
CORRESPONDENCE FUNCTORS AND FINITENESS

CONDITIONS

SERGE BOUC AND JACQUES THÉVENAZ

Abstract. We investigate the representation theory of finite sets. The cor-
respondence functors are the functors from the category of finite sets and

correspondences to the category of k-modules, where k is a commutative ring.

They have various specific properties which do not hold for other types of func-
tors. In particular, if k is a field and if F is a correspondence functor, then F

is finitely generated if and only if the dimension of F (X) grows exponentially

in terms of the cardinality of the finite set X. Moreover, in such a case, F has
actually finite length. Also, if k is noetherian, then any subfunctor of a finitely

generated functor is finitely generated.

1. Introduction

Representations of categories have been used by many authors in different contexts.
The present paper is the first in a series which develops the theory in the case of
the category whose objects are all finite sets and morphisms are all correspondences
between finite sets.

For representing a category of finite sets, there are several possible choices. Pi-
rashvili [Pi] treats the case of pointed sets and maps, while Church, Ellenberg and
Farb [CEF] consider the case where the morphisms are all injective maps. Putman
and Sam [PS] use all k-linear splittable injections between finite-rank free k-modules
(where k is a commutative ring). Here, we move away from such choices by using
all correspondences as morphisms. The cited papers are concerned with applica-
tions to cohomological stability, while we develop our theory without any specific
application in mind. The main motivation is provided by the fact that finite sets
are basic objects in mathematics. Moreover, the theory turns out to have many
quite surprising results, which justify the development presented here.

Let C be the category of finite sets and correspondences. We define a correspon-
dence functor over a commutative ring k to be a functor from C to the category
k-Mod of all k-modules. As much as possible, we develop the theory for an arbitrary
commutative ring k. However, let us start with the case when k is a field. If F is a
correspondence functor over a field k, we prove that F is finitely generated if and
only if the dimension of F (X) grows exponentially in terms of the cardinality of the
finite set X (Theorem 8.7). In such a case, we also prove the striking fact that F has
finite length (Theorem 9.2). This result was obtained independently by Gitlin [Gi]
(for a field k of characteristic zero, or algebraically closed), using a criterion proved
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by Wiltshire-Gordon [WG]. Moreover, for finitely generated correspondence func-
tors, we show that the Krull-Remak-Schmidt theorem holds (Proposition 6.6) and
that projective functors coincide with injective functors (Theorem 10.6).

Suppose that k is a field. By well-known results about representations of cat-
egories, simple correspondence functors can be classified. In our case, they are
parametrized by triples (E,R, V ), where E is a finite set, R is a partial order rela-
tion on E, and V is a simple kAut(E,R)-module (Theorem 4.7). This is the first
indication of the importance of posets in our work. However, if SE,R,V is the simple
functor parametrized by (E,R, V ), then it is quite hard to describe the evaluation
SE,R,V (X) at a finite set X. We will achieve this in a future paper [BT3] by giving
a closed formula for its dimension.

A natural question when dealing with a commutative ring k is to obtain specific
results when k is noetherian. We follow this track in Section 11 and show for
instance that any subfunctor of a finitely generated correspondence functor is again
finitely generated (Corollary 11.5). Also, we obtain stabilization results for Hom
and Ext between correspondence functors evaluated at large enough finite sets
(Theorem 12.3).

This article uses essentially only standard facts from algebra and representation
theory, with the following exceptions. A few basic results in Section 2 have been
imported from elsewhere, but the main exception is the algebra EE of essential
relations on a finite set E. This algebra has been analyzed in [BT1] and all its
simple modules have been classified there. This uses the fundamental module PEfR
associated to a finite poset (E,R) and there is an explicit description of the action
of relations on PEfR. All the necessary background on this algebra EE of essential
relations is recalled in Section 4. It follows that our approach of the parametrization
of simple functors is based on [BT1] since it uses the fundamental modules PEfR
in an important way.

2. The representation theory of categories

Before introducing the category C of finite sets and correspondences, we first recall
some standard facts from the representation theory of categories. Let D be a
category and let X and Y be two objects of D. We adopt a slightly unusual
notation by writing D(Y,X) for the set of all morphisms from X to Y . We reverse
the order of X and Y in view of having later a left action of morphisms behaving
nicely under composition.

We assume that D is small (or more generally that a skeleton of D is small). This
allows us to talk about the set of natural transformations between two functors
starting from D.

Throughout this paper, k denotes a commutative ring. It will sometimes be
noetherian and sometimes a field, but we shall always emphasize when we make
additional assumptions.

2.1. Definition. The k-linearization of a category D, where k is any commutative
ring, is defined as follows :

• The objects of kD are the objects of D.
• For any two objects X and Y , the set of morphisms from X to Y is the free
k-module kD(Y,X) with basis D(Y,X).

• The composition of morphisms in kD is the k-bilinear extension

kD(Z, Y )× kD(Y,X) −→ kD(Z,X)

of the composition in D.
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2.2. Definition. Let D be a category and k a commutative ring. A k-representation
of the category D is a k-linear functor from kD to the category k-Mod of k-modules.

We could have defined a k-representation of D as a functor from D to k-Mod, but
it is convenient to linearize first the category D (just as for group representations,
where one can first introduce the group algebra).

If F : kD → k-Mod is a k-representation of D and if X is an object of D, then
F (X) will be called the evaluation of F at X. Morphisms in kD act on the left
on the evaluations of F by setting, for every m ∈ F (X) and for every morphism
α ∈ kD(Y,X),

α ·m := F (α)(m) ∈ F (Y ) .

We often use a dot for this action of morphisms on evaluation of functors. With
our choice of notation, if β ∈ kD(Z, Y ), then

(βα) ·m = β · (α ·m) .

The category Fk(kD, k-Mod) of all k-representations of D is an abelian category.
We need a small skeleton ofD in order to have sets of natural transformations, which
are morphisms in Fk(kD, k-Mod), but we will avoid this technical discussion. A
sequence of functors

0 −→ F1 −→ F2 −→ F3 −→ 0

is exact if and only if, for every object X, the evaluation sequence

0 −→ F1(X) −→ F2(X) −→ F3(X) −→ 0

is exact. Also, a k-representation of D is called simple if it is nonzero and has no
proper nonzero subfunctor.

For any object X of D, consider the representable functor kD(−, X) (which
is a projective functor by Yoneda’s lemma). Its evaluation at an object Y is
the k-module kD(Y,X), which has a natural structure of a (kD(Y, Y ), kD(X,X))-
bimodule by composition.

2.3. Notation. Let X be an object of D and let W be a kD(X,X)-module. We
define

LX,W := kD(−, X)⊗kD(X,X) W .

This is a k-representation of D.

This satisfies the following adjunction property.

2.4. Lemma. Let F = Fk(kD, k- Mod) be the category of all k-representations
of D and let X be an object of D.

(a) The functor

kD(X,X)−Mod −→ F , W 7→ LX,W

is left adjoint of the evaluation functor

F −→ kD(X,X)−Mod , F 7→ F (X) .

In other words, for any k-representation F : kD → k-Mod and any kD(X,X)-
module W , there is a natural isomorphism

HomF (LX,W , F ) ∼= HomkD(X,X)(W,F (X)) .

Moreover LX,W (X) ∼= W as kD(X,X)-modules. In particular, there is a
k-algebra isomorphism EndF (LX,W ) ∼= EndkD(X,X)(W ).

(b) The functor kD(X,X)−Mod −→ F is right exact. It maps projective mod-
ules to projective functors, and indecomposable modules to indecomposable
functors.
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Proof : Part (a) is straightforward and is proved in Section 2 of [Bo1]. Part (b)
follows because this functor is left adjoint of an exact functor and satisfies the
property LX,W (X) ∼= W .

Our next result is a slight extension of the first lemma of [Bo1].

2.5. Lemma. Let X be an object of D and let W be a kD(X,X)-module. For
any object Y of D, let

JX,W (Y ) :=
{∑

i

φi ⊗ wi ∈ LX,W (Y ) | ∀ψ ∈ kD(X,Y ),
∑
i

(ψφi) · wi = 0
}
.

(a) JX,W is the unique subfunctor of LX,W which is maximal with respect to
the condition that it vanishes at X.

(b) If W is a simple module, then JX,W is the unique maximal subfunctor of
LX,W and LX,W /JX,W is a simple functor.

Proof : The proof is sketched in Lemma 2.3 of [BST] in the special case of biset
functors for finite groups, but it extends without change to representations of an
arbitrary category D.

Lemma 2.5 is our main tool for dealing with simple functors. We first fix the
notation.

2.6. Notation. Let X be an object of D and let W be a kD(X,X)-module. We
define

SX,W := LX,W /JX,W .

If W is a simple kD(X,X)-module, then SX,W is a simple functor.

We emphasize that LX,W and SX,W are defined for any kD(X,X)-module W
and any commutative ring k. Note that we always have JX,W (X) = {0} because if
a =

∑
i

φi ⊗ wi ∈ JX,W (X), then a = idX ⊗(
∑
i

φi · wi) = 0.

Therefore, we have isomorphisms of kD(X,X)-modules

LX,W (X) ∼= SX,W (X) ∼= W .

2.7. Proposition. Let S be a simple k-representation of D and let Y be an object
of D such that S(Y ) 6= 0.

(a) S(Y ) is a simple kD(Y, Y )-module.
(b) S ∼= SY,S(Y ).
(c) S is generated by S(Y ), that is, S(X) = kD(X,Y )S(Y ) for all objects X.

More precisely, if 0 6= u ∈ S(Y ), then S(X) = kD(X,Y ) · u.

Proof : (c) Given 0 6= u ∈ S(Y ), let S′(X) = kD(X,Y ) · u for all objects X. This
clearly defines a nonzero subfunctor S′ of S, so S′ = S by simplicity of S.

(a) This follows from (c).

(b) By the adjunction of Lemma 2.4, the identity id : S(Y )→ S(Y ) corresponds
to a non-zero morphism θ : LY,S(Y ) → S. Since S is simple, θ must be surjec-
tive. But SY,S(Y ) is the unique simple quotient of LY,S(Y ), by Lemma 2.5 and
Notation 2.6, so S ∼= SY,S(Y ).
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It should be noted that a simple k-representation S has many possible realiza-
tions S ∼= SY,W as above, where W = S(Y ) 6= 0. However, if there is a notion
of unique minimal object, then one can parametrize simple functors S by setting
S ∼= SY,W , where Y is the unique minimal object such that S(Y ) 6= 0 (see Theo-
rem 4.2 for the case of correspondence functors).

Our next proposition is Proposition 3.5 in [BST] in the case of biset functors,
but it holds more generally and we just recall the proof of [BST].

2.8. Proposition. Let S be a simple k-representation of D and let Y be an object
of D such that S(Y ) 6= 0. Let F be any k-representation of D. Then the following
are equivalent:

(a) S is isomorphic to a subquotient of F .
(b) The simple kD(Y, Y )-module S(Y ) is isomorphic to a subquotient of the

kD(Y, Y )-module F (Y ).

Proof : It is clear that (a) implies (b). Suppose that (b) holds and let W1, W2 be
submodules of F (Y ) such that W2 ⊂W1 and W1/W2

∼= S(Y ). For i ∈ {1, 2}, let Fi
be the subfunctor of F generated by Wi. Explicitly, for any object X of D, Fi(X) =
kD(X,Y ) ·Wi ⊆ F (X). Then Fi(Y ) = Wi and (F1/F2)(Y ) = W1/W2

∼= S(Y ).
The isomorphism S(Y )→ (F1/F2)(Y ) induces, by the adjunction of Lemma 2.4, a
nonzero morphism θ : LY,S(Y ) → F1/F2. Since S(Y ) is simple, LY,S(Y ) has a unique
maximal subfunctor JY,S(Y ), by Lemma 2.5, and LY,S(Y )/JY,S(Y )

∼= SY,S(Y )
∼= S,

by Proposition 2.7. Let F ′1 = θ(LY,S(Y )) and F ′2 = θ(JY,S(Y )). Since θ 6= 0, we
obtain

F ′1/F
′
2
∼= LY,S(Y )/JY,S(Y )

∼= SY,S(Y )
∼= S ,

showing that S is isomorphic to a subquotient of F .
(Actually, as observed by Hida and Yagita in Lemma 3.1 of [HY], we have an

equality F ′1 = F1, because both subfunctors are generated by their commun evalu-
ation at Y .)

3. Correspondence functors

Leaving the general case, we now prepare the ground for the category C we are
going to work with.

3.1. Definition. Let X and Y be sets.

(a) A correspondence from X to Y is a subset of the cartesian product Y ×X.
Note that we have reversed the order of X and Y for the reasons mentioned
at the beginning of Section 2.

(b) A correspondence is often called a relation but we use this terminology only
when X = Y , in which case we say that a subset of X × X is a relation
on X.

(c) If σ is a permutation of X, then there is a corresponding relation on X
which we write

∆σ := {(σ(x), x) ∈ X ×X | x ∈ X} .

In particular, when σ = id, we also write

∆id = ∆X = {(x, x) ∈ X ×X | x ∈ X} .
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3.2. Definition. Let C denote the following category :

• The objects of C are the finite sets.
• For any two finite sets X and Y , the set C(Y,X) is the set of all correspon-

dences from X to Y .
• The composition of correspondences is as follows. Given R ⊆ Z × Y and
S ⊆ Y ×X, then RS is defined by

RS := { (z, x) ∈ Z ×X | ∃ y ∈ Y such that (z, y) ∈ R and (y, x) ∈ S } .

