On the Function Field Sieve and the Impact of Higher Splitting Probabilities
 Application to Discrete Logarithms in $\mathbb{F}_{2^{1971}}$ and $\mathbb{F}_{2^{3164}}$

Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel

Claude Shannon Institute
Complex \& Adaptive Systems Laboratory
School of Mathematical Sciences
University College Dublin, Ireland

21st August, CRYPTO 2013

The Index Calculus Method

Consider the DLP in $\mathbb{F}_{q^{n}}$. The ICM consists of two stages:

The Index Calculus Method

Consider the DLP in $\mathbb{F}_{q^{n}}$. The ICM consists of two stages:

1. Choose a factor base \mathcal{F}, find relations between elements and then compute their logarithms.

The Index Calculus Method

Consider the DLP in $\mathbb{F}_{q^{n}}$. The ICM consists of two stages:

1. Choose a factor base \mathcal{F}, find relations between elements and then compute their logarithms.
2. For an arbitrary element, express it as a product of lower degree elements; recurse until all leaves are in \mathcal{F}.

Our Contributions

- The first polynomial time relation generation method for degree one elements

Our Contributions

- The first polynomial time relation generation method for degree one elements
- The first polynomial time elimination method for degree two elements

Our Contributions

- The first polynomial time relation generation method for degree one elements
- The first polynomial time elimination method for degree two elements
- An $L_{q^{n}}\left(1 / 3,(4 / 9)^{1 / 3} \approx 0.763\right)$ algorithm for solving the DLP for suitably balanced q, n

Our Contributions

- The first polynomial time relation generation method for degree one elements
- The first polynomial time elimination method for degree two elements
- An $L_{q^{n}}\left(1 / 3,(4 / 9)^{1 / 3} \approx 0.763\right)$ algorithm for solving the DLP for suitably balanced q, n
- Practical results: solved example DLPs in $\mathbb{F}_{2^{1971}}$ and $\mathbb{F}_{2^{3164}}$

The Joux-Lercier FFS variation [JL06]

To find factor base relations in $\mathbb{F}_{q^{n}}$ one uses the following setup.

The Joux-Lercier FFS variation [JL06]

To find factor base relations in $\mathbb{F}_{q^{n}}$ one uses the following setup.

- Choose $g_{1}, g_{2} \in \mathbb{F}_{q}[X]$ of degrees d_{1}, d_{2} such that $X-g_{1}\left(g_{2}(X)\right)$ has a degree n irreducible factor $f(X)$ over \mathbb{F}_{q}, then $\mathbb{F}_{q^{n}}=\mathbb{F}_{q}(x) \cong \mathbb{F}_{q}[X] /\left(f(X) \mathbb{F}_{q}[X]\right)$
- Let $y=g_{2}(x)$; then $x=g_{1}(y)$ and $\mathbb{F}_{q^{n}} \cong \mathbb{F}_{q}(x) \cong \mathbb{F}_{q}(y)$
- In best case factor base is $\left\{x-a \mid a \in \mathbb{F}_{q}\right\} \cup\left\{y-b \mid b \in \mathbb{F}_{q}\right\}$

The Joux-Lercier FFS variation [JL06]

To find factor base relations in $\mathbb{F}_{q^{n}}$ one uses the following setup.

- Choose $g_{1}, g_{2} \in \mathbb{F}_{q}[X]$ of degrees d_{1}, d_{2} such that $X-g_{1}\left(g_{2}(X)\right)$ has a degree n irreducible factor $f(X)$ over \mathbb{F}_{q}, then $\mathbb{F}_{q^{n}}=\mathbb{F}_{q}(x) \cong \mathbb{F}_{q}[X] /\left(f(X) \mathbb{F}_{q}[X]\right)$
- Let $y=g_{2}(x)$; then $x=g_{1}(y)$ and $\mathbb{F}_{q^{n}} \cong \mathbb{F}_{q}(x) \cong \mathbb{F}_{q}(y)$
- In best case factor base is $\left\{x-a \mid a \in \mathbb{F}_{q}\right\} \cup\left\{y-b \mid b \in \mathbb{F}_{q}\right\}$

Relation generation:

The Joux-Lercier FFS variation [JL06]

To find factor base relations in $\mathbb{F}_{q^{n}}$ one uses the following setup.

