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Diffie-Hellman Key Agreement

Let G be a cyclic group of prime order r with generator g.

Alice chooses x R←− Zr , computes gx and sends to Bob

Bob chooses y R←− Zr , computes gy and sends to Alice
Alice computes (gy )x , Bob computes (gx)y to give shared
secret gxy

A fundamental security requirement of DH Key Agreement is
that the Computational Diffie-Hellman problem should be hard:

Definition
(CDH): Given g and random gx and gy , find gxy
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The Static Diffie-Hellman Problem (Static DHP)

Suppose to minimise her exponentiation cost in multiple DH key
agreements Alice repeatedly reuses x = d .

Definition

(Static DHPd ): Given fixed g and gd , and random gy , find gdy

Set of problem instances in Static DHP is a tiny subset of
CDH problem instances
Not a priori clear that these instances should be hard, even
if CDH is hard
Hence Static DHPd better models the security of this
scenario than CDH does
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The Static DHP - inception and 1st result

Introduced by Brown and Gallant in 2004, who gave a reduction
from the DLP for d to the Static DHPd

Hence if the DLP for d is hard, then so is the Static DHPd

Equivalently, given access to a Static DHPd oracle, one
can find the associated DLP d

Definition
(Static DHPd oracle): Let G be a cyclic group of prime order r ,
written additively. For a fixed base element P ∈ G and a fixed
element Q ∈ G let d ∈ Zr be such that Q = dP. Then a
Static DHPd oracle (w.r.t. (G,P,Q)) computes the function
δ : G→ G where

δ(X ) = dX
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Oracle-assisted Static DHPd algorithm

A Static DHPd algorithm is said to be oracle-assisted if during
an initial learning phase, it can make a number of Static DHPd
queries, after which, given a previously unseen challenge
element X , it outputs dX .

Theorem
Let r = uv + 1. Then d can be found with u calls to a
Static DHPd oracle, and off-line computational work of about
(
√

u +
√

v) group operations.
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DLP to Static DHPd reduction

The complexity of the attack is minimised when u ≈ r1/3

Depending on the factorisation of r − 1, can lead to a real
attack which is quicker than solving the DLP

Brown and Gallant showed that a system entity acts as a
Static DHPd oracle, transforming their reduction into a DLP
solver, for the following protocols:

textbook El Gamal encryption
Ford-Kaliski key retrieval
Chaum-Van Antwerpen’s undeniable signatures
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Static DHPd example: textbook El Gamal

Alice has public key gd . To encrypt a message m, Bob
picks a random x R←− Zr and computes

c = (c1, c2) = (gx ,mgdx)

To decrypt Alice computes m = c2/cd
1 . So if one can

compute gdx for any gx one can decrypt
Furthermore, in a chosen-ciphertext attack an adversary
has access to a decryption oracle
If adversary chooses c = (gx , c2) the decryption oracle
returns m = c2/gdx

Adversary computes gdx = c2/m, which solves the
Static DHPd for instance gx , giving a Static DHPd oracle
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DLP to l-Strong DHP reduction

Attack was rediscovered by Cheon in 2006, when the requisite
information is provided in the guise of the l-Strong DHP:

Definition

l-Strong Diffie-Hellman problem: Given P and d iP in G for
i = 1,2, . . . , l , compute d l+1P

Cheon also formulated an algorithm when l | (r + 1)
Both can be seen as using the DLP to DHP reduction due
to den Boer, Maurer, Wolf et al, but with limited access to a
limited CDH oracle
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Delayed Target DHP

Freeman [05] — ‘Pairing-based identification schemes’

Definition
A solver is given initial access to a Static DHPd oracle for the
element Q = dP ∈ G; when the oracle is removed, the solver is
given a random challenge X ∈ G and must solve the CDH for
input (Q,X ), i.e., output dX .

