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Introduction

My university cohort was one of the first to be allowed to use hand-
held calculators (replacing the slide rules that had been used pre-
viously) in our exams (B.A. 1979) and to create our figures and
write our doctoral dissertations using graphics software and word
processing programs (Ph.D. 1988). I distinctly remember going to
the library to consult the printed version of Chemical Abstracts as
well as the period when the online version of Chemical Abstracts
went back only to the mid-1980s (resulting in a steep decline in
referencing of older literature). For most of my career, it seemed
that these developments were incremental, and my colleagues and
I adjusted to them without major changes in our approaches and
expectations. Over time, however, the developments in information
technology (IT) and data science have reached the point where the
field of water science and engineering (like many others) is con-
fronted with a bewildering array of options and opportunities. This
is challenging our fundamental approaches and assumptions about
how to do our science and bringing about cultural changes in our
expectations regarding the roles of individuals and institutions in
the production and sharing of knowledge.

I started to pay serious attention to these issues a few years ago
in my capacity as Director of the Swiss Federal Institute of Aquatic
Science and Technology (Eawag). In addition to my own personal
struggles to keep abreast of the exploding amount of information
relevant to Eawag’s mandate and positioning, I also have to make
budgetary decisions regarding investments in IT infrastructure, re-
search data management, and open-access publications and to re-
spond to pleas from our researchers for scientific IT services. I used
an invitation to write a book chapter to engage two of my col-
leagues (from our IT department and library) in addressing issues
related to knowledge management. In that chapter, we were able to
make some inroads in addressing issues relating to research data
management and open access and to lay out the special challenges
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posed by experiential and practical knowledge, which are highly

context-dependent (Hering et al. 2018). We stopped well short,

however, of grappling with the complexities inherent in the vol-
umes of heterogeneous data with which we are increasingly
confronted and which I address in this article.

Here, I highlight the opportunities and challenges associated with

* rapidly increasing availability of voluminous, high-resolution
data on water systems,

* web-based access to information and the consequent opportu-
nities to contribute to online data sets and/or to develop models
and software collaboratively,

e applications of computational science (especially machine-
learning) to environmental data, and

* emerging challenges associated with open data and open science.
Although this is not a review, I have tried to reference the liter-

ature that addresses big data challenges in water science and engi-

neering, including some of the broader literature on environmental
applications. I follow the 4V concept of defining big data by vol-
ume, variety, veracity, and velocity (Farley et al. 2018). Data can be
big with regard to one or more of these aspects (Fig. 1). Volume and
heterogeneity (i.e., variety) of data are the most commonly consid-
ered aspects, but challenges also arise from the quality, reliability,
and uncertainty of data (veracity) as well as the rates at which
data are acquired or must be processed for particular applications

(velocity). With this background, I illustrate some ways in which

individual scientists and academic research institutions are taking

advantage of new data-driven opportunities and accommodating
the demands that accompany them. I also hope to be able to endorse
some further steps we could take to promote the “move from data to
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Fig. 1. Four axes along which big data can be defined. For a given (big)
data set, a spider graph can be used to illustrate which of the 4Vs con-
tributes the most to the bigness of the data set, whether this is simply
the amount of data (volume), their heterogeneity (variety), uncertainty,
and related aspects of quality and reliability (veracity), and/or the rates
at which data are acquired or must be processed for particular applica-
tions (velocity). (Adapted from Farley et al. 2018.)
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information to knowledge and, ultimately, to action for. .. sustain-
ability and human well-being” (Ramaswami et al. 2016).

Data Fire Hose

For most of my career, the environmental sciences, particularly in
the water domain, were rather data-poor. Aquatic scientists looked
enviously at atmospheric scientists, who benefited from continuous
online measurements of gases conducted from aircraft or balloons
as well as ground-based (and later satellite) spectroscopic measure-
ments that integrate over a column of air. Today, aquatic scientists
and engineers are being flooded with data (pun intended). This
flood has three main sources: omics, online and remotely deployed
sensors, and remote sensing (Table 1). What these three sources
have in common is the sheer volume of data; temporal and spatial
resolution are additional challenges of the latter two sources. Omics
data have expanded well beyond their origins in genomics to
include high-throughput analyses of proteins (proteomics) and
metabolites (metabolomics). Analysis of omics data (as well as
other high-volume data) requires the development of data pipelines
that automate the processes of extracting, transforming, combining,
validating, and loading data for further analysis and visualization
(Alley 2018). As the frequency of monitoring and/or the scale of
experiments increases, data sets that have traditionally been ana-
lyzed manually also require automated pipelines for data handling
and analysis (Durden et al. 2017; Farley et al. 2018; Pennekamp
et al. 2017, 2018; Thomas et al. 2018a, b). Satellite observations,
which at previous levels of spatial resolution were relevant mainly
for marine systems, are, with improved resolution, increasingly
relevant for lakes (Matthews and Odermatt 2015; Odermatt et al.
2018). Other spatially explicit data sources include remote sensing
from drones and information collected by citizen scientists using
mobile devices (McCabe et al. 2017). The spatial and temporal res-
olution of data from remotely deployed and online sensors and
from remote sensing from aircraft and satellites pose additional
challenges related to linking data to their time and location as well
as to visualizing data, for example, in animated maps.

