
J. Group Theory 11 (2008), 555–567
DOI 10.1515/JGT.2008.034

Journal of Group Theory
( de Gruyter 2008

Hausdor¤ dimension of some groups acting on the binary tree

Olivier Siegenthaler

(Communicated by S. Sidki)

Abstract. Based on the work of Abercrombie [1], Barnea and Shalev [4] gave an explicit for-
mula for the Hausdor¤ dimension of a group acting on a rooted tree. We focus here on the
binary tree T. Abért and Virág [2] showed that there exist finitely generated (but not nec-
essarily level-transitive) subgroups of AutT of arbitrary dimension in ½0; 1�.

In this article we explicitly compute the Hausdor¤ dimension of the level-transitive spinal
groups. We then give examples of 3-generated spinal groups which have transcendental
Hausdor¤ dimension, and construct 2-generated groups whose Hausdor¤ dimension is 1.

1 Introduction

Although it is known [2] that finitely generated subgroups of AutT may have ar-
bitrary Hausdor¤ dimension, there are only very few explicit computations in the
literature. Further, all known examples have rational dimension, starting with the
first Grigorchuk group, whose dimension is 5=8, as we will see below. In this article
we give two explicit constructions of finitely generated groups. We obtain groups
of dimension 1 on the one hand, and groups whose dimension is transcendental on
the other hand. This is achieved by computing the dimension of the so-called spi-
nal groups acting on the binary tree, which are generalizations of the Grigorchuk
groups.

We begin by recalling the definition of Hausdor¤ dimension in the case of groups
acting on the binary tree. In Section 3, we define the spinal groups we are interested
in. Section 4 is devoted to the statement of Theorem 4.4, which gives a formula for
computing the Hausdor¤ dimension of any spinal group acting level-transitively
on the binary tree; the proof is deferred to Section 7. Finally, the construction of 3-
generated spinal groups of irrational Hausdor¤ dimension is given in Section 5, and
groups with Hausdor¤ dimension 1 are exhibited in Section 6.

The author gratefully acknowledges support from the Swiss National Fund for Scientific
Research (grant 105469/1).



2 Hausdor¤ dimension

Let T be the infinite binary rooted tree, and let AutT denote its automorphism
group. It is known [4] that the Hausdor¤ dimension of a closed subgroup G of
AutT is

dimH G ¼ lim inf
m!y

logjG modmj
logjAutTmodmj ;

where the ‘modm’ notation stands for the action on the first m levels of the tree (i.e.
ðG modmÞ ¼ G=StabGðmÞ, where StabGðmÞ is the pointwise stabilizer of the mth level
of the tree). Moreover, one easily computes that jAutTmodmj ¼ 22m�1. This yields
the more explicit formula

dimH G ¼ lim inf
m!y

log2jG modmj
2m

:

Below we will identify the vertices of T with the set of finite words over the alpha-
bet X ¼ f0; 1g. We recall that there is a canonical decomposition of the element
g A AutT as

g ¼ 5g@0; g@16s;

with g@x A AutT and s A SymðXÞ. We will often identify SymðX Þ with C2, the
cyclic group of order 2, or with the additive group of Z=2Z, the finite field with 2
elements.

3 Spinal groups

We only deal here with a specific case of the more general definition of spinal groups
which can be found in [5].

Before defining the spinal group Go, we need a root group A which we will always
take to be A ¼ hai ¼ C2, and a level group B, which will be the n-fold direct power of
C2. We think of B as an n-dimensional vector space over Z=2Z. Let o ¼ o1o2 . . . be
a fixed infinite sequence of non-trivial elements from B�, the dual space of B, and
let W denote the set of such sequences. We let the non-trivial element a of A act on
T by exchanging the two maximal subtrees. Next, we let each element b A B act via
the recursive formulæ b ¼ 5o1ðbÞ; b@16 and b@1k ¼ 5okþ1ðbÞ; b@1kþ16. The spinal

group Go is the group generated by AUB. Note that we require each oi to be non-
trivial, and this implies that Go is level-transitive (i.e. Go acts transitively on X n for
all n A N).

