13]

- Let $S_{B}=\left\{B \in \mathbb{F}_{q^{k}}^{\times} \mid X^{q+1}+B X+B\right.$ splits over $\left.\mathbb{F}_{q^{k}}\right\}$
- Since $B=\left(b-a^{q}\right)^{q+1} /(c-a b)^{q}$, for any $a, b \in \mathbb{F}_{q^{k}}$ s.t. $b \neq a^{q}$, and $B \in S_{B}$, there exists a unique $c \in \mathbb{F}_{q^{k}}$ s.t. $x^{q+1}+a x^{q}+b x+c$ splits over $\mathbb{F}_{q^{k}}$
- For each such (a, b, c), test if r.h.s. $y g_{1}(y)+a y+b g_{1}(y)+c$ splits; if so then have a relation
- If $q^{3 k-3}>q^{k}\left(d_{1}+1\right)$! then expect to compute logs of degree 1 elements in time

$$
\widetilde{O}\left(q^{2 k+1}\right)
$$

Kummer Extensions \Longrightarrow More Efficient Attacks

The solution of DLPs in $\mathbb{F}_{p^{47}}, \mathbb{F}_{p^{57}}, \mathbb{F}_{2^{1778}}, \mathbb{F}_{2^{1971}}, \mathbb{F}_{2^{3164}}$ and $\mathbb{F}_{2^{4080}}$ all used Kummer extensions.

Kummer Extensions \Longrightarrow More Efficient Attacks

The solution of DLPs in $\mathbb{F}_{p^{47}}, \mathbb{F}_{p^{57}}, \mathbb{F}_{2^{1778}}, \mathbb{F}_{2^{1971}}, \mathbb{F}_{2^{3164}}$ and $\mathbb{F}_{2^{4080}}$ all used Kummer extensions.

Why? Factor base-preserving automorphisms reduce effective size of factor base \Longrightarrow relation finding \& linear algebra become faster.

Kummer Extensions \Longrightarrow More Efficient Attacks

The solution of DLPs in $\mathbb{F}_{p^{47}}, \mathbb{F}_{p^{57}}, \mathbb{F}_{2^{1778}}, \mathbb{F}_{2^{1971}}, \mathbb{F}_{2^{3164}}$ and $\mathbb{F}_{2^{4080}}$ all used Kummer extensions.

Why? Factor base-preserving automorphisms reduce effective size of factor base \Longrightarrow relation finding \& linear algebra become faster. Observe that $\mathbb{F}_{2^{1778}}$ and $\mathbb{F}_{2^{4080}}$ are of the form $\mathbb{F}_{\left(q^{2}\right)^{q-1}}$, for which:

Kummer Extensions \Longrightarrow More Efficient Attacks

The solution of DLPs in $\mathbb{F}_{p^{47}}, \mathbb{F}_{p^{57}}, \mathbb{F}_{2^{1778}}, \mathbb{F}_{2^{1971}}, \mathbb{F}_{2^{3164}}$ and $\mathbb{F}_{2^{4080}}$ all used Kummer extensions.

Why? Factor base-preserving automorphisms reduce effective size of factor base \Longrightarrow relation finding \& linear algebra become faster. Observe that $\mathbb{F}_{2^{1778}}$ and $\mathbb{F}_{2^{4080}}$ are of the form $\mathbb{F}_{\left(q^{2}\right)^{q-1}}$, for which:

- Degree 1 logs cost $\widetilde{O}\left(q^{3}\right)$ for K.E., or $\widetilde{O}\left(q^{5}\right)$ otherwise
- Degree 2 logs cost $\widetilde{O}\left(q^{6}\right)$ for K.E., or $\widetilde{O}\left(q^{7}\right)$ otherwise

Kummer Extensions \Longrightarrow More Efficient Attacks

The solution of DLPs in $\mathbb{F}_{p^{47}}, \mathbb{F}_{p^{57}}, \mathbb{F}_{2^{1778}}, \mathbb{F}_{2^{1971}}, \mathbb{F}_{2^{3164}}$ and $\mathbb{F}_{2^{4080}}$ all used Kummer extensions.

