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Abstract. The major research in the resource management literature
focuses primarily on two complementary sub-problems: 1) specification
languages for formulating resource requests and 2) constraint problems
modelling allocation and scheduling. Both directions assume the knowl-
edge of the underlying platform architecture and the dependencies it in-
duces on the usage of the various resources. In this paper, we bridge this
gap by introducing constraint-flow nets (cfNets). A cfNet is defined by a
set of resources and dependencies between them, each dependency hav-
ing an associated constraint schema. The model is inspired by Petri nets,
with resources corresponding to places and dependencies—to transitions.
Given an architecture of dependent resources, an initial resource request
is propagated through the dependencies. The generated constraints are
then conjuncted into the global allocation constraint. We study the no-
tion of conflicts in cfNets and prove that for conflict-free cfNets the global
allocation constraint can be constructed unambiguously. Furthermore,
we provide an SMT-based algorithm for conflict detection and discuss
the use of priorities to dynamically resolve conflicts at run-time. Finally,
we illustrate the use of cfNets on a case study inspired by the Kalray
MPPA architecture.

Keywords: Resource management • Resource dependencies • Constraint-
flow nets • Petri nets • Marking reachability • Conflict detection

1 Introduction

Providing resource management is of key importance to many different areas,
from embedded systems domain to distributed resource management in large-
scale systems or in a cloud.

In the literature, two main complementary sub-problems are investigated:
specification languages for formulating resource requests [8,13,20,31] and re-
source management architectures [10,11,17,19,24]. The former provides appli-
cation developers with the means to specify application resource requirements,
whereas the latter is using the request information to build a constraint prob-
lem, which is then solved by a satisfiability modulo theories (SMT) [2,26] or
a constraint solver [29] to find a satisfactory resource allocation. However, for
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non-trivial architectures, this approach presents a substantial gap. Indeed, on
one hand, the resource manager assumes that an application completely spec-
ifies all its resource requirements. On the other hand, specification languages
provide request primitives formulated in terms of 〈required amount/resource
type〉 pairs, e.g. “5Mb of memory” or “1 thread”. Ignoring the physical nature
of the resources and the dependencies among them makes it impossible for appli-
cations to define sufficiently complete resource requests. Furthermore, we argue
that such completeness is not desirable. In order to avoid strong platform depen-
dencies, applications should have the possibility to operate on a more abstract
level. For a simple example, consider a multicore Network-on-Chip (NoC) plat-
form (e.g. [16]), where each core has a dedicated local memory, but can also
access that of the other cores through the NoC. Depending on the location of
the requested memory and under the assumptions above, application developers
must also explicitly request access to the NoC. Another example is provided by
modular platforms, where resources, such as memory, channels or threads, can
be created dynamically: applications should be allowed to specify requests for a
certain type of resources without having the knowledge of their structure. While
some advanced compilation tools, e.g. [15,26,27] provide ad-hoc solutions for
specific target platforms, the objective of the work presented in this paper is to
bridge this gap in a generic manner, sufficient to describe resource dependencies
for a wide class of platforms.

We consider an environment with a global set of resources R and an entity
(application) that makes a request for a subset of these resources. In general,
the information contained in the request is not sufficient to find a satisfactory
resource allocation, due to potential dependencies among the resources (in the
above example, remote memory access requires the use of the NoC). To model
such dependencies we introduce the notion of Constraint-Flow Nets (cfNets),
inspired by Petri nets with inhibitor arcs. Inhibitor arcs are used to limit de-
pendency applications (e.g. there is no need to repeat a request for a given
resource, if it has already been requested). In order to specify relations between
the amounts of the resources requested by the application and the necessary
amounts of the resources introduced by dependencies, we associate constraint
schemata to all transitions of a cfNet. These constraint schemata are then used
to build the global constraint problem associated to the initial resource request.
We prove that such global constraint problems can be unambiguously built for
conflict-free cfNets. Furthermore, we provide a technique for detection of con-
flicts and their resolution by introducing priority relations among the conflicting
transitions. Hence, given a cfNet with a priority model, the global constraint can
always be built unambiguously.

The paper is structured as follows. Section 2 presents the motivating example
that we use to illustrate our theory throughout the paper. Section 3 introduces
cfNets and their semantics in terms of the process leading to constraint problems
corresponding to resource requests. Section 4 focuses on the notion of conflict in
cfNets, providing an algorithm for detecting conflicts and introducing priorities
to resolve them. Section 5 provides a complete cfNet modelling the Kalray archi-
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tecture described in Sect. 2. Section 6 provides a short overview of related work.
Section 7 concludes the paper and discusses some future research directions.

Additional material and proofs of all results in this paper are provided as a
technical report available online [7].

2 Motivating example

Fig. 1: Compute cluster reference archi-
tecture with arbitration points

Our running example is inspired by
the many-core architecture of Kalray
MPPA-256 [16], which consists of 256
processing elements (PE), i.e. cores,
grouped into compute clusters of 16
cores each. Within a cluster, cores
communicate through a shared mem-
ory, which consists of 16 independent
memory banks grouped into two sides:
left and right. In this paper, we will
consider a simplified Kalray cluster
composed of four cores and four memory banks as shown in Fig. 1.