Situation identical to oracle-assisted Static DHP
Security of scheme equivalent to Delayed Target DHP
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Results of Koblitz and Menezes

In ‘Another look at non-standard discrete log and Diffie-Hellman
problems’ [07], Koblitz and Menezes studied a set of problems
in the Jacobian of small genus hyperelliptic curves

Delayed Target DLP/DHP, One-More DLP/DHP, and
DLP1/DHP1
Using ‘Index Calculus’ or Brown/Gallant/Cheon show that
some are easier than DLP - hardness separation
Argue that problems which are either interactive or have
complicated inputs can produce weaknesses
Conclude that security assurances provided by such
assumptions should be reassessed/are difficult to assess
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The oracle-assisted Static DHP/Delayed Target DHP

Assuming index calculus methodology applies,
Koblitz-Menezes used the following simple algorithm:

Construct a factor base F over which a non-negligible
proportion of group elements factor
Call the Static DHPd oracle δ on all f ∈ F
For a target element X attempt to write random multiples
aX as a sum of elements of F , i.e., aX = P1 + · · ·+ Pn

Then dX = (a−1 mod r)(δ(P1) + · · ·+ δ(Pn))

Applied algorithm to finite fields and small genus hyperelliptic
curves — resulting in a hardness separation from DLP
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Index calculus example: Delayed Target DHP

Let H(Fq) be a genus g hyperelliptic curve and JacH(Fq) its
Jacobian.

Let F be a proportion qα of degree one divisors for
0 < α ≤ 1
Call the Static DHPd oracle for Q = dP for all D ∈ F
Prob. random aX factors over F is qg(α−1)/g!
Hence expected number of trials to obtain an F-smooth
element aX is qg(1−α)g!
Balancing this with the oracle calls gives

α = (g + logq g!)/(g + 1) ≈ 1− 1/(g + 1)

R. Granger On the Static DHP on Elliptic Curves over Extension Fields
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Index calculus example: Delayed Target DHP

For DLP, there are four basic variants:
Gaudry (2000): basic index calculus — O(q2)

Harley (2000): reduce factor base — O(q2−2/(g+1))

Thériault (2003): large-prime variation — O(q2−2/(g+1/2))

GTTD (2007): double large-prime variation — O(q2−2/g)

The Delayed Target DHP algorithm is O(q1−1/(g+1)) — the
square root of Harley’s algorithm:

No linear algebra
Only one relation so can only balance the two stages

Question: For g = 1 have O(q1/2), so can we do better?

R. Granger On the Static DHP on Elliptic Curves over Extension Fields
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The Static DHP in Fq - JLNT

Joux, Naccache and Thomé [08] showed that initial access to
an e-th root oracle in RSA enables later e-th root computations
— faster than one can factor the modulus

Ports easily over to Static DHPd in Fq (+Lercier [09])
The Lqn(1/3, 3

√
x) complexities of the JLNT algorithm are

variant oracle access learning phase post-learning phase
FFS 4/9 - 4/9

NFS-HD 48/91 384/91 384/91
NFS 4/9 32/9 3

Each is faster than the DLP in the corresponding fields
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Oracle-assisted Static DHP for elliptic curves?

Problem is that one needs a factor base to beat the
Brown/Gallant/Cheon complexity
For ECs over Fp, currently no known useful factor base

Basic insight is that for ECs over extension fields, one
already has a native factorisation via Gaudry/Semaev
ECDLP algorithm =⇒ can use the KM methodology
Obvious in hindsight and could have been observed in
2004 when Gaudry had his idea
Basic observation made independently by Joux and Vitse

R. Granger On the Static DHP on Elliptic Curves over Extension Fields



Background and Motivation
Main Algorithm and Results

A new method for binary curves

Algorithm Overview
Potentially Vulnerable Curves
Simulation results

Oracle-assisted Static DHP for elliptic curves?

Problem is that one needs a factor base to beat the
Brown/Gallant/Cheon complexity
For ECs over Fp, currently no known useful factor base
Basic insight is that for ECs over extension fields, one
already has a native factorisation via Gaudry/Semaev
ECDLP algorithm =⇒ can use the KM methodology

Obvious in hindsight and could have been observed in
2004 when Gaudry had his idea
Basic observation made independently by Joux and Vitse

R. Granger On the Static DHP on Elliptic Curves over Extension Fields



Background and Motivation
Main Algorithm and Results

A new method for binary curves

Algorithm Overview
Potentially Vulnerable Curves
Simulation results

Oracle-assisted Static DHP for elliptic curves?