Why? Factor base-preserving automorphisms reduce effective size of factor base \Longrightarrow relation finding \& linear algebra become faster. Observe that $\mathbb{F}_{2^{1778}}$ and $\mathbb{F}_{2^{4080}}$ are of the form $\mathbb{F}_{\left(q^{2}\right)^{q-1}}$, for which:

- Degree 1 logs cost $\widetilde{O}\left(q^{3}\right)$ for K.E., or $\widetilde{O}\left(q^{5}\right)$ otherwise
- Degree 2 logs cost $\widetilde{O}\left(q^{6}\right)$ for K.E., or $\widetilde{O}\left(q^{7}\right)$ otherwise

However, for $\mathbb{F}_{\left(q^{k}\right)^{q \pm 1}}$ with $k \geq 4$ one can compute logs of degree two elements on the fly [GGMZ13].

New Degree 2 elimination for K.E.'s and $k \geq 3$
Let $q(x):=x^{2}+q_{1} x+q_{0} \in \mathbb{F}_{\left(q^{k}\right)^{q-1}}$ be an element to be written as a product of linear elements.

New Degree 2 elimination for K.E.'s and $k \geq 3$

Let $q(x):=x^{2}+q_{1} x+q_{0} \in \mathbb{F}_{\left(q^{k}\right)^{q-1}}$ be an element to be written as a product of linear elements.

- When possible, compute $a, b, c \in \mathbb{F}_{q^{k}}$ s.t. in $\mathbb{F}_{\left(q^{k}\right)^{q-1}}^{\times} / \mathbb{F}_{q^{k}}^{\times}$,

$$
q(x)=x^{2}+q_{1} x+q_{0}=x^{q+1}+a x^{q}+b x+c
$$

where r.h.s splits over $\mathbb{F}_{q^{k}}^{\times}$

New Degree 2 elimination for K.E.'s and $k \geq 3$

Let $q(x):=x^{2}+q_{1} x+q_{0} \in \mathbb{F}_{\left(q^{k}\right)^{q-1}}$ be an element to be written as a product of linear elements.

- When possible, compute $a, b, c \in \mathbb{F}_{q^{k}}$ s.t. in $\mathbb{F}_{\left(q^{k}\right)^{q-1}}^{\times} / \mathbb{F}_{q^{k}}^{\times}$,

$$
q(x)=x^{2}+q_{1} x+q_{0}=x^{q+1}+a x^{q}+b x+c
$$

where r.h.s splits over $\mathbb{F}_{q^{k}}^{\times}$

- As $x^{q-1}=\gamma$, we have r.h.s. $=\gamma\left(x^{2}+\left(a+\frac{b}{\gamma}\right) x+\frac{c}{\gamma}\right)$: $\Longrightarrow \gamma q_{0}=c, \gamma q_{1}=\gamma a+b$

New Degree 2 elimination for K.E.'s and $k \geq 3$

Let $q(x):=x^{2}+q_{1} x+q_{0} \in \mathbb{F}_{\left(q^{k}\right)^{q-1}}$ be an element to be written as a product of linear elements.

- When possible, compute $a, b, c \in \mathbb{F}_{q^{k}}$ s.t. in $\mathbb{F}_{\left(q^{k}\right)^{q-1}}^{\times} / \mathbb{F}_{q^{k}}^{\times}$,

$$
q(x)=x^{2}+q_{1} x+q_{0}=x^{q+1}+a x^{q}+b x+c
$$

where r.h.s splits over $\mathbb{F}_{q^{k}}^{\times}$

- As $x^{q-1}=\gamma$, we have r.h.s. $=\gamma\left(x^{2}+\left(a+\frac{b}{\gamma}\right) x+\frac{c}{\gamma}\right)$: $\Longrightarrow \gamma q_{0}=c, \gamma q_{1}=\gamma a+b$
- For any $B \in S_{B}$, using $\left(a^{q}+b\right)^{q+1}=B(a b+c)^{q}$ we arrive at the condition

$$
\left(a^{q}+\gamma a+\gamma q_{1}\right)^{q+1}+B\left(\gamma a^{2}+\gamma q_{1} a+\gamma q_{0}\right)^{q}=0
$$

New Degree 2 elimination for K.E.'s and $k \geq 3$

Let $q(x):=x^{2}+q_{1} x+q_{0} \in \mathbb{F}_{\left(q^{k}\right)^{q-1}}$ be an element to be written as a product of linear elements.

