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Abstract We discuss advantages of using algebraic
multigrid based on smoothed aggregation for solving
indefinite linear problems. The ingredients of smoothed
aggregation are used to construct a black-box mono-
lithic multigrid method with indefinite coarse problems.
Several techniques enforcing inf–sup stability conditions
on coarse levels are presented. Numerical experiments
are designed to support recent stability results for cou-
pled algebraic multigrid. Comparison of the proposed
multigrid preconditioner with other methods shows its
robust behaviour even for very elongated geometries,
where the pressure mass matrix is no longer a good pre-
conditioner for the pressure Schur complement.

Keywords Stokes ·Multigrid · Smoothed
aggregation · Preconditioner

1 Introduction

This paper investigates the application of the algebraic
multigrid by smoothed aggregation [17] for solving
indefinite problems in a black-box way. Although we
discuss its use for GLS stabilized P1–P1 finite element
discretizations of steady-state or evolutive Stokes prob-
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lems, all the concepts proposed here should transpose
also to other schemes.

While multigrid methods for second order positive
definite problems are sufficiently mature to be used
for industrial problems, multigrid for saddle-point prob-
lems is still under development [21]. A straightforward
way of applying multigrid to indefinite problems is to
use standard segregation schemes like Uzawa [4], block
LU for velocity–presure blocks [7,13], or pressure Schur
complement method in order to split the saddle-point
problem into a set of positive definite subproblems, for
which efficient multigrid schemes exist. This approach is
described e.g. in [10] or [16]. In such a case, the limiting
factor is the convergence speed of the external iteration
of the segregation scheme.

In most cases, a good preconditioner [11] for the pres-
sure Schur complement is the crucial point. Although
there exist results on the h-optimal preconditioning of
the Schur complement by other sparse operators [13],
these approaches are (i) not black-box, since they need
a problem-dependent discrete preconditioning opera-
tor to be assembled in addition to the original saddle-
point problem, and (ii) they usually do not consider the
dependence of the preconditioning on the geometry of
the computational domain �.

In particular, we state in Sect. 4 that the common pres-
sure mass matrix preconditioner for the steady Stokes
problem is, true, h-independent, but its efficiency
depends on the shape of � and can perform very poorly
for elongated domains.

Instead, we opt for a monolithic coupled multigrid
method like in [1,19,20], i.e. solving saddle point prob-
lems in each multigrid level, while using segregated
methods as pre- and post-smoothers. The aim is to build
a robust black-box monolithic preconditioner to a
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Krylov-space method capable of dealing with steady and
evolutive saddle-point problems in a unified way.

In Sect. 3 we give a brief overview of selected seg-
regated and monolithic methods, which are then used
either for comparison in numerical tests, or as ingre-
dients of the proposed generalization of the smoothed
aggregation multigrid for saddle-point problems.

Section 4 states some stability results of [12] and [19],
put in a form which can be experimentally tested.

Section 5 contains numerical results supporting our
scheme, as compared to preconditioned Krylov meth-
ods for the pressure Schur complement, or monolithic
ones using GMRES preconditioned by block LU pre-
conditioners [14].

2 Preliminaries

Let � ⊂ Rd, d = {2, 3} be a bounded domain. We will
write the stabilized Stokes problem in its weak form: find
u ∈ X ≡ [H1

0(�)]d and p ∈ Y ≡ {q ∈ L2(�) :
∫
�

q = 0}
such that

a(u, v)+ b(v, p) = (f , v) for all v ∈ X
b(u, q)− c(p, q) = (g, q) for all q ∈ Y.

(1)

Here, we assume that � is polygonal. Its triangula-
tion τh consists of simplex elements of mesh-size h, with
angles bounded from below. Furthermore, f ∈ X ′ and
g ∈ Y ′ are given, and

a(u, v) ≡
∫

�

ρ

τ
uv+ µ

∫

�

∇u∇v,

b(v, q) ≡ −
∫

�

div vq, (2)

c(p, q) ≡
∑

K∈τh

αh2
K

µ

∫

K

∇p∇q.

Let (uh, ph) ∈ Xh × Yh be the P1 finite element solu-
tion of (1), where the spaces X and Y are formally
replaced by their P1 finite element approximations Xh
and Yh. For the sake of simplicity, our notation will not
distinguish between the finite element spaces Xh, respec-
tively, Yh and the underlying vector spaces of degrees of
freedom, i.e. we write uh ∈ Xh, as well as u ∈ Xh.

We assume that the finite element formulation (1) is
stabilized, i.e. the obtained discrete system is inversible.
We search for vectors (u, p) ∈ (Xh, Yh) such that
(

A BT

B −C

)(
u
p

)

=
(

f
g

)

, K ≡
(

A BT

B −C

)

. (3)

The matrices A, B, BT , and C are discretizations of the
bilinear forms in (2).

3 Solution methods

Over the last decades, very efficient multigrid meth-
ods (algebraic, by aggregation, or geometric) have been
proposed and quite successfully analysed for symmet-
ric positive definite problems. Their success invites to
apply them also to saddle-point problems. There are two
basic options: (i) a straightforward use of known mul-
tigrid schemes for SPD systems, applied to a sequence
of SPD subproblems obtained by decoupling pressures
and velocities in the saddle-point problem [10,16], or
(ii) generalizing the multigrid approach to treat saddle-
point problems on each multigrid level by extending the
notions of smoothing and coarse-grid correction [1,19].

