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Abstract

This thesis is devoted to the derivation of a posteriori error estimates for the numerical
approximation of fluids flows separated by a free surface. Based on these estimates, er-
ror indicators are introduced and adaptive algorithms are proposed to solve the problem
with accuracy and low computational costs. We focus on numerical methods that are
combinations of anisotropic finite elements and second order methods to advance in time.

We split the technical difficulties in the derivation of the error estimates by first study-
ing independent PDEs, and in a second time by gathering the different results to analyse
the complete system of equations composed with these latter. The a posteriori error anal-
ysis for the approximation of these PDEs will be addressed in a particular and devoted
chapter. The last chapter is dedicated to the study of the system describing two fluids
flows.

In each chapter, we focus on two main objectives. The first is a theoretical analysis
and the derivation of error estimates, the second is the description and the implementa-
tion of an algorithm to adapt meshes and time steps. Finally, numerical experiments are
performed to demonstrate the efficiency of the procedure.

Keywords: anisotropic finite elements, second order finite differences methods, a pri-
ori and a posteriori error estimates, adaptive algorithms, elliptic equations, transport
equation, Stokes and Navier-Stokes equations, non-homogeneous Navier-Stokes equations,
fluids flows separated by a free surface
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Résumé

Cette thèse s’intéresse à l’estimation d’erreurs a posteriori pour l’approximation numérique
d’écoulements multiphases. Basés sur ces estimations, un algorithme adaptatif est présenté
avec pour but de résoudre le problème efficacement, pour le coût de calcul le plus bas
possible. Nous nous concentrons sur des méthods numériques qui sont une combinaison
d’éléments finits anisotropes et de schémas d’ordre deux en temps.

Nous séparons les différentes difficultés dans le calcul des estimations d’erreurs en
étudiant dans un premier temps chaque équation indépendemment dans un chapitre dédié,
puis en réunissant les résultats obtenus dans l’analyse du système non linéaire complet.

Dans chaque chapitre, nous nous fixons deux objectifs. Le premier est une étude
théorique, le deuxième est la description et l’implémentation d’un algorithme pour adapter
les maillages et les pas de temps. Des expériences numériques sont présentées pour illus-
trer les performances de l’algorithme.

Mots-clefs: éléments finis anisotropes, méthods de différences finies d’ordre deux, es-
timations d’erreurs a priori et a posteriori, algorithmes adaptatifs, équations elliptiques,
équation du transport, équations de Stokes et Navier-Stokes, équations de Navier-Stokes
non homogènes, écoulements de fluides séparés par une surface libre.
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Introduction

General outlook on numerical analysis, errors estimates and adaptive
algorithm

Most physical phenomena can be modeled by Partial Differential Equations (PDEs). From
an abstract point of view, a PDE can be written as

F (u) = 0, (1)

where u is an unknown that we look for in a particular functional space V (in general of
infinite dimension) and F is a differential operator.

For instance, one may be interested in knowing the distribution of heat in a metal bar
by solving the Laplace equation

−∆u = f,

in computing the transport of a chemical pollutant in a river by studying the advection
equation

∂ϕ

∂t
+ u · ∇ϕ = 0,

or in forecasting the flow of that same river by solving the Navier-Stokes equations

ρ
∂u
∂t

+ ρ(u · ∇)u− µ∆u +∇p = f .

Of course, one may be interested also in any physical situation that is described by a
dynamical system built from the above equations.

Finding the solutions of such equations, or even sometimes only proving that such
solutions exist, may be a really tough work. For some problems there are still open,
important and widely studied questions (1 million dollars price is promised to who can
close the debate for the strong solutions to the Navier-Stokes equations). Therefore, one
may use numerical methods to approximate these solutions.

A numerical method is composed with a discretization parameter h, a finite dimensional
subspace (often so-called discrete subspace) Vh ⊂ V and a discrete differential operator
Fh. Rather than looking for a solution of (1), one may look for a discrete solution uh ∈ Vh
of the finite dimensional problem

Fh(uh) = 0. (2)

The main advantage of the equation (2) compared to (1) is that it reduces in fact to
a system of algebraic equations, that can be implemented and solved using a computer
program and (up to wait for a couple of hours) are solvable. Its main drawback is of course
that we do not obtain the exact solution u but only an approximation, that we hope to be
accurate.

The goal of numerical analysis is to study how far the approximated solution uh is from
u. In fact, we would like to prove that if we choose h such that Vh → V , then uh → u.
In this case, we say that the numerical method converges. Most of the time, we show the
convergence of a numerical method by proving a so-called a priori error estimate. Let us
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equip the functional space V with a norm ‖ · ‖. Proving an a priori error estimate between
u and uh, that are the solutions of the equation (1) and its approximation (2), consists to
show that there exists a quantity ε = ε(u, h) such that

‖u− uh‖ ≤ ε. (3)

If ε→ 0 as h→ 0 (it is common that convergence occurs when the discretization parameter
is taken smaller and smaller), then we have proven the convergence of the method (of course
we must assume before that the exact solution u exists, but this is an other story.)

Observe that the a priori error estimate (3) replies to the question "Does my method
converge ?", but does not give any information about "How close from u is uh ?" since the
error ‖u− uh‖ is bounded by a quantity that is not computable. Indeed, ε depends on u,
that we do not know a priori. However, one may be interested to provide a computable
estimate of the numerical error. This is the goal of the so-called a posteriori error
estimates that consist to derive a computable quantity η = η(uh, h) such that η → 0 as
h→ 0 and

‖u− uh‖ ' η. (4)

With the existence of such η (we call it an error estimator), we can play the following
game. Imagine that we would like to find an approximated solution uh that is at a distance
close to a preset tolerance TOL from u, i.e. we would like to compute uh such that

‖u− uh‖ ' TOL.

But in the same time, we would like that the cost of computing such as uh is the lowest
possible, i.e. the size of the corresponding discrete space Vh is the smallest possible. We
can then proceed in the following way: let us start with a initial discretization parameter
h0, let us solve the discrete PDE

Fh0(uh0) = 0

and then compute the error estimator η0 = η(uh0 , h0). If η0 � TOL, then we may change
h0 and choose a smaller h1 (we do not focus on how we do it at the moment) and then
solve again the approximated equation (2) with h = h1. If η0 � TOL, then we do the
same but choosing a larger h1, so that the new space Vh1 is "smaller". We can iterate the
process until we reach a hN and a uhN such that ηN ' TOL which implies, by (4), that

‖u− uhN ‖ ' TOL,

and the size of VhN is "not too large". Such an iterative process is called an adaptive
algorithm, since the discretization parameter h is adapted until we fit a certain criterion.

Objectives of the thesis

The purpose of the present work is to propose an adaptive space-time method to compute
the flow of two incompressible, immiscible and Newtonian fluids that are separated by a
free surface (see equations (5) below). Many examples of two fluids flows can be found in
nature: waves at the surface of the ocean, blood circulation, octopus ink jets, supernova
explosion or oil flowing into water. One may also encounter such flows in industrial
applications such as chemical dissolution of aluminium, see for instance [55] and [93].

Let us consider a cavity Ω ∈ Rd, d = 2, 3, that is filled with two incompressible, im-
miscible and Newtonian fluids, characterized by their respective velocity ui ∈ Rd, pressure
pi ∈ R, density ρi ∈ R and viscosity µi ∈ R, i = 1, 2. At any time t, Ω can be split into
two subdomains Ω1(t) and Ω2(t) that contain each fluid and that are separated by the
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surface Σ(t). The initial velocity u(0) as the location of Σ(0) are known. The situation is
drawn in the Figure 1.

Figure 1: The two fluids flow separated by the free surface Σ(t).

u1, p1, µ1, ρ1Ω1(t)

u2, p2, µ2, ρ2Ω2(t)

Σ(t)

Ω

In each subdomain Ωi, the motion of the fluid is driven by the incompressible Navier-
Stokes equations

ρi
∂

∂t
ui + ρi(ui · ∇)ui − µi∆ui +∇pi = ρig, div ui = 0,

where g is the gravitation field. Defining the global quantities,

u, p, ρ, µ =
{

u1, p1, ρ1, µ1 in Ω1,
u2, p2, ρ2, µ2 in Ω2,

one can describe the global motion of the fluids by the Navier-Stokes equations for non-
homogeneous fluids

ρ
∂

∂t
u + ρ(u · ∇)u− div(2µD(u)) +∇p = ρg, div u = 0.

These equations are coupled with boundary conditions at the interface Σ. One may require
continuity of the velocity fields across the interface as the continuity of the force, which
corresponds to neglect the effects of the surface tension.

In order to describe the evolution of the interface Σ(t), we consider the piecewise
constant function ϕ that is defined for any (x, t) ∈ Ω× [0,∞) by

ϕ(x, t) =
{

1, x ∈ Ω1(t),
0, x ∈ Ω2(t).

Σ(t) is identified at each time t by the set of points where ϕ is discontinuous. Given
the initial condition ϕ(0), ϕ is transported by the velocity field and thus satisfies the
conservative equation

∂ϕ

∂t
+ u · ∇ϕ = 0.

In practice, one may consider a "smooth" version of ϕ, taking values 0 or 1, excepted
in a small region where the function has strong gradients. Then, the interface Σ(t) is
approached by the set

{x ∈ Ω : ϕ(x, t) = 0.5} .

15



The complete system of equations we are studying in this work is then

ρ
∂u
∂t

+ ρ(u · ∇)u− div(2µD(u)) +∇p = ρg,

div u = 0,

∂ϕ

∂t
+ u · ∇ϕ = 0,

ρ = ρ1ϕ+ ρ2(1− ϕ),

µ = µ1ϕ+ µ2(1− ϕ),

u(0) = u0, ϕ(0) = ϕ0.

(5)

Equations (5) are approximated by using Finite Elements to discretize the space vari-
ables and with Finite Differences to advance in time. Throughout this work, we focus on
piecewise linear, continuous, anisotropic (we will precise the sense in a few lines) finite
elements methods and second order advancing scheme such as the Crank-Nicolson or
the BDF2 methods. We focus on the a posteriori analysis of these methods with the goal
to derive space-time a posteriori error estimates. In the next paragraphs, we give a quick
overview on the former contributions, and those presented in this work.

The story of a posteriori error estimation starts in the late 70’s with the work of
Babushka and Rheinboldt [10], where they derive a residual-based error estimate for finite
elements, introducing the numerical study of error estimators [9], adaptive mesh refine-
ments techniques [8, 95, 104] and convergence of adaptive algorithms [39, 42] to solve fine
scale problems with accuracy and low computational costs. Reviews of the known tech-
niques for a posteriori error derivations can be found for instance in the works of Verfürth
[102, 105], Ainsworth and Oden [1] or in [13] in the framework of Computational Fluid
Dynamics.

Most of the classical references about a posteriori error estimates for finite elements
methods (or finite differences schemes) focus on linear, elliptic or parabolic equations with
constant coefficients. Less works were dedicated to the cases of nonlinear [4, 25, 79, 103,
106] or hyperbolic equations [26, 36, 81, 98, 20] or PDEs with variable coefficients [15, 54],
and, up to our knowledge, even less to problems involving these three aspects. If we look
at the equations (5) and we apply to them any finite elements or finite differences methods,
we can encounter, among other, four technical difficulties when performing the a posteriori
error analysis. Each of them will be addressed in a particular chapter.

A coupled nonlinear system The system (5) is fully nonlinear, due to the coupling
of the Navier-Stokes equations with the transport equation. Before deriving an a
posteriori estimate that combines the errors coming from the momentum equation
and from the conservation equation, we should study these problems separately.

The Navier-Stokes equations The Navier-Stokes equations are themselves nonlinear
due to the convective term (u ·∇)u that requires a particular treatment for deriving
the error estimates. An other issue is the difficulty to link the pressure errors to the
velocity errors for the time dependent (Navier-)Stokes equations.

Hyperbolicity and transport The transport equation is an hyperbolic equation that
requires stabilization techniques when finite elements are used, making appear ad-
ditional terms in the estimates.
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Variable coefficients For both equations, their respective coefficients (ρ and µ for Navier-
Stokes equations, u for the transport one,) are functions that can vary in space and
in time.

Most of a posteriori error estimates for time dependent problems were derived in the
framework of isotropic finite elements and first order time advancing schemes [14, 16, 82,
101]. In this work, we propose to treat the four issues presented before when anisotropic
finite elements and second order time discretization methods are used.

Isotropic meshes are a particular type of triangulation where flat triangles are not
allowed. Roughly speaking, we can think of an isotropic mesh as composed with only al-
most equilateral triangles. The classical theory of finite elements methods was developed
on such meshes [34], due to the fact that the constants involved in the standard interpo-
lation estimates depend on the mesh aspect ratio. However, anisotropic finite elements,
with very stretched triangles, are more general and are widely used in practice, but the
theoretical framework is less developed. Yet the first attempt to get rid of the isotropic
assumptions underlying the classical theory dates back already to the 70’s [7]. Since 2000,
new theoretical frameworks have been introduced [63, 44, 45], allowing to rewrite the
classical finite elements theory for almost any type of meshes, with very weak hypothesis.

Anisotropic adaptive meshes have been proved to be extremely efficient for PDEs
with free boundaries or boundary layers, in particular in computational fluid dynamics
[6, 29, 37]. Very stretched triangles are allowed, thus accuracy is reached at lower cost.
However, in most of the cases the adaptive criteria are based on heuristics or interpolation
error estimates, rather than rigorous a posteriori error bounds. This is particularly the case
when time dependent hyperbolic equations are involved, since few a posteriori estimates
are available[36]. Lately, reliable anisotropic a posteriori error estimates were proven for a
wide ranges of PDEs: elliptic equations [84, 87], parabolic equations [72, 85], convection-
diffusion-reaction equations [18, 47, 90], transport and wave equations [51, 88, 20], Stokes
equations [46, 86].

A posteriori error analysis for second order time discretization of parabolic problems
has been proposed in [3] and [72] where, with different approaches, the authors derived
a posteriori error estimates for the Crank-Nicolson method. This was extended to the
case of fully discrete estimates, where both space and time discretizations are taken in
account, for instance in [24] for isotropic meshes, and already in [72], where anisotropic
finite elements are used. The results of [72] for anisotropic meshes and the Crank-Nicolson
methods were adapted to convection-diffusion equations [90], the transport equations [41]
and the wave equation [51, 73], and then used to design space-time adaptive algorithms.
The techniques described in [3] and [72] were also adapted for the BDF2 method and a
posteriori error estimates were derived for parabolic problems [2] and the Stokes equations
[23]

Outline

In this thesis, we approximate the solutions of (5) using a combination of continuous,
piecewise linear, anisotropic finite elements and second order in time methods. Moreover,
we will introduce a adaptive strategy to obtain a suitable sequences of meshes and time
steps in order to maintain accuracy, while decreasing the computational cost.

The outline of the work is the following. In Chapter 1, we study elliptic problems
with variable coefficients. We focus on the Poisson equation

−div(µ∇u) = f,

where µ is a smooth function with strong gradients. Anisotropic finite elements are used
to approximate u. We introduce the theoretical framework of anisotropic meshes, and we
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prove both a priori (Theorem 1.8) and a posteriori error estimates (Theorem 1.11) for our
particular numerical method. Finally, we describe the adaptive algorithm and the mesh
refinement/coarsening procedure that we will be used in this thesis.

In Chapter 2, we focus on the transport equation

∂ϕ

∂t
+ u · ∇ϕ = 0,

where the velocity field can vary in space and in time. We approximate the solution using
continuous, piecewise linear, anisotropic finite elements and the Crank-Nicolson scheme
and we perform the a priori and a posteriori error analysis (Theorems 2.51 and 2.55). In
particular, we prove an a posteriori error estimate that involves the space and the time
discretization. Then we describe the strategy to adapt the mesh and the time step.

In Chapter 3, we study the Navier-Stokes equations. We first focus on the steady
Navier-Stokes equations and on the time dependent Stokes equations, before carrying
our attention on the time dependent Navier-Stokes problem. We present a numerical
method using anisotropic finite elements and the BDF2 method, and we prove so-called
semi-discrete a posteriori error estimates, that is say error estimates involving the space
(Theorem 3.49) or the time approximations (Theorem 3.57). Finally, we present for vector
valued equations the equivalent of the adaptive algorithm introduced in Chapter 2.

To conclude, in Chaper 4, we consider the coupled system and perform the a
posteriori error analysis of the two fluids flow equations (5). We introduce an adaptive
procedure that we apply to some physical phenomena. Chapter 4 is split into two parts.
First, we study the approximation of the equations (5) and we prove semi-discrete a
posteriori error estimates (Theorems 4.14 and 4.21). Secondly, we focus on an example of
the motion of rigid bodies into incompressible fluids, that can be seen as a limit case of
(5). Other semi-discrete a posteriori error estimates are proven for this particular model
(Theorems 4.31 and 4.29).
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Chapter 1

An adaptive algorithm with
anisotropic finite elements for
elliptic problems with variable
coefficient

In this chapter, we study an elliptic equation with variable diffusion coefficient that we
will use as a toy problem to understand fluids equations with variable viscosity. We want
to solve

−div(µ∇u) = f,

where µ is a smooth function that may exhibit strong variations in localized regions. To
capture this phenomenon, we propose to use anisotropic finite elements.

The objectives of the chapter are the following:

− To introduce the theoretical framework of anisotropic meshes and finite elements.

− To present a numerical method and prove a priori and a posteriori error estimates
that are valid for anisotropic meshes.

− To propose and to validate an adaptive algorithm to solve the equation.

The outline is the following: in Section 1.1, we briefly introduce the theory of anisotropic
finite elements that will be used throughout this document. In particular, we present the
discrepancy with the classical interpolation error estimates derived for isotropic meshes.
In Section 1.2, we present a numerical method that uses continuous, piecewise linear finite
elements on anisotropic meshes, and we prove error estimates. The main result is the
Theorem 1.11 that contains an a posteriori error estimate.

In Section 1.3, we define an error indicator and we study its accuracy on prescribed
meshes. Finally, in Section 1.4, we describe an adaptive algorithm and we check its
efficiency in Sections 1.5 and 1.6 for 2D and 3D problems.

1.1 A brief journey through anisotropic finite elements

Let Ω ∈ Rd, d = 2 (resp. 3), be a convex polygon (resp. polyhedron). For any h > 0, we
note Th any conformal triangulation (or mesh) of Ω into triangles (resp. tetrahedrons) K
of diameter hK ≤ h. One quantity that will be important throughout all this work is the
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so-called (mesh) aspect ratio arK that is defined for every K ∈ Th as

arK = hK
ρK

where ρK is the diameter of the largest ball inscribed in K. In the classical finite elements
theory [34], it is assumed that Th is "shape regular" that is to say the aspect ratio is
uniformly bounded for all K ∈ Th. More precisely, we say that that the triangulation is
shape regular if there exists a constant c > 0 such that for every h > 0 and for every
K ∈ Th

arK = hK
ρK
≤ c. (1.1)

This latter condition is equivalent and often referred to as the minimal angle condition,
that is to say there exists a constant α0 > 0 such that, for all h > 0 and for every triangle
(or tetrahedron) K ∈ Th, its minimum angle αK satisfies αK ≥ α0.

The condition (1.1) implies that if we refine the mesh, then it must be refined in such
way that the aspect ratio remains bounded. When working with shape regular meshes, the
classical finite elements theory implies that all the constants involved in interpolation error
estimates depend on the aspect ratio. Therefore the interpolation error may be important
if c is large.

To avoid too large constants in the interpolation estimates, one may choose a particular
case of shape regular meshes that is to say isotropic meshes. We say that a mesh or a
triangulation is isotropic if its aspect ratio is small. This implies that the mesh size is
roughly speaking the same in any directions. The main drawback of isotropic meshes is
that then stretch or very flat triangles (tetrahedrons) are not allowed, which is not suited
when boundary layers are involved.

However, even if they are rejected by the classical shape regular theory, in practice
anisotropic meshes, that is to say meshes where some triangles can exhibit large aspect
ratio, are widely used when the solution is itself anisotropic. To give a theoretical support
to the use of such meshes, a new framework is introduced, in which interpolation error
estimates independent of arK can be proven. We briefly recall the theoretical aspects
developped in [44, 45, 78]. Similar results can be found in [63]. For simplicity, we present
it in a two dimensional framework, but the considerations that follow can be easily adapted
to the three dimensional case.

Let us note K̂ the reference triangle. For any K ∈ Th we note TK : K̂ → K the affine
transformation mapping the reference triangle K̂ into K defined by

x = TK(x̂) = MK x̂ + tK ,

where MK ∈ R2×2 and tK ∈ R2. One may observe that MK is invertible, so it admits a
singular value decompositionMK = RTKΛKPK , where RK and PK are orthogonal matrices
and

ΛK =
(
λ1,K 0

0 λ2,K

)
, λ1,K ≥ λ2,K ≥ 0, RK =

(
rT1,K
rT2,K

)
.

In the above notations, r1,K , r2,K are the unit vectors corresponding to the directions
of maximum and minimum stretching, respectively, so that λ1,K , λ2,K correspond to the
value of the maximum and the minimum stretching. Geometrical interpretations of the
linear transformation TK and its singular values decomposition are described in Figure 1.1
when the reference triangle K̂ is the usual reference element of vertices (0, 0), (1, 0), (0, 1)
and in Figure 1.2 when K̂ is chosen as the unit equilateral triangle.

We now give more details on the geometrical interpretation of λ1,K and λ2,K . One
can prove [45] that there exists constants C1, C2 > 0, that depend only on the reference
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Figure 1.1: Transformation TK mapping the usual reference element K̂ into a right triangle
K. The reference triangle is stretched in the direction r1,K (resp. r2,K), with an amplitude
λ1,K (resp. λ2,K).

K̂

x̂2

1

1 x̂1

TK

K

λ1,K

λ2,K

r1,K

r2,K

Figure 1.2: Transformation TK when the reference element K̂ is the unit equilateral tri-
angle. The unit circle is mapped into an ellipse of major axis, respectively minor axis,
λ1,Kr1,K , respectively λ2,Kr2,K .

K̂

x̂2

1
x̂1

TK

K

λ1,K

λ2,K

r1,K

r2,K

triangle K̂, such that for all K ∈ Th

C1hK ≤ λ1,K ≤ C2hK , C1ρK ≤ λ2,K ≤ C2ρK ,

such that, roughly speaking, λ1,K is the diameter of K and λ2,K is the diameter of the
inscribed circle in K. Consequently one have that

C1
C2

hK
ρK
≤ λ1,K
λ2,K

≤ C2
C1

hK
ρK

,

and therefore the ratio λ1,K/λ2,K can be interpreted as the aspect ratio arK = hK/ρK .
Now, let rh be the linear Lagrange interpolant defined on Th. The following interpola-

tion result holds.

Proposition 1.1 (Anisotropic Lagrange interpolation error estimate [44, 45]).
There exists a constant C > 0 depending only the reference triangle K̂, in particular
independent of the mesh aspect ratio, such that for all K ∈ Th and for any v ∈ H2(Ω)

‖v − rh(v)‖2L2(K) +
λ3

2,K
λ2

1,K + λ2
2,K
‖v − rh(v)‖2L2(∂K)

+ λ2
2,K‖∇(v − rh(v))‖2L2(K) ≤ CL

2
K(v), (1.2)
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with

L2
K(v) = λ4

1,K

∫
K

(rT1,KH(v)r1,K)2dx + λ2
1,Kλ

2
2,K

∫
K

(rT1,KH(v)r2,K)2dx

+ λ4
2,K

∫
K

(rT2,KH(v)r2,K)2dx,

where H(v) is the Hessian matrix given by

H(v) =


∂2v

∂x2
1

∂2v

∂x1∂x2
∂2v

∂x1∂x2

∂2v

∂x2
2

 .
For shape regular meshes, the classical Lagrange interpolation error estimates reads

‖v − rh(v)‖2L2(K) + hK‖v − rh(v)‖2L2(∂K) + h2
K‖∇(v − rh(v))‖2L2(K) ≤ Ch

4
K‖v‖2H2(K),

where the constant C may depend on the aspect ratio, see [34] for instance. In the estimate
(1.2), the constant depends only on the reference triangle and therefore is independent
of the mesh aspect ratio. Observe moreover that the estimate (1.2) gives a theoretical
explanation to the good results obtained when using anisotropic meshes for anisotropic
functions. Indeed, assume that the function v depends only on the x2 variable, and that
we align the mesh with the solution, so that r1,K = (1, 0) and r2,K = (0, 1) (see Figure
1.3). Then the estimate (1.2) implies that there exists C independent of the aspect ratio
such that

‖v − rh(v)‖2L2(K) ≤ Cλ
4
2,K

∫
K

(rT2,KH(v)r2,K)2dx,

‖v − rh(v)‖2L2(∂K) ≤ C(λ2
1,K + λ2

2,K)λ2,K

∫
K

(rT2,KH(v)r2,K)2dx,

‖∇(v − rh(v))‖2L2(K) ≤ Cλ
2
2,K

∫
K

(rT2,KH(v)r2,K)2dx.

Consequently, it is sufficient that maxK∈Th λ2,K goes to 0 for rh(v) to converge to v.
Our work is mainly concerned with deriving a posteriori error estimates in the context

of anisotropic finite elements. To this end, we will need the use of Clément’s interpolant
[35] and therefore some additional assumptions must be done in order to ensure that the
constants involved in the interpolation estimates will not depend on the mesh aspect ratio:

(i) Number of neighbours For each vertex of the triangulation Th, its number of neigh-
bours is bounded from above, uniformly with respect to h.

(ii) Diameter of the reference patch For each K, the diameter of ∆K̂ = T−1
K (∆K),

where ∆K is the union of triangles sharing a vertex with K, is uniformly bounded,
independently of the mesh geometry.

In particular, the second hypothesis above excludes too distorted meshes as presented in
Figure 1.4. In practice, this hypothesis seem to be fulfilled by the type of meshes using in
our numerical experiments. For more details, we refer to [44, 45, 78, 87]. From now, all
the triangulations used in this work are assumed to satisfy the two restrictions above.

Under the two above assumptions, one may prove the following interpolation error
estimate for the Clément’s interpolant Rh on Th.

Proposition 1.2 (Anisotropic Clément interpolation error estimate [44, 45, 78]).
Let Th be a conformal triangulation of Ω satisfying hypothesis (i) and (ii). There exists a
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Figure 1.3: Example of a function u(x1, x2) that depends only on the variable x2. Top:
the function u is interpolated on the left mesh, aligned with the x2 direction. Bottom: the
function u is interpolated on the right mesh is oriented in the x1 direction (the "wrong"
direction).

x1

x2

constant C > 0 depending only on the reference triangle K̂, in particular independent of
the mesh aspect ratio, such that for all K ∈ Th and for any v ∈ H1(Ω)

‖v −Rh(v)‖2L2(K) + λ2,K‖v −Rh(v)‖2L2(∂K) + λ2
2,K‖∇(v −Rh(v))‖2L2(K) ≤ Cω

2
K(v), (1.3)

where
ω2
K(v) = λ2

1,K(rT1,KGK(v)r1,K) + λ2
2,K(rT2,KGK(v)r2,K), (1.4)

with

GK(v) =


∫

∆K

(
∂v
∂x1

)2
dx

∫
∆K

∂v

∂x1

∂v

∂x2
dx∫

∆K

∂v

∂x1

∂v

∂x2
dx

∫
∆K

(
∂v

∂x2

)2
dx

 .
Comparing the estimate (1.3) to the classical interpolation result valid for shape regular

meshes that reads

‖v −Rh(v)‖2L2(K) + hK‖v −Rh(v)‖2L2(∂K) + h2
K‖∇(v −Rh(v))‖2L2(K) ≤ Ch

2
K‖∇v‖2L2(∆K),

where C depends on the mesh aspect ratio, the same observation made for the Lagrange
interpolant can be made for the Clément’s one:

(i) In (1.3), the constant is independent of the mesh aspect ratio.

(ii) If the solution depends only on the x2 variable and the mesh is aligned with the
solution, then estimate (1.3) is sharp.
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Figure 1.4: Example of a reference patch satisfying assumption (ii) (top): the size of ∆K̂
is independent of the aspect ratio H/h. Example of a reference patch that does not fulfill
assumption (ii) (bottom): the size of ∆K̂ depends on the aspect ratio H/h.
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The anisotropic term ωK will appear several times throughout all this document, and
therefore we list some of its properties :

− Since r1,K , r2,K form an orthonormal basis, for any v, one can write that

∇v = (∇v · r1,K)r1,K + (∇v · r2,K)r2,K .

Therefore, we have an alternative expression for ωK given by

ω2
K(v) = λ2

1,K‖∇v · r1,K‖2L2(∆K) + λ2
2,K‖∇v · r2,K‖2L2(∆K).

− For any K ∈ Th, ωK is a semi-norm. In particular, it satisfies the triangle inequality
that is to say, for any u, v ∈ H1(Ω)

ωK(u+ v) ≤ ωK(u) + ωK(v).

We conclude this introductory section by two remarks.

Remark 1.3 (Anisotropic interpolation error estimates for vector valued functions).
Proposition 1.1 and Proposition 1.2 can be adapted to the case of vector valued functions.
The same estimates are valid if v : Ω→ Rd, d = 2, 3, by changing the norm L2

K(v) in (1.2),
respectively ω2

K(v) in (1.3), by

L2
K(v) =

d∑
i=1

L2
K(vi), ω2

K(v) =
d∑
i=1

ω2
K(vi),

where we denote by vi, 1 ≤ i ≤ d, the components of v.
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Remark 1.4 (Deriving the isotropic error estimates from the anisotropic ones).
The anisotropic interpolation error estimates can be seen as a generalization of the classical
finite elements theory. Indeed it is possible to recover the standard estimates by assuming
that the mesh is shape regular.

(i) Observe that if we factor λ1,K out from the estimates, we obtain for the Lagrange
error estimate (1.2)

‖v − rh(v)‖2L2(K) +
λ3

2,K
λ2

1,K + λ2
2,K
‖v − rh(v)‖2L2(∂K)

+ λ2
2,K‖∇(v − rh(v))‖2L2(K) ≤ C

λ4
1,K
λ4

2,K
λ4

2,K‖v‖2H2(K),

and for the Clément’s interpolant error estimate (1.3)

‖v −Rh(v)‖2L2(K) + λ2,K‖v −Rh(v)‖2L2(∂K)

+ λ2
2,K‖∇(v −Rh(v))‖2L2(K) ≤ C

λ2
1,K
λ2

2,K
λ2

2,K |∇v|2L2(∆K),

where C > 0 depends only on the reference triangle. Observe that we obtain ex-
pressions that are close to the classical interpolation error estimates (with respect to
λ2,K), but the stretching factor (that is to say the mesh aspect ratio) λ1,K/λ2,K pops
out. Therefore, to obtain a sharp estimates, we must assume that the λ1,K/λ2,K
remains bounded, that is to say there exists a constant c such that for all h > 0 and
all K ∈ Th, one have

λ1,K ≤ cλ2,K ,

the best situation being when c is small, that is to say when the mesh is isotropic.
Under this hypothesis, we recover the classical estimates for shape regular meshes.

(ii) In the previous point, to obtain the semi-norm H2 in the Lagrange interpolation
estimates, respectively the semi-norm H1 in the Clément’s one, we use the above
observation that r1,K , r2,K form an orthonormal basis and that for any v, one can
write that

∇v = (∇v · r1,K)r1,K + (∇ · r2,K)r2,K .

Note that, compared to the anisotropic error estimates, the isotropic bounds are
written in a close form, that is to say the mesh information (namely the mesh size)
and the norm of the function v are separated, compared for instance

ω2
K(v) = λ2

1,K(rT1,KGK(v)r1,K) + λ2
2,K(rT2,KGK(v)r2,K),

and
h2
K‖∇v‖2L2(∆K).

1.2 Anisotropic error estimates for elliptic problems with
variable coefficients

We are interested in solving the following elliptic equation, which can be seen as a toy
problem to understand the two fluids flows equations (see the system (5) in the introduc-
tion). Let Ω ∈ Rd, d = 2, 3, be an open, bounded set. Given µ : Ω → R, we are looking
for u the solution of the Poisson equation{

−div(µ∇u) = f in Ω,
u = 0 on ∂Ω. (1.5)
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Integrating the previous equations with respect to a test function v ∈ H1
0 (Ω) yields to the

following weak form ∫
Ω
µ(x)∇u · ∇vdx =

∫
Ω
fvdx, ∀v ∈ H1

0 (Ω). (1.6)

Note that we explicitly write the dependence of µ on x under the integral sign to emphasize
on its variable nature. Finally, remark that∫

Ω
fvdx

has a sense only if f is a L2 function. In general, f ∈ H−1(Ω) is sufficient to have existence
of a weak solution to (1.6). In this case, we should write

(f, v)

where (·, ·) stands for the duality product between H−1(Ω) and H1
0 (Ω) instead of the

integral over Ω.
In (1.5) as in (1.6), µ is a variable coefficient (which can be interpreted as a variable

viscosity) that may "jump" across an interface. We restrict ourself to the case where µ is
smooth, but may have large gradient in some regions. This simplification is done since the
problem (1.5) consists in a preliminary study of a two fluids flow, for which we will later on
model the interface between the two phases by the mean of a smooth function. Moreover
this particular choice rules out regularity issues or geometrical considerations about the
meshes, that may fit the interface in order to get the optimal rates of convergence of the
numerical methods. All the results that follow are adaptable to the case of non smooth
coefficients, but since it is beyond the scope of our considerations, we refer to [15] for more
details.

The well-posedness of (1.5) is ensured by the next proposition.

Proposition 1.5.
Let Ω ∈ Rd, d = 2, 3, be an open, bounded, connected Lipschitz set. Assume moreover that
µ ∈ C0,1(Ω) and that there exists µmin > 0 such that µmin ≤ µ(x) for all x ∈ Ω. Finally,
let f ∈ H−1(Ω). Then there exists a unique u ∈ H1

0 (Ω) solution of (1.5) and there exists
a constant C > 0 depending only on Ω such that the following a priori estimate holds for
the energy norm

µmin‖∇u‖L2(Ω) ≤ C‖f‖H−1(Ω). (1.7)

If moreover, we assume that Ω is a smooth domain or a convex polygon (polyhedron), then
u ∈ H2(Ω) and there exists a constant C ′ > 0 depending only on Ω such that

µmin‖u‖H2(Ω) ≤ C ′(1 + ‖∇µ‖L∞(Ω))‖f‖L2(Ω). (1.8)

Proof. We write (1.5) in the abstract formulation

a(u, v) = F (v), ∀v ∈ H1
0 (Ω),

with
a(u, v) =

∫
Ω
µ(x)∇u · ∇vdx, F (v) = (f, v).

The well-posedness of the previous equation in H1
0 (Ω) follows directly by the use of the

Lax-Milgram Lemma, observing that the bilinear form a is coercive since µ(x) ≥ µmin > 0
and

a(u, u) ≥ µmin‖∇u‖2L2(Ω).
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The a priori estimate (1.7) is obtained by taking v = u.
Finally, if we assume that Ω is smooth or a convex polygon (polyhedron in 3D) and

that f ∈ L2(Ω), then, since µ ∈ C0,1(Ω), the H2 regularity of u follows from classical
arguments [52] from elliptic PDEs theory. To derive (1.8), we observe that if u ∈ H2(Ω)
is a solution of

−div(µ∇u) = f,

then since µ > 0, one have that u satisfies the Laplace problem

−∆u = 1
µ

(f +∇µ · ∇u),

with 1
µ(f +∇µ · ∇u) ∈ L2(Ω) since µ belongs in particular to W 1,∞(Ω). This implies [52]

that there exists C > 0 depending only on Ω such that

‖u‖H2(Ω) ≤ C
∥∥∥∥ 1
µ

(f +∇µ · ∇u)
∥∥∥∥
L2(Ω)

.

The a priori bound (1.8) follows.

Remark 1.6.
Note that assuming µ ∈ C0,1(Ω) is a sufficient condition to obtain H2 solutions, but is not
necessary to obtain only H1 solutions. Indeed, there exists a unique u ∈ H1

0 (Ω) solution
to (1.6) if µ is only a bounded function such that

0 < µmin ≤ µ(x) ≤ µmax, ∀x ∈ Ω.

We now solve (1.6) with a finite elements method. We restrict ourself to the case where
Ω is a convex polygons (polyhedron in R3) and f ∈ L2(Ω), so that the domain can be
completely covered by triangles and the exact solution u belongs to H2(Ω). Let h > 0 and
Th be a conformal triangulation of Ω into triangles K of diameter hK ≤ h. We define Vh as
the set of continuous piecewise linear functions on each triangle of Th, with zero value on
∂Ω. The numerical method reads: find uh ∈ Vh the solution of the finite elements method∫

Ω
µ(x)∇uh · ∇vhdx =

∫
Ω
fvhdx, ∀vh ∈ Vh. (1.9)

By the same type of arguments as before, we can prove the well-posedness of (1.9) in Vh.

Proposition 1.7.
Let Ω ∈ Rd, d = 2, 3, be an open, bounded and convex polygon. Assume moreover that
µ ∈ C0,1(Ω) and that there exists µmin > 0 such that µmin ≤ µ for all x ∈ Ω. Finally, let
f ∈ L2(Ω). Then there exists a unique uh ∈ Vh solution of (1.9). Moreover there exists
a constant C > 0 depending only on Ω such that the following a priori estimate holds for
the energy norm

µmin‖∇uh‖L2(Ω) ≤ C‖f‖L2(Ω). (1.10)

We now prove the convergence of the above numerical method in the anisotropic set-
tings presented in Section 1.1. We present the result in the 2D case, but the generalization
to the third dimension follows with minor modifications. Under the same assumptions as
1.7, one can prove the following a priori error estimate.

Theorem 1.8 (Anisotropic a priori error estimate).
Let u ∈ H1

0 (Ω)∩H2(Ω) be the solution of (1.6) and uh ∈ Vh be the solution of (1.9). Then
there exists a constant C > 0 depending only on the reference triangle K̂, in particular
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that is independent of the mesh aspect ratio, such that the following a priori error estimate
holds ∫

Ω
µ(x)|∇(u− uh)|2dx ≤ C

∑
K∈Th

‖µ‖L∞(K)
L2
K(u)
λ2

2,K
, (1.11)

where L2
K(u) is given by Proposition 1.1.

Remark 1.9.
In the case of isotropic meshes, λ1,K ' λ2,K ' hK and L2

K(u) ≤ Ch4
K |u|2K , where C is

independent of the mesh size but can depend on the mesh aspect ratio. Thus, in these
settings, (1.11) reduces to the standard error estimate∫

Ω
µ(x)|∇(u− uh)|2dx ≤ C‖µ‖L∞(Ω)h

2|u|2H2(Ω).

Remark 1.10.
Estimate (1.11) is optimal for anisotropic meshes. Indeed, assume that the solution u
depends only on one variable and that the mesh is aligned with the solution, then the
estimate (1.11) reduces to∫

Ω
µ(x)|∇(u− uh)|2dx ≤ C

(
max
K∈Th

λ2,K

)2
,

where C depends on u, but is independent of the mesh aspect ratio. Thus maxK∈Th λ2,K →
0 is sufficient to ensure the convergence of the numerical method.

Proof. The Galerkin orthogonality yields∫
Ω
µ(x)|∇(u−uh)|2dx =

∫
Ω
µ(x)∇(u−uh)·∇(u−uh)dx =

∫
Ω
µ(x)∇(u−uh)·∇(u−rh(u))dx,

where rh(u) ∈ Vh is the Lagrange interpolant on Th (note that it makes sense to consider
the Lagrange interpolant of u since it is aH2 function in R2, thus in particular continuous).
By the Cauchy-Schwarz in R2 and the Young’s inequality, we get∫

Ω
µ(x)|∇(u− uh)|2dx ≤ 1

2

∫
Ω
µ(x)|∇(u− uh)|2dx + 1

2

∫
Ω
µ(x)|∇(u− rh(u))|2dx,

which yields ∫
Ω
µ(x)|∇(u− uh)|2dx ≤

∑
K∈Th

‖µ‖L∞(K)

∫
K
|∇(u− rh(u))|2dx.

We conclude by using the interpolation error estimate of Proposition 1.1.

Under the same assumptions as for Propositions 1.7, we now prove an a posteriori
error estimate. As for the a priori error analysis, we restrict ourself to the case Ω ∈ R2,
but the result is easily generalizable to R3. More details will be given for the 3D situation
in Section 1.6.

Theorem 1.11 (Anisotropic a posteriori error estimate).
Let u ∈ H1

0 (Ω) be the solution of (1.6) and uh ∈ Vh be the solution of (1.9). There
exists a constant C > 0 depending only on the reference triangle K̂, in particular that is
independent of the mesh aspect ratio, such that the following a posteriori error estimate
holds ∫

Ω
µ(x)|∇(u− uh)|2dx ≤ C

∑
K∈Th

η2
K , (1.12)
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where

η2
K =

(
‖f + div(µ(x)∇uh)‖L2(K) +

‖ [µ(x)∇uh · n] ‖L2(∂K)

2
√
λ2,K

)
ωK(u− uh), (1.13)

where n is the unit normal to each triangle and ωK(u− uh) is given by Proposition 1.2.

Remark 1.12 (Zienkiewicz−Zhu (ZZ) post-processing).
Estimate 1.12 is not a standard a posteriori estimate since the exact solution u is contained
in ωK(u−uh). However, post-processing techniques can be applied in order to approximate
GK(u − uh), for instance Zienkiewicz−Zhu (ZZ) post-processing [108, 109, 110]. More
precisely, we will replace the first order partial derivatives with respect to xi

∂(u− uh)
∂xi

by ΠZZ
h

∂uh
∂xi
− ∂uh
∂xi

, i = 1, 2,

where, for any vh ∈ Vh, for any vertex P of the mesh

ΠZZ
h

∂vh
∂xi

(P ) =

∑
K∈Th
P∈K

|K| ∂vh
∂xi |K∑

K∈Th
P∈K

|K|

is an approximate L2(Ω) projection of ∂vh/∂xi onto Vh.
To avoid to introduce too many notations, we denote the "post-processed solution" by

ΠZZ
h uh. If we write ΠZZ

h uh in an expression involving first derivatives, for instance as
∇(ΠZZ

h uh − uh) and the anisotropic form ωK(ΠZZ
h uh − uh), then we take the convention

that for any vertex P

∂

∂xi
(ΠZZ

h uh)(P ) := ΠZZ
h

∂uh
∂xi

(P ), i = 1, 2. (1.14)

It is well known [110] that on structured meshes, superconvergence of the ZZ recovery
occurs, implying that the post-processing is asymptotically exact, that is to say

lim
h→0

‖∇(ΠZZ
h uh − uh)‖L2(Ω)

‖∇(u− uh)‖L2(Ω)
= 1.

On general meshes, it was first proven that ‖∇(ΠZZ
h uh − uh)‖L2(Ω) and the true error

‖∇(u−uh)‖L2(Ω) are equivalent, see for instance [64]. More recently, the superconvergence
of the ZZ gradient recovery was finally shown for unstructured anisotropic meshes [27].
However, before this last result was obtained, in practice the efficiency of the ZZ post-
processing was already demonstrated to be better than the theoretical predictions. We
refer for instance to the numerical results presented in [84, 87, 85, 72, 88, 20] in the case
of anisotropic meshes for elliptic, parabolic, and hyperbolic equations.

Remark 1.13 (Lower bound).
So far, we were not able to prove a lower bound for the numerical error

∫
Ω
µ(x)|∇(u −

uh)|2dx, that is to say there exists a constant c > 0 independent of the mesh size, aspect
ratio and µ such that ∑

K∈Th

η2
K ≤ c

∫
Ω
µ(x)|∇(u− uh)|2dx.

This kind of bounds seem to be difficult to reach with a variable µ in the anisotropic finite
elements framework. We refer to [87] where a lower bound is proven in the anisotropic
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setting when µ is constant and to [15] where a proof is provided for piecewise constant µ,
but with isotropic finite elements.

However, numerical experiments that will be presented below demonstrate that in
practice the numerical error and the a posteriori error estimator are equivalent.

Proof of Theorem 1.11. In what follows, we denote by C any positive constant depending
only on the reference triangle, which may change from line to line. Using (1.6), we have∫

Ω
µ(x)∇(u− uh) · ∇(u− uh)dx =

∫
Ω
f(u− uh)dx−

∫
Ω
∇uh · ∇(u− uh)dx.

Using the numerical scheme (1.9), we have therefore∫
Ω
µ(x)∇(u− uh) · ∇(u− uh)dx =

∫
Ω
f(u− uh − vh)dx−

∫
Ω
µ(x)∇uh · ∇(u− uh − vh)dx.

(1.15)
for any vh ∈ Vh. Integrating by parts over each triangle yields∫

Ω
µ(x)∇(u− uh) · ∇(u− uh)dx =

∑
K∈Th

∫
K

(f + div(µ(x)∇uh)) (u− uh − vh)dx

+ 1
2

∫
∂K

[µ(x)∇uh · n] (u− uh − vh)dx.

Finally, using Cauchy-Schwarz inequality and choosing vh = Rh(u−uh), the interpolation
error estimate for Clément’s interpolant of Proposition 1.2 yields∫

Ω
µ(x)∇(u− uh) · ∇(u− uh)dx

≤ C
∑
K∈Th

(
‖f + div(µ(x)∇uh)‖L2(K) +

‖ [µ(x)∇uh · n] ‖L2(∂K)

2
√
λ2,K

)
ωK(u− uh).

Remark 1.14.
We observe in the proof above that the smoothness of µ is necessary. Indeed, to be able
to integrate by parts in (1.15), we must have that µ(x)∇uh is a H1 function in K, that is
clearly the case since µ is itself C0,1, that is say W 1,∞. If we have only assumed that µ is
a bounded function (we recall that it is still sufficient for (1.6) and (1.9) to be well-posed),
then we cannot conclude.

Indeed, let us consider the simple example where the domain Ω is split into two parts
Ω1 and Ω2 such that Ω = Ω1 ∪Ω2 and let us denote by Γ the boundary separating Ω1 and
Ω2. Now we define µ as the piecewise constant function taking the constant value µ1 > 0
in Ω1 and µ2 > 0 in Ω2 with µ1 6= µ2. Then there is no reason for µ(x)∇uh to be in
H1(K), for instance because Γ can cross K, so that µ has discontinuities in K. Therefore,
in this case, to perform the integration by parts, it must be possible to build a mesh such
that any triangle is contained either in Ω1 or in Ω2.

Based on the a posteriori error estimate of Theorem 1.11, we define the anisotropic
error indicator

ηA =

 ∑
K∈Th

η2
K

1/2

, (1.16)

where we η2
K is given by

η2
K =

(
‖f + div(µ(x)∇uh)‖L2(K) +

‖ [µ(x)∇uh · n] ‖L2(∂K)

2
√
λ2,K

)
ω̃K(ΠZZ

h uh − uh), (1.17)
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where Πhuh is the ZZ post-processed solution as defined in Remark 1.12 and

ω̃2
K(v) = λ2

1,K(rT1,KG̃K(v)r1,K) + λ2
2,K(rT2,KG̃K(v)r2,K), (1.18)

with

G̃K(v) =


∫
K

(
∂v
∂x1

)2
dx

∫
K

∂v

∂x1

∂v

∂x2
dx∫

K

∂v

∂x1

∂v

∂x2
dx

∫
K

(
∂v

∂x2

)2
dx

 .
We immediately make the following remark about the choice of the error indicator.

Remark 1.15.
The definition (1.17) of η2

K differs from the one of Theorem 1.11 by using the post-processed
solution ΠZZ

h uh instead of the exact solution u, making the error indicator computable,
and by using ω̃K instead of ωK as obtained in the proof. The first change makes sense
by the Remark 1.12 and the second one makes the implementation of η2

K simpler. This
choice may be justified a posteriori since the goal of the adaptive algorithm will be to
equidistribute the error among all the triangles K. Therefore putting ω̃K instead of ωK
in the definition of the local error indicator makes the resulting global error indicator ηA
differing only by a multiplicative constant from the a posteriori error estimate of Theorem
1.11.

To investigate the sharpness of ηA, we compute the so-called effectivity index eiA

defined by

eiA = ηA

eµ,H1
(1.19)

where we note

eµ,H1 =
(∫

Ω
µ|∇(u− uh)|2dx

)1/2

. (1.20)

Finally, since the local error indicator (1.17) is constructed using the ZZ post-processing,
we measure the quality of this procedure by computing the true and approximated H1

errors

eH1 =
(∫

Ω
|∇(u− uh)|2dx

)1/2

, ηZZ =
(∫

Ω
|∇(ΠZZ

h uh − uh)|2dx
)1/2

, (1.21)

and the ZZ effectivity index given by

eiZZ = ηZZ

eH1
. (1.22)

1.3 Numerical experiments with non-adapted meshes

We are performing numerical experiments to test the quality of our error indicator (1.16)
and the ZZ post-processing, as defined in Section 1.5. From our perspectives, they should
satisfy the following properties :

(i) The effectivity index eiA should not depend on the exact solution u.

(ii) The effectivity index eiA should not depend on the mesh aspect ratio.

(iii) The effectivity index eiA should not depend on µ.

(iv) The effectivity index eiZZ should be close to one.
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Example 1.16 (An anisotropic solution).
The first example consists to solve (1.5) in the square Ω =]0, 1[×]0, 1[ where we impose
non homogeneous Dirichlet boundary conditions. We consider two cases

(1) µ(x) = 2(0.5 + |x1 − 0.5|),

(2) µ(x) = 4x1(x1 − 1) + 2.

In both cases, µ is a Lipschitz function varying between 1 and 2. We compute the right
hand side f such that the exact solution u is given by

u(x1, x2) = 0.5x1(1− x1). (1.23)

We solve the problem on meshes with typical aspect ratio of 50 and 500. The results
are reported in Tables 1.1 and 1.2, where we denote by h1, respectively h2, the mesh size
in the x1-direction, respectively the x2-direction. In both cases, the effectivity index eiA
stays between 3 and 3.5, and eiZZ is asymptotically exact. We observe that errors and
error indicators are ' O(h) as predicted by the theory. These results seem to indicate
that the effectivity indices are independent of µ and the mesh aspect ratio, as desired.

h1 − h2 ηA eµ,H1 eiA ηZZ eH1 eiZZ

0.01 - 0.5 0.0082 0.0026 3.15 0.0022 0.0022 1.00
0.005 - 0.25 0.0045 0.0014 3.21 0.0011 0.0011 1.00
0.0025 - 0.125 0.0022 0.00069 3.19 0.00056 0.00056 1.00

0.00125 - 0.0625 0.0011 0.00034 3.24 0.00028 0.00028 1.00
0.001 - 0.5 0.0009 0.00025 3.6 0.00021 0.00021 1.00
0.0005 - 0.25 0.00046 0.00013 3.54 0.00011 0.00011 1.00

0.00025 - 0.125 0.00023 0.000066 3.48 0.000054 0.000054 1.00
0.000125 - 0.0625 0.00012 0.000033 3.64 0.000027 0.000027 1.00

Table 1.1: Numerical results for Example 1.16, case (1). The mesh aspect ratio is 50 (rows
1-4) and 500 (rows 5-8). µ is a piecewise linear function. The solution is given by (1.23).

h1 − h2 ηA eµ,H1 eiA ηZZ eH1 eiZZ

0.01 - 0.5 0.008 0.0025 3.2 0.0022 0.0022 1.00
0.005 - 0.25 0.0044 0.0013 3.38 0.0011 0.0011 1.00
0.0025 - 0.125 0.0021 0.00065 3.23 0.00056 0.00056 1.00

0.00125 - 0.0625 0.001 0.00032 3.13 0.00028 0.00028 1.00
0.001 - 0.5 0.00086 0.00024 3.58 0.00021 0.00021 1.00
0.0005 - 0.25 0.00044 0.00012 3.67 0.00011 0.00011 1.00

0.00025 - 0.125 0.00022 0.000063 3.49 0.000054 0.000054 1.00
0.000125 - 0.0625 0.00011 0.000031 3.55 0.000027 0.000027 1.00

Table 1.2: Numerical results for Example 1.16, case (2). The mesh aspect ratio is 50 (rows
1-4) and 500 (rows 5-8). µ is a quadratic function.The solution is given by (1.23).

Finally, we check that the effectivity index eiA does not depend on the exact solution.
We consider again the case (1) where this time we compute f such that the exact solution
is given by

u(x1, x2) = sin(πx1). (1.24)

The results are reported in Tables 1.3 and 1.4.
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h1 − h2 ηA eµ,H1 eiA ηZZ eH1 eiZZ

0.01 - 0.5 0.053 0.017 3.12 0.015 0.015 1.00
0.005 - 0.25 0.029 0.0089 3.26 0.0079 0.0079 1.00
0.0025 - 0.125 0.014 0.0045 3.11 0.0039 0.0039 1.00

0.00125 - 0.0625 0.0068 0.0022 3.09 0.0019 0.0019 1.00
0.001 - 0.5 0.0059 0.0016 3.69 0.0014 0.0014 1.00

0.0005 - 0.25 0.003 0.00084 3.57 0.00075 0.00074 1.00
0.00025 - 0.125 0.0015 0.00043 3.48 0.00038 0.00038 1.00

0.000125 - 0.0625 0.00075 0.00021 3.57 0.00019 0.00019 1.00

Table 1.3: Numerical results for Example 1.16, case (1). The mesh aspect ratio is 50 (rows
1-4) and 500 (rows 5-8). µ is a piecewise linear function. The solution is given by (1.24).

h1 − h2 ηA eµ,H1 eiA ηZZ eH1 eiZZ

0.01 - 0.5 0.051 0.016 3.19 0.015 0.015 1.00
0.005 - 0.25 0.029 0.0084 3.45 0.0079 0.0079 1.00
0.0025 - 0.125 0.013 0.0042 3.10 0.0039 0.0039 1.00

0.00125 - 0.0625 0.0064 0.0021 3.05 0.0019 0.0019 1.00
0.001 - 0.5 0.0055 0.0015 3.67 0.0014 0.0014 1.00

0.0005 - 0.25 0.0028 0.00079 3.54 0.00075 0.00074 1.00
0.00025 - 0.125 0.0014 0.00040 3.5 0.00038 0.00038 1.00

0.000125 - 0.0625 0.00071 0.00020 3.55 0.00019 0.00019 1.00

Table 1.4: Numerical results for Example 1.16, case (2). The mesh aspect ratio is 50 (rows
1-4) and 500 (rows 5-8). µ is a quadratic function. The solution is given by (1.24).

Example 1.17 (Coefficients with boundary layer).
We now do a first step into the study of two fluids flow by solving (1.5) with µ being
constant in two parts of the domain, except in a thin boundary layer. We again set Ω as
the unit square and we define, for x ∈ R, Hε(x) as

Hε(x) =


0, 0 ≤ x ≤ −ε,
x+ ε

2ε + 1
2πsin

(
πx

ε

)
, −ε ≤ x ≤ ε,

1, ε ≤ x.

(1.25)

The above function can be seen as a smoothing of the Heavyside function H(x)

H(x) =
{

0, x < 0,
1, 0 < x,

where ε > 0 controls the width of the boundary layer. The smooth function (1.25) was
already used to describe the interface between fluids in the level set method [31]. We then
define

µ(x) = µ2Hε(x1 − 0.5) + µ1(1−Hε(x− 0.5)), µ1, µ2 > 0, (1.26)
such that µ is a constant except in a layer of width 2ε around 0.5.

We solve (1.5) where µ is defined by (1.26) and we compute the right hand side f such
that the exact solution u is given by

u(x1, x2) = µ2sin(πx1)Hε(x1 − 0.5) + µ1sin(πx1)Hε(0.5− x1). (1.27)

The solution (1.27) can be seen as a smooth transition from u1 to u2 where ui are the
solutions of

−∆ui = −µiπ2sin(πx1), i = 1, 2.
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The numerical results with µ1 = 1 and µ2 = 2 are reported in the Table 1.5 where
we compare the convergence of the numerical scheme with the width of the boundary
layer. For each value of ε, we built successive meshes with 1, 5, 10, 20 and 40 vertices
in the boundary layer (seen in the x1-direction). We observe that convergence of the
numerical method and good behaviors of the effectivity indices arise when the number
of vertices in the boundary layer is around 20. The numerical solution uh is plotted in
Figures 1.5 and 1.6, where we choose ε = 0.001 and h1 = 0.00005, h2 = 0.5. An example
of anisotropic mesh used in the numerical simulation is shown in Figure 1.7 for ε = 0.1
and h1 = 0.01, h2 = 0.5.

h1 − h2 ε ηA eµ,H1 eiA ηZZ eH1 eiZZ

0.1 - 0.5 0.1 2.91 1.92 1.51 0.99 1.61 0.61
0.04 - 0.5 0.1 1.86 0.59 3.15 0.57 0.48 1.19
0.02 - 0.5 0.1 0.82 0.27 3.04 0.23 0.22 1.045
0.01 - 0.5 0.1 0.48 0.17 2.83 0.13 0.13 1.02
0.005 - 0.5 0.1 0.22 0.068 3.24 0.054 0.054 1.00
0.01 - 0.5 0.01 25.50 5.06 5.04 3.83 4.23 0.90
0.004 - 0.5 0.01 5.11 1.53 3.34 1.39 1.25 1.11
0.002 - 0.5 0.01 2.63 0.89 2.95 0.73 0.71 1.028
0.001 - 0.5 0.01 1.17 0.39 3.00 0.31 0.31 1.00
0.0005 - 0.5 0.01 0.56 0.19 2.95 0.16 0.16 1.00
0.001 - 0.5 0.001 102.78 21.37 4.81 17.10 19.06 0.90
0.0004 - 0.5 0.001 15.14 4.79 3.16 4.54 3.92 1.16
0.0002 - 0.5 0.001 7.52 2.48 3.03 2.12 2.026 1.046
0.0001 - 0.5 0.001 3.62 1.18 3.07 0.98 0.97 1.01
0.00005 - 0.5 0.001 1.76 0.59 2.98 0.48 0.48 1.00

Table 1.5: Numerical results for Example 1.17 with µ1 = 1 and µ2 = 2. The successive
meshes contain 1,5,10,20 and 40 points in the boundary layer 2ε in the x1-direction.

Figure 1.5: Example 1.17. Numerical solution along the x1-axis computed with µ1 =
1, µ2 = 2, ε = 0.001. The mesh size is 0.00005 in the x1-direction and 0.5 in the x2-
direction. The mesh aspect ratio is 10’000.
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Figure 1.6: Example 1.17. Numerical solution computed with µ1 = 1, µ2 = 2, ε = 0.001.
The mesh size is 0.00005 in the x1-direction and 0.5 in the x2-direction. The mesh aspect
ratio is 10’000.

Figure 1.7: Example 1.17. Numerical solution (left) and mesh(right) computed with
µ1 = 1, µ2 = 2, ε = 0.1. The mesh size is 0.01 in the x1-direction and 0.5 in the x2-
direction. The mesh aspect ratio is 50.

1.4 An adaptive algorithm

We now present an adaptive algorithm to solve (1.5). Given a prescribed tolerance TOL,
the goal is to build a sequence of meshes such that

0.75TOL ≤


∑
K∈Th

η2
K∫

Ω µ(x)|∇uh|2dx


1/2

≤ 1.25TOL, (1.28)

35



where we recall that the local error indicator η2
K is given by

η2
K =

(
‖f + div(µ(x)∇uh)‖L2(K) +

‖ [µ(x)∇uh · n] ‖L2(∂K)

2
√
λ2,K

)
ω̃K(Πhuh − uh),

with Πhuh being the ZZ post-processing of uh and ω̃K is defined by (1.18). A sufficient
condition so that (1.28) holds is to ensure that the error is equidistributed on each triangle
K, that is to say for all K ∈ Th

1
NT

0.752TOL2
∫

Ω
µ(x)|∇uh|2dx ≤ η2

K ≤
1
NT

1.252TOL2
∫

Ω
µ(x)|∇uh|2dx, (1.29)

where we denote by NT the number of triangles of the mesh.
Numerical experiments performed in [85] suggest that to obtain anisotropic meshes,

the error indicator should be equidistributed in both direction x1 and x2 (note that it is
also pointed out in [87] that error equidistribution is necessary to equivalence between the
posteriori error estimator and the numerical error). To do so, we remark the following
fact. Since we can decompose ω̃K(v), v ∈ H1(Ω), as

ω̃K(v) =
(
ω̃2

1,K(v) + ω̃2
2,K(v)

)1/2
,

where we set
ω̃2
i,K(v) = λ2

i,KrTi,KG̃K(v)ri,K , i = 1, 2, (1.30)

observe that we have the following relation

η2
K =

(
η4

1,K + η4
2,K

)1/2
, (1.31)

where for i = 1, 2, we define the local error indicator in direction xi η2
i,K by

η2
i,K =

(
‖f + div(µ(x)∇uh)‖L2(K) +

‖ [µ(x)∇uh · n] ‖L2(∂K)

2
√
λ2,K

)
ω̃i,K(ΠZZ

h uh − uh). (1.32)

Consequently, to require that for all K and for i = 1, 2,

1
2N2

T

0.754TOL4
(∫

Ω
µ(x)|∇uh|2dx

)2
≤ η4

i,K

≤ 1
2N2

T

1.254TOL4
(∫

Ω
µ(x)|∇uh|2dx

)2
, (1.33)

is sufficient to ensure that (1.29) holds. Observe moreover that (1.33) implies necessarely
that for i = 1, 2,

1
21/4

0.75TOL ≤
( ∑

K∈Th η
2
i,K∫

Ω µ(x)|∇uh|2dx

)1/2

≤ 1
21/4

1.25TOL, (1.34)

that is to say the error is globally equidistributed in every direction.
We now describe more precisely the adaptive strategy. The goal would be to construct

a mesh such that (1.33) holds. In practice, to built our meshes, we use the BL2D mesh
generator [67] which needs informations on the vertices rather that on triangles. Therefore
we translate the error indicator ηA to an error indicator defined on the vertices. For every
vertex P ∈ Th, we define the local error indicator η2

P by

η2
P =

∑
K∈Th
P∈K

η2
K (1.35)
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and we have the relation ∑
P∈Th

η2
P = 3

∑
K∈Th

η2
K . (1.36)

To find an equivalent to the conditions (1.33), we start from the global conditions (1.28).
They are equivalent to the following ones, written with the local error indicators η2

P ,

0.75TOL ≤
( ∑

P∈Th η
2
P

3
∫

Ω µ(x)|∇uh|2dx

)1/2

≤ 1.25TOL. (1.37)

A sufficient condition to ensure (1.37) is to equidistribute η2
P over all the vertices, that is

to say to impose that for all P ∈ Th
3
Nv

0.752TOL2
∫

Ω
µ(x)|∇uh|2dx ≤ η2

P ≤
3
Nv

1.252TOL2
∫

Ω
µ(x)|∇uh|2dx, (1.38)

where Nv is the total number of vertices of the triangulation Th. Compared to (1.29),
(1.38) can be interpreting as a weaker condition, consisting to equidistributing the error
over the support of each basis function of Vh rather than over each triangle. Finally, the
final conditions are obtening by equidistributing η2

P in direction x1 and x2 observing that

η2
P =

∑
K∈Th
P∈K

η2
K =

∑
K∈Th
P∈K

(
η4

1,K + η4
2,K

)1/2
=

∑
K∈Th
P∈K

(
η4

1,K + η4
2,K

)1/2

∑
K∈Th
P∈K

η2
1,K + η2

2,K

∑
K∈Th
P∈K

(
η2

1,K + η2
2,K

)
.

Therefore, we get as sufficient conditions so that (1.37) and (1.38) hold, that ∀P ∈ Th, i =
1, 2,

3σP
2Nv

0.752TOL2
∫

Ω
µ(x)|∇uh|2dx ≤

∑
K∈Th
P∈K

η2
i,K ≤

3σP
2Nv

1.252TOL2
∫

Ω
µ(x)|∇uh|2dx,

(1.39)
where we denote the equidistribution parameter

σP =

∑
K∈Th
P∈K

(
η2

1,K + η2
2,K

)
∑
K∈Th
P∈K

(
η4

1,K + η4
2,K

)1/2
. (1.40)

To build a new mesh, the BL2D software requires that at each point, we give h1,P , h2,P ,
that is to say the mesh size in directions x1, respectively, x2 and the angle θP between the
horizontal axe and the axe Ox1, see Figure 1.8. Our adaptive startegy consists to align
each triangle K (that is to say to align its directions of anisotropy r1,K , r2,K) with the
eigenvectors of the gradient vector G̃K and to define a new mesh size in each direction
based on (1.39). To do so, we first compute the average local gradient error matrix GP
defined by

GP =
∑
K∈Th
P∈K

G̃K(ΠZZ
h uh − uh). (1.41)

We then compute the angle between the horizontal axe and the eigenvector of GP cor-
responding to its maximal eigenvalue (that is to say in our setting the x1 direction) and
we set θP to this angle. Moreover, to adapt the mesh size, we compute the average local
stretching values λi,P at the point P defined by

λi,P =

∑
K∈Th
P∈K

λi,K∑
K∈Th
P∈K

1 , i = 1, 2. (1.42)

37



Figure 1.8: Input values of the BL2D mesh generator at a vertex P ∈ Th.

θP
h2,P

h1,P

P

If

3σP
2Nv

0.752TOL2
∫

Ω
µ(x)|∇uh|2dx >

∑
K∈Th
P∈K

η2
i,K (1.43)

then we increase the mesh size in direction xi and set hi,p = 1.5λi,P . If

∑
K∈Th
P∈K

η2
i,K >

3σP
2Nv

1.252TOL2
∫

Ω
µ(x)|∇uh|2dx, (1.44)

then we decrease the mesh size in direction xi and we set hi,p = λi,P
1.5 .

Remark 1.18 (Metric based mesh generator).
BL2D is a metric based mesh generator, that is to say, to generate the new mesh, we have
to prescribe at each vertex P a Riemannian metricMP . The goal of the mesh generator
is then to create a cloud of points such that for every P in the cloud, its neighbours are at
distance one in the prescribed metricMP . Our algorithm provides in fact a metric given
by

MP =
(

cos(θP ) sin(θP )
− sin(θP ) cos(θP )

) 1
h2

1,P
0

0 1
h2

2,P

( cos(θP ) − sin(θP )
sin(θP ) cos(θP )

)
.

For more details on this topic, we refer for instance to [19, 49].

The complete adaptive algorithm is summarized in Table 1.6. We note by Nloop the
number of time the adaptive procedure is repeated to build a suitable anisotropic mesh.
In practice, we observe that to stop the algorithm with the criteria (1.28) or (1.34) is
not sufficient to force the mesh to be highly anistropic for steady problems. This can be
understand in the following way : not enough remeshings are done so that the local tests
(1.39) are satisfied for must of the points. This will not be anymore a restriction in the
case of transient problems, since more meshes will be built due to the evolution of the
time. In the next section, numerical experiments are performed to check the efficiency of
the adaptive algorithm 1.6.
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For n = 0, 1, ..., Nloop Max number of algorithm loops
Compute uh on Th
For K ∈ Th, compute
λ1,K , λ2,K , r1,K , r2,K
G̃K(Πhuh − uh), η2

1,K , η
2
2,K

For P ∈ Th, compute GP and θP set the anisotropy directions to
the eigenvectors of GP

For i = 1, 2 Test conditions (1.39)
Compute the average mesh size λi,P
If the mesh size is too small in direction xi, Change the mesh size
set hi,P = 3/2λi,P in direction xi
If the mesh size is too bin big in direction xi,
set hi,P = 2/3λi,P

Build a new mesh using the BL2D software

Table 1.6: Anisotropic adaptive algorithm

Remark 1.19 (Choice of σP ).
We give some motivation about the choice of σP defined in (1.40).

(i) Observe that if the error (more precisely the error indicator) is zero in one direction
(let us assume in direction x1), then we have that

η2
P =

∑
K∈Th
P∈K

η2
K =

∑
K∈Th
P∈K

(
η4

1,K + η4
2,K

)1/2
=
∑
K∈Th
P∈K

η2
2,K .

Consequently, it seems natural to make appear the quantities∑
K∈Th
P∈K

η2
1,K and

∑
K∈Th
P∈K

η2
2,K .

(ii) Let us assume that for any P , we have for all K such that P ∈ K,

ω̃1,K(ΠZZ
h uh − uh) = ω̃2,K(ΠZZ

h uh − uh), (1.45)

then we have
σP = 2√

2
.

Therefore, (1.39) reduces to

3√
2NP

0.752TOL2
∫

Ω
µ(x)|∇uh|2dx ≤

∑
K∈Th
P∈K

η2
i,K

≤ 3√
2NP

1.252TOL2
∫

Ω
µ(x)|∇uh|2dx, i = 1, 2.

Summing over the points, and noting that∑
P∈Th

∑
K∈Th
P∈K

η2
i,K = 3

∑
K∈Th

η2
i,K

we obtain finally that

1√
2

0.752TOL2
∫

Ω
µ(x)|∇uh|2dx ≤

∑
K∈Th

η2
i,K ≤

1√
2

1.252TOL2
∫

Ω
µ(x)|∇uh|2dx i = 1, 2,
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that is to say the error is globally equidistributed in both directions x1 and x2.
Therefore, we think that the local tests (1.39) are the good one, since they asymp-
totically yield to a global error equidistribution, in addition to (1.28). (It’s clear that
assuming (1.45) implies in fact that η2

1,K = η2
2,K ,∀K, yielding the stronger result that∑

K∈Th

η2
1,K =

∑
K∈Th

η2
2,K but we were looking for a "philosophical" motivation.)

1.5 Numerical experiments with adapted meshes
We now analyse the efficiency of our adaptive algorithm. We first apply it to the Example
1.17 with µ1 = 1, µ2 = 2 and ε = 0.1. The initial grid is an isotropic mesh of mesh size
h = 0.1. The convergence results are reported in Table 1.8 for Nloop = 40. In particular,
we investigate the number of vertices and the value of the aspect ratio of the mesh for
several values of TOL. The additional used notations are described in Table 1.7. We
summarize our observations below:

• Both error and error indicator are ' O(TOL).

• The number of vertices is multiplied by 2 when TOL is divided by 2, like the mean
aspect ratio. This validates our a priori expectation, since the solution does not
depend on x2.

• eiA is constant and stays close to 3.

• The ZZ post-processing is asymptotically exact.

• The necessary number of remeshings to reach the stopping criteria are independent
of the tolerance.

TOL Prescribed tolerance
Nv Number of vertices of the last generated mesh
Nv,i Number of vertices that satisfy the local test (1.39) in direction i = 1, 2
N c
v,i Number of vertices that satisfy the coarsening condition (1.43) in direction i = 1, 2

N r
v,i Number of vertices that satisfy the refinement condition (1.44) in direction i = 1, 2
ar Average aspect ratio of the last generated mesh

armax Maximum aspect ratio of the last generated mesh
Nm Number of remeshings such that the stopping criterion (1.28) is satisfied
NA
m Number of remeshings such that the anisotropic stopping criterion (1.34) is satisfied

Table 1.7: Additional notations for the analysis of the adaptive algorithm.

TOL ηA eµ,H1 eiA eiZZ ar amax Nv Nm NA
m

0.1 0.48 0.16 3.00 1.02 57 246 122 4 4
0.05 0.24 0.078 3.14 1.00 110 638 233 4 15
0.025 0.12 0.038 3.16 1.00 224 1092 454 6 15
0.0125 0.061 0.019 3.18 1.00 383 1671 1025 7 17

Table 1.8: Convergence results for Example 1.17 with µ1 = 1, µ2 = 2, ε = 0.1. We run the
adaptive algorithm with Nloop = 40.

Finally, we investigate the dependence on Nloop. The results are reported in the Table
1.9 where the adaptive algorithm is applied with TOL = 0.0125 and several values of
Nloop. We compute the number of vertices that satisfy the local refinement/coarsening
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tests (1.39). We observe that the mesh exhibits a large aspect ratio when at least half of
the total number of vertices satisfy (1.39) in each direction.

In Figure 1.9, we present the different meshes generated when Nloop varies. It is
observed that the more we force the algorithm to remesh, the more the mesh looks
anisotropic.

Nloop Nv ar N c
v,1 N r

v,1 Nv,1 N c
v,2 N r

v,2 Nv,2
1 378 2 35 312 31 41 313 24
10 12812 24 11119 8 1685 6575 107 6130
20 1685 196 730 43 912 841 16 828
30 1141 1447 415 73 653 525 15 601
40 1025 1671 397 83 545 470 15 540

Table 1.9: Dependence on Nloop. The results are presented for Example 1.17 with µ1 =
1, µ2 = 2, ε = 0.1 and TOL = 0.0125.

Figure 1.9: Generated meshes for Example 1.17 with µ1 = 1, µ2 = 2, ε = 0.1, TOL =
0.0125 and several values of Nloop. Initial grid (left top), Nloop = 1 (right top), Nloop = 10
(left bottom), Nloop = 40, (right bottom).

To conclude with the Example 1.17, we apply the adaptive algorithm to a more complex
case where µ1 = 1, µ2 = 100 and ε = 0.01. The initial grid is an isotropic mesh of mesh size
h = 0.01. The convergence results are reported in Table 1.10. The solution is represented
in Figures 1.11 and 1.10 and the mesh in Figure 1.12.
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TOL ηA eµ,H1 eiA eiZZ ar amax Nv Nm NA
m

0.1 476.42 158.13 3.01 1.00 611 2184 156 9 9
0.05 258.447 78.48 3.29 0.96 1115 7076 314 10 10
0.025 130.42 40.27 3.23 0.91 1954 13815 651 11 11
0.0125 64.76 20.00 3.24 0.99 2800 14343 1619 12 12

Table 1.10: Convergence results for Example 1.17 with µ1 = 1, µ2 = 100, ε = 0.01. We
run the adaptive algorithm with Nloop = 40.

Figure 1.10: Numerical solution to Example 1.17 with µ1 = 1, µ2 = 100 and ε = 0.01. The
solution is computed with TOL = 0.0125 and Nloop = 40.

Figure 1.11: Plot along the axe x1 of the numerical solution to Example 1.17 with µ1 =
1, µ2 = 100 and ε = 0.01. The solution is computed with TOL = 0.0125 and Nloop = 40.
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Figure 1.12: Final mesh generated when solving Example 1.17 with µ1 = 1, µ2 = 100,
ε = 0.01, TOL = 0.0125 and Nloop = 40 (left). Zoom at the point (0.5,0.5) (right).

We conclude this analysis in the next example.

Example 1.20.
The goal of this example is to approximate the solution of the following problem. Let
Ω ∈ R2 be an open, convex polygon, B be an open disk compactly contained in Ω and u
the solution of 

−∆u = f, in Ω \B,
∇u = 0, in B,
u = 0, on ∂Ω,

(1.46)

with f ∈ L2(Ω \ B). This problem can be seen as a toy version of the fluid-rigid body
problem studied in the Part 2 of Chapter 4, where B is interpreted as a rigid body, inside
which the velocity u has to be constant.

Written in weak form, the previous problem reads: find u ∈ V such that∫
Ω\B
∇u · ∇vdx =

∫
Ω\B

fvdx, ∀v ∈ V, (1.47)

where
V = H1

0 (Ω) ∩
{
v ∈ H1(Ω) : ∇v = 0 in B

}
.

In [77], a penalty method is proposed to solve (1.47). Given δ > 0, the method reads:
find uδ ∈ H1

0 (Ω) the solution of the variational problem∫
Ω\B
∇uδ · ∇vdx + 1

δ

∫
B
∇uδ · ∇vdx =

∫
Ω
fvdx, ∀v ∈ H1

0 (Ω), (1.48)

where we extend f by 0 inside B. It is shown [77] that (1.47) and (1.48) are well-posed
and that uδ converges to u in H1

0 (Ω) as δ goes to zero, namely there exists a constant
C > 0, independent of δ such that

‖∇(u− uδ)‖L2(Ω) ≤ Cδ.

The solution of (1.48) can be approximated by our numerical method and numerical
algorithm, observing that it can be written as∫

Ω
µδ(x)∇uδ · ∇vdx =

∫
Ω
fvdx,

where

µδ(x) =


1, x ∈ Ω \B,

1
δ
, x ∈ B.

43



In order to apply our finite element scheme, we first smooth µδ introducing the function

µδ,ε(x) = 1 +
(1
δ
− 1

)
Hε(r(x)), (1.49)

with Hε the smooth Heavyside function defined in (1.25) and r(x) given by

r(x) = R−
√

(x1 − c1)2 + (x2 − c2)2,

where R is the radius of B and (c1, c2) the coordinates of its center.
Finally, for any h > 0, let Th be a conformal triangulation of Ω into triangles. The

finite elements method used to approximate the solution of (1.46) reads: find uδ,ε,h ∈ Vh,
where Vh is as before the set of continuous, piecewise linear function with zero value on
∂Ω, the solution of ∫

Ω
µδ,ε(x)∇uδ,ε,h · ∇vhdx =

∫
Ω
fvhdx, ∀vh ∈ Vh. (1.50)

In what follows, we are not interesting in analyzing the convergence of our numerical
method with respect to δ or ε. We will rather focus on the convergence of the adaptive
algorithm 1.6 applied to (1.50), assuming that for small δ and ε our solution is sufficiently
close to the exact solution u. We choose therefore δ = 0.0001 and ε = 0.001.

For the numerical example, we set Ω as the unit open square as before and B as the disk
of radius 0.1, centered at (0.5, 0.5). Finally, we set f = 1. The initial grid is an isotropic
grid of mesh size h = 0.01. This simulation is costly and to improve the efficiency of
the adaptive algorithm we propose to proceed by continuation: we start with a tolerance
TOL = θ, and run the adaptive algorithm for a given Nloop. Then to compute the solution
with TOL = θ/2, rather than to start again from the uniform initial grid, we start from
the final mesh generated with TOL = θ. This procedure is reproduced to compute the
solution for TOL = θ/4, θ/8 and so on. The algorithm is run from a starting tolerance
TOL = 0.1 until TOL = 0.0125. Between each tolerance NLoop is set to 40.

The solution is represented in Figures 1.13 and 1.14. In Figure 1.15, we present the
final meshes obtained with respect to TOL = 0.1, 0.05, 0.025 and 0.0125.

The convergence of the algorithm is checked in Table 1.11 and in Figure 1.17. We
observe in Table 1.11 that both error indicators ηA and ηZZ behaves asymptotically like
O(TOL) and that the number of vertices is approximatively multiplying by 4 when the
tolerance is divided by 2 as expected since it is anticipated that the solution is an isotropic
function. Note that the number of remeshings needed to reach the stopping criteria for
a given tolerance are around 1 since the second tolerance. This can be explained by the
fact that the algorithm starts at every tolerance with a better initial grid.

Figure 1.13: Numerical solution to Example 1.20 obtained at TOL = 0.0125.
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Figure 1.14: Numerical solution to Example 1.20 obtained at TOL = 0.0125. Plot along
the x1-solution.

Figure 1.15: Adapted meshes obtained when solving Example 1.20. TOL = 0.1 (top left),
TOL = 0.05 (top right), TOL = 0.025 (bottom left) and TOL = 0.0125 (bottom right).

Figure 1.16: Zoom on the adapted mesh obtained when solving Example 1.20 with the
adaptive algorithm at TOL = 0.0125.
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TOL ηA ηZZ ar amax Nv Nm NA
m

0.1 0.14 0.0055 3 22 1408 3 4
0.05 0.011 0.0027 3 45 5531 1 1
0.025 0.0039 0.0013 3 83 21259 2 2
0.0125 0.0018 0.00067 4 132 82588 1 1

Table 1.11: Convergence results for Example 1.20.
.

Figure 1.17: Convergence results for the adaptive algorithm apllied to Example 1.20. Plot
along the x1-axe. Zoom in the boudary layer.

Remark 1.21.
To conclude the analysis of our adaptive strategy, we make a observation on the local error
indicator (1.17). We recall that η2

K is given by

η2
K =

(
‖f + div(µ(x)∇uh)‖L2(K) +

‖ [µ(x)∇uh · n] ‖L2(∂K)

2
√
λ2,K

)
ω̃K(ΠZZ

h uh − uh),

where ΠZZ
h uh and ω̃K are defined as before. We can split the local error indicator in two

parts, namely
η2
K = (ηRK)2 + (ηJK)2,

where we define the residual part as

(ηRK)2 = ‖f + div(µ(x)∇uh)‖L2(K)ω̃K(ΠZZ
h uh − uh), (1.51)

and the jumps part as

(ηJK)2 =
‖ [µ(x)∇uh · n] ‖L2(∂K)

2
√
λ2,K

ω̃K(Πhuh − uh). (1.52)

In [28], it is proven that for elliptic equations with constant coefficients, the numerical
error is, up to higher order perturbations, equivalent to the error indicator η̃ defined by

η̃2 =
∑
K∈Th

(ηJK)2.

Nevertheless, numerical experiments seem to indicate that for variable coefficients the
residual part cannot be neglected. We also observe that better meshes are built by the
adaptive algorithm when (ηRK)2 is kept in the error indicator. To illustrate our comments,
we do a quick and simple experiment. We fix the tolerance to TOL = 0.025, Nloop = 10
and we run the adaptive algorithm 1.6 with different choices for the local error estimator
(without proceeding by continuation). We plot the adapted meshes obtained for Example
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1.20 when we set η2
K = (ηRK)2 (Figure 1.18), η2

K = (ηJK)2 (Figure 1.19) and finally when η2
K

is given by the full estimator (1.17) (Figure 1.20). We can notice that to obtain a suitable
mesh, both parts (ηRK)2 and (ηJK)2 are necessary.

When only (ηRK)2 is used, the interface is well captured , but the mesh is too much
refined inside the disk. On the contrary, when we used only (ηJK)2 as a local error indicator,
the mesh is coarsen inside the disk, where the solution has no variation, but the interface
is tracked with less accuracy. We conclude therefore, that for equations with variable
coefficients, both parts of the local error estimator are important. In some sense, the
residual part (ηRK)2 sees the variations of the coefficients, and the jumps part (ηJK)2 sees
the variation of the solution. Indeed, observe in particular that the residual contains the
gradient of µ since

div(µ(x)∇uh) = ∇µ(x) · ∇uh + µ(x)∆uh = ∇µ(x) · ∇uh.

Figure 1.18: Zoom on the adapted mesh obtained when solving Example 1.20 with the
adaptive algorithm with TOL = 0.025 and Nloop = 10. The local error estimator (1.51) is
used.

Figure 1.19: Zoom on the adapted mesh obtained when solving Example 1.20 with the
adaptive algorithm with TOL = 0.025 and Nloop = 10. The local error estimator (1.52) is
used.

Figure 1.20: Zoom on the adapted mesh obtained when solving Example 1.20 with the
adaptive algorithm with TOL = 0.025 and Nloop = 10. The full local error estimator
(1.17) is used.

1.6 3D experiments
We conclude this chapter by presenting a few examples in 3D. We briefly expose the
modifications in the notations used to describe our anisotropic setting. Let Ω be a convex
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polyhedron and Th be a conformal triangulation of Ω into tetrahedrons K of diameter
hK ≤ h. We recall that, for each K ∈ Th, the affine map TK mapping the reference K̂
into K can be written as

x = TK(x̂) = MK x̂ + tK ,

where MK ∈ R3×3 and tK ∈ R3. As in the 2D case, MK can be decomposed as MK =
RTKΛKPK with RK and PK orthogonal matrices and ΛK the matrix of singular values

ΛK =

 λ1,K 0 0
0 λ2,K 0
0 0 λ3,K

 , λ1,K ≥ λ2,K ≥ λ3,K ≥ 0, RK =

 rT1,K
rT2,K
rT3,K

 ,
where r1,K , r2,K , r3,K are the three directions of anisotropy of K. With these notations,
all the interpolation results presented in Section 1.1 can be extended. In particular, given
Rh the Clément’s interpolant on Th, one can prove that there exists a constant C > 0
depending only on the reference tetrahedron K̂ such that for all v ∈ H1(Ω)

‖v−Rh(v)‖2L2(K) +λ3,K‖v−Rh(v)‖2L2(∂K) +λ2
3,K‖∇(v−Rh(v))‖2L2(K) ≤ Cω

2
K(v), (1.53)

with

ω2
K(v) = λ2

1,K(rT1,KGK(v)r1,K) + λ2
2,K(rT2,KGK(v)r2,K) + λ2

3,K(rT3,KGK(v)r3,K), (1.54)

where GK(v) is the matrix of the first derivatives, which coefficients GK(v)ij are given by

GK(v)ij =
∫

∆K

∂v

∂xi

∂v

∂xj
dx, i, j = 1, 2, 3.

The 2D a posteriori error estimate contained in Theorem 1.11 is then fully generalizable
to the 3D case and we can now define the following error indicator for the numerical error∫

Ω µ(x)|∇(u− uh)|2dx:

ηA =

 ∑
K∈Th

η2
K

1/2

where η2
K is given by

η2
K =

(
‖f + div(µ(x)∇uh)‖L2(K) +

‖ [µ(x)∇uh · n] ‖L2(∂K)

2
√
λ3,K

)
ω̃K(ΠZZ

h uh − uh), (1.55)

where as before ΠZZ
h uh stands for the ZZ post-processing of uh and ω̃K is defined for

v ∈ H1(Ω) by

ω̃2
K(v) = λ2

1,K(rT1,KG̃K(v)r1,K) + λ2
2,K(rT2,KG̃K(v)r2,K) + λ2

3,K(rT3,KG̃K(v)r3,K)

with G̃K(v) being the 3D equivalent of the simplified matrix advocated in Remark 1.15
with coefficients

G̃K(v)ij =
∫
K

∂v

∂xi

∂v

∂xj
dx, i, j = 1, 2, 3.

We focus on the 3D version of two examples presented in Section 1.5. We first perform
numerical experiments on constant meshes.

Example 1.22 (A 3D anisotropic case with non adapted meshes).
We set Ω as the unit cube ]0, 1[3 and we solve the Poisson equation (1.5) in Ω. As in the
2D Example 1.17 µ is given by

µ(x) = µ(x1, x2, x3) = µ2Hε(x1 − 0.5) + µ1(1−Hε(x1 − 0.5)), µ1, µ2 > 0,
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where as before Hε is the smoothing of the Heavyside graph. We compute the right hand
side f such that the solution is given by

u(x1, x2, x3) = µ2sin(πx1)Hε(x1 − 0.5) + µ1sin(πx1)Hε(0.5− x1).

We report in Table 1.12 and Table 1.13 the convergence results obtained with anisotropic
meshes of aspect ration 50 and 500 and several choices for µ1, µ2 and ε. The notations
are the same as in the 2D numerical experiments. The numerical results imply the same
conclusion as before, namely eiA is independant of µ, the exact solution and the aspect
ratio of the mesh and eiZZ is close to one.

h1 − h2 − h3 ηA eµ,H1 eiA ηZZ eH1 eiZZ

0.01 - 0.5 - 0.5 0.52 0.18 2.89 0.15 0.14 1.07
0.005 - 0.25 - 0.25 0.26 0.081 3.12 0.065 0.065 1.00

0.0025 - 0.125 - 0.125 0.13 0.038 3.42 0.03 0.03 1.00
0.001 - 0.5 - 0.5 0.052 0.018 2.89 0.014 0.014 1.00

0.0005 - 0.25 - 0.25 0.026 0.0082 3.17 0.0065 0.0065 1.00

Table 1.12: Convergence results for Example 1.22 with µ1 = 1, µ2 = 2 and ε = 0.1. The
mesh aspect ratio is 50 (rows 1-3) and 500 (rows 4-5).

h1 − h2 − h3 ηA eµ,H1 eiA ηZZ eH1 eiZZ

0.01 - 0.5 - 0.5 184.34 101.12 1.82 51.64 45.13 1.14
0.005 - 0.25 - 0.25 137.05 42.53 3.22 22.30 18.89 1.18

0.0025 - 0.125 - 0.125 67.26 19.15 3.51 9.06 8.03 1.13
0.001 - 0.5 - 0.5 26.21 8.95 2.93 3.88 3.82 1.02

0.0005 - 0.25 - 0.25 13.07 4.06 3.22 1.74 1.73 1.00

Table 1.13: Convergence results for Example 1.22 with µ1 = 1, µ2 = 10 and ε = 0.01. The
mesh aspect ratio is 50 (rows 1-3) and 500 (rows 4-5).

We are now presenting numerical experiments with adapted meshes. To generate our
meshes and proceed to the adaptation, we use the feflo.a software [71], which needs a local
metric for every points P ∈ Th to built a new mesh. Therefore, the 2D algorithm 1.6 is
fully generalizable to the 3D case, the only step changing is that we equidistribute the
error in three directions at the 4 vertices of each tetrahedron of Th. Therefore, the local
conditions (1.39) are replaced by

4σP
3Nv

0.752TOL2
∫

Ω
µ(x)|∇uh|2dx ≤

∑
K∈Th
P∈K

η2
i,K

≤ 4σP
3Nv

1.252TOL2
∫

Ω
µ(x)|∇uh|2dx,∀P ∈ Th, i = 1, 2, 3, (1.56)

where we note the anisotropic error indicator in direction xi, for i = 1, 2, 3,

η2
i,K =

(
‖f + div(µ(x)∇uh)‖L2(K) +

‖ [µ(x)∇uh · n] ‖L2(∂K)

2
√
λ3,K

)
ω̃i,K(ΠZZ

h uh − uh),

with
ω̃2
i,K(v) = λ2

i,KrTi,KG̃K(v)ri,K ,
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and

σP =

∑
K∈Th
P∈K

η2
1,K + η2

2,K + η2
3,K∑

K∈Th
P∈K

(
η4

1,K + η4
2,K + η4

3,K

)1/2
.

For the same reason, the anisotropic stopping criterion (1.34) is replaced by

1
31/4

0.75TOL ≤
( ∑

K∈Th η
2
i,K∫

Ω µ(x)|∇uh|2dx

)1/2

≤ 1
31/4

1.25TOL, i = 1, 2, 3. (1.57)

Remark 1.23.
As for the 2D adaptive algorithm, we provide to the mesh generator a metricMP given
by

QT


1

h2
1,P

0 0
0 1

h2
2,P

0
0 0 1

h2
3,P

Q
where the column of the matrix Q are the eigenvectors of GP with GP given by

GP =
∑
K∈Th
P∈K

G̃K(ΠZZ
h uh − uh)

and for i = 1, 2, 3, hi,P is the prescribed mesh size in direction xi.

We first applied our algorithm to the Example 1.22. The numerical results are reported
in Tables 1.14 and 1.15 for different choices of µ1, µ2 and ε. The initial mesh is an isotropic
grid of mesh size h = 0.1 and the number of remeshing iteration Nloop is set to 40. eiA
and eiZZ stay close the value obtained on fixed grid.

TOL ηA eµ,H1 eiA eiZZ ar amax Nv Nm NA
m

0.125 0.68 0.202 3.36 1.02 34 221 657 5 5
0.0625 0.35 0.11 3.37 1.00 54 347 1586 7 7
0.03125 0.18 0.0.54 3.35 1.00 83 578 4516 9 9

Table 1.14: Convergence results for Example 1.22 with µ1 = 1, µ2 = 2 and ε = 0.1 when
using the the standard adaptive algorithm with Nloop = 40.

TOL ηA eµ,H1 eiA eiZZ ar amax Nv Nm NA
m

1 160.285 46.64 3.44 1.00 22 146 1070 8 8
0.5 83.17 24.16 3.44 1.00 45 342 1645 9 9
0.25 45.19 13.38 3.38 0.96 86 673 2768 9 9

Table 1.15: Convergence results for Example 1.22 with µ1 = 1, µ2 = 10 and ε = 0.01 when
using the the standard adaptive algorithm with Nloop = 40.

Since 3D computations are costly, to improve the efficiency of the algorithm, we can
proceed by continuation. For instance, applying this strategy to Example 1.22 with µ1 =
1, µ2 = 10 and ε = 0.01, we start with a tolerance TOL = 1, and run the adaptive
algorithm with Nloop = 40. After each 40 remeshing loops, we divide the tolerance by
two, and we start from the last generated mesh until we reach TOL = 0.125. The meshes
obtained with this procedure are represented in Figure 1.21. The solution for TOL = 0.125
is represented in Figure 1.22.
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Figure 1.21: Adapted mesh generated by the adaptive algorithm when proceeding by
continuation. TOL = 1 (top left), TOL = 0.5 (top right), TOP = 0.25 (bottom left) and
TOL = 0.125 (bottom right).

Figure 1.22: Numerical solution to Example 1.22 with µ1 = 1, µ2 = 10, ε = 0.01 computed
with the 3D adaptive algorithm. TOL = 0.125.

Finally, we use our adaptive algorithm to compute an approximated solution to the
3D version of Example 1.20, where this time the solution must be constant into a sphere
compactly supported in Ω. We set again f = 1 and we choose B as the sphere of radius
0.3, centered at (0.5,0.5,0.5). The smoothing parameter ε is set to 0.001 and the penalty
parameter δ to 10’000. As for the 2D case, we proceed by continuation: we start with a
tolerance TOL = 1 and divide the tolerance by two until we reach TOL = 0.125. The
number of remeshing between each tolerance is set to Nloop = 40. The solution for the
finale tolerance is represented in Figure 1.23. Convergence of the adaptive algorithm is
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checked in Figure 1.24 and the final meshes generated at each tolerance are presented in
Figures 1.25 and 1.26.

Figure 1.23: Example 1.20 in 3D. The ball has a radius of 0.3. Numerical solution at
TOL = 0.125.

Figure 1.24: Example 1.20 in 3D. Plot of the solution along the x1-axe for several toler-
ances.
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Figure 1.25: Adapted mesh obtain when solving 1.20 in 3D. TOL = 1 (top left), TOL = 0.5
(top right), TOL = 0.25 (bottom left) and TOL = 0.125 (bottom right)

Figure 1.26: Zoom on Figure 1.25 at TOL = 0.125.
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Chapter 2

An adaptive algorithm for the
transport equation with
anisotropic finite elements and the
Crank-Nicolson method

In this chapter, we study a numerical method and we propose an adaptive algorithm to
solve the transport equation

∂ϕ

∂t
+ u · ∇ϕ = 0,

where u ∈ Rd, d = 2, 3, is a free divergence transport velocity field that may depend on the
space and the time variables. The numerical method presented further is a combination of
continuous, piecewise linear, anisotropic finite elements and the Crank-Nicolson scheme,
that is an order two method in time. Since the transport equation is an hyperbolic equa-
tion, one uses a consistent stabilization to treat the advection.

The goals of the chapter are mainly:

− To prove the stability and the convergence of the method by deriving a priori error
estimates in the most general cases possible.

− To prove an a posteriori error estimate that involves the spatial and the time dis-
cretization and deduce two error indicators, one for the space and one for the time,
that are of optimal orders and valid for anisotropic meshes.

− To describe and implement an adaptive algorithm.

The outline of the chapter is as follows: in Section 2.1, we consider a simpler problem,
that is to say the ODE

dϕ(t)
dt

+ u(t)ϕ(t) = 0,

where here u is a scalar function. This ODE can be seen as a 1D version of the transport
equation. We use the Crank-Nicolson method to solve it and we show and present the
techniques to derive an a posteriori error estimate that is of order two in time.

In Section 2.2, we prove a priori and a posteriori error estimates for the transport
equation. We first briefly recall the known results on the semi-discrete approximation,
where only the space discretization is taken in account. We then analyse the fully discrete
method. We first prove all the estimates (stability, a priori and a posteriori error bounds)
on the simpler case where the velocity field u is independent of the time. These results have
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already been presented and published in [41]. Then, the later estimates are generalized to
the case of transient velocity field. The two main results are the Theorem 2.51, where we
prove an a priori error estimate in the most general case, and the Theorem 2.55, where
we demonstrate its a posteriori counterpart. All the results are presented in R2, but can
be straightforwardly extended to R3.