Problem is that one needs a factor base to beat the
Brown/Gallant/Cheon complexity
For ECs over Fp, currently no known useful factor base
Basic insight is that for ECs over extension fields, one
already has a native factorisation via Gaudry/Semaev
ECDLP algorithm =⇒ can use the KM methodology
Obvious in hindsight and could have been observed in
2004 when Gaudry had his idea

Basic observation made independently by Joux and Vitse

R. Granger On the Static DHP on Elliptic Curves over Extension Fields



Background and Motivation
Main Algorithm and Results

A new method for binary curves

Algorithm Overview
Potentially Vulnerable Curves
Simulation results

Oracle-assisted Static DHP for elliptic curves?

Problem is that one needs a factor base to beat the
Brown/Gallant/Cheon complexity
For ECs over Fp, currently no known useful factor base
Basic insight is that for ECs over extension fields, one
already has a native factorisation via Gaudry/Semaev
ECDLP algorithm =⇒ can use the KM methodology
Obvious in hindsight and could have been observed in
2004 when Gaudry had his idea
Basic observation made independently by Joux and Vitse

R. Granger On the Static DHP on Elliptic Curves over Extension Fields



Background and Motivation
Main Algorithm and Results

A new method for binary curves

Algorithm Overview
Potentially Vulnerable Curves
Simulation results

Semaev’s summation polynomials

Let E : Y 2 = X 3 + aX + b, over a field Fq with char(Fq) > 3.

For m ≥ 2 define fm = fm(X1, . . . ,Xm) ∈ Fq[X1, . . . ,Xm] by the
following property:

for x1, . . . , xm ∈ Fq, fm(x1, . . . , xm) = 0 is equivalent to

∃y1, . . . , ym ∈ Fq | (xi , yi) ∈ E and
(x1, y1) + · · ·+ (xm, ym) = O ∈ E(Fq)

We have f2(X1,X2) = X1 − X2, and f3(X1,X2,X3) =

(X1 − X2)
2X 2

3 − 2((X1 + X2)(X1X2 + a) + 2b)X3

+((X1X2 − a)2 − 4b(X1 + X2))

R. Granger On the Static DHP on Elliptic Curves over Extension Fields
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Semaev’s summation polynomials

In general, for any m ≥ 4, and m − 3 ≥ k ≥ 1,
fm(X1, . . . ,Xm) =

ResX (fm−k (X1, . . . ,Xm−k−1,X ), fk+2(Xm−k , . . . ,Xm,X ))

Degree of fm in each Xi is 2m−2 for m ≥ 3.
In the case prime fields, a natural factor base is

F = {P = (x , y) ∈ E s.t . x < p1/m}

However no known way to efficiently find such small roots
x1, ..., xm of fm+1(x1, . . . , xm, xR) = 0 corresponding to

R = Pi1 + · · ·+ Pim

For m ≥ 5 would give sub-square-root DLP algorithm

R. Granger On the Static DHP on Elliptic Curves over Extension Fields
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Gaudry’s insight

Assume now that E is over a degree n extension Fqn .

Fix a poly basis {tn−1, . . . , t ,1} for Fqn/Fq

Define F = {P = (x , y) ∈ E(Fqn) s.t . x ∈ Fq}
Note |F| ≈ q
Observe that fn+1(x1, . . . , xn, xR) = 0 now has n
components:

fn+1,0 + fn+1,1t + · · ·+ fn+1,n−1tn−1 = 0 ∈ Fqn

System of n equations over Fq in n variables in Fq

Solved via resultants, or Grobner basis computation
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ECDLP complexity with Gaudry/Semaev

Decomposition complexity O(Poly(2n(n−1)))

Decomposition probability is 1/n!
For fixed n, q →∞, complexity is O(q2), rho is O(qn/2)

Using double large-prime variation reduces to O(q2−2/n)

Works for all curves over any extension field, even of prime
extension degree
Computationally far more intensive than Weil descent
Subexponential attack for a large class of fields (Diem)

eO((log qn)2/3)
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Oracle-assisted Static DHP Algorithm in full

Define F = {P = (x , y) ∈ E(Fqn) s.t . x ∈ Fq}
For all P ∈ F compute δ(P) = dP
For a given R ∈ E(Fq) add random linear combinations Pr
of elements of F to R until it can be written

R + Pr = P1 + · · ·+ Pn ⇐⇒ fn+1(x1, . . . , xn, xR) = 0

Then dR = δ(P1) + · · ·+ δ(Pn)− δ(Pr )

R. Granger On the Static DHP on Elliptic Curves over Extension Fields
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Algorithm complexity

Heuristic Result 1. For any elliptic curve E(Fqn), by making
O(q) queries to a Static DHPd oracle during an initial learning
phase, for fixed n > 1 and q →∞, an adversary can solve any
further instance of the Static DHPd in time O(Poly(log q)).