3.1 Multigrid for SPD subproblems of the saddle-point
problem

In the approach (i), one generates a sequence of SPD
subproblems, by often decoupling (segregating) the
pressure degrees of freedom from the velocity ones,
like in the Uzawa scheme, the pressure correction, or
pressure Schur complement method. While the SPD
subproblems might be efficiently solved by existing mul-
tigrid methods, the convergence of the overall decou-
pling process heavily depends on its preconditioning.
This is a huge drawback, since the discrete operator to
precondition is full, in the ideal case. Let us give the
following examples of this class of solvers.

Pressure Schur complement : By eliminating the
velocity from (3) we obtain a Schur complement
system for pressure

Sp = BA−1f − g, (4)

where S ≡ BA−1BT + C. The system matrix S is SPD,
but it is in general full. Thus, we need solution methods
for (4) which do not need to assemble S explicitly. One
of them is the conjugate gradient (CG) method, which
needs only to evaluate iterative residuals ri = r0 − Sδpi.
For a given update of pressure δpi in the ith iteration,
one performs

ri = r0 − B[A−1(BTδpi)] − Cδpi,

involving a solution of a sparse SPD auxiliary system

Aη = BTδpi.

For this task, efficient multigrid methods exist. The
convergence of the CG method might be enhanced by
preconditioning. In this case preconditioners cannot be
constructed from the matrix S in an algebraic way, as S is
a never assembled full matrix. Instead, one might use an
external analytic result, like the one in Lemma 4.1. Even
though this strategy might work well for some cases,
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the lack of algebraic preconditioner to S is an obsta-
cle in the construction of an efficient black-box method.
Moreover, we show that it does not lead to robust pre-
conditioning with respect to large elongations L of the
domain �, or small timesteps τ .

Block LU preconditioner of a monolithic scheme :
Silvester, Elman, Wathen et al. [6,7,13,14] propose a
preconditioner for a monolithic Krylov-space method
based on the following block LU factorization (K =
L ·U),
(

A BT

B −C

)

=
(

I 0
BA−1 I

) (
A BT

0 −BA−1BT − C

)

.

Thus, using an approximation of U−1 as a right precon-
ditioner gives

(
A BT

B −C

)(
Â BT

0 −Ŝ

)−1

≈
(

I 0
BA−1 I

)

, (5)

where Â and Ŝ are suitable preconditioners for A and S.
If exact U is used, the Krylov method converges in two
steps, due to the lower-triangular form of the precon-
ditioned system. The question of good preconditioning
for the Schur complement S (matrix Ŝ) is usually treated
by using results like the one in Lemma 4.1. For example,
for the steady-state Stokes problem we choose Ŝ = M,
the pressure–mass matrix. Again, this strategy is not
black-box, as it needs an external preconditioning oper-
ator for Ŝ, which risks to lack robustness with respect to
large elongation L of the computational domain � and
to smaller timesteps τ .

Braess-Sarazin method : The principal disadvantage
of the pressure Schur complement method is the fact
that S is full, which hinders the construction of an alge-
braic preconditioner for (4).

Let D be a suitable preconditioner for A such that
D−1 and (BD−1BT) can be assembled and easily evalu-
ated. The solution of a similar system
(

D BT

B −C

)(
v
q

)

=
(

f
g

)

(6)

is then more easily determined by solving the following
auxiliary linear systems,

Dv′ = f, S̃q = Bv′ − g, Dv = f − BTq, (7)

where S̃ ≡ BD−1BT + C is the inexact pressure Schur
complement. Please note, that unlike the exact Schur
complement Ŝ = BA−1BT + C, the inexact Schur com-
plement S̃ is sparse and even SPD, if D−1 is a sparse
SPD matrix. The sparsity of S̃ enables its explicit assem-
bly, which in turn means that an algebraic preconditioner
for S̃ can be constructed.

In practice we simply take D = χ diag(A), ie. we
extract the diagonal part of A. Usually we take χ ∈
[0.5, 1.0], in function of the timestep τ (χ = 0.5 for
τ →∞ and χ = 1.0 for τ → 0).

Most of the time, the Braess-Sarazin method is used
as a Richardson iteration, i.e. as a preconditioner for an
iterative solution (uj, pj) of the saddle point problem (3),

(
uj+1
pj+1

)

=
(
uj
pj

)

−
(

D BT

B −C

)−1[(
A BT

B−C

) (
uj
pj

)

−
(

f
g

)]

,

(8)

for j = 0, 1, 2, . . .. Provided that S̃ is inversed exactly,
the scheme (8) satisfies for any j the incompressibility
constraints which are defined for the original problem
(1), i.e. Buj − Cpj = g. Thus, it can be formally repre-
sented as an iterative scheme on velocities only, with the
iteration matrix

u− uj+1 = (I −D−1BTS̃−1B)(I −D−1A)(u− uj). (9)

If D is chosen so that ρ(I−D−1A) ≤ 1 and S̃ is inversed
exactly, one can show convergence of (8) in the D-norm
‖ · ‖D = (D·, ·) 1

2 ,

‖u− uj+1‖D ≤ ‖u− uj‖D.

Also, a very good smoothing property holds: there exists
a (pressure) vector q ∈ Yh such that

‖A(u− uj)+ BTq‖D ≤ C
ρ(D)

j
‖u− u0‖D.

For more details see [2,15]. The advantage of this
method is its algebraic construction based only on the
Stokes system matrix K. Also note, that unlike the bad
preconditioning result of Lemma 4.1. for the limit of
small timesteps τ , the convergence of this method is
actually improving, because A is tending to a (sparse and
SPD) diagonal matrix D = diag(A) as τ → 0 (χ → 1).