Two cores cannot access the same memory bank at the same time. Cores
are organised in pairs. Each pair shares two data-buses: one for each of the
memory sides [12]. Therefore, the access to memory banks is arbitrated by two
stages of arbiters implementing the Round Robin (RR) arbitration policy. Our
goal in this paper will be to allocate cores, buses and memory banks, such that
there will be at most one request for any arbiter queue, making the resource
unavailable otherwise. Thus, we assume that two cores of one pair can access
different memory sides simultaneously and two cores from different pairs may
access different memory banks of the same side.

3 Modelling resource dependencies

3.1 Flow nets

In this section, we introduce fNets, which we use to model resource dependencies.
Syntactically, fNets are Petri nets with inhibitor arcs. The semantics of fNets can
be compared to that of Coloured Petri nets with inhibitor arcs and capacities
(each place has capacity 1 with respect to each token colour). The colour of a
token in an fNet depends on the transition that has produced this token. The
main difference between fNets and Petri nets is the following: firing a transition
does not remove tokens from its pre-places. Therefore, the capacity restriction
effectively prevents any transition from being fired more than once.

Definition 1. Consider a tuple N = (R, T, F, I), where R is a finite set of
places (resources); T is a finite set of transitions (dependencies), such that R
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and T are disjoint; F ⊆ (R×T )∪ (T ×R) is a set of arcs and I ⊆ R×T a×T ,

with T a
def
= T ∪ {∗}, for some fresh symbol ∗ 6∈ T , is a set of inhibitor arcs.

For t ∈ T , we denote by R−(t)
def
= {r ∈ R | (r, t) ∈ F} the set of its pre-places

and by R+(t)
def
= {r ∈ R | (t, r) ∈ F} the set of its post-places. Similarly, for

r ∈ R, we denote T−(r)
def
= {t ∈ T | (t, r) ∈ F} the set of its incoming transitions.

If (r, t′, t) ∈ I, for some t′ ∈ T a, we say that r is an inhibitor place for t. Finally,

we denote I(t)
def
= {(r, t′) ∈ R× T a | (r, t′, t) ∈ I}.

N is a flow net (fNet), if 1) R−(t)∩R+(t) = ∅, for any t ∈ T (i.e. there are
no looping transitions), and 2) t′ ∈ T−(r), for all (r, t′, t) ∈ I.

As will be apparent from the following definitions, an inhibitor arc (r, t′, t)
checks for the absence of a token in the place r produced by the transition t′.
The asterisk ∗ represents a virtual initial transition (see Def. 2 below).

Definition 2. A marking of an fNet (R, T, F, I) is a set of tokens M ⊆ R ×
T a. We say that a token (r, t) ∈ R × T a, has the colour t and denote TM

def
=

{t ∈ T a | (r, t) ∈M} the set of colours involved in the marking M . A marking M
is initial if TM = {∗}.

Below, we will identify a marking M with its characteristic function M :
R×T a → B, where B = {tt, ff}. We now provide the formal semantics of fNets.

Definition 3. A transition t ∈ T of an fNet (R, T, F, I) is enabled with a mark-
ing M if the following three conditions hold: 1) for each r ∈ R−(t), there is a
token (r, t′) ∈ M ; 2) for each r ∈ R+(t), the corresponding token is not in M ,
i.e. (r, t) 6∈M ; 3) for each (r, t′, t) ∈ I, the corresponding token is not in M , i.e.
(r, t′) 6∈M . A marking is final if it does not enable any transitions.

The marking M ′ obtained by firing a transition t ∈ T enabled with M (de-

noted M
t−→M ′) is defined by putting M ′

def
= M ∪ {(r, t) | r ∈ R+(t)}.

Notice that each transition can consume any token regardless of its colour:
colours are relevant only for post-places and inhibitor arcs of transitions. Fur-
thermore, transitions do not remove tokens from their pre-places.

In the rest of the paper, we use the following convention for the graphical
representation of fNets: transitions that have not been fired are shown in black,
whereas transitions that have already been fired—and therefore cannot be fired
again—are shown in white. Moreover, in all the illustrations in the paper, token
colours can be unambiguously derived by considering which transitions have been
fired (visible from the black or white colour of the transition in the diagram).
Therefore, we use the usual graphical notation for tokens in Petri nets, i.e. a
bullet within the corresponding place.

Example 1 (Memory and Bus). Whenever an application requires a core and
a memory bank on a Kalray platform, access to the bus is required implicitly.
This dependency is modelled by the fNet shown in Fig. 2. The fNet has three
places, p, m and b, corresponding to the processor, the memory and the bus. The
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(a) Initial marking for the request {p,m}
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(b) Final marking for the request {p,m}

Fig. 2: The cfNet modelling the dependency from Ex. 1

resource dependency is modelled by the transition t with incoming arcs from p
and m, and one outgoing arc to b.

Consider an initial resource request R = {p,m}. The corresponding initial
marking M0 of the fNet has two tokens: (p, ∗) and (m, ∗) (Fig. 2a). Transition t

is enabled and can be fired, generating the token (b, t). Thus, we have M0
t−→M

with M shown in Fig. 2b. Since t is not enabled with M , this marking is final.