The identity morphism idX is the diagonal subset ∆X ⊆ X ×X (in other words
the equality relation on X).

3.3. Definition. Let kC be the linearization of the category C, where k is any
commutative ring (see Definition 2.1).

(a) A correspondence functor (over k) is a k-representation of the category C,
that is, a k-linear functor from kC to the category k-Mod of k-modules.

(b) We let Fk = Fk(kC, k-Mod) be the category of all such correspondence
functors (an abelian category).

In part (b), we need to restrict to a small skeleton of C in order to have sets of
natural transformations, which are morphisms in Fk, but we avoid this technical
discussion. It is clear that C has a small skeleton, for instance by taking the full
subcategory having one object for each cardinality.

For any finite set E, we define

RE := kC(E,E) ,

the k-algebra of the monoid C(E,E) of all relations on E, in other words the al-
gebra of the semigroup of Boolean matrices of size |E|. The representable functor
kC(−, E) (sometimes called Yoneda functor) is the very first example of a corre-
spondence functor. By definition, it is actually isomorphic to the functor LE,RE ,
see Notation 2.3. If W is an RE-module generated by a single element w (for
instance a simple module), then the functor LE,W is isomorphic to a quotient of
kC(−, E) via the surjective homomorphism

kC(−, E) −→ LE,W = kC(−, E)⊗RE W , φ 7→ φ⊗ w .

The representable functor kC(−, E) is projective (by Yoneda’s lemma).
Our next result is basic, but has several important corollaries.

3.4. Lemma. Let E and F be finite sets with |E| ≤ |F |. There exist correspon-
dences i∗ ∈ C(F,E) and i∗ ∈ C(E,F ) such that i∗i∗ = idE.

Proof : Since |E| ≤ |F |, there exists an injective map i : E ↪→ F . Let i∗ ⊆ F ×E
denote the correspondence

i∗ =
{(
i(e), e

)
| e ∈ E

}
,

and i∗ ⊆ E × F denote the correspondence

i∗ =
{(
e, i(e)

)
| e ∈ E

}
.

As i is injective, one checks easily that i∗i∗ = ∆E , that is, i∗i∗ = idE .

In other words, this lemma says that the object E of C behaves like a direct
summand of the object F whenever |E| ≤ |F |.
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3.5. Corollary. Let E and F be finite sets with |E| ≤ |F |. The representable
functor kC(−, E) is isomorphic to a direct summand of the representable func-
tor kC(−, F ).

Proof : Right multiplication by i∗ defines a homomorphism of correspondence
functors

kC(−, E) −→ kC(−, F ) ,

and right multiplication by i∗ defines a homomorphism of correspondence functors

kC(−, F ) −→ kC(−, E) .

Their composite is the identity of kC(−, E), because i∗i∗ = idE .

3.6. Corollary. Let E and F be finite sets with |E| ≤ |F |. The left kC(F, F )-
module kC(F,E) is projective.

Proof : By Corollary 3.5, kC(F,E) is isomorphic to a direct summand of kC(F, F ),
which is free.

3.7. Corollary. Let E and F be finite sets with |E| ≤ |F |. Let M be a correspon-
dence functor. If M(F ) = 0, then M(E) = 0.

Proof : For any m ∈M(E), we have m = i∗i∗ ·m. But i∗ ·m ∈M(F ), so i∗ ·m = 0.
Therefore m = 0.

3.8. Corollary. Let E and F be finite sets with |E| ≤ |F |. For every finite set X,
composition in the category kC

µ : kC(X,F )⊗RF kC(F,E) −→ kC(X,E)

is an isomorphism.

Proof : The inverse of µ is given by

φ : kC(X,E) −→ kC(X,F )⊗RF kC(F,E) , φ(α) = αi∗ ⊗ i∗ .
Composing with µ, we obtain µφ(α) = µ(αi∗ ⊗ i∗) = αi∗i∗ = α, so µφ = id. On
the other hand, if β ∈ kC(X,F ) and γ ∈ kC(F,E), then γi∗ belongs to RF and
therefore

φµ(β ⊗ γ) = φ(βγ) = βγi∗ ⊗ i∗ = β ⊗ γi∗i∗ = β ⊗ γ ,
showing that φµ = id.

Now we move to direct summands of representable functors, given by some
idempotent. If R is an idempotent in RE , then kC(−, E)R is a direct summand
of kC(−, E), hence projective again. In particular, if R is a preorder on E, that is,
a relation which is reflexive and transitive, then R is idempotent (because R ⊆ R2

by reflexivity and R2 ⊆ R by transitivity). There is an equivalence relation ∼
associated with R, defined by

x ∼ y ⇐⇒ (x, y) ∈ R and (y, x) ∈ R .

Then R induces an order relation R on the quotient set E = E/ ∼ such that

(x, y) ∈ R ⇐⇒ (x, y) ∈ R ,

where x denotes the equivalence class of x under ∼.
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3.9. Lemma. Let E be a finite set and let R be a preorder on E. Let R be
the corresponding order on the quotient set E = E/ ∼ and write e 7→ e for the
quotient map E → E. The correspondence functors kC(−, E)R and kC(−, E)R are
isomorphic via the isomorphism

kC(−, E)R −→ kC(−, E)R , S 7→ S ,

where for any correspondence S ⊆ X×E, the correspondence S ⊆ X×E is defined
by

(x, e) ∈ S ⇐⇒ (x, e) ∈ S .

Proof : It is straightforward to check that S is well-defined. If S ∈ C(X,E)R, then
S = SR and it follows that S = S R. Surjectivity is easy and injectivity follows
from the definition of S.

This shows that it is relevant to consider the functors kC(−, E)R where R is an
order on E. We will see later that they play an important role in connection with
simple functors.

We end this section with the definition of duality.

3.10. Proposition. Let X and Y be finite sets. If R ⊆ Y ×X, let Rop denote
the opposite correspondence, defined by

Rop := {(x, y) ∈ X × Y | (y, x) ∈ R} ⊆ X × Y .

Then the assignment R 7→ Rop induces an isomorphism from C to the opposite
category Cop, which extends to an isomorphism from kC to kCop.

Proof : Let X, Y , Z be finite sets, R ⊆ Y ×X and S ⊆ Z × Y . One checks easily
that (SR)op = RopSop.

We use opposite correspondences to define dual functors. The notion will be
used in Section 10.

3.11. Definition. Let F be a correspondence functor over k. The dual F \ of F is
the correspondence functor defined on a finite set X by

F \(X) := Homk

(
F (X), k

)
.

If Y is a finite set and R ⊆ Y ×X, then the map F \(R) : F \(X)→ F \(Y ) is defined
by

∀α ∈ F \(X), F \(R)(α) := α ◦ F (Rop) .

4. The parametrization of simple correspondence functors

In order to study simple modules or simple functors, it suffices to work over a
field k, by standard commutative algebra. If we assume that k is a field, then the
evaluation at a finite set X of a representable functor, or of a simple functor, is
always a finite-dimensional k-vector space. As before, we continue to work with an
arbitrary commutative base ring k and assume that it is a field when necessary.
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4.1. Definition. A minimal set for a correspondence functor F is a finite set X
of minimal cardinality such that F (X) 6= 0. For a nonzero functor, such a minimal
set always exists and is unique up to bijection.

Our next task is to describe the parametrization of simple correspondence func-
tors. This uses the algebra

RX := kC(X,X)

of all relations on X. This algebra was studied in [BT1] and we use this approach.
A relation R on X is called essential if it does not factor through a set of cardinality
strictly smaller than |X|. In other words, R has maximal Schein rank in the sense
of Section 1.4 of [Ki]. The k-submodule generated by the set of inessential relations
is a two-sided ideal

IX :=
∑
|Y |<|X|

kC(X,Y )kC(Y,X)

and the quotient

EX := kC(X,X)/IX

is called the essential algebra. A large part of its structure has been elucidated
in [BT1].

The following parametrization theorem is similar to Proposition 2 in [Bo1] or
Theorem 4.3.10 in [Bo2]. The context here is different, but the proof is essentially
the same.

4.2. Theorem. Assume that k is a field.

(a) Let S be a simple correspondence functor, let E be a minimal set for S, and
let W = S(E). Then W is a simple module for the essential algebra EE
(with IE acting by zero) and S ∼= SE,W .

(b) Let E be a finite set and let W be a simple module for the essential algebra
EE, viewed as a module for the algebra RE by making IE act by zero on W .
Then E is a minimal set for SE,W . Moreover, SE,W (E) ∼= W (as EE-
modules).

(c) The set of isomorphism classes of simple correspondence functors is par-
ametrized by the set of isomorphism classes of pairs (E,W ) where E is a
finite set and W is a simple EE-module.

Proof : (a) Since S(Y ) = {0} if |Y | < |E|, we have

IE · S(E) =
∑
|Y |<|E|

kC(E, Y )kC(Y,E) · S(E) ⊆
∑
|Y |<|E|

kC(E, Y ) · S(Y ) = {0} ,

so S(E) is a module for the essential algebra EE . Now the identity of S(E) corre-
sponds by adjunction to a nonzero homomorphism LE,W → S, where W = S(E)
(see Lemma 2.4). This homomorphism is surjective since S is simple. But LE,W
has a unique simple quotient, namely SE,W , hence S ∼= SE,W .

(b) Suppose that SE,W (Y ) 6= {0}. Then LE,W (Y ) 6= JE,W (Y ), so there exists
a correspondence φ ∈ C(Y,E) and v ∈ W such that φ⊗ v ∈ LE,W (Y )− JE,W (Y ).
By definition of JE,W , this means that there exists a correspondence ψ ∈ C(E, Y )
such that ψφ · v 6= 0. Since W is a module for the essential algebra EE = RE/IE ,
we have ψφ /∈ IE . But ψφ factorizes through Y , so we must have |Y | ≥ |E|. Thus
E is a minimal set for SE,W . The isomorphism SE,W (E) ∼= W is a general fact
mentioned before.

(c) This follows from (a) and (b).
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Theorem 4.2 reduces the classification of simple correspondence functors to the
question of classifying all simple modules for the essential algebra EE . Fortunately,
this has been achieved in [BT1]. An alternative path would be to use the classical
approach to simple RE-modules via idempotents in the semigroup C(E,E) and
Green’s theory of J-classes (see the textbook [CP], or the recent article [GMS] for
a modern point of view). We do not follow this approach because we need later in
an important way a fundamental module, defined below, which is not part of the
classical approach, but is the key for the classification in [BT1].

The simple EE-modules are actually modules for a quotient PE = EE/N where
N is a nilpotent ideal defined in [BT1]. We call PE the algebra of permuted orders,
because it has a k-basis consisting of all relations on E of the form ∆σR, where σ
runs through the symmetric group ΣE of all permutations of E, and R is an order
on E. By an order, we always mean a partial order relation. The product of two
orders R and S in PE is the transitive closure of R ∪ S if R ∪ S is an order, and
zero otherwise.

We let O be the set of all orders on E and Aut(E,R) the stabilizer of the order R
under the action of the symmetric group ΣE by conjugation. For the description
of simple EE-modules, we need the following new basis of PE (see Theorem 6.2
in [BT1] for details).

4.3. Lemma.

(a) There is a set {fR | R ∈ O} of orthogonal idempotents of PE whose sum
is 1, such that PE has a k-basis consisting of all elements of the form ∆σfR,
where σ ∈ ΣE and R ∈ O.

(b) For any σ ∈ ΣE, we have σfR = f σR, where σx = ∆σx∆σ−1 for any
x ∈ PE. In particular, ∆σfR∆σ−1 = fR if σ ∈ Aut(E,R).

(c) For any order Q on E, we have :

QfR 6= 0 ⇐⇒ QfR = fR ⇐⇒ Q ⊆ R .

For the description of simple EE-modules and then simple correspondence func-
tors, we will make use of the left EE-module PEfR. This module is actually defined
without assuming that k is a field.

4.4. Definition. Let (E,R) be a finite poset (i.e. E is a finite set and R is an
order on E). We call PEfR the fundamental module for the algebra EE, associated
with the poset (E,R).

We now describe its structure.

4.5. Proposition. Let (E,R) be a finite poset

(a) The fundamental module PEfR is a left module for the algebra PE, hence
also a left module for the essential algebra EE and for the algebra of rela-
tions RE.

(b) PEfR is a free k-module with a k-basis consisting of the elements ∆σfR,
where σ runs through the group ΣE of all permutations of E.

(c) PEfR is a (PE , kAut(E,R))-bimodule and the right action of kAut(E,R)
is free.

(d) The action of the algebra of relations RE on the module PEfR is given as
follows. For any relation Q ∈ C(E,E),

Q ·∆σfR =

{
∆τσfR if ∃τ ∈ ΣE such that ∆E ⊆ ∆τ−1Q ⊆ σR,
0 otherwise ,

where ∆E is the diagonal of E × E, and σR =
{(
σ(e), σ(f)

)
| (e, f) ∈ R

}
(recall that τ is unique in the first case).
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Proof : See Corollary 7.3 and Proposition 8.5 in [BT1].

The description of all simple EE-modules is as follows (see Theorem 8.1 in [BT1]
for details).