3.2 Generalization of multigrid approach
for saddle-point problems

Apart from the approaches of Sect. 3.1, one can think of
applying the idea of multiple resolution scales directly
to the whole problem (3). In this case, however, special
care is needed when addressing the complementarity
of the coarse grid correction and of the smoother. In
return, however, the scheme might have independent
behaviour regardless of the shape of �. At least, this has
been observed for multigrids for SPD systems [3].

We are proposing a monolithic multigrid V-cycle as
a preconditioner for K. We denote the finest multigrid
level by an index J, the corresponding finite element
spaces XJ = Xh, YJ = Yh, with vectors uJ = u, pJ = p,
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and operators AJ = A, BJ = B, CJ = C. The discrete
problem on the finest level reads
(

AJ BT
J

BJ −CJ

)(
uJ
pJ

)

=
(

fJ
gJ

)

, KJ ≡
(

AJ BT
J

BJ −CJ

)

. (10)

Let us precondition (10) by the following multigrid V-
cycle algorithm V(ν1, ν2).

Algorithm 1 Set uk = 0 and pk = 0 and perform one
multigrid V-cycle V(ν1, ν2) on each level k:

1. Braess-Sarazin pre-smoother: repeat ν1 times:

(
uk
pk

)

←
(
uk
pk

)

−
(
Dk BT

k
Bk −Ck

)−1[(
Ak BT

k
Bk −Ck

)(
uk
pk

)

−
(

fk
gk

)]

.

2. Coarse-grid correction: if k > 1,
(a) Restrict the residual on the level k to the get right-

hand side on the coarse level (k− 1):

fk−1 ← (IX
k )T

[
fk −Akuk − BT

k pk

]
,

gk−1 ← (IY
k )T

[
gk − Bkuk + CT

k pk

]
.

(b) Solve for (uk−1, pk−1) on the coarse-level

(
Ak−1 BT

k−1
Bk−1 −Ck−1

)(
uk−1
pk−1

)

=
(

fk−1
gk−1

)

(11)

by recursive application of this algorithm.
(c) Prolongation: correct (uk, pk) by

uk ← uk + IX
k uk−1,

pk ← pk + IY
k pk−1.

3. Braess-Sarazin post-smoother: repeat ν2 times:

(
uk
pk

)

←
(
uk
pk

)

−
(
Dk BT

k
Bk −Ck

)−1[(
Ak BT

k
Bk −Ck

)(
uk
pk

)

−
(

fk
gk

)]

.

Algorithm 1 uses two prolongation operators IX
k :

Xk−1 �→ Xk and IY
k : Yk−1 �→ Yk for the transfer of

solution updates to finer level and restriction of residuals
to coarse level. They work separately in either velocity
or pressure spaces Xk, respectively, Yk.

Coarse-level spaces by smoothed aggregation : The
velocity and pressure transfer operators are constructed
by the technique of smoothed aggregation, as described
and analysed in [17] for SPD problems. The P1–P1 finite
element basis functions of spaces (Xh, Yh) share a com-
mon support—the mesh. To keep the coarse space basis
functions for velocities and pressures also colocated,

Fig. 1 Poiseuille 2D flow: nodal aggregates on three levels, elon-
gation L = 2, h = 1/16

both prolongation operators IX
k and IY

k are based on
the same coloring of nodal aggregates.

On the current level k, we create a disjoint covering
of all nk nodes by a set of nk−1 nodal aggregates, see
Fig. 1. We denote Ak(p), p = 1, . . . , nk−1 the sets of finer
nodes contained in the aggregate p. The aggregation is
done based on the connectivity of nodes of the mesh.
This information is extracted from the sparse structure
of the original discrete operator KJ = K. Neighbouring
nodes are agglomerated by a simple greedy algorithm
to create aggregates with approximately three nodes in
diameter of the graph of the mesh, ie. the coarsening
ratio is R = 3.

Based on the agglomeration of nodes, we define ten-
tative pair of coarser spaces (X̃k−1, Ỹk−1), X̃k−1 ⊂ Xk,
Ỹk−1 ⊂ Yk of functions aggregate-wise constant (on
each type of degree of freedom separately). The tenta-
tive spaces are simple, but they do not satisfy the energy
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stability properties required for discretization of second-
order partial differential operators. That is why, in the
second step, we perform the aggregation smoothing.

First, we define tentative zero-one discrete injection
operators (matrices) ĨX

k : X̃k−1 �→ Xk and ĨY
k : Ỹk−1 �→

Yk. Hence, we can also say that X̃k−1 ≡ Range ĨX
k and

Ỹk−1 ≡ Range ĨY
k .