In engineering practice, water-treatment and wastewater-
treatment plants are becoming more highly automated, and remote
monitoring is increasingly used in distribution and/or conveyance
systems, resulting in a substantial increase in the amount of data
generated during system operation. These developments offer op-
portunities for performance optimization (Corominas et al. 2018;
Ingildsen and Olsson 2016). They may also allow for novel man-
agement strategies, such as using excess sewer capacity to reduce
overflows at wastewater-treatment plants (Zhang et al. 2018). Risks
associated with vulnerability to cyber-attacks may, however, be
increased (Taormina and Galelli 2018; Taormina et al. 2017).

Web-Based Collaboration

Web-based access to observational databases builds on a long his-
torical tradition of monitoring data curated by (often governmental)
institutions. The incorporation of well-defined data into online da-
tabases has been relatively straightforward, but even governmental
agencies face challenges of curating and conserving legacy data.
This challenge has been addressed by programs to preserve “data
at risk” (Griffin 2015; USGS n.d.). Formal and/or informal scien-
tific consortia have also formed to contribute to these efforts. The
Force 11 consortium works to establish norms and standards,
specifically the findable, accessible, interoperable, and reusable
(FAIR) data principles (Wilkinson et al. 2016). The Research Data
Alliance provides a neutral space where its more than 7,000 members
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URL

https://zenodo.org/record/1095627

Description

Name

The BioTIME database contains raw data on species identities and abundances in ecological assemblages

through time.

BioTIME

https://ccmc.gsfc.nasa.gov/camel/

Comprehensive Assessment of Models and Events using Library Tools (CAMEL) Framework is an

CAMEL
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integrated and flexible framework allowing users to seamlessly compare space weather and space science

model outputs with observational data sets.

https://colab.research.google.com/

https://datajoint.io/

Tool for machine-learning education and research based on the Jupyter notebook.

A hub for developing, sharing, and publishing scientific data pipelines.

Colaboratory
DataJoint

DRYAD

https://datadryad.org/

Online repository for data underlying scientific publications. It is curated and makes the data freely reusable

and citable.

https://www.earthsystemdatalab.net/

ESDL provides access to a series of highly-curated data cubes containing preprocessed data that are ready

for analysis. A framework is provided to map user-defined functions to a data cube.

Earth System Data Lab (ESDL)

https://www.envidat.ch/ui/#/

A portal to publish, connect, and search across existing data generated by the Swiss Federal Institute for

Forest, Snow and Landscape (WSL).

Envidat

http://fluxnet.fluxdata.org/

Data portal for FLUXNET (https:/fluxnet.ornl.gov/), a global network for eddy covariance flux

measurements of carbon, water vapor, and energy exchange.

Fluxdata

Autecological characteristics, ecological preferences, and biological traits as well as distribution patterns of https://www.freshwaterecology.info/

freshwaterecology.info

more than 20,000 European freshwater organisms belonging to fish, macro-invertebrates, macrophytes,

diatoms, and phytoplankton.

J. Environ. Eng.

https:/freshwaterwatch.thewaterhub.org/

https://www.gapmaps.org/

A platform for citizen science monitoring of freshwater ecosystems.

FreshWaterWatch

GAP

Groundwater Assessment Platform (GAP) facilitates the exchange of data and information and supports

predictive modeling of geogenic contaminants in groundwater.
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can “come together to develop and adopt infrastructure that pro-
motes data-sharing and data-driven research” (RDA n.d.). A large
consortium of researchers from almost 200 institutions acquired
funding from a variety of sources to assemble the BioTIME data-
base, which includes over 8 million species abundance records
(Dornelas et al. 2018). Web-based collaboration can also facilitate
citizen science initiatives (Shen et al. 2018).

In the omics and remote-sensing domains, data have been pro-
duced in a context in which the need for online storage and access
quickly became obvious. With support from the NIH, Genbank
(Table 1) was established in 1982. Today, sequence data deposition
is a routine aspect of publication in the molecular biology commu-
nity, although questions have been raised recently about how this
may be affected by the Nagoya Protocol (Deplazes-Zemp et al.
2018). With satellite data, national and international space agencies
have a vested interest in improving the accessibility and usability of
their data and downstream data products.