Definition 4. A run of an fNet from a marking M0 is a sequence M0
t1−→M1

t2−→
. . .

tn−→Mn. When such a run exists, we say that Mn is reachable from M0 and

write M0
〈t1,...,tn〉−−−−−−→ Mn. We say that a marking is reachable if it is reachable

from some initial marking.

Notice that, for any marking M obtained by firing a sequence of transitions,
TM (see Def. 2) is the set comprising ∗ and these transitions (see Prop. 1 below).

Definition 5. A marking M of an fNet (R, T, F, I) is well-formed if, for all
t ∈ TM \ {∗}, the following three conditions hold:

1. for all r ∈ R−(t), there exists a token (r, t′) ∈M , for some t′ ∈ T−(r)∪{∗};
2. for all r ∈ R+(t), (r, t) ∈M ;
3. for all (r, ∗) ∈ I(t), (r, ∗) 6∈M .

In Def. 5, conditions 1 and 3 are necessary for the transition t to have been
enabled. They are not sufficient, since, for the transition to be enabled, inhibitor
tokens referring to colours other than ∗ must also be absent from the marking.
However, we cannot include this stronger requirement in the definition of well-
formedness. Indeed, such inhibitor tokens can appear once t has already been
fired. Condition 2 requires that all the tokens generated by firing t be, indeed,
present in the marking.

Proposition 1. Let M ′ be a marking reachable from an initial marking M0 with

M0
〈t1,...,tn〉−−−−−−→M ′. Then M ′ is well-formed and TM ′ = {∗, t1, . . . , tn}.

Marking well-formedness over-approximates reachability: all reachable mark-
ings are well-formed, but some well-formed markings are not reachable.
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3.2 Constraints

For each resource r ∈ R, we assume that possible amounts form an additive
group 〈Dr,+, 0〉. We extend the definition of fNets by associating to each transi-
tion a constraint schema, instantiated into a constraint for a given final marking.

Definition 6. Consider an fNet (R, T, F, I). For any transition t ∈ T , denote

Xt
def
= {xr | r ∈ R−(t) ∪R+(t)}, where each xr is a variable ranging over Dr. A

constraint schema ct associated to t is a predicate over Xt.

Definition 7. A constraint-flow net (cfNet) is a tuple (R, T, F, I, C), where
(R, T, F, I) is an fNet and C = {ct | t ∈ T} is a set of constraint schemata asso-
ciated to the transitions in T .

We build global constraint problems encoding resource allocations compatible
with the causal dependencies defined by a cfNet. A constraint problem is based
on an initial resource request and the constraint schemata associated to the
transitions constituting a run of the cfNet. To this end, we introduce, for each
place-colour pair (r, t) ∈ R× T a, a variable dtr with the domain value Dr.

Definition 8. Let M be a well-formed marking of a cfNet (R, T, F, I, C). We
define a platform constraint

C[M ]
def
=
∧
t∈TM

ct

 ∑
t′:(r,t′)∈M

dt
′

r

/xr
∣∣∣∣∣∣ r ∈ R−(t)

[dtr/xr ∣∣ r ∈ R+(t)
]
, (1)

where we denote by E[x/y |C] the expression obtained by substituting in E all
occurrences of y, which satisfy the condition C, by x. Thus, each conjunct in
(1) is obtained by replacing, in the corresponding constraint schema ct, 1) for
each r ∈ R−(t), the variable xr with the sum of all variables dt

′

r corresponding
to all the tokens (r, t′) ∈ M ; 2) for each r ∈ R+(t), the variable xr with the
corresponding variable dtr.

Notice that the conjuncts in (1) are unambiguously defined, since, by Def. 1,
there are no looping transitions in the cfNet, i.e. R−(t)∩R+(t) = ∅, for all t ∈ T .
Hence the two substitutions operate on disjoint sets of variables.

Example 2 (Memory and Bus—continued). Building on Ex. 1, we introduce the
constraint linking the actual resource requirements. Since any data to be written
or read from the memory must transit through the bus, we associate to the
transition t a constraint schema ct = (xb ≥ xm), imposing that the required bus
capacity be greater than or equal to the requested amount of memory.

Consider again the initial request R = {p,m} with the corresponding initial
marking in Fig. 2a. The variables corresponding to the initial tokens are d∗p and
d∗m. Since the final marking M in Fig. 2b contains a token (b, t), we also intro-
duce the corresponding variable dtb. Substituting these variables in the constraint
schema for t, we obtain the platform constraint

C[M ] = ct
[
d∗p/xp, d

∗
m/xm, d

t
b/xb

]
= (dtb ≥ d∗m) .
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(a) Initial marking for the request {r}
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(b) Final marking for the request {r}

Fig. 3: The cfNet modelling the dependency from Ex. 3

Example 3 (Virtual resources). Recall that the architecture of our running exam-
ple consists of four identical processing elements p1, p2, p3 and p4, two identical
memory sides left L and right R, each consisting of pairs of identical memory
banks (m1, m2) and (m3, m4). An application may request a processing element
and some memory. This request can be for a specific processing element, e.g. p1
and a specific memory bank, e.g. m1. However, if one of the requested resources
is unavailable, the request will not be satisfied. Alternatively, the request can be
made without specifying which of pi and mi is needed, allowing for a more flexi-
ble resource allocation. This can be modelled by introducing a “virtual” resource
p for processing elements, L and R for memory sides or even more generally m
for memory sides and banks as shown in Sect. 5.