Second, we smooth the tentative prolongation matri-
ces to create the prolongation operators IX

k and IY
k by

IX
k =

(
I − ω

ρ(Ak)
Ak

)
ĨX

k ,

IY
k =

(
I − ω

ρ(Ck)
Ck

)
ĨY

k ,
(12)

where Ak and Ck are the velocity–velocity and pressure–
pressure blocks of the coarse-level operator, respec-
tively. Please note, that Ck is supposed symmetric posi-
tive semi-definite. The resulting coarse space of the level
(k − 1) is then formed by Xk−1 ≡ Range IX

k ⊂ Xk and
Yk−1 ≡ Range IY

k ⊂ Yk.
Assembly of coarse-level problems : Corresponding

to the prolongation and restriction operators, we would
like to construct the coarse grid systems Kk−1 by a Ritz–
Galerkin procedure
(
Ak−1 BT

k−1
Bk−1 −Ck−1

)

=
(
(IX

k )T 0
0 (IY

k )T

) (
Ak BT

k
Bk −Ck

) (
IX

k 0
0 IY

k

)

,

or, in a block-wise notation,

Ak−1 = (IX
k )TAkIX

k , Bk−1 = (IY
k )TBkIX

k (13)

and

Ck−1 = (IY
k )TCkIY

k . (14)

However, caution must be taken [19] about the inf–
sup stability condition of the pair of coarse-level dis-
cretization spaces (Xk, Yk). Thus, the formulation (14)
is known to gradually lose its stability properties with
coarsening.

Following recent results of Wabro [19], we make a
small deviation from the Ritz–Galerkin framework for
Ck−1. We keep Galerkin definitions (13) of Ak−1 and
Bk−1, and we consider, besides the formulation (14),
also the following formulas,

Ck−1 = σ(IY
k )TCkIY

k , or (15)

Ck−1 = σ(ĨY
k )TCkĨY

k . (16)

Wabro provides in [19] stability theory for the choice
(15) with σ ≈ R2, the square of the coarsening ratio.
We will conduct numerical experiments with the differ-
ent formulations at the beginning of Sect. 5, in order to
validate the theoretical stability results, and to see what
is the influence of the coarse-level inf–sup constants on
the multigrid convergence.

4 Pressure Schur complement preconditioner

Recent results [12] show that also for the P1–P1 finite
element GLS scheme the mass-matrix in the pressure
space Yh is an h-independent preconditioner for the
pressure Schur complement S for the steady-state Stokes
problem. Let us restate this result, with a special atten-
tion not only to dependencies of constants on h, but also
on the shape and form of �.

Lemma 4.1. Let A, B and C be matrices introduced in
(3), M is the pressure mass-matrix, Mij = (ϕi, ϕj)0,�, and
α denotes the GLS stabilization parameter. There exist
two constants c1, c2 > 0, depending on the mesh smallest
angle, the shape and elongation L of the domain �, such
that for all q ∈ Yh, q 
= 0 we have

c1

µ
(

1+ 1
α
+ ρ

µτ

) ≤
(
q, (BA−1BT+C)q

)

(
q, Mq

) ≤ c2
1+α

µ
. (17)

Proof For full proof please refer to [12]. Let us only
briefly discuss its main ingredients with respect to their
dependencies on the geometry of the computational
domain �.

The upper bound is obtained by applying the follow-
ing inverse inequality: for all qh ∈ Yh there is

C1

∑

K∈τh

h2
K‖∇qh‖20,K ≤ ‖qh‖20,�, (18)

with C1 depending only on the mesh smallest angle.
To obtain the lower bound, one needs to use Poin-

caré’s inequality and the Verfürth’s trick [18], which
both contain assumptions on the shape of the domain.
Lemma 3.3 in [9] states that there are two positive con-
stants C2, C3 independent of h, but dependent on the
characteristics of the bounded domain � (star-shape and
elongation L) such that for all qh ∈ Yh with

∫
�

qh = 0
we have

sup
vh 
=0

∫
�

qh div vh

‖∇vh‖0,�
≥ C2‖qh‖0,� − C3‖qh‖h, (19)

where ‖qh‖2h =
∑

K∈τh
h2

K‖∇qh‖20,K. ��
Please note, that for the limit without GLS stabiliza-

tion α→ 0, the lower bound in (17) vanishes—the Schur
complement matrix becomes singular. For all our tests,
we take α = 0.01.

As cond(S, M) = c2
c1

(1 + α)
(

1+ 1
α
+ ρ

µτ

)
, it might

appear, that the pressure mass matrix is an excellent
preconditioner for the pressure Schur complement, at
least for the limit τ → ∞. Indeed, this consideration
is exploited in many solution methods. Nevertheless, for
elongated domains, there are several shortcomings, even
in the limit case of the steady-state Stokes problem.
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We have noticed that proof of Lemma 4.1. uses the Po-
incaré’s inequality and the Verfürth’s trick, whose con-
stants depend on the shape of � and, most importantly,
on its elongation L. Verfürth’s trick compares the inf–
sup constant of the actual finite element spaces (Xh, Yh)

to a reference configuration on which inf–sup condition
is verified. However, the resulting estimates cannot be
�-independent, since even for the original non-discret-
ized spaces (X, Y) the continuous inf–sup (LBB) con-
stant

0 < CLBB = inf
q∈Y(�)

sup
v∈X(�)

∫
�

q div v

‖q‖0,�‖v‖1,�

depend on elongation L. The analysis of the CLBB con-
stant for several types of domains in [5] estimates that
CLBB ≈ O(L−1).

Let us now turn our attention to inf–sup stability
properties of coarse operators. Using the stability result
in [19], we can state the equivalent of Lemma 4.1. for
coarse spaces.

Lemma 4.2. Let Ak, Bk and Ck be matrices introduced
in (13) and (15) with σ = R2, where R is the coars-
ening ratio. Let Mk be the coarse-level pressure mass-
matrix introduced by the recurrence M�−1 = (IY

� )TM�IY
� ,

� = {J, J − 1, . . . , k + 1}, MJ = M. Let α denote the
GLS stabilization parameter. There exist two constants
c1, c2 > 0, independent of the multigrid level k, such that
for all q ∈ Yk, q 
= 0 we have

c1

µ
(

1+ 1
α
+ ρ

µτ

) ≤
(

q, (BkA−1
k BT

k+Ck)q
)

(
q, Mkq

) ≤ c2
1+α

µ
.