4.6. Theorem. Assume that k is a field and let E be a finite set.

(a) Let R be an order on E and let PEfR be the corresponding fundamental
module. If V is a simple kAut(E,R)-module, then

TR,V := PEfR ⊗kAut(E,R) V

is a simple PE-module (hence also a simple EE-module).
(b) Every simple EE-module is isomorphic to a module TR,V as in (a).
(c) For any permutation σ ∈ ΣE, we have T σR, σV ∼= TR,V , where σR =

∆σR∆σ−1 is the conjugate order and σV is the conjugate module.
(d) The set of isomorphism classes of simple EE-modules is parametrized by the

set of conjugacy classes of pairs (R, V ) where R is an order on E and V is
a simple kAut(E,R)-module.

Putting together Theorem 4.2 and Theorem 4.6, we finally obtain the following
parametrization, which is essential for our purposes.

4.7. Theorem. Assume that k is a field. The set of isomorphism classes of
simple correspondence functors is parametrized by the set of isomorphism classes
of triples (E,R, V ) where E is a finite set, R is an order on E, and V is a simple
kAut(E,R)-module.

Proof : By Theorem 4.2, the isomorphism classes of simple correspondence func-
tors are parametrized by pairs (E,W ), where E is a finite set and W is a simple
EE-module. Now by Theorem 4.7, the isomorphism classes of simple EE-modules W
are parametrized by pairs (R, V ), where R is an order on E and V is a simple
kAut(E,R)-module. Hence the pairs (E,W ) become triples (E,R, V ).

4.8. Notation. Let (E,R) be a finite poset.

(a) If V is a simple kAut(E,R)-module, we denote by SE,R,V the simple cor-
respondence functor parametrized by the triple (E,R, V ). Explicitly,

SE,R,V = LE,TR,V /JE,TR,V .

(b) More generally, for any commutative ring k and any kAut(E,R)-module V ,
we define the PE-module (hence also an RE-module)

TR,V := PEfR ⊗kAut(E,R) V

and the correspondence functor

SE,R,V := LE,TR,V /JE,TR,V .

We end this section with a basic result concerning the correspondence functors
SE,R,V , where k is any commutative ring and V is any kAut(E,R)-module.

4.9. Lemma. Let (E,R) be a finite poset and let V be any kAut(E,R)-module.

(a) E is a minimal set for SE,R,V .
(b) SE,R,V (E) ∼= TR,V as RE-modules.
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Proof : Both PEfR and TR,V = PEfR ⊗kAut(E,R) V are left modules for the
essential algebra EE . Therefore, the argument given in part (b) of Theorem 4.2
shows again that E is a minimal set for SE,R,V . Moreover, since JE,TR,V vanishes
on evaluation at E, we have

SE,R,V (E) ∼= LE,TR,V (E) = TR,V = PEfR ⊗kAut(E,R) V ,

as required.

When k is a field and V is simple, we recover the simple module SE,R,V (E) =
TR,V of Theorem 4.6.

5. Small examples

In this section, we describe two small examples.

5.1. Example. Let E = ∅ be the empty set and consider the representable functor
kC(−, ∅). Then C(X, ∅) = {∅} is a singleton for any finite set X, so kC(X, ∅) ∼=
k. Moreover, any correspondence S ∈ C(Y,X) is sent to the identity map from
kC(X, ∅) ∼= k to kC(Y, ∅) ∼= k. This functor deserves to be called the constant
functor. We will denote it by k.

Assume that k is a field. The algebra kC(∅, ∅) ∼= k has a unique simple module k.
It is then easy to check that L∅,k = kC(−, ∅) and J∅,k = {0}. Therefore

kC(−, ∅) = S∅,∅,k

the simple functor indexed by (∅, ∅, k). Here the second ∅ denotes the only rela-
tion on the empty set, while k is the only simple module for the group algebra
kAut(E,R) = kΣ∅ ∼= k, where Σ∅ = {id} is the symmetric group of the empty set.
Note that S∅,∅,k is projective, because it is a representable functor.

5.2. Example. Let E = {1} be a set with one element and consider the rep-
resentable functor C(−, {1}). Then C(X, {1}) is in bijection with the set B(X) of
all subsets of X, because X × {1} ∼= X. It is easy to see that a correspondence
S ∈ C(Y,X) is sent to the map

B(X) −→ B(Y ) , A 7→ SA ,

where SA = {y ∈ Y | ∃ a ∈ A such that (y, a) ∈ S}. Thus kB ∼= kC(−, {1}) is a
correspondence functor such that kB(X) is a free k-module with basis B(X) and
rank 2|X| for every finite set X.

The functor kB has a subfunctor isomorphic to the constant functor S∅,∅,k, be-
cause B(X) contains the element ∅ which is mapped to ∅ by any correspondence.
We claim that, if k is a field, the quotient kB/S∅,∅,k is a simple functor.

Assume that k is a field. The algebra kC({1}, {1}) has dimension 2, actually
isomorphic to k×k with two primitive idempotents ∅ and {(1, 1)}−∅. The essential
algebra E{1} is a one-dimensional quotient and its unique simple module W is one-
dimensional and corresponds to the pair (R, k), where R is the only order relation
on {1} and k is the only simple module for the group algebra kAut(E,R) = kΣ{1} ∼=
k, with Σ{1} = {id} the symmetric group of {1}. Thus there is a simple functor
S{1},W = S{1},R,k.

The kernel of the quotient map

kB ∼= kC(−, {1}) −→ kC(−, {1})⊗kC({1},{1}) W = L{1},W

is the constant subfunctor S∅,∅,k mentioned above, because ∅ ∈ C(X, {1}) can be
written ∅ · ∅, with the second empty set belonging to C({1}, {1}), thus acting by
zero on W . Now we know that L{1},W /J{1},W = S{1},W and we are going to show
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that J{1},W = {0}. It then follows that L{1},W = S{1},W is simple and isomorphic
to kB/S∅,∅,k, proving the claim above.

In order to prove that J{1},W = {0}, we let u ∈ L{1},W (X), which can be written

u =
∑

A∈B(X)

λA(A× {1})⊗ w ,

where w is a generator of W and λA ∈ k for all A. Since the empty set acts by zero
on w, the sum actually runs over nonempty subsets A ∈ B(A). Then u ∈ J{1},W (X)
if and only if, for all ({1} ×B) ∈ C({1}, X), we have∑

A∈B(X)

λA ({1} ×B)(A× {1}) · w = 0 .

Since ∅ acts by zero and {1} acts as the identity, we obtain

({1} ×B)(A× {1}) · w =

{
0 if B ∩A = ∅ ,
w if B ∩A 6= ∅ .

This yields the condition∑
A∩B 6=∅

λA = 0 , for every nonempty B ∈ B(X) .

We prove by induction that λC = 0 for every nonempty C ∈ B(X). Subtracting
the condition for B = X and for B = X − C, we obtain

0 =
∑
A 6=∅

λA −
∑
A6⊆C

λA =
∑
∅6=A⊆C

λA .

If C = {c} is a singleton, we obtain λ{c} = 0 and this starts the induction. In the
general case, we obtain by induction λA = 0 for ∅ 6= A 6= C, so we are left with
λC = 0. Therefore u = 0 and so J{1},W = {0}.

There is a special feature of this small example, namely that the exact sequence

0 −→ S∅,∅,k −→ kB −→ S{1},R,k −→ 0

splits. This is because there is a retraction kB → S∅,∅,k defined by

kB(X) −→ k , A 7→ 1 ,

which is easily checked to be a homomorphism of functors. Since kB is projective
(because it is a representable functor), its direct summand S{1},R,k is projective.

5.3. Remark. In both Example 5.1 and Example 5.2, there is a unique order
relation R on E, which is a total order. Actually, these examples are special cases
of the general situation of a total order, which is studied in [BT2].

6. Finite generation

In this section, we analyze the property of finite generation for correspondence
functors.
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6.1. Definition. Let {Ei | i ∈ I} be a family of finite sets indexed by a set I
and, for every i ∈ I, let mi ∈ M(Ei). A correspondence functor M is said to
be generated by the set {mi | i ∈ I} if for every finite set X and every element
m ∈M(X), there exists a finite subset J ⊆ I such that

m =
∑
j∈J

αjmj , for some αj ∈ kC(X,Ej) (where j ∈ J) .

In the case where I is finite, M is said to be finitely generated.

We remark that, in the sum above, each αj decomposes as a finite k-linear
combination αj =

∑
S∈C(X,Ej) λS S where λS ∈ k. Therefore, every m ∈ M(X)

decomposes further as a (finite) k-linear combination

m =
∑
j∈J

S∈C(X,Ej)

λS Smj .

6.2. Example. If E is a finite set, the representable functor kC(−, E) is finitely
generated. It is actually generated by a single element, namely ∆E ∈ kC(E,E).

6.3. Lemma. Let M be a finitely generated correspondence functor over k. Then,
for every finite set X, the evaluation M(X) is a finitely generated k-module. In
particular, if k is a field, then M(X) is finite-dimensional.

Proof : Let {mi | i = 1, . . . , n} be a finite set of generators of M , with mi ∈M(Ei).
Let BX = {Smi | S ∈ C(X,Ei), i = 1, . . . , n}. By definition and by the remark
above, every element of M(X) is a k-linear combination of elements of BX . But
BX is a finite set, so M(X) is finitely generated. If k is a field, this means that
M(X) is finite-dimensional.

It follows that, in order to understand finitely generated correspondence functors,
we could assume that all their evaluations are finitely generated k-modules. But
we do not need this for our next characterizations.

6.4. Proposition. Let M be a correspondence functor over k. The following
conditions are equivalent :

(a) M is finitely generated.

(b) M is isomorphic to a quotient of a functor of the form
n⊕
i=1

kC(−, Ei) for

some finite sets Ei (i = 1, . . . , n).
(c) M is isomorphic to a quotient of a functor of the form

⊕
i∈I

kC(−, E) for

some finite set E and some finite index set I.
(d) There exists a finite set E and a finite subset B of M(E) such that M is

generated by B.

Proof : (a) ⇒ (b). Suppose that M is generated by the set {mi | i = 1, . . . , n},
where mi ∈M(Ei). It follows from Yoneda’s lemma that there is a morphism

ψi : kC(−, Ei)→M

mapping ∆Ei ∈ C(Ei, Ei) to the element mi ∈M(Ei), hence mapping β ∈ C(X,Ei)
to βmi ∈M(X). Their sum yields a morphism

ψ :

n⊕
i=1

kC(−, Ei)→M .
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For any X and any m ∈ M(X), we have m =
n∑
i=1

αimi for some αi ∈ kC(X,Ei),

hence m = ψ(α1, . . . , αn), proving the surjectivity of ψ.

(b) ⇒ (c). Suppose that M is isomorphic to a quotient of a functor of the form
n⊕
i=1

kC(−, Ei). Let F be the largest of the sets Ei. By Corollary 3.5, each kC(−, Ei)

is a direct summand of kC(−, F ). Therefore, M is also isomorphic to a quotient of

the functor
n⊕
i=1

kC(−, F ).

(c) ⇒ (d). By Example 6.2, kC(−, E) is generated by ∆E ∈ kC(E,E). Let
bi ∈

⊕
i∈I

kC(E,E) having zero components everywhere, except the i-th equal to ∆E .

Since M is a quotient of
⊕
i∈I

kC(−, E), it is generated by the images of the ele-

ments bi. This is a finite set because I is finite by assumption.

(d) ⇒ (a). Since M is generated by B, it is finitely generated.

We apply this to the functors LE,V and SE,V defined in Lemma 2.4 and Nota-
tion 2.6.

6.5. Corollary. Let V be a finitely generated RE-module, where E is a finite set
and RE is the algebra of relations on E. Then LE,V and SE,V are finitely generated
correspondence functors.

Proof : Let {vi | i ∈ I} be a finite set of generators of V as an RE-module.
There is a morphism πi : kC(−, E) → LE,V mapping ∆E to vi ∈ LE,V (E) = V .
Therefore, we obtain a surjective morphism∑

i∈I
πi :

⊕
i∈I

kC(−, E) −→ LE,V ,

showing that LE,V is finitely generated. Now SE,V is a quotient of LE,V , so it is
also finitely generated.

6.6. Proposition. Let k be a noetherian ring.

(a) For any finitely generated correspondence functor M over k, the algebra
EndFk(M) is a finitely generated k-module.

(b) For any two finitely generated correspondence functors M and N , the k-
module HomFk(M,N) is finitely generated.

(c) If k is a field, the Krull-Remak-Schmidt theorem holds for finitely generated
correspondence functors over k.

Proof : (a) Since M is finitely generated, there exists a finite set E and a sur-
jective morphism π :

⊕
i∈I

kC(−, E) → M for some finite set I (Proposition 6.4).

Denote by A the subalgebra of EndFk
(⊕
i∈I

kC(−, E)
)

consisting of endomorphisms

ϕ such that ϕ(Kerπ) ⊆ Kerπ. The algebra A is isomorphic to a k-submodule of
EndFk

(⊕
i∈I

kC(−, E)
)
, which is isomorphic to a matrix algebra of size |I| over the

k-algebra kC(E,E) (because EndFk
(
kC(−, E)

) ∼= kC(E,E) by Yoneda’s lemma).
This matrix algebra is free of finite rank as a k-module. As k is noetherian, it
follows that A is a finitely generated k-module.

Now by definition of A, any ϕ ∈ A induces an endomorphism ϕ of M such
that ϕπ = πϕ. This yields an algebra homomorphism A → EndFk(M), which is
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surjective, since the functor kC(−, E) is projective. It follows that EndFk(M) is
also a finitely generated k-module.

(b) The functor M ⊕ N is finitely generated, hence V = EndFk(M ⊕ N) is a
finitely generated k-module, by (a). Since HomFk(M,N) embeds in V , it is also a
finitely generated k-module.