- Choose $g_{1}, g_{2} \in \mathbb{F}_{q}[X]$ of degrees d_{1}, d_{2} such that $X-g_{1}\left(g_{2}(X)\right)$ has a degree n irreducible factor $f(X)$ over \mathbb{F}_{q}, then $\mathbb{F}_{q^{n}}=\mathbb{F}_{q}(x) \cong \mathbb{F}_{q}[X] /\left(f(X) \mathbb{F}_{q}[X]\right)$
- Let $y=g_{2}(x)$; then $x=g_{1}(y)$ and $\mathbb{F}_{q^{n}} \cong \mathbb{F}_{q}(x) \cong \mathbb{F}_{q}(y)$
- In best case factor base is $\left\{x-a \mid a \in \mathbb{F}_{q}\right\} \cup\left\{y-b \mid b \in \mathbb{F}_{q}\right\}$ Relation generation:
- Considering elements $x y+a y+b x+c$ with $a, b, c \in \mathbb{F}_{q}$, one obtains the $\mathbb{F}_{q^{n}}$-equality

$$
x g_{2}(x)+a g_{2}(x)+b x+c=y g_{1}(y)+a y+b g_{1}(y)+c
$$

- When both sides split over \mathbb{F}_{q} one obtains a relation

'Optimising' d_{1} and d_{2} in [JLO6]

'Optimising' d_{1} and d_{2} in [JLO6]

Fundamental Theorem of Cryptography

"If we have no clue about something, then we can safely assume that it behaves as a uniformly distributed random variable."

- Igor Shparlinski

'Optimising' d_{1} and d_{2} in [JLO6]

Fundamental Theorem of Cryptography

"If we have no clue about something, then we can safely assume that it behaves as a uniformly distributed random variable."

- Igor Shparlinski
F.T.C. \Longrightarrow that as $q \rightarrow \infty$ each side of $x y+a y+b x+c$ splits over \mathbb{F}_{q} with probability $1 /\left(d_{2}+1\right)$! and $1 /\left(d_{1}+1\right)$! respectively.

'Optimising' d_{1} and d_{2} in [JLO6]

Fundamental Theorem of Cryptography

"If we have no clue about something, then we can safely assume that it behaves as a uniformly distributed random variable."

- Igor Shparlinski
F.T.C. \Longrightarrow that as $q \rightarrow \infty$ each side of $x y+a y+b x+c$ splits over \mathbb{F}_{q} with probability $1 /\left(d_{2}+1\right)$! and $1 /\left(d_{1}+1\right)$! respectively.
- \Longrightarrow Choose $d_{1} \approx d_{2} \approx \sqrt{n}$

'Optimising' d_{1} and d_{2} in [JLO6]

Fundamental Theorem of Cryptography

"If we have no clue about something, then we can safely assume that it behaves as a uniformly distributed random variable."

- Igor Shparlinski
F.T.C. \Longrightarrow that as $q \rightarrow \infty$ each side of $x y+a y+b x+c$ splits over \mathbb{F}_{q} with probability $1 /\left(d_{2}+1\right)$! and $1 /\left(d_{1}+1\right)$! respectively.
- \Longrightarrow Choose $d_{1} \approx d_{2} \approx \sqrt{n}$
- For $q=L_{q^{n}}\left(1 / 3,3^{-2 / 3}\right)$ algorithm is $L_{q^{n}}\left(1 / 3,3^{1 / 3}\right)$

'Optimising' d_{1} and d_{2} in [JLO6]

Fundamental Theorem of Cryptography

"If we have no clue about something, then we can safely assume that it behaves as a uniformly distributed random variable."

- Igor Shparlinski
F.T.C. \Longrightarrow that as $q \rightarrow \infty$ each side of $x y+a y+b x+c$ splits over \mathbb{F}_{q} with probability $1 /\left(d_{2}+1\right)$! and $1 /\left(d_{1}+1\right)$! respectively.
- \Longrightarrow Choose $d_{1} \approx d_{2} \approx \sqrt{n}$
- For $q=L_{q^{n}}\left(1 / 3,3^{-2 / 3}\right)$ algorithm is $L_{q^{n}}\left(1 / 3,3^{1 / 3}\right)$

A Counterpoint to the F.T.C.