The syllable form of o is oa1

1 oa2

2 . . . where oi 0oiþ1 and the exponents ai denote
multiplicities. In contrast to this we say that o ¼ o1o2 . . . is in developed form. We
designate by sk the sum of the k first terms of the sequence ðaiÞ, i.e. the length of the
k-syllable prefix of o.
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4 Main theorem

Before stating the main theorem, we need a few more definitions.

Definition 4.1. The shift s : W ! W is defined on a sequence o ¼ o1o2 . . . by
so ¼ o2o3 . . . .

Definition 4.2. For a positive integer m and a sequence o ¼ oa1

1 oa2

2 . . . in syllable form,
we define s�1ðmÞ as the unique integer that satisfies ss�1ðmÞ�1 þ 1 < mc ss�1ðmÞ þ 1.

In other words, s�1ðmÞ is the number of syllables of the prefix of o of length m� 1.
If we write o ¼ oa1

1 oa2

2 . . . in syllable form, then fo1; . . . ;os�1ðmÞg is the set of ele-
ments of B� which appear in ðG modmÞ.

Definition 4.3. Let o ¼ oa1

1 oa2

2 . . . be in syllable form. Given m A N, we define
dimðomodmÞ as the dimension of the vector space spanned by o1; . . . ;os�1ðmÞ. We
also define dimðoÞ by

dimðoÞ ¼ lim inf
n!y

�
lim
m!y

dimðsnomodmÞ
�
:

The next theorem expresses the Hausdor¤ dimension of any level-transitive spinal
group acting on the binary tree. Its proof is given in Section 7.

Theorem 4.4. Consider o ¼ oa1

1 oa2

2 . . . in syllable form with dimðoÞ ¼ nd 2. The

Hausdor¤ dimension of Go is given by

dimH Go ¼ 1

2
lim inf
k!y

�
Sk

2sk
þ 1

2sk

Xn�1

i¼2

2sli 2 � 1

2ali

� �
þ 1

2ak
1 � 1

2ak�1

� ��
;

where Sk ¼
Pk

j¼1 2sj�1aj, and for each i A f2; . . . ; n� 1g we let liðkÞ be the smallest

integer such that

dimðssli ðkÞomodðskþ1 � sliðkÞÞÞ ¼ i:

Remark 4.5. In the case when the sequence o is eventually constant, i.e. when
dimðoÞ ¼ 1, then Proposition 7.2 can be used to show that log2jGo modmj grows
linearly with m, whence dimH Go ¼ 0.

In the special case where B ¼ C2 � C2 and o is not eventually constant, one can
use the following corollary to compute dimH Go:

Corollary 4.6. If dimðoÞ ¼ 2, then

dimH Go ¼ 1

2
lim inf
k!y

Sk

2sk
þ 1

2ak
1 � 1

2ak�1

� �� �
:
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Example 4.7. Consider B ¼ C2 � C2. Let o1, o2, o3 be the three non-trivial elements
of B�, and consider o ¼ o1o2o3o1o2o3 . . . . The group Go is the ‘first Grigorchuk
group’, first introduced in [6] (see also [3]). Since the corresponding integer sequence
is given by ak ¼ 1 for all k, then sk ¼ k and Sk ¼ 2k � 1. The last corollary yields

dimH Go ¼ 5
8 :

Example 4.8. The Hausdor¤ dimension of some spinal groups is computed in [7].
Consider B ¼ Cn

2 , and fix a functional f A B� and an automorphism r (i.e. an inver-
tible linear transformation) of B. We consider the sequence o ¼ o1o2 . . . defined by
o1 ¼ f and on ¼ r�ðon�1Þ for n > 1, where r� denotes the adjoint automorphism of
r. We restrict attention to the case where r and f are such that dimðoÞ ¼ n (this is
a rephrasing of the condition in [7, Proposition 2]). This implies that every sequence
of n consecutive terms of o generates B�. Each syllable of o has length 1, and so
we can apply Theorem 4.4 with ai ¼ 1 and si ¼ i for all i, and liðkÞ ¼ k � i for
i A f2; . . . ; n� 1g and kd n. This yields

dimH Go ¼ 1 � 3

2nþ1
;

as was found in [7].