Can reduce the factor base à la Harley:

Heuristic Result 2. For any elliptic curve E(Fqn), by making
O(q1− 1

n+1 ) queries to a Static DHPd oracle during an initial
learning phase, for fixed n > 1 and q →∞, an adversary can
solve any further instance of the Static DHPd in time Õ(q1− 1

n+1 )

Can also obtain subexponential algorithm à la Diem
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The Galbraith-Lin-Scott Curves

At EUROCRYPT 2009 the use of curves defined over extension
fields with degree a power of 2 were proposed.

Exploits the existence of efficiently computable
homomorphism to enable use of the GLV fast point
multiplication method
GLV: if ψ is an efficiently computable endomorphism of E
then one can compute [n]P = [n0]P + [n1]ψ(P) with
|ni | ≈

√
#E

Over Fp2 method takes about 0.75 the time of the previous
best methods
Performance over Fp4 currently uninvestigated, but subject
to Gaudry’s ECDLP attack
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The Oakley key determination protocol curves
‘Well-Known Group’ 3

Group 3 is defined over the field F2155 = F2[ω]/(ω
155 + ω62 + 1),

by the equation
Y 2 + XY = X 3 + β,

where

β = ω18 +ω17 +ω16 +ω13 +ω12 +ω9 +ω8 +ω7 +ω3 +ω2 +ω+1.

#E(F2155) = 12 · r , with r =

3805993847215893016155463826195386266397436443

Subject to several unsuccessful DLP attacks via Weil
descent: Jacobson/Menezes/Stein [01],
Gaudry/Hess/Smart [00], Galbraith/Hess/Smart [02], Hess
[03].
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The Oakley key determination protocol curves
‘Well-Known Group’ 4

Group 4 is defined over the field F2185 = F2[ω]/(ω
185 + ω69 + 1),

by the equation
Y 2 + XY = X 3 + β,

where

β = ω12 + ω11 + ω10 + ω9 + ω7 + ω6 + ω5 + ω3 + 1.
#E(F2185) = 4 · r , with r =

12259964326927110866866776214413170562013096\
250261263279

DLP studied by Maurer/Menezes/Teske [01] and
Menezes/Teske/Weng [04], the latter concluding that the
fields F25l for l > 37 are ‘weak’ while the security of ECs
over F2185 is questionable
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Large prime characteristic

For each of n = 2,3,4 and 5 we used curves of the form

E(Fpn) : y2 = x3 + ax + b,

for a and b randomly chosen elements of Fpn , such that
#E(Fpn) was a prime of bitlength 256.

Implemented in MAGMA (V2.16-5) run on a 3.16 GHz Intel
Xeon with 32G RAM

Data for testing and decomposing points for elliptic curves over
extension fields (times in s):

n log p #fn+1 # symfn+1 T (GB) T (roots)
2 128 13 5 0.001 0.009
3 85.3 439 43 0.029 0.027
4 64 54777 1100 5363 3.68
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Large prime characteristic
Upper bounds on attack time

Given data, compute α such that:

pn(1−α) · n! · (T (GB) + T (roots)) = pα · T (scalar)

Attack time estimates for our implementation (times in s):

n α Attack time Pollard rho
2 0.6701 (2/3) 279.8 2111.3

3 0.7645 (3/4) 259.7 2111.4

4 0.8730 (4/5) 250.5 2111.4
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Characteristic two

For each of n = 2,3,4 and 5 we used curves of the form

E(F2ln) : y2 + xy = x3 + b, (1)

for b a randomly chosen element of F2ln , such that #E(F2ln)
was a four times a prime of bitlength 256.