Fortunately, in one sub-case of the [JL06] setup, we have a clue.

An Auspicious Choice for g_{2}

For simplicity, let $\mathbb{F}_{q}=\mathbb{F}_{2^{\prime}}$.

An Auspicious Choice for g_{2}

For simplicity, let $\mathbb{F}_{q}=\mathbb{F}_{2^{\prime}}$.

- Let $y=g_{2}(x)=x^{2^{k}}$ with $1<k<1$

An Auspicious Choice for g_{2}

For simplicity, let $\mathbb{F}_{q}=\mathbb{F}_{2^{\prime}}$.

- Let $y=g_{2}(x)=x^{2^{k}}$ with $1<k<1$
- Eliminates half of the factor base since

$$
(y+b)=\left(x+b^{2^{-k}} 2^{2^{k}} \Longrightarrow \log (y+b)=2^{k} \log \left(x+b^{2^{-k}}\right)\right.
$$

An Auspicious Choice for g_{2}

For simplicity, let $\mathbb{F}_{q}=\mathbb{F}_{2^{\prime}}$.

- Let $y=g_{2}(x)=x^{2^{k}}$ with $1<k<1$
- Eliminates half of the factor base since

$$
(y+b)=\left(x+b^{2^{-k}}\right)^{2^{k}} \Longrightarrow \log (y+b)=2^{k} \log \left(x+b^{2^{-k}}\right)
$$

- The I.h.s. of $x y+a y+b x+c$ becomes

$$
x^{2^{k}+1}+a 2^{2^{k}}+b x+c
$$

An Auspicious Choice for g_{2}

For simplicity, let $\mathbb{F}_{q}=\mathbb{F}_{2^{\prime}}$.

- Let $y=g_{2}(x)=x^{2^{k}}$ with $1<k<1$
- Eliminates half of the factor base since

$$
(y+b)=\left(x+b^{2^{-k}}\right)^{2^{k}} \Longrightarrow \log (y+b)=2^{k} \log \left(x+b^{2^{-k}}\right)
$$

- The I.h.s. of $x y+a y+b x+c$ becomes

$$
x^{2^{k}+1}+a x^{2^{k}}+b x+c
$$

- For $k \mid I$ and $I / k \geq 2$, this polynomial provably splits over \mathbb{F}_{q} with probability $\approx 1 / 2^{3 k} \gg 1 /\left(2^{k}+1\right)$!

Bluher Polynomials

Let $q=2^{\ell}, \ell=k k^{\prime}$ with $k^{\prime} \geq 3$. If $a b \neq c$ and $b \neq a^{2^{k}}$, then $x^{2^{k}+1}+a x^{2^{k}}+b x+c$ may be transformed into

$$
\begin{aligned}
F_{B}(\bar{x}) & =\bar{x}^{2^{k}+1}+B \bar{x}+B, \quad \text { with } \quad B=\frac{\left(a^{2^{k}}+b\right)^{2^{k}+1}}{(a b+c)^{2^{k}}} \quad \text { and } \\
x & =\left(\frac{a b+c}{a^{2^{k}}+b}\right) \bar{x}+a .
\end{aligned}
$$

Bluher Polynomials

Let $q=2^{\ell}, \ell=k k^{\prime}$ with $k^{\prime} \geq 3$. If $a b \neq c$ and $b \neq a^{2^{k}}$, then $x^{2^{k}+1}+a x^{2^{k}}+b x+c$ may be transformed into

$$
\begin{aligned}
F_{B}(\bar{x}) & =\bar{x}^{2^{k}+1}+B \bar{x}+B, \quad \text { with } \quad B=\frac{\left(a^{2^{k}}+b\right)^{2^{k}+1}}{(a b+c)^{2^{k}}} \quad \text { and } \\
x & =\left(\frac{a b+c}{a^{2^{k}}+b}\right) \bar{x}+a .
\end{aligned}
$$

Theorem (Bluher 2004)