(c) If moreover k is a field, then EndFk(M) is a finite dimensional k-vector space,
by (a). Finding decompositions of M as a direct sum of subfunctors amounts to
splitting the identity of EndFk(M) as a sum of orthogonal idempotents. Since
EndFk(M) is a finite dimensional algebra over the field k, the standard theorems
on decomposition of the identity as a sum of primitive idempotents apply. Thus M
can be split as a direct sum of indecomposable functors, and such a decomposition
is unique up to isomorphism.

After the Krull-Remak-Schmidt theorem, we treat the case of projective covers.
Recall (see 2.5.14 in [AF] for categories of modules) that in an abelian category A,
a subobject N of an object P is called superfluous if for any subobject X of P , the
equality X +N = P implies X = P . Similarly, an epimorphism f : P →M in A is
called superfluous if Ker f is superfluous in P , or equivalently, if for any morphism
g : L → P in A, the composition f ◦ g is an epimorphism if and only if g is an
epimorphism. A projective cover of an object M of A is defined as a pair (P, p),
where P is projective and p is a superfluous epimorphism from P to M .

6.7. Proposition. Let M be a finitely generated correspondence functor over a
commutative ring k.

(a) Suppose that M is generated by M(E) where E is a finite. If (P, p) is a
projective cover of M(E) in RE-Mod, then (LE,P , p̃) is a projective cover
of M in Fk, where p̃ : LE,P → M is obtained from p : P → M(E) by the
adjunction of Lemma 2.4.

(b) If k is a field, then M admits a projective cover.
(c) In particular, when k is a field, let E be a finite set, let R be an order relation

on E, and let V be a simple kAut(E,R)-module. Let moreover (P, p) be
a projective cover of PfR ⊗kAut(E,R) V in RE-Mod. Then (LE,P , p̃) is a
projective cover of the simple correspondence functor SE,R,V .

Proof : (a) (This was already proved in Lemme 2 of [Bo1].) By Lemma 2.4,
the functor Q 7→ LE,Q maps projectives to projectives. So the functor LE,P is
projective. Since M is generated by M(E), and since the evaluation at E of the
morphism p̃ : LE,P → M is equal to p : P → M(E), it follows that p̃ is surjective.
If N is any subfunctor of LE,P such that p̃(N) = M , then in particular N(E) ⊆ P
and p

(
N(E)

)
= M(E). Since p is superfluous, it follows that N(E) = P , hence

N = LE,P since LE,P is generated by its evaluation P at E.

(b) The algebra RE is a finite dimensional algebra over the field k. Hence any
finite dimensional RE-module admits a projective cover. Therefore (b) follows
from (a).

(c) The evaluation of the simple functor SE,R,V at E is the simple RE-module
PfR ⊗kAut(E,R) V . Hence (c) follows from (a) and (b).

7. Bounded type

In this section, we analyze a notion which is more general than finite generation.
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7.1. Definition. Let k be a commutative ring and let M be a correspondence
functor over k.

(a) We say that M has bounded type if there exists a finite set E such that M
is generated by M(E).

(b) We say that M has a bounded presentation if there are projective correspon-
dence functors P and Q of bounded type and an exact sequence of functors

Q→ P →M → 0 .

Such a sequence is called a bounded presentation of M .

Suppose that M has bounded type and let E be a finite set such that M is
generated by M(E). It is elementary to see that M is finitely generated if and only
if M(E) is a finitely generated RE-module (using Example 6.2 and Lemma 6.3).
Thus an infinite direct sum of copies of a simple functor SE,R,V has bounded type
(because it generated by its evaluation at E) but is not finitely generated. Also, a
typical example of a correspondence functor which does not have bounded type is

a direct sum of simple functors
∞⊕
n=0

SEn,Rn,Vn , where |En| = n for each n. This is

because SEn,Rn,Vn cannot be generated by a set of cardinality < n.

7.2. Lemma. Let k be a commutative ring and let M be a correspondence functor
over k. Suppose that M has bounded type and let E be a finite set such that M is
generated by M(E). For any finite set F with |F | ≥ |E|, the functor M is generated
by M(F ).

Proof : Let i∗ ∈ C(F,E) and i∗ ∈ C(E,F ) be as in Lemma 3.4, so that i∗i∗ = idE .
Saying that M is generated by M(E) amounts to saying that M(X) is equal to
kC(X,E)M(E), for any finite set X. It follows that

M(X) = kC(X,E)M(E)

= kC(X,E)i∗i∗M(E)

⊆ kC(X,F )i∗M(E)

⊆ kC(X,F )M(F ) ⊆M(X) ,

hence M(X) = kC(X,F )M(F ), i.e. M is generated by M(F ).

We are going to prove that any correspondence functor having a bounded presen-
tation is isomorphic to some functor LE,V . We first deal with the case of projective
functors.

7.3. Lemma. Suppose that a correspondence functor M has bounded type and let
E be a finite set such that M is generated by M(E). If M is projective, then for
any finite set F with |F | ≥ |E|, the RF -module M(F ) is projective, and the counit
morphism LF,M(F ) →M is an isomorphism.

Proof : By Lemma 7.2, M is generated by M(F ). Choosing a set B of generators
of M(F ) as an RF -module (e.g. B = M(F )), we see that M is also generated by B.
As in the beginning of the proof of Proposition 6.4, we can apply Yoneda’s lemma
and obtain a surjective morphism

⊕
b∈B

kC(−, F ) → M . Since M is projective, this

morphism splits, and its evaluation at F also splits as a map of RF -modules. Hence
M(F ) is isomorphic to a direct summand of a free RF -module, that is, a projective
RF -module.

By adjunction (Lemma 2.4), there is a morphism θ : LF,M(F ) → M which,
evaluated at F , gives the identity map of M(F ). As M is generated by M(F ), it
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follows that θ is surjective, hence split since M is projective. Let η : M → LF,M(F )

be a section of θ. Since, on evaluation at F , we have θF = idM(F ), the equation
θη = idM implies that, on evaluation at F , we get ηF = idM(F ). Therefore ηF θF =
idM(F ). Now ηθ : LF,M(F ) → LF,M(F ) corresponds by adjunction to

idM(F ) = ηF θF : M(F ) −→ LF,M(F )(F ) = M(F ) .

Therefore ηθ must be the identity. It follows that η and θ are mutual inverses.
Thus M ∼= LF,M(F ).

We now prove that any functor with a bounded presentation is an LE,V , and
conversely. In the case of a noetherian base ring k, this result will be improved in
Section 11.

7.4. Theorem.

(a) Suppose that a correspondence functor M has a bounded presentation

Q→ P →M → 0 .

Let E be a finite set such that P is generated by P (E) and Q is generated
by Q(E). Then for any finite set F with |F | ≥ |E|, the counit morphism

ηM,F : LF,M(F ) →M

is an isomorphism.
(b) If E is a finite set and V is an RE-module, then the functor LE,V has a

bounded presentation. More precisely, if

W1 →W0 → V → 0

is a projective resolution of V as an RE-module, then

LE,W1 → LE,W0 → LE,V → 0

is a bounded presentation of LE,V .

Proof : (a) Consider the commutative diagram

LF,Q(F )

ηQ,F

��

// LF,P (F )

ηP,F

��

// LF,M(F )

ηM,F

��

// 0

Q // P // M // 0

where the vertical maps are obtained by the adjunction of Lemma 2.4. This lemma
also asserts that the first row is exact. By Lemma 7.3, for any finite set F with
|F | ≥ |E|, the vertical morphisms ηQ,F and ηP,F are isomorphisms. Since the rows
of this diagram are exact, it follows that ηM,F is also an isomorphism.

(b) We use the adjunction of Lemma 2.4. Applying the right exact functor
U 7→ LE,U to the exact sequence W1 →W0 → V → 0 gives the exact sequence

LE,W1 → LE,W0 → LE,V → 0 .

By Lemma 2.4, LE,W1
and LE,W0

are projective functors, since W1 and W0 are
projective RE-modules. They all have bounded type since they are generated by
their evaluation at E.

Given a finite set E and an RE-module V , we define an induction procedure as
follows. For any finite set F , we define the RF -module

V ↑FE := kC(F,E)⊗RE V .

Notice that, by the definition of LE,V , we have LE,V (F ) = V ↑FE . To end this
section, we mention the behavior of the functors LE,V under induction.
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7.5. Proposition. Let E be a finite set and V be an RE-module. If F is a
finite set with |F | ≥ |E|, the equality LE,V (F ) = V ↑FE induces an isomorphism of
correspondence functors

LF,V↑FE
∼= LE,V .

Proof : Let M = LE,V . Then by Theorem 7.4, there exists a bounded presentation

Q→ P →M → 0

where Q = LE,W1 is generated by Q(E) and P = LE,W0 is generated by P (E).
Hence by Theorem 7.4, for any finite set F with |F | ≥ |E|, the counit morphism

ηM,F : LF,M(F ) →M

is an isomorphism. In other words ηM,F : LF,V↑FE → LE,V is an isomorphism.

8. Exponential behavior and finite length

In this section, we give a lower bound estimate for the dimension of the evaluations
of a simple functor SE,R,V , which is proved to behave exponentially. We also prove
that the exponential behavior is equivalent to finite generation.

We first need a well-known combinatorial lemma.

8.1. Lemma. Let E be a finite set and let G be a finite set containing E.

(a) For any finite set X, the number s(X,E) of surjective maps ϕ : X → E is
equal to

s(X,E) =

|E|∑
i=0

(−1)|E|−i
(
|E|
i

)
i|X| ,

or equivalently

s(X,E) =

|E|∑
j=0

(−1)j
(
|E|
j

)
(|E| − j)|X| .

(b) More generally, for any finite set X, the number ss(X,E,G) of all maps
ϕ : X → G such that E ⊆ ϕ(X) ⊆ G is equal to

ss(X,E,G) =

|E|∑
i=0

(−1)i
(
|E|
i

)
(|G| − i)|X| .

Proof : (a) Up to multiplication by |E|!, the number s(X,E) is known as a Stirling
number of the second kind. Either by Formula (24a) in Section 1.4 of [St], or by
a direct application of Möbius inversion (i.e. inclusion-exclusion principle in the
present case), we have

s(X,E) =
∑
B⊆E

(−1)|E−B||B||X| .

Setting |B| = i, the first formula in (a) follows.
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(b) Applying (a) to each subset A such that E ⊆ A ⊆ G, we obtain

ss(X,E,G) =
∑

E⊆A⊆G

s(X,A)

=
∑

E⊆A⊆G

∑
B⊆A

(−1)|A−B||B||X|

=
∑
B⊆G

( ∑
E∪B⊆A⊆G

(−1)|A−B|
)
|B||X|

But the inner sum is zero unless E ∪B = G. Therefore

ss(X,E,G) =
∑
B⊆G

E∪B=G

(−1)|G−B||B||X|

=
∑
C⊆E

(−1)|C|
(
|G− C|

)|X|
,

where the last equality follows by setting C = G−B. This proves part (b).

Now we prove our main lower bound estimate for the dimensions of the evalua-
tions of a simple functor.

8.2. Theorem. Suppose that k is a field and let SE,R,V be a simple correspondence
functor, where E is a finite set, R is an order on E, and V is a simple kAut(E,R)-
module. There exists a positive integer N and a positive real number c such that,
for any finite set X of cardinality at least N , we have

c|E||X| ≤ dim
(
SE,R,V (X)

)
≤
(
2|E|

)|X|
.

Proof : Recall that SE,R,V = LE,TR,V /JE,TR,V where TR,V denotes theRE-module

TR,V = PEfR ⊗kAut(E,R) V .

Since V is simple, it is generated by a single element v ∈ V − {0}. Since fRα =
αfR for any α ∈ Aut(E,R), it follows that the RE-module PEfR ⊗kAut(E,R) V is
generated by the single element fR ⊗ v. Therefore, we have a surjective morphism
of correspondence functors

kC(−, E) −→ kC(−, E)⊗RE PEfR ⊗kAut(E,R) V = LE,TR,V
U 7→ U ⊗ fR ⊗ v .

Since SE,R,V is a quotient of LE,TR,V , we obtain a surjective morphism of corre-
spondence functors

kC(−, E) −→ SE,R,V , U 7→ U ⊗ fR ⊗ v ,

where, for any U ∈ C(X,E), the element U ⊗ fR ⊗ v ∈ SE,R,V (X) denotes the class
of U ⊗ fR ⊗ v ∈ LE,TR,V (X).

We first prove the upper bound. This is easy and holds for every finite set X.
Since SE,R,V is isomorphic to a quotient of kC(−, E), we have

dim
(
SE,R,V (X)

)
≤ dim

(
kC(X,E)

)
= 2|X×E| =

(
2|E|

)|X|
.

In order to find a lower bound, for some finite set X, we introduce the set Φ of
all surjective maps ϕ : X → E. The symmetric group ΣE acts (on the left) on Φ
by composition. Since Φ consists of surjections onto E, this action is free, that is,
the stabilizer of each ϕ ∈ Φ is trivial. We consider the subgroup Aut(E,R) of ΣE
and we let A be a set of representatives of the set of left orbits Aut(E,R)\Φ.
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For any ϕ ∈ Φ, we define

Λϕ = {(x, e) ∈ X×E | (ϕ(x), e) ∈ R} and Γϕ = {(e, x) ∈ E×X | (e, ϕ(x)) ∈ R}

We claim that ΛϕR = Λϕ and RΓϕ = Γϕ. Since ∆E ⊆ R, we always have Λϕ =
Λϕ∆E ⊆ ΛϕR. Conversely, if (x, f) ∈ ΛϕR, then there exists e ∈ E such that
(x, e) ∈ Λϕ and (e, f) ∈ R, that is, (ϕ(x), e) ∈ R and (e, f) ∈ R. It follows that
(ϕ(x), f) ∈ R by transitivity of R, that is, (x, f) ∈ Λϕ. Thus ΛϕR ⊆ Λϕ and
equality follows. The proof for Γϕ is similar.