- When possible, compute $a, b, c \in \mathbb{F}_{q^{k}}$ s.t. in $\mathbb{F}_{\left(q^{k}\right)^{q-1}}^{\times} / \mathbb{F}_{q^{k}}^{\times}$,

$$
q(x)=x^{2}+q_{1} x+q_{0}=x^{q+1}+a x^{q}+b x+c
$$

where r.h.s splits over $\mathbb{F}_{q^{k}}^{\times}$

- As $x^{q-1}=\gamma$, we have r.h.s. $=\gamma\left(x^{2}+\left(a+\frac{b}{\gamma}\right) x+\frac{c}{\gamma}\right)$: $\Longrightarrow \gamma q_{0}=c, \gamma q_{1}=\gamma a+b$
- For any $B \in S_{B}$, using $\left(a^{q}+b\right)^{q+1}=B(a b+c)^{q}$ we arrive at the condition

$$
\left(a^{q}+\gamma a+\gamma q_{1}\right)^{q+1}+B\left(\gamma a^{2}+\gamma q_{1} a+\gamma q_{0}\right)^{q}=0
$$

- Considering $\mathbb{F}_{q^{k}} / \mathbb{F}_{q}$ gives a quadratic system in the $\mathbb{F}_{q^{-}}$ components of a, solvable with a Gröbner basis computation

Cost of Computing Factor base Logs for K.E.'s

For $q=2^{\prime}$ and $n=q-1, \mathbb{F}_{\left(q^{k}\right)^{n}}$ has bitlength:

$l \backslash k$	2	3	4	5	6
6	756	1134	1512	1890	2268
7	1778	2667	3556	4445	5334
8	4080	6120	8160	10200	12240
9	9198	13797	18396	22995	27594

Cost of Computing Factor base Logs for K.E.'s

For $q=2^{\prime}$ and $n=q-1, \mathbb{F}_{\left(q^{k}\right)^{n}}$ has bitlength:

$l \backslash k$	2	3	4	5	6
6	756	1134	1512	1890	2268
7	1778	2667	3556	4445	5334
8	4080	6120	8160	10200	12240
9	9198	13797	18396	22995	27594

- Degree 1: \#variables $\approx q^{k-1}$ so for $k \geq 2$, cost is $\widetilde{O}\left(q^{2 k-1}\right)$

Cost of Computing Factor base Logs for K.E.'s

For $q=2^{\prime}$ and $n=q-1, \mathbb{F}_{\left(q^{k}\right)^{n}}$ has bitlength:

$l \backslash k$	2	3	4	5	6
6	756	1134	1512	1890	2268
7	1778	2667	3556	4445	5334
8	4080	6120	8160	10200	12240
9	9198	13797	18396	22995	27594

- Degree 1: \#variables $\approx q^{k-1}$ so for $k \geq 2$, cost is $\widetilde{O}\left(q^{2 k-1}\right)$
- Degree 2: For $k=2,3$ cost is $\widetilde{O}\left(q^{2 k+2}\right)$, and free for $k \geq 4$

Cost of Computing Factor base Logs for K.E.'s

For $q=2^{\prime}$ and $n=q-1, \mathbb{F}_{\left(q^{k}\right)^{n}}$ has bitlength:

$\boldsymbol{I} k$	2	3	4	5	6
6	756	1134	1512	1890	2268
7	1778	2667	3556	4445	5334
8	4080	6120	8160	10200	12240
9	9198	13797	18396	22995	27594

- Degree 1: \#variables $\approx q^{k-1}$ so for $k \geq 2$, cost is $\widetilde{O}\left(q^{2 k-1}\right)$
- Degree 2: For $k=2,3$ cost is $\widetilde{O}\left(q^{2 k+2}\right)$, and free for $k \geq 4$

k	2	3	4	5	6
Cost	$\tilde{O}\left(q^{6}\right)$	$\tilde{O}\left(q^{8}\right)$	$\tilde{O}\left(q^{7}\right)$	$\tilde{O}\left(q^{9}\right)$	$\tilde{O}\left(q^{11}\right)$