The number of elements $B \in \mathbb{F}_{q}^{\times}$such that the polynomial $F_{B}(X)$ splits completely over \mathbb{F}_{q} equals

$$
\frac{2^{\ell-k}-1}{2^{2 k}-1} \quad \text { if } k^{\prime} \text { is odd, } \quad \frac{2^{\ell-k}-2^{k}}{2^{2 k}-1} \quad \text { if } k^{\prime} \text { is even. }
$$

Relation Generation

- Let $S_{B}=\left\{B \in \mathbb{F}_{q}^{\times} \mid X^{2^{k}+1}+B X+B\right.$ splits over $\left.\mathbb{F}_{q}\right\}$

Relation Generation

- Let $S_{B}=\left\{B \in \mathbb{F}_{q}^{\times} \mid X^{2^{k}+1}+B X+B\right.$ splits over $\left.\mathbb{F}_{q}\right\}$
- For any $a, b \in \mathbb{F}_{q}$ s.t. $b \neq a^{2^{k}}$ and $B \in S_{B}$, there exists a unique $c \in \mathbb{F}_{q}$ s.t. $x^{2^{k}+1}+a x^{2^{k}}+b x+c$ splits over \mathbb{F}_{q}

Relation Generation

- Let $S_{B}=\left\{B \in \mathbb{F}_{q}^{\times} \mid X^{2^{k}+1}+B X+B\right.$ splits over $\left.\mathbb{F}_{q}\right\}$
- For any $a, b \in \mathbb{F}_{q}$ s.t. $b \neq a^{2^{k}}$ and $B \in S_{B}$, there exists a unique $c \in \mathbb{F}_{q}$ s.t. $x^{2^{k}+1}+a x^{2^{k}}+b x+c$ splits over \mathbb{F}_{q}
- For each such (a, b, c), test if r.h.s. $y g_{1}(y)+a y+b g_{1}(y)+c$ splits; if so then have a relation

Relation Generation

- Let $S_{B}=\left\{B \in \mathbb{F}_{q}^{\times} \mid X^{2^{k}+1}+B X+B\right.$ splits over $\left.\mathbb{F}_{q}\right\}$
- For any $a, b \in \mathbb{F}_{q}$ s.t. $b \neq a^{2^{k}}$ and $B \in S_{B}$, there exists a unique $c \in \mathbb{F}_{q}$ s.t. $x^{2^{k}+1}+a x^{2^{k}}+b x+c$ splits over \mathbb{F}_{q}
- For each such (a, b, c), test if r.h.s. $y g_{1}(y)+a y+b g_{1}(y)+c$ splits; if so then have a relation
Assume that g_{1} can be found s.t. $X-g_{1}\left(X^{2^{k}}\right) \equiv 0(\bmod f(X))$ with $\operatorname{deg}(f)=n \leq 2^{k} d_{1}$. Then we have the following:

Relation Generation

- Let $S_{B}=\left\{B \in \mathbb{F}_{q}^{\times} \mid X^{2^{k}+1}+B X+B\right.$ splits over $\left.\mathbb{F}_{q}\right\}$
- For any $a, b \in \mathbb{F}_{q}$ s.t. $b \neq a^{2^{k}}$ and $B \in S_{B}$, there exists a unique $c \in \mathbb{F}_{q}$ s.t. $x^{2^{k}+1}+a x^{2^{k}}+b x+c$ splits over \mathbb{F}_{q}
- For each such (a, b, c), test if r.h.s. $y g_{1}(y)+a y+b g_{1}(y)+c$ splits; if so then have a relation
Assume that g_{1} can be found s.t. $X-g_{1}\left(X^{2^{k}}\right) \equiv 0(\bmod f(X))$ with $\operatorname{deg}(f)=n \leq 2^{k} d_{1}$. Then we have the following:

Heuristic Result 1

Let $q=2^{\prime}$ with $I=k k^{\prime}$ and $k^{\prime} \geq 3$ and $d_{1} \geq 1$ constants, and assume $n \approx 2^{k} d_{1}$. Assuming the r.h.s. splits over \mathbb{F}_{q} with probability $1 /\left(d_{1}+1\right)$!, then the logarithms of all degree one elements of $\mathbb{F}_{q^{n}}$ can be computed in time $\widetilde{O}\left(\log ^{2 k^{\prime}+1} q^{n}\right)$.