5 Finitely generated groups of irrational Hausdor¤ dimension

Throughout this section we restrict to the case dimðoÞ ¼ 2. Let DH ½0; 1� be the set
of possible Hausdor¤ dimensions for groups Go. More precisely,

D ¼ fl A R j bo A W with dimðoÞ ¼ 2 and dimH Go ¼ lg:

Although it is not easy to determine which numbers lie in D, we are able to show the
following. Let C denote the Cantor set constructed by removing the second quarter
of the unit interval, and iterating this process on the obtained intervals. Thus C is
compact and totally disconnected, and contains transcendental elements.

Theorem 5.1. The set D contains several copies of C, each being the image of C under

an a‰ne map with rational coe‰cients.

Corollary 5.2. The set D contains transcendental elements.

Proof of Theorem 5.1. We first define the functions

fa;n : R ! R; x 7! x

2a
þ aþ n

2a
:

We will only consider the case where a is a strictly positive integer and n A Z, and we
will simply write fa instead of fa;0.
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Consider o ¼ oa1

1 oa2

2 . . . . Starting from Corollary 4.6, we can see that

dimH Go ¼ 1

2
lim inf
k!y

Sk

2sk
þ 1

2ak
1 � 1

2ak�1

� �� �

¼ 1

2
lim inf
k!y

ð fak ;1 � fak�1;�1 � fak�2
� � � � � fa1

Þð0Þ: ð1Þ

Observe that the functions f1 and f2 define an iterated function system whose
invariant set C 0 is the image of C under the map x 7! 1

3 ðxþ 2Þ. Indeed x1 ¼ 1 and
x2 ¼ 2

3 are the fixed points of f1 and f2 respectively. Write D ¼ x1 � x2. Then
f1ð½x2; x2 þ D�Þ ¼ x2 þ 1

2D; x2 þ D
� �

and f2ð½x2; x2 þ D�Þ ¼ x2; x2 þ 1
4D

� �
.

Now fix a point x̂x A C 0. There exists a sequence ðbiÞ A f1; 2gN such that

x̂x ¼ lim
k!y

ð fb0
� � � � � fbk ÞðyÞ ð2Þ

for any point y A R. We call the sequence ðb0; b1; . . .Þ the code of x̂x. Notice that the
main di¤erences between (1) and (2) are the ordering of the factors, and the limit
which is a lim inf in (1).

Fix s A N with s > 2. We define the sequence ðaiÞ A f1; 2; sgN by

ða1; a2; . . .Þ ¼ ðb0; s; b1; b0; s; b2; b1; b0; s; . . .Þ:

The sequence ðaiÞ thus consists of prefixes of the sequence ðbiÞ of increasing length,
written backwards, and separated by s. We set o ¼ oa1

1 oa2

2 oa3

1 oa4

2 . . . . We will show
that dimH Go is the image of x̂x under an a‰ne map with rational coe‰cients. Recall
that dimH Go is the lim inf of

1
2 ð fak ;1 � fak�1;�1 � fak�2

� � � � � fa1
Þð0Þ: ð3Þ

Notice that the maps fa;n are order-preserving, and observe that ð fa;1 � fb;�1Þð0Þd 3
4

if a A f1; 2g and bd 1, while ð fa;1 � fb;�1Þð1Þ < 3
4 if a ¼ s and bd 1. Therefore the

lowest values in (3) are attained when ak ¼ s. We conclude that

dimH Go ¼ 1

2
lim
k!y

ð fs;1 � fb0;�1
� fb1

� � � � � fbk Þð0Þ ¼
1

2
ð fs;1 � fb0;�1 � f �1

b0
Þðx̂xÞ:

It should be noted that the maps fs;1 � fb0;�1 � f �1
b0

do not have disjoint images.
Nevertheless, it can be checked that

f1;�1 � f1 ¼ f2;�1:

This implies that a point x A C 0 whose code is 2b1b2 . . . is mapped to the same point
as the point whose code is 11b1b2 . . . . On the other hand, the set of points whose code
starts with a 1 is just f1ðC 0Þ. Under the maps fs;1 � fb0;�1 � f �1

b0
, the set f1ðC 0Þ is sent
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to ð fs;1 � f1;�1ÞðC 0Þ, and the maps fs;1 � f1;�1 are a‰ne with rational coe‰cients and
have disjoint images for all s > 2. Thus D contains a countable infinity of disjoint
copies of C 0. r

6 Construction of full-dimensional finitely generated groups

We begin with a few easy statements which will be useful.

Proposition 6.1. Let HcG be subgroups of AutX �. Then dimH Hc dimH G. More-

over, dimH H ¼ dimH G if the index of H in G is finite.

Proof. HcG implies jH mod njc jG mod nj for all nd 0. Thus dimH Hc dimH G.
Moreover, if k ¼ jG : Hj is finite then kjH mod njd jG mod nj for all nd 0. This
yields the second claim. r

Definition 6.2. Let H and G be subgroups of AutX � and n be a positive integer. We
write H 2n � G if G contains 2n copies of H acting on the 2n subtrees of level n.

Proposition 6.3. Let H and G be subgroups of AutX �, such that H 2n � G. Then

dimH Hc dimH G.

Proof. It is straightforward to check that the hypothesis H 2 n � G implies that

jH modðm� nÞj2
n

c jG modmj for md n. The conclusion follows. r

We now turn to the construction of a full-dimensional group. Let a1 ¼ s A AutX �

be the permutation exchanging the two maximal subtrees and let an be defined recur-
sively as

an ¼ 51; an�16s:

It is easy to see that an is of order 2n. It can be viewed as a finite-depth version of the
familiar adding machine t ¼ 51; t6s. The important thing is that an acts as a full
cycle on the nth level vertices of the tree, but has no activity below the nth level.

Next, for any element g A AutX � and any word w A X �, we define w � g A AutX �

as the element which acts as g on the subtree wX �, and trivially everywhere else. The
following identity can be checked directly:

ðw � gÞh ¼ wh � gðh@wÞ:

Let g1; . . . ; gn be any elements in AutX �. We define the element

dðg1; . . . ; gnÞ ¼
Yn�1

i¼0

ð1 i0n�iÞ � giþ1:

Notice that 1 i0n�i ¼ ð1nÞðanÞ
2 i

, and that the product above can be taken in any order
as the elements all commute (since they act non-trivially on di¤erent subtrees).
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Lemma 6.4.Consider G ¼ hg1; . . . ; gni andH ¼ han; dðg1; . . . ; gnÞi. Then ðG 0Þ2 n

� H 0.

Proof. The following equalities are immediate consequences of the definitions:

dðg1; . . . ; gnÞðanÞ
k

¼
Yn�1

i¼0

ð1nÞðanÞ
2 iþk

� giþ1;

½dðg1; . . . ; gnÞ; a2i�2 j

n �½dðg1; . . . ; gnÞ�1; a2i�2 j

n � ¼ ð1nÞðanÞ
2 i

� ½gjþ1; giþ1�g
�1
jþ1 :

These relations hold for all i; j A f0; . . . ; n� 1g and all positive integer k. These two
equalities imply that

w � ½gi; gj� A H 0

for all w A X n and i; j A f1; . . . ; ng. This in turn implies that ðG 0Þ2 n

� H 0. r

Let Bn ¼ Cn
2 be the direct product of n copies of C2. Let o1; . . . ;on be a basis of B�

n

and consider the spinal group Gn defined through the sequence o1 . . .ono1 . . .on . . . .
In other words, Gn ¼ ha; bð1;nÞ; . . . ; bðn;nÞi, with

a ¼ a1 ¼ s;

bði;nÞ ¼ 51; bðiþ1;nÞ6 for i ¼ 1; . . . ; n� 1;

bðn;nÞ ¼ 5a; bð1;nÞ6:

It follows from Corollary 4.6 that dimH Gn ¼ 1 � 3=2nþ1. Define the elements

~bbn ¼ dða; bð1;n�3Þ; . . . ; bðn�3;n�3Þ; anþ1; ~bbnþ1Þ

for nd 3, and write Hn ¼ han; ~bbni.