The last sections are dedicated to the numerical experiments. In Section 2.3, we define
proper error indicators and we verify the convergence of the numerical method with non-
adapted meshes and constant time steps. In Section 2.4, we present an adaptive algorithm
and we demonstrate its efficiency in Section 2.5 for 2D problems and in Section 2.6 for the
3D situation.

2.1 A posteriori error estimates for second order time dis-
cretization of ODEs: application to the Crank-Nicolson
scheme

In this section, we consider the two following ODEs:
dϕ

dt
+ uϕ = 0, t ∈ (0, T ],

ϕ(0) = ϕ0,

(2.1)

and 
dϕ

dt
+ u(t)ϕ = 0, t ∈ (0, T ],

ϕ(0) = ϕ0,

(2.2)

where T <∞ is the final time and we consider u > 0 as a constant in (2.1) and as a C2[0, T ]
function in (2.2). In both cases, the classical ODEs theory yields that the solution belongs
at least to C3[0, T ] and is given by the analytic formula

ϕ(t) = ϕ0 exp
(
−
∫ t

0
u(s)ds

)
.

The two ODEs above can be interpreted as a simplified version of the transport equation

∂ϕ

∂t
+ u · ∇ϕ = 0,

where the real function u can be seen as a 1D equivalent to the velocity field u. Observe
that we differentiate the cases where u is a constant (2.1) or depends on the time (2.2). The
reason is that, when dealing with the transport equation, the local time error indicators
that we will prove will be different and need different techniques depending on wether the
vecotiy field u depends only on the space variables or depends also on the time variable.

The Crank-Nicolson scheme [38] applied to (2.1), respectively (2.2) reads : given 0 =
t0 < t1 < t2 < ... < tN = T a partition of the interval [0, T ], starting from ϕ0 = ϕ0, find,
for every 0 ≤ n ≤ N − 1, ϕn+1 the solution of

ϕn+1 − ϕn

τn+1 + u
ϕn+1 + ϕn

2 = 0, (2.3)

respectively,
ϕn+1 − ϕn

τn+1 + u

(
tn+1 + tn

2

)
ϕn+1 + ϕn

2 = 0, (2.4)
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where we denote the time step by

τn+1 = tn+1 − tn, 0 ≤ n ≤ N − 1.

Noting τ = max0≤n≤N−1 τ
n+1, it is well known that the Crank-Nicolson scheme is a

numerical method of order O(τ2). We would like to derive an a posteriori error estimate
for the numerical error ϕ(T )−ϕN of optimal order, that is to say to prove that there exists
a constant C > 0 independent of the time step and a computable quantity θ ' O(τ2) such
that

|ϕ(T )− ϕN | ≤ Cθ. (2.5)

A possibility [3, 82] to construct the quantity θ consists to define a piecewise smooth
function ϕτ with the following properties:

(i) for all 0 ≤ n ≤ N , ϕτ (tn) = ϕn, where ϕn is the solution of (2.3) or (2.4),

(ii) ϕτ ∈ C0[0, T ],

(iii) for all 0 ≤ n ≤ N − 1, ϕτ ∈ C1[tn, tn+1].

We say that ϕτ is a piecewise reconstruction of the numerical solution (ϕn)Nn=0. Then, the
following theorem can be used to build an a posteriori error estimate. The main idea is
to plug the reconstruction ϕτ into the equation and to look at the remainder.

Theorem 2.1.
Let ϕ be the solution of (2.1), respectively (2.2), and (ϕn)Nn=0 be the solution of (2.3),
respectively (2.4). Let ϕτ be a piecewise reconstruction of (ϕn)Nn=0 satisfying the properties
(i), (ii), (iii). Then

|ϕ(T )− ϕN | ≤ exp(1)
(
T
N−1∑
n=0

∫ tn+1

tn
θ2
n(t)dt

)1/2

,

where for every 0 ≤ n ≤ N − 1 and every t ∈ [tn, tn+1], θn(t) is defined by

θn(t) = dϕτ
dt

+ uϕτ ,

respectively
θn(t) = dϕτ

dt
+ u(t)ϕτ .

Proof. We only prove the theorem when considering the ODE (2.2), the computations
being the same if u is a constant real number. Let 0 ≤ n ≤ N − 1 and t ∈ (tn, tn+1).
Noting e(t) = ϕ(t)− ϕτ (t), by definition of θn(t), we have

d

dt
e(t) + u(t)e(t) = −θn(t).

Multiplying by e(t) and using that u(t) is non-negative yields

1
2
d

dt
|e(t)|2 ≤ −θn(t)e(t).

Thanks to the Gronwall’s inequality given by Theorem A.3, we obtain

e2(T ) ≤ exp(1)
(
e2(0) + T

N−1∑
n=0

∫ tn+1

tn
θ2
n(t)dt

)
.

We conclude using that the fact that e(T ) = ϕ(T ) − ϕτ (T ) = ϕ(T ) − ϕN and that the
numerical error at initial time e(0) = 0 since ϕτ (0) = ϕ0 = ϕ0 = ϕ(0).
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Remark 2.2.
Note that we could have solved directly the ODE

d

dt
e(t) + u(t)e(t) = −θn(t), tn ≤ t ≤ tn+1,

in order to get the analytic expression of e(t). However, we prefer to proceed as presented in
the above proof, in order to stay close to the framework of estimates in a PDE framework,
the multiplication by e(t) corresponding to choose the test function v = e(t) in the weak
form of the PDE.

Using the result of Theorem 2.1, one can define θ in (2.5) as

θ =
(
T
N−1∑
n=0

∫ tn+1

tn
θ2
n(t)dt

)1/2

. (2.6)

Therefore, to achieve our goal to get an optimal order a posteriori error estimate, that is
to say θ ' O(τ2), we only need to define a reconstruction ϕτ leading to θn(t) behaving as
O(τ2).

Before we discuss how to construct ϕτ , we do the following comments. First of all
observe that one can prove the a priori error estimate (where we choose to write the
bound in the L2 norm)

|ϕ(T )− ϕN | ≤ Cτ2

T ∫ T

0

∣∣∣∣∣d3ϕ(t)
dt3

∣∣∣∣∣
2

dt

1/2

with C > 0 a constant independent of the time step. Let us assume for the time being

that θn ≤ C(τn+1)2
∣∣∣∣∣d3ϕτ
dt3

∣∣∣∣∣ where C > 0 is a positive constant independent of the time

step (see Remarks 2.6 and 2.10 further). Then the global error estimator θ will behaves
as

θ ≤ C

T N−1∑
n=0

∫ tn+1

tn
(τn+1)4

∣∣∣∣∣d3ϕτ
dt3

∣∣∣∣∣
2

dt

 ≤ Cτ2

T N−1∑
n=0

∫ tn+1

tn

∣∣∣∣∣d3ϕτ
dt3

∣∣∣∣∣
2

dt

 .
Since the a posteriori bound imitates the behavior of the a priori one, we think that our
construction of θ through Theorem 2.1 yields to a sharp error estimate. Finally, observe
that the fact that θ2 depends linearly on the final time T is due to the use of Theorem
A.3, which eliminates the classical exp(T )-bound coming out the estimate when using
Gronwall’s Lemma inequality.

Several choices for ϕτ were proposed in the literature. In [82], a piecewise linear
reconstruction of the numerical solution is introduced in order to prove an a posteriori
error estimate for the heat equation and the Backward Euler scheme. Following this
paper, ϕτ could be defined as

ϕτ (t) = ϕn + (t− tn)ϕ
n+1 − ϕn

τn+1 , t ∈ [tn, tn+1], 0 ≤ n ≤ N − 1.

Nevertheless, it is shown in [3] that this reconstruction yields to a suboptimal a posteriori
error estimate for methods of order 2. In [3], the authors propose a piecewise quadratic
reconstruction to achieve the optimal order of the error estimator. For instance, applied to
the Cauchy problem (2.1) (we recall that in this case u is a constant), the reconstruction
reads

ϕτ (t) = ϕn + (t− tn)ϕ
n+1 − ϕn

τn+1 − 1
2(t− tn)(t− tn+1)uϕ

n+1 − ϕn

τn+1 , (2.7)
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t ∈ [tn, tn+1], 0 ≤ n ≤ N − 1.
In [72], an alternative quadratic reconstruction is introduced. Observe that, consider-

ing the ODE (2.1), one can think about uϕ
n+1 − ϕn

τn+1 as an approximation of udϕ
dt

= −d
2ϕ

dt2
.

Therefore, the authors replace in (2.7) the factor −uϕ
n+1 − ϕn

τn+1 by a finite difference ap-
proximation of the second derivative. So the following quadratic reconstruction is advo-
cated

ϕτ (t) = ϕn + (t− tn)ϕ
n+1 − ϕn

τn+1 + 1
2(t− tn)(t− tn+1)

ϕn+1−ϕn
τn+1 − ϕn−ϕn−1

τn

τn+1+τn
2

, (2.8)

t ∈ [tn, tn+1], 1 ≤ n ≤ N − 1. Compared to (2.7), the only drawback of (2.8) is that it
is defined only for t ≥ t1, forcing to use a linear reconstruction of the numerical solution
on the interval [t0, t1] (leading in general to a suboptimal local error estimator for the
first iteration) or to keep the error at time t1 in the estimate. In practice, this is not a
restriction since |ϕ(t1)− ϕ1| is small. Nevertheless, in what follows, we will show that for
our particular problems, we are able to obtain a local error estimator achieving the order
2, even in the first interval [t0, t1] where a linear reconstruction will be used.

In order to simplify the notations in the computations that follow, we introduce the
quantities

∂ϕn+1 = ϕn+1−ϕn
τn+1 , 0 ≤ n ≤ N − 1,

∂2ϕn+1 =
ϕn+1−ϕn
τn+1 − ϕn−ϕn−1

τn

τn+1+τn
2

, 1 ≤ n ≤ N − 1,

ϕn+1/2 = ϕn+1+ϕn
2 , 0 ≤ n ≤ N − 1,

tn+1/2 = tn+1+tn
2 , 0 ≤ n ≤ N − 1.

(2.9)

Using the above notation, we define the reconstruction we will use in the rest of this
section.

Definition 2.3 (Piecewise quadratic numerical reconstruction).
Let (ϕn)Nn=0 be the solution of (2.3) or (2.4), we define the piecewise numerical reconstruc-
tion ϕτ ∈ C0[0, T ] by

ϕτ (t) = ϕn+1/2 + (t− tn+1/2)∂ϕn+1 + 1
2(t− tn)(t− tn+1)∂2ϕn+1, (2.10)

for t ∈ [tn, tn+1], 1 ≤ n ≤ N − 1, and by

ϕτ (t) = ϕ
1/2 + (t− t1/2)∂ϕ1, (2.11)

for t ∈ [t0, t1].

Observe that we write the quadratic reconstruction (2.10) in a slightly different way
that one proposed in (2.8), the linear part being computed in tn+1/2 rather than in tn

(note that there are still equal). This choice is made in order to simplify the computations
later on since the Crank-Nicolson method corresponds to the midpoint rule that is used
to approximate the equation. As anticipated before, we use a linear reconstruction (2.11)
to define the numerical solution on [t0, t1].

We now prove that the piecewise reconstruction of Definition 2.3 yields to a local error
estimator θn(t) of order O(τ2). We first focus on the Cauchy problem (2.1) where u is a
constant. The local error estimator is contained in the proposition

Proposition 2.4.
Let (ϕn)Nn=0 be the solution of the numerical method (2.3). Let 0 ≤ n ≤ N − 1. Finally,
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let ϕτ be the numerical reconstruction proposed in Definition 2.3. One have for all t ∈
(tn, tn+1)

dϕτ
dt

+ uϕτ = θn(t)

where the local error estimator θn(t) is given by

θn(t) =


(
τn

2 (t− tn+1/2) + 1
2(t− tn)(t− tn+1)

)
u∂2ϕn+1, 1 ≤ n ≤ N − 1,

(t− t1/2)u∂ϕ1, n = 0.

(2.12)

Proof. We first treat the case n ≥ 1. Let t ∈ (tn, tn+1), we have

dϕτ
dt

+ uϕτ = ∂ϕn+1 + (t− tn+1/2)∂2ϕn+1

+ uϕn+1/2 + u(t− tn+1/2)∂ϕn+1 + u

2 (t− tn)(t− tn+1)∂2ϕn+1.

Using the numerical scheme (2.3), we have that ∂ϕn+1 + uϕn+1/2 = 0, therefore

dϕτ
dt

+ uϕτ = (t− tn+1/2)
(
∂2ϕn+1 + u∂ϕn+1

)
+ 1

2(t− tn+1)(t− tn)u∂2ϕn+1. (2.13)

Observe that the factor ∂2ϕn+1 + u∂ϕn+1 behaves as the discrete derivative of equation
(2.3). So to compute it, we take the difference between (2.3) at two consecutive steps and
it yields

ϕn+1 − ϕn

τn+1 − ϕn − ϕn−1

τn
+ u

ϕn+1 − ϕn−1

2 = 0.

Dividing by 1
τn+1+τn/2

, we obtain

∂2ϕn+1 + u
ϕn+1 − ϕn−1

τn+1 + τn
= 0. (2.14)

Therefore one can compute that

∂2ϕn+1 + u∂ϕn+1 = u

(
ϕn+1 − ϕn

τn+1 − ϕn+1 − ϕn−1

τn+1 + τn

)

= u
(ϕn+1 − ϕn)(τn+1 + τn)− τn+1(ϕn+1 − ϕn−1)

τn+1(τn+1 + τn)

= u
τn(ϕn+1 − ϕn)− τn+1(ϕn − ϕn−1)

τn+1(τn+1 + τn)

= u
τn+1τn ϕ

n+1−ϕn
τn+1 − τn+1τn ϕ

n−ϕn−1

τn

τn+1(τn+1 + τn)

= τn

2 u
ϕn+1−ϕn
τn+1 − ϕn−ϕn−1

τn

τn+1+τn
2

. (2.15)

Finally, we obtain that
∂2ϕn+1 + u∂ϕn+1 = τn

2 u∂2ϕn+1,

and plug it into (2.13) yields

dϕτ
dt

+ uϕτ =
(
τn

2 (t− tn+1/2) + 1
2(t− tn)(t− tn+1)

)
u∂2ϕn+1.
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Now, for n = 0 and t ∈ (t0, t1), we directly obtain, using the definition of ϕτ and the
numerical method (2.3)

dϕτ
dt

+ uϕτ = ϕ1 − ϕ0

τ1 + uϕ
1/2 + u(t− t1/2)∂ϕ1

= (t− t1/2)u∂ϕ1.

Then, the a posteriori estimate for the numerical method (2.3) is contained in the
Theorem

Theorem 2.5.
Let ϕ be the solution of (2.1) and (ϕn)Nn=0 be the solution of the numerical method (2.3).
Let 0 ≤ n ≤ N − 1. Finally, let ϕτ be the numerical reconstruction proposed in Definition
2.3. Then the following a posteriori error estimate holds

|ϕ(T )− ϕN |2 ≤ exp(2)
N−1∑
n=0

cn

∫ tn+1

tn
θ2
n(t)dt,

where θn(t) is defined as in Proposition 2.4 and cn is given by

cn =
{
τ1, n = 0,
T − t1, 1 ≤ n ≤ N − 1.

Proof. We set 1 ≤ n ≤ N − 1 and t ∈ (tn, tn+1). We note e(t) = ϕ(t) − ϕτ . Using
Proposition 2.4, we have

d

dt
e(t) + ue(t) = −θn(t).

Multiplying by e(t), we have
1
2
d

dt
|e(t)|2 + u|e(t)|2 = −θn(t)e(t).

Using that u is positive, the second term of the left hand side can be eliminated and it
yields

1
2
d

dt
|e(t)|2 ≤ −θn(t)e(t).

Using Theorem A.3 between t1 and T , one prove that

|e(T )|2 ≤ exp(1)
(
|e(t1)|2 + (T − t1)

N−1∑
n=1

∫ tn+1

tn
θ2
n(t)dt

)
.

Now to estimate the error at time t1, we reproduce the same computation for t ∈ (0, t1)
and we obtain

1
2
d

dt
|e(t)|2 ≤ −θ1(t)e(t).

Using Theorem A.3 between 0 and t1 = τ1 and using that e(0) = 0 yields

|e(t1)|2 ≤ exp(1)τ1
∫ t1

0
θ2

1(t)dt.

So finally, we obtain the estimate

|e(T )|2 ≤ exp(1)
(

exp(1)τ1
∫ t1

0
θ2

1(t)dt+ (T − t1)
N−1∑
n=1

∫ tn+1

tn
θ2
n(t)dt

)
,

which yields to the desired estimate by setting cn = τ1 if n = 0 and cn = T − t1 otherwise.
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Remark 2.6 (Optimality of the a posteriori error estimate of Theorem 2.5). (i) Observe
that for n ≥ 1 ∫ tn+1

tn
θ2
n(t)dt = (τn)2(τn+1)3

48 + (τn+1)5

120 u2
(
∂2ϕn+1

)2

which implies that
N−1∑
n=1

cn

∫ tn+1

tn
θ2
n(t)dt = O(τ4).

Moreover, for the first time step, the proof above yields as estimate for e(t1) the
quantity

c0

∫ t1

t0
θ2

1(t)dt = τ1 (τ1)3

12 u2
(
∂ϕ1

)2
= O(τ4).

So, if we define θ by

θ =
(
N−1∑
n=0

cn

∫ tn+1

tn
θ2
n(t)dt

)1/2

we have that the posteriori error estimate of Theorem 2.5 achieves the optimal order,
that is to say

|ϕ(T )− ϕN | ≤ Cθ = O(τ2).

(ii) Note that the result of the previous point is a consequence of the particular form of
the local error estimator θn, which approximates

u
d2ϕ

dt2
= −d

3ϕ

dt3
.

Therefore, the estimates of Theorem 2.5 mimics the a priori error estimate

|ϕ(T )− ϕN | ≤ Cτ2

T ∫ T

0

∣∣∣∣∣d3ϕ(t)
dt3

∣∣∣∣∣
2

dt

1/2

,

which was one of our purposes.

Remark 2.7.
The computations performed (2.15) gives us in fact the identity

ϕn+1 − ϕn

τn+1 = ϕn+1 − ϕn−1

τn+1 + τn
+ τn

2 ∂2ϕn+1

This is a well-known result in the framework of stabilization method, where the upwind
scheme (here the left hand side) is a centered scheme stabilized by adding a diffusion term
(here the right hand side).

We now treat the more general case of the Cauchy problem (2.2) where u may depend
on t. The corresponding local error indicator θn is contained in the Proposition

Proposition 2.8.
Let (ϕn)Nn=0 be the solution of the numerical method (2.4). Let 0 ≤ n ≤ N − 1. Finally,
let ϕτ be the numerical reconstruction proposed in Definition 2.3. One have for all t ∈
(tn, tn+1)

dϕτ
dt

+ u(t)ϕτ = θn(t)
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where the local error estimator θn(t) is given by

θn(t) =
(
u(t)− u(tn+1/2)− (t− tn+1/2)u(tn+1/2)− u(tn−1/2)

τn+1+τn/2

)
ϕn+1/2

+ (t− tn+1/2)(u(t)− u(tn−1/2))ϕ
n+1 − ϕn−1

τn+1 + τn

+
(
τn

2 (t− tn+1/2) + 1
2(t− tn)(t− tn+1)

)
u(t)∂2ϕn+1, 1 ≤ n ≤ N − 1,

(2.16)

and

θ0(t) =
(
u(t)− u(t1/2)

)
ϕ

1/2 + (t− t1/2)u(t)∂ϕ1. (2.17)

Proof. We proceed as in Proposition 2.4. Let first n ≥ 1 and let t ∈ (tn, tn+1). We have

dϕτ
dt

+ u(t)ϕτ = ∂ϕn+1 + (t− tn+1/2)∂2ϕn+1

+ u(t)ϕn+1/2 + u(t)(t− tn+1/2)∂ϕn+1 + u(t)
2 (t− tn)(t− tn+1)∂2ϕn+1

= ∂ϕn+1 + u(tn+1/2)ϕn+1/2︸ ︷︷ ︸
=0 (2.4)

+(t− tn+1/2)
(
∂2ϕn+1 + u(t)ϕn+1

)

+ (u(t)− u(tn+1/2))ϕn+1/2 + 1
2(t− tn)(t− tn+1)u(t)∂2ϕn+1

= (t− tn+1/2)
(
∂2ϕn+1 + u(t)ϕn+1

)
+ (u(t)− u(tn+1/2))ϕn+1/2

+ 1
2(t− tn)(t− tn+1)u(t)∂2ϕn+1

As before, we treat the first term of the right hand side. Taking the difference between
(2.4) and the same scheme at the previous step, we get

∂ϕn+1 + u(tn+1/2)ϕn+1/2 − ∂ϕn − u(tn−1/2)ϕn−1/2 = 0.

The previous equality is equivalent to

∂ϕn+1 − ∂ϕn + u(t)ϕ
n+1 − ϕn−1

2 + (u(tn+1/2)− u(t))ϕn+1/2 − (u(tn−1/2)− u(t))ϕn−1/2 = 0.

Dividing by 1
τn+1+τn/2

, we finally get

∂2ϕn+1 + u(t)ϕ
n+1 − ϕn−1

τn+1 + τn
+ (u(tn+1/2)− u(t))ϕn+1/2 − (u(tn−1/2)− u(t))ϕn−1/2

τn+1+τn/2
= 0.

Reproducing the step (2.15), we compute that

∂2ϕn+1+u(t)∂ϕn+1 = τn

2 u(t)∂2ϕn+1+ (u(t)− u(tn+1/2))ϕn+1/2 − (u(t)− u(tn−1/2))ϕn−1/2

τn+1+τn/2
.
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Thus

dϕτ
dt

+ u(t)ϕτ = (t− tn+1/2)(u(t)− u(tn+1/2))ϕn+1/2 − (u(t)− u(tn−1/2))ϕn−1/2

τn+1+τn/2

+ (u(t)− u(tn+1/2))ϕn+1/2

+
(
τn

2 (t− tn+1/2) + 1
2(t− tn)(t− tn+1)

)
u(t)∂2ϕn+1

=
(
u(t)− u(tn+1/2)− (t− tn+1/2)u(tn+1/2)− u(tn−1/2)

τn+1+τn/2

)
ϕn+1/2

+ (t− tn+1/2)(u(t)− u(tn−1/2))ϕ
n+1 − ϕn−1

τn+1 + τn

+
(
τn

2 (t− tn+1/2) + 1
2(t− tn)(t− tn+1)

)
u(t)∂2ϕn+1.

Observe that we pass to the second equality by adding and subtracting the term

(t− tn+1/2)(u(t)− u(tn−1/2))ϕn+1/2

τn+1+τn/2
.

For n = 0, we directly obtain that for any t ∈ (0, t1)

dϕτ
dt

+ u(t)ϕτ = ∂ϕ1 + u(t)ϕ1/2 + u(t)(t− tn+1/2)∂ϕ1

= ∂ϕ1 + u(t1/2)ϕ1/2︸ ︷︷ ︸
=0

+
(
u(t)− u(t1/2)

)
ϕ

1/2 + (t− t1/2)u(t)∂ϕ1

=
(
u(t)− u(t1/2)

)
ϕ

1/2 + (t− t1/2)u(t)∂ϕ1.

We now state an a posteriori error estimate for the scheme (2.4), which is the final
result of this section.

Theorem 2.9.
Let ϕ be the solution of (2.2) and (ϕn)Nn=0 be the solution of the numerical method (2.4).
Let 0 ≤ n ≤ N − 1. Finally, let ϕτ be the numerical reconstruction proposed in Definition
2.3. Then the following a posteriori error estimate holds

|ϕ(T )− ϕN |2 ≤ exp(2)
N−1∑
n=0

cn

∫ tn+1

tn
θ2
n(t)dt,

where the local error estimator θn(t) is defined as in Proposition 2.8 and cn is given by

cn =
{
τ1, n = 0,
T − t1, 1 ≤ n ≤ N − 1.

Proof. The proof is exactly the same as the one of Theorem 2.5 and is not written for
conciseness.

Remark 2.10 (Optimality of the a posteriori error estimate of Theorem 2.9).
Let us note

M0 = max
t∈[0,T ]

|u(t)|, M1 = max
t∈[0,T ]

∣∣∣∣ ddtu(t)
∣∣∣∣ , M2 = max

t∈[0,T ]

∣∣∣∣∣ d2

dt2
u(t)

∣∣∣∣∣ .
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Using Taylor expansion, we can prove for n ≥ 1 that

|u(t)− u(tn−1/2)| ≤M1|t− tn−
1/2|,

and∣∣∣∣∣u(t)− u(tn+1/2)− (t− tn+1/2)u(tn+1/2)− u(tn−1/2)
τn+1+τn/2

∣∣∣∣∣
≤M2

(
(t− tn+1/2)2 + |t− tn+1/2||t− tn−1/2|

)
.

Therefore, for n ≥ 1, we have that∫ tn+1

tn
θ2
n(t)dt ≤ 3M2

2 |ϕn+1/2|2
∫ tn+1

tn

(
(t− tn+1/2)2 + |t− tn+1/2||t− tn−1/2|

)2
dt

+ 3M2
1

∣∣∣∣∣ϕn+1 − ϕn−1

τn+1 + τn

∣∣∣∣∣
2 ∫ tn+1

tn
(t− tn+1/2)2(t− tn−1/2)2dt

+ 3M2
0 |∂2ϕn+1|2

∫ tn+1

tn

(
τn

2 (t− tn+1/2) + 1
2(t− tn)(t− tn+1)

)2
dt

= O((τn+1)5 + (τn)2(τn+1)3).

For the same reason, we have that

τ1
∫ t1

t0
θ2

0(t)dt ≤ 2
(
M2

1 |ϕ
1/2|2 +M2

0 |∂ϕ2|′2
)
τ1
∫ t1

t0
(t− t1/2)2dt = O((τ1)4).

So, as before, if we define the error estimator

θ =
(
N−1∑
n=0

cn

∫ tn+1

tn
θ2
n(t)dt

)1/2

,

we have finally
|ϕ(T )− ϕN | ≤ Cθ = O(τ2).

Remark 2.11. (i) The particular form of the local error estimator θn(t) in Theorem 2.9
is consistent with what we learned before. Indeed, when u is a constant, Theorem
2.5 means that the numerical error ϕ − ϕτ can be approximated by τ2u d2

dt2ϕτ =
τ2 d2

dt2 (uϕτ ). If u depends on t and is a C2 function, then, up to Taylor expansion,
the same phenomena happens and the numerical error can be approximated by

τ2 d
2

dt2
(uϕτ ) = τ2d

2u

dt2
ϕτ + τ2du

dt

dϕτ
dt

+ τ2u
d2ϕτ
dt2

.

Therefore, the estimate of Theorem 2.9 mimics the a priori error estimate

|ϕ(T )− ϕN | ≤ Cτ2

T ∫ T

0

∣∣∣∣∣d3ϕ(t)
dt3

∣∣∣∣∣
2

dt

1/2

,

since
d3ϕ

dt3
= − d2

dt2
(uϕτ ).

(ii) Observe that if u is a constant, then the local error estimator given by (2.16) and
(2.17) is reduced to (2.12).
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2.2 Error estimates for the time dependent transport equa-
tion with anisotropic finite elements and the Crank-
Nicolson scheme

2.2.1 A priori and a posteriori error estimates in the case of a transport
velocity independent of the time

We are now studying an anisotropic finite elements method to solve the transient transport
equation. Some of the results presented below are already published in [20] and [41].

The time discretization is performed using the Crank-Nicolson method. Here we focus
on the particular problem where the transport velocity u is independent of the time. As
before, to simplify the notations, we only present the results in the 2D (spatial) case, but
later on, numerical experiments will be performed to illustrate the 3D situation. Given a
bounded, open set Ω ∈ R2, a (finite) final time T > 0 and a divergence free velocity field
u ∈ C1(Ω), we are looking for ϕ : Ω× (0, T ] −→ R satisfying the transport problem

∂ϕ

∂t
+ u · ∇ϕ = 0, in Ω× (0, T ),

ϕ = 0, on Γ− × (0, T ),

ϕ(·, 0) = ϕ0,

(2.18)

where Γ− = {x ∈ ∂Ω : u · n < 0}, with n being the unit outer normal of Ω, and ϕ0 ∈ L2(Ω)
is the initial condition. Under some reasonable assumptions on the boundary of Ω, the
problem (2.18) has a unique solution ϕ ∈ C0([0, T ];L2(Ω)), see for instance [12]. To avoid
theoretical considerations on the regularity of the domain or the solution, we will always
assume that the data of the problem, that is to say Ω, T,u and ϕ0, are such that there exists
a unique solution ϕ of (2.18) that is sufficiently smooth to justify all our computations.

When discretizing the transport equation (2.18), it is well know that the classical
Galerkin formulation is unsuitable and that some stabilization techniques are necessary.
From now, assume that Ω is a polygon. For any h > 0, let Th be a conformal triangulation
of Ω into triangles K of diameter hK ≤ h such that Γ− is the union of edges lying
on ∂Ω. Let Vh be the set of continuous piecewise linear functions on each triangle of
Th, with zero value on Γ−. A possible finite element discretization in space is to search
ϕh : Ω× [0, T ] −→ R, with ϕh(·, t) ∈ Vh for all t ∈ [0, T ], such that ϕh(·, 0) = rh(ϕ0) and
for all t ∈ (0, T ] ∫

Ω

(
∂ϕh
∂t

+ u · ∇ϕh
)

(vh + δhu · ∇vh)dx = 0, ∀vh ∈ Vh, (2.19)

where δh > 0 is a stabilization parameter that will be specified later on. The stabilized
method (2.19) is an example of the Streamline-Upwind/Petrov-Galerkin method (SUPG)
and is well studied in the framework of dominated convection equations. A survey of
finite element methods for hyperbolic problems can be found in [60, 92]. Observe that the
formulation (2.19) is consistent i.e. the exact solution ϕ satisfies also∫

Ω

(
∂ϕ

∂t
+ u · ∇ϕ

)
(vh + δhu · ∇vh)dx = 0, ∀vh ∈ Vh.

Non-consistent formulations are possible, for instance asking for ϕh satisfying∫
Ω

(
∂ϕh
∂t

+ u · ∇ϕh
)
vhdx +

∫
Ω
δh(u · ∇ϕh)(u · ∇vh)dx = 0, ∀vh ∈ Vh.
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However, it was observed that these types of method suffer from a lack of accuracy, even
if an high order time stepping scheme is used [22]. For this reason, we choose to keep
the consistent formulation, even if it leads to some technical complexity in its conver-
gence analysis, see again [22]. In the same paper a complete convergence analysis of the
method (2.19) is proposed for several choices of time discretization schemes, in particular
the Backward Euler scheme and the Crank-Nicolson scheme, when linear isotropic finite
elements are used. In what follows, we will propose a similar analysis for anisotropic finite
elements and the Crank-Nicolson scheme, following the same ideas. Note that in [22], the
analysis is done in the case of constant time step ; we extend it for variable time steps.

A numerical study of the semi-discrete method (2.19) with anisotropic finite elements
has already been proposed in [20]. Our goal is to extend it, taking in account an order two
in time discretization, namely the Crank-Nicolson method, as stated before. Let N be a
non-negative integer and consider a partition 0 = t0 < t1 < t2 < ... < tN = T . We denote
by τn+1 = tn+1 − tn the time step, n = 0, 1, 2, ..., N − 1. Starting from ϕ0

h = rh(ϕ0), for
n = 0, 1, 2, ..., N − 1, we are looking for ϕn+1

h ∈ Vh such that∫
Ω

(
ϕn+1
h − ϕnh
τn+1 + u · ∇

(
ϕn+1
h + ϕnh

2

))
(vh + δhu · ∇vh)dx = 0, ∀vh ∈ Vh. (2.20)

Stability and a priori error estimates for the semi-discrete approximation in space

We briefly recall below the results previously obtained in [20] where only the space dis-
cretization is taken in account. We first state a stability result for the method (2.19).
The idea of the proof, which is taken from [22] and consists to choose ϕh + δh

∂ϕh
∂t

as test
function, is the main ingredient of all the convergence proofs that follow.

Proposition 2.12 (Stability of the SUPG method applied to the transient transport
equation).
Assume that δh > 0 is constant and let ϕh be the solution of (2.19). Then, for every
t ∈ (0, T ] the following stability estimate holds :

‖ϕh(t)‖2L2(Ω) + δ2
h‖u · ∇ϕh(t)‖2L2(Ω) ≤ ‖ϕh(0)‖2L2(Ω) + δ2

h‖u · ∇ϕh(0)‖2L2(Ω). (2.21)

Remark 2.13.
If no stabilization terms are added (which corresponds to set δh = 0 in the formulation
above), then we only get a control on the L2-norm of the solution, that is to say for all
t ∈ (0, T ], one have

‖ϕh(t)‖2L2(Ω) ≤ ‖ϕh(0)‖2L2(Ω).

In particular, there is no control on the spatial derivatives of the numerical solution ϕh,
meaning in practice that some spurious oscillations can arised if h is not small enough.
On the contrary, estimate (2.21) allows a control of the spatial derivatives, at least in the
direction of the velocity field u.

Proof of Proposition 2.12. We choose vh = ϕh + δh
∂ϕh
∂t

in the variational formulation
(2.19). We have∫

Ω

∂ϕh
∂t

ϕhdx + δ2
h

∫
Ω

(u · ∇ϕh)(u · ∇∂ϕh
∂t

)dx

+
∫

Ω
(u · ∇ϕh)ϕhdx + δ2

h

∫
Ω

(
u · ∇∂ϕh

∂t

)
∂ϕh
∂t

dx

+ δh

∫
Ω

(
∂ϕh
∂t

)2
dx + 2δh

∫
Ω

(u · ∇ϕh)∂ϕh
∂t

dx + δh

∫
Ω

(u · ∇ϕh)2dx = 0.
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We treat each line of the last equality. Since u is independent of the time, we can put the
time derivative of the second term of the first line outside the integral sign. Therefore, we
can write∫

Ω

∂ϕh
∂t

ϕhdx + δ2
h

∫
Ω

(u · ∇ϕh)(u · ∇∂ϕh
∂t

)dx = 1
2
d

dt
‖ϕh(t)‖2L2(Ω) + δ2

h

2
d

dt
‖u · ∇ϕh(t)‖2L2(Ω).

Thanks to the divergence theorem, and since u is a divergence free vector field, one can
write the second line as∫

Ω
(u · ∇ϕh)ϕhdx + δ2

h

∫
Ω

(
u · ∇∂ϕh

∂t

)
∂ϕh
∂t

dx

=
∫

Ω
div

(
uϕ

2
h

2

)
dx + δ2

h

2

∫
Ω

div
(

u · 1
2

(
∂ϕh
∂t

)2)
dx

= 1
2

∫
∂Ω

u · nϕ2
hdx + δ2

h

2

∫
∂Ω

u · n
(
∂ϕh
∂t

)2
dx.

Finally, observe that the terms of the third line form a square, that is to say

δh

∫
Ω

(
∂ϕh
∂t

)2
dx+2δh

∫
Ω

(u·∇ϕh)∂ϕh
∂t

dx+δh
∫

Ω
(u·∇ϕh)2dx = δh

∫
Ω

(
∂ϕh
∂t

+ u · ∇ϕh
)2
dx.

Therefore, the total equality can be written as

1
2
d

dt
‖ϕh(t)‖2L2(Ω) + δ2

h

2
d

dt
‖u · ∇ϕh(t)‖2L2(Ω)

+ 1
2

∫
Ω

u · nϕ2
hdx + δ2

h

2

∫
Ω

u · n
(
∂ϕh
∂t

)2
dx

+ δh

∫
Ω

(
∂ϕh
∂t

+ u · ∇ϕh
)2
dx = 0.

Thanks to the boundary conditions, both terms of the second line are non negative. Indeed
we have

1
2

∫
∂Ω

u ·nϕ2
hdx+ δ2

h

2

∫
∂Ω

u ·n
(
∂ϕh
∂t

)2
dx = 1

2

∫
Γ−

u ·nϕ2
hdx+ δ2

h

2

∫
Γ−

u ·n
(
∂ϕh
∂t

)2
dx ≥ 0.

Therefore, since the third term is also positive, we finally obtain

1
2
d

dt
‖ϕh(t)‖2L2(Ω) + δ2

h

2
d

dt
‖u · ∇ϕh(t)‖2L2(Ω) ≤ 0,

which implies the result after integration between 0 and t.

We now state the a priori error estimate for the numerical method (2.19) that is proved
in [20]. The result is written in the anisotropic framework described in Section 1.1.

Theorem 2.14 (An anisotropic a priori error estimate for the semi-discrete finite elements
approximation of the transport equation).
Assume that u is not identically zero on Ω. Let ϕ be the solution of (2.18) and ϕh the
solution of (2.19) where we define

δh =
max
K∈Th

λ2,K

2‖u‖L∞(Ω)
. (2.22)
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Assume moreover that ϕ ∈ H1(0, T ;H2(Ω)2) and let us note eh(t) = ϕ(t) − ϕh(t). Then
there exists a constant C > 0 depending only on the reference triangle K̂, in particular C
is independent of Ω, T,u, ϕ, the mesh size and aspect ratio, such that

‖eh(T )‖2L2(Ω) + δ2
h‖u · ∇eh(T )‖2L2(Ω)

≤ ‖eh(0)‖2L2(Ω) + δ2
h‖u · ∇eh(0)‖2L2(Ω)

+C

∫ T

0

 ∑
K∈Th

(
1
δh

+
δh‖u‖2L∞(K)

λ2
2,K

)
L2
K(ϕ) +

(
δh +

δ3
h‖u‖2L∞(K)
λ2

2,K

)
L2
K

(
∂ϕ

∂t

) dt
 .
(2.23)

Remark 2.15. (i) In the case of isotropic meshes, λ1,K ' λ2,K ' hk and L2
K(v) ≤

Ch4
K |v|2H2(K) where C is independent of the mesh size but may depend on the mesh

aspect ratio. Thus, in this settings, (2.23) reduces to

‖ϕ(T )− ϕh(T )‖2L2(Ω) ≤ Ch
3 + h.o.t.,

where h.o.t. stands for higher order terms.

(ii) Estimate (2.23) is optimal for anisotropic meshes. Indeed, assume that the solution
ϕ depends only on one variable and that the mesh is aligned with the solution, then
the estimate (2.23) reduces to

‖ϕ(T )− ϕh(T )‖2L2(Ω) ≤ C
(

max
K∈Th

λ2,K

)3
+ h.o.t.,

and maxK∈Th λ2,K → 0 is sufficient to ensure the convergence of the numerical
method.

(iii) One can also prove an a priori error estimate for the semi-norm , namely

δh

∫ T

0

∥∥∥∥∂eh(t)
∂t

+ u · ∇eh(t)
∥∥∥∥2
dt

≤ C

∫ T

0

 ∑
K∈Th

(
1
δh

+
δh‖u‖2L∞(K)

λ2
2,K

)
L2
K(ϕ) +

(
δh +

δ3
h‖u‖2L∞(K)
λ2

2,K

)
L2
K

(
∂ϕ

∂t

) dt
 ,

where as before C depends only on the reference triangle.

Stability and a priori error estimates for the fully discrete approximation

We are now studying the fully discrete method (2.20). We first state a discrete equiv-
alent of the stability estimate of Proposition 2.12. We emphasize that, for the moment,
we are still considering a divergence free velocity field u, independent of the time. Com-
ments about the non-divergence free case will be addressed at the end of this chapter,
and a particular analysis of the time dependent case will be proposed in the next section.
By sake of simplicity and clarity for the reader, we chose to present our results only in
the norm ‖ · ‖2L2(Ω) + δ2

h‖u · ∇(·)‖2L2(Ω). The stability estimate and the two a priori error
estimates presented below can be extended to the semi-norm

δh

∫ T

0

∥∥∥∥∂·∂t + u · ∇(·)
∥∥∥∥2

L2(Ω)
dt,

but we refer to [22] where all the technical details are presented.
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Proposition 2.16 (Fully discrete stability estimate for the SUPGmethod and the Crank-Ni-
colson scheme applied to the transient transport equation).
Let (ϕnh)Nn=0 be the solution of (2.20) where δh > 0 is constant. Then it holds

‖ϕn+1
h ‖2L2(Ω) + δ2

h‖u · ∇ϕn+1
h ‖2L2(Ω)

≤ ‖ϕnh‖2L2(Ω) + δ2
h‖u · ∇ϕnh‖2L2(Ω), ∀n = 0, 1, ..., N − 1. (2.24)

Remark 2.17.
Observe that (2.24) implies in particular that for any n

‖ϕnh‖2L2(Ω) + δ2
h‖u · ∇ϕnh‖2L2(Ω) ≤ ‖ϕ

0
h‖2L2(Ω) + δ2

h‖u · ∇ϕ0
h‖2L2(Ω),

which is exactly the discrete counterpart of (2.21).

Proof. We choose

vh = ϕn+1
h + ϕnh

2 + δh
ϕn+1
h − ϕnh
τn+1

in (2.20). Following the proof of Proposition 2.12, it yields

1
2τn+1

(
‖ϕn+1

h ‖2L2(Ω) − ‖ϕ
n
h‖2L2(Ω)

)
+ 1

2

∫
Ω

div

u
(
ϕn+1
h + ϕnh

2

)2
 dx + δ2

h

2

∫
Ω

div

u
(
ϕn+1
h − ϕnh
τn+1

)2
 dx

+ δh

∫
Ω

(
ϕn+1
h − ϕnh
τn+1 + u · ∇

(
ϕn+1
h + ϕnh

2

))2

dx = 0.

As proven in Proposition 2.12, all the terms in the second and third lines have a non-
negative contributions, therefore, we obtain

1
2τn+1

(
‖ϕn+1

h ‖2L2(Ω) − ‖ϕ
n
h‖2L2(Ω)

)
+ δ2

h

2τn+1

(
‖u · ∇ϕn+1

h ‖2L2(Ω) − ‖u · ∇ϕ
n
h‖2L2(Ω)

)
≤ 0,

which yields to the desired result by multiplying by 2τn+1.

We now present a first convergence result for the numerical method (2.20). The proof
consists to split the numerical error at every time step ϕ(tn)− ϕnh into

(ϕ(tn)− ϕh(tn)) + (ϕh(tn)− ϕnh)

by using the semi-discrete approximation in space. The resulting bound is not fully sat-
isfactory since it involves time derivatives of ϕh. The curious reader can have a look at
the proof, but in a first reading, it can be skipped. A better a priori error estimate is
presented later on in the Theorem 2.24.

Theorem 2.18 (A quick and first a priori error estimate for the SUPG method and the
Crank-Nicolson scheme applied to the transport equation with a transport velocity field
independent of the time).
Assume that u is not identically zero on Ω. Let ϕ be the solution of (2.18) and let (ϕnh)Nn=0
be the solution of (2.20) where δh is defined by

δh =
max
K∈Th

λ2,K

2‖u‖L∞(Ω)
. (2.25)
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Let
τ = max

n=0,...,N−1
τn+1.

Assume that ϕ ∈ H1(0, T ;H2(Ω)) and ∂3ϕh
∂t3

∈ L2(0, T ;L2(Ω)), where ϕh(t) is the semi-
discrete approximation given by (2.19). Finally, let note the numerical error e(tn) =
ϕ(tn) − ϕnh. Then, there exists C > 0 depending only on the reference triangle K̂, in
particular C is independent of T , Ω, u, ϕ,N , the mesh size, aspect ratio and the time
step, such that

‖e(T )‖2L2(Ω) + δ2
h‖u · ∇e(T )‖2L2(Ω) ≤ C

(
‖e(0)‖2L2(Ω) + δ2

h‖u · ∇e(0)‖2L2(Ω)

+
∫ T

0

∑
K∈Th

((
1
δh

+
δh‖u‖L∞(K)

λ2
2,K

)
L2
K(ϕ) +

(
δh +

δ3
h‖u‖L∞(K)
λ2

2,K

)
L2
K

(
∂ϕ

∂t

))
dt

+
(
Tτ4 + Tδ2

hτ
2 + δhτ

4
) ∫ T

0

∥∥∥∥∥∂3ϕh
∂t3

∥∥∥∥∥
2

L2(Ω)
dt

)
. (2.26)

Remark 2.19. (i) So far, we have not been able to prove that

∫ T

0

∥∥∥∥∥∂3ϕh
∂t3

∥∥∥∥∥
2

L2(Ω)
dt

is bounded independently of h and τ . The proof is not obvious, even for parabolic
problems [92]. Though this drawback, we choose to present Theorem 2.18 since its
proof is fairly simple.

As announced, an other a priori error estimate (see Theorem 2.24), where only deriva-
tives of the exact solutions appears, will be stated. The proof requires to introduce
the hyperbolic projection used in [22]. Since it is only done in the isotropic settings,
for completeness, we also present in our framework the a priori error estimate derived
with this technique.

(ii) If we assume that ∫ T

0

∥∥∥∥∥∂3ϕh
∂t3

∥∥∥∥∥
2

L2(Ω)
dt

is bounded independently of h and τ , then the a priori error estimate (2.26) reduces
(written in the isotropic settings for simplicity) to

e(T ) = O(h3/2 + τ2) + h.o.t.,

as it is desired, since the Crank-Nicolson scheme is an order 2 in time numerical
method.

(iii) Note that in the a priori error estimates proven in [22], the factor T does not appear
in the right hand side when estimating the L2 norm of the error, but a different
choice for the norm of ∂3ϕh

∂t3 has to be made. Namely, in [22], the L1((0, T );L2(Ω))
norm is used rather than the L2((0, T );L2(Ω)) norm that we choose here. Remark
that we use the L2((0, T );L2(Ω)) norm for consistency, since the a posteriori error
estimate that we will prove later, will be expressed in the same norm.
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Proof. The proof proceeds in two parts. For any n = 0, 1, ..., N , let us decompose the
numerical error e(tn) as

e(tn) = ϕ(tn)− ϕnh = (ϕ(tn)− ϕh(tn)) + (ϕh(tn)− ϕnh) = eh(tn) + enh.

Observe that

‖e(T )‖2L2(Ω) + δ2
h‖u · ∇e(T )‖2L2(Ω)

≤ 2‖eh(T )‖2L2(Ω) + 2δ2
h‖u · ∇eh(T )‖2L2(Ω)︸ ︷︷ ︸
I1

+ 2‖eNh ‖2L2(Ω) + 2δ2
h‖u · ∇eNh ‖2L2(Ω)︸ ︷︷ ︸
I2

.

We then estimate I1 and I2 independently. To simplify the writing, in what follows,
we will denote by Ĉ any positive constants depending only on the reference triangle K̂
and by C̃ any positive constant which is a pure real number (in particular independent
of any datum of the problem, the mesh or any discretization parameter). Note that the
values of Ĉ and C̃ can change from line to line.

Part I. Estimate for I1.
We apply Theorem 2.14 on I1 and we obtain

‖eh(T )‖2L2(Ω) + δ2
h‖u · ∇eh(T )‖2L2(Ω)

≤ Ĉ

‖eh(0)‖2L2(Ω) + δ2
h‖u · ∇eh(0)‖2L2(Ω) +

∫ T

0

∑
K∈Th

((
1
δh

+
δh‖u‖L∞(K)

λ2
2,K

)
L2
K(ϕ)

+
(
δh +

δ3
h‖u‖L∞(K)
λ2

2,K

)
L2
K

(
∂ϕ

∂t

))
dt

)
. (2.27)

Part II. Estimate for I2.
We now have to estimate I2. By using several times the Fundamental Theorem of

Calculus, one can derive that

ϕh(tn+1)− ϕh(tn)
τn+1 = ∂tϕh(tn+1) + ∂tϕh(tn)

2 + rn+1, (2.28)

where

rn+1 = 1
2τn+1

∫ tn+1

tn

(∫ s

tn

∫ t

tn

∂3ϕh
∂t3

(ζ)dζdt+
∫ s

tn+1

∫ t

tn

∂3ϕh
∂t3

(ζ)dζdt
)
ds.

In particular, we observe that

|rn+1|2 ≤ (τn+1)3
∫ tn+1

tn

(
∂3ϕh
∂t3

(t)
)2

dt. (2.29)

In the sequel, we will note enh = ϕh(tn)− ϕnh. By using (2.19), (2.20) and (2.28), one can
prove that the following relation holds for the numerical error∫

Ω

(
en+1
h − enh
τn+1 + u · ∇

(
en+1
h + enh

2

))
(vh + δhu · ∇vh) dx

=
∫

Ω
rn+1 (vh + δhu · ∇vh) dx, ∀vh ∈ Vh. (2.30)
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Choosing

vh = en+1
h + enh

2 + δh
en+1
h − enh
τn+1

and reproducing what we is done in the proof of Proposition 2.16, we obtain

1
2τn+1

(
‖en+1
h ‖2L2(Ω) − ‖e

n
h‖2L2(Ω)

)
+ δ2

h

2τn+1

(
‖u · ∇en+1

h ‖2L2(Ω) − ‖u · ∇e
n
h‖2L2(Ω)

)
+ δh

∫
Ω

(
en+1
h − enh
τn+1 + u · ∇

(
en+1
h + enh

2

))2

dx

≤
∫

Ω
rn+1

(
en+1
h + enh

2 + δ2
hu · ∇

(
en+1
h − enh
τn+1

))
dx

+ δh

∫
Ω
rn+1

(
en+1
h − enh
τn+1 + u · ∇

(
en+1
h + enh

2

))
dx.

Recognizing that the last term of the left hand side is also present in the last term of the
right hand side, we can eliminate it thanks to the Young’s inequality and it yields

1
2τn+1

(
‖en+1
h ‖2L2(Ω) − ‖e

n
h‖2L2(Ω)

)
+ δ2

h

2τn+1

(
‖u · ∇en+1

h ‖2L2(Ω) − ‖u · ∇e
n
h‖2L2(Ω)

)
≤
∥∥∥rn+1

∥∥∥
L2(Ω)

∥∥∥∥∥en+1
h + enh

2 + δ2
hu · ∇

(
en+1
h − enh
τn+1

)∥∥∥∥∥
L2(Ω)

+ δh
2

∥∥∥rn+1
∥∥∥2

L2(Ω)
.

Multiplication by 2τn+1 and use of Cauchy−Schwarz, triangle and Young’s inequalities
imply that it holds for every 0 ≤ n ≤ N − 1

‖en+1
h ‖2L2(Ω) + δ2

h ‖u · ∇en+1
h ‖2L2(Ω) − ‖e

n
h‖2L2(Ω) − δ

2
h ‖u · ∇enh‖2L2(Ω)

≤ C̃
(
Tτn+1 + T

δ2
h

τn+1 + δhτ
n+1

)∥∥∥rn+1
∥∥∥2

L2(Ω)
+ τn+1

T

(
‖enh‖2L2(Ω) + δ2

h‖u · ∇enh‖2L2(Ω)

)
+ τn+1

2T
(
‖en+1
h ‖2L2(Ω) + δ2

h‖u · ∇en+1
h ‖2L2(Ω)

)
.

Noting γn = τn+1

T
and µn+1 = τn+1

2T < 1, we can apply the discrete Gronwall’s Lemma
(see Lemma A.6 in the Appendix A.1) and we get

‖eNh ‖2L2(Ω) + δ2
h‖u · ∇eNh ‖2L2(Ω)

≤ C̃ exp
(
N−1∑
n=0

µn+1
1− µn+1

)
exp

(
N−1∑
n=0

γn

)
N−1∑
n=0

(
Tτn+1 + T

δ2
h

τn+1 + δhτ
n+1

)∥∥∥rn+1
∥∥∥2

L2(Ω)
,

where we use the fact that e0
h = 0. Since

N−1∑
n=0

γn,
N−1∑
n=0

µn+1
1− µn+1

≤ 1 and using (2.29), we

obtain

I2 ≤ C̃
(
Tτ4 + Tδ2

hτ
2 + δhτ

4
) ∫ T

0

∥∥∥∥∥∂3uh
∂t3

∥∥∥∥∥
2

L2(Ω)
dt. (2.31)

Estimates (2.31) and (2.27) together yield the result.
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A second a priori error estimate for the fully discrete approximation

We present the alternative error estimate announced in the Remark 2.19. Rather than
cutting the numerical error ϕ(tn)−ϕnh into ϕ(tn)−ϕh(tn) and ϕh(tn)−ϕnh, we introduce
a suitable projection operator Π and estimate the sum (ϕ(tn)−Πϕ(tn)) + (Πϕ(tn)−ϕnh).
This approach is the same as for parabolic problems, where Π is chosen as the elliptic pro-
jection. The projection operator we choose for the transport equation is the hyperbolic-
Ritz projection as advocated in [22] and is introduced in the next definition. At the end
we will show that (up to some higher order terms and written in the isotropic setting)
ϕ(tn)−Πϕ(tn) = O(h3/2) and Πϕ(tn)− ϕnh = O(τ2).

Definition 2.20 (Hyperbolic-Ritz projection).
Let u ∈ C1(Ω) such that div u = 0 and φ ∈ C0([0, T ];H1(Ω)) such that φ = 0 on Γ−.
For any t ∈ [0, T ], we define the Hyperbolic-Ritz Projection (HRP) of φ(t) as the unique
φh ∈ Vh solution of∫

Ω
(φh + u · ∇φh)(vh + δhu · ∇vh)dx =

∫
Ω

(φ(t) + u · ∇φ(t))(vh + δhu · ∇vh)dx, ∀vh ∈ Vh.

where δh > 0. We note φh = Πhyp
h φ(t).

The projection Πhyp
h satisfies the following properties :

Proposition 2.21.
Let φ ∈ C0([0, T ];H2(Ω)), φ = 0 on Γ−, and assume that δh > 0 is a constant. There
exists a constant C > 0 depending only on the reference triangle K̂ such that for all
t ∈ [0, T ],

‖φ(t)−Πhyp
h φ(t)‖2L2(Ω) + δ2

h‖u · ∇(φ(t)−Πhyp
h φ(t))‖2L2(Ω)

≤ C
∑
K∈Th

εK(δh,u)L2
K(φ(t)), (2.32)

where we note

εK(δh,u) =
(

1
δh

+ δh +
δh‖u‖2L∞(K)

λ2
2,K

+
δ3
h‖u‖2L∞(K)
λ2

2,K

)
.

Remark 2.22. (i) Observe that φh in the Definition 2.20 is in the fact the finite element
solution of a steady advection-reaction equation, namely∫

Ω
(φh + u · ∇φh)(vh + δhu · ∇vh)dx =

∫
Ω
f(vh + δhu · ∇vh)dx, ∀vh ∈ Vh,

where f = φ+ u · ∇φ.

(ii) If we choose δh =
max
K∈Th

λ2,K

2‖u‖L∞(Ω)
as in Theorem 2.14 and Theorem 2.18 and we assume

that φ depends only on one spatial variable and that the mesh is taken in the right
direction, then the estimate (2.32) reduces to

‖φ(t)−Πhyp
h φ(t)‖2L2(Ω) + δ2

h‖u · ∇(φ(t)−Πhyp
h φ(t))‖2L2(Ω) ≤ C(max

K∈Th
λ2,K)3 + h.o.t,

where C > 0 is a constant depending on φ but independent of the mesh size and the
mesh aspect ratio.
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(iii) In the isotropic settings, that is to say when λ1,K ' λ2,K ' hK , then the estimate
(2.32) reduces to

‖φ(t)−Πhyp
h φ(t)‖2L2(Ω) + δ2

h‖u · ∇(φ(t)−Πhyp
h φ(t))‖2L2(Ω) ≤ Ch

3|φ|2H2(Ω) + h.o.t.,

where C > 0 is independent of the mesh size but may depend on the aspect ratio.

(iv) Since u is independent of the time, under some smoothness hypothesis on φ, one can
show that the time derivative and Πhyp

h commute, that is to say

∂

∂t
Πhyp
h φ(t) = Πhyp

h

∂φ(t)
∂t

, ∀t ∈ [0, T ]. (2.33)

Indeed, assuming that we can differentiate inside the integrals, one derive immedi-
ately that

∫
Ω

(
∂

∂t
φ(t) + u · ∇

(
∂

∂t
φ(t)

))
(vh + δhu · ∇vh)dx

=
∫

Ω

(
∂

∂t
Πhyp
h φ(t) + u · ∇

(
∂

∂t
Πhyp
h φ(t)

))
(vh + δhu · ∇vh)dx, ∀vh ∈ Vh,

which, by definition, implies that ∂

∂t
Πhyp
h φ(t) = Πhyp

h

∂φ(t)
∂t

.

Proof of Proposition 2.21. Let us note e(t) = φ(t) − Πhyp
h φ(t). Reproducing again the

strategy of the proof of Proposition 2.12 (that is to say using the fact that u is divergence
free, the fact that δh is constant and the boundary conditions on Γ−), one can derive that

‖e(t)‖2L2(Ω) + δh

∫
Ω

(e(t) + u · ∇e(t))2 dx + δ2
h‖u · ∇e(t)‖2L2(Ω)

≤
∫

Ω
(e(t) + u · ∇e(t)) ((e(t) + δhe(t)) + δhu · ∇(e(t) + δhe(t))) dx.

Since by definition, the HRP satisfies the orthogonality property∫
Ω

(e(t) + u · ∇e(t)) (vh + δhu · ∇vh)dx = 0, ∀vh ∈ Vh,

one can subtract any test function from the right hand side. Thus, subtracting vh = rh(φ)−
Πhyp
h φ, where rh stands for the Lagrange interpolant, and noting eh(t) = φ(t)−rh(φ(t)),we

obtain

‖e(t)‖2L2(Ω) + δh

∫
Ω

(e(t) + u · ∇e(t))2 dx + δ2
h‖u · ∇e(t)‖2L2(Ω)

≤
∫

Ω
(e(t) + u · ∇e(t)) ((eh(t) + δheh(t)) + δhu · ∇(eh(t) + δheh(t))) dx.

Using the Young’s inequality, we get

‖e(t)‖2L2(Ω) + δh

∫
Ω

(e(t) + u · ∇e(t))2 dx + δ2
h‖u · ∇e(t)‖2L2(Ω)

≤ δh
2

∫
Ω

(e(t) + u · ∇e(t))2 dx +
( 4
δh

+ 2δh
)
‖φ− rh(φ)‖2L2(Ω)

+ 4(δh + δ3
h‖u · ∇(φ− rh(φ))‖2L2(Ω).
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Thus, we have

‖e(t)‖2L2(Ω) + δ2
h‖u · ∇e(t)‖2L2(Ω)

≤
∑
K∈Th

(( 4
δh

+ 2δh
)
‖φ− rh(φ)‖2L2(K) + 4(δh‖u‖2L∞(K) + δ3

h)‖u‖2L∞(K))‖∇(φ− rh(φ))‖2K
)
.

We conclude by applying the anisotropic interpolation error estimate (1.2) for the Lagrange
interpolant.

Remark 2.23.
Observe that to obtain

‖e(t)‖2L2(Ω) + δh

∫
Ω

(e(t) + u · ∇e(t))2 dx + δ2
h‖u · ∇e(t)‖2L2(Ω)

≤
∫

Ω
(e(t) + u · ∇e(t)) ((e(t) + δhe(t)) + δhu · ∇(e(t) + δhe(t))) dx.

we choose v = e(t) + δhe(t) in the bilinear form∫
Ω

(e(t) + u · ∇e(t)) (v + δhu · ∇v)dx.

by mimicking what was done for time dependent problems where we choose v = e(t) +

δh
∂e(t)
∂t

. Note that here it is not necessary since it is a steady problem and we can just
choose v = e(t) and get an estimate in the stronger norm

‖ · ‖2L2(Ω) + δh‖u · ∇(·)‖2L2(Ω).

And therefore, multiplication by δh yields an estimate in the norm

‖ · ‖2L2(Ω) + δ2
h‖u · ∇(·)‖2L2(Ω).

Note that the two estimates (the one obtained in Proposition 2.21 and the one that would
be obtained following the remark above) will differ only in their higher order terms. We
choose to act as in the proposed proof since it yields automatically an estimate in the
norm needed for the time dependent problem .

We are now proving our second (and complete) a priori error estimate. The proof is
rather technical, and a reader interested in practical purposes can go directly to the next
paragraph where the a posteriori error analysis is performed.

Theorem 2.24 (An a priori error estimate for the transport equation with anisotropic
finite elements and the Crank-Nicolson scheme in the case of a transport velocity field
independent of the time).
Assume that u is not identically zero on Ω. Let ϕ be the solution of (2.18) and let (ϕnh)Nn=0
be the solution of (2.20) where δh is defined by

δh =
max
K∈Th

λ2,K

2‖u‖L∞(Ω)
.

Let
τ = max

n=0,...,N−1
τn+1.
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Assume that ϕ ∈ H3(0, T ;H2(Ω)) Finally, let note the numerical error e(tn) = ϕ(tn)−ϕnh.
Then, there exists C > 0 depending only on the reference triangle K̂, in particular C is
independent of T , Ω, u, ϕ,N , the mesh size, aspect ratio and the time step, such that

‖e(T )‖2L2(Ω) + δ2
h‖u · ∇e(T )‖2L2(Ω) ≤ C

(
‖e(0)‖2L2(Ω) + δ2

h‖u · ∇e(0)‖2L2(Ω)

+
∑
K∈Th

(1 + δ2
h)εK(δh,u)( sup

t∈(0,T )
L2
K(ϕ) + sup

t∈(0,T )
L2
K(∂tϕ))

+
∑
K∈Th

(T + δ2
h + Tδ2

h)εK(δh,u)
(
T sup
t∈(0,T )

L2
K(ϕ) +

∫ T

0
L2
K(∂tϕ) + L2

K(∂ttϕ)dt
)

+(Tτ4 + δhτ
4 + δ2

hτ
2)
∫ T

0
|∂tttϕ|2dt

)
, (2.34)

where we define ε(δh,u) as in Proposition 2.21.

Proof. As in the proof of Theorem 2.18, we decompose the numerical error as

e(tn) = ϕ(tn)− ϕnh = (ϕ(tn)−Πhyp
h ϕ(tn)) + (Πhyp

h ϕ(tn)− ϕnh) = eh(tn) + enh,

and then we separate the demonstration by estimating each part of

‖e(T )‖2L2(Ω) + δ2
h‖u · ∇e(T )‖2L2(Ω)

≤ 2‖eh(T )‖2L2(Ω) + 2δ2
h‖u · ∇eh(T )‖2L2(Ω)︸ ︷︷ ︸
I1

+ 2‖eNh ‖2L2(Ω) + 2δ2
h‖u · ∇eNh ‖2L2(Ω)︸ ︷︷ ︸
I2

.

As before, we will denote by Ĉ any positive constant depending only on the reference
triangle K̂ and by C̃ any positive constant which is a pure real number (in particular in-
dependent of any datum of the problem, the mesh or any discretization parameter), which
values may change from line to line.

Part I. Estimate for I1.
Using the error estimate for the HRP of Proposition 2.21, we immediately obtain that

I1 ≤ Ĉ
∑
K∈Th

εK(δh,u) sup
t∈(0,T )

L2
K(ϕ(t)).

Part II. Estimate for I2.
Observe that, from the numerical scheme (2.20), we can write an error equation

∫
Ω

(
en+1
h − enh
τn+1 + u · ∇

(
en+1
h + enh

2

))
(vh + δhu · ∇vh) dx

=
∫

Ω
(rn+1

1 + rn+1
2 ) (vh + δhu · ∇vh) dx, ∀vh ∈ Vh, (2.35)

with
rn+1

1 = ϕ(tn+1)− ϕ(tn)
τn+1 − ∂tϕ(tn+1) + ∂tϕ(tn)

2 , (2.36)

and
rn+1

2 = (Πhyp
h − Id)ϕ(tn+1)− ϕ(tn)

τn+1 − (Πhyp
h − Id)ϕ(tn+1) + ϕ(tn)

2 , (2.37)
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where Id denotes the identity operator. Observe that rn+1
1 is a quantity involving only

the time discretization and rn+1
2 only the space discretization. Choosing in (2.35) the test

function as

vh = en+1
h + enh

2 + δh
en+1
h − enh
τn+1 ,

we obtain similarly to the part II of Theorem 2.18

1
2τn+1

(
‖en+1
h ‖2L2(Ω) − ‖e

n
h‖2L2(Ω)

)
+ δ2

h

2τn+1

(
‖u · ∇en+1

h ‖2L2(Ω) − ‖u · ∇e
n
h‖2L2(Ω)

)
+ δh

∫
Ω

(
en+1
h − enh
τn+1 + u · ∇

(
en+1
h + enh

2

))2

dx

≤
∫

Ω
(rn+1

1 + rn+1
2 )

(
en+1
h + enh

2 + δ2
hu · ∇

(
en+1
h − enh
τn+1

))
dx

+ δh

∫
Ω

(rn+1
1 + rn+1

2 )
(
en+1
h − enh
τn+1 + u · ∇

(
en+1
h + enh

2

))
dx.

Before going further in the proof, we do a technical comment. If we keep on following the
demonstration of Theorem 2.18, setting rn+1

1 + rn+1
2 = rn+1, due the specific form of rn+1

2
which contains no information on the time discretization, we will derive a priori bound
containing some terms which are not bounded with respect to the time. Namely, the factor
δh
τn+1 cannot be eliminated everywhere in the estimate and no uniform a priori error bound
can be obtained without imposing some restrictions as δh ≤ τn+1, ∀n = 0, 1, ..., N − 1.
Therefore, we apply a finer treatment to the right hand side of the last inequality.

Using the Young’s inequality, we can get rid of the second term in the right hand side
and we have

1
2τn+1

(
‖en+1
h ‖2L2(Ω) − ‖e

n
h‖2L2(Ω)

)
+ δ2

h

2τn+1

(
‖u · ∇en+1

h ‖2L2(Ω) − ‖u · ∇e
n
h‖2L2(Ω)

)
≤
∫

Ω
(rn+1

1 + rn+1
2 )

(
en+1
h + enh

2 + δ2
hu · ∇

(
en+1
h − enh
τn+1

))
dx

+ δh(‖rn+1
1 ‖2L2(Ω) + ‖rn+1

2 ‖2L2(Ω))

≤
∫

Ω
(rn+1

1 + rn+1
2 )e

n+1
h + enh

2 dx +
∫

Ω
rn+1

1 δ2
hu · ∇

(
en+1
h − enh
τn+1

)
dx

+ δh(‖rn+1
1 ‖2L2(Ω) + ‖rn+1

2 ‖2L2(Ω)) +
∫

Ω
rn+1

2 δ2
hu · ∇

(
en+1
h − enh
τn+1

)
dx.

Let m be any integer between 1 and N . Multiplying by 2τn+1 and summing up over
n = 0, 1, ...,m− 1 yields

(
‖emh ‖2L2(Ω) − ‖e

0
h‖2L2(Ω)

)
+ δ2

h

(
‖u · ∇emh ‖2L2(Ω) − ‖u · ∇e

0
h‖2L2(Ω)

)
≤ C̃

(
m−1∑
n=0

τn+1
∫

Ω
(rn+1

1 + rn+1
2 )e

n+1
h + enh

2 dx + δ2
h

m−1∑
n=0

∫
Ω
rn+1

1 u · ∇
(
en+1
h − enh
τn+1

)
dx

δh

m−1∑
n=0

τn+1(‖rn+1
1 ‖2L2(Ω) + ‖rn+1

2 ‖2L2(Ω)) + δ2
h

m−1∑
n=0

∫
Ω
rn+1

2 u · ∇(en+1
h − enh)dx

)
.
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We now proceed to a discrete integration by parts on the last sum, and we obtain

(
‖emh ‖2L2(Ω) − ‖e

0
h‖2L2(Ω)

)
+ δ2

h

(
‖u · ∇emh ‖2L2(Ω) − ‖u · ∇e

0
h‖2L2(Ω)

)
≤ C̃

(
m−1∑
n=0

τn+1
∫

Ω
(rn+1

1 + rn+1
2 )e

n+1
h + enh

2 dx + δ2
h

m−1∑
n=0

∫
Ω
rn+1

1 u · ∇
(
en+1
h − enh
τn+1

)
dx

δh

m−1∑
n=0

τn+1(‖rn+1
1 ‖2L2(Ω) + ‖rn+1

2 ‖2L2(Ω)) + δ2
h

m−1∑
n=1

τn+1
∫

Ω

rn+1
2 − rn2
τn+1 u · ∇enhdx

+δ2
h

∫
Ω

(rm2 u · ∇emh − r1
2u · ∇e0

h)dx
)
.

Finally, using several times the Young’s inequality, it holds for all 1 ≤ m ≤ N

‖emh ‖2L2(Ω) + δ2
h‖u · ∇emh ‖2L2(Ω)

≤ C̃
(
‖e0
h‖2L2(Ω) + δ2

h‖u · ∇e0
h‖2L2(Ω) + δ2

h sup
0≤n≤N−1

‖rn2 ‖2L2(Ω)

m−1∑
n=0

(Tτn+1 + δhτ
n+1 + T

δ2
h

τn+1 )‖rn+1
1 ‖2L2(Ω)

+(Tτn+1 + δhτ
n+1)‖rn+1

2 ‖2L2(Ω) +
m−1∑
n=1

Tδ2
h(τn+1 + τn)

∥∥∥∥∥ rn+1
2 − rn2
τn+1 + τn

∥∥∥∥∥
2

L2(Ω)


+

m∑
n=0

τn + τn+1

4T
(
‖enh‖2L2(Ω) + δ2

h‖u · ∇enh‖2L2(Ω)

)
,

where we set τ0 = τN+1 = 0. Applying the discrete Gronwall’s Lemma A.5 and observing

that τ
n + τn+1

4T < 1, we finally obtain

‖eNh ‖2L2(Ω) + δ2
h‖u · ∇eNh ‖2L2(Ω)

≤ C̃
(
‖e0
h‖2L2(Ω) + δ2

h‖u · ∇e0
h‖2L2(Ω) + δ2

h sup
0≤n≤N−1

‖rn2 ‖2L2(Ω)

N−1∑
n=0

(Tτn+1 + δhτ
n+1 + T

δ2
h

τn+1 )‖rn+1
1 ‖2L2(Ω)

+(Tτn+1 + δhτ
n+1)‖rn+1

2 ‖2L2(Ω) +
N−1∑
n=1

Tδ2
h(τn+1 + τn)

∥∥∥∥∥ rn+1
2 − rn2
τn+1 + τn

∥∥∥∥∥
2

L2(Ω)

 .

Therefore, it remains to estimate ‖rn+1
1 ‖2L2(Ω), ‖r

n+1
2 ‖2L2(Ω),

∥∥∥∥∥ rn+1
2 − rn2
τn+1 + τn

∥∥∥∥∥
2

L2(Ω)
and the ini-

tial error e0
h to conclude. Estimate for rn+1

1 is straightforward using Taylor expansion or
integration and reads

‖rn+1
1 ‖2L2(Ω) ≤ (τn+1)3

∫ tn+1

tn

∥∥∥∥∥∂3ϕ(t)
∂t3

∥∥∥∥∥
2

dt, ∀n = 0, 1, ..., N − 1, (2.38)

79



Since Πhyp
h and the time derivative commutes, one can write

(Πhyp
h − Id)ϕ(tn+1)− ϕ(tn)

τn+1 = 1
τn+1

∫ tn+1

tn

∂

∂t
(Πhyp

h − Id)ϕ(t)dt

= 1
τn+1

∫ tn+1

tn
(Πhyp

h − Id)∂ϕ(t)
∂t

dt

≤ 1
(τn+1)1/2

(∫ tn+1

tn

(
(Πhyp

h − Id)∂ϕ(t)
∂t

)2
dt

)1/2

,

which yields using the error estimate for the HRP

‖rn+1
2 ‖2L2(Ω) ≤ Ĉ

∑
K∈Th

εK(δh,u) sup
t∈(0,T )

L2
K(ϕ) + sup

t∈(0,T )
L2
K(∂tϕ), ∀n = 0, 1, ..., N − 1,

(2.39)
and

N−1∑
n=0

τn+1‖rn+1
2 ‖2L2(Ω) ≤ Ĉ

∑
K∈Th

εK(δh,u)
(
T sup
t∈(0,T )

L2
K(ϕ) +

∫ T

0
L2
K(∂tϕ)dt

)
. (2.40)

Reproducing the same type of computations, we derive that

(Πhyp
h − Id) 1

τn+1 + τn

(
ϕ(tn+1)− ϕ(tn)

τn+1 − ϕ(tn)− ϕ(tn−1)
τn

)

≤ 1
(τn+1 + τn)1/2

∫ tn+1

tn−1

(
(Πhyp

h − Id)∂
2ϕ(t)
∂t2

)2

dt

1/2

,

and

(Πhyp
h − Id)ϕ(tn+1)− ϕ(tn)

τn+1 + τn
≤ 1

(τn+1 + τn)1/2

(∫ tn+1

tn−1

(
(Πhyp

h − Id)∂ϕ(t)
∂t

)2
dt

)1/2

.

Thus we obtain the estimate

N−1∑
n=1

(τn+1 + τn)
∥∥∥∥∥ rn+1

2 − rn2
τn+1 + τn

∥∥∥∥∥
2

L2(Ω)
≤ Ĉ

∑
K∈Th

εK(δh,u)
∫ T

0
(L2

K(∂tϕ) +L2
K(∂ttϕ))dt. (2.41)

Finally, observe that e0
h = Πhyp

h ϕ(0)− ϕ0
h = Πhyp

h ϕ(0)− ϕ(0) + ϕ(0)− ϕ0
h = eh(0) + e(0).

Thus

‖e0
h‖2L2(Ω) + δ2

h‖u · ∇e0
h‖2L2(Ω)

≤ C̃
(
‖eh(0)‖2L2(Ω) + δ2

h‖u · ∇eh(0)‖2L2(Ω) + ‖e(0)‖2L2(Ω) + δ2
h‖u · ∇e(0)‖2L2(Ω)

)
≤ Ĉ

‖e(0)‖2L2(Ω) + δ2
h‖u · ∇e(0)‖2L2(Ω) +

∑
K∈Th

ε(δh,u)L2
K(ϕ(0))

 (2.42)

Combining estimate (2.38), (2.39), (2.40), (2.41) and (2.42) yields the following bound for
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I2 (written in a compact form, even if we increase it a bit)

I2 ≤ Ĉ
(
‖e(0)‖2L2(Ω) + δ2

h‖u · ∇e(0)‖2L2(Ω)

+
∑
K∈Th

(1 + δ2
h)εK(δh,u)( sup

t∈(0,T )
L2
K(ϕ) + sup

t∈(0,T )
L2
K(∂tϕ))

+
∑
K∈Th

(T + δ2
h + Tδ2

h)εK(δh,u)
(
T sup
t∈(0,T )

L2
K(ϕ) +

∫ T

0
L2
K(∂tϕ) + L2

K(∂ttϕ)dt
)

+(Tτ4 + δhτ
4 + δ2

hτ
2)
∫ T

0
|∂tttϕ|2dt

)
.

The final bound is obtained by combining estimate for I1 and I2.

Remark 2.25.
Observe that in [22], the error bound is different, in particular the fourth derivative with
respect to time of the exact solution is present, whereas here time derivatives of ϕ appears
only up to the third one. This difference can be explained by the fact that in [22], the
discrete integration by parts is applied on all the remainder rn+1 = rn+1

1 + rn+1
2 , whereas

in our proof we apply it only on the spatial term, that is to say rn+1
2 . Indeed, roughly

speaking, since rn+1
1 ' ∂tttϕ, the integration by parts will yield to a term going as ∂ttttϕ.

Remark 2.26.
Observe that to get the estimates (2.39), (2.40) and (2.41), we strongly use the fact that
Πhyp
h and ∂

∂t commute. This is true only when the transport field u does not depend on
the time. However, note that it is possible to obtain similar estimates without using this
commutativity property. Indeed, by a Taylor expansion, we can write that

ϕ(tn+1)− ϕ(tn)
τn+1 = ∂ϕ(tn)

∂t
+ τn+1

2
∂2ϕ(tn+1

∗ )
∂t2

, tn+1
∗ ∈ (tn, tn+1).

By linearity of HRP, it yields that

(Πhyp
h − Id)ϕ(tn+1)− ϕ(tn)

τn+1 = (Πhyp
h − Id)∂ϕ(tn)

∂t
+ τn+1

2 (Πhyp
h − Id)∂

2ϕ(tn+1
∗ )

∂t2
,

implying that

‖rn+1
2 ‖2L2(Ω) ≤ Ĉ

∑
K∈Th

εK(δh,u)
(

sup
t∈(0,T )

L2
K(ϕ) + τ2 sup

t∈(0,T )
L2
K(∂tϕ)

)
, ∀n = 0, 1, ..., N−1,

(2.43)
and

N−1∑
n=0

τn+1‖rn+1
2 ‖2L2(Ω) ≤ ĈT

∑
K∈Th

εK(δh,u)
(

sup
t∈(0,T )

L2
K(ϕ) + sup

t∈(0,T )
τ2L2

K(∂tϕ))
)
. (2.44)

For the same reason, we get

N−1∑
n=1

(τn+1 + τn)
∥∥∥∥∥ rn+1

2 − rn2
τn+1 + τn

∥∥∥∥∥
2

L2(Ω)
≤ ĈT

∑
K∈Th

εK(δh,u)

(
sup

t∈(0,T )
L2
K(∂tϕ) + sup

t∈(0,T )
τ2L2

K(∂ttϕ) + sup
t∈(0,T )

L2
K(∂ttϕ) + sup

t∈(0,T )
τ2L2

K(∂tttϕ)
)
. (2.45)
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A posteriori error estimate for the fully discrete approximation

We focus now on the a posteriori error analysis for the numerical method (2.20). An
a posteriori error estimate is already presented in [20] where only the spatial approxi-
mation is considered. We extend this result to the time discretization and prove an a
posteriori error estimate involving the time and space approximation. For the a posteri-
ori error analysis, the stabilization parameter δh is not constant anymore, but piecewise
constant on each triangle K. More precisely, for all K ∈ Th, if u is not identically zero on
K, then we set

δh|K = λ2,K
2 ‖u‖L∞(K)

, (2.46)

else δh|K is set to zero. This choice is advocated in [20]. Note the analogy with the
isotropic settings where δh|K is chosen as

δh|K = hK
2 ‖u‖L∞(K)

,

As it is introduced in Section 2.1, we define a piecewise quadratic reconstruction of
the numerical solution in order to recover an O(τ2) a posteriori error estimate. We shall
use the following notations to simplify the future computations

ϕ
n+1/2
h = ϕn+1

h + ϕnh
2 , ∂ϕn+1

h = ϕn+1
h − ϕnh
τn+1 , n = 0, 1, ..., N − 1, (2.47)

∂2ϕn+1
h =

ϕn+1
h − ϕnh
τn+1 −

ϕnh − ϕ
n−1
h

τn

τn+1 + τn

2

, n ≥ 1.

Definition 2.27 (Fully discrete piecewise numerical reconstruction).
Let (ϕnh)Nn=0 be the solution of (2.20), we define the piecewise numerical reconstruction
ϕhτ ∈ Vh × C0[0, T ] by

ϕhτ (x, t) = ϕ
n+1/2
h (x) + (t− tn+1/2)∂ϕn+1

h (x) + 1
2(t− tn)(t− tn+1)∂2ϕn+1

h (x), (2.48)

for (x, t) ∈ Ω×
[
tn, tn+1] , n ≥ 1, and by

ϕhτ (x, t) = ϕ
1/2
h (x) + (t− t1/2)∂ϕ1

h(x), (2.49)

for (x, t) ∈ Ω×
[
t0, t1

]
.

Observe that (2.48) is a Newton polynomial; for every n ≥ 1, ϕhτ is the unique
quadratic polynomial in time that equals ϕn−1

h , ϕnh, ϕ
n+1
h , at time tn−1, tn, tn+1, respec-

tively. We show that the piecewise reconstruction introduced in the Definition 2.27 yields
to an order two local time error indicator. The latter is contained in the next proposition
and is derived by plugging ϕhτ into the equation and by computing the remainder.

Proposition 2.28 (A local time error indicator for the Crank-Nicolson scheme applied
to the transport equation with a velocity field independent of the time).
Let (ϕnh)Nn=0 be the solution of (2.20). Let ϕhτ be the numerical reconstruction (2.48)-(2.49)
and let 0 ≤ n ≤ N − 1. For all vh ∈ Vh and for all t ∈ (tn, tn+1), one have∫

Ω

(
∂ϕhτ
∂t

+ u · ∇ϕhτ
)

(vh + δhu · ∇vh)dx =
∫

Ω
θn(vh + δhu · ∇vh)dx.

82



where

θn =


(
τn

2 (t− tn+1/2) + 1
2(t− tn)(t− tn+1)

)
u · ∇∂2ϕn+1

h , n ≥ 1,

(t− t1/2)u · ∇∂ϕ1
h, n = 0.

(2.50)

Proof. We reproduce the steps and the computations made in the proof of Proposition 2.4
for the ODE case. First, let n ≥ 1. We have∫

Ω

(
∂ϕhτ
∂t

+ u · ∇ϕhτ
)

(vh + δhu · ∇vh)dx

=
∫

Ω

(
∂ϕn+1

h + (t− tn+1/2)∂2ϕn+1
h + u · ∇

(
ϕ
n+1/2
h + (t− tn+1/2)∂ϕn+1

h

))
(vh+δhu·∇vh)dx

+
∫

Ω

(1
2(t− tn)(t− tn+1)u · ∇∂2ϕn+1

h

)
(vh + δhu · ∇vh)dx

=
∫

Ω

(
∂ϕn+1

h + u · ∇ϕn+1/2
h

)
(vh + δhu · ∇vh)dx

+
∫

Ω
(t− tn+1/2)(∂2ϕn+1

h + u · ∇∂ϕn+1
h )(vh + δhu · ∇vh)dx

+
∫

Ω

(1
2(t− tn)(t− tn+1)u · ∇∂2ϕn+1

h

)
(vh + δhu · ∇vh)dx.

Thanks to the numerical scheme (2.20), the first term in the last inequality is zero and it
remains∫

Ω

(
∂ϕhτ
∂t

+ u · ∇ϕhτ
)

(vh + δhu · ∇vh)dx

=
∫

Ω
(t− tn+1/2)(∂2ϕn+1

h + u · ∂ϕn+1
h )(vh + δhu · ∇vh)dx

+
∫

Ω

(1
2(t− tn)(t− tn+1)u · ∇∂2ϕn+1

h

)
(vh + δhu · ∇vh)dx. (2.51)

Proceeding as in Proposition 2.4, we look for an equation for ∂2ϕn+1
h by taking the differ-

ence between (2.20) at step n+ 1 and n, and we obtain
∫

Ω

(
∂2ϕn+1

h + u · ∇
(
ϕn+1
h − ϕnh
τn+1 − τn

))
(vh + δhu · ∇vh)dx = 0,

which yields after the same transformation as the one in (2.15)∫
Ω

(∂2ϕn+1
h + u · ∇∂ϕn+1

h )(vh + δhu · ∇vh)dx =
∫

Ω

τn

2 u · ∇∂2ϕn+1
h (vh + δhu · ∇vh)dx.

Plugging the last relation in (2.51), we obtain the desired expression for θn.
For n = 0, we obtain by a straightforward computation that∫
Ω

(
∂ϕhτ
∂t

+ u · ∇ϕhτ
)

(vh + δhu · ∇vh)dx

=
∫

Ω

(
∂ϕ1

h + u · ∇
(
ϕ

1/2
h + (t− t1/2)∂ϕ1

h

))
(vh + δhu · ∇vh)dx

=
∫

Ω
(t− t1/2)u · ∇∂ϕ1

h(vh + δhu · ∇vh)dx.
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We are now ready to prove our a posteriori error estimate.

Theorem 2.29 (An a posteriori error estimate for the transport equation with anisotropic
finite elements and the Crank-Nicolson scheme in the case of a transport velocity field
independent of the time).
Assume that ϕ ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) where ϕ is the solution of (2.18). Let
δh be given by (2.46), (ϕnh)Nn=0 be the solution of (2.20) and consider ϕhτ the numerical
reconstruction given in Definition 2.27. Setting e = ϕ−ϕhτ , there exists C > 0 independent
of T,Ω,u, ϕ, the mesh size and aspect ratio and the time step such that

‖e(T )‖2L2(Ω)

≤ C
(
‖e(0)‖2L2(Ω) +

N−1∑
n=0

∑
K∈Th

∫ tn+1

tn

(∥∥∥∥∂ϕhτ∂t
+ u · ∇ϕhτ

∥∥∥∥
L2(K)

ωK(e) + cn ‖θn‖2L2(K)

)
dt

)

+ C
N−1∑
n=0

∑
K∈Th

∫ tn+1

tn
c−1
n ω2

K(e)dt, (2.52)

where ωK is the anisotropic gradient norm defined by (1.4) , θn is given by (2.50) and we

note cn =
{
τ1, n = 0,
T − τ1, n ≥ 1.

Proof. In the following, we denote by C any positive constant, which may depend only on
the reference triangle and may change from line to line. In particular, C is independent
of T , Ω,u, ϕ, the mesh size, aspect ratio and the time step. Let t ∈

(
tn, tn+1), n ≥ 1. As

before, one can prove that ∫
Ω

(u · ∇e)edx ≥ 0.

Therefore, it holds, since e = ϕ− ϕhτ and ϕ satisfies (2.18)

1
2
d

dt

∫
Ω
e2dx ≤

∫
Ω

(
∂e

∂t
e+ (u · ∇e)e

)
dx = −

∫
Ω

(
∂ϕhτ
∂t

+ u · ∇ϕhτ
)
edx.

By subtracting any vh + δhu · ∇vh and using Proposition 2.28, we have finally

1
2
d

dt

∫
Ω
e2dx ≤

∫
Ω

(
∂e

∂t
e+ (u · ∇e)e

)
dx = −

∫
Ω

(
∂ϕhτ
∂t

+ u · ∇ϕhτ
)
edx

= −
∫

Ω

(
∂ϕhτ
∂t

+ u · ∇ϕhτ
)

(e− vh − δhu · ∇vh) dx−
∫

Ω
θn (vh + δhu · ∇vh) dx. (2.53)

The triangle and Cauchy-Schwarz inequalities imply then

1
2
d

dt

∫
Ω
e2dx

≤
∑
K∈Th

((∥∥∥∥∂ϕhτ∂t
+ u · ∇ϕhτ

∥∥∥∥
L2(K)

+ ‖θ‖L2(K)

)(
‖e− vh‖L2(K) +

∥∥∥δh|Ku · ∇vh
∥∥∥
L2(K)

)

+ ‖θn‖L2(K) ‖e‖L2(K)

)
.

Choosing vh = Rh(e), one can prove that

‖e−Rh(e)‖L2(K) +
∥∥∥δh|Ku · ∇Rh(e)

∥∥∥
L2 (K)

≤ CωK(e), (2.54)
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Indeed, by triangle inequality, we have

‖e−Rh(e)‖L2(K) +
∥∥∥δh|Ku · ∇Rh(e)

∥∥∥
L2(K)

≤ ‖e−Rh(e)‖L2(K) +
∥∥∥δh|Ku · ∇(e−Rh(e))

∥∥∥
L2 (K)

+
∥∥∥δh|Ku · ∇e

∥∥∥
L2(K)

.

The anisotropic Clément’s interpolation error estimate (see Proposition 1.2) and the defi-
nition of δh|K imply

‖e−Rh(e)‖L2(K) ≤ CωK(e),

∥∥∥δh|Ku · ∇(e−Rh(e))
∥∥∥
L2 (K)

≤ δh|K‖u‖L∞(K) ‖∇(e−Rh(e))‖L2(K)

≤ λ2,K
2 ‖∇(e−Rh(e))‖L2(K) ≤ CωK(e),

and ∥∥∥δh|Ku · ∇e
∥∥∥
L2(K)

≤ δh|K‖u‖L∞(K) ‖∇e‖L2(K) ≤ Cλ2,K ‖∇e‖L2(K) .

Hence

‖e−Rh(e)‖L2(K) +
∥∥∥δh|Ku · ∇Rhe

∥∥∥
L2(K)

≤ C(ωK(e) + λ2,K‖∇e‖L2(K)) ≤ C(ωK(e) + λ2,K‖∇e‖L2(∆K)).

Now we recall that r1,K , r2,K form an orthonormal basis and that in our anisotropic
framework ∇e = (∇e · r1,K)r1,K + (∇e · r2,K)r2,K and

‖∇e · ri,K‖2L2(∆K) = rTi,KGK(e)ri,K , i = 1, 2.

It yields

λ2
2,K‖∇e‖2L2(∆K) = λ2

2,K(rT1,KGK(e)r1,K + rT2,KGK(e)r2,K)

≤ λ2
1,KrT1,KGK(e)r1,K + λ2

2,KrT2,KGK(e)r2,K = ω2
K(e)

that implies (2.54).
Thus, we have

1
2
d

dt
‖e‖2L2(Ω) ≤ C

∑
K∈Th

(αK + θK)ωK(e) +
∑
K∈Th

θK ‖e‖L2(K) ,

where we have set

αK =
∥∥∥∥∂ϕhτ∂t

+ u · ∇ϕhτ
∥∥∥∥
L2(K)

and θK = ‖θn‖L2(K) ,

Using the discrete Cauchy-Schwarz, we obtain

1
2
d

dt
‖e‖2L2(Ω) ≤ C

∑
K∈Th

(αK + θK)ωK(e) +

 ∑
K∈Th

θ2
K

1/2

‖e‖L2(Ω) .

Using Theorem A.3 between time t1 and T yields

‖e(T )‖2L2(Ω) ≤ C

∥∥∥e(t1)
∥∥∥2

L2(Ω)
+
N−1∑
n=1

∑
K∈Th

∫ tn+1

tn

(
(αK + θK)ωK(e) + (T − t1)θ2

K

)
dt

 .
(2.55)
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In order to estimate
∥∥e(t1)

∥∥2
L2(Ω, we proceed in the same manner to obtain

∥∥∥e(t1)
∥∥∥2

L2(Ω)
≤ C

(
‖e(0)‖2L2(Ω) +

∑
K∈Th

∫ t1

0

(
(αK + θK)ωK(e) + τ1θK

)
dt

)
. (2.56)

Plugging (2.56) into (2.55) we obtain

‖e(T )‖2L2(Ω) ≤ C
(
‖e(0)‖2L2(Ω)

+
N−1∑
n=0

∑
K∈Th

∫ tn+1

tn

((∥∥∥∥∂ϕhτ∂t
+ uex · ∇ϕhτ

∥∥∥∥
L2(K)

+ ‖θn‖L2(K)

)
ωK(e) + cn ‖θn‖2L2(K)

))
dt.

(2.57)

Finally, thanks to Young’s inequality, it holds for all n

∫ tn+1

tn
‖θn‖L2(K) ωK(e)dt ≤ C

(
cn

∫ tn+1

tn
‖θn‖2L2(K) dt+ c−1

n

∫ tn+1

tn
ω2
K(e)dt

)
,

which yields the desired estimate by applying it to (2.57).

Remark 2.30.
The estimate of Theorem 2.29 is not a standard a posteriori estimate since the exact
solution ϕ is contained in ωK(e). However, as advocated in Chapter 1, the Zienkiewicz-
Zhu post-processing can be applied in order to approximate GK(e) (see Remark 1.12). To
obtain later on a computable error indicator, we will then replace GK(e) = GK(ϕ− ϕhτ )
by GK(ΠZZ

h ϕhτ − ϕhτ ).
Note that for the transport equation, the use of post-processsing to recover a com-

putable estimate is not a particularity due to the choice of working with anisotropic finite
elements. Indeed, in the isotropic setting, the estimate (2.52) reads

‖e(T )‖2L2(Ω) ≤

C

(
‖e(0)‖2L2(Ω)+

N−1∑
n=0

∑
K∈Th

∫ tn+1

tn

(
hK

∥∥∥∥∂ϕhτ∂t
+ u · ∇ϕhτ

∥∥∥∥
L2(K)

‖∇e‖L2(∆K) + cn ‖θn‖2L2(K)

)
dt

)

+ C
N−1∑
n=0

∑
K∈Th

∫ tn+1

tn
c−1
n h2

K‖∇e‖2L2(∆K)dt.

Since it is not possible to rely the H1 norm of e with its L2 norm, we cannot obtain a
computable bound without post-processing.

Remark 2.31.
The following a posteriori error estimate can also be proved. Starting as in the proof of
Theorem 2.29, we have

1
2
d

dt
‖e‖2L2(Ω) ≤

∫
Ω

(
∂e

∂t
e+ (β · ∇e)e

)
dx =

∫
Ω

(
∂ϕhτ
∂t

+ u · ∇ϕhτ
)
edx.

Cauchy−Schwarz inequality implies that

1
2
d

dt
‖e‖2L2(Ω) ≤

∥∥∥∥∂ϕhτ∂t
+ u · ∇ϕhτ

∥∥∥∥
L2(Ω)

‖e‖L2(Ω),
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which yields

‖e(T )‖L2(Ω) ≤ ‖e(0)‖L2(Ω) +
∫ T

0

∥∥∥∥∂ϕhτ∂t
+ u · ∇ϕhτ

∥∥∥∥
L2(Ω)

dt. (2.58)

The estimate (2.58) was already pointed out in [36] and is valid even for non-smooth solu-
tions. However, numerical experiments have shown that (2.58) is suboptimal for smooth
solutions. A theoretical explanation can be put forward. Let us assume that we only con-
sider the space approximation ϕh. Observe that, since ϕ satisfies the transport equation,
one has ∫ T

0

∥∥∥∥∂ϕh∂t + u · ∇ϕh
∥∥∥∥
L2(Ω)

dt =
∫ T

0

∥∥∥∥∂(ϕ− ϕh)
∂t

+ u · ∇(ϕ− ϕh)
∥∥∥∥
L2(Ω)

dt.

We recognize the semi-norm for which the following a priori error estimate (written in the
isotropic setting for the semi-discrete approximation, see Remark 2.15 for the anisotropic
version) holds ∫ T

0

∥∥∥∥∂(ϕ− ϕh)
∂t

+ u · ∇(ϕ− ϕh)
∥∥∥∥2

L2(Ω)
dt ≤ C

δh
h3,

where C > 0 is independent of h but may depends on the aspect ratio. If δh ' h as it
advocated by the a priori analysis, then the later estimate reduces to Ch2.

Thus the a posteriori error indicator given by

∫ T

0

∥∥∥∥∂(ϕ− ϕhτ )
∂t

+ u · ∇(ϕ− ϕhτ )
∥∥∥∥
L2(Ω)

dt '
(∫ T

0

∥∥∥∥∂(ϕ− ϕhτ )
∂t

+ u · ∇(ϕ− ϕhτ )
∥∥∥∥2

L2(Ω)
dt

)1/2

is only a first order estimate in general.

Remark 2.32. (i) We have not been able to prove a lower bound corresponding to
estimate (2.52), this being already difficult for parabolic problems with anisotropic
finite elements [72]. For the transport equation, such a bound seems to be hardly
achievable, even with isotropic finite elements.

(ii) Note the particular form of the local time error estimator ‖θn‖2L2(K) that behaves as

u · ∇ d2

dt2
ϕ = −d

3ϕ

dt3
,

that is to say the second derivative with respect to the time of the equation. There-
fore, at least from the time discretization point of view, the a posteriori error estimate
of Theorem 2.29 goes as

τ2d
3ϕ

dt3

that is the same as the a priori error estimate (2.34), that was one of our first goal.

(iii) Under some assumptions, one can show that the term

N−1∑
n=0

∑
K∈Th

∫ tn+1

tn
c−1
n ω2

K(e)dt

is of higher order. Indeed, let us assume that (we recall that e = ϕ− ϕhτ ):
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(1) The following a priori error estimate holds

sup
t∈(0,T )

‖∇e‖L2(Ω) ≤ C(max
K∈Th

λ2,K + τ2),

C > 0 being independent of the mesh size and aspect ratio and the time step.
It can be check numerically that this estimate is valid for smooth cases and
when the mesh is aligned with the exact solution.