Data for testing and decomposing points for elliptic curves over
binary extension fields and attack time estimates (times in s):

n #fn+1 # symfn+1 Time GB α Attack time
2 5 3 0.000 0.6672 280.9

3 24 6 0.005 0.7572 260.0

4 729 39 247 0.8575 250.6

5 148300 638 N/A N/A N/A
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The Joux-Vitse variation

Joux-Vitse[10] gave a variant of Gaudry’s algorithm which
improves ECDLP complexity for n ≥ c 3

√
log p

Noted the same algorithm as Heuristic Result 1 for the
oracle-assisted Static DHP
Observed that the obstacle to finding relations for n ≥ 5 is
the degree of the summation poly (2n−1) and resulting
system (2n(n−1))
To circumvent this, they add not n points of F but n−1, i.e.,

R = P1 + · · ·+ Pn−1

This reduces the degree to 2n−2, and results in an
overdetermined system since one has n equations
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The Joux-Vitse variation

Developed a new version of Faugère’s F4 algorithm to
exploit solving a system of the same shape many times
Prob. of a random element being representable is reduced
to 1/(p · (n − 1)!)
For prime base fields with log2 p ≈ 32 and n = 5 they can
test a decomposition in about 8.5s on a 2.6 GHz Intel Core
2 Duo (Magma takes 1046s)
Implemented their method for binary fields using the F4
algorithm in Magma: ≈ 1000 times faster than large p

Vanessa’s implementation: Decomposition test time is
22.95ms on a 2.93 GHz Intel Xeon processor
Total time (excluding ≈ 230 oracle queries) is ≈ 40.4 years
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Recall Gaudry/Hess/Smart attack
Weil descent (Frey, Galbraith, GHS, Diem, Scholten...)

Let E : y2 + xy = x3 + β be an elliptic curve over Fqn

Fix a basis {tn−1, · · · , t ,1} for Fqn/Fq

Writing

β = b0 + b1t + · · ·+ bn−1tn−1,

x = x0 + x1t + · · ·+ xn−1tn−1,

y = y0 + y1t + · · ·+ yn−1tn−1,

upon substituting into equation for E and equating coefficients
of t , one obtains a variety W of dimension n over Fq.

W is called the Weil restriction of E
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Weil descent and the GHS attack

If E/Fqk contains a cryptographically interesting group of
prime order r then W contains an irreducible subvariety V
with group order divisible by r
GHS attack finds a hyperelliptic curve H in W whose
Jacobian contains a subvariety isogenous to V
One can then map the DLP

φ : E(Fqk )→ JacH(Fq),

and apply index calculus to JacH(Fq)

In GHS attack elements of E(F2ln)[r ] map to Jacobian of
hyperelliptic curve H(F2l ) of genus at most 2n−1
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Oracle-assisted Static DHP via GHS attack?

One can define F as before to be the set of degree one
divisors in JacH(Fq)

Problem 1: Can not call Static DHP oracle on elements of
JacH(Fq)!
Solution 1: φ is easily invertible: just a conorm and norm
computation
Problem 2: Elements of F are not in im(φ)!
Solution 2: No problem if (#JacH(F2l )/r , r) = 1
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Oracle-assisted Static DHP via GHS attack

Let F be the set of degree one divisors in JacH(F2l )

Let N = #JacH(F2l ) and h = N/r
Project each D ∈ F into im(φ) by multiplying by h
Compute φ−1(hD) for each D ∈ F
Call the Static DHPd oracle δ on each φ−1(hD) in E(F2ln)

For a target X ∈ E(F2ln) take random multiples until
φ(aX ) =

∑
Di with each Di ∈ F

Then assuming (h, r) = 1 one computes

δ(X ) = (a−1 mod r)(h−1 mod r)
∑

δ(φ−1(hDi))
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GHS for ‘Well-Known Group’ 3