Through such online resources, individual scientists or scientific
consortia have the opportunity both to contribute to and exploit
the wealth of web-accessible data. Models and tools for modeling
are also increasingly available through online platforms (Table 1).
Online platforms provide support for collaborative and/or partici-
patory modeling (Basco-Carrera et al. 2017; Langsdale et al. 2013)
(Gaudard et al. 2019), although platforms and models may be less
important than trustful interpersonal interactions and adequate gov-
ernance structures (Parrott 2017).

Applications of Data Sciences

Increasingly, the analysis of big environmental data (in the sense of
one or more of the 4Vs in Fig. 1) relies on data science methods,
particularly machine learning. In some approaches, hypotheses are
generated and then tested using big data (Peters et al. 2018, 2014),
which can also provide useful benchmarking for mechanistic mod-
els. Other approaches employ machine learning to extract trends or
even elucidate hypotheses or model structures from data that are not
biased by expectations (Ilie et al. 2017; Shen 2018; Thomas et al.
2018a). Although this approach can be compromised by spurious
correlations in the data (N. Schuwirth, “How to make ecological
models useful for environmental management,” submitted, Eawag,
Diibendorf, Switzerland), this problem can be minimized if sam-
pling is informed by knowledge about the system (Strobl et al.
2008) and/or if appropriate tests are applied (Broadhurst and Kell
2006). Potential problems have been illustrated by the prevalence
of false positives in a study investigating the possible use of vari-
ance and/or autocorrelation as early warning indicators for the
abundance of aquatic taxa (Burthe et al. 2016).

Application of data science methods is necessitated when multi-
ple types of data inputs must be combined (e.g., data from remote
sensing and high-throughput DNA analysis) and interpreted using
multiple modeling frameworks, especially when there is a goal of
producing near-real-time predictions as the basis for decision mak-
ing (Bush et al. 2017; Dafforn et al. 2016). Real-time data analysis
can also support adaptive operation of the data acquisition system,
as illustrated by a recent study of turbidity currents (Paull et al.
2018). Even the sheer size of environmental data sets may preclude
conventional statistical analysis and necessitate data analysis based
on machine learning, which does not require assumptions regarding
data distributions, shape, and covariance structure (Cox 2015). The
assumptions of common statistical methods (e.g., linearity and
independence of variables) are unlikely to be applicable to large,
multidimensional environmental data sets (McGowan et al. 2017;
Sugihara et al. 2012; Ye and Sugihara 2016).
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One recognized limitation of machine-learning approaches is
their lack of interpretability (Pearl 2018; Shen 2018; Shen et al.
2018), which raises important questions of accountability when
decision making is based on such approaches (EPFL IRGC 2018).
This issue is a topic of intensive research in the data science com-
munity, although it has only begun to be addressed in the environ-
mental research application area (Shen 2018; Shen et al. 2018).
In this domain, integration of mechanistic models and/or inclusion
of prior knowledge may offer insights into patterns derived from
computational data analysis. Methods such as gene expression pro-
gramming (GEP) generate explicit model structures from a speci-
fied set of operators applied to predictor variables and can be used
in a reverse engineering approach (Ilie et al. 2017). Visualization of
network activations can help to identify key forcing inputs trigger-
ing specific responses (Shen 2018; Shen et al. 2018). The require-
ment of machine-learning approaches for sufficient data also
constitutes a limitation that has been addressed by using generative
adversarial networks (GANs) to generate training data sets (Li et al.
2018).

A few examples clearly demonstrate the value of the analysis
and interpretation of big data on aquatic systems. At the level of
process understanding, the combination of remote-sensing data
on temperature and chlorophyll with three-dimensional lake mod-
eling allows surface biomass variations to be interpreted in relation
to wind-driven transient upwelling and basin-scale internal waves
(Bouffard et al. 2018). Analysis of historical records has demon-
strated the legacy effects of deforestation (with consequent in-
creases in discharge and infiltration) on wetland development
(Woodward et al. 2014). Improved estimates of global river runoff
have indicated that rivers play a larger role in the exchange of car-
bon dioxide between the land surface and the atmosphere than had
previously been realized (Allen and Pavelsky 2018). Concerted ef-
forts to compile and harmonize data on dams and their impacts have
provided important insights into the aggregate impacts of dams on
surface freshwater storage, run-off, nutrient and sediment transport,
and sea-level rise as well as the consequences for aquatic ecosys-
tems (Chao et al. 2008; Doell et al. 2009; Grill et al. 2015; Kondolf
et al. 2014; Lehner et al. 2011; Maavara et al. 2015). With the
planned and anticipated increases in dam construction, such an evi-
dence base is needed to inform decision making (Fan et al. 2015;
Zarfl et al. 2015).