Now we consider the set

{Λϕ | ϕ ∈ A} ⊆ C(X,E) .

We want to prove that the image of this set in SE,R,V (X) is linearly independent,
from which we will deduce that |A| ≤ dim

(
SE,R,V (X)

)
. Suppose that

∑
ϕ∈A

λϕΛϕ is

mapped to zero in SE,R,V (X), where λϕ ∈ k for every ϕ ∈ A. In other words,∑
ϕ∈A

λϕΛϕ ⊗ fR ⊗ v = 0 , that is,
∑
ϕ∈A

λϕΛϕ ⊗ fR ⊗ v ∈ JE,TR,V .

The definition of JE,TR,V implies that, for every U ∈ C(E,X),∑
ϕ∈A

λϕUΛϕ · (fR ⊗ v) = 0 .

Choosing in particular U = Γψ and ψ ∈ A, we obtain :

(8.3) for every ψ ∈ A ,
∑
ϕ∈A

λϕΓψΛϕ · (fR ⊗ v) = 0 .

By Proposition 4.5, the action of the relation ΓψΛϕ on fR ⊗ v is given by

(ΓψΛϕ) · fR ⊗ v =

{
∆τfR ⊗ v if ∃τ ∈ ΣE such that ∆E ⊆ ∆τ−1ΓψΛϕ ⊆ R ,
0 otherwise .

In the first case, τ is unique.
We claim that

∆E ⊆ ∆τ−1ΓψΛϕ ⊆ R ⇐⇒ ΓψΛϕ = ∆τR .

If the left hand side holds, then multiply on the right by R and use the fact that
ΛϕR = Λϕ to obtain ∆τ−1ΓψΛϕ = R, hence ΓψΛϕ = ∆τR. Conversely, if the right
hand side holds, then ∆τ−1ΓψΛϕ = R, hence

R∆τ−1ΓψΛϕ = R2 = R

by transitivity and reflexivity of R. In particular, by reflexivity again,

∆E ⊆ R∆τ−1ΓψΛϕ

so that, for any (a, a) ∈ ∆E , there exists b ∈ E with (a, b) ∈ R and (b, a) ∈
∆τ−1ΓψΛϕ = R. By antisymmetry of R, it follows that b = a and therefore
(a, a) ∈ ∆τ−1ΓψΛϕ, so that ∆E ⊆ ∆τ−1ΓψΛϕ. This shows that the left hand side
holds, proving the claim.

We can now rewrite (8.3) as follows :

for every ψ ∈ A ,
∑

ϕ∈A , τ∈ΣE
ΓψΛϕ=∆τR

λϕ∆τfR ⊗ v = 0 .
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Write τ = σα with σ ∈ S and α ∈ Aut(E,R), where S denotes some set of repre-
sentatives of cosets ΣE/Aut(E,R). Since ∆αfR = fR∆α for every α ∈ Aut(E,R)
and since the tensor product is over kAut(E,R), we obtain

(8.4) for every ψ ∈ A ,
∑
σ∈S

∆σfR ⊗
( ∑
ϕ∈A ,α∈Aut(E,R)

ΓψΛϕ=∆σαR

λϕ∆αv
)

= 0 .

By Proposition 4.5, PEfR is a (PE , kAut(E,R))-bimodule with a k-basis consisting
of the elements ∆τfR, for τ ∈ ΣE . Therefore,

PEfR =
⊕
σ∈S

∆σfR · (kAut(E,R))

and it follows that

PEfR ⊗kAut(E,R) V =
⊕
σ∈S

∆σfR ⊗kAut(E,R) V .

Since the sum is direct and since fR ⊗kAut(E,R) V ∼= V because the right action
of Aut(E,R) on fR is free, each inner sum in (8.4) is zero. In particular, taking
σ = id (which we may choose in S), we get :

(8.5) for every ψ ∈ A ,
∑

ϕ∈A ,α∈Aut(E,R)
ΓψΛϕ=∆αR

λϕ∆αv = 0 .

Let us analyze the condition ΓψΛϕ = ∆αR. For any given x ∈ X, we can
choose e = ψ(x) and f = ϕ(x) and we obtain (e, x) ∈ Γψ and (x, f) ∈ Λϕ, hence
(e, f) ∈ ΓψΛϕ = ∆αR, that is, (α−1(e), f) ∈ R. In other words, if we write simply
≤R for the partial order R, we obtain α−1(ψ(x)) ≤R ϕ(x). This holds for every
x ∈ X and we define

ψ � ϕ ⇐⇒ ∃α ∈ Aut(E,R) such that α−1(ψ(x)) ≤R ϕ(x) for all x ∈ X .

Therefore the condition ΓψΛϕ = ∆αR implies that ψ � ϕ.
Now we prove that the relation � is a partial order on the set A. It is reflex-

ive, by taking simply α = id. It is transitive because if α−1(ψ(x)) ≤R ϕ(x) and
β−1(ϕ(x)) ≤R χ(x) for all x, then

(αβ)−1(ψ(x)) = β−1α−1(ψ(x)) ≤R β−1(ϕ(x)) ≤R χ(x)

using the fact that β−1 ∈ Aut(E,R). Finally, the relation � is antisymmetric
because if α−1(ψ(x)) ≤R ϕ(x) and β−1(ϕ(x)) ≤R ψ(x), then

(αβ)−1(ψ(x)) ≤R ψ(x)

from which it follows that

ψ(x) = (αβ)−n(ψ(x)) ≤R (αβ)−1(ψ(x)) ≤R ψ(x) ,

where n is the order of αβ in the group Aut(E,R). But this implies that ψ(x) =
(αβ)−n(ψ(x)) = (αβ)−1(ψ(x)), hence

ψ(x) = β−1α−1(ψ(x)) ≤R β−1(ϕ(x)) ≤R ψ(x) ,

and therefore β−1(ϕ(x)) = ψ(x). Thus ϕ and ψ belong to the same orbit under
the action of Aut(E,R). This forces ϕ = ψ because ϕ and ψ belong to our chosen
set A of representatives of the set of left orbits Aut(E,R)\Φ.

In view of proving the linear independence we are looking for, suppose that the
coefficients λϕ are not all zero. Choose ψ ∈ A maximal (with respect to �) such
that λψ 6= 0. In the sum (8.5), the condition ΓψΛϕ = ∆αR implies, as we have seen
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above, that ψ � ϕ. Since ψ is maximal, the sum over ϕ ∈ A actually runs over the
single element ψ and reduces to ∑

α∈Aut(E,R)
ΓψΛψ=∆αR

λψ∆αv = 0 .

But the condition ΓψΛψ = ∆αR implies that α = id because ∆E ⊆ ΓψΛψ, hence
∆α−1 ⊆ ∆α−1ΓψΛψ, that is, ∆α−1 ⊆ R, which can only occur if α = id. It
follows that there is a single term in the whole sum (8.5), namely λψv = 0. Since
λψ 6= 0, we obtain v = 0, which is impossible since v was chosen nonzero in V . This
contradiction shows that all coefficients λϕ are zero, proving the linear independence
of the image of A in SE,R,V (X). Therefore |A| ≤ dim

(
SE,R,V (X)

)
.

Now we need to estimate |A| and, for simplicity, we write e = |E| and x = |X|.
Since A is a set of representatives of orbits in Φ under the free action of Aut(E,R),
we have |Φ| = |Aut(E,R)| · |A|, so we need to estimate |Φ|. By Lemma 8.1, we
have

|Φ| =
e∑
i=0

(−1)e−i
(
e

i

)
ix = ex +

e−1∑
i=0

(−1)e−i
(
e

i

)
ix .

Note that the second sum is negative because the number |Φ| of surjective maps
X → E is smaller than the number ex of all maps X → E. We can rewrite

|Φ| = ex
(

1 +

e−1∑
i=0

(−1)e−i
(
e

i

) ( i
e

)x)
.

Since i
e ≤

e−1
e < 1, the sum can be made as small as we want, provided x is large

enough. Therefore there exists a positive integer N and a positive real number a
such that a ex ≤ |Φ| whenever x ≥ N . In other words, for any finite set X of
cardinality at least N , we have

(8.6)
a

|Aut(E,R)|
|E||X| ≤ |Φ|

|Aut(E,R)|
= |A| ≤ dim

(
SE,R,V (X)

)
,

giving the required lower bound for dim
(
SE,R,V (X)

)
.

We can now characterize finite generation in terms of exponential behavior.

8.7. Theorem. Let M be a correspondence functor over a field k. The following
are equivalent :

(a) M is finitely generated.
(b) There exists positive real numbers a, b, r such that dim(M(X)) ≤ a b|X| for

every finite set X with |X| ≥ r.

Proof : (a) ⇒ (b). Let M be a quotient of
⊕
i∈I

kC(−, E) for some finite set E and

some finite index set I. For every finite set X, we have

dim(M(X)) ≤ |I|dim(kC(X,E)) = |I| 2|X×E| = |I|
(
2|E|

)|X|
.

(b) ⇒ (a). Let P and Q be subfunctors of M such that Q ⊆ P ⊆ M and
P/Q simple, hence P/Q ∼= SE,R,V for some triple (E,R, V ). We claim that |E| is
bounded above. Indeed, for |X| large enough, we have

c|E||X| ≤ dim(SE,R,V (X))

for some c > 0, by Theorem 8.2, and

dim(SE,R,V (X)) ≤ dim(M(X)) ≤ a b|X|
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by assumption. Therefore, whenever |X| ≥ N for some N , we have

c|E||X| ≤ a b|X| that is, c ≤ a
( b

|E|
)|X|

.

Since c > 0, this forces
b

|E|
≥ 1 otherwise a

( b

|E|
)|X|

is as small as we want. This

shows the bound |E| ≤ b, proving the claim.
For each set E with |E| ≤ b, we choose a basis {mi | 1 ≤ i ≤ nE} of M(E) and

we use Yoneda’s lemma to construct a morphism ψEi : kC(−, E) → M such that,
on evaluation at E, we have ψEi,E(∆E) = mi. Starting from the direct sum of nE
copies of kC(−, E), we obtain a morphism

ψE : kC(−, E)nE →M ,

such that, on evaluation at E, the morphism ψEE : kC(E,E)nE → M(E) is surjec-
tive, because the basis of M(E) is in the image. Now the sum of all such morphisms
ψE yields a morphism

ψ :
⊕
|E|≤b

kC(−, E)nE −→M

which is surjective on evaluation at every set E with |E| ≤ b.
Let N = Im(ψ) and suppose ab absurdo that N 6= M . Let F be a minimal set

such that M(F )/N(F ) 6= {0}. Since ψ is surjective on evaluation at every set E
with |E| ≤ b, we must have |F | > b. Now M(F )/N(F ) is a module for the finite-
dimensional algebra RF = kC(F, F ) and, by minimality of F , inessential relations
act by zero on M(F )/N(F ). Let W be a simple submodule of M(F )/N(F ) as a
module for the essential algebra EF . Associated with W , consider the simple func-
tor SF,W . (Actually, W is parametrized by a pair (R, V ) and SF,W = SF,R,V (see
Theorem 4.6), but we do not need this.) Now the module W = SF,W (F ) is iso-
morphic to a subquotient of M(F )/N(F ). By Proposition 2.8, SF,W is isomorphic
to a subquotient of M/N . By the claim proved above, we obtain |F | ≤ b. This
contradiction shows that N = M , that is, ψ is surjective. Therefore M is isomor-
phic, via ψ, to a quotient of

⊕
|E|≤b

kC(−, E)nE . By Proposition 6.4, M is finitely

generated.

9. Finite length

Using the exponential behaviour proved in the previous section, we now show that,
if our base ring k is a field, then every finitely generated correspondence functor
has finite length. We first need a lemma.

9.1. Lemma. Let k be a field and let M be a finitely generated correspondence
functor over k.

(a) M has a maximal subfunctor.
(b) Any subfunctor of M is finitely generated.

Proof : (a) Since M is finitely generated, M is generated by M(E) for some
finite set E (Proposition 6.4). Let N be a maximal submodule of M(E) as a RE-
module. Note that N exists because M(E) is finite-dimensional by Lemma 6.3.
Then M(E)/N is a simple RE-module. By Proposition 2.8, there exist two sub-
functors F ⊆ G ⊆ M such that G/F is simple, G(E) = M(E), and F (E) = N .
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Since M is generated by M(E) and G(E) = M(E), we have G = M . Therefore, F
is a maximal subfunctor of M .

(b) Let N be a subfunctor of M . Since M is finitely generated, there exist
positive numbers a, b such that, for every large enough finite set X, we have

dim(N(X)) ≤ dim(M(X)) ≤ a b|X| ,
by Theorem 8.7. The same theorem then implies that N is finitely generated.

Lemma 9.1 fails for other categories of functors. For instance, in the category
of biset functors, the Burnside functor is finitely generated and has a maximal
subfunctor which is not finitely generated (see [Bo1] or [Bo2]).