Cost of Computing Factor base Logs for K.E.'s

For $q=2^{\prime}$ and $n=q-1, \mathbb{F}_{\left(q^{k}\right)^{n}}$ has bitlength:

$\boldsymbol{I} k$	2	3	4	5	6
6	756	1134	1512	1890	2268
7	1778	2667	3556	4445	5334
8	4080	6120	8160	10200	12240
9	9198	13797	18396	22995	27594

- Degree 1: \#variables $\approx q^{k-1}$ so for $k \geq 2$, cost is $\widetilde{O}\left(q^{2 k-1}\right)$
- Degree 2: For $k=2,3$ cost is $\widetilde{O}\left(q^{2 k+2}\right)$, and free for $k \geq 4$

k	2	3	4	5	6
Cost	$\tilde{O}\left(q^{6}\right)$	$\tilde{O}\left(q^{5}\right)$	$\tilde{O}\left(q^{7}\right)$	$\tilde{O}\left(q^{9}\right)$	$\tilde{O}\left(q^{11}\right)$

Field Setup and Target Element

- Let $\mathbb{F}_{2^{8}}=\mathbb{F}_{2}[T] /\left(\left(T^{8}+T^{4}+T^{3}+T+1\right) \mathbb{F}_{2}[T]\right)=\mathbb{F}_{2}(t)$
- Let $\mathbb{F}_{2^{24}}=\mathbb{F}_{2^{8}}[W] /\left(\left(W^{3}+t\right) \mathbb{F}_{2^{8}}[W]\right)=\mathbb{F}_{2^{8}}(w)$
- Let $\mathbb{F}_{2^{6120}}=\mathbb{F}_{2^{24}}[X] /\left(\left(X^{255}+w+1\right) \mathbb{F}_{2^{24}}[X]\right)=\mathbb{F}_{2^{24}}(x)$
- Our generator is $g=x+w$, which has proven order $2^{6120}-1$

Field Setup and Target Element

- Let $\mathbb{F}_{2^{8}}=\mathbb{F}_{2}[T] /\left(\left(T^{8}+T^{4}+T^{3}+T+1\right) \mathbb{F}_{2}[T]\right)=\mathbb{F}_{2}(t)$
- Let $\mathbb{F}_{2^{24}}=\mathbb{F}_{2^{8}}[W] /\left(\left(W^{3}+t\right) \mathbb{F}_{2^{8}}[W]\right)=\mathbb{F}_{2^{8}}(w)$
- Let $\mathbb{F}_{2^{6120}}=\mathbb{F}_{2^{24}}[X] /\left(\left(X^{255}+w+1\right) \mathbb{F}_{2^{24}}[X]\right)=\mathbb{F}_{2^{24}}(x)$
- Our generator is $g=x+w$, which has proven order $2^{6120}-1$

Our target element β_{π} was derived as usual from the 2^{24}-ary expansion of π.

Degree 1 Logarithms

- Used the only Bluher polynomial for $k=3$, namely $X^{257}+X+1$ and our relation generation method
- Via automorphisms, reduced the \#variables to 21, 932 and obtained 22,932 relations in 15 seconds using $\mathrm{C}++/$ NTL on a 2.0 GHz AMD Opteron 6128
- For linear algebra, took as modulus the product of the largest 35 prime factors of $2^{6120}-1$, which has bitlength 5121
- Ran a parallelised C/GMP implementation of Lanczos' algorithm on four of the Intel (Westmere) Xeon E5650 hex-core processors of ICHEC's SGI Altix ICE 8200EX Stokes cluster, completed in 60.5 core-hours (2.5 hours wall time)

Degree 2 Logarithms

Since there is only one Bluher polynomial for $k=3$, elimination probability is $1 / 2$.

Degree 2 Logarithms

Since there is only one Bluher polynomial for $k=3$, elimination probability is $1 / 2$.