We have φ : E(F2155)[r ] −→ JacH(F231) for hyperelliptic

H : Y 2 + h(X ) · Y = f (X ),

with F231 = F2[ω]/(ω
31 + ω3 + 1) and

h(X ) = 289804524X 16 + 607247628X 8 + 1798965180X 4

+ 1103766465X 2 + 742287012X ,
f (X ) = 505223067X 33 + 1000507042X 17 + 1992775259X 16

+ 1146351457X 9 + 1078048302X 8 + 284388091X 5

+ 518998412X 4 + 1875045691X 3 + 2001664187X 2

+ 1973705837X ,

and genus(H) = 16 = 2155/31−1
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Static DHP for ‘Well-Known Group’ 3 via GHS

Using Florian’s LMS J. Comput. Math paper (or a magma
computation), one finds N = #JacH(F231) which has
bitlength 497
Furthermore (N/r , r) = 1 and so attack can proceed
Using Victor Shoup’s Number Theory Library on a
3.16GHz Intel Xeon, testing 1-smoothness of a random
multiple of φ(P) takes ≈ 0.690ms
Other basic cost is a point addition in the Jacobian;
Jacobson estimates this to be < 1/2.3 the cost of
smoothness test using NUCOMP
Hence expected time to find a relation using a single
processor is ≈ 650 years
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GHS for ‘Well-Known Group’ 4

We have φ : E(F2185)[r ] −→ JacH(F237) for hyperelliptic

H : Y 2 + h(X ) · Y = f (X ),

with F237 = F2[ω]/(ω
37 + ω9 + ω2 + ω + 1) and

h(X ) = 73994877348X 16 + 113350789030X 8 + 86827085475X 4

+ 21964938327X 2 + 125543309305X ,
f (X ) = 49045248530X 33 + 40737336296X 17 + 45140903646X 16

+ 120039047741X 9 + 105120752497X 8 + 72787224919X 5

+ 25040887869X 4 + 72047225547X 3 + 94586877616X 2

+ 68639477599X ,

and genus(H) = 16 = 2185/37−1
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Static DHP for ‘Well-Known Group’ 4 via GHS

N = #JacH(F237) has bitlength 592
Again (N/r , r) = 1 and so attack can proceed
Using NTL on the same processor testing 1-smoothness of
a random multiple of φ(P) takes ≈ 0.854ms
Cost of point addition in the Jacobian ≈ 1/2.3 the cost of
smoothness test using NUCOMP
Hence expected time to find a relation using a single
processor is ≈ 810 years
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Static DHP for E(F2ln) via GHS

Components of learning phase:

Construct factor base F of degree 1 divisors: ≈ 2l−1 such
divisors ignoring negatives
Map each D ∈ F to an element of im(φ) via multiplication
by h = #JacH(F2l )/r ≈ 2l(2n−1−n)

Compute φ−1(hD) for each D ∈ F
Call the Static DHPd oracle δ on each φ−1(hD) in E(F2ln)

Expected cost of relation find:
Cost of each smoothness test ≈ (128l − 288) F2l

multiplications
Hence total cost is ≈ (2n−1)! · (128l − 288) F2l

multiplications
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Static DHP for E(F2ln) via GHS

Consider asymptotics for fixed n and l →∞. Write g = 2n−1.

For 2l > g! the dominant cost is the oracle calls
Hence should reduce F to balance the two stages
Let q = 2l and let |Fs| = qα with 0 < α ≤ 1
Probability that a random point decomposes over Fs is
qg(α−1)/g!

Solving g! · qg(1−α) = qα gives α =
g+logq g!

g+1 and so complexity
of algorithm is

Õ(q1− 1
g+1 ).

This is the square-root of the balanced DLP algorithm
complexity for fixed genus (Gaudry/Harley)
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Comparison with the Gaudry/Semaev-based method

For fixed n and increasing q first algorithm is
asymptotically faster: Õ(q1− 1

n+1 ) vs Õ(q1− 1
g+1 )

In practice, smoothness test is much easier than a
decomposition — have a trade-off between decomposition
probability and ease of decomposition test — so may even
be better for n = 2,3,4, as well as 5
Method is really tailored for when Gaudry/Semaev
decompositions are impractical
Limitation: details are only clear in characteristic 2
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Conclusions

Some problems occurring in security proofs are easier
than DLP, especially when index calculus applies

Elliptic curves defined over extension fields may be
unsuitable in some scenarios
Interesting use of auxiliary groups when an efficiently
computable two-way map present — no need for a native
factorisation/decomposition method at all
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