Polynomial Time Relation Generation - Examples

- Let $q=2^{3 k}$ and $n=2^{k}-1 \Longrightarrow$ can use a Kummer extension
- Set $g_{1}(X)=\gamma X$, so that irreducible is $X^{2^{k}-1}+\gamma$
- r.h.s has degree 2 and splits with probability $1 / 2$

Polynomial Time Relation Generation - Examples

- Let $q=2^{3 k}$ and $n=2^{k}-1 \Longrightarrow$ can use a Kummer extension
- Set $g_{1}(X)=\gamma X$, so that irreducible is $X^{2^{k}-1}+\gamma$
- r.h.s has degree 2 and splits with probability $1 / 2$

Table : Relation generation times for $q=2^{3 k}$ and $n=2^{k}-1$ on a 2.0GHz AMD Opteron 6128

k	$\log _{2}\left(q^{n}\right)$	\#vars	time
7	2667	5506	$2.3 s$
8	6120	21932	$15.0 s$
9	13797	87554	$122 s$
10	30690	349858	$900 s$

Complexity Results

Suppose $q=\exp \left(\alpha \sqrt[3]{\log q^{n} \cdot \log ^{2} \log q^{n}}\right)(\dagger)$. We have:

Heuristic Result 2(i)

Let $q=2^{\prime}$, let $k \mid I$ and let n be such that (\dagger) holds. Then for $n \approx 2^{k} d_{1}$ where $2^{k} \approx d_{1}$, the DLP can be solved with complexity $L_{Q}\left(1 / 3,(8 / 9)^{1 / 3}\right) \approx L_{Q}(1 / 3,0.961)$.

Heuristic Result 2(ii)

Let $q=2^{\prime}$, let $k \mid l$ and let n be such that (\dagger) holds. Then for $n \approx 2^{k} d_{1}$ where $2^{k} \gg d_{1}$, the DLP can be solved with complexity between $L_{Q}\left(1 / 3,(4 / 9)^{1 / 3}\right) \approx L_{Q}(1 / 3,0.763)$ and $L_{Q}\left(1 / 3,(1 / 2)^{1 / 3}\right) \approx L_{Q}(1 / 3,0.794)$.

Solving the DLP in $\mathbb{F}_{2^{1971}}$

Let $\mathbb{F}_{q}=\mathbb{F}_{227}=\mathbb{F}_{2}[T] /\left(T^{27}+T^{5}+T^{2}+T+1\right)=\mathbb{F}_{2}(t)$ and let $\mathbb{F}_{q^{73}}=\mathbb{F}_{q}[X] /\left(X^{73}+t\right)=\mathbb{F}_{q}(x)$ be the field of order 2^{1971}.

- We let $y=x^{8}$ and thus $x=t / y^{9}$ and took as generator $\alpha=x+1$ and target

$$
\beta_{\pi}=\sum_{i=0}^{72} \tau\left(\left\lfloor\pi q^{i+1}\right\rfloor \bmod q\right) x^{i}
$$

Solving the DLP in $\mathbb{F}_{2^{1971}}$

Let $\mathbb{F}_{q}=\mathbb{F}_{2^{27}}=\mathbb{F}_{2}[T] /\left(T^{27}+T^{5}+T^{2}+T+1\right)=\mathbb{F}_{2}(t)$ and let $\mathbb{F}_{q^{73}}=\mathbb{F}_{q}[X] /\left(X^{73}+t\right)=\mathbb{F}_{q}(x)$ be the field of order 2^{1971}.

- We let $y=x^{8}$ and thus $x=t / y^{9}$ and took as generator $\alpha=x+1$ and target

$$
\beta_{\pi}=\sum_{i=0}^{72} \tau\left(\left\lfloor\pi q^{i+1}\right\rfloor \bmod q\right) x^{i}
$$

The computation took:

- 14 core-hrs for relation generation: quotienting out by the action of the 9 -th power of Frobenius on the factor base gives $612,872 \approx 2^{27} /(3 \cdot 73)$ variables
- After SGE, 2220 core-hrs for parallelised Lanczos on matrix of dimension $528,812 \times 527,766$
- 898 core-hrs for the descent \Longrightarrow total of 3132 core-hrs.