We now come to one of the most important properties of the category of corre-
spondence functors, namely an artinian property. As for the previous lemma, the
theorem is a specific property of the category of correspondence functors.

9.2. Theorem. Let k be a field and let M be a finitely generated correspondence
functor over k. Then M has finite length (that is, M has a finite composition
series).

Proof : By Lemma 9.1, M has a maximal subfunctor F1 and F1 is again finitely
generated. Then F1 has a maximal subfunctor F2 and F2 is again finitely generated.
We construct in this way a sequence of subfunctors

(9.3) M = F0 ⊃ F1 ⊃ F2 ⊃ . . .
such that Fi/Fi+1 is simple whenever Fi 6= 0. We claim that the sequence is finite,

that is, Fm = 0 for some m.
Let Fi/Fi+1 be one simple subquotient, hence Fi/Fi+1

∼= SE,R,V for some triple
(E,R, V ). By Theorem 8.7, since M is finitely generated, there exist positive
numbers a, b such that, for every large enough finite set X, we have

dim(M(X)) ≤ a b|X| .

Therefore dim(SE,R,V (X)) ≤ a b|X|. By Theorem 8.2, there exists some constant

c > 0 such that c |E||X| ≤ dim(SE,R,V (X)) for |X| large enough. So we obtain

c |E||X| ≤ a b|X| for |X| large enough, hence |E| ≤ b. This implies that the simple
functor Fi/Fi+1

∼= SE,R,V belongs to a finite set of isomorphism classes of simple
functors, because there are finitely many sets |E| with |E| ≤ b and, for any of them,
finitely many order relations R on E, and then in turn finitely many kAut(E,R)-
simple modules V (up to isomorphism).

Therefore, if the series (9.3) of subfunctors Fi was infinite, then some sim-
ple functor SE,R,V would occur infinitely many times (up to isomorphism). But
then, on evaluation at E, the simple RE-module SE,R,V (E) would occur infinitely
many times in M(E). This is impossible because M(E) is finite-dimensional by
Lemma 6.3.

Theorem 9.2 was obtained independently by Gitlin [Gi] (for a field k of char-
acteristic zero, or algebraically closed), using a criterion for finite length proved
recently by Wiltshire-Gordon [WG].

10. Projective functors and duality

This section is devoted to projective correspondence functors, mainly in the case
where k is a field. An important ingredient is the use of duality.
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Recall that, by Lemma 7.3, if a projective correspondence functor M is generated
by M(E), then M(X) is a projective RX -module, for every set X with |X| ≥ |E|.
Recall also that, by Lemma 7.3 again, a projective correspondence functor M is
isomorphic to LE,M(E) whenever M is generated by M(E). Thus if we work with
functors having bounded type, we can assume that projective functors have the
form LE,V for some RE-module V . In such a case, we can also enlarge E because
LE,V ∼= LF,V↑FE whenever |F | ≥ |E| (see Proposition 7.5).

10.1. Lemma. Let k be a commutative ring and consider the correspondence
functor LE,V for some finite set E and some RE-module V .

(a) LE,V is projective if and only if V is a projective RE-module.
(b) LE,V is finitely generated projective if and only if V is a finitely generated

projective RE-module.
(c) LE,V is indecomposable projective if and only if V is an indecomposable

projective RE-module.

Proof : (a) If LE,V is projective, then V is projective by Lemma 7.3. Conversely,
if V is projective, then LE,V is projective by Lemma 2.4.

(b) If V is a finitely generated RE-module, then LE,V is finitely generated by
Corollary 6.5. If LE,V is finitely generated, then its evaluation LE,V (E) = V is
finitely generated by Lemma 6.3.

(c) By the adjunction property of Lemma 2.4, EndFk(LE,V ) ∼= EndRE (V ), so
LE,V is indecomposable if and only if V is indecomposable.

Our main duality result has two aspects, which we both include in the following
theorem. The notion of symmetric algebra is standard over a field and can be
defined over any commutative ring as in [Br].

10.2. Theorem. Let E be a finite set.

(a) The representable functor kC(−, E) is isomorphic to its dual.
(b) Let RE = kC(E,E) be the k-algebra of relations on E. Then RE is a

symmetric algebra. More precisely, let t : RE → k be the k-linear form
defined, for all basis elements S ∈ C(E,E), by the formula

t(S) :=

{
1 if S ∩∆E = ∅ ,
0 otherwise .

Then t is a symmetrizing form on RE, in the sense that the associated
bilinear form (a, b) 7→ t(ab) is symmetric and induces an isomorphism of
(RE ,RE)-bimodules between RE and its dual Homk(RE , k).

Proof : (a) For every finite set X, consider the symmetric bilinear form〈
−,−

〉
X

: kC(X,E)× kC(X,E) −→ k

defined, for all basis elements R,S ∈ C(X,E), by the formula〈
R,S

〉
X

:=

{
1 if R ∩ S = ∅ ,
0 otherwise.

Then, whenever U ∈ C(Y,X), R ∈ C(Y,E), and S ∈ C(X,E), we have

R ∩ US = ∅ ⇐⇒
(

(y, x) ∈ U, (x, e) ∈ S ⇒ (y, e) /∈ R
)

⇐⇒
(

(x, y) ∈ Uop, (y, e) ∈ R⇒ (x, e) /∈ S
)

⇐⇒ UopR ∩ S = ∅ .
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It follows that
〈
UopR,S

〉
X

=
〈
R,US

〉
Y

. In view of the definition of dual functors

(Definition 3.11), this implies that the associated family of linear maps

αX : kC(X,E) −→ kC(X,E)\ , S 7→
(
R 7→

〈
R,S

〉
X

)
defines a morphism of correspondence functors α : kC(−, E) −→ kC(−, E)\.

To prove that α is an isomorphism, we fix X and we use the complement cR =
(X × E) − R, for any R ∈ C(X,E). Notice that the matrix of αX relative to
the canonical basis C(X,E) and its dual is the product of two matrices C and A,
where CR,S = 1 if S = cR and 0 otherwise, while A is the adjacency matrix of the
order relation ⊆. This is because R ∩ S = ∅ if and only if R ⊆ cS. Clearly C is
invertible (it has order 2) and A is unitriangular, hence invertible. Therefore αX is
an isomorphism.

(b) Let R,S ∈ C(E,E). Then t(RS) is equal to 1 if RS∩∆E = ∅, and t(RS) = 0
otherwise. Now

RS ∩∆E = ∅ ⇐⇒
(

(e, f) ∈ R ⇒ (f, e) /∈ S
)

⇐⇒ R ∩ Sop = ∅ .
Therefore t(RS) =

〈
R,Sop

〉
, where

〈
−,−

〉
E

is the bilinear form on kC(E,E) defined

in (a). Since this bilinear form induces an isomorphism with the dual and since
the map S 7→ Sop is an isomorphism (it has order 2), the bilinear form associated
with t induces also an isomorphism with the dual.

Since (R ∩ Sop)op = S ∩ Rop and ∅op = ∅, we have t(RS) = t(SR) for any
relations R and S on E, hence the bilinear form (a, b) 7→ t(ab) is symmetric. It
is clear that the associated k-linear map RE → Homk(RE , k) is a morphism of
(RE ,RE)-bimodules.

10.3. Corollary. If k is a field, then the correspondence functor kC(−, E) is both
projective and injective.

Proof : Since passing to the dual reverses arrows and since kC(−, E) is projective,
its dual is injective. But kC(−, E) is isomorphic to its dual, so it is both projective
and injective.

10.4. Remark. Corollary 10.3 holds more generally when k is a self-injective ring.

10.5. Remark. If R is an order relation on E, then there is a direct sum decom-
position

kC(−, E) = kC(−, E)R⊕ kC(−, E)(1−R) .

With respect to the bilinear forms defined in the proof of Theorem 10.2, we have(
kC(−, E)R

)⊥
= kC(−, E)(1−Rop)

because

U ∈
(
kC(X,E)R

)⊥ ⇐⇒
〈
U, V R

〉
X

= 0 ∀V ∈ kC(X,E)

⇐⇒
〈
URop, V

〉
X

= 0 ∀V ∈ kC(X,E)
⇐⇒ URop = 0
⇐⇒ U(1−Rop) = U
⇐⇒ U ∈ kC(X,E)(1−Rop) .

It follows that

kC(−, E)/
(
kC(−, E)R

)⊥
= kC(−, E)/kC(−, E)(1−Rop) ∼= kC(−, E)Rop
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and therefore the bilinear forms
〈
−,−

〉
X

induce perfect pairings

kC(−, E)R× kC(−, E)Rop −→ k .

Thus
(
kC(−, E)R

)\ ∼= kC(−, E)Rop.

By the Krull-Remak-Schmidt theorem (which holds when k is a field by Propo-
sition 6.6), it is no harm to assume that our functors are indecomposable.

10.6. Theorem. Let k be a field and M be a finitely generated correspondence
functor over k. The following conditions are equivalent:

(a) The functor M is projective and indecomposable.
(b) The functor M is projective and admits a unique maximal (proper) subfunc-

tor.
(c) The functor M is projective and admits a unique minimal (nonzero) sub-

functor.
(d) The functor M is injective and indecomposable.
(e) The functor M is injective and admits a unique maximal (proper) subfunc-

tor.
(f) The functor M is injective and admits a unique minimal (nonzero) subfunc-

tor.

Proof : (a) ⇒ (b). Suppose first that M is projective and indecomposable. Then
M ∼= LE,V for some finite set E and some indecomposable projective RE-module V
(Lemma 7.3). Since RE is a finite dimensional algebra over k, the module V has
a unique maximal submodule W . If N is a subfunctor of M , then N(E) is a
submodule of V , so there are two cases: either N(E) = V , and then N = M ,
because M is generated by M(E) = V , or N(E) ⊆ W , and then N(X) ⊆ JW (X)
for any finite set X, where

JW (X) =
{∑

i

ϕi ⊗ vi ∈ kC(X,E)⊗RE V | ∀ψ ∈ C(E,X),
∑
i

(ψϕi) · vi ∈W
}
.

One checks easily that the assignment X 7→ JW (X) is a subfunctor of LE,V , such
that JW (E) = W after the identification LE,V (E) ∼= V . (This subfunctor is similar
to the one introduced in Lemma 2.5.) In particular JW is a proper subfunctor
of LE,V . It follows that JW is the unique maximal proper subfunctor of LE,V , as
it contains any proper subfunctor N of LE,V .

(b)⇒ (a). Suppose that M admits a unique maximal subfunctor N . If M splits
as a direct sum M1 ⊕M2 of two nonzero subfunctors M1 and M2, then M1 and
M2 are finitely generated. Let N1 be a maximal subfunctor of M1, and N2 be a
maximal subfunctor of M2. Such subfunctors exist by Lemma 9.1. Then M1 ⊕N2

and N1 ⊕M2 are distinct maximal subfunctors of M . This contradiction proves
that M is indecomposable.

(a) ⇒ (d). If M is a finitely generated projective functor, then there exists a
finite set E such that M is isomorphic to a quotient, hence a direct summand, of⊕
i∈I

kC(−, E) for some finite set I (Proposition 6.4). Since k is a field, kC(−, E)

is an injective functor (Corollary 10.3), hence so is the direct sum and its direct
summand M .

(d) ⇒ (a). If M is a finitely generated injective functor, then its dual M \ is
projective, hence injective, and therefore M ∼= (M \)\ is projective.

(a) ⇒ (c). For a finitely generated functor M , the duality between M and
M \ induces an order reversing bijection between the subfunctors of M and the
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subfunctors of M \. If M is projective and indecomposable, then so is M \, that is,
(a) holds for M \. Thus (b) holds for M \ and the functor M \ has a unique maximal
subfunctor. Hence M has a unique minimal subfunctor.

(c) ⇒ (a). If M is projective and admits a unique minimal subfunctor, then
M is also injective, and its dual M \ is projective and admits a unique maximal
subfunctor. Hence M \ is indecomposable, so M is indecomposable.

It is now clear that (e) and (f) are both equivalent to (a), (b), (c) and (d).

Finally, we prove that the well-known property of indecomposable projective
modules over a symmetric algebra also holds for correspondence functors. Recall
that M/Rad(M) is the largest semi-simple quotient of M and that Soc(M) is the
largest semi-simple subfunctor of M .

10.7. Theorem. Let k be a field.

(a) Let M be a finitely generated projective correspondence functor over k. Then
M/Rad(M) ∼= Soc(M).

(b) Let M and N be finitely generated correspondence functors over k. If M is
projective, then dimk HomFk(M,N) = dimk HomFk(N,M) < +∞.