(20)

Proof The proof is formally the same as the proof of
Lemma 4.1., in which the fine-level inverse inequality
(18) is replaced by

C1

nk∑

p=1
Āk(p)

diam(Āk(p))2‖∇qh‖20,Āk(p)
≤ ‖qh‖20,�,

for qh ∈ Yk. Here, Āk(p) = {K ∈ τh : ∃i ∈ K , i ∈
Ak(p)}, is a set of fine-level finite elements covering the
nodes of the pth nodal aggregate, on the multigrid level
k. Its characteristic diameter is denoted by

diam(Āk(p)) = RJ−k max
K∈Āk(p)∩τh

hK.

The norm ‖ · ‖h is generalized on the level k by

‖qh‖2h =
∑

K∈τh

R2(J−k)h2
K‖∇qh‖20,K =

µ

α
qTCkq,

for any function qh ∈ Yk ⊂ YJ , whose discrete counter-
part is q ∈ Yk

Table 1 Stability properties on multigrid levels k (k = 6 finest,
k = 1 coarsest), measured by cond(Sk, Mk) for different formula-
tions of coarse-problems

MG-lvl k λmin(M
−1
k Sk) λmax(M

−1
k Sk) cond(Sk, Mk)

Ck−1 =
(
IY

k

)T
CkIY

k
Fine 6 8.351× 10−2 9.999× 10−1 1.197× 101

5 1.247× 10−2 8.656× 10−1 6.939× 101

4 2.212× 10−3 7.162× 10−1 3.236× 102

3 1.901× 10−3 6.990× 10−1 3.677× 102

2 1.227× 10−2 6.760× 10−1 5.509× 101

Coarse 1 5.773× 10−2 4.116× 10−1 7.129× 100

Ck−1 = 3× (
IY

k

)T
CkIY

k
Fine 6 8.351× 10−2 9.999× 10−1 1.197× 101

5 3.620× 10−2 8.684× 10−1 2.398× 101

4 1.778× 10−2 7.165× 10−1 4.029× 101

3 7.577× 10−3 6.990× 10−1 9.226× 101

2 1.380× 10−2 6.762× 10−1 4.897× 101

Coarse 1 5.797× 10−2 4.120× 10−1 7.107× 100

Ck−1 = 9× (
IY

k

)T
CkIY

k
Fine 6 8.351× 10−2 9.999× 10−1 1.197× 101

5 9.933× 10−2 8.764× 10−1 8.823× 100

4 1.060× 10−1 7.197× 10−1 6.787× 100

3 1.057× 10−1 7.002× 10−1 6.624× 100

2 1.039× 10−1 6.854× 10−1 6.594× 100

Coarse 1 9.172× 10−2 5.212× 10−1 5.682× 100

Ck−1 =
(

ĨY
k

)T
CkĨY

k

Fine 6 8.351× 10−2 9.999× 10−1 1.197× 101

5 2.569× 10−2 8.671× 10−1 3.375× 101

4 8.298× 10−3 7.113× 10−1 8.571× 101

3 3.646× 10−3 6.968× 10−1 1.910× 102

2 9.091× 10−3 6.593× 10−1 7.253× 101

Coarse 1 4.791× 10−2 3.367× 10−1 7.027× 100

Ck−1 = 3×
(

ĨY
k

)T
CkĨY

k

Fine 6 8.351× 10−2 9.999× 10−1 1.197× 101

5 7.221× 10−2 8.729× 10−1 1.208× 101

4 6.552× 10−2 7.124× 10−1 1.087× 101

3 6.359× 10−2 6.975× 10−1 1.096× 101

2 6.339× 10−2 6.656× 10−1 1.050× 101

Coarse 1 7.788× 10−2 4.022× 10−1 5.164× 100

Poiseuille flow in 2D on a square � = (−1, 1) × (−1, 1) with
isotropic fine mesh (h = 1/364, 531,441 nodes), timestep τ = ∞
(steady-state problem)

The estimate (19) is still valid for q ∈ Yk and vh ∈ Xk,
by virtue of Lemma 1 in [19]. ��

5 Numerical experiments

Let us perform series of tests on a simple 2D Poiseuille
flow problem. First, we will concentrate on the stability
properties of the coarse-grid operators, depending on
the choice of assembly formula for Ck−1. Then we
perform a study of performance of the multigrid
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Fig. 2 Convergence history
for MG-iterations of V(1, 1)-
and V(3, 3)-cycles for
different formulations of
coarse-problems. Poiseuille
flow in 2D on a square
� = (−1, 1)× (−1, 1) with
isotropic fine mesh
(h = 1/364, 531,441 nodes),
timestep τ = ∞ (steady-state
problem)
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Fig. 3 Convergence history
for MG-iterations of V(1, 1)-
and V(3, 3)-cycles for
different formulations of
coarse-problems. Poiseuille
flow in 2D on a square
� = (−1, 1)× (−1, 1) with
isotropic fine mesh
(h = 1/364, 531,441 nodes),
timestep τ = 10−8 (small)
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preconditioner with respect to different time-steps and
elongated domains. Then we pass on a 3D flow
example.