Solving the DLP in $\mathbb{F}_{2^{1971}}$

On 19/2/13 we announced that $\log _{\alpha}\left(\beta_{\pi}\right)=$
11992984215354106866091146371988855845186852755447163352 36895900760902198795745784008181148775933944656038305197 82541742360236535889937362200771117361678269423101163403 13535552228080411390321527355590590108228224824002192878 78207304028565280573096588688279004416835100344085961912 42700060128986433752110002214380289887546061125224587971 19787275080584651962314043764573936293823541736161168108 25627780459657892709561158924173579400674739684346062992 68294291957378226451182620783745349502502960139927453196 48974006524479548958327920827882768332440907342446643941 0976702162039539513377673115483439.

Solving the DLP in $\mathbb{F}_{2^{3164}}$

Let $\mathbb{F}_{q}=\mathbb{F}_{2^{28}}=\mathbb{F}_{2}[T] /\left(T^{28}+T+1\right)=\mathbb{F}_{2}(t)$ and let $\mathbb{F}_{q^{113}}=\mathbb{F}_{q}[X] /\left(X^{113}+t\right)=\mathbb{F}_{q}(x)$ be the field of order 2^{3164}.

- We let $y=x^{16}$ and thus $x=t / y^{7}$ and took as generator $\alpha=x+t+1$ and target

$$
\beta_{\pi}=\sum_{i=0}^{112} \tau\left(\left\lfloor\pi q^{i+1}\right\rfloor \bmod q\right) x^{i}
$$

Solving the DLP in $\mathbb{F}_{2^{3164}}$

Let $\mathbb{F}_{q}=\mathbb{F}_{2^{28}}=\mathbb{F}_{2}[T] /\left(T^{28}+T+1\right)=\mathbb{F}_{2}(t)$ and let $\mathbb{F}_{q^{113}}=\mathbb{F}_{q}[X] /\left(X^{113}+t\right)=\mathbb{F}_{q}(x)$ be the field of order 2^{3164}.

- We let $y=x^{16}$ and thus $x=t / y^{7}$ and took as generator $\alpha=x+t+1$ and target

$$
\beta_{\pi}=\sum_{i=0}^{112} \tau\left(\left\lfloor\pi q^{i+1}\right\rfloor \bmod q\right) x^{i}
$$

The computation took:

- 2 core-hrs for relation generation: quotienting out by the action of the 14 -th power of Frobenius on the factor base gives $1,187,841 \approx 2^{28} /(2 \cdot 113)$ variables
- After SGE, 85, 488 core-hrs for parallelised Lanczos on matrix of dimension $1,066,010 \times 1,064,991$
- 21,602 core-hrs for the descent \Longrightarrow total of 107,092 core-hrs

Solving the DLP in $\mathbb{F}_{2^{3164}}$

On $3 / 5 / 13$ we found that $\log _{\alpha}\left(\beta_{\pi}\right)=$
2410958672084703779901202077261642209070514313288787533385808717024 8784565712688312063491036765323357553857177477977665457317849564770 1688094481773173140524389502529386852264636049383546885561763318178 6341747893370309598402582718996263618673697554067799885512742832012 3901294838991530024173934004391610582283400289720429303619769406533 7903255793451858773664350130030722091666253172541070447948299781221 0193428607010640365444303319677531146468063350633002030742348610674 7166841199820454431917683235380198222192499580429542616711230697079 5960798988644631100037393291558580412406942004555116148790387654960 4900084297695444007900819088072394071341577241660482464194055035573 9803589799985259319695403143962976877685099988772087056174191305553 1864041654707840433795403753200520891617150254756586728215941551355 0648407797656823989931563900000242491107399569193500692930336704230 7029958155763666499372120453686303873671488016409635578117870889230 278649164378133.