Proof : (a) By Proposition 6.6, we can assume that M is indecomposable. In
this case, by Theorem 10.6, both M/Rad(M) and Soc(M) are simple functors. By
Proposition 6.4, there is a finite set E such that M is a quotient, hence a direct
summand, of F =

⊕
i∈I

kC(−, E) for some finite set I. Since kC(−, E)\ ∼= kC(−, E),

the dual M \ is a direct summand of F \ ∼= F , and both M and M \ are generated by
their evaluations at E. Thus M ∼= LE,M(E) and M \ ∼= LE,M\(E), by Lemma 7.3.
As M is a direct summand of F and M is indecomposable, M is a direct summand
of kC(−, E), by the Krull-Remak-Schmidt Theorem (Proposition 6.6). So there is a
primitive idempotent e of kC(E,E) ∼= EndFk

(
kC(−, E)

)
such that M ∼= kC(−, E)e,

and we can assume that M = kC(−, E)e.
If V is a finite dimensional k-vector space, and W is a subspace of V , set

W⊥ = {ϕ ∈ Homk(V, k) | ϕ(W ) = 0} .
If N is a subfunctor of M , the assignment sending a finite set X to N(X)⊥ defines
a subfunctor N⊥ of M \, and moreover N 7→ N⊥ is an order reversing bijection
between the set of subfunctors of M and the set of subfunctors of M \. In particular

Soc(M)⊥ = Rad(M \). Hence Soc(M)⊥(E) =
(

Soc(M)(E)
)⊥

= Rad(M \)(E).
Now M \ 6= Rad(M \), and M \ is generated by M \(E). Hence Rad(M \)(E) 6=

M \(E). It follows that Soc(M)(E) 6= 0. Then Soc(M)(E) ⊆ REe, and Soc(M)(E)
is a left ideal of RE . It follows that Soc(M)(E) is not contained in the kernel of
the map t defined in Theorem 10.2, that is t

(
Soc(M)(E)

)
6= 0. Hence

0 6= t
(

Soc(M)(E)
)

= t
(

Soc(M)(E)e
)

= t
(
e Soc(M)(E)

)
,

and in particular e Soc(M)(E) 6= 0. Since

e Soc(M)(E) ∼= HomFk
(
kC(−, E)e,Soc(M)

)
,

there is a nonzero morphism from M = kC(−, E)e to Soc(M), hence a nonzero
morphism from M/Rad(M) to Soc(M). Since M/Rad(M) and Soc(M) are simple,
it is an isomorphism.

(b) First, by Proposition 6.6, both HomFk(M,N) and HomFk(N,M) are finite
dimensional k-vectors spaces.

Now we can again assume that M is an indecomposable projective and injective
functor. For a finitely generated functor N , set α(N) = dimk HomFk(M,N) and
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β(N) = dimk HomFk(N,M). If 0 → N1 → N2 → N3 → 0 is a short exact
sequence of finitely generated functors, then α(N2) = α(N1) + α(N3) because M
is projective, and β(N2) = β(N1) + β(N3) because M is injective. So, in order
to prove (b), as N has finite length, it is enough to assume that N is simple. In
that case α(N) = dimk EndFk(N) if M/Rad(M) ∼= N , and α(N) = 0 otherwise.
Similarly β(N) = dimk EndFk(N) if Soc(M) ∼= N , and β(N) = 0 otherwise. Hence
(b) follows from (a).

11. The noetherian case

In this section, we shall assume that the ground ring k is noetherian, in which
case we obtain more results about subfunctors. For instance, we shall prove that
any subfunctor of a finitely generated functor is finitely generated. It would be
interesting to see if the methods developed recently by Sam and Snowden [SS] for
showing noetherian properties of representations of categories can be applied for
proving the results of this section.

Our first results hold without any assumption on k.

11.1. Notation. Let k be a commutative ring, let E be a finite set, and let M be
a correspondence functor over k. We set

M(E) := M(E)
/ ∑
E′⊂E

kC(E,E′)M(E′) ,

where the sum runs over proper subsets E′ of E.

Note that if F is any set of cardinality smaller than |E|, then there exists
a bijection σ : E′ → F , where E′ is a proper subset of E. It follows that
kC(E,F )M(F ) = kC(E,F )RσM(E′) ⊆

∑
E′⊂E

kC(E,E′)M(E′), where Rσ ⊆ F ×E′

is the graph of σ.
Note also that M(E) is a left module for the essential algebra EE , because the

ideal IE =
∑

|Y |<|E|
kC(E, Y )kC(Y,E) of the algebra RE = kC(E,E) acts by zero

on M(E).

11.2. Lemma. Let k be a commutative ring, and let E be a finite set. Let M
be a correspondence functor over k. If p is a prime ideal of k, denote by Mp the
localization of M at p, defined by Mp(E) = M(E)p for every finite set E.

(a) Mp is a correspondence functor over the localization kp.
(b) If M is finitely generated over k, then Mp is finitely generated over kp.
(c) For each finite set E, there is an isomorphism of kpC(E,E)-modules

M(E)p ∼= Mp(E) .

Proof : (a) This is straightforward.

(b) If E is a finite set, then clearly kC(−, E)p ∼= kpC(−, E), because this the
localization of a free module (on every evaluation). If M is finitely generated, then
there is a finite set F such that M is a quotient of

⊕
i∈I

kC(−, F ) for some finite set I.

Then Mp is a quotient of the functor
⊕
i∈I

kC(−, F )p ∼=
⊕
i∈I

kpC(−, F ), hence it is a

finitely generated functor over kp.
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(c) Since localization is an exact functor, the exact sequence of k-modules⊕
E′⊂E

kC(E,E′)M(E′)→M(E)→M(E)→ 0

gives the exact sequence of kp-modules⊕
E′⊂E

(
kC(E,E′)M(E′)

)
p
→M(E)p →M(E)p → 0 .

Now clearly
(
kC(E,E′)M(E′)

)
p

= kpC(E,E′)M(E′)p = kpC(E,E′)Mp(E′) for

each E′ ⊂ E. Hence we get an exact sequence⊕
E′⊂E

kpC(E,E′)Mp(E′)→Mp(E)→M(E)p → 0 ,

and it follows that M(E)p ∼= Mp(E).

11.3. Proposition. Let k be a commutative ring, let E be a finite set, and let M
be a correspondence functor such that M(E) 6= 0.

(a) There exists a prime ideal p of k such that Mp(E) 6= 0.
(b) If moreover M(E) is a finitely generated k-module, then there exist sub-

functors A and B of Mp such that pMp ⊆ A ⊂ B, and a simple module V
for the essential algebra EE of E over k(p) such that B/A ∼= SE,V , where
k(p) = kp/pkp.

(c) In this case, there exist positive numbers c and d such that

c |E||X| ≤ dimk(p)(Mp/pMp)(X)

whenever X is a finite set such that |X| ≥ d.

Proof : (a) This follows from the well-known fact that the localization map
M(E) −→

∏
p∈Spec(k)

M(E)p is injective, and from the isomorphism M(E)p ∼= Mp(E)

of Lemma 11.2.

(b) Set N = Mp/pMp where p is the prime ideal obtained in (a). Then N is a

correspondence functor over k(p). Suppose that N(E) = 0. Then

Mp(E) = pMp(E) +
∑
E′⊂E

kpC(E,E′)Mp(E′) .

Since M(E) is a finitely generated k-module, Mp(E) is a finitely generated kp-
module, and Nakayama’s lemma implies that

Mp(E) =
∑
E′⊂E

kpC(E,E′)Mp(E′) ,

that is, Mp(E) = 0. This contradicts (a) and shows that N(E) 6= 0.

Now N(E) is a nonzero module for the essential algebra EE of E over k(p),
and it is finite dimensional over k(p) (because Mp(E) is a finitely generated kp-
module). Hence it admits a simple quotient V as EE-module. Then V can be
viewed as a simple k(p)RE-module by inflation, and it is also a quotient of N(E).
By Proposition 2.8, there exist subfunctors A/pMp ⊂ B/pMp of N such that B/A
is isomorphic to the simple functor SE,V , proving (b).

(c) By (b) and Theorem 8.2, there exist positive numbers c and d such that

c |E||X| ≤ dimk(p)(B/A)(X)

whenever X is a finite set such that |X| ≥ d. Assertion (c) follows.
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Now we assume that k is noetherian and we can state the critical result.

11.4. Theorem. Let k be a commutative noetherian ring. Let N be a subfunctor
of a correspondence functor M over k. If E and Y are finite sets such that M is
generated by M(E) and N(Y ) 6= 0, then |Y | ≤ 2|E|.

Proof : Since M is generated by M(E), choosing a set I of generators of M(E)
yields a surjection Φ : P =

⊕
i∈I

kC(−, E) → M . Let L = Φ−1(N). Since Φ induces

a surjection L(Y ) → N(Y ), and since P is generated by P (E), we can replace M
by P and N by L. Hence we now assume that N is a subfunctor of

⊕
i∈I

kC(−, E).

Since N(Y ) 6= 0, there exists

m ∈ N(Y )−
∑
Y ′⊂Y

kC(Y, Y ′)N(Y ′) .

Let N ′ be the subfunctor of N generated by m. Then clearly N ′(Y ) 6= 0, because

m ∈ N ′(Y )−
∑
Y ′⊂Y

kC(Y, Y ′)N ′(Y ′) .

Moreover N ′(Y ) = kC(Y, Y )m is a finitely generated k-module, and there is a finite
subset S of I such that m ∈

⊕
i∈S

kC(Y,E). Therefore N ′ ⊆
⊕
i∈S

kC(−, E). Replacing

N by N ′, we can assume moreover that the set I is finite. In other words, there
exists an integer s ∈ N such that N ⊆ kC(−, E)⊕s.

Now by Proposition 11.3, there exists a prime ideal p of k such that Np(Y ) 6= 0.
Moreover N(Y ) is a submodule of kC(Y,E)⊕s, which is a finitely generated (free)
k-module. Since k is noetherian, it follows that N(Y ) is a finitely generated k-
module.

By Proposition 11.3, there exist subfunctors A ⊂ B of Np such that B/A is
isomorphic to a simple functor of the form SY,V , where V is a simple module
for the essential algebra of Y over k(p). In particular Y is minimal such that

(B/A)(Y ) 6= 0, thus (B/A)(Y ) ∼= (B/A)(Y ) ∼= V .
It follows that B(Y ) 6= 0, and B is a subfunctor of kpC(−, E)⊕s. In other words,

replacing k by kp and N by B, we can assume that k is a noetherian local ring,
that p is the unique maximal ideal of k, and that N has a subfunctor A such that
N/A is isomorphic to SY,V , where V is a simple module for the essential algebra EY
over k/p.

We claim that there exists an integer n ∈ N such that

N(Y ) 6= A(Y ) +
(
pnC(Y,E)⊕s ∩N(Y )

)
.

Indeed N(Y ) is a submodule of the finitely generated k-module kC(Y,E)⊕s. By
the Artin-Rees lemma (see Theorem 8.5 in [Ma]), there exists an integer l ∈ N such
that for any n ≥ l

pnC(Y,E)⊕s ∩N(Y ) = pn−l
(
plC(Y,E)⊕s ∩N(Y )

)
.

Let m1, . . . ,mr be generators of N(Y ) as a k-module. Suppose that n > l and that
N(Y ) = A(Y ) +

(
pnC(Y,E)⊕s ∩N(Y )

)
. Then

N(Y ) = A(Y ) + pn−l
(
plC(Y,E)⊕s ∩N(Y )

)
.

It follows that for each i ∈ {1, . . . , r}, there exist ai ∈ A(Y ) and scalars λi,j ∈ pn−l,
for 1 ≤ j ≤ r, such that

mi = ai +

r∑
j=1

λi,jmj .
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In other words the sequence (ai)i=1,...,r is the image of the sequence (mi)i=1,...,r

under the matrix J = idr −Λ, where Λ is the matrix of coefficients λi,j , and idr is
the identity matrix of size r. Since Λ has coefficients in pn−l ⊆ p, the determinant
of J is congruent to 1 modulo p, hence J is invertible. It follows that the mi’s
are linear combinations of the aj ’s with coefficients in k. Hence mi ∈ A(Y ) for
1 ≤ i ≤ r, thus N(Y ) = A(Y ). This is a contradiction since (N/A)(Y ) ∼= V 6= 0.
This proves our claim.

We have obtained that N 6= A +
(
pnC(−, E)⊕s ∩ N

)
. Since N/A is simple, it

follows that pnC(−, E)⊕s ∩N = pnC(−, E)⊕s ∩A.

Now we reduce modulo pn and we let respectively Â and N̂ denote the images
of A and N in the reduction (k/pn)C(−, E)⊕s. Then

N̂/Â =
((
N + pnC(−, E)⊕s

)
/pnC(−, E)⊕s

)/((
A+ pnC(−, E)⊕s

)
/pnC(−, E)⊕s

)
∼=

(
N/
(
pnC(−, E)⊕s ∩N

))/(
A/
(
pnC(−, E)⊕s ∩A

))
∼= N/A ,

and this is isomorphic to the simple functor SY,V over the field k/p. Hence for

any finite set X, the module N̂(X)/Â(X) is a (k/p)-vector space. Moreover, by
Proposition 11.3, there exist positive numbers c and d such that the dimension of
this vector space is larger than c |Y ||X| whenever |X| ≥ d.

Now for any finite set X, the module (k/pn)C(X,E)⊕s is filtered by the sub-
modules Γj = (pj/pn)C(X,E)⊕s, for j = 1, . . . , n− 1, and the quotient Γj/Γj+1 is

a vector space over k/p, of dimension sdj 2|X||E|, where dj = dimk/p(pj/pj+1). It
follows that, for |X| ≥ d,

c |Y ||X| ≤ dimk/p

(
N̂(X)/Â(X)

)
≤ s
( n−1∑
j=0

dj
)
2|X||E| .

As |X| tends to infinity, this forces |Y | ≤ 2|E|, completing the proof of Theo-
rem 11.4.

11.5. Corollary. Let k be a commutative noetherian ring and let N be a subfunc-
tor of a correspondence functor M over k.

(a) If E is a finite set such that M is generated by M(E) and if F is a finite
set with |F | ≥ 2|E|, then N is generated by N(F ).

(b) If M has bounded type, then N has bounded type. In particular, over k, any
correspondence functor of bounded type has a bounded presentation.