If not stated otherwise, we are using a V(3, 3)-cycle
multigrid preconditioner of Algorithm 1 with 3 steps of
Braess-Sarazin pre- and post-smoothing, with D = 0.5 ·
diag(A), and with the inexact Schur complement S̃ ap-
proximatively inversed by one backward substitution of
the ILU(0) method inside each iteration of the Braess-
Sarazin method (7). Prolongation smoothers (12) are
tuned by ω = 4/3, like in [17]. All methods are con-
sidered converged when the relative residual euclidean
norm drops by a factor of 10−10.

Poiseuille flow on elongated domains in 2D : We pose
the Poiseuille problem successively for different compu-
tational domains � ≡ (−L, L)× (−1,−1) with different
elongations L, different timesteps τ and different isotro-
pic mesh sizes h. In each case, we are using the same P1–
P1 finite element scheme with Brezzi-Pitkäranta-like
stabilization (2) on an isotropic mesh, with the stabil-
ization parameter α = 0.01, µ = 1 and ρ = 1. We are
looking for (u, p) ∈ (Xh, Yh) such that

u
τ
− div∇u+ ∇p = 0 in �,

div u = 0 in �,
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Table 2 Poiseuille flow 2D: timestep τ=∞
Iterations

τ L h Nodes λmin(S, M) λmax(S, M) cond(S, M) CG LU MG

∞ 1 1/8 289 1.234× 10−1 9.865× 10−1 7.997× 100 34 25 –
∞ 1 1/16 1,089 1.209× 10−1 9.957× 10−1 8.238× 100 35 24 18
∞ 1 1/32 4,225 1.205× 10−1 9.974× 10−1 8.278× 100 34 23 18
∞ 2 1/8 561 9.060× 10−2 9.896× 10−1 1.092× 101 36 27 –
∞ 2 1/16 2,145 9.097× 10−2 9.966× 10−1 1.096× 101 36 26 18
∞ 2 1/32 8,385 9.106× 10−2 9.978× 10−1 1.096× 101 36 25 19
∞ 4 1/8 1,105 2.483× 10−2 9.902× 10−1 3.988× 101 40 30 –
∞ 4 1/16 4,257 2.490× 10−2 9.968× 10−1 4.003× 101 39 29 19
∞ 4 1/32 16,705 2.491× 10−2 9.981× 10−1 4.006× 101 39 27 18
∞ 8 1/8 2,193 6.355× 10−3 9.904× 10−1 1.559× 102 45 35 –
∞ 8 1/16 8,481 6.371× 10−3 9.970× 10−1 1.565× 102 44 34 20
∞ 8 1/32 33,345 6.375× 10−3 9.984× 10−1 1.566× 102 44 32 20
∞ 64 1/8 17,425 1.001× 10−4 9.912× 10−1 9.906× 103 116 778 –
∞ 64 1/16 67,617 1.003× 10−4 9.977× 10−1 9.947× 103 116 723 21
∞ 64 1/32 266,305 1.004× 10−4 9.993× 10−1 9.957× 103 116 723 21

Preconditioning of S by M. Dependence of the condition number cond(S, M) on the mesh-size h and the geometry elongation L.
Convergence of mass-preconditioned CG method for the Schur complement system (CG), and of block LU (LU) and algebraic
multigrid (MG) preconditioners for monolithic GMRES

Table 3 Poiseuille flow 2D: timestep τ=100

Iterations

τ L h Nodes λmin(S, M) λmax(S, M) cond(S, M) CG LU MG

100 1 1/8 289 1.233× 10−1 9.607× 10−1 7.791× 100 34 25 –
100 1 1/16 1,089 1.209× 10−1 9.774× 10−1 8.087× 100 35 24 14
100 1 1/32 4,225 1.204× 10−1 9.845× 10−1 8.176× 100 35 22 14
100 2 1/8 561 5.335× 10−2 9.563× 10−1 1.792× 101 37 28 –
100 2 1/16 2,145 5.349× 10−2 9.691× 10−1 1.812× 101 37 27 14
100 2 1/32 8,385 5.352× 10−2 9.845× 10−1 1.839× 101 37 25 14
100 4 1/8 1,105 1.405× 10−2 9.384× 10−1 6.677× 101 40 31 –
100 4 1/16 4,257 1.408× 10−2 9.691× 10−1 6.882× 101 40 30 14
100 4 1/32 16,705 1.409× 10−2 9.846× 10−1 6.989× 101 41 28 14
100 8 1/8 2,193 3.560× 10−3 9.393× 10−1 2.639× 102 47 38 –
100 8 1/16 8,481 3.566× 10−3 9.693× 10−1 2.718× 102 47 37 15
100 8 1/32 33,345 3.568× 10−3 9.847× 10−1 2.760× 102 48 35 14
100 64 1/8 17,425 5.587× 10−5 9.409× 10−1 1.684× 104 140 >103 –
100 64 1/16 67,617 5.596× 10−5 9.697× 10−1 1.733× 104 142 >103 15
100 64 1/32 266,305 5.598× 10−5 9.851× 10−1 1.760× 104 143 >103 15

Preconditioning of S by M. Dependence of the condition number cond(S, M) on mesh-size h and geometry elongation L. Convergence
of mass-preconditioned CG method for the Schur complement system (CG), and of block LU (LU) and algebraic multigrid (MG)
preconditioners for monolithic GMRES

u = 0 on 
D,
(

∂ui

∂xj
− δijp

)

nj = Fi on 
F ,

with the domain geometry � as in Fig. 1, for L = 2
and isotropic mesh parameter h = 1/16. A horizontal
driving force is prescribed on the left boundary of the
pipe, and zero velocity conditions are imposed on the
horizontal pipe walls. On the right side, horizontal out-

flow is required. The nodal aggregates for the first three
multigrid levels are depicted in Fig. 1.