(2) The numerical error is equidistributing in both directions r1,K , r2,K that is to
say

λ2
1,K(rT1,KGK(e)r1,K) = λ2

2,K(rT2,KGK(e)r2,K).

We can give a geometrical interpretation of the second hypothesis. Indeed, it can be
written as

λ2
1,K
λ2

2,K
=
rT2,KGK(e)r2,K

rT1,KGK(e)r1,K
,

meaning that if we build a mesh such that the second hypothesis holds, then the
aspect ratio of the element K is the ratio between the numerical error in direction
r1,K and r2,K . For instance, if the numerical error is nearly the same in both
directions, then λ1,K ' λ2,K and the mesh is an isotropic mesh. Otherwise it is
anisotropic. This is precisely why the goal of the adaptive algorithm presented
later on will be to fulfill (2): equidistributing the error indicator in both directions
makes the mesh "naturally" anisotropic if the numerical error is large in one direction
compared to the other.

Now, thanks to second hypothesis and the definition of GK(e), one proves that∑
K∈Th

ω2
K(e) ≤ (max

K∈Th
λ2,K)2 ∑

K∈Th

‖∇e‖2L2(∆K) ≤ C(max
K∈Th

λ2,K)2‖∇e‖2L2(Ω),

where C is independent of the mesh geometry due to the hypothesis on the patch
∆K presented in Chapter 1, Section 1.1. Therefore, one have

N−1∑
n=0

∑
K∈Th

∫ tn+1

tn
c−1
n ω2

K(e)dt ≤ C
N−1∑
n=0

c−1
n

∫ tn+1

tn
(max
K∈Th

λ2,K)2‖∇e‖2L2(Ω)dt

≤ C(max
K∈Th

λ2,K)2((max
K∈Th

λ2,K)2 + τ4)
N−1∑
n=0

c−1
n

∫ tn+1

tn
dt

≤ C(max
K∈Th

λ2,K)2((max
K∈Th

λ2,K)2 + τ4)
(

1
τ1 τ

1 +
N−1∑
n=1

τn+1

T − τ1

)

≤ C(max
K∈Th

λ2,K)2((max
K∈Th

λ2,K)2 + τ4)
(

1 + T − τ1

T − τ1

)
≤ C((max

K∈Th
λ2,K)4 + τ8).

2.2.2 A priori and a posteriori error estimates in the case of transient
transport velocity

We are now carrying our attention to the case where u depends on the time. Given
u ∈ C1

(
Ω× [0, T ]

)
a free divergence velocity field, we are interested in finding the solution
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ϕ : Ω× (0, T ] −→ R of the transport problem

∂ϕ

∂t
+ u · ∇ϕ = 0, in Ω× (0, T ),

ϕ = 0, on Γ− × (0, T ),

ϕ(·, 0) = ϕ0,

(2.59)

The transport velocity field u is still a divergence free vector field, but the difference with
the previous section is that it can now depend on the time variable too. Observe that
in this case, the inflow boundary Γ−(t) = {x ∈ ∂Ω : u(x, t) · n(x) < 0} is now moving
in time. That implies in practice that the finite elements spaces used to discretize the
problem should evolved in time to take in account the moving inflow boundary condition.

To keep the analysis below simple, we assume that Γ− does not depend on the time.
That means that we allow that for any x ∈ ∂Ω the quantity u(x, t) · n(x) varies in
time, but its sign is constant. Otherwise, difficulties can arise in the proof of the error
estimates, since test functions will depends on the time. Precisely, for the semi-discrete
approximation in space, moving boundary conditions are not an issue since it is sufficient
to define a continuous family of meshes Th(t) such that Γ(t)− is the union of edges lying on
∂Ω and a continuous family of finite elements spaces Vh(t) , that are the sets of piecewise
linear continuous functions on Th(t), with zero value on Γ(t)− and to look for a semi-
discrete solution ϕh(t) ∈ Vh(t), for all t ∈ [0, T ]. Then all the proofs are formally the same
than the ones presented below, taking care that when we interpolate a function φ(t) into
a finite elements space (for instance taking its Lagrange interpolant) we do it with the
interpolant defined on Vh(t).

Unfortunately, when dealing with the fully discrete approximation, that is to say ap-
proximation in space and in time, the numerical scheme is not well defined anymore since
it is natural to look for ϕn+1

h ∈ Vh(tn+1) (as for the test function) while ϕnh belongs to
Vh(tn), that can be a priori different subspaces. Moreover, we cannot easily determine (see
for instance the proof of the Proposition 2.38 below) the sign of quantities of the type

∫
Ω

u(tn+1/2) · ∇
(
ϕn+1
h + ϕnh

2

)
ϕn+1
h + ϕnh

2 dx

since there is no reason that

ϕn+1
h + ϕnh

2 ∈ Vh(tn+1/2),

that is to say we do not know if ϕn+1
h +ϕnh is zero in the points of ∂Ω where u(tn+1/2)·n < 0.

Considering now that the inflow boundary condition does not depend on the time
(that is to say in practice that the finite elements space Vh is fixed in time), the numerical
method (2.20) is changed as follows: let N be a non-negative integer and consider a
partition 0 = t0 < t1 < t2 < ... < tN = T . We denote by τn+1 = tn+1 − tn the time step,
n = 0, 1, 2, ..., N − 1. Starting from ϕ0

h = rh(ϕ0), for n = 0, 1, 2, ..., N − 1, we are looking
for ϕn+1

h ∈ Vh such that

∫
Ω

(
ϕn+1
h − ϕnh
τn+1 + u(tn+1/2) · ∇

(
ϕn+1
h + ϕnh

2

))
(vh + δhu(tn+1/2) · ∇vh)dx = 0, ∀vh ∈ Vh,

(2.60)
where we recall that we note

tn+1/2 = tn+1 + tn

2 .
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The goal is now to extend the stability and error estimates obtained in the previous section
for the case of a steady transport velocity field to the case of a transient transport velocity
field. We still inspire ourself from the techniques presented in [22], but note that in [22]
only constant in time velocity field were considered. Therefore, the results below can be
seen as a generalization.

Stability and a priori error estimates for the semi-discrete approximation in space

Before starting the a priori analysis of the fully discretized scheme (2.60), we first fo-
cus on the semi-discrete approximation and generalize the stability estimate (Propositon
2.12) and the semi-discrete a priori error estimate (Theorem 2.14) for a time dependent
u. Considering only the space approximation and the method reads (observe that it is
substantially the same as (2.19)) : find ϕh : Ω× [0, T ] −→ R, ϕh(·, t) ∈ Vh for all t ∈ [0, T ]
such that ϕh(·, 0) = rh(ϕ0) and for all t ∈ (0, T ]∫

Ω

(
∂ϕh
∂t

+ u(t) · ∇ϕh
)

(vh + δhu(t) · ∇vh)dx = 0,∀vh ∈ Vh. (2.61)

Assuming that δh is a constant, on can prove that the method (2.61) is stable in the norm
‖ · ‖2L2(Ω) + δ2

h‖u(t) · ∇(·)‖2L2(Ω).

Proposition 2.33 (Stability of the SUPG method applied to the transient transport
equation with a transient transport field).
Assume that δh > 0 is constant. Let ϕh be the solution of (2.61). Assume moreover that
Th satisfies the anisotropic quasi-uniformity condition: there exists c > 0, independent of
the mesh geometry, in particular independent of the mesh size and the mesh aspect ratio
such that

max
K∈Th

λ2,K ≤ cλ2,K , ∀K ∈ Th. (2.62)

Then there exists a constant C > 0 independent of the mesh size and aspect ratio such
that

‖ϕh(t)‖2L2(Ω) + δ2
h‖u(t) · ∇ϕh(t)‖2L2(Ω)

≤ exp
(
CTδ2

h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))
(maxK∈Th λ2,K)2

)(
‖ϕh(0)‖2L2(Ω) + δ2

h‖u(0) · ∇ϕh(0)‖2L2(Ω)

)
.

(2.63)

Remark 2.34. (i) Observe that if u does not depend on the time, then the estimate
(2.63) reduces to the estimate (2.21) already derived in the case of a steady transport
velocity field.

(ii) If we assume that u is not identically zero and, imitating what is done for the case
of steady transport velocity field, we choose δh as

δh = maxK∈Th λ2,K
2‖u‖L∞(Ω×(0,T ))

then the estimate (2.63) becomes

‖ϕh(t)‖2L2(Ω) + δ2
h‖u(t) · ∇ϕh(t)‖2L2(Ω)

≤ exp
(
CT‖∂tu‖L∞(Ω×(0,T ))
‖u‖L∞(Ω×(0,T ))

)(
‖ϕh(0)‖2L2(Ω) + δ2

h‖u(0) · ∇ϕh(0)‖2L2(Ω)

)
,

that is to say the numerical solution ϕh is uniformly bounded with respect to h for
any time, and then the stability of the method is guaranteed.

90



Proof. We denote by C any generic positive constant independent of the mesh size and
aspect ratio, which value may change from line to line. We proceed as already done several
times. We choose as test function vh = ϕh + δh

∂ϕh
∂t

in (2.61) and get

1
2
d

dt
‖ϕh(t)‖2L2(Ω) + δ2

h

∫
Ω

(u(t) · ∇ϕh(t))
(

u(t) · ∇∂ϕh
∂t

)
dx

+
∫

Ω
(u(t) · ∇ϕh)ϕhdx + δ2

h

∫
Ω

(
u(t) · ∇∂ϕh

∂t

)
∂ϕh
∂t

dx

+ δh

∫
Ω

(
∂ϕh
∂t

+ u · ∇ϕh
)2
dx = 0.

As in Proposition 2.12, thanks to the free divergence property and the boundary condition,
we have that for all t∫

Ω
(u(t) · ∇ϕh)ϕhdx, δ2

h

∫
Ω

(
u(t) · ∇∂ϕh

∂t

)
∂ϕh
∂t

dx ≥ 0.

Therefore, we have

1
2
d

dt
‖ϕh(t)‖2L2(Ω) + δ2

h

∫
Ω

(u(t) · ∇ϕh(t))
(

u(t) · ∇∂ϕh
∂t

)
dx ≤ 0.

The Leibniz rule implies

1
2
d

dt
‖ϕh(t)‖2L2(Ω) + δ2

h

2
d

dt
‖u(t) · ∇ϕh(t)‖2L2(Ω) ≤ δ

2
h

∫
Ω

(u(t) · ∇ϕh(t))
(
∂u(t)
∂t
· ∇ϕh(t)

)
dx.

Cauchy-Schwarz inequality yields

d

dt
‖ϕh(t)‖2L2(Ω)+δ

2
h

d

dt
‖u(t)·∇ϕh(t)‖2L2(Ω) ≤ Cδ

2
h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))‖∇ϕh‖2L2(Ω).

We shall now use the so-called inverse inequality. In the framework of anisotropic finite
elements, it reads [83]: there exists C > 0 independent of the mesh size and aspect ratio
such that for all piecewise linear, continuous, vh∑

K∈Th

∫
K
|∇vh|2dx ≤ C

∑
K∈Th

1
λ2

2,K

∫
K
v2
hdx. (2.64)

Using the anisotropic quasi-uniformity condition (2.62), we therefore derive that

d

dt
‖ϕh(t)‖2L2(Ω) + δ2

h

d

dt
‖u(t) · ∇ϕh(t)‖2L2(Ω)

≤ C δ2
h

(maxK∈Th λ2,K)2 ‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))‖ϕh(t)‖2L2(Ω).

We conclude by using the classical Gronwall’s inequality.

Before going further, we shall prove the following lemma, that gives an estimate for
the numerical error in H1 norm. It can be considered as a kind of inverse inequality for
the numerical error. Observe that the result holds regardless if u depends on the time or
not and the choice of δh.

Lemma 2.35.
Let ϕ ∈ C0(0, T ;H2(Ω)) be the solution of (2.18) and ϕh the solution of (2.61). For every
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t ∈ [0, T ], let us note eh(t) = ϕ(t)−ϕh(t). Assume that Th satisfies the anisotropic quasi-
uniformity condition: there exists c > 0, independent of the mesh geometry, in particular
independent of the mesh size and the mesh aspect ratio such that

max
K∈Th

λ2,K ≤ cλ2,K , ∀K ∈ Th.

Then there exists a constant C > 0 depending only on the reference triangle K̂, in partic-
ular C is independent of Ω, T,u, ϕ, the mesh size and aspect ratio, such that

‖∇eh(t)‖2L2(Ω) ≤
C

(maxK∈Th λ2,K)2

 ∑
K∈Th

L2
K(ϕ(t)) + ‖ϕ(t)− ϕh(t)‖2L2(Ω)

 . (2.65)

Proof. In what follows, we denote by C any generic positive constant, which may depend
on the reference triangle only and which value may change from line to line. Triangle
inequality implies that

‖∇eh(t)‖2L2(Ω) ≤ 2‖∇(ϕ(t)− rh(ϕ(t)))‖2L2(Ω) + 2‖∇(rh(ϕ(t))− ϕh(t))‖2L2(Ω).

Observe that rh(ϕ(t)) − ϕh(t) ∈ Vh, therefore one can apply the anisotropic inverse in-
equality (2.64) and thanks to the quasi-uniformity of the mesh, one have

‖∇eh(t)‖2L2(Ω) ≤ C
(
‖∇(ϕ(t)− rh(ϕ(t)))‖2L2(Ω) + 1

(maxK∈Th λ2,K)2 ‖rh(ϕ(t))− ϕh(t)‖2L2(Ω)

)
.

Using again triangle inequality, one gets

‖∇eh(t)‖2L2(Ω) ≤ C
(
‖∇(ϕ(t)− rh(ϕ(t)))‖2L2(Ω) + 1

(maxK∈Th λ2,K)2 ‖rh(ϕ(t))− ϕ(t)‖2L2(Ω)

+ 1
(maxK∈Th λ2,K)2 ‖ϕ(t)− ϕh(t)‖2L2(Ω)

)
.

We then conclude by using the Lagrange interpolation error estimate for anisotropic
meshes (see Proposition 1.1).

We now prove the equivalent of Theorem 2.14 in the case u depends on the time.

Theorem 2.36 (An anisotropic a priori error estimate for the semi-discrete finite elements
approximation of the transport equation with a time dependent velocity field).
Assume that u is not identically zero on Ω. Let ϕ be the solution of (2.18) and ϕh the
solution of (2.61) where we define

δh =
max
K∈Th

λ2,K

2‖u‖L∞(Ω×(0,T ))
. (2.66)

Assume moreover that ϕ ∈ H1(0, T ;H2(Ω)) and let us note eh(t) = ϕ(t)−ϕh(t). Finally,
assume moreover that Th satisfies the anisotropic quasi-uniformity condition: there exists
c > 0, independent of the mesh geometry, in particular independent of the mesh size and
the mesh aspect ratio such that

max
K∈Th

λ2,K ≤ cλ2,K , ∀K ∈ Th.
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Then there exists a constant C > 0 depending only on the reference triangle K̂, in partic-
ular C is independent of Ω, T,u, ϕ, the mesh size and aspect ratio, such that

‖eh(T )‖2L2(Ω) + δ2
h‖u(T ) · ∇eh(T )‖2L2(Ω)

≤ exp
(
CTδ2

h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))
(maxK∈Th λ2,K)2

)(
‖eh(0)‖2L2(Ω) + δ2

h‖u(0) · ∇eh(0)‖2L2(Ω)

+C
∫ T

0

 ∑
K∈Th

(
1
δh

+
δh‖u‖2L∞(K×(0,T ))

λ2
2,K

+
δ2
h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))

(maxK∈Th λ2,K)2

)
L2
K(ϕ)

+
(
δh +

δ3
h‖u‖2L∞(K×(0,T ))

λ2
2,K

)
L2
K

(
∂ϕ

∂t

))
dt

)
. (2.67)

Remark 2.37. (i) As already commented for the stability, observe that the exponential
bound in the error estimate is uniformly bounded with respect to mesh size due to
the choice of δh. Also, as previously deduced for the case of non depending on time
u, the a priori error estimate of Theorem 2.36 reduces to

‖eh(T )‖2L2(Ω) ≤ Ch
3 + h.o.t.

in the isotropic setting (where C may as usual depends on the mesh aspect ratio).

(ii) If we assume that the solution only depends on one spatial variable, and we assume
moreover that the mesh is aligned with the solution, estimate (2.67) reduces to

‖eh(T )‖2L2(Ω) ≤ C(max
K∈Th

λ2,K)3 + h.o.t.

where C does not depend on the mesh aspect ratio.

Proof. By sake of clarity, we introduce the bilinear form B(v1, v2) defined by

B(v1, v2) =
∫

Ω

(
∂v1
∂t

+ u(t) · ∇v1

)
(v2 + δhu(t) · ∇v2)dx.

Observe that in this notation, the Galerkin orthogonality holds for eh(t) = ϕ(t) − ϕh(t).
It reads

B(eh(t), vh) = 0, ∀vh ∈ Vh, ∀t ∈ (0, T ]. (2.68)

In what follows, we denote by C any generic positive constant, which may depend on
the reference triangle only and which value may change from line to line. The same
computations that are done for the stability estimate in Proposition 2.33 yield that for all
t ∈ (0, T )

1
2
d

dt
‖eh(t)‖2L2(Ω) + δ2

h

2
d

dt
‖u(t) · ∇eh(t)‖2L2(Ω) + δh

∫
Ω

(
∂eh(t)
∂t

+ u(t) · ∇eh(t)
)2
dx

≤ B
(
eh(t), eh(t) + δh

∂eh(t)
∂t

)
+ δ2

h

∫
Ω

(u(t) · ∇eh(t))
(
∂u(t)
∂t
· ∇eh(t)

)
dx.

Using the Galerkin orthogonality (2.68) and the Cauchy-Schwarz inequality, we obtain

1
2
d

dt
‖eh(t)‖2L2(Ω) + δ2

h

2
d

dt
‖u(t) · ∇eh(t)‖2L2(Ω) + δh

∫
Ω

(
∂eh(t)
∂t

+ u(t) · ∇eh(t)
)2
dx

≤ B
(
eh(t), (ϕ(t)− vh) + δh

∂(ϕ(t)− vh)
∂t

)
+Cδ2

h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))‖∇eh(t)‖2L2(Ω),
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for any vh ∈ Vh. The Young’s inequality yields

1
2
d

dt
‖eh(t)‖2L2(Ω) + δ2

h

2
d

dt
‖u(t) · ∇eh(t)‖2L2(Ω) + δh

∫
Ω

(
∂eh(t)
∂t

+ u(t) · ∇eh(t)
)2
dx

≤ δh
2

∫
Ω

(
∂eh(t)
∂t

+ u(t) · ∇eh(t)
)2
dx

+ 4
2δh

(
‖ϕ(t)− vh‖2L2(Ω) + δ2

h

∥∥∥∥∂(ϕ(t)− vh)
∂t

∥∥∥∥2

L2(Ω)
+

δ2
h‖u(t) · ∇(ϕ(t)− vh)‖2L2(Ω) + δ4

h

∥∥∥∥u(t) · ∇∂(ϕ(t)− vh)
∂t

∥∥∥∥2

L2(Ω)

)
+ Cδ2

h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))‖∇eh(t)‖2L2(Ω).

Using Lemma 2.35, we can bound the last term as follows :

Cδ2
h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))‖∇eh(t)‖2L2(Ω)

≤ C
∑
K∈Th

δ2
h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))

(maxK∈Th λ2,K)2 L2
K(ϕ(t))

+ C
δ2
h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))

(maxK∈Th λ2,K)2 ‖eh(t)‖2L2(Ω).

Thus

1
2
d

dt
‖eh(t)‖2L2(Ω) + δ2

h

2
d

dt
‖u(t) · ∇eh(t)‖2L2(Ω)

≤ 4
2δh

(
‖ϕ(t)− vh‖2L2(Ω) + δ2

h

∥∥∥∥∂(ϕ(t)− vh)
∂t

∥∥∥∥2

L2(Ω)
+

δ2
h‖u(t) · ∇(ϕ(t)− vh)‖2L2(Ω) + δ4

h

∥∥∥∥u(t) · ∇∂(ϕ(t)− vh)
∂t

∥∥∥∥2

L2(Ω)

)

+ C
∑
K∈Th

δ2
h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))

(maxK∈Th λ2,K)2 L2
K(ϕ(t))

+ C
δ2
h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))

(maxK∈Th λ2,K)2 ‖eh(t)‖2L2(Ω).

Choosing vh = rh(ϕ(t)), using the commutativity between ∂

∂t
and the Lagrange interpo-

lation, and finally the anisotropic Lagrange interpolation error estimate (Proposition 1.1),
we obtain

1
2
d

dt
‖eh(t)‖2L2(Ω) + δ2

h

2
d

dt
‖u(t) · ∇eh(t)‖2L2(Ω)

≤ C
∑
K∈Th

((
1
δh

+
δh‖u‖2L∞(K)

λ2
2,K

+
δ2
h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))

(maxK∈Th λ2,K)2

)
L2
K(ϕ(t))

+
(
δh +

δ3
h‖u‖2L∞(K)
λ2

2,K

)
L2
K

(
∂ϕ

∂t
(t)
))

+ C
δ2
h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))

(maxK∈Th λ2,K)2 ‖eh(t)‖2L2(Ω).

Applying the Gronwall’s Lemma on the last relation yields the result.
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Stability and a priori error estimates for the fully discrete approximation

We now focus on the fully discrete scheme (2.60). We first establish a discrete (in
time) equivalent to the stability estimate (2.63).

Proposition 2.38 (Fully discrete stability estimate for the SUPGmethod and the Crank-Ni-
colson scheme applied to the transient transport equation with a time dependent transport
velocity field).
Let (ϕnh)Nn=0 be the solution of (2.60) where δh > 0 is constant. Assume moreover that Th
satisfies the anisotropic quasi-uniformity condition: there exists c > 0, independent of the
mesh geometry, in particular independent of the mesh size and the mesh aspect ratio such
that

max
K∈Th

λ2,K ≤ cλ2,K , ∀K ∈ Th.

Then, there exists a constant C > 0 independent of Ω, t, n, ϕ, ϕnh,u, the mesh size and
aspect ratio and the time step such that for any n > 0 we have

‖ϕnh‖2L2(Ω) + δ2
h‖u(tn) · ∇ϕnh‖2L2(Ω)

≤ exp
(

Ctnδ2
h

(maxK∈Th λ2,K)2 ‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))

)(
‖ϕ0

h‖2L2(Ω) + δ2
h‖u(0) · ∇ϕ0

h‖2L2(Ω)

)
.

(2.69)

Remark 2.39. (i) As stated before for the semi-discrete approximation, if u does not
depend on the time, then the estimate (2.69) reduces to the estimate (2.24) for a
non-depending on time velocity field.

(ii) If we assume that u is not identically zero and we choose δh as

δh = maxK∈Th λ2,K
2‖u‖L∞(Ω×(0,T ))

then the estimate (2.69) is uniformly bounded with respect to h and τ for any time.

Proof. We again denote by C any positive constant, independent of the time step, the

data of the problem or the mesh geometry. We choose vh = ϕn+1
h + ϕnh

2 + δh
ϕn+1
h − ϕnh
τn+1 in

the weak formulation (2.60). Eliminating all the positive contributions and the terms of
the form

∫
Ω

(u · ∇φ)φdx as we do in Proposition 2.33, it remains for all 0 ≤ n ≤ N − 1

1
2τn+1 ‖ϕ

n+1
h ‖2L2(Ω) −

1
2τn+1 ‖ϕ

n
h‖2L2(Ω)

+ δ2
h

2τn+1

∥∥∥u(tn+1/2) · ∇ϕn+1
h

∥∥∥2

L2(Ω)
− δ2

h

2τn+1

∥∥∥u(tn+1/2) · ∇ϕnh
∥∥∥2

L2(Ω)
≤ 0,

which yields after multiplication by 2τn+1

‖ϕn+1
h ‖2L2(Ω) − ‖ϕ

n
h‖2L2(Ω) + δ2

h

∥∥∥u(tn+1/2) · ∇ϕn+1
h

∥∥∥2

L2(Ω)
− δ2

h

∥∥∥u(tn+1/2) · ∇ϕnh
∥∥∥2

L2(Ω)
≤ 0.

Observe that the last inequality will not give a telescopic sum by adding the contribution
of each n, therefore, we first transform it in the following way

‖ϕn+1
h ‖2L2(Ω) − ‖ϕ

n
h‖2L2(Ω) + δ2

h

∥∥∥u(tn+1/2) · ∇ϕn+1
h

∥∥∥2

L2(Ω)
− δ2

h

∥∥∥u(tn−1/2) · ∇ϕnh
∥∥∥2

L2(Ω)

≤ δ2
h

∥∥∥u(tn+1/2) · ∇ϕnh
∥∥∥2

L2(Ω)
− δ2

h

∥∥∥u(tn−1/2) · ∇ϕnh
∥∥∥2

L2(Ω)
, 0 ≤ n ≤ N − 1, (2.70)
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and where tn−1/2 = tn + tn−1

2 , n = 0, 1, ..., N +1, and we take the convention that t−1 = t0

such that t−1/2 = t0. Let now 0 ≤ m ≤ N − 1. Observe that the last inequality is still not
convenient for our purpose since for n = m− 1 the term

δ2
h

∥∥∥∥∥u
(
tm + tm−1

2

)
· ∇ϕmh

∥∥∥∥∥
2

L2(Ω)

appears rather than
δ2
h ‖u (tm) · ∇ϕmh ‖

2
L2(Ω) .

We then use the following trick : let us defined the auxiliary sequences (sn)m+1
n=0 , (ξnh)m+1

n=0
by setting

ξnh = ϕnh, sn = tn, 0 ≤ n ≤ m,

ξm+1
h = ϕmh , s−1 = t−1 = t0, sm+1 = tm.

Note that we have therefore s
m+1 + sm

2 = tm. So we have then for all n from 0 up to m
that

‖ξn+1
h ‖2L2(Ω) − ‖ξ

n
h‖2L2(Ω) + δ2

h

∥∥∥u(sn+1/2) · ∇ξn+1
h

∥∥∥2

L2(Ω)
− δ2

h

∥∥∥u(sn−1/2) · ∇ξnh
∥∥∥2

L2(Ω)

≤ δ2
h

∥∥∥u(sn+1/2) · ∇ξnh
∥∥∥2

L2(Ω)
− δ2

h

∥∥∥u(sn−1/2) · ∇ξnh
∥∥∥2

L2(Ω)
. (2.71)

Observe that for n = m, (2.71) is trivially satisfied since it reduces to 0 ≤ 0. We shall use
now the following inequality to bound the right hand side :

‖f‖2L2(Ω) − ‖g‖
2
L2(Ω) =

∫
Ω
f2dx−

∫
Ω
g2dx =

∫
Ω

(f2 − g2)dx

=
∫

Ω
(f − g)(f + g)dx ≤ ‖f − g‖L2(Ω)‖f + g‖L2(Ω).

So (2.71) is equivalent to

‖ξn+1
h ‖2L2(Ω) − ‖ξ

n
h‖2L2(Ω) + δ2

h

∥∥∥u(sn+1/2) · ∇ξn+1
h

∥∥∥2

L2(Ω)
− δ2

h

∥∥∥u(sn−1/2) · ∇ξnh
∥∥∥2

L2(Ω)

≤ δ2
h

∥∥∥(u(sn+1/2) + u(sn−1/2)
)
· ∇ξnh

∥∥∥
L2(Ω)

∥∥∥(u(sn+1/2)− u(sn−1/2)
)
· ∇ξnh

∥∥∥
L2(Ω)

≤ Cδ2
h(τn+1 + τn)‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))‖∇ξnh‖2L2(Ω),

where we use the fact that for each component ui, i = 1, 2 of the velocity field

ui(sn+1/2)− ui(sn−1/2) =
∫ sn+1/2

sn−1/2

∂ui(t)
∂t

dt ≤ sup
t∈(0,T )

|∂tui(t)|
τn+1 + τn

2 , 0 ≤ n ≤ m,

where we set τ0 = τm+1 = 0. Using the anisotropic inverse inequality (2.64) and the
anisotropic quasi-uniformity condition, we finally obtain for all 0 ≤ n ≤ m

‖ξn+1
h ‖2L2(Ω) − ‖ξ

n
h‖2L2(Ω) + δ2

h‖u(sn+1/2) · ∇ξn+1
h ‖2L2(Ω) − δ

2
h‖u(sn−1/2) · ∇ξnh‖2L2(Ω)

≤ Cδ2
h(τn+1 + τn)

(maxK∈Th λ2,K)2 ‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))‖ξnh‖2L2(Ω)

≤ Cδ2
h(τn+1 + τn)

(maxK∈Th λ2,K)2 ‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))
(
‖ξnh‖2L2(Ω) + δ2

h‖u(sn−1/2) · ∇ξnh‖2L2(Ω)

)
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Now, using for instance the discrete Gronwall’s Lemma A.6, we obtain

‖ξm+1
h ‖2L2(Ω) + δ2

h‖u(sm+1/2) · ∇ξm+1
h ‖2L2(Ω)

≤ exp
(

Csm+1δ2
h

(maxK∈Th λ2,K)2 ‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))

)
(
‖ξ0
h‖2L2(Ω) + δ2

h‖u(s−1/2) · ∇ξ0
h‖2L2(Ω)

)
.

The result is then obtained by applying the definition of the auxiliary sequences.

We now state a first a priori error estimate for the numerical method (2.60). As for
the a priori error estimate (2.26) in the case of steady velocity field u, derivatives of the
semi-discrete solution ϕh(t) will appear in the bound. Therefore, we also propose after a
alternative proof using a suitable projection (see Theorem 2.51).

Theorem 2.40 (A quick a priori error estimate for the transport equation with anisotropic
finite elements and the Crank-Nicolson scheme for the case of a time dependent velocity
field).
Assume that u is not identically zero on Ω. Let ϕ be the solution of (2.18),(ϕnh)Nn=0 the
solution of (2.60) where we define

δh =
max
K∈Th

λ2,K

2‖u‖L∞(Ω×(0,T ))
. (2.72)

Assume moreover that ϕ ∈ H1(0, T ;H2(Ω)), ∂
2ϕh
∂t2

∈ L2(0, T ;H1(Ω)), ∂
3ϕh
∂t3

∈ L2(0, T ;L2(Ω))
and let us note e(tn) = ϕ(tn) − ϕnh. Finally, assume moreover that Th satisfies the
anisotropic quasi-uniformity condition: there exists c > 0, independent of the mesh ge-
ometry, in particular independent of the mesh size and the mesh aspect ratio such that

max
K∈Th

λ2,K ≤ cλ2,K , ∀K ∈ Th.

Then there exists a constant C > 0 depending only on the reference triangle K̂, in par-
ticular C is independent of Ω, tn,u, ϕ, ϕh, ϕnh, the mesh size and aspect ratio and the time
step, such that

‖e(T )‖2L2(Ω) + δ2
h‖u(T ) · ∇e(T )‖2L2(Ω)

≤ C exp
(
C
Tδ2

h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))
(maxK∈Th λ2,K)2

)(
‖eh(0)‖2L2(Ω) + δ2

h‖u(0) · ∇eh(0)‖2L2(Ω)

+
∫ T

0

 ∑
K∈Th

(
1
δh

+
δh‖u‖2L∞(K×(0,T ))

λ2
2,K

+
δ2
h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))

(maxK∈Th λ2,K)2

)
L2
K(ϕ)

+
(
δh +

δ3
h‖u‖2L∞(K×(0,T ))

λ2
2,K

)
L2
K

(
∂ϕ

∂t

))
dt

+(Tτ4 + δhτ
4 + δ2

hτ
2)

∫ T

0

∥∥∥∥∥∂3ϕh
∂t3

∥∥∥∥∥
2

L2(Ω)
dt+ ‖u‖2L∞(Ω×(0,T ))

∫ T

0

∥∥∥∥∥∇∂2ϕh
∂t2

∥∥∥∥∥
2

L2(Ω)
dt

 .
(2.73)

Proof. We proceed as in the proof of Theorem 2.18. We note by C̃ > 0 generic constants
independent of the data of the problem, the mesh size and aspect ratio and the time step
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and by Ĉ > 0 any constant depending only on the reference triangle. Let us split the
numerical e(tn) = ϕ(tn)− ϕnh as

e(tn) = ϕ(tn)− ϕh(tn) + ϕh(tn)− ϕnh = eh(tn)− enh.

We have at tN = T ,

‖e(T )‖2L2(Ω) + δ2
h‖u(T ) · ∇e(T )‖2L2(Ω)

≤ 2‖eh(T )‖2L2(Ω) + 2δ2
h‖u(T ) · ∇eh(T )‖2L2(Ω)︸ ︷︷ ︸
I1

+ 2‖eNh ‖2L2(Ω) + 2δ2
h‖u(T ) · ∇eNh ‖2L2(Ω)︸ ︷︷ ︸
I2

.

We now estimate I1 and I2 independently.

Part I. Estimate of I1.
We estimate I1 directly by using the Theorem 2.36. We have

I1 ≤ 2 exp
(
Ĉ
T δ2

h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))
(maxK∈Th λ2,K)2

)(
‖eh(0)‖2L2(Ω) + δ2

h‖u(0) · ∇eh(0)‖2L2(Ω)

+Ĉ
∫ T

0

 ∑
K∈Th

(
1
δh

+
δh‖u‖2L∞(K×(0,T ))

λ2
2,K

+
δ2
h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))

(maxK∈Th λ2,K)2

)
L2
K(ϕ)

+
(
δh +

δ3
h‖u‖2L∞(K×(0,T ))

λ2
2,K

)
L2
K

(
∂ϕ

∂t

))
dt

)
.

Part II. Estimate of I2.
Let t = tn+1/2, we have for all vh that∫

Ω

(
∂ϕh
∂t

(tn+1/2) + u(tn+1/2) · ∇ϕh(tn+1/2)
)

(vh + δhu(tn+1/2) · ∇vh)dx = 0.

We shall now plug in the previous equality the following Taylor expansion

ϕh(tn+1)− ϕh(tn)
τn+1 = ∂ϕh

∂t

(
tn+1/2

)
+ rn+1

1 (2.74)

where rn+1
1 is given by

rn+1
1 = 1

τn+1

∫ tn+1

tn

∫ t

tn+1/2

∫ s

tn+1/2

∂3ϕh
∂t3

(ξ)dξdsdt.

In particular, one have

|rn+1
1 |2 ≤ (τn+1)3

∫ tn+1

tn

∣∣∣∣∣∂3ϕh
∂t3

∣∣∣∣∣
2

dt.

Therefore, ϕh satisfies for all vh∫
Ω

(
ϕh(tn+1)− ϕh(tn)

τn+1 + u(tn+1/2) · ∇
(
ϕh(tn+1) + ϕh(tn)

2

))
(vh+δhu(tn+1/2)·∇vh)dx

=
∫

Ω
(rn+1

1 + rn+1
2 )(vh + δhu(tn+1/2) · ∇vh)dx,
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where

rn+1
2 = u(tn+1/2) · ∇

(
ϕh(tn+1) + ϕh(tn)

2 − ϕh(tn+1/2)
)
.

Noting that

ϕh(tn+1) + ϕh(tn)
2 = ϕh(tn+1/2) +

∫ tn+1

tn+1/2

∫ t

tn+1/2

∂2ϕh
∂t2

(s)dsdt+
∫ tn

tn+1/2

∫ t

tn+1/2

∂2ϕh
∂t2

(s)dsdt,

one have that

|rn+1
2 |2 ≤ ‖u‖2L∞(Ω×(0,T ))(τ

n+1)3
∫ tn+1

tn

∣∣∣∣∣∇∂2ϕh
∂t2

∣∣∣∣∣
2

dt.

Thus the error enh satisfies the following equation

∫
Ω

(
en+1
h − enh
τn+1 + u(tn+1/2) · ∇

(
en+1
h + enh

2

))
(vh + δhu(tn+1/2) · ∇vh)dx

=
∫

Ω
(rn+1

1 + rn+1
2 )(vh + δhu(tn+1/2) · ∇vh)dx.

Choosing vh = en+1
h + enh

2 + δh
en+1
h − enh
τn+1 and eliminating the terms of the form

∫
Ω(u ·

∇φ)φdx which are positive as we state before, we obtain

1
2τn+1 ‖e

n+1
h ‖2L2(Ω) −

1
2τn+1 ‖e

n
h‖2L2(Ω)

+ δ2
h

2τn+1

∥∥∥u(tn+1/2) · ∇en+1
h

∥∥∥2

L2(Ω)
− δ2

h

2τn+1

∥∥∥u(tn+1/2) · ∇enh
∥∥∥2

L2(Ω)

+ δh

∫
Ω

(
en+1
h − enh
τn+1 + u(tn+1/2) · ∇

(
en+1
h + enh

2

))2

dx

=
∫

Ω
(rn+1

1 + rn+1
2 )

(
en+1
h + enh

2 + δ2
hu(tn+1/2) · ∇

(
en+1
h − enh
τn+1

))
dx

+ δh

∫
Ω

(rn+1
1 + rn+1

2 )
(
en+1
h − enh
τn+1 + u(tn+1/2) · ∇

(
en+1
h + enh

2

))
dx.

Absorbing the last of the right hand side in the last term of the left hand side, we obtain,
after multiplication by 2τn+1

‖en+1
h ‖2L2(Ω) − ‖e

n
h‖2L2(Ω)

+ δ2
h

∥∥∥u(tn+1/2) · ∇en+1
h

∥∥∥2

L2(Ω)
− δ2

h

∥∥∥u(tn+1/2) · ∇enh
∥∥∥2

L2(Ω)

≤ 2τn+1
∫

Ω
(rn+1

1 + rn+1
2 )

(
en+1
h + enh

2 + δ2
hu(tn+1/2) · ∇

(
en+1
h − enh
τn+1

))
dx

+ δhτ
n+1‖rn+1

1 + rn+1
2 ‖2L2(Ω).

Rewriting the left side to obtain a telescopic expression, we have for all 0 ≤ n ≤ N − 1
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(with the convention that t−1/2 = t0)

‖en+1
h ‖2L2(Ω) − ‖e

n
h‖2L2(Ω)

+ δ2
h

∥∥∥u(tn+1/2) · ∇en+1
h

∥∥∥2

L2(Ω)
− δ2

h

∥∥∥u(tn−1/2) · ∇enh
∥∥∥2

L2(Ω)

≤ 2τn+1
∫

Ω
(rn+1

1 + rn+1
2 )

(
en+1
h + enh

2 + δ2
hu(tn+1/2) · ∇

(
en+1
h − enh
τn+1

))
dx

+ δhτ
n+1‖rn+1 + sn+1‖2L2(Ω) + δ2

h

∥∥∥u(tn+1/2) · ∇enh
∥∥∥2

L2(Ω)
− δ2

h

∥∥∥u(tn−1/2) · ∇enh
∥∥∥2

L2(Ω)

= τn+1
∫

Ω
(rn+1

1 + rn+1
2 )(en+1

h + enh)dx + 2δ2
h

∫
Ω

(rn+1 + sn+1)u(tn+1/2) · ∇
(
en+1
h − enh

)
dx

+ δhτ
n+1‖rn+1 + sn+1‖2L2(Ω) + δ2

h

∥∥∥u(tn+1/2) · ∇enh
∥∥∥2

L2(Ω)
− δ2

h

∥∥∥u(tn−1/2) · ∇enh
∥∥∥2

L2(Ω)

Following the idea of Proposition 2.38, we define auxiliary sequences. Since our purpose is
to get an estimate at final time, it comes down to extend the sequences tn, τn, enh, rn1 and
rn2 up to N + 1 by setting

tN+1 = tN , eN+1
h = eNh , τ

0 = 0, τN+1 = τN , rN+1
1 = rN+1

2 = 0.

Observe that the last inequality still hold for n = N + 1 since it reduces to 0 ≤ 0. Note
that, we do not set the last time step τN+1 = 0 as we did in Proposition 2.38 to avoid
division by zero later. Thanks to Young’s inequality, one may write

‖en+1
h ‖2L2(Ω) − ‖e

n
h‖2L2(Ω)

+ δ2
h

∥∥∥u(tn+1/2) · ∇en+1
h

∥∥∥2

L2(Ω)
− δ2

h

∥∥∥u(tn−1/2) · ∇enh
∥∥∥2

L2(Ω)

≤ C̃
(
Tτn+1 + δhτ

n+1 + δ2
hT

τn+1

)
‖rn+1

1 + rn+1
2 ‖2L2(Ω)

+ τn+1 + τn

4T

(
‖en+1
h ‖2L2(Ω) + δ2

h

∥∥∥u(tn+1/2) · ∇en+1
h

∥∥∥2

L2(Ω)

)
+ τn+1 + τn

2T

(
‖enh‖2L2(Ω) + δ2

h

∥∥∥u(tn−1/2) · ∇enh
∥∥∥2

L2(Ω)

)
+δ2

h

(
1 + τn+1

2T

)∥∥∥(u(tn+1/2) + u(tn−1/2)
)
· ∇enh

∥∥∥
L2(Ω)

∥∥∥(u(tn+1/2)− u(tn−1/2)
)
· ∇en

∥∥∥
L2(Ω)

.

The last term is estimated as before and we obtain finally, thanks to the inverse inequality
(2.64) and the anisotropic quasi-uniformity condition, that it holds for all 0 ≤ n ≤ N

‖en+1
h ‖2L2(Ω) − ‖e

n
h‖2L2(Ω)

+ δ2
h

∥∥∥u(tn+1/2) · ∇en+1
h

∥∥∥2

L2(Ω)
− δ2

h

∥∥∥u(tn−1/2) · ∇enh
∥∥∥2

L2(Ω)

≤ C̃
(
Tτn+1 + δhτ

n+1 + δ2
hT

τn+1

)
‖rn+1

1 + rn+1
2 ‖2L2(Ω)

+ τn+1 + τn

4T

(
‖en+1
h ‖2L2(Ω) + δ2

h

∥∥∥u(tn+1/2) · ∇en+1
h

∥∥∥2

L2(Ω)

)
+ τn+1 + τn

2T

(
‖enh‖2L2(Ω) + δ2

h

∥∥∥u(tn−1/2) · ∇enh
∥∥∥2

L2(Ω)

)
+ C̃δ2

h

(
1 + τn+1

2T

)
(τn+1 + τn)

(maxK∈Th λ2,K)2 ‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))(
‖enh‖2L2(Ω) + δ2

h‖u(tn−1/2) · ∇enh‖2L2(Ω)

)
.
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Using the discrete Gronwall’s Lemma A.6, the fact that e0
h = 0 and the definition of the

extended sequences, we obtain

‖eNh ‖2L2(Ω) + δ2
h

∥∥∥u(T ) · ∇eNh
∥∥∥2

L2(Ω)

≤ C̃ exp
(

C̃δ2
hT

(maxK∈Th λ2,K)2 ‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))

)
(
N−1∑
n=0

(
Tτn+1 + δhτ

n+1 + δ2
hT

τn+1

)
‖rn+1

1 + rn+1
2 ‖2L2(Ω)

)
.

Observe that the hypothesis needed to apply the Gronwall’s Lemma are fulfilled since
τn+1+τn

4T < 1. Note moreover that we bound

exp
(

N∑
n=0

τn+1 + τn

2T

)
, exp

(
N∑
n=0

τn+1 + τn

4T
1

1− τn+1+τn
4T

)

by exp(3/2) that we absorb in C. Using the estimate on rn+1
1 and rn+1

2 ,we finally obtain
the following estimate for I2

I2 ≤ C̃ exp
(

C̃δ2
hT

(maxK∈Th λ2,K)2 ‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))

)

(Tτ4 + δhτ
4 + δ2

hτ
2)

∫ T

0

∥∥∥∥∥∂3ϕh
∂t3

∥∥∥∥∥
2

L2(Ω)
dt+ ‖u‖2L∞(Ω×(0,T ))

∫ T

0

∥∥∥∥∥∇∂2ϕh
∂t2

∥∥∥∥∥
2

L2(Ω)
dt

 .
The theorem is then proven by combining the estimates for I1 and I2.

Remark 2.41. (i) In the isotropic settings, the above a priori error estimate reduces to

‖e(T )‖2L2(Ω) ≤ C(h3 + τ2) + h.o.t.

where C does not depend on the mesh size and the time step but may depends on
the aspect ratio. If the mesh is aligned with the solution and the solution depends
only on one variable, then the a priori error estimate reduces to

‖e(T )‖2L2(Ω) ≤ C((max
K∈Th

λ2,K)3 + τ2) + h.o.t.

where C does not depends on the aspect ratio either.

(ii) If u is independent of the time, then the exponential factor in the a above a priori
error estimate is eliminated.

(iii) Observe that if u is independent of the time, we do not recover the a priori error
estimate for a steady transport field obtained in Theorem 2.18 since the term

‖u‖2L∞(Ω×(0,T ))

∫ T

0

∥∥∥∥∥∇∂2ϕh
∂t2

∥∥∥∥∥
2

L2(Ω)
dt (2.75)

appears in the bound. This is only due to a technicality (see the proof above).
Indeed we must estimate the quantity

u(tn+1/2) · ∇
(
ϕh(tn+1) + ϕh(tn)

2 − ϕh(tn+1/2)
)
, (2.76)
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that is to say the difference between the trapezoidal rule and the midpoint rule for
squaring the integral in time. We could have made this term appear also in the
a priori error estimate of Theorem 2.18 when u is independent of the time. But
observe that in this case, the term (2.75) can be written in fact as∫ T

0

∥∥∥∥∥u · ∇∂2ϕh
∂t2

∥∥∥∥∥
2

L2(Ω)
dt,

which goes as ∂
3ϕh
∂t3

.

One can explain these technical differences by the following observation : when u is
independent of the time, approximating in time∫ tn+1

tn

∫
Ω

(
∂ϕh
∂t

+ u · ∇ϕh
)

(vh + δhu · ∇vh)dxdt = 0

by the midpoint rule (that is to say the Crank-Nicolson method in an finite differences
framework) or the trapezoidal rule yields to the same time advancing scheme. In
the proof of Theorem 2.18, we estimate the time discretized quantity I2 by seeing
in this case the Crank-Nicolson scheme as a trapezoidal rule (compared the Taylor
expansions (2.28) and (2.74) for instance). This is why the quantity (2.76) does not
come out.

A second a priori error estimate for the fully discrete approximation

We now state another a priori error estimate, trying to adapt the proof of Theorem 2.24
with a good choice for the projection. The discussion that follows is rather technical. The
reader can go directly to the Theorem 2.51, where the resulting a priori error estimate is
written in a self-contained manner, and come back later to the considerations presented
below.

The first idea that comes in mind to generalize the Definition 2.20 in the framework
of time dependent velocity field u is to define the projection of φ ∈ C0([0, T ];H1(Ω)) as
the unique φh ∈ Vh solution of∫

Ω
(φh + u(t∗) · ∇φh)(vh + δhu(t∗) · ∇vh)dx

=
∫

Ω
(φ(t) + u(t∗) · ∇φ(t)(vh + δhu(t∗) · ∇vh)dx, ∀vh ∈ Vh. (2.77)

where t, t∗ ∈ [0, T ]. We can therefore note φh = Πhyp
h,t∗φ(t). Observe that in this case, the

projection Πhyp
h,t∗ depends on the time t∗ and therefore we have in fact defined a family of

projections. The proof would now consist in estimating for every tn ϕ(tn)−Πhyp
h,tnϕ(tn) and

Πhyp
h,tnϕ(tn) − ϕnh. The proof can be driven, reproducing the one of Theorem 2.24, but at

the end quantities of the kind (Πhyp
h,tn+1 −Πhyp

h,tn)ϕ(tn) (that is to say the difference in time
between the projection taken at two different time steps) must be estimated. This can be
down, but it yields terms that converge with a lower order, unless some restrictions on the
time step and the mesh size are set, which are not observed as necessary in the numerical
experiments. In fact, it turns out that the difference (Πhyp

h,tn+1 − Πhyp
h,tn)ϕ(tn) is only O(τ),

yielding to a suboptimal final estimate, since it is expected that the Crank-Nicolson scheme
converges with a second order accuracy.

The problem that occurs with the definition of Πhyp
h,t∗ is that the projection depends

explicitly on the time t∗. To solve this issue, we introduce an iterative construction of a
projected sequence of the sequence of the solutions (ϕ(tn))Nn=0:
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Definition 2.42 (Iterative Hyperbolic Ritz Projection (IHRP)).
Let N > 0 be a integer and 0 = t0 < t1 < ... < tN = T a partition of [0, T ]. Let
φ ∈ C0(0, T,H1(Ω)). For any 0 ≤ n ≤ N , we define Πiter

h φ(tn) ∈ Vh recursively as follows.
For n = 0, we set

Πiter
h φ(t0) = rhφ(t0), (2.78)

and for every 0 ≤ n ≤ N − 1 we define Πiter
h φ(tn+1) ∈ Vh as the solution of the discrete

problem

∫
Ω

(
Πiter
h φ(tn+1)−Πiter

h φ(tn)
τn+1 + u(tn+1/2) · ∇

(
Πiter
h φ(tn+1) + Πiter

h φ(tn)
2

))
(vh + δhu(tn+1/2) · ∇vh)dx

=
∫

Ω

(
φ(tn+1)− φ(tn)

τn+1 + u(tn+1/2) · ∇
(
φ(tn+1) + φ(tn)

2

))
(vh + δhu(tn+1/2) · ∇vh)dx,

(2.79)

for all vh ∈ Vh.

Remark 2.43. (i) Assume that we build the sequence of projected solutions (Πiter
h ϕ(tn))Nn=0

where ϕ is the solution of (2.18). Observe that, contrary to the classical HRP or to
(2.77), we only know the projection of the solution at the discrete times tn. This is
not restrictive since we only need to estimate the numerical error at times tn.

(ii) Let ϕ be the solution of the transport equation. Then, there exists, for any n, a
remainder rn+1 such that

ϕ(tn+1)− ϕ(tn)
τn+1 + u(tn+1/2) · ∇

(
ϕ(tn+1) + ϕ(tn)

2

)
= rn+1.

rn+1 is in fact the consistency error of the Crank-Nicolson method (obtained by
plugging the exact solution into the numerical scheme). Roughly speaking, building
the sequence of Πiter

h ϕ(tn) consists to project this consistency error into the finite
elements space Vh at every time step.

We first prove a stability result.

Proposition 2.44 (Stability of the Iterative Hyperbolic Ritz Projection).
Let ϕ be the solution of (2.18) and (Πiter

h ϕ(tn))Nn=0 be the correspondent projected solution
constructed in Definition 2.42 for the partition 0 = t0 < t1 < ... < tN = T of [0, T ]
and δh > 0 constant. Assume moreover that Th satisfies the anisotropic quasi-uniformity
condition: there exists c > 0, independent of the mesh geometry, in particular independent
of the mesh size and the mesh aspect ratio such that

max
K∈Th

λ2,K ≤ cλ2,K , ∀K ∈ Th.

Then, there exists a constant C > 0, that may depend only on the reference triangle K̂,
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such that for all 0 < n ≤ N holds

‖Πiter
h ϕ(tn)‖2L2(Ω) + δ2

h‖u(tn) · ∇Πiter
h ϕ(tn)‖2L2(Ω)

≤ C
(
‖Πiter

h ϕ(0)‖2L2(Ω) + δ2
h‖u(t0) · ∇Πiter

h ϕ(0)‖2L2(Ω)

+
n−1∑
n=0

(tnτn+1 + δhτ
n+1 + δ2

h(τn+1 + τ))‖rn+1‖2L2(Ω)

+
n−1∑
n=1

tnδ2
h(τn+1 + τn)

∥∥∥∥∥ rn+1 − rn

τn+1 + τn

∥∥∥∥∥
2

L2(Ω)
+ δ2

h sup
0≤m≤n

‖rm‖2L2(Ω)


exp

(
Ctnδ2

h

(maxK∈Th λ2,K)2

(
‖∂tu‖2L∞(Ω×(0,T )) + ‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))

))
,

where we note

rn+1 = ϕ(tn+1)− ϕ(tn)
τn+1 + u(tn+1/2) · ∇

(
ϕ(tn+1) + ϕ(tn)

2

)
, 0 ≤ n ≤ N − 1.

Remark 2.45.
As already stated, if δh is given by

δh =
max
K∈Th

λ2,K

2‖u‖L∞(Ω×(0,T ))
.

the estimate becomes uniform with respect to the mesh size and the time step. Moreover,
if we assume that ϕ is smooth enough, then all the quantities involving rn+1 are uniformly
bounded with respect to the time step.

Proof. As we did several times, we note by C any generic positive constant independent
of the data, the mesh size and aspect ratio and the time step, which may depend only on
the reference triangle. Let 0 < M ≤ N and let us recall that

ϕ(tn+1)− ϕ(tn)
τn+1 + u(tn+1/2) · ∇

(
ϕ(tn+1) + ϕ(tn)

2

)
= rn+1.

Choosing

vh = Πiter
h ϕ(tn+1) + Πiter

h ϕ(tn)
2 + δh

Πiter
h ϕ(tn+1)−Πiter

h ϕ(tn)
τn+1

in the weak formulation (2.79) and eliminating all the terms of the form
∫

Ω(u · ∇v)vdx
thanks to the boundary condition, we obtain for all 0 ≤ n ≤M − 1

1
2τn+1 ‖Π

iter
h ϕ(tn+1)‖2L2(Ω) −

1
2τn+1 ‖Π

iter
h ϕ(tn)‖2L2(Ω)

+ δ2
h

2τn+1 ‖u(tn+1/2) · ∇Πiter
h ϕ(tn+1)‖2L2(Ω) −

δ2
h

2τn+1 ‖u(tn+1/2) · ∇Πiter
h ϕ(tn)‖2L2(Ω)

+ δh

∫
Ω

(
Πiter
h ϕ(tn+1)−Πiter

h ϕ(tn)
τn+1 + u(tn+1/2) · ∇

(
Πiter
h ϕ(tn+1) + Πiter

h ϕ(tn)
2

))2

dx

≤
∫

Ω
rn+1

(
Πiter
h ϕ(tn+1) + Πiter

h ϕ(tn)
2 + δ2

hu(tn+1/2) · ∇
(

Πiter
h ϕ(tn+1)−Πiter

h ϕ(tn)
τn+1

))
dx

+δh
∫

Ω
rn+1

(
Πiter
h ϕ(tn+1)−Πiter

h ϕ(tn)
τn+1 + u(tn+1/2) · ∇

(
Πiter
h ϕ(tn+1) + Πiter

h ϕ(tn)
2

))
dx.
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Using the Young’s inequality on the second term of the right hand side yields

1
2τn+1 ‖Π

iter
h ϕ(tn+1)‖2L2(Ω) −

1
2τn+1 ‖Π

iter
h ϕ(tn)‖2L2(Ω)

+ δ2
h

2τn+1 ‖u(tn+1/2) · ∇Πiter
h ϕ(tn+1)‖2L2(Ω) −

δ2
h

2τn+1 ‖u(tn+1/2) · ∇Πiter
h ϕ(tn)‖2L2(Ω)

+ δh
2

∫
Ω

(
Πiter
h ϕ(tn+1)−Πiter

h ϕ(tn)
τn+1 + u(tn+1/2) · ∇

(
Πiter
h ϕ(tn+1) + Πiter

h ϕ(tn)
2

))2

dx

≤
∫

Ω
rn+1

(
Πiter
h ϕ(tn+1) + Πiter

h ϕ(tn)
2 + δ2

hu(tn+1/2) · ∇
(

Πiter
h ϕ(tn+1)−Πiter

h ϕ(tn)
τn+1

))
dx

+ δh
2 ‖r

n+1‖2L2(Ω).

As for the Proposition 2.38, we multiply by 2τn+1 and setting t−1 = t0, and we transform
the left hand side to obtain a telescopic expression, such that for all 0 ≤ n ≤ M − 1 it
holds

‖Πiter
h ϕ(tn+1)‖2L2(Ω) − ‖Π

iter
h ϕ(tn)‖2L2(Ω)

+ δ2
h‖u(tn+1/2) · ∇Πiter

h ϕ(tn+1)‖2L2(Ω) − δ
2
h‖u(tn−1/2) · ∇Πiter

h ϕ(tn)‖2L2(Ω)

+τn+1δh

∫
Ω

(
Πiter
h ϕ(tn+1)−Πiter

h ϕ(tn)
τn+1 + u(tn+1/2) · ∇

(
Πiter
h ϕ(tn+1) + Πiter

h ϕ(tn)
2

))2

dx

≤ 2τn+1
∫

Ω
rn+1

(
Πiter
h ϕ(tn+1) + Πiter

h ϕ(tn)
2 + δ2

hu(tn+1/2) · ∇
(

Πiter
h ϕ(tn+1)−Πiter

h ϕ(tn)
τn+1

))
dx

+τn+1δh‖rn+1‖2L2(Ω)+δ
2
h

(
‖u(tn+1/2) · ∇Πiter

h ϕ(tn)‖2L2(Ω) − ‖u(tn−1/2) · ∇Πiter
h ϕ(tn)‖2L2(Ω)

)
.

Finally, one may write the right hand such that for all 0 ≤ n ≤M − 1

‖Πiter
h ϕ(tn+1)‖2L2(Ω) − ‖Π

iter
h ϕ(tn)‖2L2(Ω)

+ δ2
h‖u(tn+1/2) · ∇Πiter

h ϕ(tn+1)‖2L2(Ω) − δ
2
h‖u(tn−1/2) · ∇Πiter

h ϕ(tn)‖2L2(Ω)

+τn+1δh

∫
Ω

(
Πiter
h ϕ(tn+1)−Πiter

h ϕ(tn)
τn+1 + u(tn+1/2) · ∇

(
Πiter
h ϕ(tn+1) + Πiter

h ϕ(tn)
2

))2

dx

≤ τn+1
∫

Ω
rn+1

(
Πiter
h ϕ(tn+1) + Πiter

h ϕ(tn)
)
dx

+ 2δ2
h

∫
Ω
rn+1(u(tn+1/2) · ∇Πiter

h ϕ(tn+1)− u(tn−1/2) · ∇Πiter
h ϕ(tn))dx

− 2δ2
h

∫
Ω
rn+1(u(tn+1/2)− u(tn−1/2)) · ∇Πiter

h ϕ(tn)dx

+τn+1δh‖rn+1‖2L2(Ω)+δ
2
h

(
‖u(tn+1/2) · ∇Πiter

h ϕ(tn)‖2L2(Ω) − ‖u(tn−1/2) · ∇Πiter
h ϕ(tn)‖2L2(Ω)

)
.
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Eliminating the positive contribution in the left hand side, we obtain

‖Πiter
h ϕ(tn+1)‖2L2(Ω) − ‖Π

iter
h ϕ(tn)‖2L2(Ω)

+ δ2
h‖u(tn+1/2) · ∇Πiter

h ϕ(tn+1)‖2L2(Ω) − δ
2
h‖u(tn−1/2) · ∇Πiter

h ϕ(tn)‖2L2(Ω)

≤ τn+1
∫

Ω
rn+1

(
Πiter
h ϕ(tn+1) + Πiter

h ϕ(tn)
)
dx

+ 2δ2
h

∫
Ω
rn+1(u(tn+1/2) · ∇Πiter

h ϕ(tn+1)− u(tn−1/2) · ∇Πiter
h ϕ(tn))dx

− 2δ2
h

∫
Ω
rn+1(u(tn+1/2)− u(tn−1/2)) · ∇Πiter

h ϕ(tn)dx

+τn+1δh‖rn+1‖2L2(Ω)+δ
2
h

(
‖u(tn+1/2) · ∇Πiter

h ϕ(tn)‖2L2(Ω) − ‖u(tn−1/2) · ∇Πiter
h ϕ(tn)‖2L2(Ω)

)
.

Now let 0 ≤ n ≤ m ≤ M and we sum the last inequality up to m − 1 and proceed to a
discrete integration by part on the term

2δ2
h

∫
Ω
rn+1(u(tn+1/2) · ∇Πiter

h ϕ(tn+1)− u(tn−1/2) · ∇Πiter
h ϕ(tn))dx.

‖Πiter
h ϕ(tm)‖2L2(Ω) − ‖Π

iter
h ϕ(0)‖2L2(Ω)

+ δ2
h‖u(tm−1/2) · ∇Πiter

h ϕ(tm)‖2L2(Ω) − δ
2
h‖u(t−1/2) · ∇Πiter

h ϕ(0)‖2L2(Ω)

≤
m−1∑
n=0

τn+1
∫

Ω
rn+1

(
Πiter
h ϕ(tn+1) + Πiter

h ϕ(tn)
)
dx

+ 2δ2
h

m−1∑
n=1

(τn+1 + τn)
∫

Ω

rn+1 − rn

τn+1 + τn
u(tn−1/2) · ∇Πiter

h ϕ(tn)dx

+ 2δ2
h

∫
Ω
rmu(tm+1/2)) · ∇Πiter

h ϕ(tm)− r1u(t−1/2) · ∇Πiter
h ϕ(0)dx

− 2
m−1∑
n=0

δ2
h

∫
Ω
rn+1(u(tn+1/2)− u(tn−1/2)) · ∇Πiter

h ϕ(tn)dx

+
m−1∑
n=0

τn+1δh‖rn+1‖2L2(Ω)+δ
2
h

(
‖u(tn+1/2) · ∇Πiter

h ϕ(tn)‖2L2(Ω) − ‖u(tn−1/2) · ∇Πiter
h ϕ(tn)‖2L2(Ω)

)
.

We now estimate the last two terms as we did in Proposition 2.38 using the inverse
inequality (2.64), and using several times Cauchy-Schwarz and the Young’s inequality, one
can write for all 0 ≤ m ≤M (note that if M = N , we set τM+1 = τN+1 = 0)

‖Πiter
h ϕ(tm)‖2L2(Ω) + δ2

h‖u(tm−1/2) · ∇Πiter
h ϕ(tm)‖2L2(Ω)

≤ ‖Πiter
h ϕ(0)‖2L2(Ω) + δ2

h‖u(t−1/2) · ∇Πiter
h ϕ(0)‖2L2(Ω)

+ C

(
m−1∑
n=0

(tmτn+1 + δhτ
n+1 + δ2

h(τn+1 + τn))‖rn+1‖2L2(Ω)

+
m−1∑
n=1

tmδ2
h(τn+1 + τn)

∥∥∥∥∥ rn+1 − rn

τn+1 + τn

∥∥∥∥∥
2

L2(Ω)
+ δ2

h sup
0≤n≤m

‖rn‖2L2(Ω)


+

m∑
n=0

τn+1 + τn

4tm (‖Πiter
h ϕ(tn)‖2L2(Ω) + δ2

h‖u(tn−1/2) · ∇Πiter
h ϕ(tn)‖2L2(Ω))

+ C
m−1∑
n=0

δ2
h(τn+1 + τn)

(maxK∈Th λ2,K)2

(
‖∂tu‖2L∞(Ω×(0,T )) + ‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))

)
(‖Πiter

h ϕ(tn)‖2L2(Ω) + δ2
h‖u(tn−1/2) · ∇Πiter

h ϕ(tn)‖2L2(Ω)).
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We now conclude, up to have defined before auxiliary sequences as in Proposition 2.38 to
obtain a final estimate for

‖Πiter
h ϕ(tM )‖2L2(Ω) + δ2

h‖u(tM ) · ∇Πiter
h ϕ(tM )‖2L2(Ω),

by using the discrete Gronwall’s Lemma A.5. We obtain for any 0 < M ≤ N

‖Πiter
h ϕ(tM )‖2L2(Ω) + δ2

h‖u(tM ) · ∇Πiter
h ϕ(tM )‖2L2(Ω)

≤ C
(
‖Πiter

h ϕ(0)‖2L2(Ω) + δ2
h‖u(t0) · ∇Πiter

h ϕ(0)‖2L2(Ω)

+
m−1∑
n=0

(tmτn+1 + δhτ
n+1 + δ2

h(τn+1 + τ))‖rn+1‖2L2(Ω)

+
m−1∑
n=1

tmδ2
h(τn+1 + τn)

∥∥∥∥∥ rn+1 − rn

τn+1 + τn

∥∥∥∥∥
2

L2(Ω)
+ δ2

h sup
0≤n≤m

‖rn‖2L2(Ω)


exp

(
Ctmδ2

h

(maxK∈Th λ2,K)2

(
‖∂tu‖2L∞(Ω×(0,T )) + ‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))

))
,

where we use the convention that t−1/2 = t0 = 0. The final estimate is therefore straight-
forward by extending the sums in the right hand side up to N − 1.

We can now prove our last a priori error estimate. The strategy of the proof consists
in cutting the numerical error en = ϕ(tn)− ϕnh into eh(tn) = ϕ(tn)−Πiter

h ϕ(tn) and enh =
Πiter
h ϕ(tn)−ϕnh. To simplify the writing of the proof, we separate it into two propositions,

one containing the spatial approximation and the other the time approximation. The
following lemma is needed for the first proposition.

Lemma 2.46.
Let ϕ be the solution of (2.18) and (Πiter

h ϕ(tn))Nn=0 be the correspondent projected solution
constructed in Definition 2.42 for the partition 0 = t0 < t1 < ... < tN = T of [0, T ]
and δh > 0 constant. Assume moreover that Th satisfies the anisotropic quasi-uniformity
condition: there exists c > 0, independent of the mesh geometry, in particular independent
of the mesh size and the mesh aspect ratio such that

max
K∈Th

λ2,K ≤ cλ2,K , ∀K ∈ Th.

Then, there exists a constant C > 0, that may depend only on the reference triangle K̂,
such that for all 0 < n ≤ N there holds

‖∇(ϕ(tn)−Πiter
h ϕ(tn))‖2L2(Ω)

≤ C

(maxK∈Th λ2,K)2

 ∑
K∈Th

L2
K(ϕ(tn)) + ‖ϕ(tn)−Πiter

h ϕ(tn)‖2L2(Ω)

 . (2.80)

Proof. We note by C any generic positive constant which may depend only on the reference
triangle. By the triangle inequality, we have

‖∇(ϕ(tn)−Πiter
h ϕ(tn))‖2L2(Ω) ≤ 2‖∇(ϕ(tn)−rhϕ(tn))‖2L2(Ω)+2‖∇(rhϕ(tn)−Πiter

h ϕ(tn))‖2L2(Ω).

Applying the anisotropic inverse inequality (2.64) on the second term of the right hand
side and the anisotropic quasi-uniformity condition, one have

‖∇(ϕ(tn)−Πiter
h ϕ(tn))‖2L2(Ω)

≤ 2‖∇(ϕ(tn)− rhϕ(tn))‖2L2(Ω) + C

(maxK∈Th λ2,K)2 ‖rhϕ(tn)−Πiter
h ϕ(tn)‖2L2(Ω).
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Applying again the triangle inequality yields finally

‖∇(ϕ(tn)−Πiter
h ϕ(tn))‖2L2(Ω) ≤ 2‖∇(ϕ(tn)− rhϕ(tn))‖2L2(Ω)

+ C

(maxK∈Th λ2,K)2

(
‖rhϕ(tn)− ϕ(tn)‖2L2(Ω) + ‖ϕ(tn)−Πiter

h ϕ(tn)‖2L2(Ω)

)
We conclude by using the interpolation error estimate (1.2).

Proposition 2.47 (Spatial a priori error estimate through IHRP).
Assume that u is not identically zero. Let ϕ ∈ H1(0, T ;H2(Ω)) be the solution of (2.18).
Let δh be given by

δh = maxK∈Th λ2,K
2‖u‖L∞(Ω×(0,T ))

and (Πiter
h ϕ(tn))Nn=0 be the correspondent projected solution constructed in Definition 2.42

for the partition 0 = t0 < t1 < ... < tN = T of [0, T ]. Assume moreover that Th satisfies
the anisotropic quasi-uniformity condition : there exists c > 0, independent of the mesh
geometry, in particular independent of the mesh size and the mesh aspect ratio such that

max
K∈Th

λ2,K ≤ cλ2,K , ∀K ∈ Th.

Finally lets us note eh(tn) = ϕ(tn) − Πiter
h ϕ(tn), n = 0, 1, 2, ..., N . Then, there exists a

constant C > 0, that may depend only on the reference triangle K̂, such that

‖eh(T )‖2L2(Ω) + δ2
h‖u(T ) · ∇eh(T )‖2L2(Ω)

≤
(
‖eh(0)‖2L2(Ω) + δ2

h‖u(0) · ∇eh(0)‖2L2(Ω)

+CT
∑
K∈Th

(
1
δh

+
δh‖u‖2L∞(Ω×(0,T ))

λ2
2,K

)
sup

t∈(0,T )
L2
K(ϕ) +

(
δh +

δ3
h‖u‖2L∞(Ω×(0,T ))

λ2
2,K

)
sup

t∈(0,T )
L2
K

(
∂ϕ

∂t

)

+
CTδ2

h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))
(maxK∈Th λ2,K)2

∑
K∈Th

sup
t∈(0,T )

L2
K(ϕ)


exp

(
CTδ2

h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))
(maxK∈Th λ2,K)2

)
.

Remark 2.48. (i) Observe that, in the isotropic setting, the error estimate of Proposi-
tion 2.47, reduces to

‖eh(T )‖2L2(Ω) ≤ Ch
3 + h.o.t.

where C may depend on the aspect ratio but is independent of the mesh size, and
to

‖eh(T )‖2L2(Ω) ≤ C(max
K∈Th

λ2,K)3 + h.o.t.,

in the anisotropic setting when the mesh is aligned with the solution and this later
depends on one variable only (in this case C is independent of the aspect ratio).

(ii) In the case where u is independent of the time, the exponential bound can be elim-
inated, as the term

CTδ2
h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))

(maxK∈Th λ2,K)2

∑
K∈Th

sup
t∈(0,T )

L2
K(ϕ)

and we recover the "classical" spatial error estimate for the transport equation.
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(iii) As stated before, the exponential factor is uniformly bounded with respect to h due
to the choice of δh.

Proof. We note by C any generic positive constant independent of the data, the mesh size
and aspect ratio and the time step, which may depends only on the reference triangle.
The idea is to mimic in a discrete setting the proof of the semi-discrete a priori error
estimate (in space) of the Theorem 2.40. As we did several times, eliminating all the
positive contribution of the form

∫
Ω

(u · ∇v)vdx, we have

‖eh(tn+1)‖2L2(Ω) − ‖eh(tn)‖2L2(Ω)
2τn+1 +

δ2
h‖u(tn+1/2) · ∇eh(tn+1)‖2L2(Ω) − δ

2
h‖u(tn+1/2) · ∇eh(tn)‖2L2(Ω)

2τn+1

+ δh

∫
Ω

(
eh(tn+1)− eh(tn)

τn+1 + u(tn+1/2) · ∇
(
eh(tn+1) + eh(tn)

2

))2

dx

≤
∫

Ω

(
eh(tn+1)− eh(tn)

τn+1 + u(tn+1/2) · ∇
(
eh(tn+1) + eh(tn)

2

))
(w + δhu(tn+1/2) · ∇w)dx.

where we note w = eh(tn+1) + eh(tn)
2 + δh

eh(tn+1)− eh(tn)
τn+1 . Since eh(tn) = ϕ(tn) −

Πiter
h ϕ(tn), we have by construction (see (2.79)) that the following discrete Galerkin or-

thogonality holds for all n ≥ 0∫
Ω

(
eh(tn+1)− eh(tn)

τn+1 + u(tn+1/2) · ∇
(
eh(tn+1) + eh(tn)

2

))
(vh + δhu(tn+1/2) · ∇vh)dx = 0, ∀vh ∈ Vh.

Therefore, one can subtract from the right hand side of the previous inequality the test
function

wh = (rhϕ(tn+1)−Πiter
h ϕ(tn+1)) + (rhϕ(tn)−Πiter

h ϕ(tn))
2

+ δh
(rhϕ(tn+1)−Πiter

h ϕ(tn+1))− (rhϕ(tn)−Πiter
h ϕ(tn))

τn+1 .

This yields

‖eh(tn+1)‖2L2(Ω) − ‖eh(tn)‖2L2(Ω)
2τn+1 +

δ2
h‖u(tn+1/2) · ∇eh(tn+1)‖2L2(Ω) − δ

2
h‖u(tn+1/2) · ∇eh(tn)‖2L2(Ω)

2τn+1

+ δh

∫
Ω

(
eh(tn+1)− eh(tn)

τn+1 + u(tn+1/2) · ∇
(
eh(tn+1) + eh(tn)

2

))2

dx

≤
∫

Ω

(
eh(tn+1)− eh(tn)

τn+1 + u(tn+1/2) · ∇
(
eh(tn+1) + eh(tn)

2

))
(

(ϕ(tn+1)− (rhϕ(tn+1)) + (ϕ(tn)− rhϕ(tn))
2

+δh
(ϕ(tn+1)− rhϕ(tn+1))− (ϕ(tn)− rhϕ(tn))

τn+1

+δhu(tn+1/2) · ∇
(

(ϕ(tn+1)− (rhϕ(tn+1)) + (ϕ(tn)− rhϕ(tn))
2

)

+δ2
hu(tn+1/2) · ∇

(
(ϕ(tn+1)− rhϕ(tn+1))− (ϕ(tn)− rhϕ(tn))

τn+1

))
dx.

109



The Young’s inequality and the fact that the time derivative and the Lagrange interpolant
commutes yields

‖eh(tn+1)‖2L2(Ω) − ‖eh(tn)‖2L2(Ω)
2τn+1 +

δ2
h‖u(tn+1/2) · ∇eh(tn+1)‖2L2(Ω) − δ

2
h‖u(tn+1/2) · ∇eh(tn)‖2L2(Ω)

2τn+1

+ δh

∫
Ω

(
eh(tn+1)− eh(tn)

τn+1 + u(tn+1/2) · ∇
(
eh(tn+1) + eh(tn)

2

))2

dx

≤ δh
2

∫
Ω

(
eh(tn+1)− eh(tn)

τn+1 + u(tn+1/2) · ∇
(
eh(tn+1) + eh(tn)

2

))2

dx

1
δh

(
‖ϕ(tn+1)− rhϕ(tn+1)‖2L2(Ω) + ‖ϕ(tn)− rhϕ(tn)‖2L2(Ω)]

)
+ 2δh
τn+1

∫ tn+1

tn

∥∥∥∥∂ϕ∂t − rh
(
∂ϕ

∂t

)∥∥∥∥2

L2(Ω)
dt

+ δh
(
‖u(tn+1/2) · ∇(ϕ(tn+1)− rhϕ(tn+1)‖2L2(Ω) + ‖u(tn+1/2) · ∇(ϕ(tn)− rhϕ(tn)‖2L2(Ω)

)
+ 2δ3

h

τn+1

∫ tn+1

tn

∥∥∥∥u(tn+1/2) · ∇
(
∂ϕ

∂t
− rh

(
∂ϕ

∂t

))∥∥∥∥2

L2(Ω)
dt.

Therefore, using the anisotropic Lagrange error interpolation estimate (1.2) and taking
the supremum in time, we obtain that

‖eh(tn+1)‖2L2(Ω) − ‖eh(tn)‖2L2(Ω)
2τn+1

+
δ2
h‖u(tn+1/2) · ∇eh(tn+1)‖2L2(Ω) − δ

2
h‖u(tn+1/2) · ∇eh(tn)‖2L2(Ω)

2τn+1 ≤ C
∑
K∈Th

I2
K ,

where we note

I2
K =

(
1
δh

+
δh‖u‖2L∞(Ω×(0,T ))

λ2
2,K

)
sup

t∈(0,T )
L2
K(ϕ)+

(
δh +

δ3
h‖u‖2L∞(Ω×(0,T ))

λ2
2,K

)
sup

t∈(0,T )
L2
K

(
∂ϕ

∂t

)
.

Then, multiplying by 2τn+1 and writing the left hand side as telescopic term, we get for
all n ≥ 0

‖eh(tn+1)‖2L2(Ω)−‖eh(tn)‖2L2(Ω)+δ
2
h‖u(tn+1/2)·∇eh(tn+1)‖2L2(Ω)−δ

2
h‖u(tn−1/2)·∇eh(tn)‖2L2(Ω)

≤ Cτn+1 ∑
K∈Th

I2
K + δ2

h

(
‖u(tn+1/2) · ∇eh(tn)‖2L2(Ω) − ‖u(tn−1/2) · ∇eh(tn)‖2L2(Ω)

)
≤ Cτn+1 ∑

K∈Th

I2
K + δ2

h(τn+1 + τn)‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))‖∇eh(tn)‖2L2(Ω),

where as before we set t−1 = t0 and τ0 = 0. By Lemma 2.46, we can write that

‖eh(tn+1)‖2L2(Ω)−‖eh(tn)‖2L2(Ω)+δ
2
h‖u(tn+1/2)·∇eh(tn+1)‖2L2(Ω)−δ

2
h‖u(tn−1/2)·∇eh(tn)‖2L2(Ω)

≤ C

τn+1 ∑
K∈Th

I2
K +

δ2
h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))

(maxK∈Th λ2,K)2 (τn+1 + τn)
∑
K∈Th

L2
K(ϕ(tn))


+ Cδ2

h

(maxK∈Th λ2,K)2 (τn+1 + τn)‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))‖eh(tn)‖2L2(Ω).
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Up to have defined before auxiliary sequences as in Proposition 2.38, applying the discrete
Gronwall’s Lemma A.6, we derive that

‖eh(T )‖2L2(Ω) + δ2
h‖u(T ) · ∇eh(T )‖2L2(Ω)

≤

‖eh(0)‖2L2(Ω) + δ2
h‖u(0) · ∇eh(0)‖2L2(Ω) + CT

∑
K∈Th

I2
K

+
CTδ2

h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))
(maxK∈Th λ2,K)2

∑
K∈Th

sup
t∈(0,T )

L2
K(ϕ)


exp

(
CTδ2

h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))
(maxK∈Th λ2,K)2

)
,

that gives the desired estimate.

Proposition 2.49 (Temporal a priori error estimate through IHRP).
Assume that u is not identically zero. Let ϕ ∈ H3(0, T ;L2(Ω)) ∩H2(0, T ;H1(Ω)) be the
solution of (2.18). Let δh be given by

δh = maxK∈Th λ2,K
2‖u‖L∞(Ω×(0,T ))

.

Let (Πiter
h ϕ(tn))Nn=0 be the correspondent projected solution constructed in Definition 2.42

for the partition 0 = t0 < t1 < ... < tN = T of [0, T ] and (ϕnh)Nn=0 be the solution of (2.60).
Assume moreover that Th satisfies the anisotropic quasi-uniformity condition: there exists
c > 0, independent of the mesh geometry, in particular independent of the mesh size and
the mesh aspect ratio such that

max
K∈Th

λ2,K ≤ cλ2,K , ∀K ∈ Th.

Finally lets us note enh = Πiter
h ϕ(tn) − ϕnh, n = 0, 1, 2, ..., N . Then, there exists a generic

constant C > 0, independent of the mesh geometry, the mesh size and aspect ratio, the
time step, the data of the problem and the exact solution ϕ such that

‖eNh ‖2L2(Ω) + δ2
h

∥∥∥u(T ) · ∇eNh
∥∥∥2

L2(Ω)

≤ C exp
(

Cδ2
hT

(maxK∈Th λ2,K)2 ‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))

)

(Tτ4 + δhτ
4 + δ2

hτ
2)

∫ T

0

∥∥∥∥∥∂3ϕ

∂t3

∥∥∥∥∥
2

L2(Ω)
dt+ ‖u‖2L∞(Ω×(0,T ))

∫ T

0

∥∥∥∥∥∇∂2ϕ

∂t2

∥∥∥∥∥
2

L2(Ω)
dt

 . (2.81)

Proof. We note by C any generic positive constant independent of the data, the mesh size
and aspect ratio and the time step. Since ϕnh satisfies the numerical method, we have that

∫
Ω

(
en+1
h − enh
τn+1 + u(tn+1/2) · ∇

(
en+1
h + enh

2

))
(vh + δhu(tn+1/2) · ∇vh)dx

=
∫

Ω

(
ϕ(tn+1)− ϕ(tn)

τn+1 + u(tn+1/2) · ∇
(
ϕ(tn+1) + ϕ(tn)

2

))
(vh + δhu(tn+1/2) · ∇vh)dx.
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Using the fact that ϕ is the exact solution, one may write

∫
Ω

(
en+1
h − enh
τn+1 + u(tn+1/2) · ∇

(
en+1
h + enh

2

))
(vh + δhu(tn+1/2) · ∇vh)dx

=
∫

Ω

(
∂tϕ(tn+1/2) + u(tn+1/2) · ∇ϕ(tn+1/2)

)
(vh + δhu(tn+1/2) · ∇vh)dx

+
∫

Ω
(r1 + r2)(vh + δhu(tn+1/2) · ∇vh)dx

=
∫

Ω
(r1 + r2)(vh + δhu(tn+1/2) · ∇vh)dx,

where

r1 = ϕ(tn+1)− ϕ(tn)
τn+1 − ∂tϕ(tn+1/2), r2 = u(tn+1/2) · ∇

(
ϕ(tn+1) + ϕ(tn)

2 − ϕ(tn+1/2)
)
.

Observe that the following bounds holds (one may use several time the fundamental the-
orem of calculus or taylor expansion to prove them)

|r1|2 ≤ (τn+1)3
∫ tn+1

tn
|∂tttϕ|2dt, |r2|2 ≤ (τn+1)3‖u‖2L∞(Ω×(0,T ))

∫ tn+1

tn
|∇∂ttϕ|2dt.

The rest of the proof is exactly the same as the second part of Theorem 2.40. We choose

vh = en+1
h + enh

2 + δh
en+1
h − enh
τn+1

as test function, and making the same computations as we did in Theorem 2.40, we derive
that

‖eNh ‖2L2(Ω) + δ2
h

∥∥∥u(T ) · ∇eNh
∥∥∥2

L2(Ω)

≤ C exp
(

Cδ2
hT

(maxK∈Th λ2,K)2 ‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))

)
(
N−1∑
n=0

(
Tτn+1 + δhτ

n+1 + δ2
hT

τn+1

)
‖rn+1

1 + rn+1
2 ‖2L2(Ω)

)
.

We conclude by using the bounds on r1 and r2.

Remark 2.50.
Observe that the proof of the Proposition 2.49 is formally the same as the second part of
Theorem 2.40, the only difference being in the bounds of the two remainders r1, r2. Note
indeed that in the Theorem 2.40 r1 and r2 contain the semi-discrete solution ϕh(t) as in
the Proposition 2.49 they contain the exact solution ϕ.

Combining Propositions 2.47 and 2.49, we can prove the following a priori error esti-
mate.

Theorem 2.51 (A fully discrete a priori error estimate for the transport equation with
anisotropic finite elements and the Crank-Nicolson scheme in the case of a time dependent
transport velocity field).
Assume that u is not identically zero. Asumme that the solution of (2.18) ϕ ∈ H3(0, T ;H2(Ω))
and let (ϕnh)Nn=0 be the solution of (2.60). Let δh be given by

δh = maxK∈Th λ2,K
2‖u‖L∞(Ω×(0,T ))

.
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Assume moreover that Th satisfies the anisotropic quasi-uniformity condition: there exists
c > 0, independent of the mesh geometry, in particular independent of the mesh size and
the mesh aspect ratio such that

max
K∈Th

λ2,K ≤ cλ2,K , ∀K ∈ Th.

Let e(tn) = ϕ(tn) − ϕn, n = 0, 1, 2, ..., N . Then there exists a constant C > 0 which may
depend only on the reference triangle K̂, in particular which is independent of the mesh
size and aspect ratio, the time step, ϕ and the data of the problem, such that

‖e(T )‖2L2(Ω) + δ2
h‖u(T ) · ∇e(T )‖2L2(Ω)

≤ C exp
(
C
Tδ2

h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))
(maxK∈Th λ2,K)2

)(
‖eh(0)‖2L2(Ω) + δ2

h‖u(0) · ∇eh(0)‖2L2(Ω)

+T

 ∑
K∈Th

(
1
δh

+
δh‖u‖2L∞(K×(0,T ))

λ2
2,K

+
Tδ2

h‖u‖L∞(Ω×(0,T ))‖∂tu‖L∞(Ω×(0,T ))
(maxK∈Th λ2,K)2

)
sup

t∈(0,T )
L2
K(ϕ)

+
(
δh +

δ3
h‖u‖2L∞(K×(0,T ))

λ2
2,K

)
sup

t∈(0,T )
L2
K

(
∂ϕ

∂t

))

+(Tτ4 + δhτ
4 + δ2

hτ
2)

∫ T

0

∥∥∥∥∥∂3ϕ

∂t3

∥∥∥∥∥
2

L2(Ω)
dt+ ‖u‖2L∞(Ω×(0,T ))

∫ T

0

∥∥∥∥∥∇∂2ϕ

∂t2

∥∥∥∥∥
2

L2(Ω)
dt

 .
(2.82)

Proof. The proof is straightforward, setting

e(T ) = e(tN ) = ϕ(tN )− ϕNh = ϕ(tN )−Πiter
h ϕ(tN ) + Πiter

h ϕ(tN )− ϕNh = eh(tN ) + eNh

and using the triangle inequality to write

‖e(T )‖2L2(Ω) + δ2
h‖u(T ) · ∇e(T )‖2L2(Ω)

≤ 2‖eh(T )‖2L2(Ω) + 2δ2
h‖u(T ) · ∇eh(T )‖2L2(Ω)

+ 2‖eNh ‖2L2(Ω) + 2δ2
h‖u(T ) · ∇eNh ‖2L2(Ω).

We then apply the Proposition 2.47 to bound the first line of the right hand side and the
Proposition 2.49 for the second one.

Remark 2.52.
We briefly make some final comments on the IHRP (Definition 2.42).

(i) The use of the IHRP to prove the final a priori error estimate can be trivially adapted
to the case of a non depending in time u. Moreover, the technique can be adapted to
the case of other PDEs with time variable coefficients (such as parabolic equations).

(ii) Note that the proof of Theorem 2.51 is quite easy and direct, and formally the same
of the Theorem 2.40.

(iii) The main difference between Theorem 2.40 and Theorem 2.51 is that in the first
one, we cut the error as

e(t) = ϕ(tn)− ϕh(tn) + ϕh(tn)− ϕnh

rather in the second we use Πiter
h ϕ(tn) instead. Roughly speaking, in Theorem 2.40

we first project ϕ into Vh through the semi-discrete approximation in space, and then
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we apply the time discretization to ϕh. In Theorem 2.51, we somewhere proceed in
the other direction, first applying the time discretization to ϕ (see the contruction of
the IHRP), and projecting this discrete equation in time into Vh (in fact, as already
commented, projecting the consistency error).

(iv) As already explained, if we use the classical HRP, rather than the IHRP, then since
u depends on the time, then we have to take in account the difference

Πhyp
h,t2 −Πhyp

h,t1 , t1 6= t2

in the estimate, yielding terms going as |t1− t2|, which are then only of order one in
time. So the idea behing the IHRP is that rather than we keep a time derivative to
estimate (formally the time derivative of Πhyp

h,t ), we include this derivative into the
projection by putting the discrete derivative

ϕ(tn+1)− ϕ(tn)
τn+1

in the right hand side of (2.79).

A posteriori error estimate for the fully discrete approximation

We now present an a posteriori error analysis for the method (2.60). In this framework,
the stabilization parameter is not kept constant and can vary in space as in time. The
scheme (2.60) is then replaced by

∫
Ω

(
ϕn+1
h − ϕnh
τn+1 + u(tn+1/2) · ∇

(
ϕn+1
h + ϕnh

2

))
(vh + δh(tn+1/2)u(tn+1/2) · ∇vh)dx = 0, ∀vh ∈ Vh, (2.83)

where we define, for all t ∈ [0, T ], δh(t) by

δh|K(t) = λ2,K
2 ‖u(t)‖L∞(K)

, ∀K ∈ Th such that u(t) is not indentically zero on K,

(2.84)
and by δh|K = 0 otherwise. To derive an a posteriori error estimate for the method (2.83),
the main task consists to adapt the Proposition 2.28 to the case of a time dependent
velocity field. Then, the proof of an a posteriori upper bound for the numerical error
is straightforward reproducing the proof of Theorem 2.29. As for the steady transport
velocity case, the idea to find a good time error indicator θn is to reconstruct the numerical
solution using the Definition 2.48 and to plug this later into the PDE and to compute the
remainder. Then, using the notations introduced in (2.47) the following Proposition can
be proven

Proposition 2.53 (An error indicator for the Crank-Nicolson method applied to the
transport equation with a time dependent velocity field).
Let (ϕnh)Nn=0 be the solution of (2.83). Let ϕhτ be the numerical reconstruction (2.48)-
(2.49). For 0 ≤ n ≤ N − 1. For all vh ∈ Vh and for all t ∈ (tn, tn+1), we have

∫
Ω

(
∂ϕhτ
∂t

+ u(t) · ∇ϕhτ
)

(vh + δh(t)u(t) · ∇vh)dx

=
∫

Ω
θn(vh + δh(t)u(t) · ∇vh)dx +

∫
Ω

ζn · ∇vhdx,
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where θn is given for n ≥ 1 by

θn =
(
τn

2 (t− tn+1/2) + 1
2(t− tn)(t− tn+1)

)
u(t) · ∇∂2ϕn+1

h

+ (t− tn+1/2)(u(t)− u(tn−1/2)) · ∇
(
ϕn+1
h − ϕn−1

h

τn+1 + τn

)

+
(

u(t)− u(tn+1/2)− (t− tn+1/2)u(tn+1/2)− u(tn−1/2)
τn+1+τn/2

)
· ∇ϕn+1/2

h , (2.85)

and for n = 0 by

θ0 = (t− t1/2)u(t) · ∇∂ϕ1
h + (u(t)− u(t1/2)) · ∇ϕ1/2

h , (2.86)

and ζn is given for n ≥ 1 by

ζn =
(
∂ϕn+1

h + u(tn+1/2) · ∇ϕn+1/2
h

)
(
δh(t)u(t)− δh(tn+1/2)u(tn+1/2)− (t− tn+1/2)δh(tn+1/2)u(tn+1/2)− δh(tn−1/2)u(tn−1/2)

τn+1+τn/2

)

+(t−tn+1/2)
(
∂2ϕn+1

h + u(tn+1/2) · ∇ϕn+1/2
h − u(tn−1/2) · ∇ϕn−1/2

h
τn+1+τn/2

)
(δh(t)u(t)−δh(tn−1/2)u(tn−1/2)),

(2.87)

and for n = 0 by

ζ0 =
(
∂ϕ1

h + u(t1/2) · ∇ϕ1/2
h

)
(δh(t)u(t)− δh(t1/2)u(t1/2)). (2.88)

Remark 2.54 (Optimality of the local time error indicator). (i) Assuming that u is two
times continuously differentiable in time, then, writing u = (u1, u2), for every com-
ponent i = 1, 2, we can write by Taylor expansion

ui(t)− ui(tn−1/2) = (t− tn−1/2)∂ui(t̄)
∂t

, t̄ ∈ (tn−1/2, t) or t̄ ∈ (t, tn−1/2),

and

u(t)− u(tn+1/2)− (t− tn+1/2)u(tn+1/2)− u(tn−1/2)
τn+1+τn/2

= (t− tn+1/2)2∂
2ui(t̃)
∂t2

, t̃ ∈ (tn+1/2, t) or t̃ ∈ (t, tn+1/2).

Therefore, roughly speaking, θn (for n ≥ 1) is approximatively given by

θn ' τ2u · ∇∂ttϕhτ + τ2∂tu · ∇∂tϕhτ + τ2∂ttu · ∇ϕhτ .

For the same reason, we can approximate ζn (for n ≥ 1) by

ζn ' τ2(∂tϕhτ + u · ∇ϕhτ )∂tt(δhu) + τ2(∂ttϕhτ + u · ∇∂tϕhτ )∂t(δhu).

Then, θn is O(τ2) and, since δh ' h, ζn is O(hτ2). Thus, we conclude that θn
achieves the optimal order and that ζn is of higher order.

(ii) Note that if u is independent of the time, then ζn = 0, n = 0, 1, 2, ..., N − 1, and θn
reduces to the time error indicator given in Proposition 2.28.
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Proof. Let n ≥ 1 and t ∈ (tn, tn+1). We compute∫
Ω

(
∂ϕhτ
∂t

+ u(t) · ∇ϕhτ
)

(vh + δh(t)u(t) · ∇vh)dx = I1 + I2 + I3,

where
I1 =

∫
Ω

(∂ϕn+1
h + u(t) · ∇ϕn+1/2

h )(vh + δh(t)u(t) · ∇vh)dx,

I2 = (t− tn+1/2)
∫

Ω
(∂2ϕn+1

h + u(t) · ∇∂ϕn+1
h )(vh + δh(t)u(t) · ∇vh)dx,

I3 = 1
2(t− tn)(t− tn+1)

∫
Ω

u(t) · ∇∂2ϕn+1
h (vh + δh(t)u(t) · ∇vh)dx.

Observe that I3 is already a quantity of order two in time. To treat I1 and I2, we follow
the steps proposed in the Proposition 2.8 for ODEs with time dependent coefficients. It
consists to add zero in a suitable way to make the numerical method (2.83) appears. A
straightforward computation yields that

I1 =
∫

Ω
(∂ϕn+1

h + u(tn+1/2) · ∇ϕn+1/2
h )(vh + δh(tn+1/2)u(tn+1/2) · ∇vh)dx

+
∫

Ω
(u(t)− u(tn+1/2)) · ∇ϕn+1/2

h (vh + δh(t)u(t) · ∇vh)dx

+
∫

Ω
(∂ϕn+1

h + u(tn+1/2) · ∇ϕn+1/2
h )(δh(t)u(t)− δh(tn+1/2)u(tn+1/2)) · ∇vhdx

=
∫

Ω
(u(t)− u(tn+1/2)) · ∇ϕn+1/2

h (vh + δh(t)u(t) · ∇vh)dx

+
∫

Ω
(∂ϕn+1

h + u(tn+1/2) · ∇ϕn+1/2
h )(δh(t)u(t)− δh(tn+1/2)u(tn+1/2)) · ∇vhdx.

To treat I2, we first have to compute the difference between the method at two successive
steps, that is to say

∫
Ω

(
ϕn+1
h − ϕnh
τn+1 + u(tn+1/2) · ∇

(
ϕn+1
h + ϕnh

2

))
(vh + δh(tn+1/2)u(tn+1/2) · ∇vh)dx

−
∫

Ω

(
ϕnh − ϕ

n−1
h

τn
+ u(tn−1/2) · ∇

(
ϕnh + ϕn−1

h

2

))
(vh+δh(tn−1/2)u(tn−1/2) ·∇vh)dx = 0.