Theorem 6.5. Hn has Hausdor¤ dimension equal to 1, for all nd 3.

Proof. Lemma 6.4 yields that

ðH 0
mþ1Þ

2m

� H 0
m; ðG 0

m�3Þ
2m

� H 0
m;

for all md 3. Thus dimH H 0
m d dimH G 0

m�3 by Proposition 6.3, and

dimH H 0
n d dimH H 0

m for 3c ncm:

Proposition 6.1 allows us to state that
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dimH Hn d dimH H 0
n d dimH G 0

m ¼ dimH Gm

for 3c ncmþ 3. The last equality holds because Gm is generated by m elements
of order 2, so jGm : G 0

mj is finite. This yields that dimH Hn ¼ 1 for all nd 3, since
dimH Gm ¼ 1 � 3=2mþ1. r

Remark 6.6. We could easily extend this construction by taking any sequence of
finitely generated groups Gn such that lim supðdimH G 0

nÞ ¼ 1.

7 Proof of the main theorem

The remainder of the article is devoted to the proof of Theorem 4.4. Our first goal is
to find a recursive formula for jGo modmj. We begin with a few simple but very use-
ful lemmata.

Let p : AutT ! ðAutTmod 1ÞGC2 be the natural epimorphism. The following
lemma is folklore.

Lemma 7.1. The map fn : AutT ! C2 given by g 7!
Q

w AX n pðg@wÞ is an epimor-

phism for all n A N.

For a group GcAutT, we let StabGðnÞ be the subgroup of G consisting of the
elements that fix the first n levels of the tree. When G ¼ AutT we simply write
StabðnÞ. For v A Xm, we define vfn : StabðmÞ ! C2 by vfnðgÞ ¼

Q
w AX n pðg@ðvwÞÞ.

Corollary 7.2. The map vfn : StabðmÞ ! C2 is an epimorphism for all v A Xm and

m; n A N.

Proof. This is straightforward because StabðmÞG ðAutTÞX
m

. r

In the following we let homodmi (resp. hoi) designate the vector space spanned
by o1; . . . ;os�1ðmÞ (resp. o1;o2; . . .).

Consider c A hoi and x A X . We define homomorphisms cx : StabGo
ð1Þ ! C2 as

follows. Write c ¼ oi1 þ � � � þ oik where oi1 ; . . . ;oik are pairwise distinct and each of
them appears at least once in o. Let nj þ 1 be the position of the first occurrence of oij

in o. If nj > 0 for all j then we define cx ¼
Pk

j¼1 xfnj (we implicitly identify C2 with
Z=2Z). Otherwise if n1 ¼ 0 we set cx ¼ xf0 þ

Pk
j¼2 xfnj , with x ¼ 1 � x.

By construction, cx is a homomorphism. The following lemma is less obvious.
(Note that StabGo

ð1Þ is generated by fb; ba : b A Bg.)

Lemma 7.3. Suppose that c A hoi. Then the map c0 : StabGo
ð1Þ ! C2 (resp. c1) is

the homomorphism induced by b 7! cðbÞ and ba 7! 1 (resp. b 7! 1 and ba 7! cðbÞ) for
b A B. In particular, cx is surjective.

Proof. This is easy to check in the case when c appears in the sequence o. The gen-
eral case is just a linear combination of the terms of o. r
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Remark 7.4. One can define cx : ðStabGo
ð1ÞmodmÞ ! C2 for any c A homodmi in

the same way and the lemma still holds.