Let us abstract from our example architecture and consider a system with
two physical resources of the same type, r1 and r2, and a virtual resource r
representing this resource type, modelled with a cfNet shown in Fig. 3. These
resources could be, for example, two processing cores, memory sides or banks.

When the virtual resource is requested, the actual allocation depends on the
policy that the system implements, for instance:

– Dispatching the request: one of r1 or r2 must provide the requested amount;
– Redundant allocation: both r1 and r2 must provide the requested amount;
– Joint allocation: part of the requested amount is provided by one of the two

physical resources and the rest is provided by the other.

The request for dispatching allocation, when only one of the resources is
actually allocated, is suitable for modelling the request of a processing core,
while redundant and joint allocation can be used for memory request.

The constraint scheme of the transition depends on the policy:

Dispatching the request: ct = (xr1 = xr ∧ xr2 = 0) ∨ (xr1 = 0 ∧ xr2 = xr) ,

Redundant allocation: ct = (xr1 = xr ∧ xr2 = xr) ,

Joint allocation: ct = (xr1 + xr2 = xr) .

Consider the initial request R = {r} with the joint allocation policy. The
corresponding initial marking M0 is shown in Fig. 3a. The variable corresponding
to the initial token is d∗r . Since the final marking M in Fig. 3b contains tokens
(r1, t) and (r2, t), we also introduce the corresponding variables dtr1 and dtr2 .
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(a) Initial marking
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(b) Firing transition t1
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(c) Firing transition t2

Fig. 4: The cfNet modelling virtual processing cores using inhibitor arcs

Substituting these variables in the constraint schema for t for the joint allocation
policy, we obtain the platform constraint

C[M ] = ct
[
d∗r/xr, d

t
r1/xr1 , d

t
r2/xr2

]
= (dtr1 + dtr2 = d∗r) .

Ex. 4, below, presents an alternative approach for modelling virtual resources
with the dispatching policy. This approach relies on inhibitors to generate simpler
platform constraints involving less variables.

Example 4 (Virtual resources with inhibitors). Consider a different model of
“virtual” resources, shown in Fig. 4 representing two processing cores of the
Kalray architecture. The constraint schemata associated, respectively, to transi-
tions t1 and t2 are ct1 = (xp = xp1) and ct2 = (xp = xp2).

In the dispatching allocation of Ex. 3, the constraint schemata ensured that
only one core can be allocated for a single request. In the cfNet of Fig. 4, this
is ensured by the inhibitor arcs (p1, t1, t2) and (p2, t2, t1). The initial marking
for the request of a “virtual” processing core p is shown in Fig. 4a. Figures 4b
and 4c show the two possible runs of the cfNet, where the firing of transition t1
inhibits the firing of transition t2 and vice versa.

Notice that the constraint schemata associated to the transitions t1 and t2
involve less variables than the dispatching schema in Ex. 3, simplifying the task
of the constraint solver.

3.3 Allocation constraint problem

In the following, we assume that a partial cost function costr : Dr → R is
associated with each resource r ∈ R. When defined, the value costr(d) represents
the cost of allocating the amount d ∈ Dr of the resource r. When costr(d) is
undefined, this means that it is not possible to allocate the amount d of the
resource r (e.g. d is greater than the resource capacity).
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Definition 9. Let R ⊆ R be a set of resources. A utility function over R is a
partial function u :

∏
r∈RDr → R such that u is constant on all Dr for r /∈ R

(i.e. u depends only on resources belonging to R).

Definition 10. An allocation over a set of resources R ⊆ R is a value d =
(dr)r∈R ∈

∏
r∈RDr, such that dr = 0 for all r /∈ R.

Consider a system of resource dependencies defined by a cfNetN . Let R0 ⊆ R
be a set of resources corresponding to an initial request, and let u be a utility
function over R0. Let M0 = {(r, ∗) | r ∈ R0} be the initial marking corresponding
to R0, and let M be a final marking obtained by running N . Let C[M ] be the
corresponding platform constraint (see Def. 8). Finally, let costr, for all r ∈ R,
be the corresponding cost functions.

Definition 11. An allocation d = (dr)r∈R over R is valid, if the predicate

CM (d)
def
= C[M ] ∧

∧
r∈R

(
dr =

∑
t:(r,t)∈M

dtr

)
(2)

evaluates to true and if the following value is defined:

UM (d)
def
= u(d)−

∑
r∈R

costr(dr). (3)

We call the function UM (d) the global utility of the allocation d.

Finding an optimal resource allocation for a request R0 is then formalised by
the following constrained optimisation problem: argmax{d |CM (d)} UM (d).

Notice that both the notions of validity and global utility, and the optimisa-
tion problem above depend on the marking M obtained by running the cfNet. In
the next section we characterise those cfNets, where this dependency does not
hold and provide a disambiguating mechanism for the rest of cfNets.

4 Conflicting dependencies

In the previous section, we have introduced the notion of cfNets and shown how
the constraint problem associated to a resource request is built by running one. In

r1 t1

t2

r2
∗

∗

Fig. 5: Mutual dependency

particular, we have shown (Ex. 3 and 4) that, in
cfNets, where only one among a set of alterna-
tive dependencies is to be activated, the use of in-
hibitors leads to simpler constraint problems with
fewer variables.