Dividing by τn+1+τn/2 and rewriting the last equality, we obtain that

∫
Ω

(
∂2ϕn+1

h + u(t) · ∇
(
ϕn+1
h − ϕn−1

h

τn+1 + τn

))
(vh + δh(t)u(t) · ∇vh)dx

= 1
τn+1+τn/2

∫
Ω

(
(u(t)− u(tn+1/2)) · ∇

(
ϕn+1
h + ϕnh

2

)
− (u(t)− u(tn−1/2)) · ∇

(
ϕnh + ϕn−1

h

2

))
(vh + δh(t)u(t) · ∇vh)dx

+ 1
τn+1+τn/2

∫
Ω

(
ϕn+1
h − ϕnh
τn+1 + u(tn+1/2) · ∇

(
ϕn+1
h + ϕnh

2

))
(δh(t)u(t)−δh(tn+1/2)u(tn+1/2))·∇vhdx

+ 1
τn+1+τn/2

∫
Ω

(
ϕnh − ϕ

n−1
h

τn+1 + u(tn−1/2) · ∇
(
ϕnh + ϕn−1

h

2

))
(δh(t)u(t)−δh(tn−1/2)u(tn−1/2))·∇vhdx

Using again the trick

ϕn+1
h − ϕnh
τn+1 + τn

= ϕn+1 − ϕnh
τn+1 − τn

2 ∂2ϕn+1
h
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we get therefore∫
Ω

(
∂2ϕn+1

h + u(t) · ∇∂ϕn+1
h

)
(vh + δh(t)u(t) · ∇vh)dx

= τn

2

∫
Ω

u(t)∇∂2ϕn+1
h (vh + δh(t)u(t) · ∇vh)dx

1
τn+1+τn/2

∫
Ω

(
(u(t)− u(tn+1/2)) · ∇

(
ϕn+1
h + ϕnh

2

)
− (u(t)− u(tn−1/2)) · ∇

(
ϕnh + ϕn−1

h

2

))
(vh + δh(t)u(t) · ∇vh)dx

+ 1
τn+1+τn/2

∫
Ω

(
ϕn+1
h − ϕnh
τn+1 + u(tn+1/2) · ∇

(
ϕn+1
h + ϕnh

2

))
(δh(t)u(t)−δh(tn+1/2)u(tn+1/2))·∇vhdx

+ 1
τn+1+τn/2

∫
Ω

(
ϕnh − ϕ

n−1
h

τn+1 + u(tn−1/2) · ∇
(
ϕnh + ϕn−1

h

2

))
(δh(t)u(t)−δh(tn−1/2)u(tn−1/2))·∇vhdx

yielding for I2 the following expression

I2 = τn

2 (t− tn+1/2)
∫

Ω
u(t)∇∂2ϕn+1

h (vh + δh(t)u(t) · ∇vh)dx

t− tn+1/2

τn+1+τn/2

∫
Ω

(
(u(t)− u(tn+1/2)) · ∇

(
ϕn+1
h + ϕnh

2

)
− (u(t)− u(tn−1/2)) · ∇

(
ϕnh + ϕn−1

h

2

))
(vh + δh(t)u(t) · ∇vh)dx

+ t− tn+1/2

τn+1+τn/2

∫
Ω

(
ϕn+1
h − ϕnh
τn+1 + u(tn+1/2) · ∇

(
ϕn+1
h + ϕnh

2

))
(δh(t)u(t)−δh(tn+1/2)u(tn+1/2))·∇vhdx

+ t− tn+1/2

τn+1+τn/2

∫
Ω

(
ϕnh − ϕ

n−1
h

τn+1 + u(tn−1/2) · ∇
(
ϕnh + ϕn−1

h

2

))
(δh(t)u(t)−δh(tn−1/2)u(tn−1/2))·∇vhdx.

Adding and subtracting the terms

t− tn+1/2

τn+1+τn/2

∫
Ω

(u(t)− u(tn−1/2)) · ∇ϕn+1/2
h (vh + δh(t)u(t) · ∇vh)dx

and

t− tn+1/2

τn+1+τn/2

∫
Ω

(
ϕn+1
h − ϕnh
τn+1 + u(tn+1/2) · ∇

(
ϕn+1
h + ϕnh

2

))
(δh(t)u(t)−δh(tn−1/2)u(tn−1/2))·∇vhdx

we get as final expression for I2

I2 = τn

2 (t− tn+1/2)
∫

Ω
u(t)∇∂2ϕn+1

h (vh + δh(t)u(t) · ∇vh)dx

+ (t− tn+1/2)
∫

Ω
(u(t)− u(tn−1/2)) · ∇

(
ϕn+1
h − ϕn−1

h

τn+1 + τn

)
(vh + δh(t)u(t) · ∇vh)dx

− (t− tn+1/2)
∫

Ω

u(tn+1/2)− u(tn−1/2)
τn+1+τn/2

· ∇ϕn+1/2
h (vh + δh(t)u(t) · ∇vh)dx

+ (t− tn+1/2)
∫

Ω
∂2ϕn+1

h (δh(t)u(t)− δh(tn−1/2)u(tn−1/2)) · ∇vhdx

+(t−tn+1/2)
∫

Ω

u(tn+1/2) · ∇ϕn+1/2
h − u(tn−1/2) · ∇ϕn−1/2

h
τn+1+τn/2

(δh(t)u(t)−δh(tn−1/2)u(tn−1/2))·∇vhdx

−(t−tn+1/2)
∫

Ω

(
∂ϕn+1

h + u(tn+1/2) · ∇ϕn+1/2
h

) δh(tn+1/2)u(tn+1/2)− δh(tn−1/2)u(tn−1/2)
τn+1+τn/2

·∇vhdx.
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Combining the expressions for I1, I2 and I3 yields the result for n ≥ 1.
Finally, for n = 0, reproducing the steps using to compute I1 here above yields that∫
Ω

(
∂ϕhτ
∂t

+ u(t) · ∇ϕhτ
)

(vh + δh(t)u(t) · ∇vh)dx

= (t−t1/2)
∫

Ω
u(t)·∇∂ϕ1

h(vh+δh(t)u(t)·∇vh)dx+
∫

Ω
(u(t)−u(t1/2))·∇ϕ1/2

h (vh+δh(t)u(t)·∇vh)dx

+
∫

Ω

(
ϕ1
h − ϕ0

h

τ1 + u(t1/2) · ∇ϕ1/2
h

)
(δh(t)u(t)− δh(t1/2)u(t1/2)) · ∇vhdx.

Theorem 2.55 (An a posteriori error estimate for the transport equation with anisotropic
finite elements and the Crank-Nicolson scheme with a time dependent velocity field).
Assume that ϕ ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) where ϕ is the solution of (2.18). Let
δh be given by (2.84), (ϕnh)Nn=0 be the solution of (2.83) and consider ϕhτ the numerical
reconstruction given in Definition 2.27. Setting e = ϕ−ϕhτ , there exists C > 0 independent
of T,Ω,u, ϕ, the mesh size and aspect ratio and the time step such that

‖e(T )‖2L2(Ω) ≤ C
(
‖e(0)‖2L2(Ω) +

N−1∑
n=0

∑
K∈Th

∫ tn+1

tn

(∥∥∥∥∂ϕhτ∂t
+ u(t) · ∇ϕhτ

∥∥∥∥
L2(K)

ωK(e)

+cn ‖θn‖2L2(K)

)
dt

)

+ C
N−1∑
n=0

∑
K∈Th

∫ tn+1

tn

(
cn‖ζn‖2L2(K) + c−1

n ω2
K(e)

)
dt, (2.89)

where ωK is the anisotropic gradient norm defined by (1.4) , θn, ζn are defined in Propo-

sition 2.53 and cn =
{
τ1, n = 0,
T − τ1, n ≥ 1.

Proof. In the following, we denote by C any positive constant, which may depend only on
the reference triangle and may change from line to line. In particular, C is independent
of T , Ω,u, ϕ, the mesh size, aspect ratio and the time step. Let t ∈

(
tn, tn+1), n ≥ 1. As

before, one can prove that ∫
Ω

(u(t) · ∇e)edx ≥ 0.

Therefore, it holds, since e = ϕ−ϕhτ and ϕ is the exact solution to the transport equation,

1
2
d

dt

∫
Ω
e2dx ≤

∫
Ω

(
∂e

∂t
e+ (u(t) · ∇e)e

)
dx = −

∫
Ω

(
∂ϕhτ
∂t

+ u(t) · ∇ϕhτ
)
edx.

By subtracting any vh + δh(t)u(t) · ∇vh and using Proposition 2.53, we have finally

1
2
d

dt

∫
Ω
e2dx ≤ −

∫
Ω

(
∂ϕhτ
∂t

+ u(t) · ∇ϕhτ
)

(e− vh − δh(t)u(t) · ∇vh)dx

−
∫

Ω
θn(vh + δh(t)u(t) · ∇vh)dx−

∫
Ω

ζn · ∇vhdx

= −
∫

Ω

(
∂ϕhτ
∂t

+ u(t) · ∇ϕhτ + θn

)
(e− vh − δh(t)u(t) · ∇vh)dx

−
∫

Ω
θnedx−

∫
Ω

ζn · ∇vhdx
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Separating the last inequality into a sum over the triangles, and using the triangle and
Cauchy-Schwarz inequalities yield

1
2
d

dt

∫
Ω
e2dx ≤

∑
K∈Th

(∥∥∥∥∂ϕhτ∂t
+ u(t) · ∇ϕhτ

∥∥∥∥
L2(K)

+ ‖θn‖L2(K)

)(
‖e− vh‖L2(K) + ‖δh|K(t)u(t) · ∇vh‖L2(K)

)
+
∑
K∈Th

‖θn‖L2(K)‖e‖L2(K) +
∑
K∈Th

‖ζn‖L2(K)‖∇vh‖L2(K).

We now choose vh = Rhe where we recall that Rh stands for the Clément’s interpolant
and we proceed as in the proof of Theorem 2.29. Using the anisotropic interpolation error
estimate (1.3), we can prove that

‖∇Rhe‖L2(K) ≤ C
ωK(e)
λ2,K

.

Indeed, we have

‖∇Rhe‖L2(K) ≤ ‖∇(e−Rhe)‖L2(K) + ‖∇e‖L2(K)

≤ CωK(e)
λ2,K

+ ‖∇e‖L2(∆K) = C
ωK(e)
λ2,K

+
λ2,K‖∇e‖L2(∆K)

λ2,K
.

Using that ∇e = (∇e · r1,K)r1,K + (∇e · r2,K)r2,K) and

‖∇e · ri,K‖2L2(∆K) = rTi,KGK(e)ri,K , i = 1, 2,

implies that
λ2,K‖∇e‖L2(∆K) ≤ ωK(e)

which yields the desired estimate. In the same manner, using the definition of δh|K(t), we
can prove that (see Theorem 2.29 when similar computations are presented)

‖e−Rhe‖L2(K) + ‖δh|K(t)u(t) · ∇Rhe‖L2(K) ≤ CωK(e).

So we obtain that

1
2
d

dt

∫
Ω
e2dx ≤ C

∑
K∈Th

(αK + θK + ζK)ωK(e) +
∑
K∈Th

θK‖e‖L2(K)

where we note

αK =
∥∥∥∥∂ϕhτ∂t

+ u(t) · ∇ϕhτ
∥∥∥∥
L2(K)

, θK = ‖θn‖L2(K), and ζK = ‖ζn‖L2(K).

The discrete Cauchy-Schwarz implies then that

1
2
d

dt

∫
Ω
e2dx ≤ C

∑
K∈Th

(αK + θK + ζK)ωK(e) +

 ∑
K∈Th

θ2
K

1/2

‖e‖L2(Ω).

Using the Theorem A.3 between t1 and T yields

‖e(T )‖2L2(Ω) ≤ C

‖e(t1)‖2L2(Ω) +
N−1∑
n=1

∑
K∈Th

∫ tn+1

tn

(
αK + θK + ζK)ωK(e) + (T − t1)θ2

K

)
dt

 .
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Proceeding in the same manner we can obtain an estimate for ‖e(t1)‖2L2(Ω)

‖e(t1)‖2L2(Ω) ≤ C

‖e(0)‖2L2(Ω) +
∑
K∈Th

∫ t1

0

(
αK + θK + ζK)ωK(e) + τ1θ2

K

)
dt

 .
Combining both estimates yields

‖e(T )‖2L2(Ω) ≤ C
(
‖e(0)‖2L2(Ω)

+
N−1∑
n=0

∑
K∈Th

∫ tn+1

tn

((∥∥∥∥∂ϕhτ∂t
+ u · ∇ϕhτ

∥∥∥∥
L2(K)

+ ‖θn‖L2(K) + ‖ζn‖L2(K)

)
ωK(e) + cn ‖θn‖2L2(K)

))
dt.

Finally, thanks to Young’s inequality, it holds for all n

∫ tn+1

tn
(‖θn‖L2(K)+‖ζn‖L2(K))ωK(e)dt ≤ C

(
cn

∫ tn+1

tn
‖θn‖2L2(K) + ‖ζn‖2L2(K)dt+ c−1

n

∫ tn+1

tn
ω2
K(e)dt

)
,

which yields the desired final estimate.

Remark 2.56. (i) As already mentioned several times, the a posteriori error estimate
(2.89) is not standard since the numerical error e is contained in the estimate. Post-
processing techniques (as the ZZ post-processing, see Remark 2.30) are used to obtain
a computable upper bound.

(ii) Observe that if u is independent of the time, then due to definitions of θn and ζn,
the a posteriori error estimate (2.89) reduces to (2.52).

(iii) As explained in Remark 2.32, the term

N−1∑
n=0

∑
K∈Th

∫ tn+1

tn
c−1
n ω2

K(e)dt

can be shown to be of higher order when the solution is smooth and aligned with
the mesh.

(iv) Observe that the term

N−1∑
n=0

∑
K∈Th

∫ tn+1

tn
cn‖ζn‖2L2(K)dt

is of higher order. If u is smooth enough, then thanks to the definition of δh and
Taylor expansion we have

‖ζn‖2L2(K) ' λ
2
2,Kτ

4.

Therefore

N−1∑
n=0

∑
K∈Th

∫ tn+1

tn
cn‖ζn‖2L2(K)dt ' (max

K∈Th
λ2,K)2τ4 ' (max

K∈Th
λ2,K)4 + τ8.
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2.2.3 Some final remarks on the proofs of the error estimates

We briefly expose some possible generalizations of the error estimates proven in this sec-
tion.

(1) We only considered the case of the homogeneous transport equation, that is to say

∂ϕ

∂t
+ u · ∇ϕ = 0.

All the stability estimates and the a priori and a posteriori error bounds can be
generalized to the non-homogeneous linear case, that is to say

∂ϕ

∂t
+ u · ∇ϕ = f,

where the right hand side f = f(x, t). We refer to [22] where the Euler, Crank-
Nicolson and BDF2 methods are considered in the framework of isotropic finite
elements and constant time steps and to [41] where the trapezoidal rule is used
with anisotropic finite elements and variable time steps (note that if f is linear with
respect to t and the velocity field does not depend on the time, the Crank-Nicolson
method and the trapezoidal rule yield to the same numerical scheme). For instance,
for the a posteriori error estimates, the quantity∥∥∥∥∂ϕhτ∂t

+ u · ∇ϕhτ
∥∥∥∥
L2(K)

are replaced by the residual∥∥∥∥f − ∂ϕhτ
∂t

+ u · ∇ϕhτ
∥∥∥∥
L2(K)

.

Note also that the local time error indicators involve a term depending on f , namely

f(x, t)− f(x, tn+1/2)− (t− tn+1/2)f(x, tn+1/2)− f(x, tn−1/2)
τn+1+τn/2

.

(2) The analysis can also be generalized to the case of non-divergence free vector fields.
In the situation, all the quantities of the type

∫
Ω

(u·φ)φdx can treated in the following
way: ∫

Ω
(u · φ)φdx =

∫
Ω

div
(

uφ
2

2

)
dx−

∫
Ω

div(u)φ
2

2 dx

=
∫
∂Ω

u · nφ
2

2 dx−
∫

Ω
div(u)φ

2

2 dx.

The first term gives a non-negative contribution as already shown several times and
the second one is passed in the right hand side and can be estimated by

‖div u‖L∞(Ω×(0,T ))‖φ‖2L2(Ω).

This last term can be controlled by a suitable version of the (discrete) Gronwall’s
Lemma and yields to a exponential factor

exp(T‖ div u‖L∞(Ω×(0,T )))

in the estimates. Note that some restrictions on the mesh size and the time step
may be made in order to guarantee the validity of the bounds for the stability and
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the a priori error estimates [22]. For instance, in the stability analysis of the Crank-
Nicolson method (the same argument can be applied to its convergence proof), we
shall control the terms (we recall that δh is kept constant for the a priori analysis)

δ2
h

∫
Ω

u(tn+1/2) · ∇
(
ϕn+1
h − ϕnh
τn+1

)
ϕn+1
h − ϕnh
τn+1 dx

= δ2
h

2

∫
Ω

div

u(tn+1/2)
(
ϕn+1
h − ϕnh
τn+1

)2
 dx−δ

2
h

2

∫
Ω

div(u(tn+1/2))
(
ϕn+1
h − ϕnh
τn+1

)2

dx.

The first term can be eliminated since it is positive, and the second one must be
passed to the right hand side. Observe then that we have to bound it by

δ2
h

(τn+1)2 ‖ div u‖L∞(Ω×(0,T ))(‖ϕn+1
h ‖2L2(Ω) + ‖ϕnh‖2L2(Ω)).

To go on in the proof, we must multiply by 2τn+1 and use the discrete Gronwall’s
Lemma A.6 to control the term

2τn+1 δ2
h

(τn+1)2 ‖ div u‖L∞(Ω×(0,T ))(‖ϕn+1
h ‖2L2(Ω) + ‖ϕnh‖2L2(Ω)).

This can be done only by imposing that

2τn+1 δ2
h

(τn+1)2 ‖ div u‖L∞(Ω×(0,T )) < 1.

This implies the two following drawback (we recall that in practice δh ' maxK∈Th λ2,K
in the anisotropic settings)

max
K∈Th

λ2,K ' min
n=0,1,...,N−1

τn+1, τ ' ‖div u‖−1
L∞(Ω×(0,T )).

The first condition can be interpreted as an inverse CFL condition, imposing that
the mesh size must be small enough to guarantee the stability of the method. The
second means that the bigger the divergence is, the smaller the time step must be
taken.

(3) Note that we always prove an upper bound for the numerical error at the final time
T . Observe however that T plays an arbitrary role in all the proofs and therefore all
the a priori and a posteriori error estimates can be adapted to control the numerical
error at any tn, n ≤ N .

(4) The numerical methods as the error estimates were presented in the two dimensional
case but the generalization to the third dimension is straighforward by considering
the 3D anisotropic framework presented in Section 1.6 of Chapter 1. The main
changes are that we must define the stabilization parameter with respect to λ3,K ,
that is to say we set

δh|K(t) = λ3,K
2‖u(t)‖L∞(K)

,

and that consequently the anisotropic quasi-uniformity condition of the mesh needed
for the a priori estimates when u depends on the time reads now

max
K∈Th

λ3,K ≤ cλ3,K .
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2.3 Numerical experiments with non-adapted meshes and
constant time steps

To test the convergence of the numerical method presented above and check the sharpness
of the a posteriori error estimates, we proceed to numerical experiments with non-adapted
meshes and constant time steps. We consider the numerical scheme (2.83) with δh given
by (2.84) .

We first define the following quantities. We denote by e(T )L2 the numerical error at
final time, computed in the L2 norm, that is to say

e(T )L2 = ‖ϕ(T )− ϕhτ (T )‖L2(Ω),

where we recall that ϕhτ is the numerical reconstruction given in Definition 2.27 and used
to derive the a posteriori error estimates presented in the previous section.

Based on the a posteriori error estimate (2.89) contained in Theorem 2.55, we define
the error indicator η by

η =
(
(ηA)2 + (ηT )2

)1/2
, (2.90)

where the anisotropic space error indicator ηA is defined by

ηA =

N−1∑
n=0

∑
K∈Th

(ηAK,n)2

1/2

, (2.91)

with the local space error indicator given by

(ηAK,n)2 =
∫ tn+1

tn

∥∥∥∥∂ϕhτ∂t
+ u(t) · ∇ϕhτ

∥∥∥∥
L2(K)

ω̃K(ΠZZ
h ϕhτ − ϕhτ )dt, (2.92)

and the time error indicator ηT is defined by

ηT =

N−1∑
n=0

∑
K∈Th

(ηTK,n)2

1/2

, (2.93)

with the local time error indicator given by

(ηTK,n)2 = cn

∫ tn+1

tn
‖θn‖2L2(K)dt, (2.94)

where we recall that
c0 = τ1, cn = T − τ1, n ≥ 1,

and θn is defined by (2.85) and (2.86). Before going further, observe the following facts:

(1) To obtain an easy computable space error indicator, as already advocated for elliptic
equation in Chapter 1, we have replaced ωK by ω̃K (see Remark 1.15) and applied
the ZZ post-processing ΠZZ

h .

(2) Note that the high orders terms of the a posteriori error estimate (2.89) (see Remark
2.56) are not taken in account in the definition of our error indicator, neither the
error at initial time, which is given by ‖ϕ(0) − rh(ϕ(0))‖L2(Ω) and therefore is of
higher order too (we recall that the numerical error goes as h3/2 + τ2 and that
‖ϕ(0)− rhϕ(0)‖L2(Ω) ' h2).
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(3) Observe that in the particular case where u is independent of the time, then the
local space error indicator (ηAK,n)2 and the local time error indicator (ηTK,n)2 reduce
to the corresponding one contained in the a posteriori error estimate (2.52) for a
steady transport field. Therefore, we do not need to separate the cases later on and
we can directly use the same indicators for a transient u as for a steady one.

The sharpness of the error indicator η will be investigated by computing the effectivity
index ei given by

ei = η

e(T )L2
.

Since the ZZ post-processing is used, we also check the efficiency of this procedure by
computing the true and approximated H1 error

eL2(H1) =
(∫ T

0
‖∇(ϕ− ϕhτ )‖2L2(Ω)dt

)1/2

, ηZZ =
(∫ T

0
‖∇(ΠZZ

h ϕ− ϕhτ )‖2L2(Ω)dt

)1/2

,

and the ZZ effectivity index

eiZZ = ηZZ

eL2(H1)
.

The numerical experiments should possibly demonstrate the following properties:

(i) The effectivity index ei should not depend on the exact solution, u, the final time
or the size of the domain.

(ii) The effectivity index ei should not depend on the mesh aspect ratio.

(iii) The effectivity index eiZZ should be close to one.

We consider a family of "1D" problem where the initial condition is given by

ϕ0(x1, x2) = tanh(−C((x1 − 0.25)2 − 0.01)),

with C > 0 and we solve the transport problem

∂ϕ

∂t
+ u(t) · ∇ϕ = 0

with
u(x1, x2, t) = (u(t), 0),

where u is a smooth function only depending on the time. Therefore, we trivially have
that div u = 0. The exact solution is then given by

ϕ(x1, x2, t) = ϕ0(x1 −
∫ t

0
u(s)ds, x2).

Observe that the solution is smooth, with small variations, except in a thin layer of width
controlled by C.

Example 2.57 (Numerical experiments with an horizonatal transport field).
We set u(t) = 1 so that u = (1, 0) is constant. We first solve the transport equation in a
square domain Ω =]0, 1[×]0, 1[, where Dirichlet boundary conditions are imposed on the
left side of Ω, and with T = 0.5. The exact solution is then given by

ϕ(x1, x2, t) = ϕ0(x1 − t, x2).
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Several experiments are performed with C = 60 or C = 240, and typical mesh aspect
ratio of 50 or 500. In the following tables, we denote by h1−h2 the mesh size in directions
x1, x2 and by τ the time step.

We first investigate the sharpness of the anisotropic error indicator in space ηA, choos-
ing τ = O(h2) so that the error due to time discretization is negligible, see Tables 2.1 and
2.2. It is observed that the L2(Ω) error at final time is ' O(h1.8) while the L2(0, T,H1(Ω))
error is ' O(h). The post-processed ZZ gradient is asymptotically exact, while the effec-
tivity index ei converges to a value close to 20. These results agree with those of [20].

Then, we check that the quadratic reconstruction yields an error indicator of optimal
second order in time. We choose h ' O(τ2) so that the error due to the space discretization
is negligible. The numerical results presented in the Tables 2.3 and 2.4 show that both
the L2(Ω) error at final time and the time indicator ηT are ' O(τ2). The effectivity index
tends to a value close to 2. Note that in this case, eiZZ is away from 1, which implies that
the post-processing included in our error indicator in space ηA is not accurate; but this is
unimportant since ηA is much smaller than the error indicator in time ηT .

The above numerical experiments demonstrate that ei does not depend on the exact
solution, neither the mesh aspect ratio. In order to check that the effectivity index does
not depend on Ω and T , we reproduce the same experiment on a domain Ω = (0, 10)×(0, 1)
for several values of the final time T . The corresponding results are presented in Tables
2.5 and 2.6 for C = 60 and meshes with aspect ratio 50. The effectivity index remains
close to the values obtained previously.

In order to obtain an effectivity index close to one, we divide the space indicator ηA
by 20 and the time indicator ηT by 2. We report the result obtain in Tables 2.7 and 2.8
where we consider the normalized error indicator√(

ηA

20

)2
+
(
ηT

2

)2
.

The corresponding effectivity index (still denoted by ei to avoid to many notations) is
shown to be near a value of 1 when h3/2 = O(τ2).

h1 − h2 τ eL2(H1) eiZZ e(T )L2 ηA ηT ei
0.01 - 0.5 0.002 0.125 0.99 0.0013 0.0195 0.00078 14.60
0.005 - 0.25 0.0005 0.067 1.00 0.00046 0.0073 0.000049 15.77
0.0025 - 0.125 0.000125 0.034 1.00 0.00015 0.0026 0.0000033 17.22

0.00125 - 0.0625 0.00003125 0.0168 1.00 0.000044 0.00088 0.00000021 20.09
0.001 - 0.5 0.000125 0.012 1.00 0.0000107 0.00062 0.00000401 58.31

0.0005 - 0.25 0.00003125 0.0062 1.00 0.00001 0.00023 0.00000026 20.78

Table 2.1: Example 2.57. Convergence results when τ = O(h2) with C = 60 and aspect
ratio 50 (rows 1-4) and 500 (rows 5-6).

h1 − h2 τ eL2(H1) eiZZ e(T )L2 ηA ηT ei
0.01 - 0.5 0.002 1.23 0.54 0.023 0.099 0.0094 4.40
0.005 - 0.25 0.0005 0.50 0.77 0.0062 0.041 0.00078 6.72
0.0025 - 0.125 0.000125 0.21 0.96 0.0013 0.015 0.000055 11.90

0.00125 - 0.0625 0.00003125 0.10 1.00 0.00028 0.0053 0.0000036 19.07
0.001 - 0.5 0.00025 0.072 0.99 0.00013 0.0037 0.000023 27.34

0.0005 - 0.25 0.0000625 0.037 1.00 0.000065 0.0014 0.000015 21.62

Table 2.2: Example 2.57. Convergence results when τ = O(h2) with C = 240 and aspect
ratio 50 (rows 1-4) and 500 (rows 5-6).
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h1 − h2 τ eL2(H1) eiZZ e(T )L2 ηA ηT ei
0.01 - 0.5 0.025 0.68 0.18 0.046 0.032 0.095 2.21

0.0025 - 0.125 0.0125 0.22 0.16 0.013 0.0063 0.028 2.09
0.000625 - 0.03125 0.00625 0.058 0.14 0.0035 0.0010 0.0072 2.09

0.00015625 - 0.0078125 0.003125 0.015 0.32 0.00089 0.00045 0.0018 2.13
0.001 - 0.5 0.025 0.68 0.017 0.046 0.0032 0.096 2.07

0.00025 - 0.125 0.0125 0.22 0.015 0.013 0.00063 0.028 2.03
0.0000625 - 0.03125 0.00625 0.058 0.025 0.0036 0.00018 0.0073 2.05

Table 2.3: Example 2.57. Convergence results when h = O(τ2) with C = 60 and aspect
ratio 50 (rows 1-4) and 500 (rows 5-7).

h1 − h2 τ eL2(H1) eiZZ e(T )L2 ηA ηT ei
0.01 - 0.5 0.025 6.18 0.11 0.24 0.15 0.84 3.66

0.0025 - 0.125 0.0125 4.28 0.047 0.12 0.033 0.38 3.16
0.000625 - 0.03125 0.00625 2.15 0.048 0.050 0.0059 0.12 2.42

0.00015625 - 0.0078125 0.003125 0.75 0.039 0.016 0.0026 0.034 2.11
0.0000390625 - 0.001953125 0.0015625 0.21 0.13 0.042 0.0018 0.0087 2.11

0.001 - 0.5 0.025 6.37 0.011 0.24 0.015 0.94 3.9
0.00025 - 0.125 0.0125 4.30 0.0045 0.12 0.0034 0.39 3.17

0.0000625 - 0.03125 0.00625 2.15 0.0039 0.051 0.0010 0.12 2.42
0.000015612-0.0078125 0.003125 0.75 0.011 0.016 0.00076 0.034 2.10

Table 2.4: Example 2.57. Convergence results when h = O(τ2) with C = 240 and aspect
ratio 50 (rows 1-5) and 500 (rows 6-8).

T eL2(H1) eiZZ e(T )L2 ηA ηT ei
0.5 0.014 1.00 0.000031 0.00070 0.000015 22.63
1 0.0205 1.00 0.000043 0.00099 0.000019 22.87
1.5 0.024 1.00 0.000052 0.0012 0.000023 23.31
5 0.045 1.00 0.000085 0.0022 0.000041 26.25
9.5 0.073 1.00 0.00013 0.0031 0.000056 23.12

Table 2.5: Example 2.57. Convergence results when Ω = (0, 10) × (0, 1) and T varies;
h1 = 0.000625, h2 = 0.03125, τ = 0.000125.

T eL2(H1) eiZZ e(T )L2 ηA ηT ei
0.5 0.059 0.24 0.0036 0.0018 0.0073 2.11
1 0.16 0.12 0.0071 0.0025 0.014 2.08
1.5 0.29 0.084 0.011 0.0031 0.021 2.08
5 1.59 0.028 0.032 0.0057 0.073 2.21
9.5 3.60 0.017 0.057 0.0079 0.14 2.43

Table 2.6: Example 2.57. Convergence results when Ω = (0, 10) × (0, 1) and T varies;
h1 = 0.000625, h2 = 0.03125, τ = 0.00625.
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h1 − h2 τ eL2(H1) eiZZ e(T )L2 ηA/20 ηT /2 ei
0.01 - 0.05 0.005 0.13 0.96 0.0025 0.001 0.0024 1.02
0.004 - 0.2 0.0025 0.049 0.98 0.0007 0.00015 0.00060 0.93
0.0016 - 0.08 0.00125 0.022 1.00 0.00016 0.000077 0.00015 1.03
0.00064 - 0.032 0.000625 0.0084 1.00 0.000038 0.00002 0.000038 1.12
0.001 - 0.5 0.0005 0.012 1.00 0.000020 0.000040 0.000027 1.7
0.0004 - 0.2 0.00025 0.0047 1.00 0.000010 0.0000086 0.0000068 1.16

0.00016 - 0.08 0.000125 0.0021 1.00 0.00000304 0.0000026 0.0000017 1.01

Table 2.7: Example 2.57. Convergence results with the normalized error indicator when
h3/2 = O(τ2) with C = 60 and aspect ratio 50 (rows 1-4) and 500 (rows 5-7). Here

ei =
√(

ηA

20

)2
+
(
ηT

2

)2

/e(T )L2 .

h1 − h2 τ eL2(H1) eiZZ e(T )L2 ηA/20 ηT /2 ei
0.01 - 0.05 0.005 1.43 0.47 0.031 0.0053 0.028 0.91
0.004 - 0.2 0.0025 0.55 0.52 0.010 0.0014 0.01 1.01
0.0016 - 0.08 0.00125 0.18 0.703 0.0027 0.00045 0.0028 1.03

0.00064 - 0.032 0.000625 0.06 0.83 0.00069 0.00012 0.00070 1.04
0.001 - 0.5 0.0005 0.075 0.96 0.00044 0.00020 0.00046 1.12
0.0004 - 0.2 0.00025 0.029 0.98 0.00012 0.000051 0.00011 1.04
0.00016 - 0.08 0.000125 0.013 1.00 0.000032 0.000015 0.000029 1.1

Table 2.8: Example 2.57. Convergence results with the normalized error indicator when
h3/2 = O(τ2) with C = 240 and aspect ratio 50 (rows 1-4) and 500 (rows 5-7). Here

ei =
√(

ηA

20

)2
+
(
ηT

2

)2

/e(T )L2 .

Example 2.58 (Numerical example with a time dependent transport field).
We now consider the same situation as in Example 2.57 but with u(t) = 10 + 10t2. We
still impose Dirichlet boundary conditions on the left side of Ω and set T = 0.05. The
numerical results are reported in Tables 2.9 and 2.10 where we choose τ = O(h2). Both
ei and eiZZ behaves as in the steady transport velocity case. The numerical errors are
respectively ' O(h1.8) for the L2 error at final time and ' O(h) for the L2(0, T ;H1(Ω)).
When we choose h = O(τ2), the effectivity index is close to 2 as before and we note
that both numerical errors goes as O(τ2), see Tables 2.11 and 2.12. We finally perform
numerical experiments with the normalized error estimator

√(
ηA

20

)2
+
(
ηT

2

)2
.

The corresponding effectivity index is near a value of 1 when h3/2 = O(τ2).

h1 − h2 τ eL2(H1) eiZZ e(T )L2 ηA ηT ei
0.01 - 0.5 0.0002 0.039 1.00 0.0013 0.019 0.0.00079 14.57
0.005 - 0.25 0.00005 0.021 1.00 0.00047 0.0074 0.000049 15.77
0.0025 - 0.125 0.0000125 0.011 1.00 0.00015 0.0026 0.0000033 17.22

0.00125 - 0.0625 0.000003125 0.0052 1.00 0.000043 0.00085 0.00000021 19.65
0.001 - 0.5 0.0000125 0.0039 1.00 0.000011 0.00063 0.00000402 58.37

0.0005 - 0.25 0.000003125 0.0019 1.00 0.000012 0.00024 0.00000026 20.79

Table 2.9: Example 2.58. Convergence results when τ = O(h2) with C = 60 and aspect
ratio 50 (rows 1-4) and 500 (rows 5-6).
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h1 − h2 τ eL2(H1) eiZZ e(T )L2 ηA ηT ei
0.01 - 0.5 0.0002 0.39 0.54 0.023 0.098 0.0094 4.39
0.005 - 0.25 0.00005 0.16 0.77 0.0062 0.041 0.000 78 6.72
0.0025 - 0.125 0.0000125 0.067 0.96 0.0012 0.015 0.000054 11.89

0.00125 - 0.0625 0.000003125 0.032 1.00 0.00027 0.0053 0.0000036 19.077
0.001 - 0.5 0.0000125 0.023 1.00 0.000064 0.0036 0.000059 42.75

0.0005 - 0.25 0.000003125 0.012 1.00 0.000065 0.0014 0.0000037 21.62

Table 2.10: Example 2.58. Convergence results when τ = O(h2) with C = 240 and aspect
ratio 50 (rows 1-4) and 500 (rows 5-6).

h1 − h2 τ eL2(H1) eiZZ e(T )L2 ηA ηT ei
0.01 - 0.5 0.0025 0.22 0.18 0.046 0.032 0.095 2.19

0.0025 - 0.125 0.00125 0.069 0.15 0.013 0.0063 0.027 2.08
0.000625 - 0.03125 0.000625 0.018 0.14 0.0035 0.00103 0.0073 2.07

0.00015625 - 0.0078125 0.0003125 0.0048 0.32 0.0009 0.00045 0.0018 2.13
0.001 - 0.5 0.0025 0.22 0.017 0.046 0.0032 0.096 2.07

0.00025 - 0.125 0.00125 0.069 0.015 0.013 0.00063 0.027 2.03
0.0000625 - 0.03125 0.000625 0.018 0.025 0.0035 0.00018 0.0073 2.05

Table 2.11: Example 2.58. Convergence results when h = O(τ2) with C = 60 and aspect
ratio 50 (rows 1-4) and 500 (rows 5-7).

h1 − h2 τ eL2(H1) eiZZ e(T )L2 ηA ηT ei
0.01 - 0.5 0.0025 1.95 0.11 0.23 0.15 0.84 3.63

0.0025 - 0.125 0.00125 1.35 0.047 0.12 0.033 0.39 3.16
0.000625 - 0.03125 0.000625 0.68 0.023 0.051 0.0059 0.15 2.43

0.00015625 - 0.0078125 0.0003125 0.23 0.039 0.016 0.0026 0.034 2.11
0.0000390625 - 0.001953125 0.00015625 0.066 0.13 0.0042 0.0018 0.0087 2.11

0.001 - 0.5 0.0025 2.017 0.012 0.24 0.063 0.94 3.89
0.00025 - 0.125 0.00125 1.36 0.0045 0.12 0.0034 0.39 3.17

0.0000625 - 0.03125 0.000625 0.68 0.0039 0.051 0.0011 0.12 2.42
0.000015612-0.0078125 0.0003125 0.24 0.011 0.016 0.00076 0.034 2.10

Table 2.12: Example 2.58. Convergence results when h = O(τ2) with C = 240 and aspect
ratio 50 (rows 1-5) and 500 (rows 6-8).

h1 − h2 τ eL2(H1) eiZZ e(T )L2 ηA/20 ηT /2 ei
0.01 - 0.05 0.0005 0.041 0.96 0.0025 0.0011 0.0033 1.38
0.004 - 0.2 0.00025 0.015 0.98 0.0007 0.00025 0.00085 1.26
0.0016 - 0.08 0.000125 0.0069 1.00 0.00016 0.000077 0.00021 1.38
0.00064 - 0.032 0.0000625 0.0026 1.00 0.000038 0.00002 0.000054 1.49
0.001 - 0.5 0.00005 0.0038 1.00 0.000025 0.000034 0.000037 1.99
0.0004 - 0.2 0.000025 0.0015 1.00 0.000011 0.0000087 0.0000096 1.22

0.00016 - 0.08 0.0000125 0.00067 1.00 0.0000034 0.0000026 0.0000024 1.03

Table 2.13: Example 2.58. Convergence results with the normalized error indicator when
h3/2 = O(τ2) with C = 60 and aspect ratio 50 (rows 1-4) and 500 (rows 5-7). Here

ei =
√(

ηA

20

)2
+
(
ηT

2

)2

/e(T )L2 .
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h1 − h2 τ eL2(H1) eiZZ e(T )L2 ηA/20 ηT /2 ei
0.01 - 0.05 0.0005 0.45 0.47 0.031 0.0053 0.041 1.30
0.004 - 0.2 0.00025 0.17 0.52 0.010 0.0014 0.015 1.42
0.0016 - 0.08 0.000125 0.058 0.703 0.0028 0.00045 0.0039 1.44
0.00064 - 0.032 0.0000625 0.018 0.83 0.00069 0.00012 0.001 1.46
0.001 - 0.5 0.00005 0.024 0.96 0.00044 0.00019 0.00065 1.52
0.0004 - 0.2 0.000025 0.0091 0.98 0.00012 0.000051 0.00016 1.4

0.00016 - 0.08 0.0000125 0.004 1.00 0.000032 0.000015 0.000041 1.35

Table 2.14: Example 2.58. Convergence results with the normalized error indicator when
h3/2 = O(τ2) with C = 240 and aspect ratio 50 (rows 1-4) and 500 (rows 5-7). Here

ei =
√(

ηA

20

)2
+
(
ηT

2

)2

/e(T )L2 .

2.4 A space-time adaptive algorithm
We now present a space-time adaptive algorithm to solve the transport equation. The
remeshing procedure is similar to the one presented in Chapter 1, Section 1.4. The goal is
to control the numerical error over the time, therefore given a prescribed tolerance TOL,
we want to build a sequence of meshes and time steps such that

0.75TOL ≤
(
η2

T

)1/2

≤ 1.25TOL. (2.95)

Since

η2 =
N−1∑
n=0

∑
K∈Th

(
(ηAK,n)2 + (ηTK,n)2

)
, T =

N−1∑
n=0

τn+1,

a sufficient condition to ensure the above criterion is that for any n = 0, 1, ..., N − 1 it
holds

0.752TOL2τn+1 ≤
∑
K∈Th

(
(ηAK,n)2 + (ηTK,n)2

)
≤ 1.252TOL2τn+1.

A simple and natural idea consists to equidistribute the error between the space and
the time discretization, therefore to ensure that (2.95) holds, we check at every n =
0, 1, ..., N − 1 that

0.752TOL2τn+1

2 ≤
∑
K∈Th

(ηAK,n)2 ≤ 1.252TOL2τn+1

2 , (2.96)

and
0.752TOL2τn+1

2 ≤
∑
K∈Th

(ηTK,n)2 ≤ 1.252TOL2τn+1

2 . (2.97)

As already presented in the Chapter 1 for elliptic problem, we translate the spatial error
indicator from triangles to vertices. We define

(ηAP,n)2 =
∑
K∈Th
P∈K

(ηAK,n)2, n = 0, 1, ..., N − 1,

so that ∑
P∈Th

(ηAP,n)2 = 3
∑
K∈Th

(ηAK,n)2, n = 0, 1, ..., N − 1.

Therefore, a sufficient conditions to obtain (2.96) is to ensure that for all P ∈ Th

3
NP

0.752TOL2τn+1

2 ≤ (ηAP,n)2 ≤ 3
NP

1.252TOL2τn+1

2 , (2.98)
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where NP stands for the number vertices. The goal is now to equidistribute the spatial
error between the two directions of anisotropy. Note that here we have to take in account
the integral in time. Indeed, observe that

(ηAK,n)2 =
∫ tn+1

tn

∥∥∥∥∂ϕhτ∂t
+ u(t) · ∇ϕhτ

∥∥∥∥
L2(K)

ω̃K(ΠZZ
h ϕhτ − ϕhτ )dt,

where we recall that (see (1.30))

ω̃K(v) =
(
ω̃2

1,K(v) + ω̃2
2,K(v)

)1/2
.

It seem therefore natural to define the local spatial error indicator in direction xi, i = 1, 2
by

(ηAi,K,n)2 =
∫ tn+1

tn

∥∥∥∥∂ϕhτ∂t
+ u(t) · ∇ϕhτ

∥∥∥∥
L2(K)

ω̃i,K(ΠZZ
h ϕhτ − ϕhτ )dt,

and its pointwise version
(ηAi,P,n)2 =

∑
K∈Th
P∈K

(ηAi,K,n)2.

Note that the definition of (ηAi,K,n)2 is motivated by the following observation : let us
assume that the error is zero in one direction (for instance the x1 direction), then auto-
matically, the following equality holds

(ηAK,n)2 = (ηA2,K,n)2.

Observe now, that
(ηAP )2 = ((ηA1,P,n)2 + (ηA2,P,n)2)σ−1

P ,

where we define the scaling factor

σP =
(ηA1,P,n)2 + (ηA2,P,n)2

(ηAP )2 .

Therefore, sufficient conditions to satisfy (2.98) is that for all P ∈ Th

3σP
2NP

0.752TOL2τn+1

2 ≤ (ηAi,P,n)2 ≤ 3σP
2NP

1.252TOL2τn+1

2 , i = 1, 2. (2.99)

The adaptive algorithm goes as follows ans is summarized in Table 2.15: at each time
step, we compute the errors indicators and we check the conditions (2.97) and (2.99).
Whenever it is needed we change the time step and build a new mesh. Note that, if a new
mesh has to be built, then the finite elements problem

∫
Ω

(
ϕn+1
h − ϕnh
τn+1 + u(tn+1/2) · ∇

(
ϕn+1
h + ϕnh

2

))
(vh + δh(tn+1/2)u(tn+1/2) · ∇vh)dx = 0,∀vh ∈ Vh,

is not well defined since a priori ϕnh will not belong to Vh. Therefore, the previous finite
element approximation, ϕnh, has to be interpolated on the current mesh. More precisely,
if we denote by T nh,i and T nh,i+1 two successive meshes generated at time tn+1, and by V n

h,i,
V n
h,i+1 the associated finite elements spaces, we consider the interpolation operator

πnh,i+1 : V n
h,i −→ V n

h,i+1.
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If a new mesh has to be built, then we interpolate the values of ϕnh from V n
h,i to V n

h,i+1 and
compute ϕn+1

h ∈ V n
h,i+1 such that

∫
Ω

(
ϕn+1
h − πnh,i+1ϕ

n
h

τn+1 + u(tn+1/2) · ∇
(
ϕn+1
h + πnh,i+1ϕ

n
h

2

))
(
vh + δh(tn+1/2)u(tn+1/2) · ∇vh

)
= 0, (2.100)

for all vh ∈ V n
h,i+1. In practice, several choices are proposed for the interpolation operator

πnh,i+1. More comments will be addressed on the interpolation error in the part dedicated
to the numerical experiments with adapted meshes. Note that the analysis of the interpo-
lation process is not covered by our theory since we only study the a priori and a posteriori
errors on a single mesh in order to simplify the discussion. Several examples can be found
in the literature where moving meshes are taking in account in the a posteriori analysis,
see for instance [11, 65, 79] for parabolic problems or [16] for the Stokes equations.

To build a new mesh, we proceed as presented in Chapter 1. We first compute the
average local gradient error matrix GP defined by

GP =
∑
K∈Th
P∈K

G̃K(ΠZZ
h ϕn+1

h − ϕn+1
h ) (2.101)

where G̃K is given by (1.18) and the two direction of anisotropy are aligned with the
eigenvectors of GP . In practice, as already presented in Section 1.4 we compute the angle
θP between the horizontal axe and the x1 direction. To adapt the mesh size, as before, we
compute the average local stretching values λi,P at the point P defined by

λi,P =

∑
K∈Th
P∈K

λi,K∑
K∈Th
P∈K

1 , i = 1, 2. (2.102)

If

3σP
2Nv

0.752TOL2τn+1 > (ηi,P,n)2

then we increase hi,P ( that is to say the mesh size in direction xi) by setting set hi,p =
1.5λi,P . If

(ηi,P,n)2 >
3σP
2Nv

1.252TOL2τn+1,

then we decrease the mesh size in direction xi by setting hi,p = λi,P
1.5 . Finally, for every

P ∈ T nh,i, we pass to the remeshing software θP and the two mesh size h1,P , h2,P .
In the 2D numerical experiments presented later, the meshes are generated with the

BL2D software [67]. The interpolation between meshes is done with the BL2D interpola-
tion modules and the Wolf-Interpol program [5].

131



Set T 0
h,0, ϕ

0
h, n = 0, τ1, i = 0. Initialization

While t < T Time loop
t = t+ τn+1 Increment next time step
Compute ϕn+1

h on T nh,i by solving (2.100)
For K ∈ T nh,i, compute
(ηAK,n)2, (ηTK,n)2 compute the space and time

error indicators
If (2.96) and (2.97) are satisfied then Mesh and time step are correct
T n+1
h,0 = T nh,i, τn+2 = τn+1

i = 0, n = n+ 1
else
t = t− τn+1

If (2.96) is not satisfied Adapt the mesh
For P ∈ T nh,i, compute GP and θP set the anisotropy directions to

the eigenvectors of GP
For i = 1, 2 Test conditions (2.99)
Compute the average mesh size λi,P
If the mesh size is too small in direction xi, Change the mesh size
set hi,P = 3/2λi,P in direction xi
If the mesh size is too bin big in direction xi,
set hi,P = 2/3λi,P

Build a new mesh T nh,i+1 using the BL2D software
If n > 0
ϕnh = πnh,i+1ϕ

n
h, ϕ

n−1
h = πnh,i+1ϕ

n−1
h interpolate the old solutions

on the new mesh
i = i+ 1

If (2.97) is not satisfied Adapt the time step
If

∑
K∈Th

(ηTK,n)2 is too big, set τn+1 = τn+1/2

If
∑
K∈Th

(ηTK,n)2 is too small, set τn+1 = 3/2τn+1

If τn+1 > T − t set τn+1 = T − t Check that final time is not
exceeded and stop
time step adaptation

Table 2.15: Time space adaptive algorithm

2.5 Numerical experiments with adapted meshes and adapted
time steps

We now perform numerical experiments using the space-time adaptive algorithm presented
in Section 2.4. We investigate the number of vertices, aspect ratio, number of time steps
and remeshings, for various values of the prescribed tolerance TOL. The notations are
summarized in Table 2.16.
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Nv : Number of vertices of the mesh at final time
Nτ : Number of time steps
Nm : Number of remeshings
Nc : Number of time step changes
ar : Maximum aspect ratio at final time, the aspect ratio on an element K being λ1,K/λ2,K
ar : Average aspect ratio at final time

Table 2.16: Additional notations for the analysis of the adaptive algorithm

As briefly commented in Section 2.4, the main issue to the space-time algorithm is the
interpolation between meshes. We recall that at each time tn+1 (see Table 2.15 for the
description of the algorithm), if a new mesh as to be built, then we have to interpolate
ϕnn from the old mesh to the new one. More precisely, if T nh,i and T nh,i+1 are two successive
meshes built at the step n + 1, and we denote by V n+1

h,i , V n+1
h,i+1 the respective associated

finite elements spaces, then to compute ϕn+1
h ∈ V n+1

h,i+1 by solving (2.100), we first have to
interpolate ϕnh from V n

h,i to V n
h,i+1 by computing πnh,i+1ϕ

n
h where πnh,i+1 : V n

h,i → V n+1
h,i+1. In

[20, 41] several choices for πnh,i+1 were proposed in practice, in particular :

• the Lagrange interpolation from V n
h,i to V n

h,i+1,

• the exact L2 projection [43], where πnh,i+1ϕ
n
h is the unique element of V n

h,i+1 satisfying∫
Ω
πnh,i+1ϕ

n
hvhdx =

∫
Ω
ϕnhvhdx, ∀vh ∈ V n

h,i+1,

• the conservative algorithm of [5].

The goal is to find an operator that minimizes the error due to the interpolation from
one mesh to the other. It was observed that the interpolation error does not have a
significant effect on the numerical results for parabolic problems [72], but is a crucial issue
for hyperbolic problem [20, 51]. The best results were obtained when the conservative
algorithm [5] is used. The Lagrange interpolation seems to be less accurate. Note that in
[20], the exact L2 was shown to be as efficient as the conservative algorithm proposed in
[5]. Numerical experiments showed that the H1 projection can also be a good alternative
for hyperbolic equations [51].

From a theoretical point of view, we would like to prove some stability estimate for
the scheme (2.100). Let us demonstrate this fact in a more simpler case where we assume
that u is independent of the time and that δh is constant in time and space. One can
easily show, by taking

vh =
ϕn+1
h + πnh,i+1ϕ

n
h

2 + δh
ϕn+1
h − πnh,iϕnh

τn+1

as test function and performing the same computation as in Proposition 2.16, that

‖ϕn+1
h ‖2L2(Ω) + δ2

h‖u · ∇ϕn+1
h ‖2L2(Ω) ≤ ‖π

n
h,i+1ϕ

n
h‖2L2(Ω) + δ2

h‖u · ∇πnh,i+1ϕ
n
h‖2L2(Ω).

Then, if we assume that the projection πnh,i+1 satisfies for any g ∈ H1(Ω) that

‖πnh,i+1g‖2L2(Ω) + δ2
h‖u · ∇πnh,i+1g‖2L2(Ω) ≤ ‖g‖

2
L2(Ω) + δ2

h‖u · ∇g‖2L2(Ω), (2.103)

then one will have that

‖ϕn+1
h ‖2L2(Ω) + δ2

h‖u · ∇ϕn+1
h ‖2L2(Ω) ≤ ‖ϕ

n
h‖2L2(Ω) + δ2

h‖u · ∇ϕnh‖2L2(Ω).
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Unfortunately, none of the projections proposed above satisfies such properties. In [41], it
was proposed to chose πnh,i+1 : H1(Ω) −→ V n

h,i+1 as the modified L2 projection

∫
Ω
πnh,i+1gvhdx +

∫
Ω

(δhu · ∇πnh,i+1g)(δhu · ∇vh)dx

=
∫

Ω
gvhdx +

∫
Ω

(δhu · ∇g)(δhu · ∇vh)dx,∀vh ∈ V n
h,i+1, (2.104)

which satisfies (2.103). However, this has a little interest in practice since the stability
result is guaranteed only for constant δh. Moreover, the numerical experiments showed
that this choice was not the best one. Therefore, we present below the tests performed
with the conservative algorithm [5] that yields the best results. For comparison, we also
present the results obtained with the classical Lagrange interpolation between meshes. A
theoretical study should be conducted to give a proper answer to our empiric observations.

We first run the adaptive algorithm with Example 2.57. The initial grid is an isotropic
mesh of mesh size h = 0.1 and the initial time step is taken as τ1 = 0.001. The solution
and meshes are represented in Figures 2.1 and 2.2 for C = 240. The numerical results
are presented in Table 2.17 where we compare Lagrange interpolation to the conservative
algorithm [5]. When the latter is used, the following conclusions can be observed:

− The error at final time is approximatively divided by 2 when TOL is divided by 2.

− Both effectivity indices ei and eiZZ are close to one.

− The number of remeshing depends on the exact solution u (in particular the larger
C, the larger Nm).

− The total number of vertices at final time is doubled as the tolerance is divided by
two.

− The total number of time steps is multiplied by
√

2 as the tolerance is divided by 2,
which confirms the second order convergence of the error indicator in time ηT .

All these conclusions are satisfactory, except the final number of vertices. Indeed, since
the solution depends only on the x1 variable, it is expected that Nv ' h−1. Therefore Nv

should be rather multiplied by 22/3 (' 1.6) when the tolerance is divided by 2, since the
L2 error a final time is O(h3/2). We have no precise explanation, but this lost can maybe
be attributed to the interpolation error.

Note that for all the numerical experiments presented below, we consider the normal-
ized error indicators

ηA

20 ,
ηT

2 ,

and the corresponding effectivity index

ei =
√(

ηA

20

)2
+
(
ηT

2

)2

/e(T )L2 .
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Figure 2.1: Example 2.57. Mesh and solution with C = 240 and TOL = 0.001 at t = 0
(left) and t = 0.5 (right). Conservative interpolation between meshes is used.

Figure 2.2: Example 2.57. Zoom of Figure 2.1 at final time.
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TOL e(T )
L2 ei e

L2(H1) eiZZ ηA ηT ar ār Nv Nτ Nm Nc

0.001 0.0055 0.12 0.096 0.79 0.00048 0.00046 284 65 567 361 31 286
0.0005 0.0025 0.13 0.055 0.85 0.00024 0.00022 800 85 1020 538 35 366

0.00025 0.00096 0.17 0.032 0.91 0.00012 0.00011 752 106 2236 769 36 379
0.000125 0.00039 0.21 0.019 0.96 0.000061 0.000057 1157 151 3958 1197 37 375

0.001 0.012 0.057 0.29 0.45 0.00048 0.00045 1399 173 825 1597 89 1170
0.0005 0.0045 0.072 0.14 0.59 0.00024 0.00022 1560 244 1605 2297 90 1414

0.00025 0.0017 0.094 0.069 0.76 0.00012 0.00011 2615 372 2513 3399 98 1605
0.000125 0.0011 0.073 0.043 0.77 0.000061 0.000055 4274 203 14544 7943 104 911

0.001 0.00083 0.802 0.077 0.98 0.00049 0.00045 335 81 444 344 37 229
0.0005 0.00036 0.92 0.047 0.99 0.00024 0.00022 584 89 1197 503 40 361

0.00025 0.00017 0.98 0.029 1.00 0.00012 0.00011 1034 135 1649 712 42 379
0.000125 0.000008 1.04 0.018 1.00 0.000062 0.000056 1978 200 3287 1003 45 546

0.001 0.00088 0.75 0.14 0.93 0.00048 0.00045 801 159 998 1498 94 965
0.0005 0.00036 0.89 0.086 0.97 0.00024 0.00022 1860 278 1521 2124 89 1059

0.00025 0.00017 0.95 0.053 0.99 0.00012 0.00011 2539 365 2696 3028 95 1462
0.000125 0.000086 0.99 0.033 1.00 0.000061 0.000059 4215 489 5214 4259 100 1732

Table 2.17: Example 2.57. Convergence results for the adaptive algorithm with linear
interpolation (row 1-8) C = 60 (row 1-4) C = 240 (row 5-8) and conservative interpolation
(row 9-16) C = 60 (row 9-12) C = 240 (row 13-16).

Example 2.59 (An example with a strong variation in time).
We now consider u(t) = 1 + 9H0.03(t − 0.25) such that the solution moves along the x1
axis at a constant velocity 1 until t = 0.25 and then quickly accelerate to reach a velocity
of 10 until T = 0.3. For a given ε > 0, we recall that Hε is the smoothing of the Heaviside
function given by

Hε(x) =



0, x ≤ −ε,

x+ ε

2ε + 1
2π sin

(
πx

ε

)
, −ε ≤ x ≤ ε,

1, x ≥ ε.

We choose the initial condition as in Example 2.57, with C = 60. We are mainly
concerned to check if our adaptive algorithm can capture the quick acceleration of the
solution around t = 0.25. In Table 2.18, we present the converge results for several values
of TOL. We observe the same conclusions as previously. In Figure 2.3, we check the
evolution of the time step. We observe that, up to some oscillations occurring when the
adaptive algorithm refuses the current time step, that the time step follows the evolution
of u. In particular, when u is 10 times larger, the adaptive algorithm selects a time step
that is approximatively 10 times smaller.

TOL e(T )L2 ei eL2(H1) eiZZ ηA ηT ar ār Nv Nτ Nm Nc
0.005 0.0024 1.086 0.17 0.95 0.0018 0.0019 164 53 106 459 42 245
0.0025 0.00094 1.39 0.102 0.97 0.00093 0.00091 272 78 244 667 42 328
0.00125 0.000051 1.29 0.065 0.98 0.00047 0.00046 429 118 390 942 44 414

Table 2.18: Example 2.59. Convergence results for the adaptive algorithm. Conservative
interpolation between meshes is used.
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Figure 2.3: Example 2.59. Evolution of the current time step for several values of TOL.
Conservative interpolation between meshes is used.

Example 2.60 (Stretching of a circle in a vortex flow).
The last test case is the stretching of a circle in a vortex flow. We set Ω =]0, 1[2, T = 4.
The initial condition is given by

ϕ0(x1, x2) = tanh
(
−C(

√
(x1 − 0.5)2 + (x2 − 0.75)2 − 0.15)

)
,

where C = 60 or C = 240. No boundary conditions along ∂Ω are prescribed. The velocity
field is defined by

u(x1, x2, t) =
(
−2 sin(πx2) cos(πx2) sin2(πx1) cos(0.25πt)
2 sin(πx1) cos(πx1) sin2(πx2) cos(0.25πt)

)
.

The exact solution is not known, however, since the flow is reversed at t = 2, we must
have ϕ(x1, x2, 4) = ϕ0(x1, x2) and therefore the L2 error at final time is computable.

We start the adaptive algorithm with an initial grid of mesh size h = 0.1 and an initial
time step τ1 = 0.001. Several meshes and numerical solutions are presented in Figures
2.4 and 2.5 when TOL = 0.00125 and conservative interpolation is used. In Figures 2.6
and 2.8 and Table 2.19 we have checked convergence of the computed solution at final
time for several values of TOL. For comparison, we present in Table 2.20 results with
non-adapted uniform meshes and constant time steps. In Figure 2.10, we compare the
solution computed on a non-adapted meshes with the one obtained with TOL = 0.005
of the adaptive algorithm. Clearly, the adapted solution is more accurate than the finest
non-adapted one. Note that the number of vertices of the non-adapted mesh is 200 larger
than that of adapted meshes.
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Figure 2.4: Example 2.60. Mesh and solution at time t = 0, 1, 2, 3, 4, with C = 240 and
TOL = 0.00125. Conservative interpolation between meshes is used.
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Figure 2.5: Example 2.60. Zoom on the mesh at time t = 2 with C = 240 and TOL =
0.00125. Conservative interpolation between meshes is used.

Figure 2.6: Example 2.60. Exact and numerical solutions at time T = 4 with C = 60. Plot
of ϕhτ with respect to x1 along the line x2 = 0.75. Conservative interpolation between
meshes is used.
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Figure 2.7: Example 2.60. Zoom at Figure 2.6.

Figure 2.8: Example 2.60. Exact and numerical solutions at time T = 4 with C = 240.
Plot of ϕhτ with respect to x1 along the line x2 = 0.75. Conservative interpolation between
meshes is used.
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Figure 2.9: Example 2.60. Zoom at Figure 2.8.

Figure 2.10: Example 2.60. Comparison between numerical solutions at time T = 4 with
C = 60. Plot of ϕhτ with respect to x1 along the line x2 = 0.75. The adapted solution is
computed with the adaptive algorithm with TOL = 0.005. The non-adapted solution is
computed on a fix uniform mesh with constant time steps (h = 0.0025, τ = 0.00016).
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TOL e(T )L2 Nv Nτ

0.01 0.074 438 1238
0.005 0.023 949 2572
0.0025 0.0075 3510 4397
0.00125 0.00404 10276 7169
0.01 0.090 753 3407
0.005 0.038 2148 9247
0.0025 0.0011 6666 20282
0.00125 0.00038 15534 36840

Table 2.19: Exemple 2.60. Stretching of a circle in a vortex flow. Convergence results
for the adaptive algorithm with C = 60 (rows 1-4), C = 240, (rows 4-6). Conservative
interpolation between meshes is used.

h τ e(T )L2 Nv Nτ

0.01 0.001 0.11 12191 4000
0.005 0.0004 0.057 48354 10000
0.0025 0.00016 0.025 192657 25000
0.01 0.001 0.15 12191 4000
0.005 0.0004 0.1 48354 10000
0.0025 0.00016 0.071 192657 25000

Table 2.20: Exemple 2.60. Stretching of a circle in a vortex flow. Convergence results
with non-adapted meshes and constant time steps (τ2 = O(h3/2)) with C = 60 (rows 1-3),
C = 240, (rows 4-6).

2.6 3D experiments
We now briefly present the generalization of our a posteriori results for R3 using the
notations already presented in the Section 1.6 of Chapter 1. The numerical method (2.83)
reads the same of the 2D case, except for the stabilization parameter that is choosen now
as

δh|K = λ3,K
2 ‖u(t)‖L∞(K)

, ∀K ∈ Th such that u is not indentically zero on K, (2.105)

and by δh|K = 0 otherwise. Then, the a posteriori error estimate contained in the Theorem
2.55 is generalized to the 3D case and follows the same proof, the only change being that
we have to consider the 3D definition of ωK as described in Chapter 1, Section 1.6. For
the same reason, the error indicators ηA and ηT defined before for the 2D case are directly
extended to the 3D situation (by replacing the two dimensional definition of ω̃ by its
three dimensional one as presented in Section 1.6). Note that the time error indicator ηT
remains unchanged.

As for the 2D case, the goal of the adaptive algorithm is to build a sequence of time
steps and meshes such that, roughly speaking ,

η =
√

(ηA)2 + (ηT )2 ' TOL

for a prescribed tolerance. We here ask that

0.875 TOL ≤
(
η2

T

)1/2

≤ 1.125 TOL.
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Observe that the lower and the upper bound are slightly closer than in the 2D case. This
will a priori increase the number of remeshing / time steps changes, but will yield more
accurate results. The adaptive algorithm (2.15) reads the same, the only difference being
in the conditions (2.99) that are written as

4σP
3NP

0.8752TOL2τn+1

2 ≤ (ηAi,P,n)2 ≤ 4σP
3NP

1.1252TOL2τn+1

2 , i = 1, 2, 3.

since we now consider tetrahedron and three directions. Here above σP is given by

σP =
(ηA1,P,n)2 + (ηA3,P,n)2 + (ηA3,P,n)2

(ηAP,n)2

where we construct (ηAP,n)2 and (ηAi,P,n)2, i = 1, 2, 3, as before as

(ηAP,n)2 =
∑
K∈Th
P∈K

η2
K,n

with
(ηAK,n)2 =

∫ tn+1

tn

∥∥∥∥∂ϕhτ∂t
+ u(t) · ∇ϕhτ

∥∥∥∥
L2(K)

ω̃K(ΠZZ
h ϕhτ − ϕhτ )dt.

and for i = 1, 2, 3
(ηAi,P,n)2 =

∑
K∈Th
P∈K

η2
i,K,n

with
(ηAi,K,n)2 =

∫ tn+1

tn

∥∥∥∥∂ϕhτ∂t
+ u(t) · ∇ϕhτ

∥∥∥∥
L2(K)

ω̃i,K(ΠZZ
h ϕhτ − ϕhτ )dt.

All the meshes are generated with the 3D mesh generator feflo.a [71]. Interpolation be-
tween meshes are done with the Wolf-Interpol program [5], that allows us to perform both
the Lagrange and conservative interpolation.

We choose the domain Ω to be the unique cube ]0, 1[3. We first solve the 3D version of
Example 2.57 to test the convergence of the numerical method on non-adapted meshes and
constant time steps. The numerical results are reported in Table 2.21 where we compute
in particular the effectivity index

ei = η

e(T )L2
.

We observe the same conclusions as in the 2D case:

− When the numerical error is mainly due to the space discretization, ei is close to 20
and eiZZ is close to 1.

− When the numerical error is mainly due to the time discretization, ei is close to 2.

h1 − h2 − h3 τ eL2(H1) eiZZ e(T )L2 ηA ηT ei
0.01 - 0.5 -0.5 0.002 0.13 0.98 0.0019 0.018 0.0013 9.02

0.005 - 0.25 -0.25 0.0005 0.074 0.99 0.00072 0.0069 0.00014 9.62
0.0025 - 0.125 -0.125 0.000125 0.038 0.99 0.00022 0.0025 0.000016 11.29

0.00125 - 0.0625 - 0.0625 0.00003125 0.019 0.99 0.000064 0.0012 0.0000019 18.75
0.02 - 0.1 -0.1 0.05 1.5 0.14 0.12 0.038 0.26 2.26

0.005 - 0.025 -0.025 0.025 0.69 0.101 0.046 0.0066 0.099 2.16
0.00125 - 0.06125 -0.06125 0.0125 0.22 0.089 0.014 0.000092 0.031 2.23

Table 2.21: 3D version of Example 2.57 with C = 60. Convergence results when τ = O(h2)
(rows 1-3) and h = O(τ2)(rows 4-6). The mesh aspect ratio is 50.
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We then run the adaptive algorithm where we choose the normalized error indicators
ηA

20 ,
ηT

2 ,

and the corresponding effectivity index

ei =
√(

ηA

20

)2
+
(
ηT

2

)2

/e(T )L2 .

As in 2D, we do not introduce new notations, and we opt for the convention that error
indicators and the effectivity index are always divided by their respective weight, unless we
clearly indicate the contrary. The results are reported in Table 2.22, and the mesh and the
solutions are represented in Figure 2.11 for TOL = 0.0005 . The same conclusions as in
2D are made when we use the linear Lagrange interpolation or the conservative algorithm
to perform meshes interpolations, the Lagrange interpolation yielding very poor results.
We start the algorithm with an initial uniform grid of mesh size h = 0.1 and with an initial
time step τ1 = 0.001. Since 3D computations are costly, we improve a bit our method by
generating a first good grid by forcing the algorithm to remesh several times at the first
iteration, even if we satisfy the stopping criterion.

TOL e(T )
L2 ei e

L2(H1) eiZZ ηA ηT ar ār Nv Nτ Nm Nc

0.001 0.0012 0.57 0.101 0.91 0.00051 0.00048 967 135 870 363 60 898
0.0005 0.00049 0.71 0.063 0.93 0.00026 0.00024 2321 223 1245 569 78 1519

0.00025 0.00021 0.85 0.038 0.96 0.00013 0.00012 3336 348 2164 805 86 1781
0.000125 0.000082 1.06 0.023 0.97 0.000064 0.000059 6742 710 3147 1164 94 2210

Table 2.22: Example 2.57. Convergence results for the adaptive algorithm. Conservative
interpolation is used.

Figure 2.11: Example 2.57. Mesh and solution with C = 60 and TOL = 0.0005 at t = 0
(left) and t = 0.5 (right). Conservative interpolation between meshes is used.

Finally, we test our adaptive agorithm for 3D versions of Example 2.60. To avoid too
small time steps and shorten the simulation, we present the results obtained with the non-
normalized error indicators, that allow us to take large tolerances. The first test consists
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to solve the deformation of the sphere of radius 0.15 centered at (0.7, 0.5, 0.5) where u is
given by

u(x1, x2, x3, t) =

 sin2(πx1)cos(πt/3) (sin(π(x2 − 0.5))− sin(π(x3 − 0.5)))
sin2(πx2)cos(πt/3) (sin(π(x3 − 0.5))− sin(π(x1 − 0.5)))
sin2(πx3)cos(πt/3) (sin(π(x1 − 0.5))− sin(π(x2 − 0.5)))

 .

The solution is represented for t = 0, 0.75, 1.5, 2.25, 3 in Figure 2.12 where we choose
TOL = 0.05.

The last case is the Leveque-Enright’s test case, that was proposed in the framework
of conservative methods for advection equations. We start with an initial sphere of radius
0.15 centered at (0.35, 0.35, 0.35) that is deformed through the incompressible flow u given
by

u(x1, x2, x3, t) =

 2 sin2(πx1) sin(2πx2) sin(2πx3) cos(πt/3)
− sin(2πx1) sin2(πx2) sin(2πx3) cos(πt/3)
− sin(2πx1) sin(2πx2) sin2(πx3) cos(πt/3)

 .

The solution is represented in Figure 2.13 where we choose TOL = 0.05.

Figure 2.12: Stretching of a sphere in a vortex flow. Solution at time t = 0, 0.75, 1.5, 2.25, 3,
with TOL = 0.05. Conservative interpolation between meshes is used.
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Figure 2.13: Leveque-Enright’s test case. Solution at time t = 0, 0.75, 1.5, 2.25, 3, with
TOL = 0.05. Conservative interpolation between meshes is used.
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Chapter 3

A posteriori error estimates for
the time dependent incompressible
Stokes and Navier-Stokes
equations with constant
coefficients

In this chapter, we study a numerical method and prove a posteriori error estimates for the
incompressible (Navier-)Stokes equations with constant density and viscosity. The spatial
approximation is performed with continuous, piecewise linear, anisotropic stabilized finite
elements while the time is discretized with Backward Differentiation Formula (BDF),
namely the Backward Euler method, that is an order one scheme, and the BDF2 method,
which is of second order accuracy.

To split the technical difficulties, we first focus on the steady Navier-Stokes equations

ρ(u · ∇)u− µ∆u +∇p = f

and we prove an a posteriori error estimate. Then, we prove a posteriori error estimates
for transient fluids equations by first considering the simpler and linear case of the time
dependent Stokes equations

ρ
∂u
∂t
− µ∆u +∇p = f ,

and we extend the results to the time dependent Navier-Stokes equations

ρ
∂u
∂t

+ ρ(u · ∇)u− µ∆u +∇p = f .

The objectives of this chapter are the followings :

− To present a numerical methods to solve fluids motion equations with anisotropic
finite elements and a time advancing scheme.

− To prove a posteriori error estimates involving the space and the time discretizations.

− To present and to study an adaptive algorithm.
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The outline of the Chapter is as follows: in Section 3.1, we present the numeri-
cal method used to solve the steady Navier-Stokes equations and we demonstrate an
anisotropic a posteriori error estimate. In Section 3.2 and 3.3, numerical experiments are
perfomed with fix and adapted meshes.

In Section 3.4 and 3.5, we study the time dependent Stokes equations and we prove
a posteriori error estimates involving only the spatial approximation (Section 3.4) and
involving both space and time discretization (Section 3.5).

Finally, in Sections 3.6, 3.7 and 3.8, we extend the previous results to the nonlinear
case and we perform numerical experiments with fix meshes and time step in Section 3.9.
In Section 3.10, we present the adaptive algorithm and we perform numerical experiments
with adapted meshes and time steps.

The main theorems of this chapter are: the Theorem 3.6 that contains an anisotropic
a posteriori error estimates for the steady Navier-Stokes equations; the Theorem 3.41 that
proves a an posteriori error bound for the fully discrete time dependent Stokes equations;
finally the Theorem 3.49, resp. 3.57 that contain a semi-discrete a posteriori error esti-
mate for the space, resp. the time, approximation of the time dependent Navier-Stokes
equations.

Throughout all this chapter, we mainly focus on the 2D situation and we comment on
the differences in the three dimensional case whenever it is appropriate.

3.1 A posteriori error estimates for the steady incompress-
ible Navier-Stokes equations

In this section, we study a numerical method to solve the steady Navier-Stokes equations.
We focus on the a posteriori error analysis when using anisotropic meshes. Existing results
for isotropic finite elements can be found for instance in [25], where an a posteriori error
estimate is deriving using the Inverse Function Theorem, or in [17] where an error indicator
is proposed based on the study of linearized equations.

Let Ω be an open, bounded, Lipschitz set of R2, ρ, µ > 0 standing respectively for the
density and the viscosity, and f ∈ (L2(Ω))2, then we are looking for (u, p) the solution of
the incompressible steady Navier-Stokes equation

ρ(u · ∇)u− µ∆u +∇p = f , in Ω,

div u = 0, in Ω,

u = 0, on ∂Ω.

(3.1)

One key to solve the Navier-Stokes equations is to find a functional space for the veloc-
ity and a functional space for the pressure that satisfy the so-called inf-sup condition (also
known as the Ladyzhenskaya-Babuska-Brezzi condition). For instance, it’s well known
that

inf
p∈L2

0(Ω)
p 6=0

 sup
v∈(H1

0 (Ω))2

v 6=0

∫
Ω p div vdx

‖p‖L2(Ω)‖v‖H1(Ω)

 > 0. (3.2)

One can observe two important properties that result from (3.2). First of all, for any
F ∈ (H−1(Ω))2, there exists a unique p ∈ L2

0(Ω) such that

−
∫

Ω
pdiv vdx = F (v), ∀v ∈ (H1

0 (Ω))2.

This is a fundamental result used to prove the existence (and uniqueness) of a pressure
that solves the Navier-Stokes equations. On the other hand, (3.2) implies also that the
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divergence operator is surjective from (H1
0 (Ω))2 to L2

0(Ω). In particular, that means that
there exists a constant C > 0 depending only on Ω such that for all r ∈ L2

0(Ω), there exists
w ∈ (H1

0 (Ω))2 such that

div w = r, ‖∇w‖L2(Ω) ≤ C‖q‖L2(Ω).

This last fact will be used to derive the error estimates.
In a weak formulation, the equations (3.1) reads: find (u, p) ∈ (H1

0 (Ω))2 ×L2
0(Ω) such

that

ρ

∫
Ω

(u · ∇)u · vdx + µ

∫
Ω
∇u · ∇vdx−

∫
Ω
p div vdx =

∫
Ω

f · vdx, ∀v ∈ (H1
0 (Ω))2,

−
∫

Ω
q div udx = 0, ∀q ∈ L2

0(Ω). (3.3)

We know [21, 99] that there exists at least one solution (u, p) ∈ (H1
0 (Ω))2 × L2

0(Ω) to the
equations (3.3). Moreover, the velocity satisfies the following a priori estimate that we
shall use later :

Proposition 3.1.
Let (u, p) ∈ (H1

0 (Ω))2×L2
0(Ω) be a solution of (3.3). Then the following a priori estimate

holds
‖∇u‖L2(Ω) ≤

CP ‖f‖L2(Ω)
µ

, (3.4)

where CP is the Poincaré constant of the domain.

Proof. By choosing v = u in (3.3) yields

ρ

∫
Ω

((u · ∇)u) · udx + µ‖∇u‖2L2(Ω) =
∫

Ω
f · udx.

Reproducing the same computation performed in the framework of the transport equation,
one can show that

ρ

∫
Ω

((u · ∇)u) · udx = 0.

Indeed, since u is divergence free

ρ

∫
Ω

((u · ∇)u)) · udx = ρ

∫
Ω

div
(

u |u|
2

2

)
dx = ρ

∫
∂Ω

u · n |u|
2

2 dx = 0,

where we use the divergence theorem and the boundary condition to conclude. Therefore
it remains that

µ‖∇u‖2L2(Ω) =
∫

Ω
f · udx

which yields the result after using the Cauchy-Schwarz and Poincaré inequality on the
right hand side.

Remark 3.2. (i) One important step to prove an energy estimate, that we will use to
prove the error bounds, is the fact that

ρ

∫
Ω

((u · ∇)u) · udx = ρ

∫
∂Ω

u · n |u|
2

2 dx = 0,

since u has zero trace on ∂Ω. Another condition that yields to the same results is
for instance that u · n = 0 on ∂Ω.
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(ii) Requiring that f ∈ (L2(Ω))2 is too much for (3.3) to be well-posed in (H1
0 (Ω))2 ×

L2
0(Ω) since both existence and uniqueness hold for a more general case where f ∈

(H−1(Ω))2. To simplify the discussion, we directly assume that f is square integrable
since it is necessary to give a sense to our numerical method and estimates.

If we assume that the force term f is small enough, then we can moreover show that the
solutions of (3.1) are unique. This well-known result is presented in the next proposition.

Proposition 3.3 (Uniqueness for small data).
Let us denote by CP the Poincaré constant of Ω and by CSOB the Sobolev embedding
constant of Proposition A.8 in the Appendix. Define

CNS =
CPCSOBρ‖f‖L2(Ω)

µ2 .

If
CNS < 1 (3.5)

then there exists a unique (u, p) ∈ (H1
0 (Ω))2 × L2

0(Ω) satisfying (3.1).

Proof. Assume that (u1, p1), (u2, p2) ∈ (H1
0 (Ω))2 × L2

0(Ω) are two different solutions of
(3.3). Taking the difference between the equations for each solution, we obtain

ρ

∫
Ω

((u1 · ∇)u1 − (u2 · ∇)u2) · vdx + µ

∫
Ω
∇(u1 − u2) · ∇vdx−

∫
Ω

(p1 − p2) div vdx = 0.

Choosing v = u1 − u2 in the last formulation yields

µ‖∇(u1 − u2)‖2L2(Ω) = −ρ
∫

Ω
((u1 · ∇)u1 − (u2 · ∇)u2) · (u1 − u2)dx.

Observe that the non linear part can be written as

−ρ
∫

Ω
((u1 · ∇)(u1 − u2) + ((u1 − u2) · ∇)u2) · (u1 − u2)dx.

Note that since div u1 = 0, we have as in Proposition 3.1 that

−ρ
∫

Ω
((u1 · ∇)(u1 − u2)) · (u1 − u2)dx = 0.

Therefore it remains that

µ‖∇(u1 − u2)‖2L2(Ω) = −ρ
∫

Ω
((u1 − u2) · ∇)u2) · (u1 − u2)dx.

Using Proposition A.8, the right hand side can be bounded by

ρCSOB‖∇u2‖L2(Ω)‖∇(u1 − u2)‖2L2(Ω).

Using moreover the a priori estimate (3.4), we have finally that

µ‖∇(u1 − u2)‖2L2(Ω) ≤
CPCSOBρ‖f‖L2(Ω)

µ
‖∇(u1 − u2)‖2L2(Ω) = CNSµ‖∇(u1 − u2)‖2L2(Ω).

Since we assume that CNS < 1, we obtain that

(1− CNS)µ‖∇(u1 − u2)‖2L2(Ω) ≤ 0

implying that u1 = u2. By the inf-sup condition (3.2), we necessarily have that p1 =
p2.
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To approximate the equations (3.3) with finite elements, we may first check that the
inf-sup condition holds also between the discrete space for the velocity and the discrete
space for the pressure. This is the case when P2 continuous finite elements are used to
approximate the velocity and P1 for the pressure. When P1−P1 elements are used, the inf-
sup condition does not hold and some alternative techniques have to be used to guarantee
the solvability of the numerical scheme. We focus on stabilization techniques, namely the
so-called PSPG methods (Pressure Stabilized Petrov-Galerkin), see for instance [92] for
the case of isotropic finite elements. The idea is to add a residual term to the standard
finite elements discretization of the mass conservation equation. From now, we assume
that Ω is a convex polygon in R2. The numerical method reads: for all h > 0, let Th be
a conformal triangulation of Ω into triangles K of diameter hK ≤ h. Let us note by Wh

the classical finite elements set of all continuous, piecewise linear functions, and by Wh,0
the subset of Wh which elements have zero value on ∂Ω. Finally let Vh = (Wh,0)2 and
Qh = Wh ∩ L2

0(Ω) be respectively the discrete velocity space and pressure space. Then,
we are looking for (uh, ph) ∈ Vh ×Qh such that

ρ

∫
Ω

(uh · ∇)uh · vhdx + µ

∫
Ω
∇uh · ∇vhdx−

∫
Ω
ph div vhdx

+
∑
K∈Th

αK

∫
K

(f − ρ(uh · ∇)uh + µ∆uh −∇ph) · (ρ(uh · ∇)vh − µ∆vh) dx

=
∫

Ω
f · vhdx, ∀vh ∈ Vh,

−
∫

Ω
qh div uhdx+

∑
K∈Th

αK

∫
K

(f − ρ(uh · ∇)uh + µ∆uh −∇ph)·∇qhdx = 0, ∀qh ∈ Qh,

(3.6)

where αK (in the isotropic setting) is given by

αK = αh2
K

µξ(ReK)

with α > 0 and

ξ(ReK) =
{

1 if ReK ≤ 1,
ReK if ReK ≥ 1,

where we define the local Reynolds number ReK by

ReK =
ρ‖uh‖L∞(K)hK

µ
.

Analysis of the above method was proposed in [48]. Observe that the above method is the
equivalent of the SUPG method for advection-diffusion equation and that the stabilization
technique proposed is a consistent stabilization. Indeed all the terms of the equation are
put into the stabilization part, and therefore the exact solution (u, p) satisfies also the
numerical method (3.27).

For the anisotropic case, we follow the idea advocated in [78] for the steady Stokes
equations and we choose αK as

αK =
αλ2

2,K
µξ(ReK) (3.7)

where the anisotropic local Reynolds number is given by

ReK =
ρ‖uh‖L∞(K)λ2,K

µ
. (3.8)
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Note that if we consider Ω ∈ R3, the numerical method reads the same, the only difference
being that we replace λ2,K by λ3,K in the definitions of αK and ReK .

We prove, under the assumption that the numerical method converges, an a posteri-
ori error estimate. We always work under the small data hypothesis, implying that the
problem (3.1) has a unique solution. The a posteriori error estimate is contained in the
next theorem. The result is not fully satisfactory in our framework since isotropic terms
remain in the estimator. Later on, we will prove a better estimate, more convenient for
anisotropic meshes (see Theorem 3.6).

Theorem 3.4 (A first anisotropic a posteriori error estimate for the steady Navier-Stokes
equations).
Let us assume that the small data hypothesis (3.5) is fullfilled, that is to say

CNS < 1,

and let (u, p) ∈ (H1
0 (Ω))2 × L2

0(Ω) be the solution of (3.1). Assume that there exists a
unique (uh, ph) ∈ Vh × Qh that is solution of (3.6), where αK is given by its anisotropic
version (3.7) and that moreover ‖∇(u − uh)‖L2(Ω) → 0 as h → 0. Then, there exists
h0 > 0 and a constant C > 0 depending only on Ω and the reference triangle K such that
if h ≤ h0 we have:

µ‖∇(u− uh)‖2L2(Ω) + 1
µ
‖p− ph‖2L2(Ω)

≤ C

(1− CNS)2

∑
K∈Th

(ηAK,u)2 + (ηIK,p)2 + (ηdiv
K )2, (3.9)

where

(ηAK,u)2 =
(
‖f − ρ(uh · ∇)uh + µ∆uh −∇ph‖L2(K) + 1

2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K)

)
ωK(u−uh),

(ηIK,p)2 = 1
µ

(λ2
1,K+λ2

2,K)
(
‖f − ρ(uh · ∇)uh + µ∆uh −∇ph‖L2(K) + 1

2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K)

)2

(ηdiv
K )2 = µ‖ div uh‖2L2(K).

Proof. In what follows, we denote by C > 0 any positive constant that may depend only
on the reference triangle or the domain Ω, which value may change from line to line. When
it is necessary, we denote by CSOB the Sobolev constant of Proposition A.8.

Step 1. A first estimate for the velocity.
We first derive an estimate for the velocity. Observe that

µ‖∇(u− uh)‖2L2(Ω) = µ

∫
Ω
∇(u− uh) · ∇(u− uh)dx

+
∫

Ω
(p− ph) div(u− uh)dx−

∫
Ω

(p− ph) div(u− uh)dx

+ ρ

∫
Ω

((u · ∇)u) · (u− uh)dx− ρ
∫

Ω
((u · ∇)u) · (u− uh)dx

+ ρ

∫
Ω

((uh · ∇)uh) · (u− uh)dx− ρ
∫

Ω
((uh · ∇)uh) · (u− uh)dx.
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Since (u, p) are the exact solutions to the Navier-Stokes equations, we have in fact

µ‖∇(u− uh)‖2L2(Ω) =
∫

Ω
f · (u− uh)dx− ρ

∫
Ω

((uh · ∇)uh) · (u− uh)dx

− µ
∫

Ω
∇uh · ∇(u− uh)dx +

∫
Ω
ph div(u− uh)dx

+
∫

Ω
(p− ph) div uhdx− ρ

∫
Ω

((u · ∇)u− (uh · ∇)uh) · (u− uh)dx.

Using (3.6), we can remove any couple of test functions (vh, qh) ∈ Vh ×Qh and it yields

µ‖∇(u− uh)‖2L2(Ω) =
∫

Ω
f · (u− uh − vh)dx− ρ

∫
Ω

((uh · ∇)uh) · (u− uh − vh)dx

− µ
∫

Ω
∇uh · ∇(u− uh − vh)dx +

∫
Ω
ph div(u− uh − vh)dx

+
∫

Ω
(p− ph − qh) div uhdx

+
∑
K∈Th

αK

∫
K

(f − ρ(uh · ∇)uh + µ∆uh −∇ph) · (ρuh · ∇vh − µ∆vh +∇qh)

− ρ
∫

Ω
((u · ∇)u− (uh · ∇)uh) · (u− uh)dx.

An integration by parts over each triangle yields finally

µ‖∇(u− uh)‖2L2(Ω) =
∑
K∈Th

(∫
K

(f − ρ(uh · ∇)uh + µ∆uh −∇ph)(u− uh − vh)dx

+1
2

∫
∂K

[µ∇uh · n] · (u− uh − vh)dx
)

+
∫

Ω
(p− ph − qh) div uhdx

+
∑
K∈Th

αK

∫
K

(f − ρ(uh · ∇)uh + µ∆uh −∇ph) · (ρ(uh · ∇)vh − µ∆vh +∇qh) dx

− ρ
∫

Ω
((u · ∇)u− (uh · ∇)uh) · (u− uh)dx.

Choosing vh = Rh(u − uh) and qh = 0, and applying the Cauchy-Schwarz inequality, we
obtain, using the anisotropic interpolation error estimates for the Clément’s interpolant
of Proposition 1.2 (note that we use the fact ∆vh = 0 on each K)

µ‖∇(u− uh)‖2L2(Ω)

≤ C
∑
K∈Th

(
‖f − ρ(uh · ∇)uh + µ∆uh −∇ph‖L2(K) + 1

2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K)

)
ωK(u−uh)

+ ‖p− ph‖L2(Ω)‖ div uh‖L2(Ω)

+
∑
K∈Th

αK ‖f − ρ(uh · ∇)uh + µ∆uh −∇ph‖L2(K) ‖ρ(uh · ∇)Rh(u− uh)‖L2(K)

− ρ
∫

Ω
((u · ∇)u− (uh · ∇)uh) · (u− uh)dx. (3.10)

We first bound the third term of the right hand side. Observe that

αK ‖ρ(uh · ∇)Rh(u− uh)‖L2(K) ≤ αKρ‖uh‖L∞(K)‖∇Rh(u− uh)‖L2(K).
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Note that

αKρ‖uh‖L∞(K) =
αλ2

2,Kρ‖uh‖L∞(K)

µξ(ReK) = αλ2,K
ReK
ξ(ReK) ≤ αλ2,K

since we clearly have that ReK
ξ(ReK) ≤ 1. It yields

αK ‖ρ(uh · ∇)Rh(u− uh)‖L2(K) ≤ αλ2,K ‖∇Rh(u− uh)‖L2(K) .

The same computations made to derive an a posteriori error estimate for the transport
(see Theorem 2.29, inequality (2.54)) yield

αλ2,K ‖∇Rh(u− uh)‖L2(K) ≤ CωK(u− uh).

Therefore, putting all together, we have that

αK ‖ρ(uh · ∇)Rh(u− uh)‖L2(K) ≤ CωK(u− uh)

implying that the stabilization term∑
K∈Th

αK ‖f − ρ(uh · ∇)uh + µ∆uh −∇ph‖L2(K) ‖ρ(uh · ∇)Rh(u− uh)‖L2(K)

is bounded by

C
∑
K∈Th

‖f − ρ(uh · ∇)uh + µ∆uh −∇ph‖L2(K) ωK(u− uh)

and therefore can be absorbed in the first term of (3.10). To conclude this first step, we
have still to bound the last term of (3.10) involving the nonlinear terms. Formally, observe
that

(u · ∇)u− (uh · ∇)uh = (u · ∇)u− (u · ∇)uh + (u · ∇)uh − (uh · ∇)uh
= (u · ∇)(u− uh) + ((u− uh) · ∇)uh.

Therefore we have

ρ

∫
Ω

((u · ∇)u− (uh · ∇)uh) · (u− uh)dx

= ρ

∫
Ω

((u · ∇)(u− uh)) · (u− uh)dx + ρ

∫
Ω

(((u− uh) · ∇)uh) · (u− uh)dx.

The first term can be shown to be zero. Since u is divergence free and vanishes on ∂Ω

ρ

∫
Ω

((u·∇)(u−uh))·(u−uh)dx = ρ

∫
Ω

div
(

u |u− uh|2

2

)
dx = ρ

∫
∂Ω

u·n |u− uh|2

2 dx = 0.

So we finally have, using Proposition A.8 of the Appendix that

ρ

∫
Ω

((u · ∇)u− (uh · ∇)uh) · (u− uh)dx = ρ

∫
Ω

(((u− uh) · ∇)uh) · (u− uh)dx

≤ ρCSOB‖∇uh‖L2(Ω)‖∇(u− uh)‖2L2(Ω)

≤
(
ρCSOB‖∇(u− uh)‖L2(Ω) + ρCSOB‖∇u‖L2(Ω)

)
‖∇(u− uh)‖2L2(Ω).
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Using the a priori estimate (3.4), we have finally that

ρ

∫
Ω

((u · ∇)u− (uh · ∇)uh) · (u− uh)dx

≤
(
ρCSOB‖∇(u− uh)‖L2(Ω)

µ
+
ρCPCSOB‖f‖L2(Ω)

µ2

)
µ‖∇(u− uh)‖2L2(Ω)

=
(
ρCSOB‖∇(u− uh)‖L2(Ω)

µ
+ CNS

)
µ‖∇(u− uh)‖2L2(Ω)

Since 1 − CNS > 0 and we assume that ‖∇(u − uh)‖L2(Ω) → 0 as h → 0, there exists
h0 > 0 such that if h ≤ h0 then

ρCSOB‖∇(u− uh)‖L2(Ω)
µ

≤ 1− CNS
2

implying that
ρCSOB‖∇(u− uh)‖L2(Ω)

µ
+ CNS ≤

1− CNS
2 + CNS = 1 + CNS

2 < 1.

In conclusion, we can pass the term(
ρCSOB‖∇(u− uh)‖L2(Ω)

µ
+ CNS

)
µ‖∇(u− uh)‖2L2(Ω)

to the left hand side, and obtain that

1− CNS
2 µ‖∇(u− uh)‖2L2(Ω)

≤ C
∑
K∈Th

(
‖f − ρ(uh · ∇)uh + µ∆uh −∇ph‖L2(K) + 1

2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K)

)
ωK(u−uh)

+ ‖p− ph‖L2(Ω)‖ div uh‖L2(Ω),

which yields (since again 1− CNS > 0)

µ‖∇(u− uh)‖2L2(Ω)

≤ C

1− CNS

∑
K∈Th

(
‖f − ρ(uh · ∇)uh + µ∆uh −∇ph‖L2(K) + 1

2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K)

)
ωK(u−uh)

+ 2
1− CNS

‖p− ph‖L2(Ω)‖ div uh‖L2(Ω).

Step 2. Estimate for the pressure.
To finish the proof, we have to estimate ‖p − ph‖L2(Ω). To do so, we use the inf-sup

condition (3.2) that implies that there exists w ∈ (H1
0 (Ω))2 such that

div w = ph − p, ‖∇w‖L2(Ω) ≤ C‖p− ph‖L2(Ω).

We have then

‖p− ph‖2L2(Ω) = −
∫

Ω
(p− ph) div wdx = −

∫
Ω
p div wdx +

∫
Ω
ph div wdx

=
∫

Ω
f ·w− ρ((u · ∇)u) ·w− µ∇u∇wdx +

∫
Ω
ph div wdx

=
∫

Ω
f ·w− ρ((uh · ∇)uh) ·w− µ∇uh∇w + ph div wdx

− ρ
∫

Ω
((u · ∇)u− (uh · ∇)uh) ·wdx− µ

∫
Ω
∇(u− uh) · ∇wdx.
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Using (3.6), we can remove any vh ∈ Vh and we get

‖p−ph‖2L2(Ω) =
∫

Ω
f ·(w−vh)−ρ((uh·∇)uh)·(w−vh)−µ∇uh∇(w−vh)+ph div(w−vh)dx

+
∑
K∈Th

αK

∫
K

(f − ρ(uh · ∇)uh + µ∆uh −∇ph) · (ρ(uh · ∇)vh − µ∆vh) dx

− ρ
∫

Ω
((u · ∇)u− (uh · ∇)uh) ·wdx− µ

∫
Ω
∇(u− uh) · ∇wdx.

We finish as we did in the first step. We integrate by parts and use the Cauchy-Schwarz
inequality to obtain

‖p− ph‖2L2(Ω)

≤
∑
K∈Th

‖f−ρ(uh·∇)uh+µ∆uh+∇ph‖L2(K)‖w−vh‖L2(K)+
1
2‖ [µ∇uh · n] ‖L2(∂K)‖w−vh‖L2(∂K)

+
∑
K∈Th

αK ‖f − ρ(uh · ∇)uh + µ∆uh −∇ph‖L2(K) ‖ρ(uh · ∇)vh − µ∆vh‖L2(Ω)

− ρ
∫

Ω
((u · ∇)u− (uh · ∇)uh) ·wdx− µ

∫
Ω
∇(u− uh) · ∇wdx.

Choosing vh = Rh(w) and using the anisotropic Clément’s interpolation error estimate,
we obtain, after bounding the terms coming from the stabilization in the same manner as
we did in the first step,

‖p− ph‖2L2(Ω)

≤ C
∑
K∈Th

(
‖f − ρ(uh · ∇)uh + µ∆uh +∇ph‖L2(K) + 1

2
√
λ2,K

‖ [µ∇uh · n] ‖L2(∂K)

)
ωK(w)

− ρ
∫

Ω
((u · ∇)u− (uh · ∇)uh)wdx− µ

∫
Ω
∇(u− uh) · ∇wdx. (3.11)

To simplify the rest of the proof, we note

νK = ‖f − ρ(uh · ∇)uh + µ∆uh +∇ph‖L2(K) + 1
2
√
λ2,K

‖ [µ∇uh · n] ‖L2(∂K).

We now treat each of the three terms of the right hand side. Since r1,K , r2,K form an
orthonormal basis, we recall that

(rT1,KGK(w)r1,K + rT2,KGK(w)r2,K)1/2 = ‖∇w‖L2(∆K).

Therefore, one have

ωK(w) ≤
√
λ2

1,K + λ2
2,K(rT1,KGK(w)r1,K+rT2,KGK(w)r2,K)1/2 =

√
λ2

1,K + λ2
2,K‖∇w‖L2(∆K).

The discrete Cauchy-Swchwarz inequality implies then

∑
K∈Th

νKωK(w) ≤

 ∑
K∈Th

(λ2
1,K + λ2

2,K)ν2
K

1/2 ∑
K∈Th

‖∇w‖2L2(∆K)

1/2

.

We recall (see the hypothesis (i) presented in Section 1.1) that for all vertices in Th,
its number of neighbors is uniformly bounded by above with respect to the mesh size.
Therefore one may bound ∑

K∈Th

‖∇w‖2L2(∆K)

1/2

≤ C‖∇w‖L2(Ω)
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implying that the first term of (3.11) is bounded by

C

 ∑
K∈Th

(λ2
1,K + λ2

2,K)ν2
K

1/2

‖∇w‖L2(Ω),

where C is in particular independent of the aspect ratio. The last term of (3.11) can be
bounded directly by

−µ
∫

Ω
∇(u− uh) · ∇wdx ≤ µ‖∇(u− uh)‖L2(Ω)‖∇w‖L2(Ω).