(c) If M is finitely generated, then N is finitely generated. In particular, over k,
any finitely generated correspondence functor is finitely presented.

Proof : (a) Let E be a finite set such that M is generated by M(E). If X is
a finite set such that N(X) 6= 0, then |X| ≤ 2|E|, by Theorem 11.4. For each
integer e ≤ 2|E|, let [e] = {1, . . . , e} and choose a subset Se of N([e]) which maps
to a generating set of N([e]) as a k-module. Each i ∈ Se yields a morphism
ψe,i : kC(−, [e])→ N . Let

Q =
⊕
e≤2|E|

⊕
i∈Se

kC(−, [e]) and Ψ =
∑
e≤2|E|

i∈Se

ψe,i : Q→ N .

Then by construction the induced map

ΨX : Q(X)→ N(X)



34 SERGE BOUC AND JACQUES THÉVENAZ

is surjective, for any finite set X, because either N(X) = 0 or |X| = e ≤ 2|E|.
Suppose that Ψ : Q→ N is not surjective and let A be a set of minimal cardinality
such that ΨA : Q(A) → N(A) is not surjective. Let l ∈ N(A) − Im ΨA. Since the
map ΨA is surjective, there is an element q ∈ Q(A) and elements le ∈ N([e]) and
Re ∈ kC(A, [e]), for e < |A|, such that

l = ΨA(q) +
∑
e<|A|

Rele .

The minimality of A implies that the map Ψ[e] : Q([e]) → N([e]) is surjective for
each e < |A|, so there are elements qe ∈ Q([e]), for e < |A|, such that Ψ[e](qe) = le.

It follows that l = ΨA

(
q +

∑
e<|A|

Reqe
)
, thus l ∈ Im ΨA. This contradiction proves

that the morphism Ψ : Q→ N is surjective.
Now let F be a set with |F | ≥ 2|E|. For each e ≤ 2|E|, the representable functor

kC(−, [e]) is generated by its evaluation at [e], hence also by its evaluation at F ,
because kC(−, [e]) is a direct summand of kC(−, F ) by Corollary 3.5. Therefore Q
is generated by Q(F ). Since Ψ : Q→ N is surjective, it follows that N is generated
by N(F ).

(b) This follows clearly from (a).

(c) If now M is finitely generated, then the same argument applies, but we can
assume moreover that all the sets Se appearing in the proof of (a) are finite, since
for any finite set X, the module N(X) is finitely generated, being a submodule of
the finitely generated module M(X). It follows that the functor Q of the proof
of (a) is finitely generated and this proves (c).

It follows from (b) and Theorem 7.4 that, whenever k is noetherian, any corre-
spondence functor of bounded type is isomorphic to LF,V for some F and V . We
shall return to this in Theorem 12.2 below.

11.6. Notation. We denote by Fbk the full subcategory of Fk consisting of cor-

respondence functors having bounded type and by Ffk the full subcategory of Fk
consisting of finitely generated functors.

11.7. Corollary. Let k be a commutative noetherian ring. Then the categories

Fbk and Ffk are abelian full subcategories of Fk.

Proof : Any quotient of a functor of bounded type has bounded type and any
quotient of a finitely generated functor is finitely generated. When k is noetherian,
any subfunctor of a functor of bounded type has bounded type and any subfunctor
of a finitely generated functor is finitely generated, by Corollary 11.5.

12. Stabilization results

Recall from Lemma 2.5 that for any finite set E and any RE-module V , we have
defined a subfunctor JE,V of LE,V by setting

JE,V (X) =
{∑

i

Ri ⊗
RE

vi | Ri ∈ C(X,E), vi ∈ V, ∀S ∈ C(E,X),
∑
i

(SRi)vi = 0
}
.

Moreover JE,V (E) = 0 and SE,V = LE,V /JE,V .
We have seen in Proposition 7.5 that LF,V↑FE

∼= LE,V whenever |F | ≥ |E|. The

subfunctor JF,V↑FE vanishes at F , hence also at E, so that JF,V↑FE ⊂ JE,V . When k

is noetherian, we show that this decreasing sequence reaches zero.
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12.1. Theorem. Let k be a commutative noetherian ring, let E be a finite set,
and let V be an RE-module. For any finite set F such that |F | ≥ 2|E|, we have
JF,V↑FE = 0.

Proof : Let F be a finite set. By Proposition 7.5, there is an isomorphism LF,V↑FE
∼=

LE,V . Thus JF,V↑FE is isomorphic to a subfunctor of LE,V . Since JF,V↑FE (F ) = 0, it

follows from Corollary 3.7 that JF,V↑FE (X) = 0 for any finite set X with |X| ≤ |F |.
We now assume that JF,V↑FE 6= 0 and we prove that |F | < 2|E|. Let Y be a

set of minimal cardinality such that JF,V↑FE (Y ) 6= 0. Then |Y | > |F |. Moreover

JF,V↑FE (Y ) ∼= JF,V↑FE (Y ) 6= 0, hence |Y | ≤ 2|E| by Theorem 11.4, because JF,V↑FE
is (isomorphic to) a subfunctor of LE,V , which is generated by LE,V (E) = V . It

follows that |F | < |Y | ≤ 2|E|.

We now show that, over a noetherian ring, any correspondence functor of bounded
type is isomorphic to LF,V for some F and V , or also isomorphic to SG,W for some
G and W (where the symbol SG,W refers to Notation 2.6).

12.2. Theorem. Let k be a commutative noetherian ring. Let M be a correspon-
dence functor over k generated by M(E), for some finite set E.

(a) For any finite set F such that |F | ≥ 2|E|, the counit morphism ηM,F :
LF,M(F ) →M is an isomorphism.

(b) For any finite set G such that |G| ≥ 22|E| , we have M ∼= LG,M(G) and
JG,M(G) = 0, hence M ∼= SG,M(G).

Proof : (a) If M is generated by M(E), then there is a set I and a surjective
morphism P =

⊕
i∈I

kC(−, E) → M . If F is a finite set with |F | ≥ 2|E|, then by

Corollary 11.5 the kernel K of this morphism is generated by K(F ). Then K is in
turn covered by a projective functor Q and we have a bounded presentation

Q→ P →M → 0

with both Q and P generated by their evaluation at F . By Theorem 7.4, the counit
morphism ηM,F : LF,M(F ) →M is an isomorphism.

(b) For any finite set F such that |F | ≥ 2|E|, we have M ∼= LF,M(F ) by (a). For

any finite set G such that |G| ≥ 2|F |, that is, |G| ≥ 22|E| , we obtain JG,M(F )↑GF = 0

by Theorem 12.1. It follows that

M ∼= LF,M(F )
∼= LG,M(F )↑GF = SG,M(F )↑GF .

Finally, notice that, by the definition of LF,M(F ), we have M(G) ∼= LF,M(F )(G) =

M(F )↑GF , so we obtain M ∼= LG,M(G) = SG,M(G).

Other kinds of stabilizations also occur, as the next theorems show.

12.3. Theorem. Let k be a commutative noetherian ring, let M and N be
correspondence functors over k, and let E and F be finite sets.

(a) If M is generated by M(E), then for |F | ≥ 2|E|, the evaluation map at F

HomFk(M,N)→ HomRF
(
M(F ), N(F )

)
is an isomorphism.
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(b) If M has bounded type, then for any integer i ∈ N, there exists an integer ni
such that the evaluation map

ExtiFk(M,N)→ ExtiRF
(
M(F ), N(F )

)
is an isomorphism whenever |F | ≥ ni.

Proof : (a) By Theorem 12.2, we have an isomorphismM ∼= LF,M(F ) for |F | ≥ 2|E|.
Hence

HomFk(M,N) ∼= HomFk
(
LF,M(F ), N

) ∼= HomRF
(
M(F ), N(F )

)
,

where the last isomorphism comes from the adjunction of Lemma 2.4, and is given
by evaluation at F .

(b) This assertion will follow from (a) by décalage and induction on i. If M is
generated by M(E), then there is an exact sequence of correspondence functors

0→ L→ P →M → 0

where P is projective and generated by P (E). This gives an exact sequence

0→ HomFk(M,N)→ HomFk(P,N)→ HomFk(L,N)→ Ext1
Fk(M,N)→ 0 ,

and isomorphisms ExtiFk(M,N) ∼= Exti−1
Fk (L,N) for i ≥ 2.

Now L has bounded type by Corollary 11.5, and P (F ) is a projective RF -module
by Lemma 7.3, whenever |F | is large enough. It follows that there is also an exact
sequence

0→HomRF
(
M(F ), N(F )

)
→ HomRF

(
P (F ), N(F )

)
→

HomRF
(
L(F ), N(F )

)
→Ext1

RF
(
M(F ), N(F )

)
→0

and isomorphisms ExtiRF
(
M(F ), N(F )

) ∼= Exti−1
RF

(
L(F ), N(F )

)
for i ≥ 2, when-

ever F is large enough.
Now by (a), the exact sequences

0→ HomFk(M,N)→ HomFk(P,N)→ HomFk(L,N)

and

0→ HomRF
(
M(F ), N(F )

)
→ HomRF

(
P (F ), N(F )

)
→ HomRF

(
L(F ), N(F )

)
are isomorphic for F large enough. It follows that

Ext1
Fk(M,N) ∼= Ext1

RF
(
M(F ), N(F )

)
.

Similarly, for each i ≥ 2, when F is large enough (depending on i), there are
isomorphisms ExtiFk(M,N) ∼= ExtiRF

(
M(F ), N(F )

)
.

There is also a stabilization result involving the Tor groups.

12.4. Theorem. Let k be a commutative noetherian ring, and E be a finite

set. If F is a finite set with |F | ≥ 22|E| , then for any finite set X and any left
RE-module V , we have

TorRF1

(
kC(X,F ), V ↑FE

)
= 0 .

Proof : Let V be a left RE-module and s : Q → V be a surjective morphism
of RE-modules, where Q is projective. Let K denote the kernel of the surjective
morphism

LE,s : LE,Q → LE,V .

Since LE,Q is generated by LE,Q(E) ∼= Q, it follows from Corollary 11.5 that

K is generated by K(G) whenever G is a finite set with |G| ≥ 2|E|. Now by
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Theorem 12.2, the counit LF,K(F ) → K is an isomorphism whenever F is a finite set

with |F | ≥ 2|G|. Hence if |F | ≥ 22|E| , we have an exact sequence of correspondence
functors

(12.5) 0→ LF,WF
→ LE,Q → LE,V → 0 ,

where WF = K(F ), and where the middle term LE,Q is projective. Evaluating
this sequence at F , we get the exact sequence of RF -modules

0→WF → kC(F,E)⊗RE Q→ kC(F,E)⊗RE V → 0 ,

where the middle term is projective.
Let X be a finite set. Applying the functor kC(X,F )⊗RF (−) to this sequence

yields the exact sequence

0→ TorRF1

(
kC(X,F ), V ↑FE

)
→

kC(X,F )⊗RF WF → kC(X,E)⊗RE Q→ kC(X,E)⊗RE V → 0 ,

because kC(X,F )⊗RF kC(F,E) ∼= kC(X,E) by Corollary 3.8, as |F | ≥ |E|. On the
other hand, evaluating at X the exact sequence 12.5 gives the exact sequence

0→ kC(X,F )⊗RF WF → kC(X,E)⊗RE Q→ kC(X,E)⊗RE V → 0 .

In both latter exact sequences, the maps are exactly the same. It follows that

TorRF1

(
kC(X,F ), V ↑FE

)
= 0 ,

as was to be shown.

As a final approach to stabilization, we introduce the following definition.

12.6. Definition. Let Gk denote the following category:

• The objects of Gk are pairs (E,U) consisting of a finite set E and a left
RE-module U .

• A morphism ϕ : (E,U) → (F, V ) in Gk is a morphism of RE-modules
U → kC(E,F )⊗RF V .

• The composition of morphisms ϕ : (E,U) → (F, V ) and ψ : (F, V ) →
(G,W ) is the morphism obtained by composition

U
ϕ→ kC(E,F )⊗RF V

id⊗ψ−→ kC(E,F )⊗RF kC(F,G)⊗RGW
µ⊗id−→ kC(E,G)⊗RGW ,

where µ : kC(E,F ) ⊗RF kC(F,G) → kC(E,G) is the composition in the
category kC.

• The identity morphism of (E,U) is the canonical isomorphism

U → kC(E,E)⊗RE U

resulting from the definition RE = kC(E,E).

One can check easily that Gk is a k-linear category.

12.7. Theorem. Let k be a commutative ring. Let L : Gk → Fbk be the assignment
sending (E,U) to LE,U , and ϕ : (E,U) → (F, V ) to the morphism LE,U → LF,V
associated by adjunction to ϕ : U → LF,V (E).

(a) L is a fully faithful k-linear functor.
(b) L is an equivalence of categories if k is noetherian.
(c) Gk is an abelian category if k is noetherian.
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Proof : It is straightforward to check that L is a k-linear functor. It is moreover
fully faithful, since

HomFbk(LE,U , LF,V ) ∼= HomRE
(
U, kC(E,F )⊗F V

) ∼= HomGk
(
(E,U), (F, V )

)
.

Finally, if k is noetherian, then any correspondence functor M of bounded type is
isomorphic to a functor of the form LE,U , by Theorem 12.2, for E large enough and
U = M(E). Hence L is essentially surjective, so it is an equivalence of categories.
In particular, Gk is abelian by Corollary 11.7.
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