Figure 5 shows another example, where in-
hibitors are useful. It models a system with two
resources that must be used together: if one is re-
quested, the other one should be included also;
however, if both are requested initially, there is
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no need to introduce additional constraints. This example cannot be realised
without inhibitors.

Thus, inhibitor arcs increase the expressiveness of cfNets and are beneficial
for the complexity of the resulting constraint problems. On the other hand,
inhibitors can introduce conflicts between transitions, thereby introducing po-
tential ambiguity in the definition of a constraint problem associated to a given
initial marking. Below, we show that any cfNet that does not contain inhibitor
arcs referring to token colours other than ∗, is conflict-free. We then provide a
method for conflict detection in cfNets that do contain such inhibitors.

4.1 Conflicting transitions

Definition 12. A cfNet (R, T, F, I, C) under marking M has a conflict, if there

exist two distinct enabled transitions t1, t2 ∈ T , such that M
t1−→ M ′ and t2 is

disabled with M ′.
We also say that transitions t1, t2 ∈ T are in conflict under the marking M .

A cfNet is conflict-free if it does not have conflicts under any reachable marking.

Proposition 2. Any transition t, enabled with a marking M of a conflict-free
cfNet, is also enabled with any marking reachable from M without firing t.

An important consequence of Prop. 2 is that a platform constraint obtained
by running a conflict-free cfNet depends only on the initial marking. Indeed,
for a given initial marking the runs of the cfNet can only differ in the order of
transition firing. However, the set of transitions is the same, generating the same
conjuncts contributing to the platform constraint (1).

Proposition 3. Let (R, T, F, I, C) be a cfNet and t1, t2 ∈ T (with t1 6= t2) be
two transitions in conflict under some marking M . Then there exists a place
r ∈ R, such that either (r, t2, t1) ∈ I or (r, t1, t2) ∈ I.

A simple corollary of Prop. 3 is that any cfNet that does not contain inhibitor
arcs referring to token colours other than ∗, is conflict-free. Notice, however, that
Prop. 3 does not rely on the reachability of markings. Indeed, a conflict-free cfNet
can still have conflicting transitions, provided that they are not enabled together
under any reachable marking.

Definition 13. Transitions t1 and t2 are mutually exclusive if no reachable
marking enables them both.

Figure 6 shows an example of two mutually exclusive transitions. Transitions
t1 and t2 cannot be enabled simultaneously, since the place r2 has a regular arc
to t2 and an inhibitor arc to t1, thus one transition requires a token in r2 while
the other requires the place to be empty.

Definition 14. An inhibitor arc (r, t′, t) (with t′ 6= ∗) is called non-conflicting
if t is mutually exclusive with t′.
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r1
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r2

∗

t2

t1

r4

Fig. 6: A simple net with mutually exclusive transitions

Theorem 1. A cfNet is conflict-free if and only if all its inhibitor arcs refer to
initial tokens or are non-conflicting.

Lemma 1. Let (R, T, F, I, C) be a conflict-free cfNet, M be a marking enabling

two transitions t1 6= t2 and M
t1−→ M ′1

t2−→ M ′2 and M
t2−→ M ′′1

t1−→ M ′′2 be two
possible runs of N . Then M ′2 = M ′′2 .

Theorem 2. A conflict-free cfNet is terminating and confluent, i.e. for any
initial marking M0, there exists a unique final marking M reachable from M0.

Theorem 2 implies that in a conflict-free cfNet, the platform constraint (1)
depends only on the initial marking M0, given by a request R0. Therefore, the
problem of finding a resource allocation defined by equations (2) and (3) in a
conflict-free cfNet is defined uniquely.

4.2 Conflict detection

Theorem 1 provides a criterion characterising conflict-free cfNets: all the in-
hibitor arcs must refer to initial tokens or be non-conflicting. In order to deter-
mine whether an inhibitor arc (r, t′, t) is non-conflicting, we must check whether
t and t′ are mutually exclusive. Mutual exclusiveness of two transitions requires
that there be no reachable marking enabling them simultaneously (Def. 13).
However, checking the existence of such a reachable marking by direct explo-
ration is complex: in the worst case, the number of possible markings is of the
order of 2|T

a|×|R|, since each transition—including the initial request—can po-
tentially generate a token in each of the places. Instead, we exploit the notion of
marking well-formedness, which over-approximates reachability (Prop. 1). Given
two conflicting transitions of a cfNet (R, T, F, I, C) (fixed for the remainder of
this sub-section), we proceed in three steps:

1. We encode the existence of a well-formed marking enabling both transitions
as a Boolean satisfiability problem and submit it to a SAT-solver.

2. If the problem is unsatisfiable, the two transitions are mutually exclusive.
Otherwise, the satisfying valuation returned by the SAT-solver encodes a
well-formed marking, reachability whereof can be efficiently checked.