The nonlinear term is estimated in the following way. Note that

− ρ
∫

Ω
((u · ∇)u− (uh · ∇)uh) ·wdx

= −ρ
∫

Ω
((u · ∇)(u− uh) + ((u− uh) · ∇)uh) ·wdx.

Using the Proposition A.8, we obtain

− ρ
∫

Ω
((u · ∇)u− (uh · ∇)uh) ·wdx

≤ CSOBρ
(
‖∇u‖L2(Ω) + ‖∇uh‖L2(Ω)

)
‖∇(u− uh)‖L2(Ω)‖∇w‖L2(Ω).

Using the triangle inequality and the a priori estimate (3.4), we have that

CSOBρ
(
‖∇u‖L2(Ω) + ‖∇uh‖L2(Ω)

)
≤ CSOBρ

(
2‖∇u‖L2(Ω) + ‖∇(u− uh)‖L2(Ω)

)
≤
(

2ρCSOBCP ‖f‖L2(Ω)
µ2 +

ρCSOB‖∇(u− uh)‖L2(Ω)
µ

)
µ

=
(

2CNS +
ρCSOB‖∇(u− uh)‖L2(Ω)

µ

)
µ.

We recall that we choose in the Step 1 h0 such that if h ≤ h0 we have

ρCSOB‖∇(u− uh)‖L2(Ω)
µ

≤ 1− CNS
2 .

Therefore we finally have that

− ρ
∫

Ω
((u · ∇)u− (uh · ∇)uh) ·wdx

≤
(

2CNS + 1− CNS
2

)
µ‖∇(u− uh)‖L2(Ω)‖∇w‖L2(Ω)

3CNS + 1
2 µ‖∇(u− uh)‖L2(Ω)‖∇w‖L2(Ω) ≤ 2µ‖∇(u− uh)‖L2(Ω)‖∇w‖L2(Ω)

since CNS < 1. Putting all together into (3.11), we finally obtain

‖p − ph‖2L2(Ω) ≤

C
 ∑
K∈Th

(λ2
1,K + λ2

2,K)ν2
K

1/2

+ 3µ‖∇(u− uh)‖L2(Ω)

 ‖∇w‖L2(Ω).

Using that ‖∇w‖L2(Ω) ≤ C‖p− ph‖L2(Ω) yields

‖p− ph‖L2(Ω) ≤ C


 ∑
K∈Th

(λ2
1,K + λ2

2,K)ν2
K

1/2

+ 3µ‖∇(u− uh)‖L2(Ω)

 . (3.12)
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Step 3. Put estimates for velocity and pressure together.
We recall that we note

νK = ‖f − ρ(uh · ∇)uh + µ∆uh +∇ph‖L2(K) + 1
2
√
λ2,K

‖ [µ∇uh · n] ‖L2(∂K).

From the step 1, we have

µ‖∇(u− uh)‖2L2(Ω)

≤ C

1− CNS

∑
K∈Th

νKωK(u− uh) + 2
1− CNS

‖p− ph‖L2(Ω)‖ div uh‖L2(Ω).

Using the estimate for ‖p− ph‖L2(Ω) obtained through the step 2, we have

µ‖∇(u− uh)‖2L2(Ω) ≤
C

1− CNS

∑
K∈Th

νKωK(u− uh)

+ C

1− CNS


 ∑
K∈Th

(λ2
1,K + λ2

2,K)ν2
K

1/2

+ µ‖∇(u− uh)‖L2(Ω)

 ‖ div uh‖L2(Ω).

Using the Young’s inequality, one can prove the desired a posteriori error estimate for the
velocity

µ‖∇(u−uh)‖2L2(Ω) ≤
C

(1− CNS)2

∑
K∈Th

(
νKωK(u− uh) + (λ2

1,K + λ2
2,K)ν

2
K

µ
+ µ‖div uh‖2L2(K)

)
.

(3.13)
Note that we use the bound

1
1− CNS

≤ 1
(1− CNS)2

to put the constance in front of the estimate. Finally, plugging the last estimate into
(3.12) yields

‖p−ph‖2L2(Ω) ≤
C

(1− CNS)2

∑
K∈Th

(
µνKωK(u− uh) + (λ2

1,K + λ2
2,K)ν2

K + µ2‖ div uh‖2L2(K)

)
.

Dividing by µ on both sides, we finally obtain as estimate for the pressure

1
µ
‖p−ph‖2L2(Ω) ≤

C

(1− CNS)2

∑
K∈Th

(
νKωK(u− uh) + (λ2

1,K + λ2
2,K)ν

2
K

µ
+ µ‖ div uh‖2L2(K)

)
.

Summing this last estimate with (3.13) yields the result.

Remark 3.5. (i) As already mentioned, the a posteriori error estimate of Theorem 3.4
is not standard since the exact velocity u is contained in the estimate. We shall use
the ZZ post-processed solution ΠZZ

h uh to obtain a computable bound as presented
in the previous chapters. Note that the post-processing of a vector field is the post-
processing of each components.

(ii) Note that the a posteriori error estimate (3.9) is valid only asymptotically (since
h must be small enough) and under the assumption that the numerical method
converges. This last hypothesis seems reasonable and not too constraining since we
only ask for the convergence in the H1 semi-norm without requiring any order of
convergence. This condition is quite natural when dealing with nonlinear problem.
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The a posteriori error estimate presented in Theorem 3.4 is not strictly anisotropic,
the main issue being to derive an anisotropic error estimate for the pressure. Indeed,
estimating the pressure requires to make appears the quantity

(λ2
1,K + λ2

2,K)
(
‖f − ρ(uh · ∇)uh + µ∆uh −∇ph‖L2(K) + 1

2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K)

)2

.

The term (λ2
1,K +λ2

2,K) can be bounded either by 2λ2
1,K , which yields a very bad estimate

for stretch triangles, or by
(
λ2

1,K
λ2

2,K
+ 1

)
λ2

2,K which makes appear the aspect ratio, forcing to
use isotropic finite elements to control it. This is a really bad drawback, since it completely
annihilates our goal and the main advantage of the anisotropic framework we use, that
is to say proving estimates that do not depend on the mesh aspect ratio, that gives a
theoretical justification to the use of anisotropic meshes.

To circumvent this drawback, in [86] the author propose to solve a dual problem rather
than using the inf-sup condition to recover a pressure estimate. Let p be the pressure
solution in (3.1) and ph its finite elements approximation obtained by solving (3.6) with
αK given by (3.7). We look for (w, r) ∈ (H1

0 (Ω))2 × L2
0(Ω) the weak solution of

−µ∆w +∇r = 0, in Ω,

div w = ph − p, in Ω,

w = 0, on ∂Ω.

(3.14)

Note that (3.14) is a standard Stokes problem, and its well-posedness in (H1
0 (Ω))2×L2

0(Ω)
is ensured by the inf-sup condition [21], leading to the following a priori estimate :

‖∇w‖L2(Ω) + 1
µ
‖r‖L2(Ω) ≤ C‖p− ph‖L2(Ω), (3.15)

where C > 0 is a constant depending only on Ω. Using the dual solution, one can derive
the same a posteriori estimates as the one presented in Theorem 3.4, excepted that one
may replace the quantity (ηIK,p)2 by(

‖f − ρ(uh · ∇)uh + µ∆uh −∇ph‖L2(K) + 1
2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K)

)
ωK(w).

The proof follows exactly the same arguments as those presented in the demonstration of
Theorem 3.4, the only difference being that in (3.12) we keep ωK(w) rather than bound it
by
√
λ2

1,K + λ2
2,K‖∇w‖L2(∆K). By sake of completeness, we write down below the Theorem

and its proof that uses the dual problem rather than the inf-sup condition to derive the
pressure estimate.

Theorem 3.6 (An anisotropic a posteriori error estimate for the steady Navier-Stokes
equatiosn: a second estimate).
Let us assume that the small data hypothesis (3.5) is fullfilled, that is to say

CNS < 1,

and let (u, p) ∈ (H1
0 (Ω))2 × L2

0(Ω) be the solution of (3.1). Assume that there exists a
unique (uh, ph) ∈ Vh × Qh that is solution of (3.6), where αK is given by its anisotropic
version (3.7), and moreover that ‖∇(u − uh)‖L2(Ω) → 0 as h → 0. Finally, let (w, r) ∈
(H1

0 (Ω))2×L2
0(Ω) the solution of the dual problem (3.14). Then, there exists h0 > 0 small
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enough and a constant C > 0 depending only on Ω and the reference triangle K such that
if h ≤ h0

µ‖∇(u− uh)‖2L2(Ω) + 1
µ
‖p− ph‖2L2(Ω)

≤ C

(1− CNS)2

∑
K∈Th

(ηAK,u)2 + (ηAK,p)2 + (ηdiv
K )2, (3.16)

where

(ηAK,u)2 =
(
‖f − ρ(uh · ∇)uh + µ∆uh −∇ph‖L2(K) + 1

2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K)

)
ωK(u−uh),

(ηAK,p)2 = 1
µ

(
‖f − ρ(uh · ∇)uh + µ∆uh −∇ph‖L2(K) + 1

2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K)

)
ωK(w)

(ηdiv
K )2 = µ‖ div uh‖2L2(K).

Proof. We proceed as in the Theorem 3.4 and separate the proof into three steps. Below,
we will denote by C any constants that depend only on the reference triangle and Ω. We
keep the notation

νK = ‖f − ρ(uh · ∇)uh + µ∆uh −∇ph‖L2(K) + 1
2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K) .

Step 1 : estimate for the velocity.
Following exactly the same computation as in the Step 1 of Theorem 3.4, we derive

that

µ‖∇(u− uh)‖2L2(Ω) ≤
C

1− CNS

∑
K∈Th

νKωK(u− uh)

+ 2
1− CNS

‖p− ph‖L2(Ω)‖ div uh‖L2(Ω).

Using the Young’s inequality, the last estimate is equivalent to

µ‖∇(u− uh)‖2L2(Ω)

≤ C

1− CNS

∑
K∈Th

(
‖f − ρ(uh · ∇)uh + µ∆uh −∇ph‖L2(K) + 1

2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K)

)
ωK(u−uh)

+ 2
1− CNS

( 1
2ε‖p− ph‖

2
L2(Ω) + ε

2‖ div uh‖2L2(Ω)

)
,

where ε > 0 has to be chosen at the end of the proof.

Step 2 : estimate for the pressure.
Since div w = ph − p, we have

‖p− ph‖2L2(Ω) = −
∫

Ω
(p− ph) div wdx.

Therefore, by following the same steps as in Theorem 3.4, we obtain

‖p− ph‖2L2(Ω) ≤ C
∑
K∈Th

νKωK(w) + 3µ‖∇(u− uh)‖L2(Ω)‖∇w‖L2(Ω).
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Using the fact that
‖∇w‖L2(Ω) ≤ C‖p− ph‖L2(Ω)

we obtain, by using the Young’s inequality, that there exists C̃ > 0 depending only on the
reference triangle and Ω such that

‖p− ph‖2L2(Ω) ≤ C̃

 ∑
K∈Th

νKωK(w) + µ2‖∇(u− uh)‖2L2(Ω)

 . (3.17)

Step 3 : put all together.
Combining the estimates obtained in the steps 1 and 2, we have for the velocity

µ‖∇(u− uh)‖2L2(Ω) ≤
C

1− CNS

∑
K∈Th

νKωK(u− uh)

+ 2
1− CNS

 C̃

2ε
∑
K∈Th

νKωK(w) + C̃

2εµ
2‖∇(u− uh)‖2L2(Ω) + ε

2‖ div uh‖2L2(Ω)

 . (3.18)

We finish the proof by choosing ε = C̃µ
2(1−CNS) and plugging again (3.18) into (3.17), and

conclude as in Theorem 3.4 by summing the estimates for the velocity and the pressure.

As already commented, the main difference between Theorem 3.4 and 3.6 is that
we choose to write the anisotropic error indicator (ηAK,p)2 in Theorem 3.6 rather than
the isotropic quantity (ηIK,p)2 of Theorem 3.4. Since w is the solution of the system of
equations (3.14), in practice, to obtain a computable bound, we can replace w in (3.16)
by its finite elements approximation wh. To do so, we first have to find a superconvergent
approximation Ph of the pressure p and then approximate the problem

−µ∆w +∇r = 0, in Ω,

div w = ph − Ph, in Ω,

w = 0, on ∂Ω.

Finding this Ph is not an obvious task and out of the scope of our work. We can however
convince ourself that if p− ph converges, then the error indicator (ηAK,p)2 is at least of the
right order since ‖∇w‖L2(Ω) goes as ‖p−ph‖L2(Ω). Therefore, in the numerical experiments
and in particular in the adaptive framework, we will not consider the pressure estimates
and choose heuristically only

∑
K∈Th(ηAK,u)2 as an error indicator for the velocity.

Remark 3.7 (3D anisotropic a posteriori error estimates).
Both Theorems 3.4 and 3.6 are easily generalizable to R3. In this case, we have

(ηAK,u)2 = νKωK(u− uh), (ηAK,p)2 = 1
µ
νKωK(w), (ηIK,p)2 = 1

µ
(λ2

1,K + λ2
2,K + λ2

3,K)ν2
K ,

with

νK = ‖f − ρ(uh · ∇)uh + µ∆uh −∇ph‖L2(K) + 1
2
√
λ3,K

‖[µ∇uh · n]‖L2(∂K)

and where for v ∈ (H1(Ω))3

ωK(v) =
(
λ2

1,KrT1,KGK(v)r1,K + λ2
2,KrT2,KGK(v)r2,K + λ2

3,KrT3,KGK(v)r3,K
)1/2

.
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3.2 Numerical experiments for the steady incompressible
Navier-Stokes equations with non-adapted meshes

We now perform numerical experiments on non-adapted meshes to check the convergence
of the method (3.6), where the stabilization parameter αK is chosen as the anisotropic
version (3.7) i.e.

αK =
αλ2

2,K
µξ(ReK)

with the anisotropic local Reynolds number given by

ReK =
ρ‖uh‖L∞(K)λ2,K

µ
.

Based on the results obtained in [86, 89] for similar problems, we set α = 0.01. A Newton
method is applied to solve the nonlinearity issue.

We now present our choice for an error indicator. As already mentioned above, we
only consider the velocity. Based on the a posteriori error estimate contained in Theorem
3.6, we define ηA the velocity error indicator as

ηA =

 ∑
K∈Th

(ηK)2

1/2

(3.19)

with

(ηK)2 =
(
‖f − ρ(uh · ∇)uh + µ∆uh −∇ph‖L2(K) + 1

2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K)

)
ω̃K(ΠZZ

h uh − uh),

where we recall that ΠZZ
h stands for the Zienkiewicz-Zhu post-processing and ω̃K is the

simplified anisotropic form (1.18) given for vector valued functions by

ω̃2
K(v) = ω̃2

K(v1) + ω̃2
K(v2), v = (v1, v2) ∈ (H1(Ω))2.

Observe that we do not put in our indicator the divergence part of the estimate (3.16),
the reason being that the quantity

µ
1/2‖div uh‖L2(Ω)

is small compared to the rest of the estimate, as it will be verified in the numerical
experiments.

As we did in the framework of elliptic problem, we are mainly interested in the effec-
tivity indices ei and eiZZ that stand respectively for

ηA

eµ,H1
,
‖∇(ΠZZ

h uh − uh)‖L2(Ω)
eH1

,

where the numerical errors for the velocity are defined by

eµ,H1 = µ
1/2‖∇(u− uh)‖L2(Ω), eH1 = ‖∇(u− uh)‖L2(Ω).

To check the convergence of the pressure, we also compute the L2 norm of p− ph denoted
ep and the quantity

ediv = µ
1/2‖ div uh‖L2(Ω).
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Example 3.8 (An anisotropic solution to the steady incompressible Navier-Stokes equa-
tions: an example with a boundary layer).
We consider Ω as the rectangle (0, 0.15)×(0, 0.03) and we compute f such that the solutions
of the Navier-Stokes equations (3.1) are given by

u(x1, x2) = (uε(x2), 0), p(x1, x2) = 10(0.15− x1),

where

uε(x2) =



1, 0 ≤ x2 ≤ 0.005,

exp
(

(x2−0.005)2

(x2−0.005)2−ε2
)
, 0.005 ≤ x2 ≤ 0.005 + ε,

0, 0.005 + ε ≤ x2 ≤ 0.03.

The vector field u is trivially divergence free and has a strong variation in a region of
height ε. We impose Dirichlet boundary conditions for the velocity on ∂Ω and to simplify
the implementation, we fix the pressure on the right side of Ω rather than to impose the
zero mean value condition. To check that the error indicator is independent of the data
of the problem, we define the Reynolds number associated to this example by Re = ρ0.03

µ .
For all the experiments, we set ρ = 1 and we vary the viscosity.

For our purposes, we would like to observe the following facts:

− ei is close to a constant and in particular is independent of the mesh aspect ratio,
the solution of the problem and the Reynolds number Re.

− eiZZ is close to 1.

We first solve this example with ε = 0.02 for meshes of typical aspect ratio 10, 50 and
500 and Reynolds number 1 and 100. The results are reported in the Table 3.1. ei stays
close to a value of 3 and the ZZ post-processing is asymptotically exact. To check that the
effectivity index is independent of the solution we solve the same example with ε = 0.005.
The results are reported in the Table 3.2.
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h1 − h2 eµ,H1 eiA eH1 eiZZ ep ediv
0.05 - 0.005 0.15 3.26 0.88 1.11 0.027 0.011
0.025 - 0.0025 0.082 2.78 0.47 1.12 0.011 0.0042

0.0125 - 0.00125 0.043 2.84 0.24 1.08 0.0037 0.0024
0.05 - 0.005 0.015 3.31 0.88 1.09 0.00034 0.00101
0.025 - 0.0025 0.0082 2.79 0.48 1.11 0.00015 0.00047

0.0125 - 0.00125 0.0043 2.84 0.25 1.08 0.000052 0.00025
0.05 - 0.001 0.041 2.81 0.23 1.04 0.0079 0.00086
0.025 - 0.0005 0.017 3.02 0.099 1.03 0.0033 0.00035

0.0125 - 0.00025 0.0087 2.79 0.051 1.00 0.0013 0.00024
0.05 - 0.001 0.0041 2.84 0.23 1.05 0.00029 0.000085
0.025 - 0.0005 0.0017 3.03 0.099 1.03 0.000091 0.000041

0.0125 - 0.00025 0.00087 2.81 0.051 1.00 0.000038 0.000028
0.05 - 0.0001 0.0029 2.97 0.017 0.99 0.0027 0.00018

0.025 - 0.00005 0.0017 2.91 0.01005 1.00 0.0033 0.000066
0.05 - 0.0001 0.00029 2.97 0.017 0.99 0.000036 0.000019

0.025 - 0.00005 0.00017 2.94 0.01006 1.00 0.000015 0.0000098

Table 3.1: Numerical results for Example 3.9 with ε = 0.02. The mesh aspect ratio is 10
(rows 1-6), 50 (rows 7-12) and 500 (rows 13-16) . The Reynolds number is set to 1 (rows
1-3, 7-9 and 13-14) and 100 (rows 4-6,10-12 and 15-16).

h1 − h2 eµ,H1 eiA eH1 eiZZ ep ediv
0.025 - 0.0005 0.15 2.82 0.86 1.07 0.081 0.0078

0.0125 - 0.00025 0.074 2.82 0.43 1.06 0.014 0.0021
0.00625 - 0.000125 0.035 2.84 0.21 1.02 0.0025 0.0017
0.025 - 0.0005 0.015 2.82 0.86 1.07 0.00083 0.00066

0.0125 - 0.00025 0.0074 2.83 0.43 1.06 0.00017 0.00021
0.00625 - 0.000125 0.0035 2.84 0.21 1.02 0.000022 0.00011

0.05 - 0.0001 0.023 2.83 0.13 1.00 0.0079 0.00072
0.025 - 0.00005 0.014 2.81 0.081 1.00 0.0064 0.00032
0.05 - 0.0001 0.0023 2.83 0.13 1.00 0.000086 0.000073

0.025 - 0.00005 0.0014 2.81 0.081 1.00 0.000061 0.000032

Table 3.2: Numerical results for Example 3.9 with ε = 0.005. The mesh aspect ratio is 50
(rows 1-6) and 500 (rows 7-10) . The Reynolds number is set to 1 (rows 1-3 and 7-8) and
100 (rows 4-6 and 8-9).

3.3 Numerical experiments for the steady incompressible
Navier-Stokes equations with adapted meshes

In this section, we apply the adaptive algorithm 1.6 to solve the steady Navier-Stokes
equations with the numerical method (3.6). As for fixed grid, we choose the anisotropic
stabilization (3.7) with α = 0.01.

The adaptive algorithm reads the same as the one proposed for elliptic problems, using
the error indicator (3.19) instead. Since now we are dealing with vector valued functions,
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we define the local error indicators η2
i,K in direction xi, i = 1, 2 by

(ηAi,K)2

=
(
‖f − ρ(uh · ∇)uh + µ∆uh −∇ph‖L2(K) + 1

2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K)

)
ω̃i,K(ΠZZ

h uh−uh),

where the directional anisotropic form ωi,K given by (1.30) is adapted to vector valued
functions by setting

ω̃2
i,K(v) = ω̃2

i,K(v1) + ω̃2
i,K(v2), v = (v1, v2) ∈ (H1(Ω))2.

Example 3.9 (An anisotropic solution to the steady incompressible Navier-Stokes equa-
tions: an example with a boundary layer).
We first apply the adaptive algorithm to the previous example with ε = 0.02 and Re = 1.
The initial grid is an isotropic mesh of size h = 0.01. We first check the convergence of
our algorithm with respect to the number of remeshing Nloop. In Figure 3.9, we present
the different grids obtained when applying the adaptive algorithm with TOL = 0.25 and
several values of Nloop. As for elliptic problems, we observe that an anisotropic grid is
generated after 10 remeshings, and we push the process until 40 to obtain a high average
aspect ratio.

In Table 3.3, we present the convergence results for several value of TOL and Nloop

fixed to 40. We keep the same notations as the on introduced in Chapter 1, Section 1.5,
Table 1.7. Our observations are the following:

− Both velocity and pressure errors are O(TOL).

− The number of vertices is multiplied by two as the tolerance is divided by two. This
is the expected and desired result. Indeed, since the velocity depends only on x2,
we have that the numerical error eµ,H1 behaves as O(h) = O(N−1

v ) on anisotropic
meshes.

− The number of remeshings needed to satisfy the stopping criteria are independent
of TOL.

− Both ei is close the value of 3 obtained on fix grids and eiZZ is asymptotically 1.

In Figure 3.9, we present the mesh and solution obtained with Nloop = 40 and TOL =
0.03125. As it is observed in [86], since we only use the velocity error indicator, the
mesh is strongly anisotropic, but instabilities for the pressure occur. We refer to [86] for
practical solutions to solve this issue. To not involve a pressure indicator in the adaptive
algorithm is clearly a bad drawback for such cases where the pressure is "orthogonal" to
the velocity variations. Nevertheless, for the more "real" situations we will investigate later
on, the meshes generated by our adaptive algorithm seem satisfactory to capture a good
approximation of the pressure.

Figure 3.1: Example 3.9 with ε = 0.02 and Re = 1. Final meshes generated by the
adaptive algorithm with TOL = 0.25. Initial grid (top left), Nloop = 1 (top right),
Nloop = 10 (bottom left) and Nloop = 40 (bottom right).
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TOL eµ,H1 eiA eiZZ ep ediv ar armax Nv Nm NA
m

0.25 0.037 3.02 1.00 0.023 0.0012 79 385 45 3 3
0.125 0.0202 2.87 1.01 0.0063 0.00026 140 640 77 5 5
0.0625 0.0098 3.12 1.00 0.014 0.00022 318 1414 143 6 6
0.03125 0.0049 3.00 1.00 0.0064 0.00011 616 3183 293 7 7

Table 3.3: Example 3.9 with ε = 0.02 and Re = 1. Convergence results obtained for
several value of TOL and Nloop = 40.

Figure 3.2: Numerical solution obtained with the adaptive algorithm with Nloop = 40 and
TOL = 0.03125.

Example 3.10 (Two-walls driven square cavity flow: steady solutions).
The next example is famous in the framework of Navier-Stokes equations and is a version
of the driven cavity test case. We are interested in solving in the square Ω = (0, 1)× (0, 1)
the Navier-Stokes equations

ρ
∂u
∂t

+ ρ(u · ∇)u− µ∆u +∇p = 0, in Ω× (0,+∞),

div u = 0, in Ω× (0,+∞),
(3.20)

where we impose the following non-homogeneous boundary conditions

u(x1, 1, t) = (1, 0), 0 ≤ x1 ≤ 1, t ∈ (0,+∞)

u(0, x2, t) = (0,−1), 0 ≤ x2 ≤ 1, t ∈ (0,+∞)

u(x1, x2, t) = 0, otherwise.

(3.21)

For this particular problem, the Reynolds number is given by Re = ρ/µ and it was nu-
merically observed that until Re = 4000 [50] the problem (3.136), (3.137) admits a steady
solution. Therefore, we focus on a steady version that reads

(u · ∇)u− µ∆u +∇p = 0, in Ω,

div u = 0, in Ω,
(3.22)
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coupled with the boundary conditions

u(x1, 1) = (1, 0), 0 ≤ x1 ≤ 1,

u(0, x2) = (0,−1), 0 ≤ x2 ≤ 1,

u(x1, x2) = 0, otherwise .

(3.23)

Note that we choose ρ = 1 so that the Reynolds number is given by 1/µ. We approximate
the problem (3.22), (3.24) with the numerical method (3.6) and the anisotropic stabiliza-
tion (3.7) where we fix α = 0.01. Since the boundary conditions are discontinuous, we
smooth them by setting

u(x1, 1) = (16x2
1(1− x1)2, 0), 0 ≤ x1 ≤ 1,

u(0, x2) = (0,−16x2
2(1− x2)2), 0 ≤ x2 ≤ 1,

u(x1, x2) = 0, otherwise .

(3.24)

Finally, we impose the pressure to be zero at the corner (1, 0) instead of imposing its mean
value.

We first apply the adaptive algorithm with a Reynolds number of 100. The initial grid
is an isotropic mesh of mesh size h = 0.0125. In Figures 3.3, 3.4 and 3.5, we show the
solutions and the meshes obtained for several values of TOL after 10 remeshings.

In Figure 3.6, we present plots of the velocity magnitude |uh| and ph along the diagonal
line (0, 0) − (1, 1). We observe that the smaller the tolerance is, the more symmetric is
the solution. Oscillations in the pressure also disappear when the tolerance is sufficiently
small.

Figure 3.3: Example 3.10 with Re = 100. Meshes generated by the adaptive algorithm
for several values of TOL and Nloop = 10. TOL = 0.5 (top left), TOL = 0.25 (top right),
TOL = 0.125 (bottom left) and TOL = 0.0625 (bottom right).
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Figure 3.4: Example 3.10 with Re = 100. Velocity streamlines for several values of TOL
and Nloop = 10. TOL = 0.5 (top left), TOL = 0.25 (top right), TOL = 0.125 (bottom
left) and TOL = 0.0625 (bottom right).
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Figure 3.5: Example 3.10 with Re = 100. Pressure isolines for several values of TOL and
Nloop = 10. TOL = 0.5 (top left), TOL = 0.25 (top right), TOL = 0.125 (bottom left)
and TOL = 0.0625 (bottom right).

Figure 3.6: Example 3.10 with Re = 100. Plots of |uh| and ph along the diagonal line
(0, 0)− (1, 1) for several values of TOL and Nloop = 10. TOL = 0.5 (top left), TOL = 0.25
(top right), TOL = 0.125 (bottom left) and TOL = 0.0625 (bottom right).

We now compute the solution for several Reynolds number up to 4000. We run the
algorithm with TOL = 0.125 and Nloop = 10. To reach the solution for Re = 4000, we
proceed by continuation, computing the solution for Re = 100 and then using it as initial

169



guess for the solution at Re = 200. The sequence of Reynolds number are: 100, 200, 300,
400, 500, 600, 700, 800, 900, 1000, 2000, 3000 and 4000. In Figures 3.7, 3.9 and 3.10,
we present the meshes and the solution obtained for Re = 1000, 2000, 3000 and 4000. In
Figure 3.8, we zoom on the mesh obtained for Re = 4000. For this case, elements that are
close to the left and top side of Ω becomes anisotropic.

Figure 3.7: Example 3.10. Meshes generated by the adaptive algorithm with TOL = 0.125
and Nloop = 10. Re = 1000 (top left), Re = 2000 (top right), Re = 3000 (bottom left)
and Re = 4000 (bottom right).
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Figure 3.8: Example 3.10. Mesh generated by the adaptive algorithm with TOL = 0.125
and Nloop = 10 and Re = 4000. Zoom on the top of Ω (top) and on the left side of Ω
(bottom).
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Figure 3.9: Example 3.10. Velocity streamlines with TOL = 0.125 and Nloop = 10.
Re = 1000 (top left), Re = 2000 (top right), Re = 3000 (bottom left) and Re = 4000
(bottom right).
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Figure 3.10: Example 3.10. Pressure isolines with TOL = 0.125 and Nloop = 10. Re =
1000 (top left), Re = 2000 (top right), Re = 3000 (bottom left) and Re = 4000 (bottom
right).

3.4 A posteriori error estimates for the unsteady Stokes
equations with constant coefficients: space approxima-
tion

In this section, we focus on the posteriori error analysis of the unsteady Stokes equations.
The problem to be solved is the following: let Ω be an open, bounded, Lipschitz set of
R2, T > 0 the final time, ρ, µ > 0 standing respectively for the density and the viscosity,
the force term f ∈ L2(0, T ; (L2(Ω))2), and an initial condition u0 ∈ (H1

0 (Ω))2 such that
div u0 = 0. We are looking for (u, p) the solution of the incompressible unsteady Stokes
equations 

ρ
∂u
∂t
− µ∆u +∇p = f , in Ω× (0, T ),

div u = 0, in Ω× (0, T ),

u = 0, on ∂Ω× (0, T ),

u(·, 0) = u0, in Ω.

(3.25)

The existence and uniqueness of weak solutions of (3.25) are established for instance in
[99] or [21]. In particular, the following regularity is achieved

u ∈ C0([0, T ]; (L2(Ω))2) ∩ L2(0, T ; (H1
0 (Ω))2), ∂u

∂t
∈ L2(0, T ;L2(Ω)2),

p ∈ L2(0, T ;L2
0(Ω)).
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If moreover we assume that Ω is smooth or a convex polygon, then one can even prove
[99] the higher regularity in space

u ∈ L2(0, T ; (H2(Ω))2), p ∈ L2(0, T ;H1(Ω)).

The corresponding weak-form reads: find u ∈ H1(0, T ; (L2(Ω))2) ∩ L2(0, T ; (H1
0 (Ω))2

and p ∈ L2(0, T ;L2
0(Ω)) such that u(·, 0) = u0 almost everywhere in Ω and for almost

every t ∈ (0, T )

ρ

∫
Ω

∂u
∂t
· vdx + µ

∫
Ω
∇u : ∇vdx−

∫
Ω
p div vdx =

∫
Ω

f · vdx, ∀v ∈ (H1
0 (Ω))2,

−
∫

Ω
q div udx = 0, ∀q ∈ L2

0(Ω). (3.26)

We first focus on the spatial approximation of (3.26). The numerical method we shall use
to solve (3.26) is a pressure stabilized finite elements methods, which convergence is for
instance numerically studied in [75]. From now we assume that Ω is a convex. Moreover,
we assume that f ∈ C0 ([0, T ]; (L2(Ω))2) so that it makes sense to evaluate the force
term, and later on the equations, pointwise with respect to the time variable. We use
the same notation as in Section 3.1. For any h > 0, let Th be a conformal triangulation
of Ω into triangles K of diameter hK ≤ h. We still denote by Wh the classical finite
elements set of all continuous, piecewise linear functions, and by Wh,0 the subset of Wh

which elements have zero value on ∂Ω. Finally we recall that the discrete velocity space
and pressure space are given by Vh = (Wh,0)2 and Qh = Wh ∩ L2

0(Ω). Assuming that
u0 ∈ (H1

0 (Ω))2 ∩ (H2(Ω))2, we are looking, for (uh, ph) : Ω× [0, T ] −→ R2 × R such that
∀t ∈ [0, T ], uh(·, t),∈ Vh and ph(·, t) ∈ Qh, where uh(·, 0) = rh(u0), and for all t ∈ (0, T ]

ρ

∫
Ω

∂uh
∂t
· vhdx + µ

∫
Ω
∇uh : ∇vhdx−

∫
Ω
ph div vhdx =

∫
Ω

f · vhdx, ∀vh ∈ Vh,

−
∫

Ω
qh div uhdx +

∑
K∈Th

αK

∫
K

(
f − ρ∂uh

∂t
+ µ∆uh −∇ph

)
· ∇qhdx = 0, ∀qh ∈ Qh,

(3.27)

with the stabilization parameter αK given by

αK =
αλ2

2,K
µ

(3.28)

where α > 0 is a prescribed dimensionless positive value.

Remark 3.11.
Imposing an initial condition for the pressure is not needed to solve (3.26) or (3.27). In
particular, we only ask that (3.27) holds for any t > 0. However, for future discussions,
we must be able to evaluate the momentum equation also at t = 0, in particular to obtain
informations on

∂uh
∂t

(0) and ph(0).

This implies to give a meaning to ph(0). We propose two choices. A first idea is to assume
that p(·, 0) = p0 is known and sufficiently regular (for instant belonging to C0(Ω)) such
that we can define ph(0) = rh(p0). Otherwise, we can also solve (3.27) at t = 0 and define(
∂uh
∂t

(0), ph(0)
)

as the solution of

ρ

∫
Ω

∂uh
∂t

(0)·vhdx−
∫

Ω
ph(0) div vhdx =

∫
Ω

f(0)·vhdx−µ
∫

Ω
∇rhu0 : ∇vhdx, ∀vh ∈ Vh,

−
∫

Ω
qh div rhu0dx+

∑
K∈Th

αK

∫
K

(
f − ρ∂uh

∂t
(0) + µ∆rhu0 −∇ph(0)

)
·∇qhdx = 0, ∀qh ∈ Qh.
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We are mainly concerned in the a posteriori error analysis of the semi-discrete method
(3.27). Some references about the a priori error analysis will be pointed out when we
will study the fully discrete method where both space and time approximation will be
considered. For the rest of this section, it will be assumed that both the exact and the
finite elements solutions exist and are smooth enough to justify the computations. Note
finally that the stabilization technique proposed above is a consistent stabilization, since
all the terms of the equation are put into the stabilization terms, and therefore the exact
solution (u, p) satisfies also the numerical method (3.27).

Proving an a posteriori error for the unsteady Stokes equation could be at first view
an "easy" process, since the unsteady Stokes equation can be seen as a parabolic problem
for the velocity (and the a posteriori analysis of parabolic problem is well known) and
we know how to tackle the pressure error estimate for steady case. We could therefore
think that deriving an a posteriori bound is a straightforward combination of parabolic
problems techniques and treatment of the pressure through the inf-sup condition or a
duality argument (see Section 3.1). Unfortunately, contrary to the steady (Navier-)Stokes
equations, eliminating the pressure error from the treatment of the velocity is not an
obvious task since it is not possible to relate ‖p−ph‖L2(Ω) to ‖∇(u−uh)‖L2(Ω). Below, we
propose several possible a posteriori error estimates and their proofs, and comment their
different advantages and drawbacks. Note that the problem with relating the pressure
error to the velocity one is not a particularity due to the use of anisotropic finite elements.
The same assessment is already observed with standard finite elements, and the different
approaches to tackle this issue were originally introduced in the isotropic settings. In the
next two paragraphs, we propose preliminary a posteriori error estimates that are not
fully satisfactory for our purposes since they involve isotropic low order terms. In a first
reading, we can go directly to Theorems 3.27 and 3.29 that contain the best a posteriori
estimates we were able to prove for the time being.

Parabolic a posteriori error estimate

The first a posteriori error estimate can be seen as a "parabolic" estimate. As for the
steady Navier-Stokes equations, it requires the use of the following dual problem to
derive a anisotropic pressure estimate: for any t ∈ [0, T ], we consider (w(t), r(t)) ∈
(H1

0 (Ω))2 × L2
0(Ω) the weak solution of

−µ∆w(t) +∇r(t) = 0, in Ω,

div w(t) = ph(t)− p(t), in Ω,

w(t) = 0, on ∂Ω.

(3.29)

We recall that the following a priori estimate holds:

‖∇w(t)‖L2(Ω) + 1
µ
‖r(t)‖L2(Ω) ≤ C‖p(t)− ph(t)‖L2(Ω), (3.30)

where C depends only on Ω. Observe that the above dual problem is well defined for
any t ∈ [0, T ] by assuming the extra regularity for the pressure and its finite elements
approximation

p, ph ∈ C0
(
[0, T ];L2

0(Ω)
)
.

Note that it is a bit too much, since in fact we need for our proof that the dual problem is
well-posed for almost every t only. Therefore it is sufficient that p, ph ∈ L2 (0, T ;L2

0(Ω)
)
.

We do not want to go into too much details and always assume, for all the theorems
and proofs presented below, that all the computations and the involved quantities are
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punctually well-defined for every t. For simplification, we will only indicate the necessary
regularity of the solutions so that our error estimates have a sense, but maybe not sufficient
for the computations to be justified for all t ∈ [0, T ].

For the next theorem, we assume that

u,uh ∈ H1 (0, T ; (L2(Ω))2) ∩ C0 ([0, T ]; (H1
0 (Ω))2) ,

w, ph ∈ L2 (0, T ;H1(Ω)
)
.

Theorem 3.12 (A first and simple a posteriori estimate for the semi-approximation of
the unsteady Stokes equations).
Let (u, p) be the solution of (3.26), (uh, ph) the solution of the finite elements scheme
(3.27) and (w, r) the solution of the dual problem (3.29). There exists a constant C > 0
that depends only on the reference triangle and the domain Ω such that

ρ‖(u− uh)(T )‖2L2(Ω) + µ

∫ T

0
‖∇(u− uh)(t)‖2L2(Ω)dt

+ ρ

∫ T

0

∥∥∥∥∂u
∂t

(t)− ∂uh
∂t

(t)
∥∥∥∥2

L2(Ω)
dt+ µ‖∇(u− uh)(T )‖2L2(Ω)

≤ ρ‖(u−uh)(0)‖2L2(Ω)+µ‖∇(u−uh)(0)‖2L2(Ω)+C
∫ T

0

∑
K∈Th

(ηAK,u)2(t)+(ηAK,p)2(t)+(ηdiv
K )2(t)dt,

(3.31)

where

(ηAK,u)2(t) =
(∥∥∥∥f(t)− ρ∂uh

∂t
(t) + µ∆uh(t)−∇ph(t)

∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖[µ∇uh(t) · n]‖L2(∂K)

)
(
ωK(u(t)− uh(t)) + ωK

(
∂u
∂t

(t)− ∂uh
∂t

(t)
))

,

(ηAK,p)2(t)

=
(∥∥∥∥f(t)− ρ∂uh

∂t
(t) + µ∆uh(t)−∇ph(t)

∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖[µ∇uh(t) · n]‖L2(∂K)

)
ωK(w(t))
max (µ, ρ)

(ηdiv
K )2 = max (µ, ρ)

(
‖ div uh(t)‖2L2(K) +

∥∥∥∥div ∂uh
∂t

(t)
∥∥∥∥2

L2(K)

)
,

and∫ T

0
‖p− ph‖2L2(Ω)dt ≤ C max (µ, ρ)

(
ρ‖u− uh(0)‖2L2(Ω) + µ‖∇(u− uh)(0)‖2L2(Ω)+∫ T

0

∑
K∈Th

(ηAK,p)2(t) + (ηAK,u)2(t) + (ηdiv
K )2(t)dt

 . (3.32)

Proof. Let t ∈ (0, T ). We denote by C any constant that depends on the reference triangle
or Ω, by Ĉ > 0 any positive constant that may depend only on the reference triangle and
by C̃ any constant depending only on Ω. The value of these constants may change from
line to line. To lighten the notations, we omit to note the explicit dependence on time of
the functions.

Step 1. Estimate for the velocity.
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We have

ρ

2
d

dt
‖u− uh‖2L2(Ω) + µ‖∇(u− uh)‖2L2(Ω) + ρ

∥∥∥∥∂u
∂t
− ∂uh

∂t

∥∥∥∥2

L2(Ω)
+ µ

2
d

dt
‖∇(u− uh)‖2L2(Ω)

= ρ

∫
Ω

∂

∂t
(u−uh)·

(
u− uh + ∂

∂t
(u− uh)

)
dx+µ

∫
Ω
∇(u−uh) : ∇

(
u− uh + ∂

∂t
(u− uh)

)
dx

= ρ

∫
Ω

∂

∂t
(u−uh)·

(
u− uh + ∂

∂t
(u− uh)

)
dx+µ

∫
Ω
∇(u−uh) : ∇

(
u− uh + ∂

∂t
(u− uh)

)
dx

−
∫

Ω
(p− ph) div

(
u− uh + ∂

∂t
(u− uh)

)
dx +

∫
Ω

(p− ph) div
(

u− uh + ∂

∂t
(u− uh)

)
dx

=
∫

Ω
f ·
(

u− uh + ∂

∂t
(u− uh)

)
dx− ρ

∫
Ω

∂uh
∂t
·
(

u− uh + ∂

∂t
(u− uh)

)
dx

− µ
∫

Ω
∇uh : ∇

(
u− uh + ∂

∂t
(u− uh)

)
dx +

∫
Ω
ph div

(
u− uh + ∂

∂t
(u− uh)

)
dx

+
∫

Ω
(p− ph) div

(
u− uh + ∂

∂t
(u− uh)

)
dx.

Using the numerical method (3.27), we can remove any test function vh. Note tat we only
use the momentum equation so that the stabilization term does not appear.

ρ

2
d

dt
‖u− uh‖2L2(Ω) + µ‖∇(u− uh)‖2L2(Ω) + ρ

∥∥∥∥∂u
∂t
− ∂uh

∂t

∥∥∥∥2

L2(Ω)
+ µ

2
d

dt
‖∇(u− uh)‖2L2(Ω)

=
∫

Ω
f ·
(

u− uh + ∂

∂t
(u− uh)− vh

)
dx− ρ

∫
Ω

∂uh
∂t
·
(

u− uh + ∂

∂t
(u− uh)− vh

)
dx

−µ
∫

Ω
∇uh : ∇

(
u− uh + ∂

∂t
(u− uh)− vh

)
dx+

∫
Ω
ph div

(
u− uh + ∂

∂t
(u− uh)− vh

)
dx

+
∫

Ω
(p− ph) div

(
u− uh + ∂

∂t
(u− uh)

)
dx.

Integration by parts over each triangles and the Cauchy-Schwarz inequality implies then

ρ

2
d

dt
‖u− uh‖2L2(Ω) + µ‖∇(u− uh)‖2L2(Ω) + ρ

∥∥∥∥∂u
∂t
− ∂uh

∂t

∥∥∥∥2

L2(Ω)
+ µ

2
d

dt
‖∇(u− uh)‖2L2(Ω)

≤
∑
K∈Th

∥∥∥∥f − ρ∂uh
∂t

+ µ∆uh −∇ph
∥∥∥∥
L2(K)

∥∥∥∥u− uh + ∂

∂t
(u− uh)− vh

∥∥∥∥
L2(Ω)

+ 1
2‖ [µ∇uh · n] ‖L2(∂K)

∥∥∥∥u− uh + ∂

∂t
(u− uh)− vh

∥∥∥∥
L2(∂K)

+ ‖p− ph‖L2(Ω)

(
‖ div uh‖L2(Ω) +

∥∥∥∥div ∂uh
∂t

∥∥∥∥
L2(Ω)

)
.

Choosing vh = Rh
(
u− uh + ∂

∂t(u− uh)
)
, the anisotropic Clément’s interpolation error

estimate yields finally

ρ

2
d

dt
‖u− uh‖2L2(Ω) + µ‖∇(u− uh)‖2L2(Ω) + ρ

∥∥∥∥∂u
∂t
− ∂uh

∂t

∥∥∥∥2

L2(Ω)
+ µ

2
d

dt
‖∇(u− uh)‖2L2(Ω)

≤ Ĉ
∑
K∈Th

(∥∥∥∥f − ρ∂uh
∂t

+ µ∆uh −∇ph
∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖ [µ∇uh · n] ‖L2(∂K)

)

ωK

(
u− uh + ∂

∂t
(u− uh)

)
+ 1
ε
‖p− ph‖2L2(Ω) + ε‖ div uh‖2L2(Ω) + ε

∥∥∥∥div ∂uh
∂t

∥∥∥∥2

L2(Ω)
, (3.33)
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where we use the Young’s inequaliy on the last term to conclude.

Step 2. Estimate for the pressure.
We use w the dual solution obtained in (3.29). Proceeding as in Theorem 3.6, we have

‖p−ph‖2L2(Ω) = −
∫

Ω
(p−ph) div wdx =

∫
Ω

f ·w−ρ∂u
∂t
·w−µ∇u : ∇wdx+

∫
Ω
ph div wdx

=
∫

Ω
f ·w− ρ∂uh

∂t
·w− µ∇uh : ∇wdx +

∫
Ω
ph div wdx

− ρ
∫

Ω

∂

∂t
(u− uh) ·wdx− µ

∫
Ω
∇(u− uh) : ∇wdx.

Removing any test function vh, we have after using an integration by parts and the Cauchy-
Schwarz inequality

‖p−ph‖2L2(Ω) = −
∫

Ω
(p−ph) div wdx =

∫
Ω

f ·w−ρ∂u
∂t
·w−µ∇u : ∇wdx+

∫
Ω
ph div wdx

=
∑
K∈Th

∥∥∥∥f − ρ∂uh
∂t

+ µ∆uh −∇ph
∥∥∥∥
L2(K)

‖w− vh‖L2(Ω)

+ 1
2‖ [µ∇uh · n] ‖L2(∂K) ‖w− vh‖L2(∂K)

− ρ
∫

Ω

∂

∂t
(u− uh) ·wdx− µ

∫
Ω
∇(u− uh) : ∇wdx.

Choosing vh = Rh(w) and using the Young’s and Poincaré inequalities with the a priori
estimate (3.30), we have finally

‖p−ph‖2L2(Ω) = −
∫

Ω
(p−ph) div wdx =

∫
Ω

f ·w−ρ∂u
∂t
·w−µ∇u : ∇wdx+

∫
Ω
ph div wdx

≤ Ĉ
∑
K∈Th

(∥∥∥∥f − ρ∂uh
∂t

+ µ∆uh −∇ph
∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖ [µ∇uh · n] ‖L2(∂K)

)
ωK(w)

+ C̃ρ2
∥∥∥∥ ∂∂t(u− uh)

∥∥∥∥2

L2(Ω)
+ C̃µ2‖∇(u− uh)‖2L2(Ω), (3.34)

where we denote by CP the Poincaré constant of Ω and by C̃ the constant in the a priori
estimate (3.30).

Step 3. Putting all together.
By plugging (3.34) into (3.33) and choosing ε = 2C̃ max(µ, ρ), we obtain

ρ

2
d

dt
‖u−uh‖2L2(Ω) + µ

2 ‖∇(u−uh)‖2L2(Ω) + ρ

2

∥∥∥∥∂u
∂t
− ∂uh

∂t

∥∥∥∥2

L2(Ω)
+ µ

2
d

dt
‖∇(u− uh)‖2L2(Ω)

≤ C
∑
K∈Th

(∥∥∥∥f − ρ∂uh
∂t

+ µ∆uh −∇ph
∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖ [µ∇uh · n] ‖L2(∂K)

)
(
ωK

(
u− uh + ∂

∂t
(u− uh)

)
+ 1

max (µ, ρ)ωK(w)
)

+ C max (µ, ρ)
(
‖ div uh‖2L2(Ω) +

∥∥∥∥div ∂uh
∂t

∥∥∥∥2

L2(Ω)

)
.

Since ωK satisfies the triangle inequality, we can bound ωK
(

u− uh + ∂

∂t
(u− uh)

)
by

ωK (u− uh) + ωK

(
∂

∂t
(u− uh)

)
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and integrating from 0 to T yields the desired estimate for the velocity error. Combining
it with (3.34) yields the estimate for the pressure.

One can make the three following observations about the a posteriori upper bounds of
Theorem 3.12:

(1) The proof is quite simple, since it generalizes the one for steady (Navier-)Stokes
equations. Compared to a classical parabolic problem, where we would estimate the
velocity error in the norm

ρ‖v(T )‖2L2(Ω) +
∫ T

0
µ‖∇v‖2L2(Ω)dt,

here it is necessary to estimate it in the norm

ρ‖v(T )‖2L2(Ω) +
∫ T

0
µ‖∇v‖2L2(Ω)dt+ ρ

∫ T

0

∥∥∥∥∂v
∂t

∥∥∥∥2

L2(Ω)
dt+ µ‖∇v(T )‖2L2(Ω).

This is the only important difference with the common a posteriori error estimate
derived in the classical theory.

(2) Since uh(0) = rh(u0) = rh(u(0)), both terms

ρ‖(u− uh)(0)‖2L2(Ω), µ‖∇(u− uh(0))‖2L2(Ω)

can be bounded using the anisotropic Lagrange interpolation error estimate of Propo-
sition 1.1 since we assumed that u0 ∈ (H2(Ω))2. Therefore, there are known quan-
tities. In the isotropic setting, we will have that

ρ‖(u− uh)(0)‖2L2(Ω) = O(h4), µ‖∇(u− uh(0))‖2L2(Ω) = O(h2).

(3) To obtain a computable bound, we should apply a post-processing in order to replace
not only the gradient of u but also its time derivative, that are contained in ωK . Note
that even in the isotropic settings, we cannot avoid to post-process ∇∂u

∂t
. Indeed,

the a posteriori error estimate will read (note that C depends here on the mesh
aspect ratio)

ρ‖(u− uh)(T )‖2L2(Ω) + µ

∫ T

0
‖∇(u− uh)‖2L2(Ω)dt

+ ρ

∫ T

0

∥∥∥∥∂u
∂t
− ∂uh

∂t

∥∥∥∥2

L2(Ω)
dt+ µ‖∇(u− uh)(T )‖2L2(Ω)

≤ ρ‖(u− uh)(0)‖2L2(Ω) + µ‖∇(u− uh)(0)‖2L2(Ω)

+ C

∫ T

0

∑
K∈Th

(
(ηIK,u,1)2 + (ηIK,u,2)2 + (ηdiv

K )2
)
dt,

where

(ηIK,u,1)2 = h2
K

∥∥∥∥f − ρ∂uh
∂t

+ µ∆uh −∇ph
∥∥∥∥2

L2(K)
+ hK ‖[µ∇uh · n]‖2L2(∂K) ,

(ηIK,u,2)2 =
(
hK

∥∥∥∥f − ρ∂uh
∂t

+ µ∆uh −∇ph
∥∥∥∥
L2(K)

+ h
1/2
K ‖[µ∇uh · n]‖L2(∂K)

)
∥∥∥∥∇(∂u

∂t
− ∂uh

∂t

)∥∥∥∥
L2(∆K)

,
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(ηdiv
K )2 = max (µ, ρ)

(
‖ div uh‖2L2(K) +

∥∥∥∥div ∂uh
∂t

∥∥∥∥2

L2(K)

)
,

and the norm
∥∥∥∥∇(∂u

∂t
− ∂uh

∂t

)∥∥∥∥
L2(Ω)

is not present in the left hand side. Therefore

it is not possible to write the estimate in a close form and we shall use post-processing
that approximate the norm ∥∥∥∥∇(∂u

∂t
− ∂uh

∂t

)∥∥∥∥
L2(Ω)

.

To obtain an estimate in a close form, it will require to derive the equations with
respect to the time, but it will yield to the necessity to estimate

∥∥∥∥∂p∂t − ∂ph
∂t

∥∥∥∥
L2(Ω)

that will generate a term containing the second derivatives with respect to time of
the velocity etc. etc..

(4) It is not clear a priori that both errors∥∥∥∥∇(∂u
∂t
− ∂uh

∂t

)∥∥∥∥
L2(Ω)

,

∥∥∥∥div ∂uh
∂t

∥∥∥∥
L2(Ω)

converge with the right orders, especially when a time advancing scheme will be ap-
plied later on and we were not able to clearly verifiy it in the numerical experiments.
This lowers considerably the interest of the upper bounds presented in the Theorem
3.12.

A posteriori error estimate through Stokes projection

To counter the drawbacks of Theorem 3.12, up to our knowledge, two approaches can
be found in the literature, both based on the observation that if uh is divergence free,
then div(u − uh) = 0 and it is therefore possible to obtain an estimate for the velocity
error without the need to estimate the pressure error p− ph since the term∫

Ω
(p− ph) div(u− uh)dx

will naturally disappear. Both approaches were developed for isotropic finite elements,
and we propose below to extend them to the anisotropic case.

It was first proposed in [16] to use the Stokes projection Πdiv : (H1
0 (Ω))2 −→ (H1

0 (Ω))2

where for v ∈ (H1
0 (Ω))2, we define Πdivv as the (unique) weak solution of

−∆Πdivv +∇s = 0, in Ω,

div Πdivv = div v, in Ω,

Πdivv = 0, on ∂Ω.

(3.35)

The problem (3.35) is a standard Stokes problem which well-posedness is ensured, in
a weak sense, in (H1

0 (Ω))2 × L2
0(Ω) provided div v ∈ L2

0(Ω) [21]. Observe that the last
condition is verified. Since v ∈ (H1

0 (Ω))2, it implies that div v ∈ L2(Ω) and, thanks to the
divergence theorem and the fact that the trace of v is zero, one has∫

Ω
div vdx =

∫
∂Ω

v · ndx = 0,

so that div v has zero mean value.
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Moreover, there exists a constant C > 0 depending only on Ω such that

‖∇Πdivv‖L2(Ω) + ‖s‖L2(Ω) ≤ C‖ div v‖L2(Ω). (3.36)

The Stokes projection Πdiv satisfies the following properties, that we gather in the next
lemma. The proofs can be found in [16], Lemma 4.2. For the last property, we recall
that we assume Ω convex, and that, given Th a conformal triangulation of Ω into triangles
of diameter less than h, we denote by Vh the set of piecewise linear continuous (vector
valued) functions with zero value on ∂Ω.
Lemma 3.13. (i) For all v ∈ (H1

0 (Ω))2, if div v = 0, then Πdivv = 0.

(ii) For all v ∈ (H1
0 (Ω))2,

‖∇
(
v−Πdivv

)
‖L2(Ω) ≤ ‖∇v‖L2(Ω).

(iii) There exists C > 0 depending only on Ω and the mesh aspect ratio such that for all
vh ∈ Vh

‖Πdivvh‖2L2(Ω) ≤ C
∑
K∈Th

h2
K‖ div vh‖2L2(K).

We also observe, under some smoothness assumptions, that if v also depends on the
time and is sufficiently smooth, then the fact that (3.35) is uniquely solvable implies that
∂
∂t and Πdiv commutes i.e.

∂

∂t
Πdivv = Πdiv ∂

∂t
v.

Using the Stokes projection, it is possible to derive an a posteriori error estimate for
the velocity error u − uh avoiding to estimate the pressure error p − ph. Note that an
estimate for the pressure is after that available but one have to consider the norm∥∥∥∥ ∂∂t(u− uh) +∇(p− ph)

∥∥∥∥
H−1(Ω)

which has a low interest from a practical point of view in a adaptive framework. Therefore,
in what follows, we will only prove the corresponding a posteriori error estimate for the
velocity, and we refer to [16] for more details on the treatment of the pressure.

For the next theorem, we assume in particular the following regularity:

uh ∈ C0 ([0, T ]; (L2(Ω))2) ∩ L2 (0, T ; (H1
0 (Ω))2) , ∂uh

∂t
∈ C0

(
[0, T ]; (H1(Ω))2

)
,

ph ∈ L2 ([0, T ];H1(Ω)
)
.

Theorem 3.14 (An a posteriori error estimate for the unsteady Stokes equations using
the Stokes projection).
Let (u, p) be the solution of (3.26), (uh, ph) the solution of the finite elements scheme (3.27)
and Πdivuh the Stokes projection of the finite elements approximation of the velocity. There
exists a constant C1 > 0 that depends only on the reference triangle and the domain Ω
and a constant C2 > 0 that depends on Ω and the mesh aspect ratio such that

ρ‖u− uh(T )‖2L2(Ω) + µ

∫ T

0
‖∇(u− uh)(t)‖2L2(Ω)dt

≤ C1

ρ‖u− uh(0)‖2L2(Ω) +
∫ T

0

∑
K∈Th

(ηAK,u)2(t) + (ηdiv
K )2(t)dt


+ C2

∑
K∈Th

(εIK,1)2 + C2

∫ T

0

∑
K∈Th

(εIK,2)2(t)dt, (3.37)
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where we note

(ηAK,u)2(t) =
(∥∥∥∥f(t)− ρ∂uh

∂t
(t) + µ∆uh(t)−∇ph(t)

∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖[µ∇uh(t) · n]‖L2(∂K)

)
ωK

((
u− uh −Πdiv(u− uh)

)
(t)
)
,

(ηdiv
K )2(t) = µ‖ div uh(t)‖2L2(K),

(εIK,1)2 = ρh2
K

(
‖ div uh(T )‖2L2(K) + ‖ div uh(0)‖2L2(K)

)
,

(εIK,2)2(t) = ρ2

µ
h2
K

∥∥∥∥div ∂

∂t
uh(t)

∥∥∥∥2

L2(K)
.

Proof. Let t ∈ (0, T ). In the following, we will denote by Ĉ any positive constant that de-
pends on the reference triangle only and by C̃ any constant that depends only on Ω. Since
we will use the estimate contained in Lemma 3.13, (iii), we will note the corresponding
constant by D. Note that D depends on Ω and the mesh aspect ratio.

Using the fact that for any v ∈ (H1
0 (Ω))2, we have div

(
v−Πdivv

)
= 0, one can write

that

ρ

2
d

dt
‖u− uh‖2L2(Ω) + µ‖∇(u− uh)‖2L2(Ω)

= ρ

∫
Ω

∂

∂t
(u− uh) · (u− uh)dx + µ

∫
Ω
∇(u− uh) : ∇(u− uh)dx

= ρ

∫
Ω

∂

∂t
(u− uh) · (u− uh)dx + µ

∫
Ω
∇(u− uh) : ∇(u− uh)dx

−
∫

Ω
(p− ph) div

(
u− uh −Πdiv(u− uh)

)
dx

= ρ

∫
Ω

∂

∂t
(u−uh)·

(
u− uh −Πdiv(u− uh)

)
dx+µ

∫
Ω
∇(u−uh) : ∇

(
u− uh −Πdiv(u− uh)

)
dx

−
∫

Ω
(p− ph) div

(
u− uh −Πdiv(u− uh)

)
dx

+ ρ

∫
Ω

∂

∂t
(u− uh) ·Πdiv(u− uh)dx + µ

∫
Ω
∇(u− uh) : Πdiv(u− uh)dx

=
∫

Ω

(
f − ρ∂uh

∂t

)
·
(
u− uh −Πdiv(u− uh)

)
dx−µ

∫
Ω
∇uh : ∇

(
u− uh −Πdiv(u− uh)

)
dx

+
∫

Ω
ph div

(
u− uh −Πdiv(u− uh)

)
dx

+ ρ

∫
Ω

∂

∂t
(u− uh) ·Πdiv(u− uh)dx + µ

∫
Ω
∇(u− uh) : ∇Πdiv(u− uh)dx.

As we already did several times, thanks to the numerical method (3.27), we can remove
any test function vh from the residual part

∫
Ω

(
f − ρ∂uh

∂t

)
·
(
u− uh −Πdiv(u− uh)

)
dx−µ

∫
Ω
∇uh : ∇

(
u− uh −Πdiv(u− uh)

)
dx

+
∫

Ω
ph div

(
u− uh −Πdiv(u− uh)

)
dx

and choosing vh = Rh
(
u− uh −Πdiv(u− uh)

)
, we obtain after an integration by parts

and applying the Cauchy-Schwarz and the interpolation error estimates for the Clément’s
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interpolant

ρ

2
d

dt
‖u− uh‖2L2(Ω) + µ‖∇(u− uh)‖2L2(Ω)

≤ Ĉ
∑
K∈Th

νKωK
(
u− uh −Πdiv(u− uh)

)
+ ρ

∫
Ω

∂

∂t
(u− uh) ·Πdiv(u− uh)dx + µ

∫
Ω
∇(u− uh) : ∇Πdiv(u− uh)dx,

where we use the notation

νK =
∥∥∥∥f − ρ∂uh

∂t
+ µ∆uh −∇ph

∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K) .

The Leibniz rule and the commutativity of Πdiv with the time derivative imply

∂

∂t

(
(u− uh) ·Πdiv(u− uh)

)
= ∂

∂t
(u− uh) ·Πdiv(u− uh) + (u− uh) · ∂

∂t
Πdiv(u− uh)

= ∂

∂t
(u− uh) ·Πdiv(u− uh) + (u− uh) ·Πdiv ∂

∂t
(u− uh).

Therefore, the last inequality can be written as

ρ

2
d

dt
‖u− uh‖2L2(Ω) + µ‖∇(u− uh)‖2L2(Ω)

≤ Ĉ
∑
K∈Th

νKωK
(
u− uh −Πdiv(u− uh)

)
+ ρ

d

dt

∫
Ω

(u− uh) ·Πdiv(u− uh)dx− ρ
∫

Ω
(u− uh) ·Πdiv ∂

∂t
(u− uh)dx

+ µ

∫
Ω
∇(u− uh) : ∇Πdiv(u− uh)dx.

Integration from 0 to T and Cauchy-Schwarz yield

ρ

2‖u− uh(T )‖2L2(Ω) + µ

∫ T

0
‖∇(u− uh)‖2L2(Ω)dt

≤ ρ

2‖u− uh(0)‖2L2(Ω) + Ĉ

∫ T

0

∑
K∈Th

νKωK
(
u− uh −Πdiv(u− uh)

)
dt

+ ρ‖u− uh(T )‖L2(Ω)‖Πdiv(u− uh)(T )‖L2(Ω) + ρ‖u− uh(0)‖L2(Ω)‖Πdiv(u− uh)(0)‖L2(Ω)

+ρ
∫ T

0
‖u−uh‖L2(Ω)

∥∥∥∥Πdiv ∂

∂t
(u− uh)

∥∥∥∥
L2(Ω)

dt+µ
∫ T

0
‖∇(u−uh)‖L2(Ω)‖∇Πdiv(u−uh)‖L2(Ω)dt.

Using the Young’s inequality, one may write

ρ

4‖u− uh(T )‖2L2(Ω) + µ

2

∫ T

0
‖∇(u− uh)‖2L2(Ω)dt

≤ ρ‖u− uh(0)‖2L2(Ω) + Ĉ

∫ T

0

∑
K∈Th

νKωK
(
u− uh −Πdiv(u− uh)

)
dt

+ ρ‖Πdiv(u− uh)(T )‖2L2(Ω) + ρ

2‖Π
div(u− uh)(0)‖2L2(Ω)

+ ρ

2ε

∫ T

0
‖u−uh‖2L2(Ω)dt+

ρε

2

∫ T

0

∥∥∥∥Πdiv ∂

∂t
(u− uh)

∥∥∥∥2

L2(Ω)
dt+µ

2

∫ T

0
‖∇Πdiv(u−uh)‖2L2(Ω)dt.

(3.38)
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Using the Poincaré inequality and choosing ε = 2ρC
2
P
µ , where CP is Poincaré constant of

Ω, one can bound the first term in the last line of (3.38) in the following way

ρ

2ε

∫ T

0
‖u− uh‖2L2(Ω)dt ≤

µ

4

∫ T

0
‖∇(u− uh)‖2L2(Ω)dt

and then pass it to the left hand side. Finally, using the properties of Πdiv (in particular
we recall that Πdivu = 0), it yields

ρ

4‖u− uh(T )‖2L2(Ω) + µ

4

∫ T

0
‖∇(u− uh)‖2L2(Ω)dt

≤ ρ‖u− uh(0)‖2L2(Ω) + Ĉ

∫ T

0

∑
K∈Th

νKωK
(
u− uh −Πdiv(u− uh)

)
dt

+ ρD
∑
K∈Th

h2
K

(
‖div uh(T )‖2L2(K) + ‖ div uh(0)‖2L2(K)

)

+ ρ2C2
PD

µ

∫ T

0

∑
K∈Th

h2
K

∥∥∥∥div ∂

∂t
uh
∥∥∥∥2

L2(K)
dt+ µC̃

2

∫ T

0
‖ div uh‖2L2(Ω)dt,

that concludes the proof.

Remark 3.15.
Note that in (3.38) we control the term

ρ

2ε

∫ T

0
‖u− uh‖2L2(Ω)dt

by using the Poincaré inequality so that we can absorb it into the H1 semi-norm in the
left hand side. We could also keep it and control it by a Gronwall’s type argument (in
integral form) since

ρ‖u− uh(T )‖2L2(Ω)

is present also in the left hand side. This would yield at the end to the following a posteriori
error estimate

ρ‖u− uh(T )‖2L2(Ω) + µ

∫ T

0
‖∇(u− uh)‖2L2(Ω)dt

≤ exp
(2ρT

ε

)
C1

ρ‖u− uh(T )‖2L2(Ω) +
∫ T

0

∑
K∈Th

(ηAK,u)2 + (ηdiv
K )2dt


+ exp

(2ρT
ε

)
C2

∑
K∈Th

(εIK,1)2 + exp
(2ρT

ε

)
C2

∫ T

0

∑
K∈Th

(εIK,2)2dt,

with as before

(ηAK,u)2 =
(∥∥∥∥f − ρ∂uh

∂t
+ µ∆uh −∇ph

∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K)

)
ωK

(
u− uh −Πdiv(u− uh)

)
,

(ηdiv
K )2 = µ‖ div uh‖2L2(K),

(εIK,1)2 = ρh2
K

(
‖ div uh(T )‖2L2(K) + ‖ div uh(0)‖2L2(K)

)
,
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but this time (εIK,2)2 is given by

(εIK,2)2 = ρεh2
K

∥∥∥∥div ∂

∂t
uh
∥∥∥∥2

L2(K)
.

Choosing ε = T
2ρ eliminates the exponential in time. So we endow finally (up to a pure

numeric constant) with the same a posteriori error estimate as the one in Theorem 3.12,

except that we replace ρ
2

µ
by ρT in the definition of (εIK,2)2.

The main advantage of Theorem 3.14 and the use of the Stokes projection Πdiv is
that an estimate for the velocity is reachable without the need of estimating the pressure.
Moreover, even if some parts of the estimate (3.37) contain a constant that may depend
on the mesh aspect ratio, mainly the isotropic error estimators εIK,1 and εIK,2, we have
good reason to think that they are a priori of higher orders. Indeed, it is natural to hope
‖div uh‖L2(Ω) = O(h) and that at least ‖ div ∂tuh‖L2(Ω) = O(hk) for 0 < k ≤ 1. This
implies that ∑

K∈Th

(εIK,1)2 = O(h4) and
∑
K∈Th

(εIK,1)2 = O(h2(k+1)).

Therefore, even if the constant C2 in Theorem 3.14 depends on the aspect ratio, the corre-
sponding terms are of higher order (with respect to the H1 semi-norm that is numerically
checked to be O(h)). Compared to the Theorem 3.12, the problem of having the term
div ∂

∂tuh in the estimate is then solved by the Theorem 3.14.
However, the drawback of the a posteriori error estimate of Theorem 3.14 is the pres-

ence of the factor
ωK

(
u− uh −Πdiv(u− uh)

)
.

Note that in the isotropic settings, see [16], the error indicator (ηAK,u)2 is replaced by

(
hK

∥∥∥∥f − ρ∂uh
∂t

+ µ∆uh −∇ph
∥∥∥∥
L2(K)

+ h
1/2
K ‖[µ∇uh · n]‖L2(∂K)

)
∥∥∥∇ (u− uh −Πdiv(u− uh)

)∥∥∥
L2(∆K)

,

and therefore, summing over the triangle and using the discrete Cauchy-Schwartz inequal-
ity, it will yield (up to a constant)

 ∑
K∈Th

h2
K

∥∥∥∥f − ρ∂uh
∂t

+ µ∆uh −∇ph
∥∥∥∥2

L2(K)
+ hK ‖[µ∇uh · n]‖2L2(∂K)

1/2

∥∥∥∇ (u− uh −Πdiv(u− uh)
)∥∥∥

L2(Ω)
,

and the factor
∥∥∥∇ (u− uh −Πdiv(u− uh)

)∥∥∥
L2(Ω)

can be absorbed in the left hand side
using the property (see Lemma 3.13)∥∥∥∇ (u− uh −Πdiv(u− uh)

)∥∥∥
L2(Ω)

≤ ‖∇ (u− uh)‖L2(Ω) .

This manipulation is unfortunately not possible in general in the anisotropic settings, since
there is no reason a priori that

ωK
(
u− uh −Πdiv(u− uh)

)
is bounded by ωK(u− uh). (3.39)
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Indeed, we only have a global control over all Ω∥∥∥∇ (v−Πdivv
)∥∥∥

L2(Ω)
≤ ‖∇v‖L2(Ω)

and to obtain an estimate as (3.39), we should be able to prove that on every patch and
in every direction, it holds

‖∇
(
u− uh −Πdiv(u− uh)

)
· ri,K‖L2(∆K) ≤ ‖∇ (u− uh) · ri,K‖L2(∆K), i = 1, 2.

So far, we do not know if such an inequality is valid or can be demonstrated. What can
be done is to use that Πdivu = 0 and to apply the triangle inequality

ωK
(
u− uh −Πdiv(u− uh)

)
≤ ωK(u− uh) + ωK

(
Πdivuh

)
and then bound(∥∥∥∥f − ρ∂uh

∂t
+ µ∆uh −∇ph

∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K)

)
ωK

(
Πdivuh

)
by

(
λ2

1,K + λ2
2,K

)1/2

(∥∥∥∥f − ρ∂uh
∂t

+ µ∆uh −∇ph
∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K)

)∥∥∥∇Πdivuh
∥∥∥
L2(∆K)

.

Thanks to the discrete Cauchy-Schwarz inequality and the Young’s inequality, we obtain
finally for the sum over triangles that

∑
K∈Th

(∥∥∥∥f − ρ∂uh
∂t

+ µ∆uh −∇ph
∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K)

)
ωK

(
Πdivuh

)
is controlled (up to a constant) by

∑
K∈Th

(λ2
1,K + λ2

2,K)
(∥∥∥∥f − ρ∂uh

∂t
+ µ∆uh −∇ph

∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K)

)2

+
∥∥∥∇Πdivuh

∥∥∥2

L2(Ω)
.

Finally we use that ∥∥∥∇Πdivuh
∥∥∥2

L2(Ω)

is controlled by ‖ div uh‖2L2(Ω) to obtain an estimate that does not involve Πdivuh. As
already explained before, the term

∑
K∈Th

(λ2
1,K + λ2

2,K)
(∥∥∥∥f − ρ∂uh

∂t
+ µ∆uh −∇ph

∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K)

)2

is suboptimal for anisotropic meshes, since it is a low order term (it goes as O(h) after
taking the square root) but

λ2
1,K + λ2

2,K

cannot be bounded independently of the mesh aspect ratio.
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A posteriori error estimates through Stokes reconstruction

The second approach to correct the issues of Theorem 3.12 is presented in [61]. The
authors propose to use the so-called Stokes reconstruction, that is an extension to the
Stokes equations of the elliptic reconstruction introduced in [74] for parabolic problems.
The proofs of the final a posteriori error estimates obtained with this technique are a com-
bination of several propositions (Propositions 3.19, 3.21, 3.23 and 3.25) that are presented
independently and reassemble in the Theorems 3.27 and 3.29. In a first reading, the proofs
of these propositions can be skipped and the reader can go directly to the Theorems 3.27
and 3.29.

Let t ∈ [0, T ] and let (uh(t), ph(t)) be the discrete (in space) approximation of the
velocity and pressure given by (3.27). We define the Stokes reconstruction of (uh(t), ph(t))
as the unique solution (U(t), P (t)) of the steady Stokes equations



−µ∆U(t) +∇P (t) = f(t)− ρ∂uh
∂t

(t), in Ω,

div U(t) = 0, in Ω,

U(t) = 0, on ∂Ω.

(3.40)

We recall that we assume for any t ∈ [0, T ], f(t) ∈ (L2(Ω))2. If moreover we assume for
instance that for any t ∈ [0, T ], ∂uh

∂t
(t) ∈ (L2(Ω))2 too, then there exists for all t ∈ [0, T ]

a unique pair (U(t), P (t)) ∈ (H1
0 (Ω))2 × L2

0(Ω) that is a weak solution of (3.40). Since
the domain Ω is a convex polygon, it is also sufficient to obtain that for every t ∈ [0, T ]
(U(t), P (t)) ∈ (H2(Ω))2×H1(Ω), see [62]. Note that the H2×H1 regularity of the Stokes
equations for convex polygon is a particularity of the 2D case, the equivalent result for
convex polyhedrons (up to our knowledge) is believed to be true, but proven only for some
particular cases [66]. Remark however, that for smooth boundaries, the result exists in
any dimension [21]. Note that for the a posteriori error analysis below, we do not need
the extra regularity (U(t), P (t)) ∈ (H2(Ω))2 ×H1(Ω) and we shall only use the fact that
(U(t), P (t)) satisfies the equations (3.40) in the weak formulation

µ

∫
Ω
∇U(t) : ∇vdx−

∫
Ω
P (t) div vdx =

∫
Ω

(
f(t)− ρ∂uh

∂t
(t)
)
· vdx, ∀v ∈ (H1

0 (Ω))2,

−
∫

Ω
q div U(t) = 0, ∀q ∈ L2

0(Ω). (3.41)

However, considering the time variable, some smoothness is required and we must be able
to differentiate (U, P ) and the equations (3.41) with respect to t (for our demonstrations
at least two times). So it is necessary that the force term f and the numerical solution
uh (and consequently the pressure ph) are at least of "equivalent" regularity in time. We
do not pretend to give an exhaustive analysis of the regularity of the solutions of (3.40),
therefore we content ourself to assume from now that u, p,uh, ph,U, P are sufficiently
smooth to justify the computations. Still, we write below at least necessary conditions
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such that the a posteriori estimates have a sense. We might assume that

u,uh,U ∈ C0 ([0, T ]; (H1
0 (Ω))2) , ∂u

∂t
,
∂U
∂t
∈ C0

(
0, T ; (L2(Ω))2

)
∩ L2

(
0, T ; (H1

0 (Ω))2
)
,

∂uh
∂t

,
∂2uh
∂t2

∈ C0
(
[0, T ]; (H1(Ω))2

)
,
∂3uh
∂t3

,
∂2U
∂t2

,∈ C0
(
0, T ; (L2(Ω))2

)
p, P ∈ C0 ([0, T ];L2

0(Ω)
)
, ph ∈ C0 (0, T ;L2

0(Ω)
)
∩H1 (0, T ;H1(Ω)

)
f ∈ C2 ([0, T ]; (L2(Ω))2) .

Remark 3.16.
We write the Stokes reconstruction system in a slightly different way that the one used in
[61], where the right hand side of (3.40) is chosen as

f − fh − µ∆̃huh,

where fh stands for the L2(Ω) projection into the finite elements space and ∆̃h for a proper
discrete version of the Laplace operator. Observe that, at least formally and working in a
divergence free space to eliminate the pressure, we can consider that

fh − µ∆̃huh = ρ
∂uh
∂t

in L2(Ω).

In the next proposition, we show the link between (U, P ) and the numerical solutions
(uh, ph). Let us assume that we discretize the equations (3.40) with P1 finite elements
and that for any t ∈ [0, T ] we look for (Uh(t), Ph(t)) ∈ Vh × Qh the solution of the
Petrov-Galerkin method

µ

∫
Ω
∇Uh : ∇vhdx−

∫
Ω
Ph div vhdx =

∫
Ω

f · vhdx− ρ
∫

Ω

∂uh
∂t
· vhdx, ∀vh ∈ Vh,

−
∫

Ω
qh div Uhdx +

∑
K∈Th

αK

∫
K

(
f − ρ∂uh

∂t
+ µ∆Uh −∇Ph

)
· ∇qhdx = 0, ∀qh ∈ Qh,

(3.42)

where we choose αK as in (3.28). Then, one can prove the following result

Proposition 3.17.
For all t ∈ [0, T ], (Uh(t), Ph(t)) = (uh(t), ph(t)) where (Uh, Ph) is the solution of (3.42)
and (uh, ph) the solution of (3.27).

Proof. Substracting (3.27) from (3.42), it yields for all t ∈ [0, T ] that (note that we use
the fact ∆vh = 0, ∀vh ∈ Vh to eliminate the Laplacian in the stabilization term)

µ

∫
Ω
∇(Uh(t)− uh(t)) : ∇vhdx−

∫
Ω

(Ph(t)− ph(t)) div vhdx = 0, ∀vh ∈ Vh,

−
∫
qh div(Uh(t)− uh(t))dx−

∑
K∈Th

αK

∫
K
∇(Ph(t)− ph(t)) · ∇qhdx = 0, ∀qh ∈ Qh.

Choosing vh = Uh(t) − uh(t) and qh = −(Ph(t) − ph(t)), we get by summing the two
equations

µ

∫
Ω
|∇(Uh(t)− uh(t))|2dx +

∑
K∈Th

αK

∫
K
|∇(Ph(t)− ph(t))|2dx = 0,

which implies that Uh(t) = uh(t) and Ph(t) = ph(t) since both terms are non negative.
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The above proposition tell us that we can think to the Stokes reconstruction as a
smooth version of the numerical solution (uh, ph) since we recover it after discretizing the
equations (3.40). Moreover, one can prove the following Lemma, that can be interpreted
as a Galerkin orthogonality between (U, P ) and (uh, ph) and that we shall use later.

Lemma 3.18 (Galerkin orthogonality of the Stokes reconstruction).
Let (uh, ph) be the solution of the semi-discretized equations (3.27) and (U, P ) its the
Stokes reconstruction given by (3.41). For all t ∈ [0, T ], the following identities hold

µ

∫
Ω
∇(U− uh)(t) : ∇vhdx−

∫
Ω

(P − ph)(t) div vhdx = 0, ∀vh ∈ Vh, (3.43)

−
∫

Ω
qh div(U−uh)(t)dx−

∑
K∈Th

αK

(
f(t)− ρ∂uh(t)

∂t
+ µ∆uh(t)−∇ph(t)

)
·∇qhdx = 0, ∀qh ∈ Qh.

(3.44)
Moreover, assuming that f ,uh, ph,U, P are smooth enough, we have for k > 0

µ

∫
Ω
∇∂

k(U− uh)(t)
∂tk

: ∇vhdx−
∫

Ω

∂k(P − ph)(t)
∂tk

div vh = 0, ∀vh ∈ Vh, (3.45)

−
∫

Ω
qh div ∂

k(U− uh)(t)
∂tk

−
∑
K∈Th

αK

(
∂kf(t)
∂tk

− ρ∂
k+1uh(t)
∂tk+1 + µ∆∂kuh(t)

∂tk
−∇∂

kph(t)
∂tk

)
· ∇qh = 0, ∀qh ∈ Qh.

(3.46)

Proof. The proof of (3.43) and (3.44) are straightforward by taking the difference be-
tween (3.41) and (3.27). By assuming enough smoothness, (3.45) and (3.46) follow by
differentiating (3.43) and (3.44) with respect to t.

To prove an a posteriori error estimate using the Stokes reconstruction, the idea is the
following: we cut the numerical errors u− uh and p− ph as

u− uh = (u−U) + (U− uh), p− ph = (p− P ) + (P − ph)

and we prove independently estimates for u−U, p− P and U− uh, P − ph.
We now prove upper bounds for the continuous errors u −U and p − P . There are

contained in the two next propositions.

Proposition 3.19 (Continuous error estimate for the veloctiy).
Let (u, p) be the solution of the unsteady Stokes equations (3.26), (uh, ph) be the solution
of the semi-discretized problem (3.27), and (U, P ) its Stokes reconstruction given by (3.41)
The following error estimates hold for all t ∈ (0, T ], where CP stands for the Poincaré
constant of Ω:

ρ‖(u−U)(t)‖2L2(Ω) + µ

∫ t

0
‖∇(u−U)(s)‖2L2(Ω)ds

≤ ρ‖(u−U)(0)‖2L2(Ω) + ρ2C2
P

µ

∫ t

0

∥∥∥∥∂uh
∂t

(s)− ∂U
∂t

(s)
∥∥∥∥2

L2(Ω)
ds. (3.47)

ρ

∥∥∥∥∂u
∂t

(t)− ∂U
∂t

(t)
∥∥∥∥2

L2(Ω)
+ µ

∫ t

0

∥∥∥∥∇(∂u
∂t
− ∂U

∂t

)
(s)
∥∥∥∥2

L2(Ω)
ds

≤ ρ2
∥∥∥∥∂u
∂t

(0)− ∂U
∂t

(0)
∥∥∥∥2

L2(Ω)
+ C2

Pρ

µ

∫ t

0

∥∥∥∥∥∂2uh
∂t2

(s)− ∂2U
∂t2

(s)
∥∥∥∥∥

2

L2(Ω)
ds. (3.48)
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ρ

∫ t

0

∥∥∥∥∂u
∂t

(s)− ∂U
∂t

(s)
∥∥∥∥2

L2(Ω)
ds+ µ‖∇(u−U)(t)‖2L2(Ω)

≤ µ‖∇(u−U)(0)‖2L2(Ω) + ρ

∫ t

0

∥∥∥∥∂uh
∂t

(s)− ∂U
∂t

(s)
∥∥∥∥2

L2(Ω)
ds. (3.49)

Proof. Observe that the momentum equation of (3.40) can also be written as

ρ
∂U
∂t
− µ∆U +∇P = f − ρ

(
∂uh
∂t
− ∂U

∂t

)
.

Then, taking the difference between (3.25) and (3.40) yields, integrated with respect to a
test function in (H1

0 (Ω))2,

ρ

∫
Ω

∂(u−U)
∂t

·vdx+µ
∫

Ω
∇(u−U) : ∇vdx−

∫
Ω

(p−P ) div vdx =
∫

Ω
ρ

(
∂uh
∂t
− ∂U

∂t

)
·vdx.
(3.50)

Taking v = u − U and using Young’s, Poincaré and Cauchy-Schwarz inequalities yield
(3.47) after integration with respect to the time. To derive, (3.48), we differentiate (3.50)
with respect to t and proceed as before taking v = ∂u

∂t
− ∂U

∂t
instead. Finally, we obtain

(3.49) choosing v = ∂u
∂t
− ∂U

∂t
in (3.50).

Remark 3.20.
One step of the above proof of (3.47) is to choose v = u − U in (3.50) and thanks to
Cauchy-Schwarz and Young’s inequalities to derive that

ρ

2
d

dt
‖(u−U)(s)‖2L2(Ω) + µ‖∇(u−U)(s)‖2L2(Ω)

≤ ρε

2

∥∥∥∥∂uh
∂t

(s)− ∂U
∂t

(s)
∥∥∥∥2

L2(Ω)
+ ρ

2ε‖(u−U)(s)‖2L2(Ω). (3.51)

In the proof of Proposition 3.19, we choose to control the L2 norm ‖(u −U)(s)‖2L2(Ω) in
the right hand side thanks to the Poincaré inequality which yields

ρ

2
d

dt
‖(u−U)(s)‖2L2(Ω) + µ‖∇(u−U)(s)‖2L2(Ω)

≤ ρε

2

∥∥∥∥∂uh
∂t

(s)− ∂U
∂t

(s)
∥∥∥∥2

L2(Ω)
+ ρC2

P

2ε ‖∇(u−U)(s)‖2L2(Ω).

Choosing ε = ρC2
P/µ, the last term of the right hand side is absorbed in the H1 semi-norm

and integration over the time yields the estimate. Note that in (3.51), we could also use
a Gronwall’s type argument (see the proof of Theorem A.3 with N = 1 for instance) with
respect to quantity ρ‖(u−U)(s)‖2L2(Ω) and it yields the final estimate

ρ‖(u−U)(t)‖2L2(Ω) + µ

∫ t

0
‖∇(u−U)(s)‖2L2(Ω)ds

≤ exp
(
t

ε

)(
ρ‖(u−U)(0)‖2L2(Ω) + ρε

∫ t

0

∥∥∥∥∂uh
∂t

(s)− ∂U
∂t

(s)
∥∥∥∥2

L2(Ω)
ds

)
.

Choosing ε = t, we can eliminate the exponential growth of the bound and we obtain
finally

ρ‖(u−U)(t)‖2L2(Ω) + µ

∫ t

0
‖∇(u−U)(s)‖2L2(Ω)ds

≤ exp(1)
(
ρ‖(u−U)(0)‖2L2(Ω) + ρt

∫ t

0

∥∥∥∥∂uh
∂t

(s)− ∂U
∂t

(s)
∥∥∥∥2

L2(Ω)
ds

)
.
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Observe that, up to the multiplicative constant exp(1), we obtain the same estimate as
(3.47) with ρt instead of ρ2C2

P/µ. Note that the ratio between ρ2C2
P/µ and ρt is

ρCP
µ

CP
t
.

Since the Poincaré constant is bounded by the diameter of the domain L, this ratio is
finally bounded by

ρL

µ

L

t
.

Finally, writing V = L/t as the characteristic velocity and L as the characteristic length
of the domain, we obtain that the ration between ρ2C2

P/µ and ρT is nothing else that the
Reynolds number

ρLV

µ
.

Proposition 3.21 (Continuous error estimate for the pressure).
Let (u, p) be the solution of the unsteady Stokes equations (3.26), (uh, ph) be the solution of
the semi-discretized problem (3.27), and (U, P ) its Stokes reconstruction given by (3.41).
Then there exists a constant C > 0 depending only on Ω such that for all t ∈ (0, T ]

‖(p− P )(t)‖2L2(Ω)

≤ C max(µ, ρ)

ρ ∥∥∥∥∂u
∂t

(0)− ∂U
∂t

(0)
∥∥∥∥2

L2(Ω)
+ ρ2

µ

∫ t

0

∥∥∥∥∥∂2uh
∂t2

(s)− ∂2U
∂t2

(s)
∥∥∥∥∥

2

L2(Ω)
ds

+µ‖∇(u−U)(0)‖2L2(Ω) + ρ

∫ t

0

∥∥∥∥∂uh
∂t

(s)− ∂U
∂t

(s)
∥∥∥∥2

L2(Ω)
ds

+ρ
∥∥∥∥∂uh
∂t

(t)− ∂U
∂t

(t)
∥∥∥∥2

L2(Ω)

)
. (3.52)

Proof. We denote by C any constant that depends on Ω but which value may change
from line to line. Taking the difference between (3.25) and (3.40), we obtain by the inf-
sup condition between L2

0(Ω) and (H1
0 (Ω))2 and the Poincaré inequality that there exists

C > 0 depending only on Ω such that

‖(p− P )(t)‖L2(Ω) ≤ C sup
v∈(H1

0 (Ω))2

v 6=0

∫
Ω

(p− P )(t) div vdx

‖∇v‖L2(Ω)

= C sup
v∈(H1

0 (Ω))2

v 6=0

ρ

∫
Ω

∂(u−U)
∂t

(t)vdx + µ

∫
Ω
∇(u−U)(t) : ∇vdx + ρ

∫
Ω

(
∂uh
∂t

(t)− ∂U
∂t

(t)
)

vdx

‖∇v‖L2(Ω)

≤ C
(
ρ

∥∥∥∥∂(u−U)
∂t

(t)
∥∥∥∥
L2(Ω)

+ µ‖∇(u−U)(t)‖L2(Ω) + ρ

∥∥∥∥∂uh
∂t

(t)− ∂U
∂t

(t)
∥∥∥∥
L2(Ω)

)
.

Squaring the last inequality and combining it with the Proposition 3.19 gives the desired
estimate.

Remark 3.22. (i) To obtain the estimate (3.47) is straightforward, since u−U is a free
divergence function, which eliminates the pressure when choosing the test function
v = u − U in (3.50). This is due to the fact that we build U itself as a smooth
version of the approximated velocity uh that satisfies the zero divergence constraint.
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(ii) Anticipating the sequel, we will show that all the terms containing∥∥∥∥∥∂kuh∂tk
− ∂kU

∂tk

∥∥∥∥∥
L2(Ω)

, k = 0, 1, 2,

are of higher order in space compared to the H1− semi-norm of the error u− uh.

We now prove an upper bound for the discrete errors U − uh and P − ph. There are
contained in the next proposition

Proposition 3.23 (Discrete error estimate).
Let (uh, ph) be the semi-discretized solution of (3.27) and (U, P ) its Stokes reconstruction
given by (3.41). Moreover, for any t ∈ [0, T ], let (w(t), r(t)) ∈ (H1

0 (Ω))2×L2
0(Ω) the weak

solution of the dual problem

−µ∆w(t) +∇r(t) = 0, in Ω,

div w(t) = ph(t)− P (t), in Ω,

w(t) = 0, on ∂Ω.

(3.53)

Then, there exists a constant C that depends only on the reference triangle and Ω such
that for every t ∈ [0, T ]

µ‖∇(U−uh)(t)‖2L2(Ω) + 1
µ
‖(P − ph)(t)‖2L2(Ω) ≤ C

∑
K∈Th

(ηAK,u)2(t) + (ηAK,p)2(t) + (ηdiv
K )2(t),

(3.54)
where we define for every t ∈ [0, T ]

(ηAK,u)2(t) =
(∥∥∥∥f(t)− ρ∂uh

∂t
(t) + µ∆uh(t)−∇ph(t)

∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖[µ∇uh(t) · n]‖L2(∂K)

)
ωK ((U− uh) (t)) ,

(ηAK,p)2(t)

= 1
µ

(∥∥∥∥f(t)− ρ∂uh
∂t

(t) + µ∆uh(t)−∇ph(t)
∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖[µ∇uh(t) · n]‖L2(∂K)

)
ωK(w(t)),

(ηdiv
K )2(t) = µ‖ div uh(t)‖2L2(K).

Proof. The proof follows the steps of Theorem 3.6 for the steady Navier-Stokes equations.
We denote by C any positive constant that may depend on the reference triangle or Ω,
by Ĉ any positive constant that depends only on the reference triangle, and by C̃ any
constant that depends on Ω only. To lighten the notations, we omit to write the explicit
dependence on t of the functions. Observe that all the computations presented below
holds for any t ∈ [0, T ].

Step 1. Estimate for the velocity.
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Using the weak formulation of the Stokes reconstruction (3.41) and the numerical
method (3.27), we obtain

µ‖∇(U− uh)‖2L2(Ω) = µ

∫
Ω
∇(U− uh) : ∇(U− uh)dx

= µ

∫
Ω
∇(U− uh) : ∇(U− uh)dx

+
∫

Ω
(P − ph) div(U− uh)dx−

∫
Ω

(P − ph) div(U− uh)dx

=
∫

Ω

(
f − ρ∂uh

∂t

)
· (U− uh)dx− µ

∫
Ω
∇uh : ∇(U− uh)dx

+
∫

Ω
ph div(U− uh)dx +

∫
(P − ph) div uhdx

=
∫

Ω

(
f − ρ∂uh

∂t

)
· (U− uh − vh)dx− µ

∫
Ω
∇uh : ∇(U− uh − vh)

+
∫

Ω
ph div(U− uh − vh)dx +

∫
(P − ph) div uhdx

=
∑
K∈Th

∫
K

(
f − ρ∂uh

∂t
+ µ∆uh −∇ph

)
· (U− uh − vh)dx + 1

2

∫
∂K

[µ∇uh · n] · (U− uh − vh)dx

+
∫

Ω
(P − ph) div uhdx,

where the last equality is derived by integrating by parts on every triangle. Choosing
vh = Rh(U − uh) and qh = 0, the Cauchy-Schwarz and Young’s inequalities and the
interpolation error estimates for the Clément’s interpolant yield

µ‖∇(U− uh)‖2L2(Ω)

≤ Ĉ
∑
K∈Th

(∥∥∥∥f − ρ∂uh
∂t

+ µ∆uh −∇ph
∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖µ∇uh · n‖L2(∂K)

)
ωK(U− uh)

+ 1
2ε‖P − ph‖

2
L2(Ω) + ε

2‖ div uh‖2L2(Ω). (3.55)

Step 2. Estimate for the pressure.
To simplify the notation, let us note as before

νK =
∥∥∥∥f − ρ∂uh

∂t
+ µ∆uh −∇ph

∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖µ∇uh · n‖L2(∂K) .

Let w be the solution of the dual problem (3.79). We have using again (3.40) and the
numerical method (3.27)

‖P − ph‖2L2(Ω) = −
∫

Ω
(P − ph) div wdx = −

∫
Ω
P div wdx +

∫
Ω
ph div wdx

=
∫

Ω

(
f − ρ∂uh

∂t

)
·wdx + µ

∫
Ω
∇U : ∇wdx +

∫
Ω
ph div wdx

=
∫

Ω

(
f − ρ∂uh

∂t

)
·wdx + µ

∫
Ω
∇uh : ∇wdx +

∫
Ω
ph div wdx

+ µ

∫
Ω
∇(U− uh) : ∇wdx

=
∫

Ω

(
f − ρ∂uh

∂t

)
· (w− vh)dx + µ

∫
Ω
∇uh : ∇(w− vh)dx +

∫
Ω
ph div(w− vh)dx

+ µ

∫
Ω
∇(U− uh) : ∇wdx.
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Choosing vh = Rh(w), integration by parts, Cauchy-Schwarz, Young’s and interpolation
error inequalites yield finally

‖P − ph‖2L2(Ω) ≤ Ĉ
∑
K∈Th

νKωK(w) + µ2ε

2 ‖∇(U− uh)‖2L2(Ω) + 1
2ε‖∇w‖2L2(Ω).

The following a priori estimate is valid for the dual problem (3.79)

‖∇w‖L2(Ω) + 1
µ
‖r‖L2(Ω) ≤ C̃‖P − ph‖L2(Ω).

Therefore choosing ε = C̃2, where C̃ is the constant given in the estimate above, we finally
obtain

‖P − ph‖2L2(Ω) ≤ Ĉ
∑
K∈Th

νKωK(w) + µ2C̃‖∇(U− uh)‖2L2(Ω). (3.56)

Step 3. Putting all together.
Plugging (3.56) into (3.55), and choosing ε = µC̃, we obtain for the velocity error

µ‖∇(U− uh)‖2L2(Ω) ≤ Ĉ
∑
K∈Th

νKωK(U− uh) + 1
µ
νKωK(w) + µC̃‖div uh‖2L2(Ω),

Plugging it back into (3.56) and dividing by µ, we obtain for the pressure error

1
µ
‖P − ph‖2L2(Ω) ≤ Ĉ

∑
K∈Th

νKωK(U− uh) + 1
µ
νKωK(w) + µC̃‖ div uh‖2L2(Ω),

The result is then obtained by summing together the last two estimates.

Remark 3.24.
We could have obtained a finer estimate for the pressure error P − ph by use of the
Galerkin orthogonality (Lemma 3.18). We keep the same convention for the constant as
in the proof of Proposition 3.23. Indeed, observe that using the first equation of the dual
problem (3.79), one have that

µ

∫
Ω
∇w : ∇vdx−

∫
Ω
r div vdx = 0, ∀v ∈ (H1

0 (Ω))2.

Therefore one can write that

‖P − ph‖2L2(Ω) = −
∫

Ω
(P − ph) div wdx

= −
∫

Ω
(P − ph) div wdx + µ

∫
Ω
∇w : ∇(U− uh)dx−

∫
Ω
r div(U− uh)dx.