Open Data and Open Science

The preceding discussion was based on the presumption that there
is a common understanding of what data should be deposited
online. This makes sense in the context of historical monitoring data
or supporting data for journal publications but becomes blurred in
the emerging context of open science, which incorporates the entire
research cycle (Bueno de la Fuente n.d.). The caching of intermedi-
ate results, such as outputs of simulation runs, has been explicitly
recommended (Peters et al. 2014), although this is widely consid-
ered to be impracticable. Although the depositing of genomic data
is well-established, the increasing trend toward resequencing (from
which the DNA of a specific individual can be compared against a
composite reference genome) raises the question of what data must
be stored: the full resequenced genome or a compressed version
based on the reference genome (Pinho et al. 2012). At the other
extreme, data produced by detectors at the Large Hadron Collider
(LHC) at CERN are subjected to real-time analysis to reduce data
volumes by factors of 1,000—10,000 before data storage (Gligorov
2015). The demands for data storage and speed of data transmission
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are two of the most visible challenges for academic research
institutions.

Institutional Challenges and Opportunities

There is no shortage of papers promising that big data will provide
the basis for a profound improvement in our understanding of
environmental systems and our capacity to manage them (Dafforn
et al. 2016; Durden et al. 2017; Farley et al. 2018; Peters et al.
2018, 2014). Activities in synthesis centers such as The National
Center for Ecological Analysis and Synthesis (NCEAS) and The
National Socio-Environmental Synthesis Center (SESYNC) have
demonstrated the power of data sharing in posing and answering
previously intractable questions (Farley et al. 2018). The caveat is
the level of investment that will be needed to capture these benefits.
Needs for data storage and transmission will require upgrading of I'T
infrastructure. Support from informatics and data science experts will
be needed for environmental scientists to apply computational meth-
ods to their data and models. But cultural changes in the attitudes
and expectations of environmental scientists will also be needed
to support the sharing of data as well as their collaborative use, in-
terpretation, and presentation (Dafforn et al. 2016; Durden et al.
2017; Peters et al. 2018, 2014). Application of data sciences further
imposes the need to share code and workflows, which requires
proper annotation to support reproducibility (Hutton et al. 2016).

Research institutions must be aware of how their incentive
systems (i.e., hiring, promotion, and tenure) may bias against data
sharing and collaborative activities, issues that are particularly
problematic for junior researchers (Gewin 2016). Even decisions
about using proprietary or open-source software, which are often
made at the level of an individual investigator or research group,
can have important implications for further collaborative use of re-
search products. At the same time, institutions have the capacity
to support platforms for collaboration (such as the Swiss Data
Science Center (SDSC n.d.) and to promote collaborative ac-
tivities as exemplified by the July 2018 call for a biodiversity
knowledge alliance (GBIF n.d.). Simply keeping abreast of all
these developments poses its own challenges. Here, institutions can
promote the FAIR data principles (Wilkinson et al. 2016) and en-
courage cross-referencing, harmonization, and (when appropriate)
consolidation of platforms (Hering and Vairavamoorthy 2018).
Funding agencies, in particular, should pay attention to the inher-
ently transient nature of project-based platforms and take steps to
ensure that successful platforms are embedded in an institutional
structure. In general, successful platforms could be considered
as small wins (Termeer and Dewulf 2018) whose aggregation could
help to increase the visibility, accessibility, and reuse of environ-
mental data.

I am convinced that the ability to access big data on water
systems, combine these data with modeling, and update models
(i.e., data assimilation) will dramatically expand our understanding
of these systems and provide a robust basis for real-time prediction
and systems control and/or management. The water sector is well-
known for its long time horizons (i.e., accompanying major infra-
structure investments) and consequent inflexibility. The ability to
monitor and model water systems more accurately and respond
more quickly to observed changes could provide a basis for adap-
tive management. Allowing for more variance in water systems
could help to improve their resilience (Carpenter et al. 2015). The
effective use of big data could also provide the basis for balancing
trade-offs in integrated land and water management (Davis et al.
2015) and for adaptive management in the restoration of aquatic
ecosystems (Geist and Hawkins 2016). Big data offer an exciting
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opportunity to make our management of water systems more sus-
tainable. As the capstone of my professional journey through the
evolving landscape of data science, I hope to foster the cooperation
and focus on outcomes and impacts that will be needed to realize
this promise.
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