3. If this marking is reachable, the two transitions are not mutually exclusive.
Otherwise, we repeat step 1 with a refined encoding excluding this marking.
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Boolean encoding of transition enabledness. With each place-colour pair
(r, t) we associate a Boolean variable ytr, evaluating to tt iff the corresponding
token is present in a given marking. For a transition t ∈ T , we define the following
four predicates on markings (T stands for tokens, I stands for inhibitors):

T −t
def
=

∧
r∈R−(t)

( ∨
t∈T−(r)

ytr

)
, // tokens are present in pre-places of t (4)

T +
t

def
=

∧
r∈R+(t)

ytr , // tokens are present in post-places of t (5)

I∗t
def
=

∧
(r,∗,t)∈I

y∗r , // tokens are absent from initial inhibitors of t (6)

I◦t
def
=

∧
(r,t′,t)∈I, t′ 6=∗

yt′r . // tokens are absent from non-initial inhibitors of t (7)

For a well-formed marking M , if the transition t has already been fired in
the run leading to M , then T +

t (M) evaluates to tt. Thus, t is enabled under M

iff Et(M)
def
= T −t ∧ T +

t ∧ I∗t ∧ I◦t = tt.

Lemma 2. If a transition t is enabled with a marking M , then holds the equality
Et(M) = tt. Conversely, if Et(M) = tt and M is well-formed then t is enabled.

Lemma 2 provides a characterisation of transition enabledness under well-
formed markings. The following results provide a similar characterisation of the
well-formedness of a marking.

Transition t may have been enabled in the run leading to a marking M only

if Bt(M)
def
= T −t ∧ I∗t = tt. Notice that the stronger predicate T −t ∧ I∗t ∧ I◦t does

not characterise the desired property, since some of the tokens inhibiting t may
have been generated after t has been fired (clearly, this cannot be the case for
the initial tokens). Notice also that once Bt(M) holds for some marking M , it
will hold for all markings reachable from M .

The well-formedness of a marking essentially means that, for every non-initial
token, there is a transition that could have generated it. Thus, a marking M is

well-formed iff W(M)
def
=
∧
r∈R

∧
t∈T−(r)

(
ytr ⇒ Bt ∧ T +

t

)
= tt.

Thus, the fact that two transitions, t1 and t2 can be both enabled with the
same well-formed marking is encoded by the predicate Et1 ∧ Et2 ∧ W. If this
predicate is not satisfiable then transitions t1 and t2 are mutually exclusive. Re-
call from Sect. 3.1 that well-formedness is an over-approximation of reachability.
Therefore, the converse does not hold: given a marking M satisfying Et1∧Et2∧W,
one has to check whether M is reachable.
Marking reachability. Let M ⊆ R× T a be a well-formed marking of a cfNet
(R, T, F, I, C). We associate to the marking M the corresponding causality graph,

which is a directed hyper-graph GM
def
= (V,E) with vertices V = TM and the set

E ⊆ TM × 2TM of edges representing the “must be fired before” relation among
the corresponding transitions: an edge (t, T ) with T ∈ 2TM means that, for the
transition t to be fired, at least one transition in T must be fired before t.
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We put E = E1 ∪ E2 with E1 and E2 defined by (8) and (9) below.

For a place r ∈ R, denote Tr
def
= {t ∈ TM | (r, t) ∈M} the set of colours of the

tokens in r present in the marking M . We put

E1
def
=
{

(t, Tr) ∈ TM × 2TM
∣∣∣ t ∈ TM , r ∈ R−(t)

}
. (8)

By Def. 3, for any transition t to be fired, it is necessary that in each place
r ∈ R−(t) there be at least one token. Hence, at least one of the transitions
generating such tokens must be fired before t.

Furthermore, if firing a transition t′ generates a token that inhibits some
transition t, then firing of t cannot happen after that of t′. Thus, we put

E2
def
=
{

(t′, {t}) ∈ TM × 2TM
∣∣∣∃r ∈ R : (r, t′, t) ∈ I

}
. (9)

Notice that, if such (r, t′, t) ∈ I actually exists, necessarily (r, t′) ∈ M , since
t′ ∈ TM . Thus, we do not have to state this condition explicitly in (9).

Definition 15. Let G = (V,E) with E ⊆ V × 2V be a hyper-graph. A path
in G is a sequence (ei)

n
i=0, with ei = (vi, Si) ∈ E, such that vi+1 ∈ Si, for all

i < n. When n ∈ N, we say that the path is finite, otherwise, when n =∞, it is
infinite. We say that the path starts with the edge e0.

Definition 16. A hyper-graph G = (V,E) with E ⊆ V ×2V has a cycle C ⊆ V ,
if there exists a set of finite paths {(eji )

nj
i=0}j∈J , with eji = (vji , S

j
i ) ∈ E, such that

C = {vji | j ∈ J, i ∈ [0, nj ]} and, for all j ∈ J and i ∈ [0, nj ], we have Sji ⊆ C.
Otherwise, G is said to be free from cycles.

Theorem 3. Let M be a well-formed marking and GM its causality graph. The
marking M is reachable iff GM is free from cycles.

Cycle-freedom of a hyper-graph can be checked in linear time [7].
Encoding refinement. LetM ⊆ R×T a be a well-formed marking of a cfNetN ,
enabling two conflicting transitions t1 and t2. If M is reachable, N has a conflict.
If it is not reachable, the encoding has to be refined to exclude M . Let Φ be the
predicate used at the previous step of the process (initially Φ = Et1 ∧ Et2 ∧W).
We refine this predicate by taking Φ∧ΦM , where ΦM =

∧
(r,t)∈M ytr∧

∧
(r,t) 6∈M ytr

is the characteristic predicate of the marking M .