To proceed further we need to define some specific subgroups of Go. Let c be an
element of B�. We define the subgroup ToðcÞ ¼ hkerciGo , where the superscript
designates normal closure in Go. It should be noted that ToðcÞc StabGo

ð1Þ for every
c A B�. We now state and prove two technical lemmata, which lead to Proposi-
tion 7.7.

Lemma 7.5. Let o ¼ oa1

1 oa2

2 . . . be in syllable form, let md 1 be an integer and let c0

be a non-trivial element in B� such that c0 0o1. Then

log2jðGo modmÞ=ðToðc0ÞmodmÞj ¼ 1 if mc sk þ 1;

3 if m > sk þ 1;

�

where k is the greatest integer such that c0 is linearly independent from o1; . . . ;ok.

Proof. First suppose that mc sk þ 1. Let fc1; . . . ;clg be a basis of homodmi.
Since c0 B homodmi, the set fc0; . . . ;clg is a basis of some subspace of B�.
Let fb0; . . . ; blgHB be a dual basis, i.e. b0; . . . ; bl satisfy ciðbjÞ ¼ dij for all
i; j A f0; . . . ; lg.

We have b1; . . . ; bl A kerc0, and so b1; . . . ; bl A Toðc0Þ. Since ðStabGo
ð1ÞmodmÞ is

generated as a normal subgroup by the images of b1; . . . ; bl, we have

ðToðc0ÞmodmÞ ¼ ðStabGo
ð1ÞmodmÞ:

Therefore ðGo modmÞ=ðToðc0ÞmodmÞ ¼ C2.
Now suppose that m > sk þ 1. Let fc0; . . . ;clg be a basis of hoi and let

fb0; . . . ; blg be a dual basis. Write H ¼ StabGo
ð1Þ ¼ hb0; . . . ; bli

Go . Then obviously
ðGo modmÞ=ðH modmÞ ¼ C2.

We now prove that ðH modmÞ=ðToðc0ÞmodmÞ ¼ C2 � C2. This group is
generated by the images of b0 and ba

0 . A straightforward computation shows that
b2

0 ¼ ½b0; b
a
0 � ¼ 1. Therefore ðH modmÞ=ðToðc0ÞmodmÞ is a quotient of C2 � C2.

Consider the map C : g 7! ðc0
0ðgÞ;c0

1ðgÞÞ. It is a surjective group homomorphism
ðH modmÞ ! C2 � C2, but CðToðc0ÞÞ is trivial. Therefore CðToðc0ÞmodmÞ has
index 4 in CðH modmÞ. This finishes the proof. r

Lemma 7.6. Let o ¼ oa1

1 oa2

2 . . . be in syllable form and set md 1. Then

log2jðGo modmÞ=ðToðo1ÞmodmÞj ¼

1 if m ¼ 1;

mþ 1 if 1 < mc a1 þ 1;

a1 þ 2 if a1 þ 1 < mc sk þ 1;

a1 þ 3 if sk þ 1 < m;

8>>><
>>>:

where k is the greatest integer such that o1 is linearly independent from o2; . . . ;ok.

Hausdor¤ dimension of some groups acting on the binary tree 563



Proof. The case m ¼ 1 is very simple because ðToðo1Þmod 1Þ is the trivial group and
ðGo mod 1Þ ¼ C2.

Define H ¼ StabGo
ða1 þ 1Þ. If 1 < mc a1 þ 1, since Toðo1ÞcH, we know that

ðToðo1ÞmodmÞ is trivial. It is clear that ðGo modmÞ is isomorphic to a dihedral
group of order 2mþ1 because ðGo modmÞ is generated by two involutions a and b1,
and ab1 has order 2m in ðGo modmÞ.