Now using the Galerkin orthogonality of Lemma 3.18 (instead of the numerical scheme as
in the step 2 of the proof above), one can remove any vh from the two first terms and we
have that

‖P − ph‖2L2(Ω)

= −
∫

Ω
(P − ph) div(w− vh)dx + µ

∫
Ω
∇(w− vh) : ∇(U−uh)dx−

∫
Ω
r div(U−uh)dx.
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From there, we proceed as usual : we choose vh = Rh(w), and integration by parts on the
triangles, Cauchy-Schwarz and Young’s inequalities and interpolation estimates, yields

‖P − ph‖2L2(Ω)

≤ Ĉ
∑
K∈Th

(
‖−µ(∆U−∆uh) +∇(P − ph)‖L2(K) + 1

2
√
λ2,K

‖[µ∇(U− uh) · n]‖L2(∂K)

)
ωK(w)

+ 1
2ε‖r‖

2
L2(Ω) + ε

2‖ div uh‖2L2(Ω).

We recall that in our particular context we have that U ∈ (H2(Ω))2 and satisfies in the
strong form

−µ∆U +∇P = f − ρ∂uh
∂t

.

Moreover, the jump [∇U · n] = 0 since U is a H2 function. Therefore, using the a priori
estimate for the dual problem

‖∇w‖L2(Ω) + 1
µ
‖r‖L2(Ω) ≤ C̃‖P − ph‖L2(Ω),

and by choosing ε = µ2C̃2 yields finally that

‖P − ph‖2L2(Ω)

≤ Ĉ
∑
K∈Th

(∥∥∥∥f − ρ∂uh
∂t

+ µ∆uh −∇ph
∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K)

)
ωK(w)

+ C̃µ2‖ div uh‖2L2(Ω).

In conclusion, we obtain that, using the same notations as in the Proposition 3.23,

1
µ
‖P − ph‖2L2(Ω) ≤ C

∑
K∈Th

(ηAK,p)2 + (ηdiv
K )2.

Compared to the estimate that yields (3.54) for the pressure error, the upper bound above
is derived independently of the velocity estimate, what explained why the velocity error
indicator (ηAK,u)2 is not present. Nevertheless, this approach requires to use the a priori
smoothness of U, mainly that U ∈ (H2(Ω))2 and satisfies the equations in the strong
form. This is in general not appropriate for an a posteriori error analysis since we do not
necessarily know a priori the regularity of the exact solution (here U). Moreover, we only
need in fact that the exact solution satisfies the equations in a weak form to be able to
prove an a posteriori error estimate (see for instance the step 1 of Proposition 3.23).

Combining the estimates of Propositions 3.19, 3.21 and 3.23, we easily obtain estimates
for u− uh and p− ph by use of the triangle inequality. It only remains to prove an upper
bounds for the terms ∥∥∥∥∥∂kuh∂tk

− ∂kU
∂tk

∥∥∥∥∥
L2(Ω)

, k = 0, 1, 2.

In the next proposition, we will show that they are of higher order in space, and therefore
will be in practice negligible in the final a posteriori error estimates.

Proposition 3.25 (Dual estimates for the velocity).
Let (uh, ph) be the solution of the semi-discretized problem (3.27) and (U, P ) its Stokes
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reconstruction defined in (3.41). Let k = 0, 1, 2. There exists a constant C > 0 independent
of the mesh size but depending on the mesh aspect ratio and Ω such that for all t ∈ [0, T ]∥∥∥∥∥∂kuh∂tk

(t)− ∂kU
∂tk

(t)
∥∥∥∥∥

2

L2(Ω)
≤ C

∑
K∈Th

(εIK,u,k)2(t), (3.57)

where

(εIK,u,k)2(t)

= 1
µ2h

4
K

∥∥∥∥∥∂kf∂tk
(t)− ρ∂

k+1uh
∂tk+1 (t) + µ∆∂kuh

∂tk
(t)−∇∂

kph
∂tk

(t)
∥∥∥∥∥

2

L2(K)
+ 1
µ
h3
K

∥∥∥∥∥∇∂kuh∂tk
(t) · n

∥∥∥∥∥
2

L2(∂K)

+ h2
K

∥∥∥∥∥div ∂
kuh
∂tk

(t)
∥∥∥∥∥

2

L2(K)

Proof. Let k = 0, 1, 2. To lighten the notations and when the context is clear, we do not
write the explicit dependence in time of the functions since all our computations hold for
any t ∈ [0, T ]. For this particular proof, we denote by C any constant that is independent
of the mesh size but may depend on the aspect ratio and Ω.

We shall use the following dual problem : for any t ∈ [0, T ], find (w(t), r(t)) ∈
(H1

0 (Ω))2 × L2
0(Ω) the weak solution of

−µ∆w(t) +∇r(t) = ∂kuh
∂tk

(t)− ∂kU
∂tk

(t), in Ω,

div w(t) = 0, in Ω,

w(t) = 0, on ∂Ω.

(3.58)

Since we are in two dimensions, Ω is convex and we assume that for any t ∈ [0, T ]

∂kuh
∂tk

(t)− ∂kU
∂tk

(t) ∈ (L2(Ω))2, (3.59)

one can prove that (w(t), r(t)) ∈ (H2(Ω))2 × H1(Ω) [62] and that the following a priori
estimate holds

µ‖w(t)‖H2(Ω) + ‖∇r(t)‖L2(Ω) ≤ C̃
∥∥∥∥∥∂kuh∂tk

(t)− ∂kU
∂tk

(t)
∥∥∥∥∥
L2(Ω)

, (3.60)

where C̃ depends only on Ω.
We have, using the orthogonality between (U, P ) and (uh, ph) (see Lemma 3.18)∫

Ω

(
∂kuh
∂tk

− ∂kU
∂tk

)2

= µ

∫
Ω
∇w : ∇

(
∂kuh
∂tk

− ∂kU
∂tk

)
dx−

∫
Ω
r div

(
∂kuh
∂tk

− ∂kU
∂tk

)
dx

−
∫

Ω
div w

(
∂kph
∂tk

− ∂kP

∂tk

)
dx

= µ

∫
Ω
∇(w− vh) : ∇

(
∂kuh
∂tk

− ∂kU
∂tk

)
dx−

∫
Ω

(r − qh) div
(
∂kuh
∂tk

− ∂kU
∂tk

)
dx

−
∫

Ω
div(w− vh)

(
∂kph
∂tk

− ∂kP

∂tk

)
dx

+
∑
K∈Th

αK

(
∂kf
∂tk
− ρ∂

k+1uh
∂tk+1 + µ∆∂kuh

∂tk
−∇∂

kph
∂tk

)
· ∇qhdx.
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Note that, assuming enough regularity, one can differentiate with respect to the time the
weak formulation (3.41) and we have for k = 1, 2.

µ

∫
Ω
∇∂

kU
∂tk

(t) : ∇vdx−
∫

Ω

∂kP

∂tk
(t) div vdx

=
∫

Ω

(
∂kf
∂tk

(t)− ρ∂
k+1uh
∂tk+1 (t)

)
· vdx, ∀v ∈ (H1

0 (Ω))2,

−
∫

Ω
q div ∂

kU
∂tk

(t) = 0, ∀q ∈ L2
0(Ω). (3.61)

Note that for k = 0, the equations are trivially satisfy since there are nothing else than
the weak formulation (3.41). Therefore for k = 0, 1, 2, using (3.61), integrating by parts
and applying the Cauchy-Schwarz inequality we have

∫
Ω

(
∂kuh
∂tk

− ∂kU
∂tk

)2

dx

≤
∑
K∈Th

∥∥∥∥∥∂kf∂tk
− ρ∂

k+1uh
∂tk+1 + µ∆∂kuh

∂tk
−∇∂

kph
∂tk

∥∥∥∥∥
L2(K)

‖w− vh‖L2(K)

+ 1
2

∥∥∥∥∥
[
µ∇

(
∂kuh
∂tk

)
· n
]∥∥∥∥∥

L2(∂K)
‖w− vh‖L2(∂K)

+‖r−qh‖L2(K)

∥∥∥∥∥div ∂
kuh
∂tk

∥∥∥∥∥
L2(K)

+αK

∥∥∥∥∥∂kf∂tk
− ρ∂

k+1uh
∂tk+1 + µ∆∂kuh

∂tk
−∇∂

kph
∂tk

∥∥∥∥∥
L2(K)

‖∇qh‖L2(K)

Choosing vh = rh(w), qh = Rh(r), classical interpolation results yield there exists C̄ > 0
independent of the mesh size but dependent on the mesh aspect ratio such that

∫
Ω

(
∂kuh
∂tk

− ∂kU
∂tk

)2

≤ C̄
∑
K∈Th

h2
K

∥∥∥∥∥∂kf∂tk
− ρ∂

k+1uh
∂tk+1 + µ∆∂kuh

∂tk
−∇∂

kph
∂tk

∥∥∥∥∥
L2(K)

‖w‖H2(K)

+ 1
2h

3/2
K

∥∥∥∥∥
[
µ∇

(
∂kuh
∂tk

)
· n
]∥∥∥∥∥

L2(∂K)
‖w‖H2(K)

+hK

∥∥∥∥∥div ∂
kuh
∂tk

∥∥∥∥∥
L2(K)

‖∇r‖L2(∆K)+αK

∥∥∥∥∥∂kf∂tk
− ρ∂

k+1uh
∂tk+1 + µ∆∂kuh

∂tk
−∇∂

kph
∂tk

∥∥∥∥∥
L2(K)

‖∇r‖L2(∆K) .

By using the discrete Cauchy-Schwarz inequality, a priori error estimate (3.60) and Young’s
inequality, we obtain

∥∥∥∥∥∂kuh∂tk
(t)− ∂kU

∂tk
(t)
∥∥∥∥∥

2

L2(Ω)

≤ C

µ2

∑
K∈Th

h4
K

∥∥∥∥∥∂kf∂tk
(t)− ρ∂

k+1uh
∂tk+1 (t) + µ∆∂kuh

∂tk
(t)−∇∂

kph
∂tk

(t)
∥∥∥∥∥

2

L2(K)
+h3

K

∥∥∥∥∥µ∇∂kuh∂tk
(t) · n

∥∥∥∥∥
2

L2(∂K)

+µ2h2
K

∥∥∥∥∥div ∂
kuh
∂tk

(t)
∥∥∥∥∥

2

L2(K)
+µ2α2

K

∥∥∥∥∥∂kf∂tk
(t)− ρ∂

k+1uh
∂tk+1 (t) + µ∆∂kuh

∂tk
(t)−∇∂

kph
∂tk

(t)
∥∥∥∥∥

2

L2(K)
.

Recalling that

αK =
αλ2

2,K
µ

, λ2,K ≤ ĈhK , ∀K ∈ Th,
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where Ĉ depends on the reference triangle only, we can absorb the last term of the sum
over K into the first one ant it yields finally∥∥∥∥∥∂kuh∂tk

(t)− ∂kU
∂tk

(t)
∥∥∥∥∥

2

L2(Ω)

≤ C

µ2

∑
K∈Th

h4
K

∥∥∥∥∥∂kf∂tk
(t)− ρ∂

k+1uh
∂tk+1 (t) + µ∆∂kuh

∂tk
(t)−∇∂

kph
∂tk

(t)
∥∥∥∥∥

2

L2(K)
+h3

K

∥∥∥∥∥µ∇∂kuh∂tk
(t) · n

∥∥∥∥∥
2

L2(∂K)

+ µ2h2
K

∥∥∥∥∥div ∂
kuh
∂tk

(t)
∥∥∥∥∥

2

L2(K)
,

which is the desired estimate.

Remark 3.26. 1. The fact that C in (3.57) depends on the mesh aspect ratio is not an
issue since the error indicator (εIK,u,k)2 ' h2 is of higher order in space, compared
to the H1 semi-norm

‖∇(u− uh)‖L2(Ω) ' h.

2. Note the particular form of (εIK,u)2 which is, roughly speaking, the k − th time
derivative of the residual of the equations.

3. Observe that in the proof of Proposition 3.25, we strongly use the fact that the
dual problem (3.58) has an (H2(Ω))2 ×H1(Ω) solution. As already mentioned, this
is true in dimension 2 and 3 for smooth domains [21], but is in general only true
for convex polytopes in dimension 2 (that is to say convex polygons). For R3 and
convex polyhedrons, the results still holds but some restrictions on the inner angles
must be imposed [66]. For our concerns, it is true if the polyhedron is a cube or
any rectangular parallelepiped. Therefore, one can extend the Proposition 3.25 to
the three dimensional case at least in the above cases. Note that the other results
(Propositions 3.19 and 3.21) are independent of the dimension, and up to switch to
the 3D anisotropic settings (see Section 1.6 of Chapter 1), Proposition 3.23 can be
adapted to the third dimension without any difficulties. So, our a posteriori error
analysis as the two theorems that will come below are completely generalizable to
R3.

We are now in position to prove an a posteriori error estimate for the discrete error
u − uh. By sake of completeness, we also present an a posteriori error estimate for the
pressure error p− ph. There are contained in the next two Theorems
Theorem 3.27 (An a posteriori error estimate for the velocity using the Stokes recon-
struction).
Let (u, p) be the solution of the unsteady Stokes equation (3.26), (uh, ph) be the approx-
imated solutions of the semi-discretized problem (3.27), and (U, P ) its the Stokes recon-
struction defined by (3.41). Then there exists C1 only depending on the reference triangle
and Ω and C2 > 0 independent of the mesh size, but dependent on the mesh aspect ratio
and Ω such that

ρ‖(u− uh)(T )‖2L2(Ω) + µ

∫ T

0
‖∇(u− uh)(s)‖2L2(Ω)dt

≤ C1

ρ‖(u− uh)(0)‖2L2(Ω) +
∫ T

0

∑
K∈Th

(ηAK,u)2(s) + (ηAK,p)2(s) + (ηdiv
K )2(s)ds


+ C2

ρ ∑
K∈Th

(εIK,u,0)2(0) + (εIK,u,0)2(T ) + ρ2

µ

∫ T

0

∑
K∈Th

(εIK,u,1)2(s)ds

 , (3.62)
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where the error indicators (ηAK,u)2, (ηAK,p)2 and (ηdiv
K )2 are given by Proposition 3.23 and

(εIK,u,k)2, k = 0, 1, by Proposition 3.25.

Proof. The proof is direct. By the triangle inequality, we have

ρ‖(u− uh)(T )‖2L2(Ω) + µ

∫ T

0
‖∇(u− uh)(s)‖2L2(Ω) ds

≤ 2ρ‖(u−U)(T )‖2L2(Ω) + 2µ
∫ T

0
‖∇(u−U)(s)‖2L2(Ω) ds

+ 2ρ‖(U− uh)(T )‖2L2(Ω) + 2µ
∫ T

0
‖∇(U− uh)(s)‖2L2(Ω) ds.

Then we use Propositions 3.19, combined with 3.25, and 3.23 to bound every terms.
Finally, the initial error

ρ‖(u−U)(0)‖2L2(Ω)

is split as
2ρ‖(u− uh)(0)‖2L2(Ω) + 2ρ‖(U− uh)(0)‖2L2(Ω),

the second term being estimated through (3.57).

Remark 3.28. (i) For practical purpose with our adaptive algorithms, we are interested
to provide an estimate for the numerical error evaluated at the final time T . Note
that (3.62) holds in fact for any t ∈ (0, T ].

(ii) We recall that the key idea behind the Stokes reconstruction is to split the discrete
error u− uh between

u−U and U− uh.

We recall moreover that the main issue to derive an a posteriori upper bound for the
unsteady Stokes equation is that it is difficult to rely the pressure error to the velocity
one. With the splitting presented above, this issue is solved since no information
on the pressure is required to estimate u − U (see Remark 3.22) and estimating
U−uh consists to work with a steady problem for which estimate for the pressure is
available (we recall that uh can be seen as an approximation of U see Lemma 3.17).

(iii) We are mainly interested in the L2 −H1
0 norm

eL2(H1) =
(∫ T

0
‖∇(u− uh)(s)‖2L2(Ω)dt

)1/2

,

which can be assumed to be O(h). The Theorem 3.27 basically means that, up to
some higher order terms that are O(h2) that is to say

‖(u− uh)(0)‖L2(Ω) = ρ‖u(0)− rhu(0)‖L2(Ω),

and  ∑
K∈Th

(εIK,u,0)2(0) + (εIK,u,0)2(T ) + ρ2

µ

∫ T

0

∑
K∈Th

(εIK,u,1)2(s)ds

1/2

,

the eL2(H1) norm of the velocity error can be estimated by

ηA = 1
µ

∫ T

0

∑
K∈Th

(ηAK,u)2(s) + (ηAK,p)2(s) + (ηdiv
K )2(s)ds

1/2

' O(h).
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Note that all these higher order terms are coming from the estimate of the continuous
error u− U .
An estimate of optimal order is also available through the same arguments for the
L∞ − L2 error

eL∞(L2) = max
t∈[0,T ]

‖(u− uh)(t)‖L2(Ω)

that we assume to be O(h2). Indeed, since we can estimate for any t ∈ (0, T ]

‖(u− uh(t))‖L2(Ω) ≤ ‖(u−U)(t)‖L2(Ω) + ‖(U− uh)(t)‖L2(Ω),

then Propositions 3.19 and 3.25 provide an a posteriori error estimates (up to a
constant that may depends on the mesh aspect ratio) that is O(h2) since it will only
contains the higher terms presented above. Providing an optimal a posteriori upper
bound for eL∞(L2) was one of the motivation to the introduction of the elliptic/Stokes
reconstruction [74, 61].

(iv) The upper bound (3.62) is not fully computable since the continuous reconstruction
U is contained in (ηAK,u)2 and that P is implicitly involved in (ηAK,p)2, the solution
of the dual problem (3.79) being unknown. Since we are mainly interested on error
indicators for the velocity, we did not investigate the question for (ηAK,p)2 and we
refer to the Section 3.1 for a similar discussion.
To make (ηAK,u)2 computable, we propose to use the ZZ post-processing as already
presented for other problems. In practice, we replace U in (ηAK,u)2 by ΠZZ

h uh. This
can be justify by the following observation. Let us consider the quantity∫ T

0

∑
K∈Th

(ηAK,u)2(s)ds =
∫ T

0

∑
K∈Th

νK(s)ωK(U(s)− uh(s))ds

where use again the notation

νK(t) =
∥∥∥∥f(t)− ρ∂uh

∂t
(t) + µ∆uh(t)−∇ph(t)

∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖[µ∇uh(t) · n]‖L2(∂K) .

First observe that by the triangle inequality

ωK(U− uh) ≤ ωK(u− uh) + ωK(u−U)

and therefore we have∫ T

0

∑
K∈Th

(ηAK,u)2(s)ds

≤
∫ T

0

∑
K∈Th

νK(s)ωK(u(s)− uh(s))ds+
∫ T

0

∑
K∈Th

νK(s)ωK(U(s)− u(s))ds.

One can show that the second term is of higher order. Indeed, we have∫ T

0

∑
K∈Th

νK(s)ωK(U(s)−u(s))ds =
∫ T

0

∑
K∈Th

λ1,K
λ2,K

λ2,KνK(s)‖∇(u−U)(s)‖L2(∆K)ds.

Using the discrete Cauchy-Schwarz inequality for the sum over the triangle and the
Cauchy-Schwarz inequality for the time integral, we obtain finally that∫ T

0

∑
K∈Th

νK(s)ωK(U(s)− u(s))ds

≤ C
(∫ T

0
λ2

2,Kν
2
K(s)ds

)1/2(∫ T

0
‖∇(u−U)(s)‖2L2(Ω)ds

)1/2

,
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where C depends on the aspect ratio λ1,K/λ2,K . We have then that(∫ T

0
λ2

2,Kν
2
K(s)ds

)1/2

= O(h)

and thanks to Propositions 3.19 and 3.25(∫ T

0
‖∇(u−U)(s)‖2L2(Ω)ds

)1/2

= O(h2),

so finally we obtain that∫ T

0

∑
K∈Th

νK(s)ωK(U(s)− u(s))ds

1/2

= O(h3/2)

and therefore of higher order compared to eL2(H1) (see (ii) above).
Thus, to summarize, we have that, up to some higher order terms,∫ T

0

∑
K∈Th

(ηAK,u)2(s)ds

is bounded by ∫ T

0

∑
K∈Th

νK(s)ωK(u(s)− uh(s))ds

that we can make computable by replacing u by its ZZ post-processing ΠZZ
h uh.

Theorem 3.29 (An a posteriori error estimate for the pressure using the Stokes recon-
struction).
Let (u, p) be the solution of the unsteady Stokes equation (3.26), (uh, ph) be the approx-
imated solutions of the semi-discretized problem (3.27), and (U, P ) its the Stokes recon-
struction defined by (3.41). Then there exists C1 only depending on the reference triangle
and Ω and C2 > 0 independent of the mesh size, but dependent on the mesh aspect ratio
and Ω such that for every t ∈ (0, T ]

‖p− ph(t)‖2L2(Ω) ≤ C1µ
∑
K∈Th

(ηAK,u)2(t) + (ηAK,p)2(t) + (ηdiv
K )2(t)

+ C1µ
∑
K∈Th

(ηAK,u)2(0) + (ηAK,p)2(0) + (ηdiv
K )2(0)

+ C2 max(µ, ρ)
(
ρ

∥∥∥∥∂u
∂t

(0)− ∂uh
∂t

(0)
∥∥∥∥2

L2(Ω)
+ µ‖∇(u− uh)(0)‖2L2(Ω)

+ρ
∑
K∈Th

(εIK,u,1)2(0) + (εIK,u,1)2(t)

+ρ
∫ t

0

∑
K∈Th

(εIK,u,1)2(s)ds+ ρ2

µ

∫ t

0

∑
K∈Th

(εIK,u,2)2(s)ds

 , (3.63)

where the error indicators (ηAK,u)2, (ηAK,p)2 and (ηdiv
K )2 are given by Proposition 3.23 and

(εIK,u,k)2, k = 0, 1, 2 by Proposition 3.25.

Proof. The proof follows the same steps as the estimate for the velocity proven in Theorem
3.27 by splitting the numerical error p − ph into p − P and P − ph and by using the
propositions 3.21, 3.23 and 3.25.
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Remark 3.30.
The estimate (3.63) is not fully satisfactory from an anisotropic perspective since terms
of low order (such as ‖∇(u−uh)(0)‖2L2(Ω)) appear in the estimate but are multiplied by a
constant (here C2) which depends on the mesh aspect ratio. Moreover, no a priori estimate
is available for

ρ

∥∥∥∥∂u
∂t

(0)− ∂uh
∂t

(0)
∥∥∥∥2

L2(Ω)
.

We summarize the results obtained in this section. The goal of the discussion was to try
to correct the drawbacks of Theorem 3.12, for which the way we solved the issue of relating
the pressure to the velocity was not satisfactory. The first attempt was the Theorem
3.14, where we used the Stokes projection, but non-anisotropic terms were involved in
the corresponding a posteriori estimates. We then proposed another approach using the
Stokes reconstruction. We think that the estimate of Theorem 3.27, where we used the
Stokes reconstruction, achieves this goal for the two following reasons:

(1) The terms involving ∥∥∥∥div ∂uh
∂t

∥∥∥∥
L2(K)

are of higher order, and even if there are multiplied by a constant depending on the
mesh aspect ratio, as already mentioned , it is from our perspective sufficient.

(2) The estimate is written in a fully anisotropic settings by comparison with the esti-
mate (3.37) of Theorem 3.14 where we use the Stokes projection Πdiv. Indeed, in
Theorem 3.14, we was not able to bound the part of the estimate containing the
factor ωK(Πdiv(u − uh)) independently of the mesh aspect ratio. We refer to the
discussion coming after the proof of Theorem 3.14 for more details.

Following this two observations, we choose to use the Stokes reconstruction technique (and
later on its Navier-Stokes version) to prove our future estimates.

3.5 A posteriori error estimates for the unsteady Stokes
equations with constant coefficients: spatial and tem-
poral approximation

In this section, we prove an a posteriori error estimate for the unsteady Stokes equations
involving the space and the time discretizations. We work with the same framework that
the one chosen in the previous section. We denote by Ω a convex domain of R2, T > 0
the final time, and ρ, µ > 0 the density and the viscosity. The force term f is chosen in
C0([0, T ]; (L2(Ω))2), and the initial condition u0 ∈ (H1

0 (Ω))2 is such that div u0 = 0. We
recall that we are looking for (u, p) the solution of the incompressible unsteady Stokes
equations (3.25) 

ρ
∂u
∂t
− µ∆u +∇p = f , in Ω× (0, T ),

div u = 0, in Ω× (0, T ),

u = 0, on ∂Ω× (0, T ),

u(·, 0) = u0, in Ω.
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The weak formulation (3.26) reads: find (u, p) such that u(·, 0) = u0 almost everywhere
in Ω and for almost every t ∈ (0, T )

ρ

∫
Ω

∂u
∂t
· vdx + µ

∫
Ω
∇u : ∇vdx−

∫
Ω
p div vdx =

∫
Ω

f · vdx, ∀v ∈ (H1
0 (Ω))2,

−
∫

Ω
q div udx = 0, ∀q ∈ L2

0(Ω).

In the previous section, we focused on the spatial approximation of the above equations.
We now also consider a finite difference scheme to discretize the evolution in time. We
focus on the Backward Euler method. As before, for all h > 0, let Th be a conformal
triangulation of Ω into triangles K of diameter hK ≤ h,Wh the classical finite elements set
of all continuous, piecewise linear functions, andWh,0 the subset ofWh which elements have
zero value on ∂Ω. The discrete velocity space and pressure space are given by Vh = (Wh,0)2

and Qh = Wh ∩ L2
0(Ω) and we consider the partition of [0, T ] 0 = t0 < t1 < ... < tN = T ,

for an integer N > 0. Assuming that u0 ∈ (H1
0 (Ω))2 ∩ (H2(Ω))2, then starting from

u0
h = rh(u0), we are looking for every n = 0, 1, ...N − 1, for (un+1

h , pn+1
h ) the solutions of

ρ

∫
Ω

un+1
h − unh
τn+1 ·vhdx+µ

∫
Ω
∇un+1

h : ∇vhdx−
∫

Ω
pn+1
h div vhdx =

∫
Ω

fn+1·vhdx, ∀vh ∈ Vh,

−
∫

Ω
qh div un+1

h dx

+
∑
K∈Th

αK

∫
K

(
fn+1 − ρ

un+1
h − unh
τn+1 + µ∆un+1

h −∇pn+1
h

)
· ∇qhdx = 0, ∀qh ∈ Qh,

(3.64)

where we note the time step

τn+1 = tn+1 − tn, n = 0, 1, ..., N − 1,

and we denote
fn = f(tn), n = 0, 1, ..., N.

The stabilization parameter αK is defined by (3.28), i.e.,

αK =
αλ2

2,K
µ

where α > 0 is a dimensionless prescribed positive value.

Remark 3.31.
As for the semi-discrete approximation in space, it is not necessary give an initial condition
for the pressure to solve the discrete problem (3.64). However, we must to give a sense to
p0
h for the need of our future computations. Therefore, one can as previously assume that

the exact pressure p(·, 0) = p0 is well defined and smooth enough to define p0
h = rh(p0) or

we can also define p0
h = ph(0) where ph(0) is the solution at time t = 0 of the semi-discrete

problem (3.27).

In [68], an a priori error analysis of the numerical method (3.64) is proposed for
isotropic finite elements and constant time steps. We are not interested now in extend-
ing this discussion to the case of anisotropic finite elements, but we comment some of
the conclusions obtained. Observe that the stabilization used in (3.64) is consistent since
the whole residue of the momentum equation is added to the divergence equation. With
a consistent stabilization, the author demonstrates in [68] that the numerical method is
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well-posed and that (unh, pn) converges to (u, p) (in the H1 semi-norm) with an order of
convergence O(h+ τ), τ standing for the constant time step. It requires that τ > max

K∈Th
αK

where here we choose αK as in the isotropic settings, that is to say

αK = αh2
K

µ
.

That means that the time steps cannot be chosen too small and it was observed in practice
instabilities when it is the case. However, this seems to appear only with very small time
steps. In an anisotropic setting and with variable time steps, this condition would read

min
n=0,1,...,N−1

τn+1 > max
K∈Th

αλ2
2,K
µ

.

From an adaptation point of view, we think that this condition is not issue since we will
equidistribute the error between the time and space discretization, and roughly speaking,
build of sequence of meshes and time steps such that h ' τ . Therefore, the above condition
should be satisfied. In any case, the a priori analysis of the numerical method (3.64) is
out of the scope of the present work, and we will simply assume its well-posedness. The
convergence will be checked numerically.

We will prove an a posteriori error estimate for the numerical method (3.64) that
takes in account space and time discretizations. For simplification, we are interested only
in an estimate about the velocity error. In [16], such a bound is proven for isotropic finite
elements and the Backward Euler method, where the Stokes projection Πdiv (3.35) is used
to deal with the pressure estimate issue. Below, we propose to prove a similar upper
bound, but using the Stokes reconstruction (3.40) instead, since it is more convenient
with anisotropic finite elements. In [65] a similar study was already done for parabolic
problem and isotropic finite elements. Note that in [16] the authors were also able to prove
a lower bound. As commented in the previous chapters, such bounds are hardly accessible
in the anisotropic framework and therefore we focus on the upper estimate. For every
n = 0, ..., N − 1 we define the discrete Stokes reconstruction (Un+1, Pn+1) of (un+1

h , pn+1)
as the unique weak solution in (H1

0 (Ω))2 × L2
0(Ω) of

−µ∆Un+1 +∇Pn+1 = fn+1 − ρ
un+1
h − unh
τn+1 , in Ω,

div Un+1 = 0, in Ω,

Un+1 = 0, on ∂Ω.

(3.65)

The weak formulation reads: for n = 0, 1, ..., N − 1, we look for (Un+1, Pn+1) ∈
(H1

0 (Ω))2 × L2
0(Ω) the solution of

µ

∫
Ω
∇Un+1 : ∇vdx−

∫
Ω
Pn+1 div vdx =

∫
Ω

(
fn+1 − ρ

un+1
h − unh
τn+1

)
·vdx, ∀v ∈ (H1

0 (Ω))2,

−
∫

Ω
q div Un+1 = 0, ∀q ∈ L2

0(Ω). (3.66)

Observe that the reconstructed sequence (Un, Pn) starts with (U1, P 1) and for the needs
of the demonstrations below, we also have to define (U0, P 0). We choose it as the solution
of

µ

∫
Ω
∇U0 : ∇vdx−

∫
Ω
P 0 div vdx =

∫
Ω

(
f0 − ρ∂uh

∂t
(0)
)
· vdx, ∀v ∈ (H1

0 (Ω))2,

−
∫

Ω
q div U0 = 0, ∀q ∈ L2

0(Ω), (3.67)
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where ∂uh
∂t

(0) is the semi-discrete approximation of ∂u
∂t

(0) obtained by evaluating the finite
elements problem (3.27) at t = 0. This implies in particular that (U0, P 0) = (U(0), P (0))
where (U(0), P (0)) are nothing else than the (semi-discrete) Stokes reconstruction of
(uh(0), ph(0)) given by (3.41) and (uh(0), ph(0)) are the semi-discrete approximation given
by (3.27).

We first prove the discrete versions of Proposition 3.17 that shows the link between
the numerical solution (un+1

h , pn+1
h ) and its discrete Stokes reconstruction. Let assume

that for every n = 0, 1, ..., N − 1 we discretize the equations (3.66) with a Petrov-Galerkin
finite elements methods, that is to say, for every n = 0, 1, ..., N − 1 we look for the unique
solution (Un+1

h , Pn+1
h ) ∈ Vh ×Qh of

µ

∫
Ω
∇Un+1

h : ∇vhdx−
∫

Ω
Pn+1
h div vhdx =

∫
Ω

fn+1·vhdx−ρ
∫

Ω

un+1
h − unh
τn+1 ·vhdx, ∀vh ∈ Vh,

−
∫

Ω
qh div Un+1

h dx

+
∑
K∈Th

αK

∫
K

(
fn+1 − ρ

un+1
h − unh
τn+1 + µ∆Un+1

h −∇Pn+1
h

)
· ∇qhdx = 0, ∀qh ∈ Qh,

(3.68)

where we choose αK as (3.28).

Proposition 3.32.
For all n = 0, 1, ..., N−1, (Un+1

h , Pn+1
h ) = (un+1

h , pn+1
h ) where (Un+1

h , Pn+1
h ) is the solution

of (3.68) and (un+1
h , pn+1

h ) the solution of (3.64).

Proof. The proof is formally the same as the one of Proposition 3.17. Subtracting (3.64)
from (3.68), it yields for all 0 ≤ n ≤ N − 1 that

µ

∫
Ω
∇(Un+1

h − un+1
h ) : ∇vhdx−

∫
Ω

(Pn+1
h − pn+1

h ) div vhdx = 0, ∀vh ∈ Vh,

−
∫
qh div(Un+1

h − un+1
h )dx−

∑
K∈Th

αK

∫
K
∇(Pn+1

h − pn+1
h ) · ∇qhdx = 0,∀qh ∈ Qh.

Choosing vh = Un+1
h − un+1

h and qh = −(Pn+1
h − pn+1

h ) yields

µ

∫
Ω
|∇(Un+1

h − un+1
h )|2dx +

∑
K∈Th

αK

∫
K
|∇(Pn+1

h − pn+1
h )|2dx = 0,

which implies that Un+1
h = un+1

h and Pn+1
h = pn+1

h since both terms are non negative.

We now start the a posteriori error analysis. To simplify the computations, we in-
troduce similar notations as those used for the treatment of the transport equation in
Chapter 2. We note

∂Un+1 = Un+1 −Un

τn+1 , ∂Pn+1 = Pn+1 − Pn

τn+1 , ∂fn+1 = fn+1 − fn

τn+1 n = 0, 1, ..., N − 1,
(3.69)
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and

∂un+1
h = un+1

h − unh
τn+1 , ∂pn+1

h = pn+1
h − pnh
τn+1 , n = 0, 1, ..., N − 1, (3.70)

∂u0
h = ∂uh

∂t
(0), (3.71)

∂2un+1
h =

un+1
h
−unh

τn+1 − unh−un−1
h

τn

τn+1+τn/2
, n = 1, ..., N − 1 (3.72)

∂2u1
h =

u1
h−u0

h
τ1 − ∂uh

∂t
(0)

τ1 . (3.73)

Lemma 3.33 (Galerkin orthogonality of the discrete Stokes reconstruction).
Let (unh, pnh) be the solution of the fully discretized equations (3.64) and (Un, Pn) its dis-
crete Stokes reconstruction given by (3.66). For all 0 ≤ n ≤ N the following identities
hold

µ

∫
Ω
∇(Un − unh) : ∇vhdx−

∫
Ω

(Pn − pnh) div vhdx = 0, ∀vh ∈ Vh, (3.74)

−
∫

Ω
qh div(Un − unh)dx−

∑
K∈Th

αK (fn − ρ∂unh + µ∆unh −∇pnh) · ∇qhdx = 0, ∀qh ∈ Qh.

(3.75)
Moreover, we have for all 0 ≤ n ≤ N − 1

µ

∫
Ω
∇(∂Un+1 − ∂un+1

h ) : ∇vhdx−
∫

Ω
(∂Pn+1 − ∂pn+1

h ) div vh = 0, ∀vh ∈ Vh, (3.76)

−
∫

Ω
qh div

(
∂Un+1 − ∂un+1

h

)
dx

−
∑
K∈Th

αK
(
∂fn+1 − ρ∂2un+1

h + µ∆∂un+1
h −∇∂pn+1

h

)
· ∇qh = 0, ∀qh ∈ Qh. (3.77)

Proof. The proof of (3.74) and (3.75) are straightforward by taking the difference between
(3.66) and (3.64). The case n = 0 is obtained thanks to Lemma 3.18 due the definition of
(U0, P 0) and the fact that (u0

h, p
0
h) = (rhu0, ph(0)) = (uh(0), ph(0)) (whatever the choice

we do for ph(0)) where (uh(0), ph(0)) are the solution of the semi-discretized approximation
(3.27).

(3.76) follows by taking the difference between (3.74) at n and n− 1 and dividing by
τn+1. The same argument implies (3.77).

To derive an a posteriori error estimate that involves the time discretization, we proceed
as we did for the transport equation, and we interpolate the numerical solution (unh, pnh) as
its discrete Stokes reconstruction (Un, Pn) over [0, T ] using a linear Newtonian polynomial.
We set the following definition

Definition 3.34 (Piecewise linear reconstruction).
Let (unh, pnh) be the solution of the fully discretized equations (3.64) and (Un, Pn) its
discrete Stokes reconstruction given by (3.66). We define (uhτ , phτ ) and (Uτ , Pτ ) the
piecewise linear functions in time given by

uhτ (t) = un+1
h + (t− tn+1)∂un+1

h , t ∈ [tn, tn+1], n = 0, 1, ..., N − 1,
phτ (t) = pn+1

h + (t− tn+1)∂pn+1
h , t ∈ [tn, tn+1], n = 0, 1, ..., N − 1,
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and

Uτ (t) = Un+1 + (t− tn+1)∂Un+1, t ∈ [tn, tn+1], n = 0, 1, ..., N − 1,
Pτ (t) = Pn+1 + (t− tn+1)∂Pn+1, t ∈ [tn, tn+1], n = 0, 1, ..., N − 1.

Remark 3.35.
Observing that for any n = 0, 1, ..., N

(unh, pnh) = (uhτ (tn), phτ (tn)), (Un, Pn) = (Uτ (tn), Pτ (tn))

and for any n = 0, 1, ..., N − 1 and for any t ∈ [tn, tn+1](
∂uhτ
∂t

(t), ∂phτ
∂t

(t)
)

=
(
∂un+1

h , ∂pn+1
h

)
,

(
∂Uτ

∂t
(t), ∂Pτ

∂t
(t)
)

=
(
∂Un+1, ∂Pn+1

)
then the Lemma 3.33 can be written in the notations uhτ , phτ ,Uτ , Pτ .

The strategy of the proof follows the idea of Theorem 3.27 for the semi-discrete ap-
proximation and we split the error u− uhτ as

u−Uτ and Uτ − uhτ .

We first prove Propositions 3.36, 3.38 and 3.39, that provide estimates for each part, and
then we prove the final bound for u − uhτ in the Theorem 3.41. Roughly speaking, a
time error estimator will by obtained by estimating u−Uτ and its spatial counterpart by
bounding Uτ − uhτ . The estimate for u−Uτ is contained in the Proposition
Proposition 3.36 (Continuous error estimate for the velocity).
Let (u, p) be the exact solution of the unsteady Stokes equation (3.26), (unh, pn)Nn=0 be the
numerical solution obtained by solving (3.64) and (Un, Pn)Nn=0 its discrete Stokes recon-
struction given by (3.66) and (3.67). Finally, let Uτ be the piecewise linear interpolation
of the Stokes reconstructed velocity (Un)Nn=0 given by Definition 3.34. Then, the following
estimate holds, where CP stands for the Poincaré constant of Ω and we denote fρ = f/ρ:

ρ‖(u−Uτ )(T )‖2 + µ

∫ T

0
‖∇(u−Uτ )(t)‖2L2(Ω)dt

≤ ρ‖(u−Uτ )(0)‖2

+ 3ρ2C2
P

2µ

N−1∑
n=0

∫ tn+1

tn
‖fρ(t)− fn+1

ρ ‖2L2(Ω)dt+ 3µ
2

N−1∑
n=0

(τn+1)3‖∇∂un+1
h ‖2L2(Ω)dt

+ 3µ
2

N−1∑
n=0

τn+1‖∇(Un+1 − un+1
h )‖2L2(Ω) + τn+1‖∇(Un − unh)‖2L2(Ω)

+ 3ρ2C2
P

2µ

N−1∑
n=0

τn+1
∥∥∥∂un+1

h − ∂Un+1
∥∥∥2

L2(Ω)
. (3.78)

Proof. Let n = 0, 1, ..., N − 1 and t ∈ [tn, tn+1]. We have

ρ

2
d

dt
‖(u−Uτ )(t)‖2L2(Ω) + µ‖∇(u−Uτ )(t)‖2L2(Ω)

= ρ

∫
Ω

∂

∂t
(u−Uτ )(t) · (u−Uτ )(t)dx + µ

∫
Ω
∇(u−Uτ )(t) : ∇(u−Uτ )(t)dx

−
∫

Ω
(p− Pn+1) div(u−Uτ )(t)dx

= ρ

∫
Ω

∂

∂t
(u−Uτ )(t) · (u−Uτ )(t)dx + µ

∫
Ω
∇(u(t)−Un+1) : ∇(u−Uτ )(t)dx

−
∫

Ω
(p(t)− Pn+1) div(u−Uτ )(t)dx + µ

∫
Ω
∇(Un+1 −Uτ (t)) : ∇(u−Uτ )(t)dx,
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where we use the fact that div(u−Uτ )(t) = 0 to add the term∫
Ω

(p− Pn+1) div(u−Uτ )(t)dx.

Now using the momentum equation of (3.26) and (3.64), we obtain that

ρ

2
d

dt
‖(u−Uτ )(t)‖2L2(Ω) + µ‖∇(u−Uτ )(t)‖2L2(Ω)

≤
∫

Ω
(f(t)− fn+1) · (u−Uτ )(t)dx + ρ

∫
Ω

(
∂uhτ
∂t

(t)− ∂Uτ

∂t
(t)
)
· (u−Uτ )(t)dx

+ µ

∫
Ω
∇(Un+1 −Uτ (t)) : ∇(u−Uτ )(t)dx

≤ ρ
∫

Ω
(fρ(t)− fn+1

ρ ) · (u−Uτ )(t)dx + ρ

∫
Ω

(
∂uhτ
∂t

(t)− ∂Uτ

∂t
(t)
)
· (u−Uτ )(t)dx

+ µ

∫
Ω
∇(Un+1 −Uτ (t)) : ∇(u−Uτ )(t)dx.

Combining Cauchy-Schwarz, Young’s and Poincaré inequality, it yields

ρ
d

dt
‖(u−Uτ )(t)‖2L2(Ω) + µ‖∇(u−Uτ )(t)‖2L2(Ω)

≤ 3ρ2C2
P

2µ ‖fρ(t)− fn+1
ρ ‖2L2(Ω) + 3ρ2C2

P

2µ

∥∥∥∥∂uhτ
∂t

(t)− ∂Uτ

∂t
(t)
∥∥∥∥2

L2(Ω)

+ 3µ
2 ‖∇(Un+1 −Uτ (t))‖2L2(Ω).

Integrating from tn to tn+1 and summing up from n = 0 to n = N , it yields

ρ‖(u−Uτ )(T )‖2 + µ

∫ T

0
‖∇(u−Uτ )(t)‖2L2(Ω)dt

≤ ρ‖(u−Uτ )(0)‖2 + 3ρ2C2
P

2µ

N−1∑
n=0

∫ tn+1

tn
‖fρ(t)− fn+1

ρ ‖2L2(Ω)dt

+3µ
2

N−1∑
n=0

∫ tn+1

tn

(
t− tn+1

)2
‖∇∂Un+1‖2L2(Ω)dt+

3ρ2C2
P

2µ

∫ T

0

∥∥∥∥∂uhτ
∂t

(t)− ∂Uτ

∂t
(t)
∥∥∥∥2

L2(Ω)
dt.

Since
∂Un+1 = Un+1 −Un

τn+1 = Un+1 − un+1
h

τn+1 + un+1
h − unh
τn+1 + unh −Un

τn+1 ,

and ∫ tn+1

tn

(
t− tn+1

)2
dt = (τn+1)3

3
we derive that

ρ‖(u−Uτ )(T )‖2 + µ

∫ T

0
‖∇(u− Uτ )(t)‖2L2(Ω)dt

≤ ρ‖(u−Uτ )(0)‖2

+ 3ρ2C2
P

2µ

N−1∑
n=0

∫ tn+1

tn
‖fρ(t)− fn+1

ρ ‖2L2(Ω)dt+ 3µ
2

N−1∑
n=0

(τn+1)3‖∇∂un+1
h ‖2L2(Ω)dt

+ 3µ
2

N−1∑
n=0

τn+1‖∇(Un+1 − un+1
h )‖2L2(Ω) + τn+1‖∇(Un − unh)‖2L2(Ω)

+ 3ρ2C2
P

2µ

∫ T

0

∥∥∥∥∂uhτ
∂t

(t)− ∂Uτ

∂t
(t)
∥∥∥∥2

L2(Ω)
dt,

that concludes the proof by using the definition of uhτ and Uτ .
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Remark 3.37.
As already commented in the Remark 3.20, using the Gronwall’s Lemma (see Theorem
A.3) instead of the Poincaré inequality to control the L2 norm ρ‖u −U‖L2(Ω) yields, up
to a multiplicative constant, the same estimate with ρT replacing the factor ρ2C2

P/µ.

Estimate (3.78) already contains a time error indicator given by

ρ2C2
P

µ

N−1∑
n=0

∫ tn+1

tn
‖fρ(t)− fn+1

ρ ‖2L2(Ω)dt+ µ
N−1∑
n=0

(τn+1)3‖∇∂un+1
h ‖2L2(Ω)dt

which of order O(τ) after taking the square root, and so achieves the right order with
respect to the time discretization, the Backward Euler method being an order 1 in time
advancing scheme. To complete the a posteriori error estimate, we have to bound the
terms

‖∇(Un+1 − un+1
h )‖2L2(Ω), ∀n,

and ∥∥∥∥∂uhτ
∂t

(t)− ∂Uτ

∂t
(t)
∥∥∥∥2

L2(Ω)
, ∀t ∈ [tn, tn+1].

There are pointwise estimates for every n that can be obtained by proving similar results
to Propositions 3.23 and 3.25 presented in Section 3.4. The proof are formally the same
and we write the corresponding propositions without presenting the demonstrations.

Proposition 3.38 (Discrete error estimate).
Let (unh, pnh)Nn=0 be the fully discretized solution of (3.64) and (Un, Pn)Nn=0 its discrete
Stokes reconstruction given by (3.66) and (3.67. Moreover, for any 0 ≤ n ≤ N , let
(wn, rn) ∈ (H1

0 (Ω))2 × L2
0(Ω) the weak solution of the dual problem

−µ∆wn +∇rn = 0, in Ω,

div wn = pnh − Pn, in Ω,

wn = 0, on ∂Ω.

(3.79)

Then, there exists a constant C that depends only on the reference triangle and Ω such
that for every 0 ≤ n ≤ N

µ‖∇Un − unh‖2L2(Ω) + 1
µ
‖Pn − pnh‖2L2(Ω) ≤ C

∑
K∈Th

(ηA,nK,u)2 + (ηA,nK,p)
2 + (ηdiv,n

K )2, (3.80)

where we define for every n = 0, 1, ...N

(ηA,nK,u)2 =
(
‖fn − ρ∂unh + µ∆unh −∇pnh‖L2(K) + 1

2
√
λ2,K

‖[µ∇unh · n]‖L2(∂K)

)
ωK ((Un − unh) (t)) ,

(ηA,nK,p)
2 = 1

µ

(
‖fn − ρ∂unh + µ∆unh −∇pnh‖L2(K) + 1

2
√
λ2,K

‖[µ∇unh · n]‖L2(∂K)

)
ωK(wn),

(ηdiv,n
K )2(t) = µ‖ div unh‖2L2(K).
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Proposition 3.39 (Dual estimates for the velocity).
Let (unh, pnh)Nn=0 be the solution of the fully discretized problem (3.64) and (Un, Pn)Nn=0 its
Stokes reconstruction defined in (3.66) and (3.67). Then there exists a constant C > 0
independent of the mesh size but depending on the mesh aspect ratio and Ω such that for
all 0 ≤ n ≤ N

‖unh −Un‖2L2(Ω) ≤ C
∑
K∈Th

(εI,nK,u,0)2, (3.81)

where

(εI,nK,u,0)2 = 1
µ2h

4
K ‖fn − ρ∂unh + µ∆unh −∇pnh‖

2
L2(K) + 1

µ
h3
K ‖∇unh · n‖

2
L2(∂K)

+ h2
K ‖div unh‖

2
L2(K) ,

and for all 0 ≤ n ≤ N − 1∥∥∥∂un+1
h − ∂Un+1

∥∥∥2

L2(Ω)
≤ C

∑
K∈Th

(εI,n+1
K,u,1 )2, (3.82)

where

(εI,n+1
K,u,1 )2 = 1

µ2h
4
K

∥∥∥∂fn+1 − ρ∂2un+1
h + µ∆∂un+1

h −∇∂pn+1
h

∥∥∥2

L2(K)
+ 1
µ
h3
K

∥∥∥∇∂un+1
h · n

∥∥∥2

L2(∂K)

+ h2
K

∥∥∥div ∂un+1
h

∥∥∥2

L2(K)
.

We are now ready to prove an a posteriori error estimates for the numerical error
u − uhτ by combining Propositions 3.36, 3.38 and 3.39. We only need the following
technical Lemma, whose proof can be found in [16].

Lemma 3.40 (Equivalence between continuous and discrete norms).
Let (V n)Nn=0, V n ∈ (H1(Ω))2+2, a family of matrix valued functions, and Vτ defined by

Vτ (t) = V n + (t− tn)V
n+1 − V n

τn+1 , t ∈ [tn, tn+1], n = 0, 1, .., N − 1.

Then the following inequality holds for all 0 ≤ n ≤ N − 1

τn+1

6

(∥∥∥V n+1
∥∥∥2

L2(Ω)
+ ‖V n‖2L2(Ω)

)
≤
∫ tn+1

tn
‖Vτ‖2L2(Ω) dt ≤

τn+1

2

(∥∥∥V n+1
∥∥∥2

L2(Ω)
+ ‖V n‖2L2(Ω)

)
.

Moreover, we have for all 1 ≤ m ≤ N

1
6

m−1∑
n=0

τn+1‖V n+1‖2L2(Ω) ≤
∫ tm

0
‖Vτ‖2L2(Ω)dt ≤

1 + σ

2

m−1∑
n=0

τn+1‖V n+1‖2L2(Ω) + τ1‖V 0‖2L2(Ω),

where στ is the regularization parameter defined by

στ = max
0≤n≤N−1

τn+1

τn
. (3.83)

Proof. By applying the Simpson rule, we get∫ tn+1

tn
‖Vτ‖2L2(Ω) dt = τn+1

3

(∥∥∥V n+1
∥∥∥2

L2(Ω)
+ ‖V n‖2L2(Ω) +

∫
Ω
V n+1 : V n

)
dx.

Using the inequalities ab ≤ 1
2a

2 + 1
2b

2 and ab ≥ −1
2a

2 − 1
2b

2 yields

τn+1

6

(∥∥∥V n+1
∥∥∥2

L2(Ω)
+ ‖V n‖2L2(Ω)

)
≤
∫ tn+1

tn
‖Vτ‖2L2(Ω) dt ≤

τn+1

2

(∥∥∥V n+1
∥∥∥2

L2(Ω)
+ ‖V n‖2L2(Ω)

)
.

Using the definition of στ and summing over n yield the second inequality.
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The a posteriori error estimate is contained in

Theorem 3.41 (Fully discretized a posteriori error estimate for the the unsteady Stokes
equations).
Let (u, p) be the solution of the unsteady Stokes equation (3.26), ((unh, pnh))Nn=0 be numer-
ical solutions of the fully discretized problem (3.64), and ((Un, Pn))Nn=0 its the discrete
Stokes reconstruction defined by (3.66) and (3.67). Finally let uhτ be the piecewise linear
numerical reconstruction given by Definition 3.34. Then there exists C0 that depends only
on Ω, C1 only depending on the reference triangle and Ω and C2 > 0 independent of the
mesh size, but dependent on the mesh aspect ratio and Ω such that

ρ‖(u− uhτ )(T )‖2L2(Ω) + µ

∫ T

0
‖∇(u− uhτ )(t)‖2L2(Ω)dt

≤ C0

(
ρ‖u0 − u0

h‖2L2(Ω) + 1
µ

N−1∑
n=0

∫ tn+1

tn
‖f(t)− fn+1‖2L2(Ω)dt+ µ

N−1∑
n=0

(τn+1)3‖∇∂un+1
h ‖2L2(Ω)dt

)

+ C1

 ∑
K∈Th

τ1
(
(ηA,0K,u)2 + (ηA,0K,p)

2 + (ηdiv,0
K )2

)

+1 + στ
2

N−1∑
n=0

∑
K∈Th

τn+1
(
(ηA,n+1
K,u )2 + (ηA,n+1

K,p )2 + (ηdiv,n+1
K )2

)
C2

ρ ∑
K∈Th

(εI,0K,u,0)2 + (εI,NK,u,0)2 + ρ2

µ

N−1∑
n=0

∑
K∈Th

τn+1(εI,n+1
K,u,1 )2

 , (3.84)

where ηA,nK,u, η
A,n
K,p, η

div,n
K are given by Proposition 3.38, εI,nK,u,k, k = 0, 1, is given by by Propo-

sition 3.39 and we recall that the regularization parameter is defined by

στ = max
0≤n≤N−1

τn+1

τn
.

Proof. To simplify the writing, we denote by c any positive constant, that is a pure numeric
quantity (that is to say a given number, independent of any data, solutions, discretization
parameters etc...) and whose value can change from line to line. Thanks to the triangle
inequality, one can write

ρ‖(u− uhτ )(T )‖2L2(Ω) + µ

∫ T

0
‖∇(u− uhτ )(t)‖2L2(Ω)dt

≤ c
(
ρ‖(u−Uτ )(T )‖2L2(Ω) + µ

∫ T

0
‖∇(u−Uτ )(t)‖2L2(Ω)dt

ρ‖(Uτ − uhτ )(T )‖2L2(Ω) + µ

∫ T

0
‖∇(Uτ − uhτ )(t)‖2L2(Ω)dt

)
.

211



Thanks to Proposition 3.36, one can estimate the two first terms :

ρ‖(u− uhτ )(T )‖2L2(Ω) + µ

∫ T

0
‖∇(u− uhτ )(t)‖2L2(Ω)dt

≤ c
(
ρ‖(u−Uτ )(0)‖2L2(Ω) + ρ2C2

P

µ

N−1∑
n=0

∫ tn+1

tn
‖fρ(t)− fn+1

ρ ‖2L2(Ω)dt

+µ
N−1∑
n=0

(τn+1)3‖∇∂un+1
h ‖2L2(Ω)dt

+µ
N−1∑
n=0

τn+1‖∇(Un+1 − un+1
h )‖2L2(Ω) + τn+1‖∇(Un − unh)‖2L2(Ω)

+ρ2C2
P

µ

N−1∑
n=0

τn+1
∥∥∥∂un+1

h − ∂Un+1
∥∥∥2

L2(Ω)

+ρ‖(Uτ − uhτ )(T )‖2L2(Ω) + µ

∫ T

0
‖∇(Uτ − uhτ )(t)‖2L2(Ω)dt

)
.

Thanks to Lemma 3.40, the third line of the right hand side and its last term can be put
together, and splitting the initial error u(0)−Uτ (0) = u(0)−U0 = u(0)−u0

h + u0
h−U0,

it yields

ρ‖(u− uhτ )(T )‖2L2(Ω) + µ

∫ T

0
‖∇(u− uhτ )(t)‖2L2(Ω)dt

≤ c
(
ρ‖u(0)− u0

h‖2L2(Ω) + ρ2C2
P

µ

N−1∑
n=0

∫ tn+1

tn
‖fρ(t)− fn+1

ρ ‖2L2(Ω)dt

+µ
N−1∑
n=0

(τn+1)3‖∇∂un+1
h ‖2L2(Ω)dt+ µ

∫ T

0
‖∇(Uτ − uhτ )(t)‖2L2(Ω)dt

+ρ2C2
P

µ

N−1∑
n=0

τn+1
∥∥∥∂un+1

h − ∂Un+1
∥∥∥2

L2(Ω)

+ρ‖U0 − u0
h‖2L2(Ω) + ρ‖(UN − uNh )‖2L2(Ω)

)
.

Finally, using again the Lemma 3.40 on

µ

∫ T

0
‖∇(Uτ − uhτ )(t)‖2L2(Ω)dt,

we obtain

ρ‖(u− uhτ )(T )‖2L2(Ω) + µ

∫ T

0
‖∇(u− uhτ )(t)‖2L2(Ω)dt

≤ c
(
ρ‖u(0)− u0

h‖2L2(Ω) + ρ2C2
P

µ

N−1∑
n=0

∫ tn+1

tn
‖fρ(t)− fn+1

ρ ‖2L2(Ω)dt

+µ
N−1∑
n=0

(τn+1)3‖∇∂un+1
h ‖2L2(Ω)dt+ (1 + στ )

2

N−1∑
n=0

τn+1µ‖∇(Un+1 − un+1
h )‖2L2(Ω) + τ1µ‖∇(U0 − u0

h)‖2L2(Ω)

+ρ2C2
P

µ

N−1∑
n=0

τn+1
∥∥∥∂un+1

h − ∂Un+1
∥∥∥2

L2(Ω)

+ρ‖U0 − u0
h‖2L2(Ω) + ρ‖(UN − uNh )‖2L2(Ω)

)
.

We conclude by using Proposition 3.38 and 3.39.

212



We finish this section with some comments on the upper bound (3.84):

(1) As already commented for the semi-discrete case in Remark 3.28, the upper bound
presented above is not fully computable since the Stokes reconstruction (Un, Pn) is
contained in the error indicators ηA,nK,u and ηA,nK,p. From a practical point of view, we
do not take in consideration the error indicator for the pressure ηA,nK,p since it requires
to solve the dual problem (3.79) and that for our purpose an error indicator for the
velocity is judged sufficient. Then to make the error indicator ηA,nK,u computable, we
have to replace ωK(Un−unh) by a good approximation, and as advocated in Remark
3.28, we replace Un by the ZZ post-processing of unh that is to say ΠZZ

h unh. This
choice will be also justified through the numerical experiments.

(2) Observe that the terms involving εI,nK,u,k for k = 0, 1, are of higher order (namely
O(h2)) compared to rest of the estimate. Since we are interesting to have a good
indicator for the error norm

(∫ T
0 µ‖∇(u− uhτ )‖2L2(Ω)dt

)1/2
that we check numerically

to behave as O(h+ τ), these terms can be neglected in practice.

(3) Note the presence of the regularization parameter στ , that is also present in the
bounds derived in [16]. This size of στ can be easily control in practice with an
adaptive algorithm.

(4) Note finally the presence of the initial quantities

‖u0 − u0
h‖2L2(Ω) and

∑
K∈Th

τ1
(
(ηA,0K,u)2 + (ηA,0K,p)

2 + (ηdiv,0
K )2

)
.

Since we assume u0 ∈ (H2(Ω))2 and u0
h = rh(u0) thanks to the Lagrange interpo-

lation error estimate, the first quantity is of higher order (namely O(h2)). For the
second one, we can either heuristically not consider it, or in a adaptive algorithm,
start with an initial grid and an initial time step that are fine enough to make it
small.

3.6 A posteriori error estimates for the incompressible time
dependent Navier-Stokes equations with constant coef-
ficients: spatial approximation

In this section, we apply to the Navier-Stokes equations the techniques used to derive a
posteriori error estimates for the Stokes equations, that is to say we reproduce the results
that we obtain in the linear case for the nonlinear case. Before presenting the numerical
methods, we state the exact equations we are interested to solve.

The problem is the following: let Ω be an open, connected, bounded, Lipschitz domain
of Rd, d = 2, 3, 0 < T ≤ +∞ the final time, ρ, µ > 0 standing respectively for the
density and the viscosity, the force term f ∈ L2(0, T ; (L2(Ω))2), and an initial condition
u0 ∈ (H1

0 (Ω))2 such that div u0 = 0. We are looking for (u, p) : Ω× (0, T ] → Rd × R the
solution of the incompressible unsteady Navier-Stokes equations

ρ
∂u
∂t

+ ρ(u · ∇)u− µ∆u +∇p = f , in Ω× (0, T ),

div u = 0, in Ω× (0, T ),

u = 0, on ∂Ω× (0, T ),

u(·, 0) = u0, in Ω.

(3.85)
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The existence and the regularity of the solutions to the above equations is one of the
most studied question in mathematics. We do not pretend to give here an exhaustive
presentation of all the known results, but we briefly summarize those that are meaningful
for our concerns. Existence of weak solutions to problem (3.85) was proven by J. Leray
[21, 58, 99] in both dimensions 2 and 3. Moreover, theses solutions are global in time. In
particular that means that if T = +∞, then the solution are defined for any t ≥ 0. In our
settings, it reads: there exists a pair (u, p) ∈ L∞(0, T ; (L2(Ω))d) ∩ L2(0, T ; (H1

0 (Ω))d) ×
W−1,∞(0, T ;L2

0(Ω)) such that for almost every t ∈ (0, T )(
ρ
∂u
∂t
,v
)

+ ρ

∫
Ω

((u · ∇)u) · vdx + µ

∫
Ω
∇u : ∇vdx

−
∫

Ω
p div vdx =

∫
Ω

f · vdx, ∀v ∈ (H1
0 (Ω))2,

−
∫

Ω
q div udx = 0, ∀q ∈ L2

0(Ω),

where (·, ·) stands for the duality pairing between (H−1(Ω))d and (H1
0 (Ω))d.

For the case d = 2, one can prove the uniqueness of the weak solution and the continuity
with respect to the time of the velocity field, that is to say

u ∈ C0([0, T ]; (L2(Ω))2).

Moreover, in the case Ω is a smooth or convex domain, one can even prove this well-known
and spectacular result that the weak solution is in fact a "strong" solution. Indeed, one
can prove the additional regularity

u ∈ C0([0, T ]; (H1
0 (Ω))2) ∩ L2(0, T ; (H2(Ω))2), ∂u

∂t
∈ L2(0, T ; (L2(Ω))2),

p ∈ L2(0, T ;H1(Ω)).

We have also that the time derivative satisfies the boundary conditions and the divergence
equation for almost every t ∈ (0, T ), that is to say

∂u
∂t

= 0 on ∂Ω, and div ∂u
∂t

= 0.

Moreover, the solutions are uniformly bounded in time, i.e. there exists a constant CNS >
0 such that

sup
t∈(0,T )

‖∇u(t)‖L2(Ω) ≤ CNS . (3.86)

We refer to [58] for more details on theses questions. Note that they are still results that
hold globally in time, that is to say even in the case T = +∞.

For d = 3, the situation is still an open problem. In general, weak solutions are not
unique, and more regular solutions (that can be shown to be unique) are not global in time,
unless if we assume that the force term f and the initial condition u0 are small enough.
For more details, we refer to [21], [99] and [69]. To avoid problem of well-posedness for the
three dimensional case, one can assume that the bound (3.86) holds a priori. This makes
strong solutions exist globally, without requiring any conditions on the data [58].

The previous considerations are only a quick and non-exhaustive overview of the ex-
isting results about the regularity of the solutions to the Navier-Stokes equations. To
simplify, and since we are mainly interested in their numerical approximation, we will
always assume that these solutions are smooth enough for our needs. In particular, we
require that

∂u
∂t
∈ L2(0, T ; (L2(Ω))2)
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so that the duality pairing between (H−1(Ω))d and (H1
0 (Ω))d can be written as the L2

scalar product and the following weak formulation is valid:

ρ

∫
Ω

∂u
∂t
· vdx+ ρ

∫
Ω

((u · ∇)u) · vdx + µ

∫
Ω
∇u : ∇vdx

−
∫

Ω
pdiv vdx =

∫
Ω

f · vdx, ∀v ∈ (H1
0 (Ω))2,

−
∫

Ω
q div udx = 0, ∀q ∈ L2

0(Ω). (3.87)

We first focus on the spatial approximation to the equations (3.87). By analogy with
the numerical methods proposed in Section 3.1 for the steady Navier-Stokes equations
and in the Section 3.4 for the unsteady Stokes equations, we approximate the equations
with continuous, piecewise linear finite elements. From now we assume that Ω is a convex
polygon in R2 and f ∈ C0([0, T ], (L2(Ω))2). Our results are straightforwardly generalizable
to R3 and the small modifications that occurs will be let in comments. Let h > 0 and
Th be a conformal triangulation of Ω with triangles K of diameter hK ≤ h. Assuming
now that u0 ∈ (H2(Ω))2, we are looking for (u, ph) : Ω × [0, T ] → R2 × R such that
(uh(t), ph(t)) ∈ Vh × Qh for all t ∈ [0, T ], where Vh and Qh are the functional spaces
introduced in Section 3.1, uh(0) = rh(u0) and for all t ∈ [0, T ]

ρ

∫
Ω

∂uh
∂t
· vhdx + ρ

∫
Ω

(uh · ∇)uh · vhdx + µ

∫
Ω
∇uh · ∇vhdx−

∫
Ω
ph div vhdx

+
∑
K∈Th

αK

∫
K

(
f − ρ∂uh

∂t
− ρ(uh · ∇)uh + µ∆uh −∇ph

)
· (ρ(uh · ∇)vh − µ∆vh) dx

=
∫

Ω
f · vhdx, ∀vh ∈ Vh,

−
∫

Ω
qh div uhdx

+
∑
K∈Th

αK

∫
K

(
f − ρ∂uh

∂t
− ρ(uh · ∇)uh + µ∆uh −∇ph

)
· ∇qhdx = 0, ∀qh ∈ Qh,

(3.88)

where αK is given by

αK =
αλ2

2,K
µξ(ReK)

with α > 0 and

ξ(ReK) =
{

1 if ReK ≤ 1,
ReK if ReK ≥ 1,

where we define the local anisotropic Reynolds number ReK by

ReK =
ρ‖uh‖L∞(K)λ2,K

µ
.

The numerical method reads the same if Ω ∈ R3, the only change being that we write λ3,K
in the definitions of αK and ReK instead of λ2,K . Note that here, and for future needs,
we directly ask that the approximated equations (3.88) holds also at t = 0. The a priori
error analysis of the numerical method (3.88) is not obvious task and we will assume, as
we did for the linear case, that the numerical solution (uh, ph) converges to (u, p) as h
goes to 0. Moreover we assume that all the quantities of interests, that is to say the force
term f , the exact solution (u, p) and the numerical solution (uh, ph) are smooth enough
to justify the future computations.
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To prove an a posteriori error estimate for the semi-discrete numerical method (3.88),
we proceed as we did for the unsteady Stokes equations and we define a suitable recon-
struction (U, P ) of the numerical approximation (uh, ph). Then, we estimate the error
u− uh by splitting it between the continuous error u−U and the discrete error U− uh.
By simplification, and since we are not interested in it, we do not treat the pressure errors.
One choice to define the reconstruction (U, P ) appears naturally. By analogy with the
Stokes case, we define it for all t as the solution of the steady Navier-Stokes equations

ρ(U(t) · ∇)U(t)− µ∆U(t) +∇P (t) = f(t)− ρ∂uh
∂t

(t), in Ω,

div U(t) = 0, in Ω,

U(t) = 0, on ∂Ω.

(3.89)

Note that the fact that the problem (3.89) is itself non linear implies that, for estimating
the errors u −U and U − uh, we will have to bound in particular the differences of the
non-linear terms.

(u · ∇)u− (U · ∇)U, (U · ∇)U− (uh · ∇)uh.

Therefore, to simplify the treatment of the non-linear terms, one may use another
choice for defining (U, P ) and choose instead a linearized version of the reconstruction
(3.89). This approach was first used in [107] (written in a sightly different way that
the one proposed below), where they derived a posteriori error estimates for P2 − P1

isotropic finite elements. We apply the same techniques to the (anisotropic) stabilized
numerical method (3.88). Observe that an other a posteriori error analysis for the time
dependent Navier-Stokes equations was already performed in [106] using other techniques,
in particular by mean of the Inverse Function Theorem.

For all t ∈ [0, T ], we define the linearized Navier-Stokes reconstruction of (uh(t), ph(t))
as the unique weak solution (U(t), P (t)) of the linear equations

ρ(U(t) · ∇)uh(t) + ρ(u(t) · ∇)(U(t)− uh(t))− µ∆U(t) +∇P (t)

= f(t)− ρ∂uh
∂t

(t), in Ω,

div U(t) = 0, in Ω,

U(t) = 0, on ∂Ω.

(3.90)

Note that the first terms of the momentum equation can also be written alternatively as

−ρ((u−U) · ∇)uh + ρ(u · ∇)U.

As anticipated, the motivation for the introduction of the linearized Navier-Stokes recon-
struction (3.90) is that it yields a natural splitting for the treatment of the non-linearity
due to the convection term. Indeed observe that

(u · ∇)u− (uh · ∇)uh = (u · ∇)u− [(u · ∇)U− ((u−U) · ∇)uh]
+ [(U · ∇)uh + (u · ∇)(U− uh)]− (uh · ∇)uh

= (u · ∇)(u−U) + ((u−U) · ∇)uh
+ ((U− uh) · ∇)uh + (u · ∇)(U− uh).

Thus, the error in the non-linear terms can be directly related to the errors u −U and
U − uh that will be estimated independently. This is the main technical advantage of
(3.90) compared to (3.89).
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Beyond these technicalities, we think important to make the following comment: in
both cases, the fact that (U, P ) is well-defined is linked to the well-posedness of problems
(3.89) or (3.90). In particular, for (3.89), since we have to solve a steady Navier-Stokes
equation, the uniqueness of the solutions requires that the terms in the right hand side,
here f and ∂uh

∂t
, are "small" (see Proposition 3.3 in the Section 3.1). Imposing that f

is small appears to be an important drawback of the reconstruction (3.89) since it’s not
necessar in the 2D situation to have a global and strong solutions to the Navier-Stokes
equation (3.85). Therefore, we would have to work in a weaker framework that the one
obtained in the theory. Unfortunately, for the moment, even with the linearized version
(3.90), we cannot prove the existence of a well-defined pair (U, P ) unless some restrictions
on the size of the data or the solutions are made, as we show in the next proposition.

Let us write (3.90) under a weak formulation. It reads:

ρ

∫
Ω

((U(t) · ∇)uh(t)) · vdx + ρ

∫
Ω

((u(t) · ∇)(U(t)− uh(t))) · vdx

+ µ

∫
Ω
∇U(t) : ∇vdx−

∫
Ω
P (t) div vdx =

∫
Ω

(
f(t)− ρ∂uh

∂t
(t)
)
· vdx, ∀v ∈ (H1

0 (Ω))2,

−
∫

Ω
q div U(t) = 0, ∀q ∈ L2

0(Ω). (3.91)

Then, under some restrictions on the mesh size and the size of the exact velocity field u,
one can ensures that, for all t ∈ [0, T ], there exists a unique weak solution (U(t), P (t)) ∈
(H1

0 (Ω))2 × L2
0(Ω) to the problem (3.87).

Proposition 3.42.
Let CSOB be the constant in Proposition A.8 of the Appendix A.2. We assume that there
exists h0 > 0 and 0 < γ < 1 such that for all h ≤ h0

sup
t∈(0,T )

‖∇uh(t)‖L2(Ω) ≤
γµ

ρCSOB
. (3.92)

Then for all h ≤ h0 and for all t ∈ [0, T ], there exists a unique solution (U(t), P (t)) ∈
(H1

0 (Ω))2 × L2
0(Ω) to the problem (3.87).

Proof. Let h ≤ h0 and let us write the problem (3.91) in a more abstract form: for all
t ∈ [0, T ] find (U(t), P (t)) the solution of{

a(U(t),v) + b(v, P (t)) = Ft(v), ∀v ∈ (H1
0 (Ω))2,

b(U(t), q) = 0,∀q ∈ L2
0(Ω), (3.93)

where

a(U,v) = ρ

∫
Ω

((U(t) · ∇)uh(t)) · vdx + ρ

∫
Ω

((u(t) · ∇)U(t)) · vdx + µ

∫
Ω
∇U(t) : ∇vdx,

Ft(v) =
∫

Ω

(
f(t)− ρ∂uh

∂t
(t) + ρ(u(t) · ∇)uh(t)

)
· vdx,

b(v, P (t)) = −
∫

Ω
P (t) div vdx, b(U(t), q) = −

∫
Ω
q div U(t).

Let us denote
V =

{
v ∈ (H1

0 (Ω))2 : div v = 0
}

the subspace of (H1
0 (Ω))2 containing the free divergence vector fields. Note that V is a

close subspace of (H1
0 (Ω))2 and therefore is an Hilbert space. The idea of the proof is

classical for this kind of problem and consists to take the test functions in V rather than
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in (H1
0 (Ω))2 to eliminate the pressure from the first equation of (3.93) and after to recover

it thanks to the inf-sup condition.
Observe indeed that if there exists U(t) ∈ V that is a solution to

a(U(t),v) = Ft(v), ∀v ∈ V, (3.94)

then b(U(t), q) = 0,∀q ∈ L2
0(Ω) is trivially satisfied and moreover by the inf-sup condition

(3.2), there exists a unique P (t) ∈ L2
0(Ω) that satisfies

b(P (t),v) = Ft(v)− a(U(t),v),∀v ∈ (H1
0 (Ω))2.

Therefore it is sufficient to show that (3.94) is uniquely solvable in V , that is the case
thanks to the Lax-Milgram Lemma. Indeed, we immediately have that Ft : V → R is
linear and continuous and that a : V × V → R is bilinear and continuous. We only have
to check the coercivity of a to conclude the proof. This is done by observing first that the
term

ρ

∫
Ω

((u(t) · ∇)v) · vdx = 0, ∀v ∈ V,

thanks to the divergence theorem and the fact that u is divergence free. It remains to
prove that there exists α > 0 such that

µ‖∇U‖2L2(Ω) + ρ

∫
Ω

((U · ∇)uh(t)) ·Udx ≥ α‖∇U‖2L2(Ω).

Observe the easily fact that for any integrable function f , one have that∫
Ω
fdx ≥ −

∫
Ω
|f |dx.

Therefore,
ρ

∫
Ω

((U · ∇)uh(t)) ·Udx ≥ −ρ
∫

Ω
|((U · ∇)uh(t)) ·U|dx.

Now, applying the Cauchy-Schwarz inequality in R2, the Proposition A.8 and the hypoth-
esis (3.92) , one have that

−ρ
∫

Ω
|((U · ∇)uh(t)) ·U|dx ≥ −ρCSOB‖∇uh(t)‖L2(Ω)‖∇U‖2L2(Ω) ≥ −γµ‖∇U(t)‖2L2(Ω).

therefore,

µ‖∇U‖2L2(Ω) + ρ

∫
Ω

((U · ∇)uh(t)) ·Udx ≥ (µ− γµ) ‖∇U‖2L2(Ω).

Since 0 < γ < 1 one have α = (1 − γ)µ > 0. Then, all the assumptions to apply the
Lax-Milgram Lemma are satisfied, and therefore there exists a unique U(t) ∈ V that is a
solution to (3.93), that concludes the proof.

Remark 3.43. (i) The above proposition is independent of the dimension and holds in
general in Rd for d = 2 as d = 3.

(ii) The hypothesis (3.86) is valid if we assume the stronger convergence (that we think
reasonable at least for smooth solution)

sup
t∈(0,T )

‖∇(u(t)− uh(t))‖L2(Ω) → 0 as h→ 0,

and the fact that the exact solution satisfies itself

sup
t∈(0,T )

‖∇u(t)‖L2(Ω) ≤
γ′µ

ρCSOB
,
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for 0 < γ′ < 1, (that we think being also a reasonable assumption if we ask either
that f and u0 are sufficiently "small" or that the final time T is not too large.)
Indeed, we have by triangle inequality that

sup
t∈(0,T )

‖∇uh(t)‖L2(Ω) ≤ sup
t∈(0,T )

‖∇(u(t)− uh(t))‖L2(Ω) + sup
t∈(0,T )

‖∇u(t)‖L2(Ω)

≤ sup
t∈(0,T )

‖∇(u(t)− uh(t))‖L2(Ω) + γ′µ

ρCSOB
.

Now, since ∇uh(t) converges to ∇u(t) uniformly with respect to t, one can find
h0 > 0 small enough, such that for all h ≤ h0 one have

sup
t∈(0,T )

‖∇(u(t)− uh(t))‖L2(Ω) ≤
γ′′µ

CSOBρ
,

where 0 < γ′′ < 1− γ′ and therefore the hypothesis (3.86) is satisfied with

γ = γ′′ + γ′.

(iii) We give more details about the second point above. In particular, assuming that

sup
t∈(0,T )

‖∇u(t)‖L2(Ω) ≤
γ′µ

ρCSOB
,

roughly speaking means that, up to constants, we ask that

sup
t∈(0,T )

‖∇u(t)‖L2(Ω) ≤
1
Re

,

where Re stands for the Reynolds numbers. This means that for high Reynolds
number, we are able to prove the well-posedness of (3.91) only for very "small"
solution of the Navier-Stokes equations (3.85).

We now successively prove an upper bound for the continuous error u − U and for
the discrete error U−uh, where we choose U as the linearized reconstruction of uh given
by (3.91). To estimate these two quantities is rather a technical story, very close to the
previous computations performed for the Stokes equations in the previous sections, the
only differences being to bound the non-linearity. In a first reading, the discussion below
can be skipped and we may go directly to the Theorem 3.49 that contains the final estimate
for u− uh

From this point, we make the two following assumptions:

(1) To keep the discussion in a simple framework, the exact solution (u, p) as its numeri-
cal approximation (uh, ph) and the linearized Navier-Stokes reconstruction (U(t), P (t))
given by (3.91) are assumed to be smooth enough to justify the computations below
and the existence of the estimates. For more details about the necessary regularity,
we refer to the Section 3.4 where this question is briefly commented for the case of
the Stokes equations.

(2) uh is assumed to satisfy the "small size" hypothesis (3.92), since it is anyway neces-
sary to the existence of the solutions of (3.91).

In particular from now, we assume that the mesh size h is small enough to satisfy
h ≤ h0, where h0 is given in (3.92). Following the previous remark, we therefore prove all
our estimates under the hypothesis of a small mesh size and a small exact solution (that is
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in fact equivalent to impose small data). Under this hypothesis, roughly speaking, proving
estimate for the Navier-Stokes equations, is in fact only a matter of knowing how to prove
the similar estimate for the linear Stokes equations of Section 3.4, since all the non-linear
terms of the form

ρ

∫
Ω

((v · ∇)uh)vdx

will be controlled by
γµ‖∇v‖2L2(Ω),

that can be absorb in the H1 semi-norm in the left hand side since 0 < γ < 1. This is
somewhere a "moral" of non-linear problem: to prove estimate, we must know how to do
it for the linear equation and assume that the solution of the non-linear problem is "small"
such that, roughly speaking, it stays close the solution of the linear problem.

The first estimate is contained in the Proposition 3.44 where we estimate the error
u−U.

Proposition 3.44 (Continuous error estimate).
Let (u, p) be the solution of (3.87), (uh, ph) the solution of the finite element scheme (3.88)
and (U, P ) the solution of the linearized reconstruction. We assume that the hypothesis of
Proposition 3.42 are satisfied. Then, for any h ≤ h0 and any t ∈ (0, T ],

ρ‖u−U(t)‖2L2(Ω) + µ

∫ t

0
‖∇(u−U)(s)‖2L2(Ω)ds

≤ ρ‖u−U(0)‖2L2(Ω) + ρ2C2
P

µ(1− γ)2

∫ t

0

∥∥∥∥∂(uh −U)
∂t

(s)
∥∥∥∥2

L2(Ω)
ds, (3.95)

where CP is the Poincaré constant of Ω.

Proof. Taking the difference between (3.87) and (3.91) yields

ρ

∫
Ω

∂(u−U)
∂t

· vdx + ρ

∫
Ω

((u · ∇)(u−U)) · vdx + ρ

∫
Ω

((u−U) · ∇uh) · vdx

+ µ

∫
Ω
∇(u−U) : ∇vdx +

∫
Ω

(p− P ) div vdx = ρ

∫
Ω

∂(uh −U)
∂t

· vdx.

Choosing v = u−U and using the fact that div u = div U = 0 the pressure term disappears
and as computed several time before, we have∫

Ω
((u · ∇)(u−U)) · vdx = 0

thanks to the boundary conditions. Therefore, it remains

ρ

2
d

dt
‖u−U(t)‖2L2(Ω) + µ‖∇(u−U)(t)‖2L2(Ω)

= ρ

∫
Ω

∂(uh −U)
∂t

· (u−U)dx− ρ
∫

Ω
((u−U) · ∇uh) · (u−U)dx.

Using Cauchy-Schwarz, Young’s and Poincaré inequalities, and the Sobolev estimates of
Proposition A.8, we obtain

ρ

2
d

dt
‖u−U(t)‖2L2(Ω) + µ‖∇(u−U)(t)‖2L2(Ω) ≤

ρC2
P

2(1− γ)µ

∥∥∥∥∂(uh −U)
∂t

(t)
∥∥∥∥2

L2(Ω)

+ 1− γ
2 µ‖∇(u−U)(t)‖2L2(Ω) + ρCSOB‖∇uh(t)‖L2(Ω)‖∇(u−U)(t)‖2L2(Ω).
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Using the hypothesis on ∇uh, one can pass all the gradient term to the left hand side,
and we get

ρ

2
d

dt
‖u−U(t)‖2L2(Ω) + 1− γ

2 µ‖∇(u−U)(t)‖2L2(Ω) ≤
ρ2C2

P

2(1− γ)µ

∥∥∥∥∂(uh −U)
∂t

(t)
∥∥∥∥2

L2(Ω)
.

Since 1− γ < 1, one can write the last inequality as

ρ(1− γ)
2

d

dt
‖u−U(t)‖2L2(Ω)+

1− γ
2 µ‖∇(u−U)(t)‖2L2(Ω) ≤

ρ2C2
P

2(1− γ)µ

∥∥∥∥∂(uh −U)
∂t

(t)
∥∥∥∥2

L2(Ω)
.

We then conclude the proof by multiplying 2
1−γ and integrating from 0 to t.

Remark 3.45.
It is possible to prove an estimate for u−U without requiring that sup

t∈(0,T )
‖∇uh(t)‖L2(Ω)

is small (note that in this case we have to assume the well-posedness of the linearized
reconstruction (3.91)). Indeed, one have in fact that by Proposition A.8, in the Appendix

ρ

2
d

dt
‖u−U(t)‖2L2(Ω) + µ‖∇(u−U)(t)‖2L2(Ω)

= ρ

∫
Ω

∂(u−U)
∂t

· (u−U)dx− ρ
∫

Ω
((u−U) · ∇uh) · (u−U)dx

≤ ρ2C2
P

µ

∥∥∥∥∂(uh −U)
∂t

∥∥∥∥2

L2(Ω)
+ µ

4 ‖∇(u−U)‖2

+
CSOBρ

2‖∇uh‖2L2(Ω)
µ

‖u−U‖2L2(Ω) + µ

4 ‖∇(u−U)|2L2(Ω).

Therefore it is possible to obtain a bound by a Gronwall’s type argument applied to
‖u−U‖2L2(Ω) and we get

ρ‖u−U(t)‖2L2(Ω) + µ

∫ t

0
‖∇(u−U)(s)‖2L2(Ω)ds

≤ exp
(
CSOB

ρ2

µ

∫ t

0
‖∇uh(s)‖2L2(Ω)ds

)(
ρ‖u−U(0)‖2L2(Ω) + ρ2C2

P

µ

∫ t

0

∥∥∥∥∂(uh −U)
∂t

(s)
∥∥∥∥2

L2(Ω)
ds

)
.

The quantity ∫ t

0
‖∇uh(s)‖2L2(Ω)ds

should be estimated through a stability analysis of the method (3.88) that we do not
pretend to perform. However, assuming the convergence of the numerical method, one
can estimate it as∫ t

0
‖∇uh(s)‖2L2(Ω)ds ≤ 2

∫ t

0
‖∇u(s)‖2L2(Ω)ds+ 2

∫ t

0
‖∇(u− uh)(s)‖2L2(Ω)ds.

The convergence assumption implies that there exists h0 such that for all h ≤ h0∫ t

0
‖∇(u− uh)(s)‖2L2(Ω)ds ≤

∫ t

0
‖∇u(s)‖2L2(Ω)ds

that yields ∫ t

0
‖∇uh(s)‖2L2(Ω)ds ≤ 4

∫ t

0
‖∇u(s)‖2L2(Ω)ds.
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Now, as we did for the Stokes equations, we estimate the error between U and uh.
The bound is contained in the next proposition.

Proposition 3.46 (Discrete error estimate).
Let (u, p) be the solution of (3.87), (uh, ph) the solution of the finite element scheme (3.88)
and (U, P ) the solution of the linearized reconstruction. We assume that the hypothesis of
Proposition 3.42 are satisfied. In particular, we assume that there exists 0 < γ < 1

sup
t∈(0,T )

‖∇u(t)‖L2(Ω) ≤
γµ

ρCSOB
,

and that there exists h0 > 0 such that for all h ≤ h0

sup
t∈(0,T )

‖∇uh(t)‖L2(Ω) ≤
γµ

ρCSOB
,

where CSOB is the Sobolev constant of Proposition A.8 of the Appendix A.2. Finally, let
(w, r) ∈ (H1

0 (Ω))2 × L2
0(Ω) the weak solution of the dual problem

−µ∆w +∇r = 0, in Ω,

div w = ph − P, in Ω,

w = 0, on ∂Ω.

(3.96)

Then, there exists a constant C > 0 depending only on Ω and the reference triangle such
that for any h ≤ h0 and any t ∈ [0, T ]

µ‖∇(U−uh)(t)‖2L2(Ω)+
1
µ
‖P−ph(t)‖2L2(Ω) ≤

C

(1− γ)2

∑
K∈Th

(ηAK,u)2(t)+(ηAK,p)2(t)+(ηdiv
K )(t)2,

(3.97)

where

(ηAK,u)2

=
(∥∥∥∥f − ρ∂uh

∂t
− ρ(uh · ∇)uh + µ∆uh −∇ph

∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K)

)
ωK(u−uh),

(ηAK,p)2

= 1
µ

(∥∥∥∥f − ρ∂uh
∂t
− ρ(uh · ∇)uh + µ∆uh −∇ph

∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K)

)
ωK(w),

(ηdiv
K )2(t) = µ‖ div uh(t)‖2L2(K).

Proof. To lighten the notations, we do not write the explicit dependence on t of the func-
tion,since every quantity is evaluated at the same time. In what follows, we denote by
C or C̃ any positive constant that may depends only on the reference triangle or Ω and
which values can change from line to line. We proceed as in Theorem 3.6 and first provide
an estimate for the velocity

Step 1. Estimate for U− uh.
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µ‖∇(U− uh)‖2L2(Ω) =
∫

Ω
µ∇(U− uh) : ∇(U− uh)dx

+
∫

Ω
(P − ph) div(U− uh)dx−

∫
Ω

(P − ph) div(U− uh)dx

+ ρ

∫
Ω

((U · ∇)uh) · (U− uh)dx− ρ
∫

Ω
((U · ∇)uh) · (U− uh)dx

+ ρ

∫
Ω

((u · ∇)(U− uh) · (U− uh)dx

+ ρ

∫
Ω

((uh · ∇)uh) · (U− uh)dx− ρ
∫

Ω
((uh · ∇)uh) · (U− uh)dx.

Note that in the the fourth line of the above equality, the term

ρ

∫
Ω

((u · ∇)(U− uh)) · (U− uh)dx = 0

thanks to boundary conditions and the fact that u is divergence free. Therefore, we do not
have to add it and subtract it as we did for the other terms. Using the fact that (U, P ) is
the solution of the problem (3.91), it yields

µ‖∇(U− uh)‖2L2(Ω) =
∫

Ω

(
f − ρ∂uh

∂t

)
· (U− uh)dx− ρ

∫
Ω

((uh · ∇)uh) · (U− uh)dx

− µ
∫

Ω
∇uh : ∇(U− uh)dx +

∫
Ω
ph div(U− uh)

+
∫

Ω
(P − ph) div uhdx− ρ

∫
Ω

((U− uh) · ∇)uh) · (U− uh)dx.

Thanks to the numerical method (3.88), one can remove any test functions (vh, qh), and
integrating by parts it yields

µ‖∇(U−uh)‖2L2(Ω) =
∑
K∈Th

∫
K

(
f − ρ∂uh

∂t
− ρ(uh·)∇uh + µ∆uh −∇ph

)
·(U−uh−vh)dx

+ 1
2
∑
K∈Th

∫
∂K

[µ∇uh · n] · (U− uh − vh)dx

+
∑
K∈Th

αK

∫
K

(
f − ρ∂uh

∂t
− ρ(uh·)∇uh + µ∆uh −∇ph

)
· (ρ(uh·)∇vh − µ∆vh +∇qh)dx

+
∫

Ω
(P − ph − qh) div uhdx− ρ

∫
Ω

((U− uh) · ∇)uh) · (U− uh)dx.

Choosing vh = Rh(U−uh) and qh = 0, Cauchy-Schwarz inequality ad interpolation error
estimates yield that there exist C > 0 depending only on the reference triangle such that

µ‖∇(U− uh)‖2L2(Ω) ≤ C
∑
K∈Th

νKωK(U− uh) + ‖P − ph‖L2(Ω)‖ div uh‖L2(Ω)

+ ρ‖∇uh‖L2(Ω)‖U− uh‖2L2(Ω),

where we note

νK =
∥∥∥∥f − ρ∂uh

∂t
− ρ(uh · ∇)uh + µ∆uh −∇ph

∥∥∥∥
L2(Ω)

+ 1
2
√
λ2,K

‖[µ∇uh · n]‖L2(∂K) .

Observe that, as we did in Theorem 3.4, the stabilization terms are put into the residual
term νKωK(U − uh) thanks to our choice for αK . Finally, thanks to the hypothesis on
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‖∇uh‖L2(Ω) one can pass the last term of the right hand side into the left one and we
obtain that

µ‖∇(U−uh)‖2L2(Ω) ≤
C

1− γ
∑
K∈Th

νKωK(U−uh) + 1
1− γ ‖P − ph‖L2(Ω)‖ div uh‖L2(Ω).

(3.98)

Step 2. Estimate for P − ph. We now consider the dual problem (3.96) to recover an
estimate for the pressure error. We have∫

Ω
(P − ph)2dx = −

∫
Ω

(P − ph) div wdx = −
∫

Ω
P div wdx +

∫
Ω
ph div wdx

=
∫

Ω

(
f − ρ∂uh

∂t

)
·wdx− ρ

∫
Ω

((U · ∇)uh) ·wdx− ρ
∫

Ω
(u · ∇(U− uh)) ·wdx

− µ
∫

Ω
∇U : ∇wdx +

∫
Ω
ph div wdx

=
∫

Ω

(
f − ρ∂uh

∂t

)
·wdx− ρ

∫
Ω

((uh · ∇)uh) ·wdx− µ
∫

Ω
∇uh : ∇wdx +

∫
Ω
ph div wdx

+ ρ

∫
Ω

((uh · ∇)uh − (U · ∇)uh − (u · ∇)(U− uh)) ·wdx− µ
∫

Ω
∇(U− uh) : ∇wdx

=
∫

Ω

(
f − ρ∂uh

∂t

)
·wdx− ρ

∫
Ω

((uh · ∇)uh) ·wdx− µ
∫

Ω
∇uh : ∇wdx +

∫
Ω
ph div wdx

− ρ
∫

Ω
(((U− uh) · ∇)uh + (u · ∇)(U− uh)) ·wdx− µ

∫
Ω
∇(U− uh) : ∇wdx.

Removing the test function vh = Rh(w), integrating by part, using Cauchy-Swchwarz,
Sobolev and interpolation inequalities, and absorbing the stabilization terms, we obtain
finally that

‖P − ph‖2L2(Ω) ≤ C
∑
K∈Th

νKωK(w) + µ‖∇(U− uh)‖L2(Ω)‖∇w‖L2(Ω)

+ ρCSOB(‖∇uh‖L2(Ω) + ‖∇u‖L2(Ω))‖∇(U− uh)‖L2(Ω)‖∇w‖L2(Ω).

Since by hypothesis, both uh and u satisfy

sup
t∈(0,T )

‖∇u(t)‖L2(Ω), sup
t∈(0,T )

‖∇uh(t)‖L2(Ω) ≤
µ

ρCSOB
,

we finally obtain that

‖P − ph‖2L2(Ω) ≤ C
∑
K∈Th

νKωK(w) + 3µ‖∇(U− uh)‖L2(Ω)‖∇w‖L2(Ω).

We recall that the following a priori estimate is valid for the dual problem (3.96):

‖∇w‖L2(Ω) ≤ C‖P − ph‖L2(Ω).

Then Young’s inequality implies

‖P − ph‖ ≤ C̃

 ∑
K∈Th

νKωK(w) + µ2‖∇(U− uh)‖2L2(Ω)

1/2

. (3.99)
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Step 3. Putting all together Plugging (3.99) into (3.98) yields

µ‖∇(U− uh)‖2L2(Ω) ≤
C

1− γ
∑
K∈Th

νKωK(U− uh)

+ C̃

1− γ

 ∑
K∈Th

νKωK(w) + µ2‖∇(U− uh)‖2L2(Ω)

1/2

‖ div uh‖L2(Ω).

Young’s inequality implies

µ‖∇(U− uh)‖2L2(Ω) ≤
C

1− γ
∑
K∈Th

νKωK(U− uh)

+ C̃

2ε(1− γ)
∑
K∈Th

νKωK(w) + + C̃

2ε(1− γ)µ
2‖∇(U−uh)‖2L2(Ω) + C̃ε

2(1− γ)‖ div uh‖2L2(Ω).

Choosing ε = C̃µ

1− γ , passing the gradient term to the left hand side and using the fact

that 1
1− γ ≤

1
(1− γ)2 yields

µ‖∇(U− uh)‖2L2(Ω) ≤
C

(1− γ)2

∑
K∈Th

νKωK(U− uh) + 1
µ
νKωK(w) + µ‖ div uh‖2L2(K).

Plugging back the last estimate into (3.99) yields the result.

To provide the final a posteriori error estimate for the velocity error u−uh, it remains
to prove estimates for the L2 norms

‖U− uh‖L2(Ω),

∥∥∥∥∂uh
∂t
− ∂U

∂t

∥∥∥∥
L2(Ω)

,

since they are contained in (3.95) (the L2 norm U−uh is hidden in u(0)−U(0) that has
to be split into u(0)−uh(0) and uh(0)−U(0)). This is done through a dual argument and
the use of the orthogonility between U and uh as we did for the Stokes equations. The
only difference here is that we have to tackle the issue coming from the non-linearity when
differentiating the weak forms with respect to the time variable. The result is contained
in the next proposition for which we need use the following dual problem to derive the
estimates: for any g ∈ (L2(Ω))2, and for all t ∈ [0, T ], let (w(t), r(t)) ∈ (H1

0 (Ω))2 ×L2
0(Ω)

the weak solution of

ρ

∫
Ω

((u(t) · ∇)v) ·w(t)dx + ρ

∫
Ω

((v · ∇)uh(t)) ·w(t)dx + µ

∫
Ω
∇w(t) : ∇vdx

−
∫

Ω
r(t) div vdx =

∫
Ω

g · vdx,∀v ∈ (H1
0 (Ω))2,∫

Ω
q div w(t)dx = 0, ∀q ∈ L2

0(Ω). (3.100)

By hypothesis on u and uh, the same argument that the one advanced in the proof of
Proposition 3.42 ensures that the problem (3.100) is well-posed and that the following a
priori estimate holds for any t

µ‖∇w(t)‖L2(Ω) + ‖r(t)‖L2(Ω) ≤
C

1− γ ‖g‖L2(Ω),
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where C depends only on Ω. Moreover, we can show that (w, r) ∈ (H2(Ω))2 × H1(Ω).
Indeed, observe that (w, r) satisfies the (weak) Stokes problem

µ

∫
Ω
∇w(t) : ∇vdx−

∫
Ω
r(t) div vdx =

∫
Ω

g · vdx

− ρ
∫

Ω
((u(t) · ∇)v) ·w(t)dx− ρ

∫
Ω

((v · ∇)uh(t)) ·w(t)dx,∀v ∈ (H1
0 (Ω))2,∫

Ω
q div w(t)dx = 0,∀q ∈ L2

0(Ω).