4.3 Priority

As shown in Sect. 4.1, conflict-free cfNets are confluent: the same platform con-
straint is obtained by any run of the cfNet, for a given initial marking. In other
words, enabled transitions can be fired in arbitrary order. This is not the case for
cfNets with conflicts: firing one of two conflicting transitions disables the other
one, generating different platform constraints. Thus, for reachable conflicts, the
choice of which of the two conflicting transitions should be fired, has to be re-
solved externally to the cfNet. This can be achieved by introducing priority
among the conflicting transitions.
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For a cfNet N = (R, T, F, I, C), a priority relation is a partial order > ⊆ T×T
on its set of transitions. For two transitions t1 and t2, a priority t1 > t2 means
that when both transitions are enabled, t1 must be fired before t2. Priorities can
be defined statically or dynamically, depending, for example, on the availability
of the resources corresponding to the post-places of the two transitions.

Example 5 (Virtual resources with inhibitors—continued). In Ex. 4 we have pre-
sented a cfNet modelling a “virtual” resource p (see Fig. 4) representing two
processing cores p1 and p2. With the initial request p there can be two possible
runs of the cfNet as shown in Fig. 4b and 4c.

The fact that a virtual resource is used to represent the two cores implies that
they are functionally equivalent. However, we can consider a scenario, where the
two cores differ in their non-functional properties. For instance, suppose that p1
has better energy efficiency than p2. Imposing the priority t1 > t2 for the cfNet
in Fig. 4a, would ensure that p1 is allocated rather than p2.

Consider now the second scenario, where two applications are running on this
platform, both requiring a processing core, but unaware of the platform archi-
tecture. In the first cycle, one of the applications requests p and p1 is allocated
as discussed above. In the next cycle, the second application also requests p.
Since, p1 is not available (indicated by its cost function being undefined for all
values), we inverse the priority, setting t1 < t2. Thus, t2 will be fired leading to
an allocation of p2 to the second application.

Finally, notice that, if none of p1 and p2 is available, the choice of priority
is irrelevant, since the constraint problems generated from both markings in
Fig. 4b and 4c will be unsatisfiable.

5 The Kalray architecture case study

Figure 7 shows the complete cfNet modelling a single cluster of the Kalray
architecture described in Sect. 2. For the sake of clarity, we group the resources
in several boxes: one for each group of processors, one for each memory side and
one for each bus. In order to further unclutter the figure, the smaller rectangles
on the sides of each box allow us to group the arcs of the cfNet. For instance, the
thicker red arc in the figure represents four arcs of the cfNet, going from places
p1 and p2 to transitions t61 and t62.

Each memory side box repeats the virtual resource pattern (Ex. 3). The arcs
between a processor box, a memory box and a bus box reproduce the memory
and bus example (Ex. 1).

The architectural constraints are modelled as follows: 1) transition t1 ensures
mutual exclusion among processors p1, p2, p3 and p4; 2) transition t2 ensures
the mutual exclusion among memory sides, and t3, t4—among memory banks of
each side respectively; 3) transitions t51, t52, t61, t62, t71, t72, t81 and t82 ensure
that only one of the processors from one group can have access to one memory
side using a dedicated bus.
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t1

p

p1 p2 p3 p4

m

t2

L R

t3 t4

m1 m2 m3 m4

busL12 busL34 busR34busR12

t51 t52t62t61 t71 t72 t82t81

Fig. 7: A cfNet modelling a Kalray cluster

It is possible to request either a virtual processing core p or a specific one
out of p1, p2, p3 or p4. Similarly, it is possible to request virtual memory m, a
specific memory side L or R, or a specific memory bank m1, m2, m3 or m4.

The resource allocation constraints for the existing transitions implementing
the dispatching policy are as follows (S4 is the symmetric group on {1, 2, 3, 4}):

ct1(xp, xp1 , xp2 , xp3 , xp4) =
∨
σ∈S4

(xpσ(1) = xp ∧ xpσ(2) = xpσ(3) = xpσ(4) = 0),

ct2(xm, xL, xR) = (xL = xm ∧ xR = 0) ∨ (xR = xm ∧ xL = 0),

ct3(xL, xm1
, xm2

) = (xm1
= xL ∧ xm2

= 0) ∨ (xm2
= xL ∧ xm1

= 0),

ct51(xm1
, xp3 , xp4 , xbusL34

) =
(
xbusL34

> 0 ∧ xm1
> 0 ∧

((xp3 = 0 ∧ xp4 > 0) ∨ (xp4 = 0 ∧ xp3 > 0))
)

∨
(
xbusL34

= 0 ∧ ((xp3 = 0 ∧ xp4 = 0) ∨ xm1
= 0)

)
,

ct4 is similar to ct3 , whereas ct52 , ct61 , ct62 , ct71 , ct72 , ct81 , ct82 are similar to ct51 .

The initial cost functions for the resources are as follows: 1) for all i ∈ [1, 4],
costpi(d) = 0, if d ∈ {0, 1} and undefined otherwise; 2) for all i ∈ [1, 4],
costmi(d) = 0, if 0 ≤ d ≤ 128 and undefined otherwise; 3) for i ∈ {L,R}
and j ∈ {12, 34}, costbusij (d) = 0, if d ∈ {0, 1} and undefined otherwise; 4) the
cost function for p, m, L, R are defined everywhere as constant 0.