Suppose now that a1 þ 1 < mc sk þ 1. Let foi1 ; . . . ;oilg be a basis of hoi, with
oi1 ¼ o1. Let fb1; . . . ; blg be a dual basis. It is readily checked that the group ha; b1i
is dihedral of order 2a1þ3, and a straightforward computation shows that a2 ¼ b2

1 ¼ 1
and ðab1Þ2 a1þ1

A StabGo
ðsk þ 1Þ. Since ðGo modmÞ=ðToðo1ÞmodmÞ is generated by

the images of a and b1, we conclude that this group is dihedral of order 2a1þ2.
Finally, if sk þ 1 < m, it is su‰cient to prove that

ðH modmÞ=ðToðo1ÞmodmÞGC2:

By the above we know that this group is generated by the image of ðab1Þ2 a1þ1

, and
that this element is of order 2. Hence ðH modmÞ=ðToðo1ÞmodmÞ is a quotient of
C2. Express o1 as a linear combination of o2; . . . ;okþ1: say o1 ¼ oi1 þ � � � þ oil .
Let nj be the position of the last occurence of oij in ðomodmÞ. Fix v ¼ 0a1þ1

and define o1 : ðH modmÞ ! C2 by o1 ¼
Pl

j¼1 vfnj . Then o1 is surjective but
o1ðToðo1ÞmodmÞ is trivial. This completes the proof. r

Proposition 7.7. Let o ¼ oa1

1 oa2

2 . . . be in syllable form and set m > a1. Then

log2jGo modmj ¼ 2 þ a1 þ dðmÞ þ 2a1ðlog2jGs a1o modðm� a1Þj � 2dðmÞ � 1Þ;

with

dðmÞ ¼ 0 if o1 is linearly independent from o2; . . . ;os�1ðmÞ;

1 otherwise:

�

Proof. For m > a1, Lemma 7.6 gives

log2jðGo modmÞ=ðToðo1ÞmodmÞj ¼ a1 þ 2 if mc sk þ 1;

a1 þ 3 if m > sk þ 1;

�

where k is the greatest integer such that o1 is linearly independent from o2; . . . ;ok.
We can rewrite this equation as

log2jGo modmj ¼ a1 þ 2 þ dðmÞ þ log2jToðo1Þmodmj: ð4Þ

Next, iteration of the relation Toðo1Þ ¼ Tsoðo1Þ � Tsoðo1Þ gives

Toðo1Þ ¼ Ts a1oðo1Þ � � � � � Ts a1oðo1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2 a1

:
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Therefore

log2jToðo1Þmodmj ¼ 2a1 log2jTs a1oðo1Þmodðm� a1Þj: ð5Þ

But Lemma 7.5 yields

log2jðGs a1o modðm� a1ÞÞ=ðTs a1oðo1Þmodðm� a1ÞÞj ¼
1 if mc sk 0 þ 1;

3 if m > sk 0 þ 1;

�

where k 0 is the greatest integer such that o1 is linearly independent from o2; . . . ;ok 0 ,
i.e. k ¼ k 0. Therefore we can rewrite the preceding equation as

log2jGs a1o modðm� a1Þj ¼ 1 þ 2dðmÞ þ log2jTs a1oðo1Þmodðm� a1Þj: ð6Þ

Equations (4), (5) and (6) give the result. r

Now the technical part is over, and the following statements and their proof, in-
cluding the proof of Theorem 4.4, are easy consequences of what has been shown
above.

Proposition 7.8. Let o ¼ oa1

1 oa2

2 . . . be in syllable form and consider l A N and m > sl.

Then

log2jGo modmj ¼ 3 þ 2s0ð1 þ a1 þ d1 � 2d0Þ þ � � � þ 2sl�1ð1 þ al þ dl � 2dl�1Þ

þ 2slðlog2jGs slo modðm� slÞj � 2dl � 1Þ;

with

dj ¼ djðmÞ ¼ 0 if oj is linearly independent from ojþ1; . . . ;os�1ðmÞ;

1 otherwise:

�

(We set d0 ¼ 1 and s0 ¼ 0.)