Integrating by parts the right hand side, it can be written as

µ

∫
Ω
∇w(t) : ∇vdx−

∫
Ω
r(t) div vdx =

∫
Ω
g̃ · vdx,∀v ∈ (H1

0 (Ω))2,∫
Ω
q div w(t)dx = 0,∀q ∈ L2

0(Ω),

where
g̃ = g + ρ(u · ∇)w− ρ∇uTh ·w.

Since Ω is a convex polygon and g̃ is easily shown to be in (L2(Ω))2, we know that
(w, r) ∈ (H2(Ω))2 ×H1(Ω) [21],[62] (see [99],[58] [107] for smooth domains).

Here we are mainly interested in exhibiting the a priori estimate that holds in the
H2 −H1 norms. For understanding, let us integrate (3.100) by parts to write (3.100) in
the strong form

−ρ(u · ∇)w + ρ∇uTh ·w− µ∆w +∇r = g. (3.101)
which corresponds as seen before to the Stokes problem

−µ∆w +∇r = g + ρ(u · ∇)w− ρ∇uTh ·w.

Using the H2 −H1 a priori estimate for the Stokes equations (see for instance again [21]
or the proof of Proposition 3.25), we can prove that there exists C > 0 only depending on
Ω such that for all t

µ‖w(t)‖H2(Ω) + ‖r(t)‖H1(Ω) ≤
C

1− γ ‖g‖L2(Ω). (3.102)

We will also need the same estimates for the time derivatives of w(t) and r(t). Assuming
moreover that

sup
t∈(0,T )

∥∥∥∥∇∂u
∂t

(t)
∥∥∥∥
L2(Ω)

≤ C̃µ(1− γ)
ρ

and that for all h ≤ h0 (up to take h0 smaller)

sup
t∈(0,T )

∥∥∥∥∇∂uh
∂t

(t)
∥∥∥∥
L2(Ω)

≤ C̃µ(1− γ)
ρ

,

where C̃ may depends only on Ω, by differentiating the weak formulation (3.100) with
respect to the time it is possible to prove that for all t

µ

∥∥∥∥∇∂w
∂t

(t)
∥∥∥∥
L2(Ω)

+
∥∥∥∥∂r∂t (t)

∥∥∥∥
L2(Ω)

≤ C

1− γ ‖g‖L2(Ω).

Under the same hypothesis and differentiating this time the strong form (3.101), one may
prove by the same manipulations that for all t

µ

∥∥∥∥∂w
∂t

(t)
∥∥∥∥
H2(Ω)

+
∥∥∥∥∂r∂t (t)

∥∥∥∥
H1(Ω)

≤ C

1− γ ‖g‖L2(Ω). (3.103)

In the two estimates above, the constants C depends only Ω.
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Proposition 3.47 (Dual estimates for the velocity).
Let (u, p) be the solution of (3.87), (uh, ph) the solution of the finite element scheme (3.88)
and (U, P ) the solution of the linearized reconstruction. Moreover, we assume that there
exists 0 < γ < 1

sup
t∈(0,T )

‖∇u(t)‖L2(Ω) ≤
γµ

ρCSOB
, sup

t∈(0,T )

∥∥∥∥∇∂u
∂t

(t)
∥∥∥∥
L2(Ω)

≤ C̃µ(1− γ)
ρ

and that there exists h0 > 0 such that for all h ≤ h0

sup
t∈(0,T )

‖∇uh(t)‖L2(Ω) ≤
γµ

ρCSOB
, sup

t∈(0,T )

∥∥∥∥∇∂uh
∂t

(t)
∥∥∥∥
L2(Ω)

≤ C̃µ(1− γ)
ρ

where CSOB is the Sobolev constant of Proposition A.8 of the Appendix A.2 and C̃ depends
only on Ω. Then, there exists a constant C > 0 independent of the mesh size, but that
depends on the mesh aspect ratio and Ω such that for any h ≤ h0 and any t ∈ [0, T ],

‖U− uh(t)‖2L2(Ω) ≤
C

(1− γ2)
∑
K∈Th

(εIK,u,0)2(t), (3.104)

∥∥∥∥∂U
∂t
− ∂uh

∂t
(t)
∥∥∥∥2

L2(Ω)
≤ C

(1− γ2)
∑
K∈Th

(εIK,u,0)2(t) + (εIK,u,1)2(t), (3.105)

where

(εIK,u,0)2(t) = 1
µ2h

4
K

∥∥∥∥f(t)− ρ∂uh
∂t

(t)− ρ(uh(t) · ∇)uh(t) + µ∆uh(t)−∇ph(t)
∥∥∥∥2

L2(K)

+ 1
µ
h3
K ‖[∇uh(t) · n]‖2L2(∂K) + h2

K‖ div uh(t)‖2L2(K)

+α2
K

µ2

(
ρ‖uh(t)‖L∞(K) + µ

)2
∥∥∥∥f(t)− ρ∂uh

∂t
(t)− ρ(uh(t) · ∇)uh(t) + µ∆uh(t)−∇ph(t)

∥∥∥∥2

L2(K)
,

and

(εIK,u,1)2(t)

= 1
µ2h

4
K

∥∥∥∥∥∂f
∂t

(t)− ρ∂
2uh
∂t2

(t)− ρ
(
∂uh
∂t

(t) · ∇
)

uh(t)− ρ(uh(t) · ∇)∂uh
∂t

(t)

+µ∆∂uh
∂t

(t)−∇∂ph
∂t

(t)
∥∥∥∥2

L2(K)

+ 1
µ
h3
K

∥∥∥∥[∇∂uh
∂t

(t) · n
]∥∥∥∥2

L2(∂K)
+ h2

K

∥∥∥∥div ∂uh
∂t

(t)
∥∥∥∥2

L2(K)

+ α2
K

µ2

(
ρ‖uh(t)‖L∞(K) + µ

)2

∥∥∥∥∥∂f
∂t

(t)− ρ∂
2uh
∂t2

(t)− ρ
(
∂uh
∂t

(t) · ∇
)

uh(t)− ρ(uh(t) · ∇)∂uh
∂t

(t) + µ∆∂uh
∂t

(t)−∇∂ph
∂t

(t)
∥∥∥∥∥

2

L2(K)

+ ρ2

µ2

(
α2
K

∥∥∥∥∂uh
∂t

(t)
∥∥∥∥2

L∞(K)
+
(
dαK
dt

)2
‖uh(t)‖2L∞(K)

)
∥∥∥∥f(t)− ρ∂uh

∂t
(t)− ρ(uh(t) · ∇)uh(t) + µ∆uh(t)−∇ph(t)

∥∥∥∥2

L2(K)
.
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Proof. Let t ∈ [0, T ] be fixed. As in the previous proposition, we dont write the explicit
dependence on t of the functions, since every quantity is evaluated at the same time. For
this proof, we denote by C any positive constant that is independent of the mesh size, but
may depends on the mesh aspect ratio and by C̃ any positive constant depending only on
Ω. The value of these constants can change from line to line.

Part 1. Proof of (3.104) We proceed as in [107]. It is known that

‖U− uh‖L2(Ω) = sup
g∈L2(Ω)

g 6=0

(U− uh,g)
‖g‖L2(Ω)

,

where (·, ·) stands for the usual inner product given by

(f ,g) =
∫

Ω
f · gdx.

Now let g be any vector valued function in (L2(Ω))2 and let us consider the dual
problem (3.100) with this particular g as right hand side. By taking v = U − uh and
q = P − ph in (3.100), we have∫

Ω
(U− uh) · gdx = ρ

∫
Ω

((u · ∇)(U− uh)) ·wdx + ρ

∫
Ω

((U− uh) · uh) ·wdx

+ µ

∫
Ω
∇w : ∇(U− uh)dx−

∫
Ω
r div(U− uh)dx−

∫
Ω

div w(P − ph)dx.

Since (U, P ) is the solution of (3.91), one obtains∫
Ω

(U− uh) · gdx =
∫

Ω

(
f − ρ∂uh

∂t

)
·wdx− ρ

∫
Ω

((uh · ∇)uh) ·wdx− µ
∫

Ω
∇uh : ∇wdx

+
∫

Ω
r div uhdx +

∫
Ω
ph div wdx.

Now using the numerical method (3.88), we can remove any test function (vh, qh) and we
get∫

Ω
(U− uh) · gdx =

∫
Ω

(
f − ρ∂uh

∂t

)
· (w− vh)dx

− ρ
∫

Ω
((uh · ∇)uh) · (w− vh)dx− µ

∫
Ω
∇uh : ∇(w− vh)dx

+
∫

Ω
(r − qh) div uhdx +

∫
Ω
ph(div w− vh)dx

+
∑
K∈Th

∫
K
αK

(
f − ρ∂uh

∂t
− ρ(uh · ∇)uh + µ∆uh −∇ph

)
·(ρ(uh·∇)vh−µ∆vh+∇qh)dx = 0.

Integration by parts over each triangle yields∫
Ω

(U− uh) · gdx =
∑
K∈Th

∫
K

(
f − ρ∂uh

∂t
− ρ(uh · ∇)uh + µ∆uh −∇ph

)
· (w− vh)dx

1
2
∑
K∈Th

∫
∂K

[µ∇uh · n] · (w− vh)dx +
∑
K∈Th

∫
K

(r − qh) div uhdx

+
∑
K∈Th

∫
K
αK

(
f − ρ∂uh

∂t
− ρ(uh · ∇)uh + µ∆uh −∇ph

)
·(ρ(uh ·∇)vh−µ∆vh+∇qh)dx.

(3.106)
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We now choose vh = rh(w) and qh = Rh(r) and the Cauchy-Schwarz inequality and
classical isotropic interpolation estimates imply

∫
Ω

(U− uh) · gdx

≤ C
∑
K∈Th

(
h2
K

∥∥∥∥f − ρ∂uh
∂t
− ρ(uh · ∇)uh + µ∆uh −∇ph

∥∥∥∥
L2(K)

+1
2h

3/2
K ‖[µ∇uh · n]‖L2(∂K)

)
‖w‖H2(K)

+ C
∑
K∈Th

µhK‖div uh‖L2(K)
1
µ
‖∇r‖L2(∆K)

+
∑
K∈Th

αK
(
ρ‖uh‖L∞(K) + µ

) ∥∥∥∥f − ρ∂uh
∂t
− ρ(uh · ∇)uh + µ∆uh −∇ph

∥∥∥∥
L2(K)(

‖w‖H2(K) + 1
µ
‖∇r‖L2(∆K)

)
.

The discrete Cauchy-Schwarz inequality and the a priori estimate (3.102) on (w, r) imply
finally

∫
Ω

(U− uh) · gdx

≤ C

µ(1− γ)

 ∑
K∈Th

h4
K

∥∥∥∥f − ρ∂uh
∂t
− ρ(uh · ∇)uh + µ∆uh −∇ph

∥∥∥∥2

L2(K)
+ 1

4h
3
K ‖[µ∇uh · n]‖2L2(∂K)

+µ2h2
K‖ div uh‖2L2(K)

+α2
K

(
ρ‖uh‖L∞(K) + µ

)2
∥∥∥∥f − ρ∂uh

∂t
− ρ(uh · ∇)uh + µ∆uh −∇ph

∥∥∥∥2

L2(K)

)1/2

‖g‖L2(Ω).

Dividing by ‖g‖L2(Ω) and taking the supremum on all the g ∈ (L2(Ω))2 yields the bound
(3.104).

Part 2. Proof of (3.105)

We start from (3.100). We choose vh = rh(w) and qh = Rh(r), and by differentiating
both side of the equations with respect to the time variable and using the fact that ∂

∂t
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commutes with rh and Rh, we obtain∫
Ω

(
∂U
∂t
− ∂uh

∂t

)
· gdx∑

K∈Th

∫
K

(
f − ρ∂uh

∂t
− ρ(uh · ∇)uh + µ∆uh −∇ph

)
·
(
∂w
∂t
− rh

(
∂w
∂t

))
dx

1
2
∑
K∈Th

∫
∂K

[µ∇uh · n] ·
(
∂w
∂t
− rh

(
∂w
∂t

))
dx +

∑
K∈Th

∫
K

(
∂r

∂t
−Rh

(
∂r

∂t

))
div uhdx

+
∑
K∈Th

∫
K
αK

(
f − ρ∂uh

∂t
− ρ(uh · ∇)uh + µ∆uh −∇ph

)

·
(
ρ(uh · ∇)rh

(
∂w
∂t

)
− µ∆rh

(
∂w
∂t

)
+∇Rh

(
∂r

∂t

))
dx

+
∑
K∈Th

∫
K

(
∂f
∂t
− ρ∂

2uh
∂t2

− ρ
(
∂uh
∂t
· ∇
)

uh − ρ(uh · ∇)∂uh
∂t

+ µ∆∂uh
∂t
−∇∂ph

∂t

)
·(w−rh(w))dx

1
2
∑
K∈Th

∫
∂K

[
µ∇∂uh

∂t
· n
]
· (w− rh(w))dx +

∑
K∈Th

∫
K

(r −Rh(r)) div ∂uh
∂t

dx

+
∑
K∈Th

∫
K
αK

(
∂f
∂t
− ρ∂

2uh
∂t2

− ρ
(
∂uh
∂t
· ∇
)

uh − ρ(uh · ∇)∂uh
∂t

+ µ∆∂uh
∂t
−∇∂ph

∂t

)
· (ρ(uh · ∇)rh(w)− µ∆rh(w) +∇Rh(r))dx

+
∑
K∈Th

∫
K
αK

(
f − ρ∂uh

∂t
− ρ(uh · ∇)uh + µ∆uh −∇ph

)
· ρ
(
∂uh
∂t
· ∇
)
rh(w)dx

+
∑
K∈Th

∫
K

dαK
dt

(
f − ρ∂uh

∂t
− ρ(uh · ∇)uh + µ∆uh −∇ph

)
· ρ(uh · ∇)rh(w)dx.

The rest of the proof is similar to the Part 1. We use the standard interpolation
estimates and conclude by using the a priori estimates (3.102) and (3.103).

Remark 3.48.
Note here that, contrary to what we did before (see Proposition 3.25 for the Stokes equa-
tions for instance), it is not possible to absorb all the terms due to the stabilization into
the residual part. This is due to the fact that we have to stabilize the convection. Only the
terms that involve the factor α2

Kµ
2 can be bounded by the suitable power of hK , that is to

say h4
K (note that we can always bound αK , up to a constant, by h2

k
µ since ξ(ReK)−1 ≤ 1

and λ2,K ≤ chK .) We could try a finer estimate for the other terms, but we think that for
our purpose, it is enough to observe (the computations will be done here below) that

α2
K ' h4

K ,

(
dαK
dt

)2
' h6

K

and that therefore, up to factor that may depends on uh,
∂uh
∂t

, ρ, µ all the terms in esti-
mates (3.104) and (3.105) involving αK are of higher order.

We conclude this remark by providing a proper estimate for αK and its derivative with
respect to t. We recall that

αK =
αλ2

2,K
µξ(ReK)

Since ξ(x) ≥ 1, and we have that λ2,K ≤ chK with c depending only on the reference
triangle, we immediately conclude that

αK ≤
αc

µ
h2
K
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implying that α2
K ' h4

K . Moreover we have that

dαK
dt

=
αλ2

2,K
µ

−ξ′(ReK)dReKdt
ξ2(ReK) ≤

αλ2
2,K
µ

∣∣∣−ξ′(ReK)dReKdt
∣∣∣

ξ2(ReK) ≤
αλ2

2,K
µ

λ2,Kρ
∣∣∣d‖uh‖L∞(K)

dt

∣∣∣
µ

,

where we ξ′ ≤ 1. As before we use that λ2,K ≤ chK and we obtain finally

(
dαK
dt

)2
' h6

K .

We are now able to prove an a posteriori error estimate for the semi-discrete error
u− uh. It is summarized in the Theorem

Theorem 3.49 (An anisotropic a posteriori error estimate for the unsteady Navier-Stokes
with constant coefficients).
Let (u, p) be the solution of (3.87), (uh, ph) the solution of the finite element scheme (3.88)
and (U, P ) the solution of the linearized reconstruction. We assume that the hypothesis
of Propositions 3.44, 3.46 and 3.47 hold. Finally, let (w, r) ∈ (H1

0 (Ω))2 ×L2
0(Ω) the weak

solution of the dual problem (3.96).
Then, there exists a constant C1 > 0 depending only on the the reference triangle and

Ω and a constant C2 > 0 independent of the mesh size, but that depends on the mesh
aspect ratio and Ω such that for any h ≤ h0 and any t ∈ (0, T ]

ρ‖u− uh(t)‖2L2(Ω) + µ

∫ t

0
‖∇(u− uh)(s)‖2L2(Ω)ds

≤ C1ρ‖u− uh(0)‖2L2(Ω) + C1
(1− γ)2

∫ t

0

∑
K∈Th

(ηAK,u)2(s) + (ηAK,p)2(s) + (ηdiv
K )(s)2ds

+ C2ρ

(1− γ)2

∑
K∈Th

(εIK,u,0)2(0) + (εIK,u,0)2(t) + C2ρ
2

µ(1− γ)4

∫ t

0

∑
K∈Th

(εIK,u,1)2(s)ds, (3.107)

where ηAK,u, ηAK,p and ηdiv
K are given by Proposition 3.46 and εIK,u,0 and εIK,u,1 by Proposition

3.47.

Proof. The proof is straightforward by splitting the error u− uh = u−U + U− uh and
by applying Propositions 3.44, 3.46 and 3.47.

Remark 3.50.
As in general for this type of anisotropic error estimate, the a posteriori error upper bound
(3.107) is not standard since it involves the linear reconstruction U in ηAK,u and requires
the solution w of the dual problem for the pressure reconstruction (3.96). In practice, see
Remark 3.28, we replace U by the ZZ post-processing of uh and we do not use the error
estimator ηAK,p in our adaptive algorithms.

Finally, note that the a posteriori error estimate (3.107) is easily adapted to R3 by
using the corresponding anisotropic framework, among others one replaces ωK by its 3D
definition. The only issue is to obtain the dual estimates (3.102) and (3.103) in order to
prove Proposition 3.47 for Ω ∈ R3. Indeed, as already mentioned for the Stokes equations
(see Remark 3.26), the H2 −H1 regularity of the dual problem (3.100) holds in 3D only
for smooth domains or particular convex polygons.
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3.7 A posteriori error estimates for the incompressible time
dependent Navier-Stokes equations with constant coef-
ficients: time approximation

In this section, we present a semi-discrete approximation in time discretization of the
Navier-Stokes equations. We focus on the Backward Differentiation Formula type methods
(BDF), namely BDF1 (that is to say the Backward Euler method) and the BDF2 method,
that is a second order scheme frequently used in the framework of Navier-Stokes equations.
Previous works are already dedicated to a posteriori error estimates for the (Navier)-Stokes
equations and BDF methods. We point out again [107] where the Navier-Stokes equations
are discretized with the Euler method and [23] where the BDF2 method is used to solve the
Stokes equations. Note that in [107], they also consider the spatial approximation using
Taylor-Hood finite elements. We point out also the reference [106] where both spatial and
temporal approximations are taken in account. An a posteriori error estimates in time
for the θ-scheme (in particular the case θ = 1/2 that corresponds to the Crank-Nicolson
method) are proven, but it is observed to be suboptimal for second order methods.

Before studying the case of the Navier-Stokes equations, we present the method on
a simple ODE toy problem and we show the techniques to prove an a posteriori error
estimate. We refer to [2] for more details on a posteriori error estimates in the case of
abstract parabolic problems. Note that here the authors only consider constant time steps,
we propose to extend the result to the case of variable time steps for adaptive purposes.

3.7.1 An a posteriori error indicator for the BDF 2: a toy problem

Let ρ, µ > 0 be two positive numbers and let us consider the following Cauchy problem :
find u the solution of the ODE

ρ
du

dt
(t) + µu(t) = f(t), t ∈ (0, T ],

u(0) = u0,

(3.108)

where T > 0 is the final time and u0 ∈ R is the initial condition. The BDFk methods,
k = 1, 2, reads : let 0 = t0 < t1 < t2 < ...tN = T be a partition of [0, T ] and τn+1 =
tn+1 − tn be the time step. Starting from u0 = u0, find for every n = 0, 1, 2, ..N − 1, un+1

the solution of

ρ

(
∂un+1 + βn+1

k τn+1

2 ∂2un+1
)

+ µun+1 = fn+1, (3.109)

where we use the notations

∂un+1 = un+1 − un

τn+1 , ∂2un+1 =
un+1−un
τn+1 − un−un−1

τn

τn+1+τn
2

, fn+1 = f(tn+1),

and βn+1
k is given by

βn+1
1 = 0, n = 0, 1, ..., N − 1, βn+1

2 = 0, n = 0, βn+1
2 = 1, n > 0.

Note the BDF2 method (that is to say k = 2) is a multistep method, requiring un but
also un−1 to compute un+1. Therefore, when k = 2, we initialize the method by solving
the first iteration with the Backward Euler method. Another choice would be to use for
instance the Crank-Nicolson scheme. In both cases, the choice for the first iteration does
not alter the order of convergence of the BDF2 method.
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We know quickly present the techniques to obtain an error indicator in the case of the
BDFk methods. As we already did in Chapter 2, we introduce a piecewise reconstruction
of the numerical solution. We define uτ,k, k = 1, 2, by

uτ,1 = un+1 + (t− tn+1)∂un+1, t ∈ [tn, tn+1], n = 0, 1, 2, ..., N − 1,

and

uτ,2 = un+1 + (t− tn+1)∂un+1 + 1
2(t− tn)(t− tn+1)∂2un+1, t ∈ [tn, tn+1], n = 1, 2, ..., N −1.

Then, the error indicators for the BDF1 and BDF2 methods are contained in the next two
Lemmas.

Lemma 3.51 (An error indicator for the BDF1 method).
Let (un)Nn=0 the numerical solution of the BDF method (3.109) with k = 1. Then, for any
t ∈ (0, T ], it holds

ρ
d

dt
uτ,1 + µuτ,1 = f + θ1,

where θ1 is defined by

θ1(t) = fn+1 − f(t) + (t− tn+1)µ∂un+1, t ∈ [tn, tn+1], n = 0, 1, 2, ..., N − 1.

Proof. The proof is a direct computation and is not presented.

Lemma 3.52 (An error indicator for the BDF2 method).
Let (un)Nn=0 the numerical solution of the BDF method (3.109) with k = 2. Finally, we
consider the piecewise reconstruction uτ defined by

uτ (t) = uτ,1(t), t ∈ [t0, t1], uτ (t) = uτ,2(t), t ∈ [t1, T ].

Then, for any t ∈ (0, T ], it holds

ρ
d

dt
uτ + µuτ = f + θ2,

where θ2 is defined by

θ2(t) = fn+1 + (t− tn+1)∂fn+1 − f(t)− τn

2 (t− tn+1)ρ∂
2un+1 − ∂2un

τn+1

+ 1
2(t− tn)(t− tn+1)µ∂2un+1, t ∈ [tn, tn+1], n = 2, 3, ..., N − 2,

and

θ2(t) = f2 + (t− t2)∂2f2 − f(t)− τ1

2 ρ∂
2u2 + 1

2(t− t1)(t− t2)µ∂2u2, t ∈ [t1, t2],

θ2(t) = f1 − f(t) + (t− t1)µ∂f1, t ∈ [t0, t1],

where we note
∂fn+1 = fn+1 − fn

τn+1 , n = 0, 1, 2, ..., N − 1.

Proof. We consider t ∈ [tn, tn+1]. We separate the proof into three parts.

Part 1. n ≥ 2
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We compute

ρ
d

dt
uτ + µuτ = ρ∂un+1 + (t− tn+1/2)ρ∂2un+1 + µun+1 + (t− tn+1)µ∂un+1

+ 1
2(t− tn)(t− tn+1)µ∂2un+1

= ρ∂un+1 + τn+1

2 ρ∂2un+1µun+1 +
(
t− tn+1/2 − τn+1

2

)
ρ∂2un+1

+ (t− tn+1)µ∂un+1 + 1
2(t− tn)(t− tn+1)µ∂2un+1.

Using the numerical scheme (3.109) with k = 2 (note that here βn+1
2 = 1) and the fact

that tn+1/2 − τn+1

2 = tn+1, we obtain

ρ
d

dt
uτ+µuτ = fn+1+(t−tn+1)

(
ρ∂2un+1 + µ∂un+1

)
+ 1

2(t−tn)(t−tn+1)µ∂2un+1. (3.110)

Now, computing the difference between two consecutive steps of (3.109) and dividing by
τn+1, one can write

ρ

(
∂un+1 − ∂un

τn+1 + 1
2∂

2un+1 − τn

2τn+1∂
2un

)
+ µ∂un+1 = ∂fn+1.

Observe that the term inside the parenthesis in the left hand side can be written as

∂un+1 − ∂un

τn+1 + 1
2∂

2un+1 − τn

2τn+1∂
2un = ∂2un+1 τ

n+1 + τn

2τn+1 + 1
2∂

2un+1 − τn

2τn+1∂
2un

= ∂2un+1 + τn

2
∂2un+1 − ∂2un

τn+1 .

Thus, we have

ρ

(
∂2un+1 + τn

2
∂2un+1 − ∂2un

τn+1

)
+ µ∂un+1 = ∂fn+1,

which yields that

ρ∂2un+1 + µ∂un+1 = ∂fn+1 − ρ τ
n

2
∂2un+1 − ∂2un

τn+1 .

Plugging it back into (3.110), we then obtain

ρ
d

dt
uτ + µuτ = fn+1 + (t− tn+1)∂fn+1 − τn

2 (t− tn+1)ρ∂
2un+1 − ∂2un

τn+1

+ 1
2(t− tn)(t− tn+1)µ∂2un+1,

which yields the desired result by adding and substracting f(t).

Part 2. n = 1
The computation is the same as in the previous part yielding to

ρ
d

dt
uτ + µuτ = f2 + (t− t2)

(
ρ∂2u2 + µ∂u2

)
+ 1

2(t− t1)(t− t2)µ∂2u2.
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Taking the difference between the scheme for n = 1 and n = 0 (note that here the step
n = 0 is a BDF1 step), we can deduce that

ρ∂2u2 + µ∂u2 = ∂f2 − τ1

2 ρ∂
2u2,

which yields that

ρ
d

dt
uτ + µuτ = f2 + (t− t2)∂f2 −−τ

1

2 (t− t2)ρ∂2u2 + 1
2(t− t1)(t− t2)µ∂2u2.

Part 3. n = 0
This last case is a direct consequence of the Lemma 3.51 by using the fact that uτ = uτ,1

for t ∈ [t0, t1].

From Lemmas 3.51 and 3.52, we could derive a posteriori error estimates following the
procedure presented in Theorems 2.1 or 2.5 of Chapter 2. We do not present them, by
sake of conciseness, and we focus on the application to the Navier-Stokes equations.

3.7.2 A posteriori error estimates for the incompressible Navier-Stokes
equations with constant coefficients and the BDF methods

We now consider a time discretization of the Navier-Stokes equations (3.87) (written in a
weak formulation). We use either the BDF1 or the BDF2 methods do not consider the
spatial approximation. The problem now reads : given N a positive integer and 0 = t0 <
t1 < t2 < ... < tN = T a partition of [0, T ] into intervals of length τn+1 = tn+1 − tn,
starting from u0 = u0, find for every n = 0, 1, ..., N − 1, (un+1, pn+1) ∈ (H1

0 (Ω))2 ×L2
0(Ω)

the solution of

ρ

∫
Ω

(
∂un+1 + βn+1

k τn+1

2 ∂2un+1
)
· vdx + ρ

∫
Ω

((un+1 · ∇)un+1) · vdx

+ µ

∫
Ω
∇un+1 : ∇vdx−

∫
Ω
pn+1 div vdx =

∫
Ω

fn+1 · vdx, ∀v ∈ (H1
0 (Ω))2,

−
∫

Ω
q div un+1dx = 0, ∀q ∈ L2

0(Ω), (3.111)

where we use the same type of notations as before

∂un+1 = un+1 − un

τn+1 , ∂2un+1 =
un+1−un
τn+1 − un−un−1

τn

τn+1+τn/2
, fn+1 = f(tn+1),

and βn+1
k , k = 1, 2 is given by

βn+1
1 = 0,∀n = 0, 1, ..., N − 1, βn+1

2 = 0, n = 0, βn+1
2 = 1, n > 0.

As usual we denote the maximal time step by τ = maxn=1,...,N τ
n.

We assume that the above numerical method is well-posed and converges as τ → 0. We
focus on the a posteriori error analysis. We first prove an a posteriori error estimate for
the case of the BDF1 method. We need the following proposition that contains the error
indicator we will use. Observe that we only consider the velocity field. The derivation
follows the same ideas presenting in Chapter 2 for the transport equation, we first build
an appropriate piecewise reconstruction of the numerical solution, and we look at the
remainder when we plug it into the PDE.
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Lemma 3.53 (An error indicator for the BDF1 method applied to the Navier-Stokes
equations).
Let (un)Nn=0, (pn)Nn=1 be the approximated solutions to (3.87) obtained by solving the nu-
merical method (3.111) with k = 1. Let us define the piecewise linear reconstruction of
the velocity uτ by

uτ (t) = un+1 + (t− tn+1)∂un+1, t ∈ [tn, tn+1], n = 0, 1, 2, ..., N − 1. (3.112)

Moreover, let us define the piecewise constant reconstruction of the pressure pτ

pτ (t) = pn+1, t ∈ [tn, tn+1], n = 0, 1, 2, ..., N − 1. (3.113)

Then, it holds for any t ∈ (tn, tn+1), n = 0, 1, ..., N − 1 and all v ∈ (H1
0 (Ω))2

ρ

∫
Ω

∂uτ
∂t
·vdx+ρ

∫
Ω

((uτ ·∇)uτ ) ·vdx+µ
∫

Ω
∇uτ : ∇vdx−

∫
Ω
pτ div vdx =

∫
Ω

fn+1 ·vdx

+(t−tn+1)ρ
∫

Ω

(
(un+1 · ∇)∂un+1 + (∂un+1 · ∇)un+1

)
·vdx+(t−tn+1)µ

∫
Ω
∇∂un+1 : ∇vdx

+ (t− tn+1)2ρ

∫
Ω

(
(∂un+1 · ∇)∂un+1

)
· vdx.

Proof. The proof is a direct computation and is not presented.

We now prove a semi-discrete a posteriori error estimate involving only the time dis-
cretization when the Navier-Stokes equations are approximated with BDF1 method.

Theorem 3.54 (A semi-discrete a posteriori error estimate for the Navier-Stokes equa-
tions and the BDF1 method).
Let (u, p) be the solution of the Navier-Stokes equations (3.87), (un)Nn=0, (pn)Nn=1 be the
approximated solutions to (3.87) obtained by solving the numerical method (3.111) with
k = 1. Let us define the piecewise linear reconstruction of the velocity uτ by (3.112) and
the piecewise constant reconstruction of the pressure pτ by (3.113). Finally, assume that
there exists τ0 and 0 < γ < 1 such that for all τ < τ0

sup
t∈(0,T )

‖∇uτ (t)‖L2(Ω) ≤
γµ

CSOBρ
, (3.114)

where CSOB is the Sobolev constant in Proposition A.8 of the Appendix A.2. Then, for all
τ < τ0 there exists a constant C depending only on Ω such that

ρ‖u− uτ (T )‖2L2(Ω) + µ

∫ T

0
‖∇(u− uτ )(t)‖2L2(Ω)dt

≤ C

(1− γ)2

(
ρ‖u− uτ (0)‖2L2(Ω) + ρ

µ

N−1∑
n=0

(ηTf ,n)2 + (ηTρ,n)2 + (εTn )2 +
N−1∑
n=0

(ηTµ,n)2
)
,

(3.115)

where
(ηTf ,n)2 = ρ−1

∫ tn+1

tn
‖f(t)− fn+1‖2L2(Ω)dt,

(ηTρ,n)2 = (τn+1)3

3 ρ‖((un+1 · ∇)∂un+1 + (∂un+1 · ∇)un+1)‖2L2(Ω),

(εTn )2 = (τn+1)5

5 ρ‖(∂un+1 · ∇)∂un+1‖2L2(Ω),

and
(ηTµ,n)2 = (τn+1)3

3 µ‖∇∂un+1‖2L2(Ω).
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Proof. Let n ≥ 0 and t ∈ (tn, tn+1). To lighten the notations, we don’t write the explicit
dependence on the time of the functions. We have
ρ

2
d

dt
‖u− uτ‖2L2(Ω) + µ‖∇(u− uτ )‖2L2(Ω) = ρ

∫
Ω

∂

∂t
(u− uτ ) · (u− uτ )dx

+ µ

∫
Ω
∇(u− uτ ) : ∇(u− uτ )dx

= ρ

∫
Ω

∂

∂t
(u− uτ ) · (u− uτ )dx

+ µ

∫
Ω
∇(u− uτ ) : ∇(u− uτ )dx

+ ρ

∫
Ω

((u · ∇)u− (uτ · ∇)uτ )(u− uτ )dx

−
∫

Ω
(p− pτ ) div(u− uτ )

− ρ
∫

Ω
((u · ∇)u− (uτ · ∇)uτ )(u− uτ )dx.

Note that div(u) = div(uτ ) = 0 so we can add the pressure term for free. Using the fact
(u, p) is the exact solution and rearranging the non-linear terms, we obtain that
ρ

2
d

dt
‖u− uτ‖2L2(Ω) + µ‖∇(u− uτ )‖2L2(Ω) =

∫
Ω

f · (u− uτ )dx− ρ
∫
∂uτ
∂t
· (u− uτ )dx

− µ
∫

Ω
∇uτ : ∇(u− uτ )dx

− ρ
∫

Ω
(uτ · ∇)uτ )(u− uτ )dx +

∫
Ω
pτ div(u− uτ )

− ρ
∫

Ω
((u · ∇)(u− uτ )) · (u− uτ )dx

− ρ
∫

Ω
((u− uτ ) · ∇)uτ ) · (u− uτ )dx.

Since u is divergence free, the term

ρ

∫
Ω

((u · ∇)(u− uτ )) · (u− uτ )dx

is null thanks to divergence theorem and the boundary conditions. Using then the Lemma
3.53, Cauchy-Schwarz and Sobolev inequalities, we obtain

ρ

2
d

dt
‖u− uτ‖2L2(Ω) + µ‖∇(u− uτ )‖2L2(Ω) ≤ ‖f − fn+1‖L2(Ω)‖u− uτ‖L2(Ω)

+ |t− tn+1|ρ‖(un+1 · ∇)∂un+1 + (∂un+1 · ∇)un+1‖L2(Ω)‖u− uτ‖L2(Ω)

+ |t− tn+1|µ‖∇∂un+1‖L2(Ω)‖∇(u− uτ )‖L2(Ω)

+|t−tn+1|2ρ‖(∂un+1·∇)∂un+1‖L2(Ω)‖u−uτ‖L2(Ω)+CSOBρ‖∇uτ‖L2(Ω)‖∇(u−uτ )‖2L2(Ω).

Using the Poincaré and the Young’s inequalities, and the hypothesis on ‖∇uτ‖L2(Ω), we
have

ρ

2
d

dt
‖u− uτ‖2L2(Ω) + 1− γ

2 µ‖∇(u− uτ )‖2L2(Ω) ≤
2C2

Pρ

µ(1− γ)
(
ρ−1‖f − fn+1‖2L2(Ω)

+|t− tn+1|2ρ
∥∥∥(un+1 · ∇)∂un+1 + (∂un+1 · ∇)un+1

∥∥∥2

L2(Ω)

)
+ |t− tn+1|2µ‖∇∂un+1‖2L2(Ω)

+ 2C2
Pρ

µ(1− γ) |t− t
n+1|4ρ‖(∂un+1 · ∇)∂un+1‖2L2(Ω),
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where CP stands for the Poincaré constant of Ω. Then integrating from tn to tn+1 and
summing up over n yields the final result.

Remark 3.55. (i) As already commented in Remark 3.20, it is possible to replace
(thanks to Gronwall’s Lemma) the factor ρ/µ in front of the first sum of (3.115)
by T .

(ii) Note that the error indicator εTn will yield to an higher order contribution (namely
O(τ2)), while the BDF1 method is of order 1.

(iii) The terms ηTρ,n and ηTµ,n go like

τ
∂

∂t
((uτ · ∇)uτ ) , τ

∂

∂t
∇uτ .

(iv) The hypothesis (3.114) is valid that the solution satisfies itself the same condition
for a certain γ′ and that

sup
t∈(0,T )

‖∇(u− uτ )(t)‖L2(Ω) → 0, τ → 0.

Indeed the triangle inequality implies

‖∇uτ (t)‖L2(Ω) ≤ ‖∇(u− uτ )(t)‖L2(Ω) + ‖∇u(t)‖L2(Ω).

We now prove equivalent results for the BDF2 method. For the need of the proof, we
also build a piecewise linear reconstruction of the pressure, for which we keep the same
notations as the one introduced for the velocity. In particular, we note

∂pn+1 = pn+1 − pn

τn+1 .

The error indicator for the BDF2 method is then contained in the Lemma

Lemma 3.56 (An error indicator for the BDF2 method applied to the Navier-Stokes
equations).
Let (un)Nn=0, (pn)Nn=0 be the approximated solutions to (3.87) obtained by solving the nu-
merical method (3.111) with k = 2. Let us define the piecewise reconstruction of the
velocity uτ by

uτ (t) = u1 + (t− t1)∂u1, t ∈ [t0, t1], (3.116)

and

uτ (t) = un+1+(t−tn+1)∂un+1+1
2(t−tn)(t−tn+1)∂2un+1, t ∈ [tn, tn+1], n = 1, 2, ...N−1.

(3.117)
Moreover, let us define the piecewise reconstruction of the pressure pτ

pτ (t) = p1, t ∈ [t0, t1], (3.118)

and

pτ (t) = pn+1 + (t− tn+1)∂pn+1, t ∈ [tn, tn+1], n = 1, 2, ..., N − 1. (3.119)
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Then, it holds for any t ∈ (tn, tn+1), n = 1, 2, ..., N − 1 and all v ∈ (H1
0 (Ω))2

ρ

∫
Ω

∂uτ
∂t
· vdx + ρ

∫
Ω

((uτ · ∇)uτ ) · vdx + µ

∫
Ω
∇uτ : ∇vdx−

∫
Ω
pτ div vdx

=
∫

Ω

(
fn+1 + (t− tn+1)∂fn+1

)
· vdx− τn

2 (t− tn+1)ρ
∫

Ω
∂̃un+1 · vdx

+ρ(t−tn)(t−tn+1)
∫

Ω

(1
2(un+1 · ∇)∂2un+1 + (∂un+1 · ∇)∂un+1 + 1

2(∂2un+1 · ∇)un+1
)
·vdx

+ µ

2 (t− tn)(t− tn+1)
∫

Ω
∇∂2un+1 : ∇vdx

+ ρ

2(t− tn)(t− tn+1)2
∫

Ω

(
(∂2un+1 · ∇)∂un+1 + (∂un+1 · ∇)∂2un+1

)
· vdx

+ ρ

4(t− tn)2(t− tn+1)2
∫

Ω

(
(∂2un+1 · ∇)∂2un+1

)
· vdx, (3.120)

where we note

∂̃un+1 = ∂2un+1 − ∂2un

τn+1 , n = 2, 3, ..., N − 1, ∂̃u2 = ∂2u2.

Moreover, for any t ∈ (t0, t1) and all v ∈ (H1
0 (Ω))2

ρ

∫
Ω

∂uτ
∂t
·vdx + ρ

∫
Ω

((uτ · ∇)uτ ) ·vdx +µ

∫
Ω
∇uτ : ∇vdx−

∫
Ω
pτ div vdx =

∫
Ω

f1 ·vdx

+ (t− t1)ρ
∫

Ω

(
(u1 · ∇)∂u1 + (∂u1 · ∇)u1

)
· vdx + (t− t1)µ

∫
Ω
∇∂u1 : ∇vdx

+ (t− t1)2ρ

∫
Ω

(
(∂u1 · ∇)∂u1

)
· vdx. (3.121)

Proof. Let t ∈ (tn, tn+1). Observe that the case n = 0 is a application of the Lemma 3.53
since the first step in the BDF2 method is an Euler step. Therefore, we consider the case
where n ≥ 1. We recall that uτ is then given by

uτ (t) = un+1 + (t− tn+1)∂un+1 + 1
2(t− tn)(t− tn+1)∂2un+1

and a direct computation yields

ρ

∫
Ω

∂uτ
∂t
·vdx+ρ

∫
Ω

((uτ ·∇)uτ )·vdx+µ
∫

Ω
∇uτ : ∇vdx−

∫
Ω
pτ div vdx = I1+I2+I3+I4,

where

I1 = ρ

∫
Ω
∂un+1 · vdx + τn+1

2 ρ

∫
Ω
∂2un+1 · vdx + ρ

∫
Ω

((un+1 · ∇)un+1) · vdx

+ µ

∫
Ω
∇un+1 : ∇vdx−

∫
Ω
pn+1 div vdx,

I2 = (t− tn+1)
(
ρ

∫
Ω
∂2un+1 · vdx + ρ

∫
Ω

(
(un+1 · ∇)∂un+1 + (∂un+1 · ∇)un+1

)
· vdx

+µ
∫

Ω
∇∂un+1 : ∇vdx−

∫
Ω
∂pn+1 div vdx

)

I3 = ρ

2(t− tn)(t− tn+1)
∫

Ω

(
(un+1 · ∇)∂2un+1 + (∂2un+1 · ∇)un+1

)
· vdx

+ ρ(t− tn+1)2
∫

Ω

(
∂un+1 · ∇)∂un+1

)
· vdx + µ

2 (t− tn)(t− tn+1)
∫

Ω
∇∂2un+1 : ∇vdx,
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I4 = ρ

2(t− tn)(t− tn+1)2
∫

Ω

(
(∂2un+1 · ∇)∂un+1 + (∂un+1 · ∇)∂2un+1

)
· vdx

+ ρ

4(t− tn)2(t− tn+1)2
∫

Ω

(
(∂2un+1 · ∇)∂2un+1

)
· vdx.

The numerical method (3.111) implies that I1 = fn+1. Observe that I4 is already the
correct quantity and I3 is of second order, we only have to treat I2 that is a low order
quantity, namely order 1.

Taking the difference between (3.111) at two consecutive steps, following the compu-
tations performed in Lemma 3.52, one derive that

ρ

∫
Ω
∂2un+1 · vdx + ρ

∫
Ω

(
(un+1 · ∇)∂un+1 + (∂un+1 · ∇)un+1

)
· vdx

+ µ

∫
Ω
∇∂un+1 : ∇vdx−

∫
Ω
∂pn+1 div vdx

=
∫

Ω
∂fn+1 · vdx− ρτ

n

2

∫
Ω
∂̃un+1 · vdx + τn+1ρ

∫
Ω

(
∂un+1 · ∇)∂un+1

)
· vdx.

Then

I2 = (t− tn+1)
∫

Ω
∂fn+1 · vdx− ρτ

n

2 (t− tn+1)
∫

Ω
∂̃un+1 · vdx

+ τn+1(t− tn+1)ρ
∫

Ω

(
∂un+1 · ∇)∂un+1

)
· vdx.

Combining the expression for I1, I2, I3 and I4 yields the result.

The a posteriori error estimates for the BDF2 method is then contained in the Theorem

Theorem 3.57 (A semi-discrete a posteriori error estimate for the Navier-Stokes equa-
tions and the BDF2 method).
Let (u, p) be the solution of the Navier-Stokes equations (3.87), (un)Nn=0, (pn)Nn=1 be the
approximated solutions to (3.87) obtained by solving the numerical method (3.111) with
k = 2. Let us define the piecewise reconstruction of the velocity uτ by (3.116), (3.117) and
the piecewise reconstruction of the pressure pτ by (3.118), (3.119). Finally, assume that
there exists τ0 and 0 < γ < 1 such that for all τ < τ0, where τ = maxn=1,...,N τ

n

sup
t∈(0,T )

‖∇uτ (t)‖L2(Ω) ≤
γµ

CSOBρ
, (3.122)

where CSOB is the Sobolev constant in Proposition A.8 of the Appendix A.2. Then, for all
τ < τ0 there exists a constant C depending only on Ω such that

ρ‖u− uτ (T )‖2L2(Ω) + µ

∫ T

t1
‖∇(u− uτ )(t)‖2L2(Ω)dt

≤ C

(1− γ)2

(
ρ‖u− uτ (t1)‖2L2(Ω) + ρ

µ

N−1∑
n=1

(ηTf ,n)2 + (ηT∂
∂t
,n

)2 + (ηTρ,n)2 + (εTn )2 +
N−1∑
n=1

(ηTµ,n)2
)
,

(3.123)

where

(ηTf ,n)2 = ρ−1
∫ tn+1

tn
‖f(t)− fn+1 − (t− tn+1)∂fn+1‖2L2(Ω)dt,

(ηT∂
∂t
,n

)2 = (τn)2(τn+1)3

12 ρ‖∂̃un+1‖2L2(Ω),
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with
∂̃un+1 = ∂2un+1 − ∂2un

τn+1 , n = 2, 3, ..., N − 1, ∂̃u2 = ∂2u2.

(ηTρ,n)2 = (τn+1)5

120 ρ‖(un+1 · ∇)∂2un+1 + (∂un+1 · ∇)∂un+1 + (∂2un+1 · ∇)un+1‖2L2(Ω),

(εTn )2 = (τn+1)7

420 ρ‖(∂2un+1·∇)∂un+1+(∂un+1·∇)∂2un+1‖2L2(Ω)+
(τn+1)9

10080 ρ‖(∂2un+1·∇)∂2un+1‖2L2(Ω),

and
(ηTµ,n)2 = (τn+1)5

120 µ‖∇∂2un+1‖2L2(Ω).

Moreover, we have

ρ‖u− uτ (t1)‖2L2(Ω) + µ

∫ t1

0
‖∇(u− uτ )(t)‖2L2(Ω)dt

≤ C

(1− γ)2

(
ρ‖u− uτ (0)‖2L2(Ω) + ρ

µ
(ηTf ,0)2 + (ηTρ,0)2 + (εT0 )2 + (ηTµ,0)2

)
, (3.124)

where
(ηTf ,0)2 = ρ−1

∫ t1

t0
‖f(t)− f1‖2L2(Ω)dt,

(ηTρ,0)2 = (τ1)3

3 ρ‖((u1 · ∇)∂u1 + (∂u1 · ∇)u1)‖2L2(Ω),

(εT0 )2 = (τ1)5

5 ρ‖(∂u1 · ∇)∂u1‖2L2(Ω),

and
(ηTµ,0)2 = (τ1)3

3 µ‖∇∂u1‖2L2(Ω).

Proof. To prove (3.124), we directly apply Theorem 3.54 between t0 and t1.
Now to prove (3.123), we choose t ∈ [tn, tn+1] for n ≥ 1 and we proceed in the same

way as in Theorem 3.57. Following the same arguments, we deduce that
ρ

2
d

dt
‖u− uτ‖2L2(Ω) + µ‖∇(u− uτ )‖2L2(Ω) =

∫
Ω

f · (u− uτ )dx− ρ
∫
∂uτ
∂t
· (u− uτ )dx

− µ
∫

Ω
∇uτ : ∇(u− uτ )dx

− ρ
∫

Ω
(uτ · ∇)uτ )(u− uτ )dx +

∫
Ω
pτ div(u− uτ )

− ρ
∫

Ω
((u− uτ ) · ∇)uτ ) · (u− uτ )dx.

We conclude by using Lemma 3.56, (3.120), instead of Lemma 3.53, and we follow the end
of the proof of Theorem 3.54, the only difference being that we sum every contribution
from n = 1 to N − 1.

Remark 3.58. (i) By analogy with the BDF1 method, observe that the error indicator
contained in the a posteriori error estimate (3.123) is roughly speaking

τ2 d
2

dt2
(uτ · ∇)uτ + τ2 d

2

dt2
∇uτ .

(ii) As for the BDF1 method, the hypothesis (3.122) is valid if we assume the convergence
of the method and that the exact solution satifies the same condition.

(iii) Both Theorems 3.54 and 3.57 are independent of the dimension and holds in Rd for
d = 2 or d = 3.
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3.8 Error indicators for the incompressible Navier-Stokes
equations with constant coefficients: spatial and tem-
poral approximation

In this section, we define an error indicator for the unsteady incompressible Navier-Stokes
equations (3.85), involving the space and the time discretization. The choice of the in-
dicators are motivated by the spatial semi-discrete a posteriori error estimate ( Theorem
3.49) and the two temporal semi-discrete a posteriori error estimates (Theorems 3.54 and
3.57).

We now briefly expose the fully discretized method we used in our numerical exper-
iments. The framework is the same as the one presented in previous section: let Ω be
a convex domain of R2, T > 0 the final time and ρ, µ the constant density and vis-
cosity of the fluid. We choose to discretize the time by applying the BDF1 or BDF2
methods to the semi-discrete stabilized finite element scheme (3.88). As before, for all
h > 0, let Th be a conformal triangulation of Ω into triangles of diameter hK ≤ h and let
0 = t0 < t1 < ... < tN = T a partition of [0, T ] for N > 0 an integer. As before we note
the time step τn+1 = tn+1 − tn. Finally let us note βn+1

k ∈ {0, 1} given by

βn+1
1 = 0, n = 0, 1, ..., N − 1, βn+1

2 = 0, n = 0, βn+1
2 = 1, n > 0.

Then assuming that u0 ∈ (H1
0 (Ω))2 × (H2(Ω))2 and starting from u0

h = rh(u0), we are
looking for every n = 0, 1, ..., N − 1 for (un+1

h , pn+1
h ) ∈ Vh ×Qh the solutions of

ρ

∫
Ω

(
∂un+1

h + βn+1
k τn+1

2 ∂2un+1
h

)
· vhdx + ρ

∫
Ω

(un+1
h · ∇)un+1

h · vhdx

+ µ

∫
Ω
∇un+1

h : ∇vhdx−
∫

Ω
pn+1
h div vhdx

+
∑
K∈Th

αK

∫
K
RNSh,n+1 ·

(
ρ(un+1

h · ∇)vh − µ∆vh
)
dx =

∫
Ω

fn+1 · vhdx, ∀vh ∈ Vh,

−
∫

Ω
qh div un+1

h dx +
∑
K∈Th

αK

∫
K
RNSh,n+1 · ∇qhdx = 0, ∀qh ∈ Qh, (3.125)

where we note the residue

RNSh,n+1 = fn+1 − ρ
(
∂un+1

h + βnτn+1

2 ∂2un+1
h

)
− ρ(un+1

h · ∇)un+1
h + µ∆un+1

h −∇pn+1
h

and where αK is given by

αK =
αλ2

2,K
µξ(ReK)

with α > 0 and

ξ(ReK) =
{

1 if ReK ≤ 1,
ReK if ReK ≥ 1,

where we define the local anisotropic Reynolds number ReK by

ReK =
ρ‖un+1

h ‖L∞(K)λ2,K

µ
.

We recall that we note

∂un+1
h = un+1

h − unh
τn+1 , ∂2un+1

h =
un+1
h
−unh

τn+1 − unh−un−1
h

τn

τn+1+τn/2
.
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To lighten the notations, we introduce

∂βun+1
h = ∂un+1

h + βn+1
k τn+1

2 ∂2un+1
h , n = 0, 1, 2, ..., N − 1. (3.126)

Remark 3.59 (Practical implementation).
Since the equation is non-linear, we decide to solve the discrete problem (3.125) by per-
forming one step of a Newton method at every time iteration. To simplify, lets us consider
only the time discretization. We shall solve

ρ

(
un+1 − un

τn+1 + βn+1
k τn+1

2 ∂2un+1
)

+ ρ
(
(u∗ · ∇)un+1 + (un+1 · ∇)u∗

)
− µ∆un+1 +∇pn+1 = fn+1 + ρ(u∗ · ∇)u∗,

where we choose u∗ such that the order of the method is conserved.
For instance in the case of the BDF2 method (i.e k = 2), for n = 0, since the method

reduces to the Backward Euler scheme, we choose u∗ = u0. Then, for n ≥ 1, to conserve
the second order of convergence, we choose u∗ as the extrapolated solution

u∗ = 2un − un−1.

Otherwise, if we would like to solve the equations with the Backward Euler method at
every time iteration, it suffices to set u∗ = un for every n ≥ 0.

We now define space and time error indicators for the numerical method (3.125). As
for the steady case, we only consider error indicators for the velocity. Based on the a
posteriori error estimate proven for the semi-discrete approximation, we define the space
error indicator ηA by

ηA =

N−1∑
n=0

∑
K∈Th

(ηAK,n)2

1/2

, (3.127)

where

(ηAK,n)2 = τn+1
(∥∥∥fn+1 − ρ∂βun+1

h − ρ(un+1
h · ∇)un+1

h + µ∆un+1
h −∇pn+1

h

∥∥∥
L2(K)

+ 1
2
√
λ2,K

∥∥∥[µ∇un+1
h · n

]∥∥∥
L2(∂K)

)
ω̃K

(
ΠZZ
h un+1

h − un+1
h

)
,

where ΠZZ
h stands for the ZZ post-processing and ω̃K for the simplified anisotropic form

given by (1.18).
For the time error indicators, we adapt the results of Theorems 3.54 and 3.57. When

using the BDFk method, we advocated the following error indicator ηTBDFk defined by

ηTBDFk =

N−1∑
n=0

∑
K∈Th

(ηT,kK,n)2

1/2

, k = 1, 2 (3.128)

where, for k = 1,

(ηT,1K,n)2 = (τn+1)3ρ
∥∥∥(un+1

h · ∇)∂un+1
h + (∂un+1

h · ∇)un+1
h

∥∥∥2

L2(K)
+(τn+1)3µ

∥∥∥∇∂un+1
h

∥∥∥2

L2(K)
.

and for k = 2

(ηT,2K,n)2 = (τn+1)5ρ
∥∥∥(un+1

h · ∇)∂2un+1
h + (∂un+1

h · ∇)∂un+1
h + (∂2un+1

h · ∇)un+1
h

∥∥∥2

L2(K)

+ (τn+1)5µ
∥∥∥∇∂2un+1

h

∥∥∥2

L2(K)
.
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The total error indicator is defined by

ηk =
(
(ηA)2 + (ηTBDFk)2

)1/2
, k = 1, 2.

To check its sharpness we define the effectivity indices

eik = ηk
eµ,H1

, k = 1, 2, eiZZ = ηZZ

eH1
,

where we note

eµ,H1 =
(
µ

∫ T

tk−1
‖∇(u− uhτ )‖2L2(Ω)dt

)1/2

, k = 1, 2,

eH1 =
(∫ T

0
‖∇(u− uhτ )‖2L2(Ω)dt

)1/2

,

and

ηZZ =
(∫ T

0
‖∇(ΠZZ

h uhτ − uhτ )‖2L2(Ω)dt

)1/2

.

Here uhτ is either a piecewise linear or quadratic numerical reconstruction (depending
if we use the BDF1 or the BDF2 methods to advance in time). Finally, to check the
convergence in the pressure, we note

ep =
(∫ T

0
‖p− phτ‖2L2(Ω)dt

)1/2

.

Remark 3.60 (Comments on the choices of the time error indicators). (i) We could de-
fine an heuristic error indicators by exploiting the previous knowledges obtained for
instance in Chapter 2 for the transport equations, or in Section 3.5 for the Stokes
equations, or in Theorems 3.54 and 3.57 for the Navier-Stokes ones. Formally speak-
ing, we know that if we apply a finite difference scheme to solve the ODE

du(t)
dt

+A(t)u(t) = 0, (3.129)

where A is seen as a general operator between functional spaces, then an error
indicator for the time discretization is given by

τk
dk

dtk
(A(t)uτ (t)),

where k is the order of convergence of the method and uτ is a suitable piecewise
reconstruction of the numerical solution (linear for first order scheme, quadratic for
second order scheme, etc...) See also [72], [82], [3], [2] for parabolic problems, [73]
and [41] for hyperbolic problems or [16], [23], and [107] for (Navier-)Stokes equations.
Then, heuristically, we can define the local error indicators as

ηTn = (τn+1)k
∣∣∣∣∣ dkdtk (A(tn+1)uτ (tn+1))

∣∣∣∣∣ , (3.130)

and observe that all our estimators are of this type. Differentiating the equation
(3.129), we also know that

dk

dtk
(A(t)u(t)) = − dk+1

dtk+1u(t),
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and moreover we know that the numerical error will a priori goes as

τk
∣∣∣∣∣ dk+1

dtk+1u(t)
∣∣∣∣∣ = τk

∣∣∣∣∣ dkdtk (A(t)u(t))
∣∣∣∣∣ .

We emphasize again that these last observations motivate the definition (3.130) since
the error indicator imitates the a priori estimate.

Another choice could be to directly use a finite difference to approximate dk+1

dtk+1u(t),
and define an other error indicator that reads, here written for instance for a second
order method,

ηTn = (τn+1)2∂
2un+1 − ∂2un

τn+1 ,

compared with the a priori error that behaves as

τ2d
3u

dt3
.

A future work would be to compare this last error indicator, given by the heuristic,
to the one that will be given by a proper proof.

(ii) Note that it is possible to give a quick and formal justification to the definition of
(3.130). Let us consider the simpler case where k = 1, for instance by approximating
(3.129) with the Backward Euler method. It reads

un+1 − un

τn+1 +A(tn+1)un+1 = 0. (3.131)

Now, choosing a linear reconstruction

uτ (t) = un+1 + (t− tn+1)u
n+1 − un

τn+1

we easily compute, by using a Taylor expansion at tn+1 of A(t)uτ (t), that

duτ (t)
dt

+A(t)uτ (t)

= un+1 − un

τn+1 +A(tn+1)uτ (tn+1) + (t− tn+1) d
dt

(
A(tn+1)uτ (tn+1)

)
+O

(
|t− tn+1|2

)
= un+1 − un

τn+1 +A(tn+1)un+1︸ ︷︷ ︸
=0

+(t− tn+1) d
dt

(
A(tn+1)uτ (tn+1)

)
+O

(
|t− tn+1|2

)

= (t− tn+1) d
dt

(
A(tn+1)uτ (tn+1)

)
+O

(
|t− tn+1|2

)
.

3.9 Numerical experiments with non-adapted meshes and
non-adapted time steps

In this section, we perform numerical experiments with non-adapted meshes and constant
time steps to check the convergence of the numerical methods and analyse the accuracy of
the error indicators. We consider the classical test of Poiseuille flow, but where the inflow
depends on the time.
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Example 3.61 (A Poiseuille experiment with a time-varying inflow).
We set Ω as the rectangle (0, 0.15) × (0, 0.03) and T = 1. We compute f such that the
exact solution is a Poiseuille flow given by

u(x1, x2, t) =
(

2.25e−4x2(0.03− x2) sin(2πωt+ 0.5)
0

)
,

p(x1, x2, t) = µ2.25e−4(0.3− 2x1) sin(2πωt+ 0.5).

where ω > 0 controls the frequency of the inflow oscillations. We impose Dirichlet bound-
ary conditions on the left, top and bottom side of Ω and Neumann boundary condition
on the right side, thus we do not have to impose the pressure. As in Example 3.9 for the
steady Navier-Stokes equations, the Reynolds number is given by Re = ρ0.03

µ .We fix ρ = 1
so that the Reynolds number is only controlled by the viscosity. As mentioned several
times, we would like to observe the following:

− The error indicator must preserve the order of the method. In particular, ηA must
be O(h) and ηTBDFk must behaves as O(τk).

− eik, k = 1, 2 stays close to a constant and is independent of the Reynolds number,
the solution and the discretization parameter, in particular the mesh aspect ratio.

− eiZZ must be asymptotically 1.

We first investigate the values of ei1 and ei2 when the error is mainly due to spatial
approximation. In Tables 3.4 and 3.5, we present the convergence results when ω = 1.
Both the velocity and the pressure errors are O(h) that is consistent with the use of linear
finite elements. The effectivity index stays close to a value of 3, independently of the choice
of the time discretization method, the solution, the Reynolds number or the mesh aspect
ratio. In any case, the ZZ post-processing is asymptotically exact. To check that the value
of eii does not depends on the solution, we run the same experiments with ω = 10. The
results when using the BDF2 method are reported in the Table 3.6. The same conclusions
can be made with the BDF1 method.

h1 − h2 τ eµ,H1 ep ei1 eiZZ

0.05 - 0.005 0.001 0.086 0.024 2.72 1.00
0.025 - 0.0025 0.00025 0.041 0.0064 2.73 1.00

0.0125 - 0.00125 0.0000625 0.021 0.0016 2.75 1.00
0.05 - 0.001 0.001 0.018 0.0053 2.86 1.00

0.025 - 0.0005 0.00025 0.0085 0.0014 2.92 1.00
0.0125 - 0.00025 0.0000625 0.0043 0.00068 2.81 1.00

0.05 - 0.001 0.001 0.0087 0.00077 2.82 1.00
0.025 - 0.0005 0.00025 0.0041 0.00031 2.74 1.00

0.0125 - 0.00025 0.0000625 0.0021 0.00013 2.72 0.99
0.05 - 0.001 0.001 0.0017 0.000074 2.87 1.00

0.025 - 0.0005 0.00025 0.00085 0.000019 2.92 1.00
0.0125 - 0.00025 0.0000625 0.00043 0.000011 2.81 1.00

Table 3.4: Convergence results for Example 3.61 with ω = 1, when τ = O(h2). The time
advancing scheme is chosen as BDF1. Aspect ratio 10 (rows 1-3 and 7-9) and 50 (rows
4-6 and 10-12). Re = 1 (row 1-6), Re = 100 (rows 7-12).
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h1 − h2 τ eµ,H1 ep ei1 eiZZ

0.05 - 0.005 0.001 0.086 0.024 2.72 1.00
0.025 - 0.0025 0.00025 0.041 0.0064 2.73 1.00
0.0125 - 0.00125 0.0000625 0.021 0.0016 2.75 1.00

0.05 - 0.001 0.001 0.018 0.0053 2.86 1.00
0.025 - 0.0005 0.00025 0.0085 0.0014 2.92 1.00
0.0125 - 0.00025 0.0000625 0.0043 0.00068 2.81 1.00

0.05 - 0.005 0.001 0.0087 0.00077 2.82 1.00
0.025 - 0.0025 0.00025 0.0041 0.00031 2.74 1.00
0.0125 - 0.00125 0.0000625 0.0021 0.00013 2.72 0.99

0.05 - 0.001 0.001 0.0017 0.000074 2.87 1.00
0.025 - 0.0005 0.00025 0.00085 0.000019 2.92 1.00
0.0125 - 0.00025 0.0000625 0.00043 0.000011 2.81 1.00

Table 3.5: Convergence results for Example 3.61 with ω = 1, when τ = O(h2). The time
advancing scheme is chosen as BDF2. Aspect ratio 10 (rows 1-3 and 7-9) and 50 (rows
4-6 and 10-12). Re = 1 (row 1-6), Re = 100 (rows 7-12).

h1 − h2 τ eµ,H1 ep ei2 eiZZ

0.0125 - 0.00125 0.0000625 0.021 0.0015 2.75 1.00
0.0125 - 0.00025 0.0000625 0.0043 0.00068 2.83 1.00
0.0125 - 0.00125 0.0000625 0.0021 0.00052 2.74 1.00
0.0125 - 0.00025 0.0000625 0.00045 0.00037 2.77 0.97

Table 3.6: Convergence results for Example 3.61 with ω = 10.The time advancing scheme
is chosen as BDF2. Aspect ratio 10 (rows 1 and 3) and 50 (rows 2 and 4). Re = 1 (rows
1-2), Re = 100 (rows 3-4).

Example 3.62 (A solution with a small dependence in the space variable).
To evaluate the effectivity indices when the error due to the time discretization is dom-
inating, we consider another problem when the velocity is a linear function, so that the
error due to the space discretization is negligible. The solution is given by

u(x1, x2, t) =
(

1
0.015(0.03− x2) sin(2πωt+ 0.5)

0

)
,

p(x1, x2, t) = µ

0.015(0.3− 2x1) sin(2πωt+ 0.5).

All the computations are performed on a grid of mesh size 0.0125− 0.00125 and 0.0125−
0.00025. In Table 3.7 and 3.8, we check the convergence for the BDF1 method and the
BDF2 method for ω = 25 and Re = 1. The time error indicators ηTBDFk are of optimal
order, being O(τk) and the effectivity indices stays close to a value of 7 for the BDF1
method and 2 for the BDF2 method. Note that, as already observed with the transport
equation, eiZZ is far from 1, but this is not an issue since the error due the spatial
approximation is smaller than the error due to the time discretization. To check that the
effectivity index does not depend on the solution or the Reynolds number, we perform the
same experiments with ω = 2.5 and Re = 10. The results are reported in Table 3.9
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h1 − h2 τ eµ,H1 ep ηTBDF1 ei2 eiZZ

0.0125 - 0.00125 0.01 0.061 0.47 0.45 7.37 0.11
0.0125 - 0.00125 0.005 0.033 0.25 0.24 7.32 0.14
0.0125 - 0.00125 0.0025 0.017 0.13 0.12 7.22 0.14
0.0125 - 0.00025 0.01 0.059 0.47 0.45 7.61 0.13
0.0125 - 0.00025 0.005 0.032 0.25 0.24 7.58 0.17
0.0125 - 0.00025 0.0025 0.017 0.13 0.12 7.49 0.18

Table 3.7: Convergence results for Example 3.62 with Re = 1 and ω = 25. The time
advancing scheme is chosen as BDF1. Aspect ratio 10 (rows 1-3), 50 (rows 4-6).

h1 − h2 τ eµ,H1 ep ηTBDF2 ei2 eiZZ

0.0125 - 0.00125 0.01 0.057 0.45 0.11 1.91 0.11
0.0125 - 0.00125 0.005 0.017 0.12 0.029 1.78 0.13
0.0125 - 0.00125 0.0025 0.0045 0.033 0.0076 1.78 0.14
0.0125 - 0.00025 0.01 0.056 0.45 0.11 1.97 0.13
0.0125 - 0.00025 0.005 0.017 0.13 0.029 1.94 0.17
0.0125 - 0.00025 0.0025 0.0044 0.034 0.0076 1.95 0.18

Table 3.8: Convergence results for Example 3.62 with Re = 1 and ω = 25. The time
advancing scheme is chosen as BDF2. Aspect ratio 10 (rows 1-3), 50 (rows 4-6).

h1 − h2 τ eµ,H1 ep ηTBDF1 ei2 eiZZ

0.0125 - 0.00125 0.02 0.0043 0.0108 0.031 7.16 0.14
0.0125 - 0.00125 0.01 0.0022 0.0051 0.016 7.14 0.14
0.0125 - 0.00125 0.005 0.0011 0.0025 0.0078 7.13 0.14

h1 − h2 τ eµ,H1 ep ηTBDF2 ei2 eiZZ

0.0125 - 0.00125 0.02 0.00098 0.0024 0.0016 1.68 0.18
0.0125 - 0.00125 0.01 0.00025 0.00066 0.00038 1.78 0.14
0.0125 - 0.00125 0.005 0.000068 0.0.00018 0.000097 1.53 0.14

Table 3.9: Convergence results for Example 3.62 with ω = 2.5 and Re = 10. The time
advancing scheme is chosen as BDF1 (rows 1-3) and BDF2 (rows 4-6).

3.10 A space-time adaptive algorithm for the Navier-Stokes
equations with constant viscosity and density

The purpose of this section is to adapt the space-time adaptive algorithm 2.15 proposed
to solve the transport equation to the case of the incompressible Navier-Stokes equations.

Let us prescribe two tolerances TOLS that will control the spatial error and TOLT
that will rule the temporal error. The main goal is to build a sequence of meshes and time
steps such that

0.75TOL ≤ ηk(
µ
∫ T

0 ‖∇uhτ (t)‖2L2(Ω)dt
)1/2
≤ 1.25TOL, (3.132)

where ηk, k = 1, 2 is the velocity error indicator defined in Section 3.8 and we note

TOL = (TOL2
S + TOL2

T )1/2.
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We recall that, according to (3.127) and (3.128)

η2
k = (ηA)2 + (ηTBDFk)2, k = 1, 2,

depending if we use the Backward Euler (BDF1) method or the BDF2 method to advance
in time. Sufficient conditions so that (3.132) holds are

0.752TOL2
Sµ

∫ T

0
‖∇uhτ (t)‖2L2(Ω)dt ≤ (ηA)2 ≤ 1.252TOL2

Sµ

∫ T

0
‖∇uhτ (t)‖2L2(Ω)dt,

and

0.752TOL2
Tµ

∫ T

0
‖∇uhτ (t)‖2L2(Ω)dt ≤ (ηTBDFk)2 ≤ 1.252TOL2

Tµ

∫ T

0
‖∇uhτ (t)‖2L2(Ω)dt.

Therefore, we ask that for any n = 0, 1, ..., N − 1, it holds

0.752TOL2
Sµ

∫ tn+1

tn
‖∇uhτ (t)‖2L2(Ω)dt

≤
∑
K∈Th

(ηAK,n)2 ≤ 1.252TOL2
Sµ

∫ tn+1

tn
‖∇uhτ (t)‖2L2(Ω)dt, (3.133)

and

0.752TOL2
Tµ

∫ tn+1

tn
‖∇uhτ (t)‖2L2(Ω)dt

≤
∑
K∈Th

(ηT,kK,n)2 ≤ 1.252TOL2
Tµ

∫ tn+1

tn
‖∇uhτ (t)‖2L2(Ω)dt. (3.134)

Finally, we equidistribute the stopping criterion (3.133) in each direction of anisotropy be
defining the local anisotropic error indicator in direction i = 1, 2

(ηAi,K,n)2 = τn+1
(∥∥∥fn+1 − ρ∂βnun+1

h − ρ(un+1
h · ∇)un+1

h + µ∆un+1
h −∇pn+1

h

∥∥∥
L2(K)

+ 1
2
√
λ2,K

∥∥∥[µ∇un+1
h · n

]∥∥∥
L2(∂K)

)
ω̃i,K

(
ΠZZ
h un+1

h − un+1
h

)
,

Then, for any P ∈ Th, we define

(ηAP,n)2 =
∑
K∈Th
P∈K

(ηAK,n)2, (ηAi,P,n)2 =
∑
K∈Th
P∈K

(ηAi,K,n)2, i = 1, 2.

As before, we have that
∑
P∈Th(ηAP,n)2 = 3

∑
K∈Th(ηAK,n)2 therefore sufficient conditions to

satisfy (3.133) are that for any P ∈ Th, we have for i = 1, 2,

3σP,n0.752TOL2
S

2NP
µ

∫ tn+1

tn
‖∇uhτ (t)‖2L2(Ω)dt

≤ (ηAi,P,n)2 ≤ 3σP,n1.252TOL2
S

2NP
µ

∫ tn+1

tn
‖∇uhτ (t)‖2L2(Ω)dt,

where the equidisitribution factor σP is defined by

σP,n
(ηA1,P,n)2 + (ηA2,P,n)2

(ηAP,n)2 .
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The algorithm follows those of Section 1.4 of Chapter 1 and Section 2.4 of Chapter 2.
Since we deal with a time dependent equation, every time the mesh is changed, we must
interpolate previous values of the solutions. We choose to use the conservative algorithm
[5] and we refer to Section 2.5 for more details on interpolation between meshes.

We now check the efficiency of the algorithm on several examples. We recall in Table
3.10 the notations already used.

Nv : Number of vertices of the mesh at final time
Nτ : Number of time steps
Nm : Number of remeshings
Nc : Number of time step changes
ar : Maximum aspect ratio at final time
ar : Average aspect ratio at final time

Table 3.10: Additional notations for the analysis of the adaptive algorithm.

Example 3.63 (A Poiseuille experiment with a time-varying inflow).
We first test our adaptive algorithm on the Example 3.61. We fix Re = ω = 1 and we
use the second order BDF method to advance in time. The initial grid is an anisotropic
mesh of aspect ratio 50. This choice is made in order to improve a bit the remeshings
procedure, knowing a priori that the initial condition is itself depending only on the x2
variable. The initial time step is chosen as τ1 = 0.01 and we do not adapt the time step
for the first iteration. Note that to obtain effectivity indices close to 1, we divide the space
error indicator and the time error indicator by the corresponding weights obtained in the
previous section. Therefore, we run the adaptive algorithm with

η2 =
(

(ηA)2

9 + (ηBDF2T )2

4

)1/2

.

For this example, we set a tolerance TOL and we choose TOLS = TOLT = TOL/
√

2
so that the errors between the space and time discretizations are equidistributed. Thus
we built meshes and time steps such half of the error is due to spatial approximation and
half is due to time approximation. We report the results in Table 3.11. Both the velocity
and the pressure error are O(TOL). The number of time steps is multiplied by

√
2 when

the tolerance is divided by two, expressing the second order in time of the method. In
Figure 3.11, we represent the meshes and the solutions at final time for TOL = 0.0125.

TOL eµ,H1 ep ei2 eiZZ ηA ηTBDF2 ar ār Nv Nτ Nm Nc

0.0125 0.0061 0.0071 1.31 0.96 0.0055 0.0058 917 224 215 13 8 31
0.00625 0.0031 0.0053 1.28 0.95 0.0027 0.0028 1960 409 689 18 13 35
0.00315 0.0015 0.0021 1.28 0.98 0.0014 0.0014 1926 330 1901 26 8 27

Table 3.11: Example 3.61 with Re = ω = 1. Convergence results with the BDF2 method.
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Figure 3.11: Example 3.61. Mesh and solutions at final time with TOL = 0.0125.

Example 3.64 (An other Poiseuille experiment with a time-varying inflow).
We present below a slight modification of the Example 3.61 where we consider now a time
dependent frequency ω = ω(t) given by

ω(t) = 1 + 9Hε(t− 0.5) (3.135)

where we recall that Hε is the smoothing of the Heavyside graph given by (1.25). Then
the frequency is mainly 1 or 10, except in a small layer of size ε around the time t = 0.5.
For the numerical experiment, we choose ε = 0.03. We then compute the right hand side
f so that the solutions are given by

u(x1, x2, t) =
(

2.25e−4x2(0.03− x2) sin(2πω(t)t+ 0.5)
0

)
,

p(x1, x2, t) = µ2.25e−4(0.3− 2x1) sin(2πω(t)t+ 0.5)

and we fix µ = 0.03 so that the Reynolds number is 1. The goal of this example is to check
if our time error indicator is able to capture the change in the oscillations of the solution.
We run numerical tests for several choices of tolerances, starting from an anisotropic initial
mesh of aspect ratio 10 and an initial time step τ1 = 0.01. We consider again the adaptive
algorithm with the error indicator η2 given by

η2 =
(

(ηA)2

9 + (ηBDF2T )2

4

)1/2

and we do not adapt the time step for the first iteration. Finally, here we make the choice
TOLT = TOLS/10 to have time steps small enough to ensure a good convergence of the
numerical method.

The numerical results are presented in the Table 3.12. The correct orders of the
method in both the space and time variables are observed since the number of vertices is
multiplied by 2 as the space tolerance is divided by 2, and in the same manner the number
of time steps is multiplied by

√
2 as the time tolerance is divided by 2. In Figure 3.12, we
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compare the size of the time steps during the simulation with the norm of the solution. It
is observed that the adaptive algorithm captures the changes in the period length, taking
smaller time steps, when the frequency is larger. In particular, when the frequency is 10
times larger, the time steps are chosen 10 times smaller. In the boundary layer around
t = 0.5, the algorithm takes even smaller time steps due to the high oscillatory nature of
the solution.

TOLS TOLT eµ,H1 ei2 eiZZ ηA ηTBDF2 ar ār Nv Nτ Nm Nc

0.1 0.01 0.048 0.88 0.94 0.042 0.0064 113 27 33 125 104 230
0.05 0.005 0.024 0.92 0.97 0.022 0.0031 244 48 76 180 103 281
0.025 0.0025 0.013 0.93 0.98 0.012 0.0016 449 86 162 258 64 264
0.0125 0.00125 0.0067 0.94 0.99 0.0062 0.00078 886 177 378 366 75 298

Table 3.12: Example 3.61 with a time dependent frequency ω given by (3.135). Conver-
gence results with the BDF2 method.

Figure 3.12: Example 3.61 with a time dependent frequency ω given by (3.135). Compar-
ison between the evolution of the norm of the velocity ‖u(t)‖L2(Ω) (left) and the evolution
of the time steps (right) for several values of the tolerances (here we note TOL = TOLS
and we recall that TOLT = TOLS/10).

Example 3.65 (Two-walls driven square cavity flow: periodic solutions).
We now come back to the Example 3.10 and the two-walls driven cavity experiments. The
Reynolds number is now set to 5000 and we solve the complete evolutiv problem

ρ
∂u
∂t

+ ρ(u · ∇)u− µ∆u +∇p = 0, in Ω× (0,+∞),

div u = 0, in Ω× (0,+∞),
(3.136)

where we impose the following boundary conditions

u(x1, 1, t) = (1, 0), 0 ≤ x1 ≤ 1, t ∈ (0,+∞)

u(0, x2, t) = (0,−1), 0 ≤ x2 ≤ 1, t ∈ (0,+∞)

u(x1, x2, t) = 0, otherwise .

(3.137)

in Ω = (0, 1)× (0, 1).
The initial condition is chosen as the steady solution obtained for Re = 4000. The

initial mesh is the final mesh generated when solving the steady case with TOL = 0.125.
We run the adaptive algorithm with TOLS = 0.1 and TOLT = 0.001.
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Figure 3.13: Example 3.10. Evolution of the streamlines when the adaptive algorithm is
used with TOLS = 0.1 and TOLT = 0.001. t = 0 (top left), t = 100 (top right), t = 750
(bottom left), and t = 1000 (bottom right).

As presented in [50], a bifurcation occurs after t = 100 seconds and the solution is
not symmetric anymore and reach a periodic (in time) pattern after t = 750 seconds.
The length of the period is approximatively 3 seconds. In Figure 3.13, we present the
evolution of the velocity fields obtained when applying the adaptive algorithm with the
BDF2 method to advance in time and TOLS = 0.1 and TOLT = 0.001 and in Figure 3.15,
we represent the initial and the final meshes. In Figure 3.14, we present the evolution of
the velocity during one period (after t = 900 sec). In Figures 3.16 and 3.17, we present
the history of the norms of the velocity ‖∇uhτ (t)‖L2(Ω) and ‖uhτ (t)‖L2(Ω).
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Figure 3.14: Example 3.10. Evolution of the streamlines during one period. The adaptive
aglorithm is run with TOLS = 0.1 and TOLT = 0.001.

Figure 3.15: Example 3.10. Initial mesh (left) and final mesh (right).
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Figure 3.16: Example 3.10. Evolution of ‖∇uhτ (t)‖L2(Ω).

Figure 3.17: Example 3.10. Evolution of ‖uhτ (t)‖L2(Ω).
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Chapter 4

A posteriori error estimates and
adaptive algorithms for the
incompressible Navier-Stokes
equations with variable viscosity
and density

In this last chapter, we focus on the analysis of a special case of the incompressible Navier-
Stokes equations for non-homogeneous fluids. We are interested in approximating and
solving with an adaptive strategy the equations of motion of two fluids, separated by a
free surface.

We briefly summarize the main problem to approximate, that was presented at the
beginning of the thesis, in the introduction. We consider a cavity Ω ∈ Rd, d = 2, 3, filled
with two incompressible, immiscible fluids, separated by a free surface. At any time, the
domain can be split into two subdomains Ω1,Ω2 that are separated by the free surface Σ.
In each subdomain, the fluid motion is governed by the Navier-Stokes equations

ρi
∂

∂t
ui + ρi(ui · ∇)ui − µi∆ui +∇pi = ρif , div ui = 0.

where ρi, µi,ui and pi stand respectively for the density, the viscosity, the velocity and
the pressure in the domain Ωi. If we define the global quantities

u, p, ρ, µ =
{

u1, p1, ρ1, µ1 in Ω1,
u2, p2, ρ2, µ2 in Ω2,

then the equations in the whole domain Ω reads:

ρ
∂

∂t
u + ρ(u · ∇)u− div(2µD(u)) +∇p = ρf , div u = 0.

To describe the evolution of the interface Σ, we use the piecewise constant function ϕ
that is defined by

ϕ =
{

1, in Ω1,
0, in Ω2.

Thus Σ is identified at any time by the set of points where ϕ is discontinuous. Finally, we
ask that ϕ is transported by the velocity field and satisfies the conservation equation

∂ϕ

∂t
+ u · ∇ϕ = 0.
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The complete model reads: find (u, p, ϕ) the solutions of

ρ
∂u
∂t

+ ρ(u · ∇)u− div(2µD(u)) +∇p = ρf ,

div u = 0,

∂ϕ

∂t
+ u · ∇ϕ = 0,

ρ = ρ1ϕ+ ρ2(1− ϕ),

µ = µ1ϕ+ µ2(1− ϕ).

(4.1)

This chapter is separated in two parts. In Part 1, we present a numerical method to
solve the two fluids problem (4.1) and we study its a posteriori error analysis. In Part 2,
we focus on a limit case of this model, where one of the fluid as a huge viscosity, approxi-
mating thus the motion of rigid body. For both parts, error indicators for space and time
discretizations are advocated based on semi-discrete a posteriori error estimates and an
adaptive algorithm is then proposed.

The main objectives of Part 1 are:

− Present a space-time discretization of the equations (4.1) based on anisotropic, con-
tinuous, piecewise linear finite elements and a combination of the BDF2 methods,
resp. the Crank-Nicolson scheme to approximate in time the Navier-Stokes equa-
tions, resp. the transport of the density and viscosity. In practice, the interface
function ϕ is regularized and approximated by a smooth map, that takes the values
0 or 1, except in a small region.

− Prove semi-discrete (for both spatial and time discretizations) a posteriori error
estimates and introduce an error indicator that takes in account both the time and
the space approximations and control the numerical errors of the velocity and the
transported quantities.

− Introduce and study an adaptive algorithm to solve some real physical situations,
namely hydrodynamic instabilities.

The outline of the Part 1 is the following: in Section 4.1, we briefly present and com-
ment some general and theoretical results for the solutions of the Navier-Stokes equations
for a non-homogeneous fluid, where the density and the viscosity are variable. In Section
4.2, we present a anisotropic finite elements methods to discretize (in space) the equations
and we prove a corresponding a posteriori error estimate. In Section 4.3, we present the
time discretization of the same equations, and we derive an a posteriori error estimate that
is of optimal order, namely of order 2, since the BDF2 method and the Crank-Nicolson
scheme will be used. In Section 4.4, we present a fully discrete method to approximate
the equations (4.1) and in Section 4.5, we introduce the adaptive strategy. Finally, in
Section 4.6, the convergence of the numerical method and the adaptive algorithm is inves-
tigated and in Section 4.7, we apply the algorithm to some particular physical situations,
as Rayleigh-Taylor or Kelvin-Helmoltz instabilities occurring at the demarcation between
two fluids in motion. The main theoretical results are the Theorem 4.14 that contains
the spatial a posteriori error estimate and the Theorem 4.21 that shows the temporal
counterpart.

The objectives of Part 2 are:
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− Present the particular situation we are interested in, namely the fall of a rigid disk
(sphere) into a cavity filled with a viscous, incompressible fluid. We introduce a
particular model and its numerical approximation.

− Prove semi-discrete (for both spatial and time discretizations) a posteriori error
estimates and introduce an error indicator that takes in account both the time and
the space approximations.

− Introduce an adaptive algorithm to capture the motion of the disk when it reaches
the bottom of the cavity. It is theoretically expected that no collision occurs, and
we motivate the use of an adaptive strategy to check this paradoxal behavior.

The outline of the Part 2 is as follows: in Section 4.8, we present the continuous
equations and the numerical method to approximate them. In Section 4.9, we prove semi-
discrete a posteriori error estimates for a simplified problem. Finally, in Section 4.10, we
introduce error indicators and we simulate the motion of the disk in Section 4.11 with
fixed grids and constant time steps and in Section 4.12 where the adaptive algorithm is
used. The main theorems are Theorem 4.29 where we prove the semi-discrete in time a
posteriori error estimate and the Theorem 4.31 that demonstrates the spatial estimation.

Part 1. A space-time adaptive algorithm for a two fluids flow
separated by a free surface

4.1 Non-homogeneous Navier-Stokes equations: problem state-
ment and theoretical framework

In this section, we briefly present the theoretical framework of non-homogeneous Navier-
Stokes equations. We state the results for a more general situation than the one we are
interested in (namely two fluids flows), and then we come back to our particular problem.

We consider Ω ∈ Rd a cavity filled with a fluid of variable density ρ and viscosity µ
that are assumed to be smooth and non-negative functions. In particular, we ask that
ρ ≥ 0 and we reduce to the the case where µ is a function of ρ, that is to say µ = µ(ρ)
where for x ∈ R, µ(x) is a C1 function satisfying

µmin ≤ µ(x) ≤ µmax, µmax ≥ µmin > 0, µ′ is bounded.

Then, for a given final time T > 0, we are looking for the solution of the non-
homogeneous incompressible Navier-Stokes

ρ
∂u
∂t

+ ρu · ∇u− div(2µD(u)) +∇p = ρf , in Ω× (0, T ],

div u = 0, in Ω× (0, T ],
(4.2)

where we impose the Dirichlet condition u = uD on the boundary of Ω and the initial
condition u(x, 0) = u0(x). Observe that here, contrary to what we did before the Navier-
Stokes equations with constant coefficients, we write the force term as a density of force
since ρ is also a unknown of the problem.

An additional equation for the density is needed. We couple the momentum equation
with the conservation of the mass and we consider the (transport) equation

∂ρ

∂t
+ u · ∇ρ = 0, in Ω× (0, T ], (4.3)
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where we impose that ρ = ρin on the inflow boundary

Γ−(t) = {x ∈ ∂Ω : u(t) · n < 0}

and at t = 0 the initial condition ρ(x, 0) = ρ0(x). Observe that, due to the fact that it
is a function of the density, we also have that µ is transported by the velocity field and
satisfies the conservation equation

∂µ

∂t
+ u · ∇µ = 0, in Ω× (0, T ]. (4.4)

The well-posedness of the complete problem given by equations (4.2)-(4.3) with the
respective boundary and initial conditions is still an open problem in the general case. We
do not pretend to give an exhaustive overview of the known results on these questions, but
we present those that are significant for our numerical purpose and give some references
for more details. For instance, it was proven (see [69] and [21]) that if Ω is Lipschitz and

ρin, ρ0 ≥ 0,
ρ0 ∈ L∞(Ω), ρin ∈ L∞((0, T )× ∂Ω),

f ∈ L1(0, T ; (L2(Ω))d),
uD ∈ (H1(Ω))2,div uD = 0

u0 ∈ (H1
0 (Ω))d,div u0 = 0,u0 = uD on ∂Ω.

then there exists at least one weak solution satisfying

u ∈ uD + L2(0, T ; (H1
0 (Ω))d),

p ∈W−1,∞(0, T ;L2
0(Ω)),

ρ ∈ C0([0, T ];L2(Ω)),
ρmin ≤ ρ(x, t) ≤ ρmax for a.e (x, t) ∈ Ω× (0, T ),

where
ρmin = min(inf ρ0, inf ρin), ρmax = max(sup ρ0, sup ρin).

The uniqueness and the regularity of the solutions are still open problems, even in 2D.
However [69], when d = 2, µ is a constant and ρ0, ρ

in > 0, one can establish for instance
strong regularity (and therefore uniqueness) of the velocity. In particular, we have that

u ∈ L2(0, T ; (H2(Ω))2) ∩ C0([0, T ], (H1(Ω))2), ∂u
∂t
∈ L2(0, T ; (L2(Ω))2).

In a more general situation, we can prove that if ρ0, ρ
in does not vanish, then a strong

solution exists at least up to a small time T ∗, and that any weak solutions coincide with
the strong one on the time interval [0, T ∗].

Concerning the numerical approximation of the Navier-Stokes equations with variable
density and viscosity, we cite as an example the work presented in [70] where the analysis
of the convergence of the discontinuous Galerkin method is performed.

As stated in the introduction, in this work, we focus on a particular case of the equa-
tions (4.2)-(4.3) where the density and the viscosity are given by

ρ(x, t) = ρ1ϕε(x, t) + ρ2(1− ϕε(x, t)), µ(x, t) = µ1ϕε(x, t) + µ2(1− ϕε(x, t)),

with ρ1, ρ2 ≥ 0, ρ1 6= ρ2, µ1, µ2 > 0 and where ϕε is a smooth function taking values
between 0 and 1, except in a small region of width controlled by ε (in the next sections,
we will omit to mention the index ε to lighten the notation). First observe that we satisfy
the density dependence of the viscosity since µ is in fact given by

µ(x, t) = µ2 + µ1 − µ2
ρ1 − ρ2

(ρ(x, t)− ρ2) = µ(ρ(x, t)).
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Moreover, due to the particular form of ρ and µ, both equations (4.3) and (4.4) reduce to
solve in fact 

∂ϕε
∂t

+ u · ∇ϕε = 0, in Ω× (0, T ],

ϕε = ϕin, on Γ−(t)× (0, T ],

ϕε(x, 0) = ϕ0(x), in Ω,

(4.5)

that is to say the transport of the smooth function ϕε.
This model can be used to approximate the flow of two immiscible fluids that are

separated by a free surface. Indeed, for a two fluids flow, the domain Ω is split into two
parts Ω1(t) and Ω2(t) such that Ω = Ω1(t)∪Ω2(t) and that are separated by a free surface
localized by Σ(t). Then in each phase, the density and the viscosity are constant and
given by

ρ(x, t) =


ρ1, x ∈ Ω1(t),

ρ2, x ∈ Ω2(t),
and

µ(x, t) =


µ1, x ∈ Ω1(t),

µ2, x ∈ Ω2(t).
In other words, one may write

ρ = ρ1χΩ1(t) + ρ2χΩ2(t), µ = µ1χΩ1(t) + µ2χΩ2(t),

and since Ω1,Ω2 form a partition of Ω at any t we have in fact that

ρ = ρ1χΩ1(t) + ρ2(1− χΩ1(t)), µ = µ1χΩ1(t) + µ2(1− χΩ1(t)).

Now, if we regularize the characteristic function of Ω1(t) with a smooth function ϕε(x, t),
where ε controls the width of the boundary layer capturing the free surface Σ(t), then we
obtain an approximated density and viscosity ρε, µε given by

ρε = ρ1ϕε + ρ2(1− ϕε), µε = µ1ϕε + µ2(1− ϕε).

Remark 4.1. (i) Note that this approach is very close to the level set interface model,
see for instance [32], where the free surface Σ(t) is seen as the zero level set of a
smooth function φ that is such that

φ(x, t) > 0,x ∈ Ω1(t), φ(x, t) < 0,x ∈ Ω2(t), φ(x, t) = 0,x ∈ Σ(t).

Then the density and the viscosity are simply given by

ρ = ρ1H(φ) + ρ2(1−H(φ)), µ = µ1H(φ) + µ2(1−H(φ)),

where H is the Heavyside graph. In practice, the Heavyside graph will be replaced
by its smooth version Hε (1.25) and we finally obtain

ρ = ρ1Hε(φ) + ρ2(1−Hε(φ)), µ = µ1Hε(φ) + µ2(1−Hε(φ)),

where the composition Hε ◦φ is smooth. The difference between the two approaches
is that in the level set method, we transport the function φ through the equation

∂φ

∂t
+ u · ∇φ = 0,

while in our approach we transport in fact Hε(φ).
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(ii) Our method (as the level set method) is a so-called front capturing method [31, 91],
where the two phases are seen as one fluid with variable density and viscosity, moving
in a fix domain, where we identify the free surface as the boundary layer of the smooth
function ϕε. The other family of methods to solve a free surface problem are the
so-called front tracking methods [91], where the free surface is seen as the boundary
of two moving subdomains. These methods requires to build a mesh that fits the
interface between the fluids at any time, that is not the case in the front capturing
approach where the free surface can cross the elements of the grid.

4.2 A posteriori error estimate for the spatial approxima-
tion

In this section, we present a semi-discrete approximation (in space) of the two fluids flow
model described in the previous section. We recall briefly the problem we are considering.
Let Ω ∈ Rd, d = 2, 3 be an open, connected and bounded subset and T > 0 a given final
time. Given a source term f , two densities ρ1, ρ2 and two viscosities µ1, µ2, we are looking
in Ω× (0, T ] for (u, p), ϕ the solutions of the coupled Navier-Stokes/transport equations

ρ
∂u
∂t

+ ρu · ∇u− div(2µD(u)) +∇p = ρf ,

div u = 0,

∂ϕ

∂t
+ u · ∇ϕ = 0,

ρ = ρ1ϕ+ (1− ϕ)ρ2,

µ = µ1ϕ+ (1− ϕ)µ2,

ρ1, ρ2 ≥ 0, µ1, µ2 > 0,

(4.6)

with the initial/boundary conditions

u = 0, on ∂Ω× (0, T ],

u(·, 0) = u0 in Ω,

ϕ(·, 0) = ϕ0, in Ω.

(4.7)

Here we assume that u0 ∈ (H1
0 (Ω))2, div u0 = 0, and the stronger assumption (for future

needs in the proofs below) that f ∈ L∞(Ω× (0, T )).
The initial interface function ϕ0 is a smooth function, taking values between 0 and 1

except in a small region of size ε. Since the equations (4.6)-(4.7) approximates a two fluids
flow, ϕ0 describes in fact the initial state inside the cavity, and the location of each fluid.

Here, to simplify the theoretical analysis, we assume u = 0 on the whole boundary
of Ω, implying also that we do not have to impose any inflow boundary condition for ϕ.
Note that the situation is the same if for instance we impose only u ·n = 0 on some parts
of ∂Ω. Observe finally that, under our assumptions and following the results presented in
Section 4.1, there exists at least a weak solution to the equations (4.6)-(4.7). Moreover we
have

ρmin ≤ ρ(x, t) ≤ ρmax, µmin ≤ µ(x, t) ≤ µmax, for a.e. (x, t) ∈ Ω× (0, T ),
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where we note

ρmin = min(ρ1, ρ2), ρmax = max(ρ1, ρ2), µmin = min(µ1, µ2), µmax = max(µ1, µ2).

To approximate (in space) the equations (4.6)-(4.7), we use anisotropic, continuous,
piecewise linear finite elements that are stabilized with the methods introduced in Chapter
2 (for the transport of ϕ) and in Chapter 3 (for the momentum and mass equations). From
now, we assume that Ω is a convex polygon in R2. The numerical methods reads as follows.
For all h > 0, let Th be a conformal triangle of Ω into triangles K of diameter hK ≤ h
and let Vh, Qh the piecewise linear functions spaces for the velocity and the pressure
introduced in Chapter 3. We also consider Ψh the set of all piecewise linear functions
on Th. Then assuming that u0 ∈ (H2(Ω))2, ϕ0 ∈ H2(Ω), starting from uh(0) = rh(u0)
and ϕh(0) = rh(ϕ0), we are looking for any t ∈ (0, T ] for (uh(t), ph(t)) ∈ Vh × Qh and
ϕh(t) ∈ Ψh, the solution of

∫
Ω
ρh
∂uh
∂t
· vhdx +

∫
Ω
ρh(uh · ∇)uh · vhdx +

∫
Ω

2µhD(uh) : D(vh)dx

−
∫

Ω
ph div vhdx

+
∑
K∈Th

αK

∫
K
RNSh · (ρh(uh · ∇)vh) dx =

∫
Ω
ρhf · vhdx,∀vh ∈ Vh, (4.8)

−
∫

Ω
qh div uhdx +

∑
K∈Th

αK

∫
K
RNSh · ∇qhdx = 0, ∀qh ∈ Qh, (4.9)

∫
Ω

(
∂ϕh
∂t

+ uh · ∇ϕh
)
ψhdx +

∑
K∈Th

δK

∫
K
Rtransporth · ∇ψhdx = 0, ∀ψh ∈ Ψh, (4.10)

ρh = ρ1ϕh + ρ2(1− ϕh), µh = µ1ϕh + µ2(1− ϕh), (4.11)
where we note the residuals of the equations.