Here, the focus is on resource availability, rather than the actual cost. Hence,
all cost functions are 0 when defined. Notice also, that we require the whole bus
once a memory is requested, regardless of the amount of data to be passed.
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6 Related work

The idea of using Petri nets for resource management is not novel. A number
of works explore Resource Allocation Systems (RAS) in the context of Flexible
Manufacturing Systems (FMS) [9] and introduce different subclasses of Petri
nets to account for various allocation requirements [14,28]. In [21] the authors
investigate how the methods used in FMS can be extended to software applica-
tions with concurrent processes competing for shared resources. They propose a
new subclass of Petri nets, PC2R, where the resources of different types, their
availability and control flow of each process are represented as a unique sys-
tem. A small change in the process flow or resources set will require a change
of this model. In contrast, we are applying the separation of concerns principle
by providing distinct models for systems of interdependent resources with their
available capacities and for resource requests from abstract applications.

Numerous works study constraints and dependencies, such as temporal, causal-
ity and resource constraints, in various contexts by considering the underlying
dependency graphs, e.g. [1,4,18,25]. Due to their syntactic structure inspired
from Petri nets, cfNets generalise these approaches.

The term “constraint-flow net” can be confused with “network of constraints”,
a notion initially proposed in [22]. In fact, these two formalisms are very different.
Constraint-flow nets consist of places and transitions, representing, respectively,
resources and dependencies among them. Each transition has an associated con-
straint schema, whereof the arity is the total number of incoming and outgoing
arcs of the transitions. These constraint schemata are used to generate con-
straints imposed on the possible resource allocations by the execution platform
modelled by the cfNet. On the other hand, networks of constraints have been
proposed in [22] to palliate the combinatorial explosion, when a given relation
among n variables (constraint) is represented by an n-dimensional (0, 1)-matrix.
Instead, such n-ary constraint can be optimally approximated by a network of
n binary ones, thereby considerably reducing the size of the representation.

Constraint-flow nets bear some similarity with event structures [23], in par-
ticular the more recent generalisations involving conflict [30] and dynamicity [3].
Event structures encode causality and conflict relations among concurrent events.
The generalisation proposed in [30] matches the expressive power of arbitrary
Petri nets. This suggests that it should be capable of encoding the flow part of
cfNets: in our context, an event structure configuration would represent the set
of transitions having been fired. However, since places—representing resources
in cfNets—do not appear explicitly in event structures, it is not immediately
clear how the initial requests and constraint schemata should be encoded. We
leave a more detailed study of the correspondence between the various forms of
event structures and cfNets for future work.

Constraint-flow nets are specifically tailored to provide a natural way of in-
corporating constraint schemata that allow expressing quantitative dependencies
among amounts of allocated resources. To the best of our knowledge, such com-
binations of constraint schemata with an underlying graph structure have not
been studied in existing literature.
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7 Conclusion

In this paper, we have introduced constraint-flow nets (cfNets) that allow mod-
elling resource dependencies, thereby bridging a gap in the current state-of-
the-art approaches to the specification of requests for resources and resource
allocation to applications: resource allocation commonly relies on the assump-
tion that the requested resources are completely specified, whereas specification
languages operate with high-level abstractions of resources, e.g. “memory” or
“thread”, leaving the resource manager to endow these with precise semantics.

The cfNet model provides a means to formally specify the structure of re-
sources provided by the platform and the dependencies among them. This spec-
ification serves as an abstraction layer, which allows designers to focus on the
resources immediately relevant to the application functionality, while taking care
of low-level structure and dependencies inherent to the specific target platform.
Thus, our approach simplifies application design and greatly enhances portabil-
ity. This is particularly useful for platforms with complex resource architectures,
such as the Massively Parallel Processor Arrays (MPPA) (e.g. Kalray), or cloud
platforms, where the resource architecture can change dynamically at run time.

In this paper, we have defined the cfNet model and provided its semantics,
defining a constraint problem for a given initial resource request. The cfNet
model comprises inhibitor arcs. On one hand, these increase the expressiveness
of the model and simplify certain constraint problems by reducing the number
of variables involved. On the other hand, inhibitors can generate conflicts in-
troducing ambiguity in the constraint problem definition. We have provided a
sufficient condition—which can be easily checked syntactically—for the cfNet to
be conflict-free. For cfNets that do not satisfy this condition, we have provided
an efficient method for determining whether a given inhibitor induces a conflict.
As shown by the virtual resources example, reachable conflicts can appear, for
example, when the use of different instances of the same similar resource type
are preferable in different situations. Such conflicts can be dynamically resolved
by defining priorities between conflicting transitions.

In future work, we are planning to further improve the conflict detection
algorithm: the encoding refinement presented in this paper excludes only one
marking; by exploiting the causality hyper-graph, more unreachable markings
could be excluded in one step. Similarly, the structure of a cfNet could be ex-
ploited for building concurrent or distributed resource allocators. We also con-
sider implementing the cfNet model in the JavaBIP [5,6] component coordination
framework in order to evaluate the practical performance, using various SMT
and constraint solvers.
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