Proof. This follows directly from l applications of Proposition 7.7. r

Corollary 7.9. Let l be such that the space spanned by olþ1; . . . ;os�1ðmÞ contains all
elements oj with 1c jc s�1ðmÞ. Then

log2jGo modmj ¼ 3 þ Sl þ 2slðlog2jGs slo modðm� slÞj � 3Þ;

with

Sl ¼ 2s0a1 þ � � � þ 2 sl�1al:
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Lemma 7.10. Let o ¼ oa1

1 oa2

2 . . . be in syllable form. Given m > a1 þ 1, if l is the

smallest integer such that ol is linearly independent from olþ1; . . . ;os�1ðmÞ, then

log2jGo modmj ¼ 3 þ Sl þ 2slþ1 � 2 sl�1 þ 2slðlog2jGs slo modðm� slÞj � 3Þ:

Proof. This is just a consequence of Proposition 7.8 and Corollary 7.9. r

Remark 7.11. If 1 < mc a1 þ 1 then ðGo modmÞ is just a dihedral group of order

mþ 1, whence

log2jGo modmj ¼ mþ 1:

We are naturally led to the following proposition.

Proposition 7.12. Consider o ¼ oa1

1 oa2

2 . . . in syllable form with dimðomodmÞ ¼ n.

Then

log2jGo modmj ¼ 3 þ Ss�1ðmÞ�1 þ
Xn�1

i¼2

ð2sliþ1 � 2sli�1Þ � 2sl1�1 þ 2sl1 ðm� sl1
Þ; ð7Þ

where lj is the smallest integer such that dimðs sljomodðm� slj ÞÞ ¼ j, for each

j A f1; . . . ; n� 1g.

Proof. We simply apply the previous lemma n� 1 times to obtain

log2jGo modmj ¼ 3 þ Sl1
þ
Xn�1

i¼1

ð2 sliþ1 � 2sli�1Þ

þ 2 sl1 ðlog2jGs
sl1 o modðm� sl1

Þj � 3Þ:

Next, we have dimðs sl1omodðm� sl1
ÞÞ ¼ 1 and l1 ¼ s�1ðmÞ � 1. Remark 7.11 yields

log2jGo modmj ¼ 3 þ Ss�1ðmÞ�1 þ
Xn�1

i¼1

ð2sliþ1 � 2sli�1Þ þ 2sl1 ðm� sl1
� 2Þ:

The result is obtained by extracting the first term of the sum. r

We are now ready to prove Theorem 4.4, which we restate here.

Theorem 7.13. Consider o ¼ oa1

1 oa2

2 . . . in syllable form with dimðoÞ ¼ nd 2. The
Hausdor¤ dimension of Go is equal to

dimH Go ¼ 1

2
lim inf
k!y

�
Sk

2 sk
þ 1

2sk

Xn�1

i¼2

2 sli

�
2 � 1

2ali

�
þ 1

2ak

�
1 � 1

2ak�1

��
;

566 O. Siegenthaler



where for each i A f2; . . . ; n� 1g we let liðkÞ be the smallest integer such that

dimðssli ðkÞomodðskþ1 � sliðkÞÞÞ ¼ i:

Proof. Starting with equation (7), we write k ¼ s�1ðmÞ. Recalling that l1 ¼ k � 1, we
compute that

log2jGo modmj
2m

¼ 1

2m�sk

�
3

2sk
þ Sk�1

2 sk
þ 1

2sk

Xn�1

i¼2

ð2sliþ1 � 2sli�1Þ � 1

2sk�sk�2
þ 1

2ak
ðm� sk�1Þ

�
:

If we fix k and consider m such that sk�1 þ 1 < mc sk þ 1, the numbers li do
not depend on m. We easily check that the expression is minimal when m ¼ sk þ 1.
Therefore

dimH Go ¼ 1

2
lim inf
k!y

�
Sk

2sk
þ 1

2sk

Xn�1

i¼2

ð2sliþ1 � 2sli�1Þ � 1

2akþak�1
þ 1

2ak

�
:

The result follows. r
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