Stability of coarse-grid operators : First, we assemble
the coarse problems on all multigrid levels by formu-
las (13) and (15) or (16) and we validate numerically
the stability results of Lemma 4.2. We use a particular
fine mesh with L = 1 and h = 1/364, for which we
generate six multigrid levels (k = J = 6 is the finest
one) with coarsening ratio R = 3. We take τ = ∞,
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Table 4 Poiseuille flow 2D: timestep τ=10−2

Iterations

τ L h Nodes λmin(S, M) λmax(S, M) cond(S, M) CG LU MG

10−2 1 1/8 289 5.733× 10−3 7.055× 10−1 1.231× 102 38 31 –
10−2 1 1/16 1,089 5.703× 10−3 8.491× 10−1 1.489× 102 42 33 11
10−2 1 1/32 4,225 5.696× 10−3 8.611× 10−1 1.512× 102 44 34 12
10−2 2 1/8 561 1.441× 10−3 7.055× 10−1 4.894× 102 49 41 –
10−2 2 1/16 2,145 1.433× 10−3 8.077× 10−1 5.635× 102 52 44 11
10−2 2 1/32 8,385 1.431× 10−3 8.612× 10−1 6.017× 102 56 46 15
10−2 4 1/8 1,105 3.609× 10−4 6.972× 10−1 1.932× 103 68 92 –
10−2 4 1/16 4,257 3.588× 10−4 7.538× 10−1 2.101× 103 72 101 11
10−2 4 1/32 16,705 3.583× 10−4 8.613× 10−1 2.404× 103 77 100 13
10−2 8 1/8 2,193 9.026× 10−5 6.451× 10−1 7.147× 103 102 371 –
10−2 8 1/16 8,481 8.973× 10−5 7.541× 10−1 8.405× 103 110 379 12
10−2 8 1/32 33,345 8.960× 10−5 8.613× 10−1 9.613× 103 117 354 14
10−2 64 1/8 17,425 1.411× 10−6 6.452× 10−1 4.574× 105 577 >103 –
10−2 64 1/16 67,617 1.402× 10−6 8.491× 10−1 6.055× 105 625 >103 21
10−2 64 1/32 266,305 1.400× 10−6 8.614× 10−1 6.152× 105 667 >103 30

Preconditioning of S by M. Dependence of the condition number cond(S, M) on mesh-size h and geometry elongation L. Convergence
of mass-preconditioned CG method for the Schur complement system (CG), and of block LU (LU) and algebraic multigrid (MG)
preconditioners for monolithic GMRES

Table 5 Poiseuille flow 2D: timestep τ=10−4

Iterations

τ L h Nodes λmin(S, M) λmax(S, M) cond(S, M) CG LU MG

10−4 1 1/8 289 1.494× 10−4 3.600× 10−1 2.409× 103 117 189 –
10−4 1 1/16 1,089 8.427× 10−5 3.596× 10−1 4.267× 103 167 445 9
10−4 1 1/32 4,225 6.698× 10−5 4.192× 10−1 6.258× 103 195 358 15
10−4 2 1/8 561 3.815× 10−5 3.600× 10−1 9.438× 103 180 448 –
10−4 2 1/16 2,145 2.111× 10−5 3.599× 10−1 1.705× 104 252 >103 9
10−4 2 1/32 8,385 1.675× 10−5 4.192× 10−1 2.503× 104 291 >103 17
10−4 4 1/8 1,105 9.638× 10−6 3.600× 10−1 3.735× 104 287 >103 –
10−4 4 1/16 4,257 5.283× 10−6 3.600× 10−1 6.814× 104 397 >103 9
10−4 4 1/32 16,705 4.188× 10−6 4.192× 10−1 1.001× 105 454 >103 19
10−4 8 1/8 2,193 2.422× 10−6 3.600× 10−1 1.486× 105 447 >103 –
10−4 8 1/16 8,481 1.321× 10−6 3.600× 10−1 2.724× 105 604 >103 11
10−4 8 1/32 33,345 1.047× 10−6 4.192× 10−1 4.004× 105 695 >103 21
10−4 64 1/8 17,425 3.802× 10−8 3.600× 10−1 9.468× 106 2, 559 >103 –
10−4 64 1/16 67,617 2.066× 10−8 3.600× 10−1 1.743× 107 3, 474 >103 12
10−4 64 1/32 266,305 1.579× 10−8 3.600× 10−1 2.280× 107 3, 772 >103 25

Preconditioning of S by M. Dependence of the condition number cond(S, M) on mesh-size h and geometry elongation L. Convergence
of mass-preconditioned CG method for the Schur complement system (CG), and of block LU (LU) and algebraic multigrid (MG)
preconditioners for monolithic GMRES

µ = 1, α = 0.01. Table 1 gives the estimates of spectral
bounds and conditioning of M−1

k Sk for different σ ’s in
(15) or (16). We clearly see, that the formulation with
Ck−1 = R2 · (IY

k )TCkIY
k , proposed by Wabro [19], is uni-

formly stable (i.e. the condition number cond(Sk, Mk) is
bounded independently of k). So is the choice Ck−1 =
R · (ĨY

k )TCkĨY
k .