Big Field Hunting

- 11th Feb'13, Joux: $\mathbb{F}_{2^{1778}}$ in 220 core-hrs
- 19th Feb'13, GGMZ: $\mathbb{F}_{2^{1971}}$ in 3,132 core-hrs
- 3rd May'13, GGMZ: \mathbb{F}_{23164} in 107,000 core-hrs
- 22nd Mar'13, Joux: $\mathbb{F}_{2^{4080}}$ in 14,100 core-hrs
- 11th Apr'13, GGMZ: \mathbb{F}_{26120} in 750 core-hrs
- 21st May'13, Joux: \mathbb{F}_{26168} in 550 core-hrs

Solution to DLP in $\mathbb{F}_{2^{6120}}$

On 11/4/13 we announced that $\beta_{\pi}=g^{\log }$, with $\log =$

138587598363978692625475711283123171009236361503896992366495931704517700280127178022234894098617 581360131441835074256363730624426814293233474272521598166126957928116825443110965404253837938808 595404111035238027107772178822939281873403451999731815140073481766513715358449279314556797352446 246860317946750124475689474406274942356035936501674050933448909201029834522226732247771897083223 217282051573645013603613042367782716361877817938374393824313019073624786387618414037541681120284 044659383192907436852526392087724304775451631271825250968111451400502733404381769675255289127346 639350098221570844400380788516332496583882522436381918008200167032186350245107751346979596314696 153666716168951481948091060066730184766758137773944303875429830867205463918144256843911730747265 146154193438041627833661739775057161236346096236566875251277843062329973044475486561062204356908 568471471279383781038538818884463796989906076079843248127252020839705886436071213650575186707456 948584072378916942925369140868417196479573481032711481021729162865973588174096389913305607677858 033996361734905537150362024720515772660781208855505434331055766570014211875602940633575763850457 503079087074376585304470520411320246292255375711457573555286060236699317039454479326718281128961 423275142787569425690532833283344049635521302596000897192512036695298807294032964530959691377087 204546348960132760095544105980198255245493202412831593891984788152417957691939817112366182063687 529915365150361180214451234387656883256149355994405051149585969163075307026647956035683671589546 448539955132726112034938655961291856203422247680387029078473520951160334472525475071680672623661 587292720329606182512044312194357156139201340952037872975243254476081554937002122953415949407262 137232099852298394838422907643191397673290238344183046040975859915928536530445697145317668044973 7096483324156185041

The Algorithm of Barbulescu, Gaudry, Joux and Thomé

For small characteristic fields of bitlength I, the BGJT algorithm has quasi-polynomial complexity $I^{O(\log I)}$.

- Applies to fields of the form $\mathbb{F}_{q^{k n}}$, with $k \geq 2$ and $n \approx q$
- Complexity dictated by \#nodes in the descent tree

The Algorithm of Barbulescu, Gaudry, Joux and Thomé

For small characteristic fields of bitlength I, the BGJT algorithm has quasi-polynomial complexity $I^{O(\log I)}$.

- Applies to fields of the form $\mathbb{F}_{q^{k n}}$, with $k \geq 2$ and $n \approx q$
- Complexity dictated by \#nodes in the descent tree

Question: Are the any elements of $\mathbb{F}_{q^{k n}}$ that require a quasi-polynomial number of linear elements to represent them?

The Algorithm of Barbulescu, Gaudry, Joux and Thomé

For small characteristic fields of bitlength I, the BGJT algorithm has quasi-polynomial complexity $I^{O(\log I)}$.

- Applies to fields of the form $\mathbb{F}_{q^{k n}}$, with $k \geq 2$ and $n \approx q$
- Complexity dictated by \#nodes in the descent tree

Question: Are the any elements of $\mathbb{F}_{q^{k n}}$ that require a quasi-polynomial number of linear elements to represent them?

Answer: No! F.R.K. Chung has proven that if $\mathbb{F}_{q^{k n}}=\mathbb{F}_{q^{k}}(x)$, then each $h \in \mathbb{F}_{q^{k n}}^{\times}$can be represented by

$$
h=\left(x+a_{1}\right) \cdots\left(x+a_{m}\right), \quad \text { with } \quad a_{i} \in \mathbb{F}_{q^{k}}
$$

if $\sqrt{q^{k}}>n-1$ and $m \geq 2 n+4 n \log n /\left(\log q^{k}-2 \log (n-1)\right)$.

Thanks for your attention!