- When it fails, exploit the fact that $6 \mid 24$ and $(8-6) \mid 24$ and the 64 Bluher polynomials of the form $X^{65}+B X+B / \mathbb{F}_{2^{24}}$

Degree 2 Logarithms

Since there is only one Bluher polynomial for $k=3$, elimination probability is $1 / 2$.

- When it fails, exploit the fact that $6 \mid 24$ and $(8-6) \mid 24$ and the 64 Bluher polynomials of the form $X^{65}+B X+B / \mathbb{F}_{2^{24}}$
- Results in a probabilistic method to eliminate any given degree 2 element with probability $p=1-6.3 \times 10^{-15}$
- \Longrightarrow probability that at least one degree 2 irreducible is not eliminable is $1-p^{2^{22}}=2.7 \times 10^{-8}$
- Implemented in MAGMA V2.16-12 on a 2.0 GHz AMD Opteron 6128: each took on average 0.03 seconds

Eliminating Degrees 3,4,5 and 6

We used an analogue of Joux's method [J13], but with the Bluher polynomial $X^{257}+X+1$ rather than $X^{256}+X$.

Eliminating Degrees 3,4,5 and 6

We used an analogue of Joux's method [J13], but with the Bluher polynomial $X^{257}+X+1$ rather than $X^{256}+X$.

- Let $f(X), g(X) \in \mathbb{F}_{2^{24}}[X]$ have degrees δ_{f} and δ_{g}
- Substitute $\frac{f(X)}{g(X)}$ into Bluher polynomial, giving the numerator

$$
P(X):=f(X)^{257}+B f(X) g(X)^{256}+B g(X)^{257}
$$

- $P(X)$ is δ-smooth with $\delta=\max \left\{\delta_{f}, \delta_{g}\right\}$
- Since $x^{256}=(w+1) x$ holds in $\mathbb{F}_{\left(2^{24}\right)^{255} \text {, the element } P(x)}$ can also be represented by a polynomial of degree 2δ
- For $Q(x)$ of degree 2δ or $2 \delta-1$ set $P(x)=Q(x)$ or $(x+a) Q(x)$ and solve resulting quadratic system over $\mathbb{F}_{2^{8}}$

DLP Solution

On $11 / 4 / 13$ we announced that $\beta_{\pi}=g^{\log }$, with $\log =$

138587598363978692625475711283123171009236361503896992366495931704517700280127178022234894098617 581360131441835074256363730624426814293233474272521598166126957928116825443110965404253837938808 595404111035238027107772178822939281873403451999731815140073481766513715358449279314556797352446 246860317946750124475689474406274942356035936501674050933448909201029834522226732247771897083223 217282051573645013603613042367782716361877817938374393824313019073624786387618414037541681120284 044659383192907436852526392087724304775451631271825250968111451400502733404381769675255289127346 639350098221570844400380788516332496583882522436381918008200167032186350245107751346979596314696 153666716168951481948091060066730184766758137773944303875429830867205463918144256843911730747265 146154193438041627833661739775057161236346096236566875251277843062329973044475486561062204356908 568471471279383781038538818884463796989906076079843248127252020839705886436071213650575186707456 948584072378916942925369140868417196479573481032711481021729162865973588174096389913305607677858 033996361734905537150362024720515772660781208855505434331055766570014211875602940633575763850457 503079087074376585304470520411320246292255375711457573555286060236699317039454479326718281128961 423275142787569425690532833283344049635521302596000897192512036695298807294032964530959691377087 204546348960132760095544105980198255245493202412831593891984788152417957691939817112366182063687 529915365150361180214451234387656883256149355994405051149585969163075307026647956035683671589546 448539955132726112034938655961291856203422247680387029078473520951160334472525475071680672623661 587292720329606182512044312194357156139201340952037872975243254476081554937002122953415949407262 137232099852298394838422907643191397673290238344183046040975859915928536530445697145317668044973 7096483324156185041

Complexity Considerations

The quadratic systems we obtain using $X^{q+1}+B X+B$ are not bilinear \Longrightarrow we can't argue for the same $L_{Q}(1 / 4+o(1))$ complexity that arises when using $X^{q}-X$.