Next, we would like to see the effect of coarse-level
stabilization of formulas (15) and (16) on the multi-

grid convergence speed. We observe the convergence
history of six-level multigrid V(1, 1)- and V(3, 3)-cycles,
used as simple iterations without outer Krylov loop. The
results for a steady-state problem (τ = ∞) and an evo-
lutive one with a small timestep (τ = 10−8) are pre-
sented in Figs. 2 and 3. We clearly see, that the choices
Ck−1 = R2·(IY

k )TCkIY
k and Ck−1 = R·(ĨY

k )TCkĨY
k , which

are uniformly stable on all levels, need more smooth-
ing, otherwise they perform quite badly (the V(1, 1)-
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cycle diverges for both problems). At the same time, we
observe that the best choice as to convergence speed
would be the purely Galerkin formulation (14). There-
fore, we opt for this choice in the sequel.

Robustness with respect to L and τ : Let us test now
the performance of one V(3, 3)-cycle as a preconditioner
for GMRES. In particular, we would like to experiment
with the robustness of the preconditioner with respect
to the mesh-size h, the timestep τ and the geometry
elongation L.

We are comparing three methods: (i) a GMRES
method preconditioned by one multigrid V(3, 3)-cycle
of Algorithm 1, denoted further (MG), (ii) a GMRES
method preconditioned by a block LU preconditioner
(5), as in [7], denoted further (LU), and (iii) a precon-
ditioned conjugate gradient method for the system (4),
i.e. for

Sp = BA−1f − g,

with S ≡ BA−1BT + C. This method is further denoted
by (CG). For the (LU) and (CG) methods, we use pre-
conditioning of the pressure Schur complement S by
Ŝ =M, the pressure mass-matrix. Calculating the resid-
ual in the (CG) method involves the multiplication Sp
containing the evaluation of A−1. For this sake we make
a call to UMFPACK direct solver, although a few V-
cycles of an SPD multigrid method would be sufficient.
This is to avoid supplementary effects of the incomplete
solves for A and rather concentrate on problems with
the pressure Schur complement preconditioning. At the
same time, the (CG) method generates data to Lanczos
estimation of eigenvalues λmin(S, M) and λmax(S, M) of
the generalized eigenvalue problem Sq = λMq.

We observe the relative condition number of the exact
pressure Schur complement S with respect to the pres-
sure mass matrix M in function of the mesh size h ∈
{1/8, 1/16, 1/32}, the elongation L ∈ {1, 2, 4, 8, 64} of the
domain � and timestep values τ ∈ {∞, 1, 10−2, 10−4}.
We can see in Tables 2, 3, 4, and 5 the estimations
of cond(S, M). The iteration count denotes the num-
ber of iterations to achieve convergence. Depending on
the method, it is the number of overall iterations of the
preconditioned conjugate gradient method (CG), or the
number of exterior iterations of the GMRES method
preconditioned either by a block LU preconditioner
(LU), or by one V(3, 3)-cycle of the aggregation mul-
tigrid (MG).

We clearly see the independence on the mesh-size h,
and the dramatic dependence of the two mass-matrix
based preconditioners, in the methods (LU) and (CG),
on the geometry elongation L and the timestep τ . On
the other hand, the aggregation multigrid (MG) per-
forms quite well in all cases.

Fig. 4 sixpipes geometry: velocity (above) and pressure fields

Elongated geometry in 3D : The last test shows an
application of the multigrid preconditioner for a 3D test-
case with elongated geometry, for which mass-matrix
preconditioning does not work well, even for the steady
problem τ →∞.

Six pipes with prescribed forces on their ends are
crossed, creating quite complicated velocity and pres-
sure fields, see Fig. 4. The employed mesh is of iso-
tropic Delaunay type, with 104,383 nodes (h = 0.25)
and 723,558 nodes (h = 0.125). The aggregates on the
first four levels of the 104,383 node mesh are in Fig. 6.
The convergence histories for the mass-matrix precon-
ditioned CG method for S, the block LU preconditioner
for the monolithic GMRES and the algebraic multigrid
preconditioner for the monolithic GMRES are in Fig. 5.
Clearly, mass-matrix is not a good preconditioner for
pressure Schur complement. Indeed, the estimation of
cond(S, M) for the 104,383 node mesh is of about 1.7·103.

6 Conclusions

We have tested a generalization of the smoothed aggre-
gation multigrid [17] for saddle-point problems. Similar
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Fig. 5 sixpipes geometry:
nodal aggregates of the first
four multigrid levels

Fig. 6 sixpipes geometry: convergence of the mass-matrix
preconditioned CG method for pressure Schur complement, block
LU preconditioner for monolithic GMRES and algebraic multi-
grid preconditioner for monolithic GMRES for the original and
the refined mesh

methods have been introduced and applied to engineer-
ing problems in [1,8] and their stability properties were
analysed in [19].

We have made experiments with the inf–sup stability
on coarse levels. It seems, according to our numerical
tests, that uniform inf–sup stability of coarse-level oper-
ators is not strictly necessary for obtaining a successful
preconditioner.

We have also pointed out, that the smoothed aggre-
gation multigrid V-cycle is a suitable preconditioner of
GMRES, quite robust for different timesteps and for
high elongations of the computational domain. These
two characteristics are reputed obstacles to black-box

behaviour for other methods, e.g. [7]. Thanks to the alge-
braic way of constructing coarse levels and smoothers,
the method can be used as a black-box solver.
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