Complexity Considerations

The quadratic systems we obtain using $X^{q+1}+B X+B$ are not bilinear \Longrightarrow we can't argue for the same $L_{Q}(1 / 4+o(1))$ complexity that arises when using $X^{q}-X$.

However, when using $X^{q}-X$, with judiciously chosen parameters, the complexity can be improved.

Complexity Considerations

The quadratic systems we obtain using $X^{q+1}+B X+B$ are not bilinear \Longrightarrow we can't argue for the same $L_{Q}(1 / 4+o(1))$ complexity that arises when using $X^{q}-X$.

However, when using $X^{q}-X$, with judiciously chosen parameters, the complexity can be improved.

- Consider $\mathbb{F}_{\left(q^{k}\right)^{n}}$ with $k \geq 2$ fixed, $n \approx q$ and $q \rightarrow \infty$
- Assume degree 1 logs are known and degree 2 logs are either known or are efficiently computable (on the fly)

The Descent

Want to compute $\log _{g} h$. The descent consists of 3 parts:

The Descent

Want to compute $\log _{g} h$. The descent consists of 3 parts:

- Stage 0: Choose random i until ${h g^{i}}^{\text {is }} \alpha_{0} q^{3 / 4}$-smooth. This costs

$$
C_{0}:=L_{q^{k q}}\left(1 / 4, \frac{1}{4 \alpha_{0} k^{1 / 4}}\right)
$$

The Descent

Want to compute $\log _{g} h$. The descent consists of 3 parts:

- Stage 0: Choose random i until ${h g^{i}}^{\text {is }} \alpha_{0} q^{3 / 4}$-smooth. This costs

$$
C_{0}:=L_{q^{k q}}\left(1 / 4, \frac{1}{4 \alpha_{0} k^{1 / 4}}\right)
$$

- Stage 1: Perform classical descent (with degree balancing) until elements are $\alpha_{1} q^{1 / 2}$-smooth. For $0<\mu<1$, this costs

$$
C_{1}:=L_{q^{k a}}\left(1 / 4, \frac{1}{\mu k^{1 / 4} \sqrt{8 \alpha_{1}}}\right)
$$

The Descent

Want to compute $\log _{g} h$. The descent consists of 3 parts:

- Stage 0: Choose random i until ${h g^{i}}^{\text {is }} \alpha_{0} q^{3 / 4}$-smooth. This costs

$$
C_{0}:=L_{q^{k q}}\left(1 / 4, \frac{1}{4 \alpha_{0} k^{1 / 4}}\right)
$$

- Stage 1: Perform classical descent (with degree balancing) until elements are $\alpha_{1} q^{1 / 2}$-smooth. For $0<\mu<1$, this costs

$$
C_{1}:=L_{q^{k q}}\left(1 / 4, \frac{1}{\mu k^{1 / 4} \sqrt{8 \alpha_{1}}}\right)
$$

- Stage 2: Perform Joux's descent until elements are 2-smooth. This costs

$$
C_{2}:=L_{q^{k q}}\left(1 / 4, k^{1 / 4} \sqrt{\omega \alpha_{1}}\right)
$$

The Descent

- Balancing Stages 1 and 2 gives the optimal α_{1} as $1 /(\mu \sqrt{8 k \omega})$

The Descent

- Balancing Stages 1 and 2 gives the optimal α_{1} as $1 /(\mu \sqrt{8 k \omega})$
- Choosing $\alpha_{0}>1 /(32 k \omega)^{1 / 4}$ means Stage 0 is ignorable

The Descent

- Balancing Stages 1 and 2 gives the optimal α_{1} as $1 /(\mu \sqrt{8 k \omega})$
- Choosing $\alpha_{0}>1 /(32 k \omega)^{1 / 4}$ means Stage 0 is ignorable
- In the limit as $\mu \rightarrow 1^{-}$, we obtain an overall complexity of

$$
L_{q^{k q}}\left(1 / 4,(\omega / 8)^{1 / 4}\right)
$$

A Final Remark

- Barbulescu, Gaudry, Joux and Thomé have proposed a quasi-polynomial algorithm for the DLP in finite fields of small characteristic (eprint.iacr.org/2013/400)

A Final Remark

- Barbulescu, Gaudry, Joux and Thomé have proposed a quasi-polynomial algorithm for the DLP in finite fields of small characteristic (eprint.iacr.org/2013/400)
- Our relation generation method gives an analogous quasi-polynomial algorithm; in fact ours and Joux's method based on Möbius transforms of $X^{q}-X$ are equivalent

A Final Remark

- Barbulescu, Gaudry, Joux and Thomé have proposed a quasi-polynomial algorithm for the DLP in finite fields of small characteristic (eprint.iacr.org/2013/400)
- Our relation generation method gives an analogous quasi-polynomial algorithm; in fact ours and Joux's method based on Möbius transforms of $X^{q}-X$ are equivalent

For BGJT algorithm, one setup issue is to find a set of coset representatives for $P G L_{2}\left(\mathbb{F}_{q^{k}}\right) / P G L_{2}\left(\mathbb{F}_{q}\right)$:

A Final Remark

- Barbulescu, Gaudry, Joux and Thomé have proposed a quasi-polynomial algorithm for the DLP in finite fields of small characteristic (eprint.iacr.org/2013/400)
- Our relation generation method gives an analogous quasi-polynomial algorithm; in fact ours and Joux's method based on Möbius transforms of $X^{q}-X$ are equivalent

For BGJT algorithm, one setup issue is to find a set of coset representatives for $P G L_{2}\left(\mathbb{F}_{q^{k}}\right) / P G L_{2}\left(\mathbb{F}_{q}\right)$:

$$
\text { - }\left|P G L_{2}\left(\mathbb{F}_{q^{k}}\right) / P G L_{2}\left(\mathbb{F}_{q}\right)\right|=\left(q^{3 k}-q^{k}\right) /\left(q^{3}-q\right) \approx q^{3 k-3}
$$

A Final Remark

- Barbulescu, Gaudry, Joux and Thomé have proposed a quasi-polynomial algorithm for the DLP in finite fields of small characteristic (eprint.iacr.org/2013/400)
- Our relation generation method gives an analogous quasi-polynomial algorithm; in fact ours and Joux's method based on Möbius transforms of $X^{q}-X$ are equivalent

For BGJT algorithm, one setup issue is to find a set of coset representatives for $P G L_{2}\left(\mathbb{F}_{q^{k}}\right) / P G L_{2}\left(\mathbb{F}_{q}\right)$:

- $\left|P G L_{2}\left(\mathbb{F}_{q^{k}}\right) / P G L_{2}\left(\mathbb{F}_{q}\right)\right|=\left(q^{3 k}-q^{k}\right) /\left(q^{3}-q\right) \approx q^{3 k-3}$
- For $k \geq 3$ our search space has cardinality

$$
q^{k}\left(q^{k}-1\right)\left(q^{k}-\left\{q, q^{2}\right\}\right) /\left(q^{3}-q\right) \approx q^{3 k-3}
$$

A Final Remark

- Barbulescu, Gaudry, Joux and Thomé have proposed a quasi-polynomial algorithm for the DLP in finite fields of small characteristic (eprint.iacr.org/2013/400)
- Our relation generation method gives an analogous quasi-polynomial algorithm; in fact ours and Joux's method based on Möbius transforms of $X^{q}-X$ are equivalent

For BGJT algorithm, one setup issue is to find a set of coset representatives for $P G L_{2}\left(\mathbb{F}_{q^{k}}\right) / P G L_{2}\left(\mathbb{F}_{q}\right)$:

- $\left|P G L_{2}\left(\mathbb{F}_{q^{k}}\right) / P G L_{2}\left(\mathbb{F}_{q}\right)\right|=\left(q^{3 k}-q^{k}\right) /\left(q^{3}-q\right) \approx q^{3 k-3}$
- For $k \geq 3$ our search space has cardinality

$$
q^{k}\left(q^{k}-1\right)\left(q^{k}-\left\{q, q^{2}\right\}\right) /\left(q^{3}-q\right) \approx q^{3 k-3}
$$

- Cost of finding all Bluher polynomials is only $\widetilde{O}\left(q^{k}\right)$