RNSh = ρhf − ρh
∂uh
∂t
− ρh(uh · ∇)uh + div(2µhD(uh))−∇ph, (4.12)

and
Rtransporth = ∂ϕh

∂t
+ uh · ∇ϕh. (4.13)

αK and δK are respectively the Navier-Stokes equations and the transport equation sta-
bilization parameters that we choose as follows. By analogy with the methods presented
in Chapter 2 and 3, we define

αK =
αλ2

2,K
µKξ(ReK) , α > 0,

where
ξ(ReK) =

{
1 if ReK ≤ 1,
ReK if ReK ≥ 1,

and the local anisotropic Reynolds number is given by

ReK =
‖ρhuh‖L∞(K)λ2,K

µK
,

where µK the minimal viscosity in the triangle K. For the transport stabilization, we
choose

δK = δλ2,K
‖uh‖L∞(K)

, δ > 0
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and we set δK = 0 in case uh is zero in K. In practice, we choose α = 0.01 and δ = 0.5.
Observe that the methods is easily adapted to R3 by replacing λ2,K by λ3,K in the definition
of the stabilization parameters.

The a priori analysis of the above numerical approximation is not obvious and we will
focus on a posteriori error estimates. The convergence of the methods will be checked
in the numerical experiments. From now, we will assume that the problems (4.6) and
(4.8)-(4.9)-(4.10)-(4.11) are well-posed (their solutions exist and are unique) and that the
method converges. Moreover, the data, the exact and numerical solutions will be assumed
to be smooth enough to justify our future computations. The goal of the next pages is to
prove an a posteriori error estimate for the velocity and for the density/viscosity errors.
We thus have to combine the techniques used for the transport equations in Chapter 2
with those used for the Navier-Stokes equations with constant coefficients in Chapter 3.
The proofs are very similar to those presented in the previous chapters, the two main
differences to consider are the following:

1. In Chapter 2, the transport velocity field u is a given data, while here it is an
unknown and therefore the errors ρ−ρh and µ−µh will depend on the velocity error
u− uh.

2. Conversely, in Chapter 3, the density and the viscosity are constant and given quan-
tities, while here there are unknowns (and thus variable) quantities. The numerical
error u− uh will depend on ρ− ρh and µ− µh.

Then, the strategy to prove an a posteriori error estimate for the sum of the errors
u− uh and ρ− ρh, µ− µh is:

(i) To prove estimates for ρ− ρh and µ− µh by reproducing what we did in Chapter 2
for the transport equation (Proposition 4.2).

(ii) To prove an estimate for u − uh by following the steps of Chapter 3, that is to say
we split the error into u −U and U − uh where U is a "good" reconstruction and
we derive:

(a) an estimate for u−U (Proposition 4.7),

(b) an estimate for U− uh (Proposition 4.8),

(c) an estimate for the remaining higher order terms (Proposition 4.10),

(d) an estimate for u − uh by combining the three previous results (Proposition
4.12).

(iii) To derive the desired a posteriori error bound by summing the estimates for ρ −
ρh, µ− µh and u− uh (Theorem 4.14).

All the proofs of these results are presented in the next pages. The arguments are mostly
technical and the reader can first skip them and focus on the different estimates are
combined all together.

A posteriori error estimates for ρ− ρh and µ− µh

The first proposition gives a preliminary a posteriori upper bound for the density er-
ror ρ− ρh and by extension for the viscosity error µ− µh. The proof is an adaptation of
the one of Theorem 2.55.
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Proposition 4.2 (A posteriori upper bound for the transport of the density and the
viscosity).
There exists a constant C > 0 that depends only the reference triangle such that for any
t ∈ (0, T ] one have

‖(ρ− ρh)(t)‖2L2(Ω) ≤ ‖(ρ− ρh)(0)‖2L2(Ω) + C

∫ t

0

∑
K∈Th

(ηAK,ρ)2(s)ds

+ 2‖∇ρh‖L∞(Ω×(0,T ))

∫ t

0
‖(u− uh)(s)‖L2(Ω)‖(ρ− ρh)(s)‖L2(Ω)ds, (4.14)

‖(µ− µh)(t)‖2L2(Ω) ≤ ‖(µ− µh)(0)‖2L2(Ω) + C

∫ t

0

∑
K∈Th

(ηAK,µ)2(s)ds

+ 2‖∇µh‖L∞(Ω×(0,T ))

∫ t

0
‖(u− uh)(s)‖L2(Ω)‖(µ− µh)(s)‖L2(Ω)ds, (4.15)

where
(ηAK,ρ)2(t) =

∥∥∥∥∂ρh∂t (t) + uh(t) · ∇ρh(t)
∥∥∥∥
L2(K)

ωK((ρ− ρh)(t)),

(ηAK,µ)2(t) =
∥∥∥∥∂µh∂t (t) + uh(t) · ∇µh(t)

∥∥∥∥
L2(K)

ωK((µ− µh)(t)).

Proof. We prove only (4.14), (4.15) can be obtained either by reproducing the same proof,
or directly by using the fact that in our case we explicitly know the viscosity and its finite
elements approximation through the relation µ = µ(ρ) and µh = µ(ρh) where

µ(x) = µ2 + µ1 − µ2
ρ1 − ρ2

(x− ρ2), x ∈ R.

Let e = ρ − ρh. We denote by C any constant that depends only on the reference
triangle, but which value can change from line to line.

We reproduce the same arguments as those of Theorem 2.55 in Chapter 2, when we
study the transport equation. Since u is divergence free and has zero boundary values, we
have that ∫

Ω
(u · ∇ψ)ψdx = 0, ∀ψ ∈ H1(Ω),

therefore one has

1
2
d

dt
‖e‖2L2(Ω) =

∫
Ω

∂e

∂t
edx +

∫
Ω

(u · ∇e)edx

= −
∫

Ω

∂ρh
∂t

edx−
∫

Ω
(u·∇ρh)edx = −

∫
Ω

∂ρh
∂t

edx−
∫

Ω
(uh·∇ρh)edx+

∫
Ω

((uh−u)·∇ρh)edx,

thanks to the fact that ρ satisfies (4.3). Using the finite elements approximations (4.10)
(observe that ρh satisfies necessarily the same scheme as ϕh), we can remove any test
function ψh and we obtain

d

dt

1
2‖e‖

2
L2(Ω)

= −
∫

Ω

(
∂ρh
∂t

+ uh · ∇ρh
)

(e− ψh − δhuh · ∇ψh)−
∫

Ω
((u− uh) · ∇ρh)edx,
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where we denote by δh the piecewise constant function that the value δK in each triangleK.
Choosing ψh = Rhe and using Cauchy-Schwarz inequality and the anisotropic Clément
interpolation error estimate, we finally obtain that there exists a constant C > 0 that
depends only the reference triangle such that

d

dt

1
2‖e‖

2
L2(Ω) ≤ C

∑
K∈Th

∥∥∥∥∂ρh∂t + uh · ∇ρh
∥∥∥∥
L2(K)

(
ωK(e) + ‖δhuh · ∇Rhe‖L2(K)

)
+ ‖∇ρh‖L∞(Ω×(0,T ))‖u− uh‖L2(Ω)‖e‖L2(Ω). (4.16)

Using the definition of δh and δK one can estimate

‖δhuh · ∇Rhe‖L2(K) ≤ δK‖uh‖L2(K)‖∇Rhe‖L2(K) ≤ δλ2,K‖∇Rhe‖L2(K).

Finally, as we did in Theorem 2.55, we derive that there exists a constant C > 0 depending
only the reference triangle such that

λ2,K‖∇Rhe‖L2(K) ≤ CωK(e)

yielding that
‖δhuh · ∇Rhe‖L2(K) ≤ CωK(e).

Plugging it into (4.16) and integrating over the time yields the desired result.

Remark 4.3. (i) Note that we only use the fact that ρ, respectively ρh, is the solution
to the transport equation, respectively its spatial approximation. We never use their
particular formulation that are

ρ = ρ1ϕ+ ρ2(1− ϕ), ρh = ρ1ϕh + ρ2(1− ϕh).

Therefore the proof and the resulting estimates are valid for more general cases of
non-homogeneous Navier-Stokes equations.

(ii) The term

‖∇ρh‖L∞(Ω×(0,T ))

∫ t

0
‖(u− uh)(s)‖L2(Ω)‖(ρ− ρh)(s)‖L2(Ω)ds

can be controlled by

‖∇ρh‖2L∞(Ω×(0,T ))

∫ t

0
‖(ρ− ρh)(s)‖2L2(Ω)ds+

∫ t

0
‖(u− uh)(s)‖2L2(Ω)ds.

The L2 norm of u − uh will be absorbed in the estimate coming from the error
analysis of the momentum equation and the term

‖∇ρh‖2L∞(Ω×(0,T ))‖ρ− ρh‖
2
L2(Ω)

will be controlled with Gronwall’s Lemma.

(iii) From Chapter 2, it is expected that

‖ρ− ρh‖2L2(Ω) = O(h3).

It is also reasonable to expect that for all t

‖(u− uh)(t)‖L2(Ω) = O(h2).
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Then (ηAK,ρ)2 can be used as an error indicator for ‖ρ − ρh‖L2(Ω). Indeed, starting
from (4.14), and using the Young’s inequality, one derives that

‖(ρ− ρh)(t)‖2L2(Ω) ≤ ‖(ρ− ρh)(0)‖2L2(Ω) + C

∫ t

0

∑
K∈Th

(ηAK,ρ)2(s)ds

+ 1
T

∫ t

0
‖(ρ− ρh)(s)‖2L2(Ω)ds+ T‖∇ρh‖2L∞(Ω×(0,T ))

∫ t

0
‖(u− uh)(s)‖2L2(Ω)ds.

which yields (after using the Gronwall’s Lemma)

‖(ρ− ρh)(t)‖2L2(Ω)

≤ exp (1)

‖(ρ− ρh)(0)‖2L2(Ω) + C

∫ t

0

∑
K∈Th

(ηAK,ρ)2(s)ds

T‖∇ρh‖2L∞(Ω×(0,T ))

∫ t

0
‖(u− uh)(s)‖2L2(Ω)ds

)
. (4.17)

Moreover, it will be confirmed by the numerical experiments at the end of this
chapter that ∫ t

0

∑
K∈Th

(ηAK,ρ)2(s)ds = O(h3).

Thus (4.17) is an optimal a posteriori error estimate, up to some higher order terms
that are

‖(ρ−ρh)(0)‖2L2(Ω) = ‖(ρ−rh(ρ))(0)‖2L2(Ω) = O(h4),
∫ t

0
‖(u−uh)(s)‖2L2(Ω)ds = O(h4).

A posteriori error estimates for u− uh

The largest part of the a posteriori error analysis is to derive a velocity error estimate.
As in Chapter 3, we will introduce a suitable reconstruction of the approximated velocity
uh(t) and the approximated pressure ph(t). The proofs that will be presented below are
very similar to those presented in Chapter 3 for the unsteady Navier-Stokes equations
with constant coefficients, except that the terms of the form∫

Ω
ρ(u · ∇)v · vdx

are not zero, since ρ is non constant in general. Indeed, it is in general not possible to
write something as ∫

Ω
ρ(u · ∇)v · vdx = 1

2

∫
Ω

div
(
ρu|v|2

)
dx

and conclude by using divergence theorem and boundary conditions. This is due to the
fact that div(ρu) 6= 0 since ρ varies.

We state the main definition below.

Definition 4.4 (Linearized Navier-Stokes reconstruction for variable density and viscos-
ity).
Let (u, p), ρ and µ be the solutions of (4.6)-(4.7) and uh, ph the finite elements approxima-
tions given by (4.8)-(4.11). For any t ∈ [0, T ], we define (U(t), P (t)) ∈ (H1

0 (Ω))2 × L2
0(Ω)
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the linearized Navier-Stokes reconstruction of (uh(t), ph(t)) as the weak solutions of∫
Ω
ρ((U(t) · ∇)uh(t)) · vdx +

∫
Ω
ρ((u(t) · ∇)(U(t)− uh(t))) · vdx

+
∫

Ω
2µD(U(t)) : D(v)dx−

∫
Ω
P (t) div vdx =

∫
Ω
ρ

(
f(t)− ∂uh

∂t
(t)
)
·vdx, ∀v ∈ (H1

0 (Ω))2,

−
∫

Ω
q div U(t) = 0, ∀q ∈ L2

0(Ω). (4.18)

In the next proposition, we prove that(4.18) is well-posed. The demonstration is an
adaptation of that of Proposition 3.42, taking in account the fact ρ and µ are functions,
rather than scalars.

Proposition 4.5.
Let CSOB be the constant in Proposition A.8 of Appendix A.2. We assume that there exists
h0 > 0 and 0 < γ < 1 such that for all h ≤ h0

sup
t∈(0,T )

(
‖∇uh(t)‖L2(Ω) + ‖∇u(t)‖L2(Ω)

)
≤ γµmin
ρmaxCSOB

. (4.19)

Then for all h ≤ h0 and for all t ∈ [0, T ], there exists a unique solution (U(t), P (t)) of
(4.18).

Proof. Let h ≤ h0. We follow the proof of Proposition 3.42 Let h ≤ h0. We write the
problem (4.18) in a abstract form: for all t ∈ [0, T ] we look for (U(t), P (t)) the solution of{

a(U(t),v) + b(v, P (t)) = F (v), ∀v ∈ (H1
0 (Ω))2,

b(U(t), q) = 0,∀q ∈ L2
0(Ω), (4.20)

where

a(U,v) =
∫

Ω
ρ((U(t) · ∇)uh(t)) · vdx +

∫
Ω
ρ((u(t) · ∇)U(t)) · vdx + µ

∫
Ω
∇U(t) : ∇vdx,

F (v) =
∫

Ω
ρ

(
f(t)− ∂uh

∂t
(t) + (u(t) · ∇)uh(t)

)
· vdx,

b(v, P (t)) = −
∫

Ω
P (t) div vdx, b(U(t), q) = −

∫
Ω
q div U(t).

Let
V =

{
v ∈ (H1

0 (Ω))2 : div v = 0
}

the subspace of (H1
0 (Ω))2 containing the free divergence vector fields. As in Proposition

3.42, it sufficient to find U(t) ∈ V solution of

a(U(t),v) = F (v),∀v ∈ V, (4.21)

to conclude since P (t) will be obtain trough the inf-sup condition.
The continuity of the bilinear form a and the linear functional F are a direct conse-

quence since ρ, respectively µ are bounded. In order to apply the Lax-Milgram Lemma to
(4.21), the only issue is to check the coercivity of a. Since µ ≥ µmin > 0, we immediately
have that ∫

Ω
2µD(U) : D(U)dx ≥ µmin‖∇U‖2L2(Ω),

where we use the Korn’s inequality that reads for any v ∈ (H1
0 (Ω))2

2‖D(v)‖2L2(Ω) ≥ ‖∇v‖2L2(Ω).
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Therefore, it remains to control the terms∫
Ω
ρ((U · ∇)uh(t)) ·Udx,

∫
Ω
ρ((u(t) · ∇)U) ·Udx.

Observe as we did before that∫
Ω
ρ((U · ∇)uh(t)) ·Udx ≥ −

∫
Ω
|ρ((U · ∇)uh(t)) ·U|dx.

Applying the Cauchy-Schwarz inequality and the Proposition A.8, one has that

−
∫

Ω
|ρ((U · ∇)uh(t)) ·U|dx ≥ −ρmaxCSOB‖∇uh(t)‖L2(Ω)‖∇U‖2L2(Ω),

therefore ∫
Ω
ρ((U · ∇)uh(t)) ·Udx ≥ −ρmaxCSOB‖∇uh(t)‖L2(Ω)‖∇U‖2L2(Ω).

By the same argument, we prove that∫
Ω
ρ((u(t) · ∇)U) ·U(t)dx ≥ −ρmaxCSOB‖∇u(t)‖L2(Ω)‖∇U‖2L2(Ω).

Thus, using the hypothesis (4.27), we have

a(U,U) ≥ µmin‖∇U‖2L2(Ω) − ρmaxCSOB
(
‖∇uh(t)‖L2(Ω) + ‖∇u(t)‖L2(Ω)

)
‖∇U‖2L2(Ω)

≥ (1− γ)µmin‖∇U‖2L2(Ω),

which proves the coercivity of a since 0 < γ < 1.

Remark 4.6. (i) As in Chapter 3, the hypothesis (4.27) holds if we assume that

(1) There exists 0 < γ′ < 1 such that

sup
t∈(0,T )

‖∇u(t)‖L2(Ω) ≤
γ′µmin

ρmaxCSOB
,

that is to say the velocity field u is small. This is a reasonable assumption if we
assume the data f ,u0,T and the difference ρmax − ρmin, µmax − µmin are small
enough.

(2) Strong convergence holds:

sup
t∈(0,T )

‖∇(u(t)− uh(t))‖L2(Ω) → 0 as h→ 0.

(ii) Observe that the following orthogonality relations hold between (U, P ) and (uh, ph)
holds:∫

Ω
ρ((u·∇)(U−uh))·vhdx+

∫
Ω
ρ(((U−uh)·∇)uh))·vhdx+

∫
Ω

2µD(U−uh) : D(vh)dx

−
∫

Ω
(P − ph) div vh =

∑
K

αK

∫
K
RNSh · (ρh(uh · ∇)vh)dx

+
∫

Ω
(ρ− ρh)f · vhdx−

∫
Ω

(ρ− ρh)∂uh
∂t
· vhdx−

∫
Ω

(ρ− ρh)((uh · ∇)uh) · vhdx

−
∫

Ω
(µ− µh)D(uh) : D(vh)dx, ∀vh ∈ Vh, (4.22)
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and ∫
Ω
qh div(U− uh)dx =

∑
K∈Th

αK

∫
K
RNSh · ∇qhdx, ∀qh ∈ Qh. (4.23)

Morally, this orthogonality means (as we proved it for the linear Stokes equa-
tions) that if we discretize (4.18) and we consider its finite elements approximations
(Uh, Ph) (computed with the same method as uh, ph and we use ρh, µh as approxi-
mation of ρ, µ), then we will have Uh = uh and Ph = ph)

Now, as for the Navier-Stokes equations with constant density and viscosity, we split
the error u−uh into two parts, namely a continuous estimate u−U and a discrete estimate
U−uh. Since we work with a variable density, the following well-known identity is needed:
for any v ∈ H1(0, T ; (H1(Ω))2), we have that

1
2
d

dt

∫
Ω
ρv2dx =

∫
Ω
ρ
∂v
∂t
· vdx +

∫
Ω
ρ((u · ∇)v) · vdx. (4.24)

We give a quick proof of (4.24). Since

∂ρ

∂t
+ u · ∇ρ = 0

we have

1
2
d

dt

∫
Ω
ρv2dx =

∫
Ω
ρ
∂v
∂t
· vdx + 1

2

∫
Ω

∂ρ

∂t
v2dx

=
∫

Ω
ρ
∂v
∂t
· vdx− 1

2

∫
Ω

(u · ∇ρ)v2dx

=
∫

Ω
ρ
∂v
∂t
· vdx− 1

2

∫
Ω

div(ρu)v2dx

=
∫

Ω
ρ
∂v
∂t
· vdx− 1

2

∫
∂Ω
ρ u︸︷︷︸

=0

·nv2dx +
∫

Ω
ρ((u · ∇)v)vdx

=
∫

Ω
ρ
∂v
∂t
· vdx +

∫
Ω
ρ((u · ∇)v) · vdx.

Proposition 4.7 (Continuous error estimate).
Let (u, p) be the exact velocity and pressure fields, and (U, P ) the reconstruction given by
(4.18) of the numerical solution (uh, ph) obtained by solving (4.8)-(4.11). Moreover, we
assume that there exists h0 > 0 and 0 < γ < 1 such that for all h ≤ h0

sup
t∈(0,T )

(
‖∇uh(t)‖L2(Ω) + ‖∇u(t)‖L2(Ω)

)
≤ γµmin
ρmaxCSOB

. (4.25)

Then for all h ≤ h0 and for all t ∈ (0, T ], it holds

ρmin‖(u−U)(t)‖2 + (1− γ)µmin

∫ t

0
‖∇(u−U)(s)‖2L2(Ω)ds

≤ ρmax‖(u−U)(0)‖2 + 2C2
Pρ

2
max

(1− γ)µmin

∫ t

0

∥∥∥∥∂U
∂t

(s)− ∂uh
∂t

(s)
∥∥∥∥2

L2(Ω)
ds,

where CP stands for the Poincaré constant of Ω.
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Proof. We apply identity (4.24) to u−U.

1
2
d

dt

∫
Ω
ρ|u−U|2dx +

∫
Ω

2µD(u−U) : D(u−U)dx

=
∫

Ω
ρ
∂(u−U)

∂t
·(u−U)dx+

∫
Ω
ρ ((u · ∇)(u−U))·(u−U)dx+

∫
Ω

2µD(u−U) : D(u−U)dx

=
∫

Ω
ρ
∂(u−U)

∂t
·(u−U)dx+

∫
Ω
ρ ((u · ∇)(u−U))·(u−U)dx+

∫
Ω
ρ (((u−U) · ∇)uh)·(u−U)dx∫

Ω
2µD(u−U) : D(u−U)dx−

∫
Ω
ρ (((u−U) · ∇)uh) · (u−U)dx

=
∫

Ω
ρ
∂(u−U)

∂t
·(u−U)dx+

∫
Ω
ρ ((u · ∇)(u−U))·(u−U)dx+

∫
Ω
ρ (((u−U) · ∇)uh)·(u−U)dx∫

Ω
2µD(u−U) : D(u−U)dx−

∫
Ω

(p−P ) div(u−U)−
∫

Ω
ρ (((u−U) · ∇)uh)·(u−U)dx

where we add the pressure term for free since u −U is divergence free. Now taking the
difference between (4.6) (written in a weak form) and (4.18), one has

1
2
d

dt

∫
Ω
ρ|u−U|2dx +

∫
Ω

2µD(u−U) : D(u−U)dx

= −
∫

Ω
ρ

(
∂U
∂t
− ∂uh

∂t

)
· (u−U)dx

−
∫

Ω
ρ (((u−U) · ∇)uh) · (u−U)dx.

Cauchy-Schwarz, Poincaré, Young’s and Korn’s inequality and the hypothesis on ∇uh
imply then

1
2
d

dt

∫
Ω
ρ|u−U|2dx + µmin‖∇(u−U)‖2L2(Ω)

≤ C2
Pρ

2
max

(1− γ)µmin

∥∥∥∥∂U
∂t
− ∂uh

∂t

∥∥∥∥2

L2(Ω)
+ 1 + γ

2 µmin‖∇(u−U)‖2L2(Ω),

which yields the result by passing the gradient term to the left hand side and integrating
over the time.

We now focus on the discrete estimate U − uh. We first prove an a posteriori upper
bounds for ‖∇(U−uh)‖L2(Ω) and ‖P − ph‖L2(Ω). The proof is very similar to the proof of
Proposition 3.46, we only have to adapt it, taking in account that now the density and the
viscosity are variable and unknowns of the problem too. We will use the following dual
problem to recover the pressure error estimate P − ph (note that it is a µ-variable version
of the dual problem used in Chapter 3) :

−div(2µD(w(t))) +∇r(t) = 0, in Ω,

div w = ph − P (t), in Ω,

w = 0, on ∂Ω.

(4.26)

Since µ > 0 and is bounded above and below, observe that the problem is well-posed
and admits for any t a unique weak solution (w(t), r(t)) ∈ (H1

0 (Ω))2 × L2
0(Ω). Moreover

the following a priori estimate (see Theorem B.4 in the Appendix) holds: there exists a
constant C > 0 depending only on Ω such that for any t ∈ [0, T ]

µmin
µmax

‖∇w(t)‖L2(Ω) + µmin
µ2

max
‖r(t)‖L2(Ω) ≤ C‖P − ph(t)‖L2(Ω).

271



Proposition 4.8 (Discrete error estimates).
Let (U, P ) be the Navier-Stokes reconstruction of the approximated velocity and pressure
(uh, ph). Let (w, r) be the weak dual solutions obtained of (4.26). Assume that there exists
h0 > 0 and 0 < γ < 1 such that for all h ≤ h0

sup
t∈(0,T )

(
‖∇uh(t)‖L2(Ω) + ‖∇u(t)‖L2(Ω)

)
≤ γµmin
ρmaxCSOB

, (4.27)

where CSOB is the constant in Proposition A.8 of the Appendix A.2. Then there exists
C1 > 0 that depends only on the reference triangle et C2 that depends only on Ω such that
for all h ≤ h0 and for all t ∈ [0, T ], we have

µmin‖∇(U− uh)(t)‖2L2(Ω) + µ3
min

µ4
max
‖(P − ph)(t)‖2L2(Ω)

≤ C1
(1− γ)2

∑
K∈Th

(ηAK,u)2(t) + (ηAK,p)2(t) + (ηdiv
K )2(t)

+ C2
(1− γ)2

µ2
max
µ3

min
L2
∞

(
‖(ρ− ρh)(t)‖2L2(Ω) + ‖(µ− µh)(t)‖2L2(Ω)

)
, (4.28)

where

(ηAK,u)2 =
(∥∥∥∥ρhf − ρh

∂uh
∂t
− ρh(uh · ∇)uh + div(2µhD(uh))−∇ph

∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖[2µhD(uh) · n]‖L2(∂K)

)
ωK(U− uh),

(ηAK,p)2 = µ3
min

µ4
max

(∥∥∥∥ρhf − ρh
∂uh
∂t
− ρh(uh · ∇)uh + div(2µhD(uh))−∇ph

∥∥∥∥
L2(K)

+ 1
2
√
λ2,K

‖[2µhD(uh) · n]‖L2(∂K)

)
ωK(w),

(ηdiv
K )2 = µ4

max
µ3

min
‖ div uh‖2L2(Ω),

L(uh) =
(∥∥∥∥f − ∂uh

∂t
− (uh · ∇)uh

∥∥∥∥2

L∞(Ω×(0,T ))
+ ‖D(uh)‖2L∞(Ω×(0,T ))

)
.

Remark 4.9.
Observe that this upper bound is consistent with the previous results obtained in Chapter
3 for the Navier-Stokes equations with constant coefficients. Indeed, if we assume that the
viscosity and the density are constant then ρ = ρh = ρmin = ρmax and µ = µmin = µmax,
and Proposition 4.8 reduces to Proposition 3.46.

Proof. To lighten the notations, we do not write the explicit dependence on t of the
function, since every quantity is evaluated at the same time. In what follows, we denote
by C or C̃ any positive constant that may depend only on the reference triangle or Ω and
which values can change from line to line.
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Part 1. Estimate for the velocity.∫
Ω

2µD(U− uh) : D(U− uh)dx =
∫

Ω
2µD(U− uh) : D(U− uh)dx

+
∫

Ω
(P − ph) div(U− uh)dx−

∫
Ω

(P − ph) div(U− uh)dx

+
∫

Ω
ρ((U · ∇)uh) · (U− uh)dx−

∫
Ω
ρ((U · ∇)uh) · (U− uh)dx

+
∫

Ω
ρ((u · ∇)(U− uh) · (U− uh)dx−

∫
Ω
ρ((u · ∇)(U− uh) · (U− uh)dx

+
∫

Ω
ρ((uh · ∇)uh) · (U− uh)dx−

∫
Ω
ρ((uh · ∇)uh) · (U− uh)dx.

Using that (U, P ) are solution of the weak equations (4.18), we have thus∫
Ω

2µD(U− uh) : D(U− uh)dx =
∫

Ω

(
ρf − ρ∂uh

∂t

)
· (U− uh)dx

−
∫

Ω
ρ((uh · ∇)uh) · (U− uh)dx−

∫
Ω

2µD(uh) : D(U− uh)dx +
∫

Ω
ph div(U− uh)dx

+
∫

Ω
(P − ph) div(U− uh)dx−

∫
Ω
ρ((U · ∇)uh) · (U− uh)dx

−
∫

Ω
ρ((u · ∇)(U− uh) · (U− uh)dx +

∫
Ω
ρ((uh · ∇)uh) · (U− uh)dx.

This yields∫
Ω

2µD(U− uh) : D(U− uh)dx =
∫

Ω

(
ρhf − ρh

∂uh
∂t

)
· (U− uh)dx

−
∫

Ω
ρh((uh · ∇)uh) · (U− uh)dx−

∫
Ω

2µhD(uh) : D(U− uh)dx +
∫

Ω
ph div(U− uh)dx

+
∫

Ω
(P − ph) div(U− uh)dx−

∫
Ω
ρ (((U− uh) · ∇)uh + (u · ∇)(U− uh)) · (U− uh)dx

+
∫

Ω
(ρ− ρh)

(
f − ∂uh

∂t

)
· (U− uh)dx−

∫
Ω

2(µ− µh)D(uh) : D(U− uh)dx

−
∫

Ω
(ρ− ρh)((uh · ∇)uh) · (U− uh)dx.

Using the finite elements approximation of the momentum equation, we can remove any
test function vh and we obtain after an integration by parts∫

Ω
2µD(U− uh) : D(U− uh)dx

=
∑
K∈Th

∫
K
RNSh ·(U−uh−vh)dx+1

2

∫
∂K

RNSh,j ·(U−uh−vh)dx+
∑
K∈Th

αK

∫
K
RNSh ·(ρh(uh·∇)vh)dx

+
∫

Ω
(P − ph) div(U− uh)dx−

∫
Ω
ρ (((U− uh) · ∇)uh + (u · ∇)(U− uh)) · (U− uh)dx

+
∫

Ω
(ρ− ρh)

(
f − ∂uh

∂t

)
· (U− uh)dx−

∫
Ω

2(µ− µh)D(uh) : D(U− uh)dx

−
∫

Ω
(ρ− ρh)((uh · ∇)uh) · (U− uh)dx,

where we recall that

RNSh = ρhf − ρh
∂uh
∂t
− ρh(uh · ∇)uh + div(2µhD(uh))−∇ph,
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and we note the jump terms over the edges

RNSh,j = [2µhD(uh) · n] .

We now choose vh as the Clément’s interpolant Rh(U−uh) and we get by using Cauchy-
Schwarz, Korn’s, Poincaré and Sobolev inequalities and the anisotropic interpolation error
estimates that

µmin‖∇(U− uh)‖2L2(Ω) ≤ C
∑
K∈Th

(
‖RNSh ‖L2(K) + 1

2
√
λ2,K

‖RNSh,j ‖L2(∂K)

)
ωK(U− uh)

+
∑
K∈Th

‖RNSh ‖L2(K)αK‖ρhuh‖L∞(K)‖∇(Rh(U−uh))‖L2(K)+‖P−ph‖L2(Ω)‖div(U−uh)‖L2(Ω)

+ ρmaxCSOB sup
t∈(0,T )

(
‖∇uh(t)‖L2(Ω) + ‖∇u(t)‖L2(Ω)

)
‖∇(U− uh)‖2L2(Ω)

+ CP ‖ρ− ρh‖L2(Ω)

∥∥∥∥f − ∂uh
∂t
− (uh · ∇)uh

∥∥∥∥
L∞(Ω×(0,T ))

‖∇(U− uh)‖L2(Ω)

+ 2‖µ− µh‖L2(Ω)‖D(uh)‖L∞(Ω×(0,T ))‖∇(U− uh)‖L2(Ω),

where CP stands for the Poincaré constant of Ω. Thanks to the definition of αK we have
that

αK‖ρhuh‖L∞(K)‖∇(Rh(U− uh))‖L2(K) ≤ αλ2,K‖∇(Rh(U− uh))‖L2(K) ≤ CωK(U− uh).

Thus the stabilization terms can be absorbed into the residual ones. Now using the
hypothesis on ∇u and ∇uh and the Young’s inequality, one can state

1− γ
2 µmin‖∇(U−uh)‖2L2(Ω) ≤ C

∑
K∈Th

(
‖RNSh ‖L2(K) + 1

2
√
λ2,K

‖RNSh,j ‖L2(∂K)

)
ωK(U−uh)

+‖P−ph‖L2(Ω)‖ div(U−uh)‖L2(Ω)+
C

(1− γ)µmin
L(uh)

(
‖ρ− ρh‖2L2(Ω) + ‖µ− µh‖2L2(Ω)

)
.

(4.29)

Part 2. Estimate for the pressure. We now use the dual problem (4.26). We have

‖P −ph‖2L2(Ω) = −
∫

Ω
(P −ph) div wdx =

∫
Ω

(
ρf − ρ∂uh

∂t

)
·wdx−

∫
Ω

2µD(u) : D(w)dx

−
∫

Ω
ρ((U · ∇)uh) ·wdx−

∫
Ω
ρ((u · ∇)(U− uh)) ·wdx +

∫
Ω
ph div wdx

=
∫

Ω

(
ρhf − ρh

∂uh
∂t
− ρh(uh · ∇)uh

)
·wdx−

∫
Ω

2µhD(uh) : D(w)dx

+
∫

Ω
ph div wdx−

∫
Ω
ρ(((U− uh) · ∇)uh + (u · ∇)(U− uh)) ·wdx

+
∫

Ω
(ρ− ρh)

(
f − ∂uh

∂t
− (uh · ∇)uh

)
·wdx

−
∫

Ω
2(µ− µh)D(uh) : D(w)dx−

∫
Ω

2µD(u− uh) : D(w)dx.
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Finally, removing any test function vh, one have

‖P−ph‖2L2(Ω) =
∫

Ω

(
ρhf − ρh

∂uh
∂t
− ρh(uh · ∇)uh

)
·(w−vh)dx−

∫
Ω

2µhD(uh) : D(w−vh)dx

+
∫

Ω
ph div(w− vh)dx +

∑
K∈Th

αK

∫
K
RNSh · (ρh(uh · ∇)vh)dx

−
∫

Ω
ρ(((U−uh) ·∇)uh+(u ·∇)(U−uh)) ·wdx+

∫
Ω

(ρ−ρh)
(

f − ∂uh
∂t
− (uh · ∇)uh

)
·wdx

−
∫

Ω
2(µ− µh)D(uh) : D(w)dx−

∫
Ω

2µD(u− uh) : D(w)dx.

We now proceed as in the end of Part 2. of Proposition 3.46. We choose vh as the
Clément’s interpolant Rh(w), and we use the a priori estimate that holds for the dual
problem

‖∇w‖L2(Ω) ≤ C
µmax
µmin

‖P − ph‖L2(Ω).

We obtain finally that

‖P − ph‖L2(Ω) ≤

C̃

 ∑
K∈Th

(
‖RNSh ‖L2(K) + 1

2
√
λ2,K

‖RNSh,j ‖L2(∂K)

)
ωK(w) + µ4

max
µ2

min
‖∇(U− uh)‖2L2(Ω)

+µ2
max
µ2

min
L(uh)

(
‖ρ− ρh‖2L2(Ω) + ‖µ− µh‖2L2(Ω)

))1/2

. (4.30)

Part 3. Putting all together. We now combine estimate (4.29) and (4.30) to conclude.
From (4.29) we have

1− γ
2 µmin‖∇(U−uh)‖L2(Ω) ≤ C

∑
K∈Th

(
‖RNSh ‖L2(K) + 1

2
√
λ2,K

‖RNSh,j ‖L2(∂K)

)
ωK(U−uh)

+ C

(1− γ)µmin
L(uh)

(
‖ρ− ρh‖2L2(Ω) + ‖µ− µh‖2L2(Ω)

)
+ ε

2‖P − ph‖
2
L2(Ω) + 1

2ε‖ div(uh)‖2L2(Ω).

Using (4.30), we therefore obtain

1− γ
2 µmin‖∇(U−uh)‖2L2(Ω) ≤ C

∑
K∈Th

(
‖RNSh ‖L2(K) + 1

2
√
λ2,K

‖RNSh,j ‖L2(∂K)

)
ωK(U−uh)

+ C

(1− γ)µmin
L(uh)

(
‖ρ− ρh‖2L2(Ω) + ‖µ− µh‖2L2(Ω)

)
+ ε

2 C̃
∑
K∈Th

(
‖RNSh ‖L2(K) + 1

2
√
λ2,K

‖RNSh,j ‖L2(∂K)

)
ωK(w)

+ ε

2 C̃
µ4

max
µ2

min
‖∇(U− uh)‖2L2(Ω)

+ ε

2 C̃
µ2

max
µ2

min
L(uh)

(
‖ρ− ρh‖2L2(Ω) + ‖µ− µh‖2L2(Ω)

)
+ 1

2ε‖ div(uh)‖2L2(Ω).

Choosing

ε = 1− γ
2C̃

µ3
min

µ4
max

,
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we obtain

1− γ
4 µmin‖∇(U−uh)‖2L2(Ω) ≤ C

∑
K∈Th

(
‖RNSh ‖L2(K) + 1

2
√
λ2,K

‖RNSh,j ‖L2(∂K)

)
ωK(U−uh)

+ C

(1− γ)µmin
L(uh)

(
‖ρ− ρh‖2L2(Ω) + ‖µ− µh‖2L2(Ω)

)
+ 1− γ

4
µ3

min
µ4

max

∑
K∈Th

(
‖RNSh ‖L2(K) + 1

2
√
λ2,K

‖RNSh,j ‖L2(∂K)

)
ωK(w)

+ 1− γ
4

µmin
µ2

max
L(uh)

(
‖ρ− ρh‖2L2(Ω) + ‖µ− µh‖2L2(Ω)

)
+ C̃

1− γ
µ4

max
µ3

min
‖ div(uh)‖2L2(Ω).

So finally, dividing by 1− γ and putting in factor the biggest constant, we obtain for the
velocity error

µmin‖∇(U− uh)‖2L2(Ω)

≤ C

(1− γ)2

 ∑
K∈Th

(
‖RNSh ‖L2(K) + 1

2
√
λ2,K

‖RNSh,j ‖L2(∂K)

)
ωK(U− uh)

+ µ3
min

µ4
max

∑
K∈Th

(
‖RNSh ‖L2(K) + 1

2
√
λ2,K

‖RNSh,j ‖L2(∂K)

)
ωK(w) + µ4

max
µ3

min
‖div(uh)‖2L2(Ω)


+ C

µmin(1− γ)2L(uh)
(
‖ρ− ρh‖2L2(Ω) + ‖µ− µh‖2L2(Ω)

)
, (4.31)

and we use the fact that
1

µmax
≤ 1
µmin

to write the terms involving the L∞(Ω× (0, T )) norm in compact form. Finally, plugging
(4.31) into (4.30) yields finally that

‖P − ph‖2L2(Ω) ≤
C

(1− γ)2

 ∑
K∈Th

(
‖RNSh ‖L2(K) + 1

2
√
λ2,K

‖RNSh,j ‖L2(∂K)

)
ωK(w)

+µ4
max
µ3

min

∑
K∈Th

(
‖RNSh ‖L2(K) + 1

2
√
λ2,K

‖RNSh,j ‖L2(∂K)

)
ωK(U− uh)

+
(
µ4

max
µ3

min

)2

‖ div(uh)‖2L2(Ω)

+ C

(1− γ)2
µ6

max
µ6

min
L(uh)

(
‖ρ− ρh‖2L2(Ω) + ‖µ− µh‖2L2(Ω)

)
.

Dividing the pressure estimate by µ4
max/µ

3
min and summing it with (4.31), we obtain the

desired estimate.

The last part consists to provide an estimate for the L2 norms

‖U− uh‖L2(Ω) and
∥∥∥∥∂U
∂t
− ∂uh

∂t

∥∥∥∥
L2(Ω)

.

We will use a duality argument. Let u be the exact velocity field, ρ, µ the exact density
and viscosity and uh the finite elements approximation of u. For any t ∈ [0, T ] and any
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g ∈ (L2(Ω))2, we consider (w, r) the solution of the dual problem (that we write in a weak
formulation)∫

Ω
ρ(t)((u(t) ·∇)v) ·w(t)dx +

∫
Ω
ρ(t)((v ·∇)uh(t)) ·w(t)dx +

∫
Ω

2µ(t)D(w(t)) : D(v)dx

−
∫

Ω
r(t) div vdx =

∫
Ω

g · vdx, ∀v ∈ (H1
0 (Ω))2,∫

Ω
q div w(t) = 0, ∀q ∈ L2

0(Ω). (4.32)

For understanding, we can write the previous problem in a strong form, thanks to an
integration by parts :

−ρ(u · ∇)w− (u · ∇ρ)w + ρ∇uTh ·w− div(2µD(w)) +∇r = g, in Ω

div w = 0, in Ω

w = 0. on ∂Ω

Under the hypothesis (4.27), one can show that the weak problem (4.32) is well-posed in
(H1

0 (Ω))2 × L2
0(Ω) and that the following a priori estimate holds for any t ∈ [0, T ]

µmin‖∇w(t)‖L2(Ω) + µmin
µmax

‖r‖L2(Ω) ≤
C

1− γ ‖g‖L2(Ω),

where C > 0 depends only on Ω.
Moreover, noting that we can write the later equations as a Stokes problem

−div(2µD(w)) +∇r = g + ρ(u · ∇)w + (u · ∇ρ)w− ρ∇uTh ·w, in Ω

div w = 0, in Ω

w = 0. on ∂Ω

one can show that in fact (w(t), r(t)) ∈ (H2(Ω))2×H1(Ω) for any t ∈ [0, T ] (we point out
again the references [21, 62] for convex polygonal domains and [58, 99, 107] for smooth
ones, see also the discussion for the case of constant µ and ρ in Chapter 3, Proposition
3.47 and Theorem B.8 in the Appendix).

Moreover, if we assume that there exists a constant C ′ > 0 that may depend only on
Ω such that

‖∇µ‖L∞(Ω×(0,T ))
µmin

,
‖∇ρ‖L∞(Ω×(0,T ))

ρmax
≤ C ′ (4.33)

then one can show the following H2 −H1 a priori estimate

µmin‖w(t)‖H2(Ω) + µmin
µmax

‖r(t)‖H1(Ω) ≤
C

1− γ
µmax
µmin

‖g‖L2(Ω),

where C depends only on Ω.
We will need also estimates for ∂w

∂t
,
∂r

∂t
. Differentiating the weak formulation (4.32),

and assuming moreover that there exists h0 small enough such that for all h ≤ h0 (if
necessary we reduce the h0 of (4.27))∥∥∥∂µ∂t ∥∥∥L∞(Ω×(0,T ))

µmin
+

∥∥∥∂ρ∂t ∥∥∥L∞(Ω×(0,T ))
ρmax

+ ρmax
µmin

(
sup

t∈(0,T )

∥∥∥∥∇∂u
∂t

(t)
∥∥∥∥
L2(Ω)

+ sup
t∈(0,T )

∥∥∥∥∇∂uh
∂t

(t)
∥∥∥∥
L2(Ω)

)
≤ C ′′(1− γ), (4.34)
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where C ′′ depends only on Ω, one can prove that

µmin

∥∥∥∥∇∂w
∂t

(t)
∥∥∥∥
L2(Ω)

+ µmin
µmax

∥∥∥∥∂r∂t (t)
∥∥∥∥
L2(Ω)

≤ C

1− γ ‖g‖L2(Ω),

where C > 0 depends only on Ω.
Differentiating the strong form with respect to the time (let us assume that we satisfy

all the necessary regularity requirements), we obtain that ∂w
∂t
,
∂r

∂t
are solution of

− ρ(u · ∇)∂w
∂t
− (u · ∇ρ)∂w

∂t
+ ρ∇uTh ·

∂w
∂t
− div

(
2µD

(
∂w
∂t

))
+∇∂r

∂t
= g

+ ∂ρ

∂t
(u · ∇)w + ρ

(
∂u
∂t
· ∇
)

w +
(
∂u
∂t
· ∇ρ

)
+
(

u · ∇∂ρ
∂t

)
w

− ∂ρ

∂t
∇uTh ·w− ρ∇

∂uh
∂t

T

·w + div
(

2∂µ
∂t
D (w)

)
,

and ∂w
∂t

satisfies the free divergence constrain and the zero value boundary conditions.
Finally if we assume ∥∥∥∇∂µ

∂t

∥∥∥
L∞(Ω×(0,T ))
µmin

,

∥∥∥∇∂ρ
∂t

∥∥∥
L∞(Ω×(0,T ))
ρmax

≤ C ′′′ (4.35)

where C ′′′ > 0 may depend only on Ω, we also have the a priori estimate

µmin

∥∥∥∥∂w
∂t

(t)
∥∥∥∥
H2(Ω)

+ µmin
µmax

∥∥∥∥∂r∂t (t)
∥∥∥∥
H1(Ω)

≤ C

1− γ
µmax
µmin

‖g‖L2(Ω),

where C depends only on Ω. For our needs, we will summarize all the a priori estimates
as follows:

(i) Under the hypothesis (4.27) and (4.34), it holds

µmin‖∇w(t)‖L2(Ω) + µmin

∥∥∥∥∇∂w
∂t

(t)
∥∥∥∥
L2(Ω)

+ µmin
µmax

‖r(t)‖L2(Ω) + µmin
µmax

∥∥∥∥∂r∂t (t)
∥∥∥∥
L2(Ω)

≤ C

1− γ
µmax
µmin

‖g‖L2(Ω). (4.36)

(ii) Under the hypothesis (4.27), (4.33), (4.34) and (4.35), it holds

µmin‖w(t)‖H2(Ω) + µmin

∥∥∥∥∂w
∂t

(t)
∥∥∥∥
H2(Ω)

+ µmin
µmax

‖r(t)‖H1(Ω) + µmin
µmax

∥∥∥∥∂r∂t (t)
∥∥∥∥
H1(Ω)

≤ C

1− γ
µmax
µmin

‖g‖L2(Ω), (4.37)

where C > 0 depends on only Ω.

We recall for the next proposition the notation we introduced before, namely where
we use the same notation as before for the jump term across the edges

RNSh = ρhf − ρh
∂uh
∂t
− ρh(uh · ∇)uh + div(2µhD(uh))−∇ph

and
RNSh,j = [2µhD(uh) · n] .
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Proposition 4.10 (Higher order estimates for U− uh).
Under the hypothesis (4.27), (4.33), (4.34) and (4.35), there exists C1 > 0 that is inde-
pendent of the mesh size, but that may depend on the aspect ratio and Ω and C2 > 0 that
depends only on Ω such that for all h ≤ h0 and all t ∈ [0, T ], we have

‖(U− uh)(t)‖2L2(Ω) ≤
C1

(1− γ)2
∑
K∈Th

(εIK,1)2(t)

+ C2
µ2

min(1− γ)2L(uh)
(
‖(ρ− ρh)(t)‖2L2(Ω) + ‖(µ− µh)(t)‖2L2(Ω)

)
, (4.38)

where

(εIK,1)2 = µ2
max
µ4

min

(
h4
K‖RNSh ‖2L2(K) + h3

K‖RNSh,j ‖2L2(∂K) + µ2
maxh

2
K‖div uh‖2L2(K)

)
.

and
L(uh) =

∥∥∥∥f − ∂uh
∂t
− (uh · ∇)uh

∥∥∥∥2

L∞(Ω×(0,T ))
+ ‖D(uh)‖2L∞(Ω×(0,T )).

Moreover, we also have∥∥∥∥∂U
∂t

(t)− ∂uh
∂t

(t)
∥∥∥∥2

L2(Ω)
≤ C1

(1− γ2)
∑
K∈Th

(εIK,1)2(t) + (εIK,2)2(t)

+ C2
µ2

min(1− γ)2

(
L(uh) + L

(
∂uh
∂t

))(
‖(ρ− ρh)(t)‖2L2(Ω) + ‖(µ− µh)(t)‖2L2(Ω)

)
+ C2
µ2

min(1− γ)2L
2
∞((νIρ)2(t) + (νIµ)2(t)). (4.39)

where

(εIK,2)2 = µ2
max
µ4

min

(
h4
K

∥∥∥∥ ∂∂tRNSh
∥∥∥∥2

L2(K)
+ h3

K

∥∥∥∥ ∂∂tRNSh,j
∥∥∥∥2

L2(∂K)
+ µ2

maxh
2
K

∥∥∥∥div ∂

∂t
uh
∥∥∥∥2

L2(K)

+
(
α2
K +

(
dαK
dt

)2)(∥∥∥RNSh ∥∥∥2

L2(K)
+
∥∥∥∥ ∂∂tRNSh

∥∥∥∥2

L2(K)

)(
‖ρhuh‖2L∞(K) +

∥∥∥∥∂ρhuh
∂t

∥∥∥∥2

L∞(K)
+ µ2

max

))
,

L

(
∂uh
∂t

)
=
∥∥∥∥∥∂f
∂t
− ∂2uh

∂t2
−
(
∂uh
∂t
· ∇
)

uh − (uh · ∇)∂uh
∂t

∥∥∥∥∥
2

L∞(Ω×(0,T ))
+
∥∥∥∥D(∂uh

∂t

)∥∥∥∥2

L∞(Ω×(0,T ))
.

and
(νIρ)2 =

∥∥∥∥∂ρ∂t − ∂ρ

∂t

∥∥∥∥2

L2(Ω)
, (νIµ)2 =

∥∥∥∥∂µ∂t − ∂µh
∂t

∥∥∥∥2

L2(Ω)
.

Remark 4.11.
It will be checked numerically that∥∥∥∥∂ρ∂t − ∂ρh

∂t

∥∥∥∥2

L2(Ω)
and

∥∥∥∥∂µ∂t − ∂µh
∂t

∥∥∥∥2

L2(Ω)
,

are higher order terms (compared to ‖∇(u− uh)‖2L2(Ω)), namely being O(h3).
From a theoretical point of view, we were only able to bound them as follows:∥∥∥∥∂ρ∂t − ∂ρh

∂t

∥∥∥∥
L2(Ω)

=
∥∥∥∥−u · ∇ρ− ∂ρh

∂t

∥∥∥∥
L2(Ω)

≤
∥∥∥∥∂ρh∂t + uh · ∇ρh

∥∥∥∥
L2(Ω)

+‖u · ∇ρ− uh · ∇ρh‖L2(Ω)

≤
∥∥∥∥∂ρh∂t + uh · ∇ρh

∥∥∥∥
L2(Ω)

+ ‖∇ρh‖L∞(Ω) ‖u− uh‖L2(Ω)

+ ‖uh‖L∞(Ω)‖∇(ρ− ρh)‖L2(Ω) + ‖u− uh‖L∞(Ω)‖∇(ρ− ρh)‖L2(Ω),
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and

∥∥∥∥∂µ∂t − ∂µh
∂t

∥∥∥∥
L2(Ω)

≤
∥∥∥∥∂µh∂t + uh · ∇µh

∥∥∥∥
L2(Ω)

+ ‖∇µh‖L∞(Ω) ‖u− uh‖L2(Ω)

+ ‖uh‖L∞(Ω)‖∇(µ− µh)‖L2(Ω) + ‖u− uh‖L∞(Ω)‖∇(µ− µh)‖L2(Ω).

The last estimates are quite pessimistic since the two residuals (that will be checked
in the numerical experiments)

∥∥∥∥∂ρh∂t + uh · ∇ρh
∥∥∥∥
L2(Ω)

,

∥∥∥∥∂µh∂t + uh · ∇µh
∥∥∥∥
L2(Ω)

and the gradient norms (that we should post-process to make them computable)

‖∇(ρ− ρh)‖L2(Ω), ‖∇(µ− µh)‖L2(Ω),

are only O(h). At least, it guarantees that the final estimate for ‖∇(u−uh)‖L2(Ω) is O(h),
with no constant depending of the mesh aspect ratio multiplying the low order terms.

Proof of Proposition 4.10. In the lines below, we do not write the explicit dependence on
the time of the function, in order to lighten the notation. Moreover, we denote by C any
constant that is independent of the mesh size, but may depends on the mesh aspect ratio
or Ω and by C̃ constants that may depend only on Ω.

Part 1. Estimate for ‖U− uh‖L2(Ω).
Let t ∈ [0, T ] and g be any (L2(Ω))2 function. Let us consider (w(t), r(t) be the

solution obtained by solving the dual problem (4.32) with g as right hand side. Taking
the test function v = U− uh,q = P − ph we have therefore

∫
Ω

g · (U− uh)dx =
∫

Ω
ρ((u · ∇)(U− uh)) ·wdx +

∫
Ω
ρ(((U− uh) · ∇)uh) ·wdx

+
∫

Ω
2µD(w) : D(U− uh)dx−

∫
Ω
r div(U− uh)dx−

∫
Ω

div w(P − ph)dx.

We now use the orthogonality (4.22) and (4.23) and we remove any test function (vh, qh).
We get

∫
Ω

g·(U−uh)dx =
∫

Ω
ρ((u·∇)(U−uh))·(w−vh)dx+

∫
Ω
ρ(((U−uh)·∇)uh)·(w−vh)dx

+
∫

Ω
2µD(w−vh) : D(U−uh)dx−

∫
Ω

(r− qh) div(U−uh)dx−
∫

Ω
div(w−vh)(P −ph)dx

+
∫

Ω
(ρ− ρh)f · vhdx−

∫
Ω

(ρ− ρh)∂uh
∂t
· vhdx−

∫
Ω

(ρ− ρh)((uh · ∇)uh) · vhdx

− 2
∫

Ω
(µ− µh)D(uh) : D(vh)dx +

∑
K

αK

∫
K
RNSh · (ρh(uh · ∇)vh)dx

+
∑
K∈Th

αK

∫
K
RNSh · ∇qhdx.
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Using the fact that (U, P ) are the solutions of (4.18), we can write

∫
Ω

g · (U− uh)dx =
∫

Ω
ρ

(
f − ∂uh

∂t

)
· (w− vh)dx−

∫
Ω
ρ((uh · ∇)uh) · (w− vh)dx

−
∫

Ω
2µD(w− vh) : D(uh)dx

+
∫

Ω
(r − qh) div uhdx +

∫
Ω

div(w− vh)phdx +
∫

Ω
(ρ− ρh)f · vhdx

−
∫

Ω
(ρ− ρh)∂uh

∂t
· vhdx−

∫
Ω

(ρ− ρh)((uh · ∇)uh) · vhdx− 2
∫

Ω
(µ− µh)D(uh) : D(vh)dx

+
∑
K

αK

∫
K
RNSh · (ρh(uh · ∇)vh)dx +

∑
K∈Th

αK

∫
K
RNSh · ∇qhdx.

Adding and subtracting the terms

∫
Ω
ρh

(
f − ∂uh

∂t

)
· (w−vh)dx,

∫
Ω
ρh((uh ·∇)uh) · (w−vh)dx,

∫
Ω

2µhD(w−vh) : D(uh)dx,

one can finally write

∫
Ω

g · (U− uh)dx =
∫

Ω
ρh

(
f − ∂uh

∂t

)
· (w− vh)dx−

∫
Ω
ρh((uh · ∇)uh) · (w− vh)dx

−
∫

Ω
2µhD(w− vh) : D(uh)dx

+
∫

Ω
(r − qh) div uhdx +

∫
Ω

div(w− vh)phdx +
∫

Ω
(ρ− ρh)f ·wdx

−
∫

Ω
(ρ− ρh)∂uh

∂t
·wdx−

∫
Ω

(ρ− ρh)((uh · ∇)uh) ·wdx− 2
∫

Ω
(µ− µh)D(uh) : D(w)dx

+
∑
K

αK

∫
K
RNSh · (ρh(uh · ∇)vh)dx +

∑
K∈Th

αK

∫
K
RNSh · ∇qhdx.

Integrating by parts on every triangles, we obtain

∫
Ω

g·(U−uh)dx =
∑
K∈Th

∫
K
RNSh ·(w−vh)dx+1

2

∫
∂K

RNSh,j ·(w−vh)dx+
∑
K∈Th

∫
K

(r−qh) div uhdx

+
∫

Ω
(ρ− ρh)f ·wdx−

∫
Ω

(ρ− ρh)∂uh
∂t
·wdx−

∫
Ω

(ρ− ρh)((uh · ∇)uh) ·wdx

− 2
∫

Ω
(µ− µh)D(uh) : D(w)dx

+
∑
K

αK

∫
K
RNSh · (ρh(uh · ∇)vh +∇qh)dx. (4.40)

Now choosing vh = rh(w) and qh = Rh(r), using the Cauchy-Schwarz inequality, the
classical isotropic interpolation error estimates and absorbing as before the stabilization
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terms into the residual part, we obtain∫
Ω

g · (U− uh)dx

≤ C

 ∑
K∈Th

h4
K‖RNSh ‖2L2(K) + h3

K‖RNSh,j ‖2L2(∂K) + µ2
maxh

2
K‖ div uh‖2L2(K)

1/2

(
‖w‖H2(Ω) + 1

µmax
‖r‖H1(Ω)

)

+ C̃

(∥∥∥∥f − ∂uh
∂t
− (uh · ∇)uh

∥∥∥∥2

L∞(Ω×(0,T ))
+ ‖D(uh)‖2L∞(Ω×(0,T ))

)1/2

(
‖ρ− ρh‖2L2(Ω) + ‖µ− µh‖2L2(Ω)

)1/2
‖∇w‖L2(Ω).

Finally using the a priori estimates (4.36) and (4.37), we obtain∫
Ω

g · (U− uh)dx

≤ C

1− γ

 ∑
K∈Th

h4
K‖RNSh ‖2L2(K) + h3

K‖RNSh,j ‖2L2(∂K) + h2
K‖div uh‖2L2(K)

1/2
µmax
µ2

min
‖g‖L2(Ω)

+ C̃

µmin(1− γ)

(∥∥∥∥f − ∂uh
∂t
− (uh · ∇)uh

∥∥∥∥2

L∞(Ω×(0,T ))
+ ‖D(uh)‖2L∞(Ω×(0,T ))

)1/2

(
‖ρ− ρh‖2L2(Ω) + ‖µ− µh‖2L2(Ω)

)1/2
‖g‖L2(Ω).

Dividing on both side by ‖g‖L2(Ω) and taking the supremum over all the non zero L2

functions, we get

‖U− uh‖L2(Ω) = sup
∫
Ω(U− uh) · gdx
‖g‖L2(Ω)

≤ C

1− γ
µmax
µ2

min

 ∑
K∈Th

h4
K‖RNSh ‖2L2(K) + h3

K‖RNSh,j ‖2L2(∂K) + µ2
maxh

2
K‖ div uh‖2L2(K)

1/2

+ C̃

µmin(1− γ)

(∥∥∥∥f − ∂uh
∂t
− (uh · ∇)uh

∥∥∥∥2

L∞(Ω×(0,T ))
+ ‖D(uh)‖2L∞(Ω×(0,T ))

)1/2

(
‖ρ− ρh‖2L2(Ω) + ‖µ− µh‖2L2(Ω)

)1/2
.

Part 2. Estimate for
∥∥∥∥∂U
∂t
− ∂uh

∂t

∥∥∥∥
L2(Ω)

.

Let t ∈ [0, T ] and g be any (L2(Ω))2 function. We start from (4.40) and we choose
vh = rh(w) and qh = Rh(r)∫

Ω
g · (U− uh)dx =

∑
K∈Th

∫
K
RNSh · (w− rh(w))dx + 1

2

∫
∂K

RNSh,j · (w− rh(w))dx

+
∑
K∈Th

∫
K

(r −Rh(r)) div uhdx

+
∫

Ω
(ρ− ρh)f ·wdx−

∫
Ω

(ρ− ρh)∂uh
∂t
·wdx−

∫
Ω

(ρ− ρh)((uh · ∇)uh) ·wdx

− 2
∫

Ω
(µ− µh)D(uh) : D(w)dx +

∑
K

αK

∫
K
RNSh · (ρh(uh · ∇)rh(w) +∇Rh(r))dx.
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We now differentiate with respect to t both side of the equation and using the fact the
time derivative commutes with the interpolation operators, we obtain

∫
Ω

g·
(
∂U
∂t
− ∂uh

∂t

)
dx

=
∑
K∈Th

∫
K

∂

∂t
RNSh · (w− rh(w))dx + 1

2

∫
∂K

∂

∂t
RNSh,j · (w− rh(w))dx

+
∑
K∈Th

∫
K

div ∂uh
∂t

(r −Rh(r))dx

+
∑
K∈Th

∫
K
RNSh ·

(
∂w
∂t
− rh

(
∂w
∂t

))
dx + 1

2

∫
∂K

RNSh,j ·
(
∂w
∂t
− rh

(
∂w
∂t

))
dx

+
∑
K∈Th

∫
K

div uh
(
∂r

∂t
−Rh

(
∂r

∂t

))
dx

+
∫

Ω
(ρ− ρh)

(
∂f
∂t
− ∂2uh

∂t2
−
(
∂uh
∂t
· ∇
)

uh − (uh · ∇)∂uh
∂t

)
·wdx

+
∫

Ω
(ρ− ρh)

(
f − ∂uh

∂t
− (uh · ∇)uh

)
· ∂w
∂t
dx

− 2
∫

Ω
(µ− µh)D

(
∂uh
∂t

)
: D(w)dx− 2

∫
Ω

(µ− µh)D(uh) : D
(
∂w
∂t

)
dx

+
∫

Ω

(
∂ρ

∂t
− ∂ρh

∂t

)(
f − ∂uh

∂t
− (uh · ∇)uh

)
·wdx− 2

∫
Ω

(
∂µ

∂t
− ∂µh

∂t

)
D(uh) : D(w)dx

+
∑
K∈Th

dαK
dt

∫
K
RNSh · ((ρhuh · ∇)rh(w) +∇Rh(r))dx

+
∑
K∈Th

αK

∫
K

∂

∂t
RNSh · ((ρhuh · ∇)rh(w) +∇Rh(r))dx

+
∑
K∈Th

αK

∫
K
RNSh ·

((
∂ρhuh
∂t

)
· ∇)rh(w) + (ρhuh · ∇)rh

(
∂w
∂t

)
+∇Rh

(
∂r

∂t

))
dx.

Using the Cauchy-Schwarz inequality and the isotropic interpolation error estimates
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yields

∫
Ω

g ·
(
∂U
∂t
− ∂uh

∂t

)
dx

≤ C

 ∑
K∈Th

h4
K

∥∥∥RNSh ∥∥∥2

L2(K)
+ h4

K

∥∥∥∥ ∂∂tRNSh
∥∥∥∥2

L2(K)
+ h3

K

∥∥∥RNSh,j ∥∥∥2

L2(∂K)
+ h3

K

∥∥∥∥ ∂∂tRNSh,j
∥∥∥∥2

L2(∂K)

+µ2
maxh

2
K‖ div uh‖2L2(K) + µ2

maxh
2
K

∥∥∥∥div ∂

∂t
uh
∥∥∥∥2

L2(K)

)1/2

(
‖w‖H2(Ω) +

∥∥∥∥∂w
∂t

∥∥∥∥
H2(Ω)

+ 1
µmax

‖r‖H1(Ω) + 1
µmax

∥∥∥∥∂r∂t
∥∥∥∥
H1(Ω)

)

+ C

 ∑
K∈Th

(
α2
K +

(
dαK
dt

)2)(∥∥∥RNSh ∥∥∥2

L2(K)
+
∥∥∥∥ ∂∂tRNSh

∥∥∥∥2

L2(K)

)
(
‖ρhuh‖2L∞(K) +

∥∥∥∥∂ρhuh
∂t

∥∥∥∥2

L∞(K)
+ µ2

max

))1/2

(
‖w‖H2(Ω) +

∥∥∥∥∂w
∂t

∥∥∥∥
H2(Ω)

+ 1
µmax

‖r‖H1(Ω) + 1
µmax

∥∥∥∥∂r∂t
∥∥∥∥
H1(Ω)

)

+ C̃

(
L(uh) + L

(
∂uh
∂t

))1/2

(
‖ρ− ρh‖2L2(Ω) + ‖µ− µh‖2L2(Ω)

)1/2
(
‖∇w‖L2(Ω) +

∥∥∥∥∇∂w
∂t

∥∥∥∥
L2(Ω)

)
+ C̃L(uh)1/2(∥∥∥∥∂ρ∂t − ∂ρh

∂t

∥∥∥∥2

L2(Ω)
+
∥∥∥∥∂µ∂t − ∂µh

∂t

∥∥∥∥2

L2(Ω)

)1/2

‖∇w‖L2(Ω).

We then conclude as in Part 1 by using the a priori estimates (4.36) and (4.37).

We are now in position to prove a final estimate for the velocity error ‖∇(u−uh)‖L2(Ω).

Proposition 4.12 (A posteriori error estimate for ∇(u− uh)).
Under the same assumption as Proposition 4.10, there exists a constant C1 > 0 that
depends only on Ω and the reference triangle, a constant C2 > 0 that depends only on Ω
and a constant C3 > 0 that is independent of the mesh size, but may depend on the mesh
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aspect ratio and Ω such that for all h ≤ h0 and all t ∈ (0, T ] we have

ρmin‖(u− uh)(t)‖2L2(Ω) + µmin

∫ t

0
‖∇(u− uh)(s)‖2L2(Ω)ds

≤ C1
(1− γ)2

∫ t

0

∑
K∈Th

(ηAK,u)2(s) + (ηAK,p)2(s) + (ηdiv
K )2(s)ds

+ C2ρ
2
maxL(uh)

µ2
min(1− γ)4

∫ t

0
(νIρ)2(s) + (νIµ)2(s)ds

+ C2L(uh)
µ2

min(1− γ)2

(
‖(ρ− ρh)(t)‖2L2(Ω) + ‖(µ− µh)(t)‖2L2(Ω)

)
+ C2

µ2
max + ρ2

max
µ3

min(1− γ)4

(
L(uh) + L

(
∂uh
∂t

))∫ t

0
‖(ρ− ρh)(s)‖2L2(Ω) + ‖(µ− µh)(s)‖2L2(Ω)ds

+ C2ρmaxL(uh)
µ2

min(1− γ)4

(
‖(ρ− ρh)(0)‖2L2(Ω) + ‖(µ− µh)(0)‖2L2(Ω)

)
+ ρmax

(1− γ)4 ‖(u− uh)(0)‖2L2(Ω) + C3ρmax
(1− γ)4

∑
K∈Th

(εIK,1)2(0) + (εIK,1)2(t)

+ C3ρ
2
max

µmin(1− γ)4

∫ t

0

∑
K∈Th

(εIK,1)2(s) + (εIK,2)2(s)ds. (4.41)

The error indicators ηAK,u, η2
K,p, η

div
K are given by Proposition 4.8 and the quantities L(uh),

L

(
∂uh
∂t

)
and νIρ , νIµ, εIK,1 and εIK,2 by Proposition 4.10.

Proof. The proof is straightforward by splitting the error u− uh into u−U and U− uh
and using Propositions 4.7, 4.8 and 4.10.

Remark 4.13. (i) Up to some higher order terms that are composed by the last five lines
of the right hand side of (4.41) the a posteriori estimate above is optimal, namely

giving an O(h) a posteriori error estimate of the error
∫ t

0
‖∇(u − uh)(s)‖2L2(Ω)ds,

that is the result we were expected since we use linear finite elements. We recall
that (see Propositon 4.20) that for the errors ‖ρ− ρh(t)‖L2(Ω) and ‖µ− µh(t)‖L2(Ω),
we were able to prove O(h3/2) a posteriori error estimates.

(ii) We prove everything under the three assumptions (4.33), (4.34) and (4.35) that
come from Proposition 4.10. In fact, we could have proven an estimate without
these assumptions, but additional constants that may depend on the exact and
approximated solutions (in particular derivatives of ρ and µ) will appear in the
estimation. Since they will only multiply higher order terms, this is not an issue in
itself, but we work under the above assumptions to be able to write the a posteriori
bound in a more "compact" form.

Final a posteriori error estimate

In the next Theorem, we summarize and combine the two a posteriori error estimates
of Proposition 4.20 for the transport equations and of Proposition 4.12 for the momentum
equations.

Theorem 4.14 (A posteriori error estimate for the complete Navier-Stokes/transport
problem).
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Let C∞ be given by

C∞ = L(uh) + L

(
∂uh
∂t

)
+ L(ρh) + L(µh),

where
L(uh) =

∥∥∥∥f − ∂uh
∂t
− (uh · ∇)uh

∥∥∥∥2

L∞(Ω×(0,T ))
+ ‖D(uh)‖2L∞(Ω×(0,T )),

L

(
∂uh
∂t

)
=
∥∥∥∥∥∂f
∂t
− ∂2uh

∂t2
−
(
∂uh
∂t
· ∇
)

uh − (uh · ∇)∂uh
∂t

∥∥∥∥∥
2

L∞(Ω×(0,T ))
+
∥∥∥∥D(∂uh

∂t

)∥∥∥∥2

L∞(Ω×(0,T ))
,

and
L(ρh) = ‖∇ρh‖2L∞(Ω×(0,T )), L(µh) = ‖∇µh‖2L∞(Ω×(0,T )).

Under the hypothesis (4.27), (4.33), (4.34) and (4.35), there exists three constant
C1, C2 and C3 such that for all h ≤ h0 and all t ∈ (0, T ]

ρmin‖(u− uh)(t)‖2L2(Ω) + µmin

∫ t

0
‖∇(u− uh)(s)‖2L2(Ω)ds

+ ‖(ρ− ρh)(t)‖2L2(Ω) + ‖(µ− µh)(t)‖2L2(Ω)

≤ C1

∫ t

0

∑
K∈Th

(ηAK,u)2(s) + (ηAK,p)2(s) + (ηdiv
K )2(s) + (ηAK,ρ)2(s) + (ηAK,µ)2(s)ds


+ C2

∫ t

0
(νIρ)2(s) + (νIµ)2(s)ds

+ C3
(
‖(u− uh)(0)‖2L2(Ω) + ‖(ρ− ρh)(0)‖2L2(Ω) + ‖(µ− µh)(0)‖2L2(Ω)

+
∑
K∈Th

(εIK,1)2(0) + (εIK,1)2(t) +
∫ t

0

∑
K∈Th

(εIK,1)2(s) + (εIK,2)2(s)ds

 . (4.42)

The constant C1 depends only on the reference triangle, Ω, T , µmax, µmin, ρmax, (1 − γ)−1

and the constant C∞. The constant C2 is independent of the mesh size or aspect ratio,
but may depend on Ω, T, ρmax, µmax, µmin, (1 − γ)−1 and the constant C∞. Finally the
constant C3 is independent of the mesh size but may depend on the aspect ratio and depends
Ω, T, ρmax, µmax, µmin, (1− γ)−1 and the constant C∞.

The error indicators ηAK,u, η2
K,p, η

div
K are given by Proposition 4.8, the higher order

quantities νIρ , νIµ, εIK,1 and εIK,2 by Proposition 4.10. The error indicators ηAK,ρ and η2
K,µ

are given by Proposition 4.2.

Proof. The proof is straightforward and consists to sum up the estimates of Proposition
4.2 and 4.12, and then use the Gronwall’s Lemma (in its integral form) to conclude.

Remark 4.15. (i) Up to change for the 3D anisotropic framework, the a posteriori
error estimate (4.42) can be derived for Ω ∈ R3. As for the case of the Navier-Stokes
equations with constant viscosity and density, the main change is to prove the dual
estimates (4.36) and (4.37) for Ω ∈ R3, that hold only in smooth domains or for
particular convex polygons.

(ii) As already commented several times, this type of a posteriori error estimate is not
standard since it involves, in particular, the exact solutions u, ρ and µ in the error
indicators ηAK,u, ηAK,ρ, ηAK,µ, νIρ , νIµ and the solution of the dual problem (4.26) in ηAK,p.
In practice, we do not consider ηAK,p and we use the ZZ post-processing to make
ηAK,u, η

A
K,ρ, η

A
K,µ computable.
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4.3 A posteriori error estimate for the time discretization
We now present the time discretization of the system of equations (4.6)-(4.7). The numer-
ical method is a combination of the schemes we use to solve independently the transport
and the Navier-Stokes equations, namely the Crank-Nicolson method and the multistep
BDF2 method.

Let N be an integer and 0 = t0 < t1 < t2 < ... < tN = T a partition of the
interval [0, T ]. We still denote by τn+1 = tn+1 − tn the current time step and by τ =
maxn=0,1,...,N−1 τ

n+1 the maximal time step. The numerical approximation reads : starting
from ϕ0 = ϕ0 and u0 = u0, we are looking for every n = 0, 1, 2, .., N −1 for (un+1, pn+1) ∈
(H1

0 (Ω))2 × L2
0(Ω) and ϕn+1 ∈ H1(Ω) the solution of

∫
Ω
ρn+1

(
un+1 − un

τn+1 + βn+1τn+1

2 ∂2un+1
)
· vdx +

∫
Ω
ρn+1((un+1 · ∇)un+1) · vdx

+
∫

Ω
2µn+1D(un+1) : D(v)dx−

∫
Ω
pn+1 div vdx =

∫
Ω
ρn+1fn+1 · vdx, ∀v ∈ (H1

0 (Ω))2,

−
∫

Ω
q div un+1dx = 0, ∀q ∈ L2

0(Ω), (4.43)

∫
Ω

(
ϕn+1 − ϕn

τn+1 + un+1/2 · ∇ϕn+1/2

)
ψ = 0,∀ψ ∈ L2(Ω), (4.44)

where for every n = 0, 1, 2, ...N

ρn = ρ1ϕ
n + (1− ϕn)ρ2, µn = µ1ϕ

n + (1− ϕn)µ2. (4.45)

We recall that for every n = 0, 1, 2, ...N − 1

∂2un+1 =
un+1−un
τn+1 − un−un−1

τn

τn+1+τn/2
, fn+1 = f(tn+1),

and βn+1 is given by
βn+1 = 1, n > 0, β1 = 0.

The goal is now to reproduce what we did in Chapter 2 and 3, and prove an a posteriori
error estimates of order 2 for the errors∫ t

0
‖∇(u− uτ )(s)‖2L2(Ω)ds, ‖(ρ− ρτ )(t)‖2L2(Ω), ‖(µ− µτ )(t)‖2L2(Ω),

where uτ , ρτ , µτ will be appropriate piecewise reconstruction of the numerical solutions.
The strategy to derive a temporal a posteriori error estimate is still the same and is
summarized below:

(i) We define piecewise reconstructions of the discrete solutions (here piecewise quadratic
in order to achieve the order 2).

(ii) We plug these reconstructions into the corresponding PDEs and we derive local time
error indicators (Propositions 4.16 and 4.17 for the velocity and Proposition 4.18 for
the density and viscosity).

(iii) Since we want an error bound for the sum of the numerical errors, we first prove pre-
liminary upper bounds for each error individually (Proposition 4.19 for the velocity
and Proposition 4.20 for the transported quantities).

(iv) We combine the last two propositions to obtain the final a posteriori error estimate
(Theorem 4.21).
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We recall here the notations and the piecewise numerical reconstruction we use. For
any (scalar or vector value) discrete quantity (vn)Nn=0, we note

vn+1/2 = vn+1 + vn

2 , ∂vn+1 = vn+1 − vn

τn+1 , n ≥ 0, ∂2vn+1 = ∂vn+1 − ∂vn
τn+1+τn/2

,≥ 1

and
∂̃3vn+1 = ∂2vn+1 − ∂2vn

τn+1 , n ≥ 2, ∂̃3v1 = ∂2v1.

The piecewise constant reconstruction vτ,0 of the sets (vn)Nn=0 reads

vτ,0(t) = vn+1, t ∈ [tn, tn+1], n = 0, 1, 2, ..., N − 1.

The piecewise linear reconstruction vτ,1 is given by

vτ,1(t) = vn+1 + (t− tn+1)∂vn+1, t ∈ [tn, tn+1], n = 0, 1, 2, ..., N − 1.

Note that we will use also the following midpoint formulation of vτ (that is completely
equal to the previous one)

vτ,1(t) = vn+1/2 + (t− tn+1/2)∂vn+1.

In case of a piecewise quadratic reconstruction, vτ,2 is given by

vτ,2(t) = vn+1+(t−tn+1)∂vn+1+ 1
2(t−tn)(t−tn+1)∂2vn+1, t ∈ [tn, tn+1], n = 1, 2, ..., N−1.

Observe that the linear part of the previous reconstruction can also be written with respect
to the middle of [tn, tn+1] yielding to the following definition of the quadratic reconstruction

vτ,2(t) = vn+1/2 + (t− tn+1/2)∂vn+1 + 1
2(t− tn)(t− tn+1)∂2vn+1.

We now derive the local time error indicators by plugging the numerical reconstructions
into the equations. This is done in the next three propositions. The proofs are technically
painful, and we encourage the reader to come back to the computations later on and to
focus first on the derivation of the error estimates presented in Propositions 4.19 and 4.20,
and their associations in Theorem 4.21.

Since the first step of the numerical method (4.43) consists to solve an Euler step for the
Navier-Stokes equations, we prove here below the generic error indicator corresponding
to Backward Euler discretization of the momentum equation. Then for our particular
method, this indicator will be used for n = 0 only.

Proposition 4.16 (Time error indicator for the momentum equation and the BDF1
method).
Let us consider the Backward Euler discretization of the momentum equation: for any
n = 0, 1, 2, 3, ..., N − 1, starting from u0 = u0, we look for (un+1, pn+1) the solution of

ρn+1∂un+1 + ρn+1(un+1 · ∇)un+1 + 2µn+1D(un+1)− pn+1 = ρn+1fn+1,
div un+1 = 0. (4.46)

Let uτ , ρτ , µτ and pτ be the piecewise reconstruction given by, for t ∈ [tn, tn+1], n =
0, 1, 2, ..., N − 1

uτ = uτ,1 = un+1 + (t− tn+1)∂un+1, pτ = pτ,0 = pn+1,
ρτ = ρτ,1 = ρn+1 + (t− tn+1)∂ρn+1, µτ = µτ,1 = µn+1 + (t− tn+1)∂µn+1.
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Then, for every n = 0, 1, 2, ..., N − 1 and any t ∈ (tn, tn+1), we have∫
Ω
ρτ
∂uτ
∂t
· vdx +

∫
Ω
ρτ ((uτ · ∇)uτ ) · vdx

+
∫

Ω
2µτD(uτ ) : D(v)dx−

∫
Ω
pτ div(v)

=
∫

Ω
ρτ f ·vdx+

∫
Ω
θn+1

u,1 ·vdx+
∫

Ω
θn+1

u,2 : D(v)dx+
∫

Ω
εn+1
u,1 ·vdx+

∫
Ω
εn+1
u,2 : D(v)dx,∀v ∈ (H1

0 (Ω))2,

where

θn+1
u,1 = (t−tn+1)

(
∂ρn+1(un+1 · ∇)un+1 + ρn+1(∂un+1 · ∇)un+1 + ρn+1(un+1 · ∇)∂un+1

)
− ρτ (f − fn+1)− (ρτ − ρn+1)fn+1 + (t− tn+1)∂ρn+1∂un+1,

θn+1
u,2 = 2(t− tn+1)

(
∂µn+1D(un+1) + µn+1D(∂un+1)

)
,

εn+1
u,1 = (t−tn+1)2

(
∂ρn+1∂un+1 · ∇)un+1 + ∂ρn+1(un+1 · ∇)∂un+1 + ρn+1(∂un+1 · ∇)∂un+1

)
+ (t− tn+1)3

(
∂ρn+1(∂un+1 · ∇)∂un+1

)
,

εn+1
u,2 = 2(t− tn+1)2

(
∂µn+1D(∂un+1)

)
.

Proof. For the time being and to lighten the notations, we opt for the following convention:
all the equations being linear with respect to the test functions, which are moreover time
independent, we choose to not write them. We set the following convention, that we will
use in the next propositions too.
Convention 1. (i) For any quantity involving the velocity or the right hand side, we

write:

(1) F (u) instead of
∫

Ω
F (u) · vdx,

(2) G(D(u)) instead of
∫

Ω
G(D(u)) : D(v)dx,

(3) F (f) instead of
∫

Ω
F (f) · vdx

(ii) For any quantity involving the pressure, we write: H(p) instead of
∫

Ω
H(p) div vdx.

(iii) For any quantity involving ρ or µ, we write:

(1) H(ρ) instead of
∫

Ω
H(ρ)ψdx,

(2) H(µ) instead of
∫

Ω
H(µ)ψdx.

Now n = 0, 1, 2, 3, ..., N − 1 and t ∈ (tn, tn+1). We compute

ρτ
∂uτ
∂t

+ ρτ (uτ · ∇)uτ + 2µτD(uτ )− pτ

= ρn+1∂un+1 + ρn+1(un+1 · ∇)un+1 + 2µn+1D(un+1)− pn+1 + (t− tn+1)∂ρn+1∂un+1

+ (t− tn+1)
(
∂ρn+1(un+1 · ∇)un+1 + ρn+1(∂un+1 · ∇)un+1 + ρn+1(un+1 · ∇)∂un+1

)
+ (t− tn+1)2

(
∂ρn+1∂un+1 · ∇)un+1 + ∂ρn+1(un+1 · ∇)∂un+1 + ρn+1(∂un+1 · ∇)∂un+1

)
+ (t− tn+1)3

(
∂ρn+1(∂un+1 · ∇)∂un+1

)
+ 2(t− tn+1)

(
∂µn+1D(un+1) + µn+1D(∂un+1)

)
+ 2(t− tn+1)2

(
∂µn+1D(∂un+1)

)
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Using the fact that un+1, pn+1ρn+1 and µn+1 solve the Euler step (4.46) it yields finally

ρτ
∂uτ
∂t

+ ρτ (uτ · ∇)uτ + 2µτD(uτ )− pτ = ρn+1fn+1 + (t− tn+1)∂ρn+1∂un+1

+ (t− tn+1)
(
∂ρn+1(un+1 · ∇)un+1 + ρn+1(∂un+1 · ∇)un+1 + ρn+1(un+1 · ∇)∂un+1

)
+ (t− tn+1)2

(
∂ρn+1∂un+1 · ∇)un+1 + ∂ρn+1(un+1 · ∇)∂un+1 + ρn+1(∂un+1 · ∇)∂un+1

)
+ (t− tn+1)3

(
∂ρn+1(∂un+1 · ∇)∂un+1

)
+ 2(t− tn+1)

(
∂µn+1D(un+1) + µn+1D(∂un+1)

)
+ 2(t− tn+1)2

(
∂µn+1D(∂un+1)

)
.

We then conclude by rewriting the force term as

ρn+1fn+1 = ρτ fn+1 − (ρτ − ρn+1)fn+1 = ρτ f − ρτ (f − fn+1)− (ρτ − ρn+1)fn+1.

We now prove a similar results when we consider a BDF2 step to solve the momentum
equations. We need to assume that either the pressure is well-defined at t = 0 or that the
initial pressure p0 is given and we define p0 = p0.
Proposition 4.17 (Time error indicator for the momentum equation and the BDF2
method).
Let (un, pn)Nn=0, (ρn, µn)Nn=0 be the solutions of (4.43)-(4.45). Let uτ , pτ , ρτ , µτ the piece-
wise reconstruction of the numerical solutions given by

uτ (t) = uτ,1(t) = u1 + (t− t1)∂u1, pτ (t) = pτ,0(t) = p1, t ∈ [t0, t1],

ρτ (t) = ρτ,1(t) = ρ1 + (t− t1)∂ρ1, µτ (t) = µτ,1(t) = µ1 + (t− t1)∂µ1, t ∈ [t0, t1],
and for all n = 1, 2, ..., N − 1 and all t ∈ [tn, tn+1] by

uτ (t) = uτ,2(t) = un+1 + (t− tn+1)∂un+1 + 1
2(t− tn)(t− tn+1)∂2un+1,

pτ (t) = pτ,1(t) = pn+1 + (t− tn+1)∂pn+1,

ρτ (t) = ρτ,2(t) = ρn+1 + (t− tn+1)∂ρn+1 + 1
2(t− tn)(t− tn+1)∂2ρn+1,

µτ (t) = µτ,2(t) = µn+1 + (t− tn+1)∂µn+1 + 1
2(t− tn)(t− tn+1)∂2µn+1.

Then, for every n = 0, 1, 2, ..., N − 1 and any t ∈ (tn, tn+1) it holds∫
Ω
ρτ
∂uτ
∂t
· vdx +

∫
Ω
ρτ ((uτ · ∇)uτ ) · vdx

+
∫

Ω
2µτD(uτ ) : D(v)dx−

∫
Ω
pτ div(v)

=
∫

Ω
ρτ f ·vdx+

∫
Ω
θn+1

u,1 ·vdx+
∫

Ω
θn+1

u,2 : D(v)dx+
∫

Ω
εn+1
u,1 ·vdx+

∫
Ω
εn+1
u,2 : D(v)dx,∀v ∈ (H1

0 (Ω))2,

where for n ≥ 1

θn+1
u,1 = (t−tn)(t−tn+1)ρn+1

(1
2(∂2un+1 · ∇)un+1 + (∂un+1 · ∇)∂un+1 + 1

2(un+1 · ∇)∂2un+1
)

+ (t− tn)(t− tn+1)∂ρn+1
(
∂un+1 · ∇)un+1 + (un+1 · ∇)∂un+1

)
+ 1

2(t− tn)(t− tn+1)∂2ρn+1(∂un+1 + (un+1 · ∇)un+1) + (t− sn)(t− tn+1)∂ρn+1∂2un+1

− τn

2 (t− tn+1)ρn+1∂̃3un+1

+ ρτ
(
fn+1 + (t− tn+1)∂fn+1 − f

)
− 1

2(t− tn)(t− tn+1)
(
∂2ρn+1fn+1 + ∂ρn+1∂fn+1

)
,
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where sn = tn, n ≥ 2, s1 = t1

2 ,

θn+1
u,2 = (t− tn)(t− tn+1)

(1
2∂

2µn+1D(un+1 + ∂µn+1D(∂un+1) + 1
2µ

n+1D(∂2un+1)
)
,

εn+1
u,1 = 1

2(t− tn)(t− tn+1)2ρn+1
(
(∂un+1 · ∇)∂2un+1 + (∂2un+1 · ∇)∂un+1

)
+
(
(t− tn+1)3 + (τn+1)2(t− tn+1)2

)
∂ρn+1(∂un+1 · ∇)∂un+1

+ 1
2(t− tn)(t− tn+1)2∂ρn+1

(
(un+1 · ∇)∂2un+1 + (∂2un+1 · ∇)un+1

)
1
2(t− tn)(t− tn+1)2∂2ρn+1

(
(un+1 · ∇)∂un+1 + (∂un+1 · ∇)un+1

)
+ 1

4(t− tn)2(t− tn+1)2ρn+1(∂2un+1 · ∇)∂2un+1

+ 1
2(t− tn)(t− tn+1)3∂ρn+1

(
(∂un+1 · ∇)∂2un+1 + (∂2un+1 · ∇)∂un+1

)
+ 1

2(t− tn)(t− tn+1)3∂2ρn+1(∂un+1 · ∇)∂un+1

+ 1
4(t− tn)2(t− tn+1)2∂2ρn+1

(
(un+1 · ∇)∂2un+1 + (∂2un+1 · ∇)un+1

)
+ 1

4(t− tn)2(t− tn+1)3∂ρn+1(∂2un+1 · ∇)∂2un+1

+ 1
4(t− tn)2(t− tn+1)3∂2ρn+1

(
(∂un+1 · ∇)∂2un+1 + (∂2un+1 · ∇)∂un+1

)
+ 1

8(t− tn)3(t− tn+1)3∂2ρn+1(∂2un+1 · ∇)∂2un+1

+ γn(t− tn+1)τ
nτn+1

2 ∂ρn+1∂̃3un+1

1
2(t− tn)(t− tn+1)(t− tn+1/2)∂2ρn+1∂2un+1

− 1
2(t− tn)(t− tn+1)2∂2ρn+1∂un+1 − 1

2(t− tn)(t− tn+1)2∂2ρn+1∂fn+1,

where γn = 1, n ≥ 2, γ1 = 0,

εn+1
u,2 = 1

2(t− tn)(t− tn+1)2
(
∂2µn+1D(∂un+1) + ∂µn+1D(∂2un+1)

)
+ 1

4(t− tn)2(t− tn+1)2
(
∂2µn+1D(∂2un+1)

)
.

and (at n = 0) we define,

θ1
u,1 = (t− t1)

(
∂ρ1(u1 · ∇)u1 + ρ1(∂u1 · ∇)u1 + ρ1(u1 · ∇)∂u1

)
− ρτ (f − f1)− (ρτ − ρ1)f1 + (t− t1)∂ρ1∂u1,

θ1
u,2 = 2(t− t1)

(
∂µ1D(u1) + µ1D(∂u1)

)
,

ε1u,1 = (t− t1)2
(
∂ρ1∂u1 · ∇)u1 + ∂ρ1(u1 · ∇)∂u1 + ρ1(∂u1 · ∇)∂u1

)
+ (t− t1)3

(
∂ρ1(∂u1 · ∇)∂u1

)
,

ε1u,2 = 2(t− t1)2
(
∂µ1D(∂u1)

)
.
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Proof. The step n = 0 is a direct consequence of Proposition 4.16. We now consider n ≥ 1
and t ∈ (tn, tn+1). We treat in one shot the cases n ≥ 2 and n = 1 by indicating in
the proof the minor modification that appears. We write everything with respect to the
Convention 1, presented at the beginning of the proof Proposition 4.16, in order to lighten
the notations.

We recall that the discretization of the momentum equation (for n ≥ 1) reads:

∂un+1 + τn+1

2 ∂2un+1 + ρn+1(un+1 · ∇)un+1 + 2µn+1D(un+1)− pn+1 = ρn+1fn+1. (4.47)

The recipe is still the same (and we are largely inspired by the computations we did in
the case of constant density and viscosity)

1. Compute straightforwardly the quantity

ρτ
∂uτ
∂t

+ ρτ (uτ · ∇)uτ + 2µτD(uτ )− pτ .

2. Gather all the terms that give the left hand side of (4.47) and can be eliminated
through it.

3. Gather all the terms that are already of the right order (here two).

4. Gather all the terms that are of higher order.

5. Gather all the terms that are of lower order (here one) and differentiate the numerical
method (4.47) to obtain an expression of them that are of the correct order.

6. Use as much as needed the a − a = 0 trick to make appear all the quantities of
interest.

We compute

ρτ
∂uτ
∂t

+ ρτ (uτ · ∇)uτ + 2µτD(uτ )− pτ

= ∂un+1 + τn+1

2 ∂2un+1 + ρn+1(un+1 · ∇)un+1 + 2µn+1D(un+1)− pn+1

+(t− tn+1)
(
ρn+1∂2un+1 + ∂ρn+1∂un+1

+ρn+1
(
(∂un+1 · ∇)un+1 + (un+1 · ∇)∂un+1

)
+2µn+1D(∂un+1) + 2∂µn+1D(un+1)− ∂pn+1

)

+(t− tn+1)(t− tn+1/2)∂ρn+1∂2un+1 + 1
2(t− tn)(t− tn+1)∂2ρn+1∂un+1

+(t− tn+1)2ρn+1(∂un+1 · ∇)∂un+1 + 1
2(t− tn)(t− tn+1)ρn+1

(
(∂2un+1 · ∇)un+1 + (un+1 · ∇)∂2un+1

)
+(t− tn+1)2∂ρn+1

(
(∂un+1 · ∇)un+1 + (un+1 · ∇)∂un+1

)
+1

2(t− tn)(t− tn+1)∂2ρn+1(un+1 · ∇)un+1

+(t− tn+1)22∂µn+1D(∂un+1) + 1
2(t− tn)(t− tn+1)

(
∂2µn+1D(un+1) + µn+1D(∂2un+1)

)
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+ 1
2(t− tn)(t− tn+1)2ρn+1

(
(∂un+1 · ∇)∂2un+1 + (∂2un+1 · ∇)∂un+1

)
+ (t− tn+1)3∂ρn+1(∂un+1 · ∇)∂un+1

+ 1
2(t− tn)(t− tn+1)2∂ρn+1

(
(un+1 · ∇)∂2un+1 + (∂2un+1 · ∇)un+1

)
1
2(t− tn)(t− tn+1)2∂2ρn+1

(
(un+1 · ∇)∂un+1 + (∂un+1 · ∇)un+1

)
+ 1

4(t− tn)2(t− tn+1)2ρn+1(∂2un+1 · ∇)∂2un+1

+ 1
2(t− tn)(t− tn+1)3∂ρn+1

(
(∂un+1 · ∇)∂2un+1 + (∂2un+1 · ∇)∂un+1

)
+ 1

2(t− tn)(t− tn+1)3∂2ρn+1(∂un+1 · ∇)∂un+1

+ 1
4(t− tn)2(t− tn+1)2∂2ρn+1

(
(un+1 · ∇)∂2un+1 + (∂2un+1 · ∇)un+1

)
+ 1

4(t− tn)2(t− tn+1)3∂ρn+1(∂2un+1 · ∇)∂2un+1

+ 1
4(t− tn)2(t− tn+1)3∂2ρn+1

(
(∂un+1 · ∇)∂2un+1 + (∂2un+1 · ∇)∂un+1

)
+ 1

8(t− tn)3(t− tn+1)3∂2ρn+1(∂2un+1 · ∇)∂2un+1

1
2(t− tn)(t− tn+1)(t− tn+1/2)∂2ρn+1∂2un+1

− 1
2(t− tn)(t− tn+1)2∂2ρn+1∂un+1

1
2(t− tn)(t− tn+1)2

(
∂2µn+1D(∂un+1) + ∂µn+1D(∂2un+1)

)
+ 1

4(t− tn)2(t− tn+1)2
(
∂2µn+1D(∂2un+1)

)
The red terms are all of order 2 and therefore we will not modify them and put it imme-
diately in θn+1

u,1 and θn+1
u,2 . The orange term are equal to ρn+1fn+1 that we keep aside for

the moment . The black terms are of higher order and will contribute to εn+1
u,1 and εn+1

u,2 .
Now we treat the blue terms. Taking the difference between (4.47) at two consecutive

steps and dividing by τn+1, we can prove that

ρn+1∂2un+1 + (t− tn+1)∂ρn+1∂un+1

ρn+1
(
(∂un+1 · ∇)un+1 + (un+1 · ∇)∂un+1

)
+ 2µn+1D(∂un+1) + 2∂µn+1D(un+1)− ∂pn+1

= ρn+1∂fn+1 + ∂ρn+1fn+1

+ τn+1ρn+1(∂un+1 · ∇)∂un+1 + τn+1∂ρn+1
(
un+1 · ∇)∂un+1 + (∂un+1 · ∇)un+1

)
− (τn+1)2∂ρn+1(∂un+1 · ∇)∂un+1 + τn+12∂µn+1D(∂un+1)

− τn

2 ρn+1∂̃3un+1 + τn+1

2 ∂ρn+1∂2un+1 + τnτn+1

2 ∂ρn+1∂̃3un+1.

Note that if n = 1, then the last two terms do not appear and are replaced by

τn+1 + τn

2 ∂ρn+1∂ρn+1∂2un+1.

This is due to the fact that we make the difference between the BDF2 method and the
first step, that is only the BDF1 method.
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Now multiplying by (t− tn+1), we get an expression for the blue terms an we put the
corresponding parts into θn+1

u,1 , θ
n+1
u,2 , ε

n+1
u,1 and εn+1

u,2 .
Finally, it remains to gather the terms involving the force term that are

ρn+1fn+1 + (t− tn+1)ρn+1∂fn+1 + (t− tn+1)∂ρn+1fn

that we rewrite as

ρτ f + ρτ
(
fn+1 + (t− tn+1)∂fn+1 − f

)
− 1

2(t− tn)(t− tn+1)ρτ
(
∂2ρn+1fn+1 + ∂ρn+1∂fn+1

)
− 1

2(t− tn)(t− tn+1)2∂2ρn+1∂fn+1.

We put all the terms of order 2 into θn+1
u,1 and the last one into εn+1

u,1 . This conclude the
proof.

We now prove a similar result for the transport problem and the Crank-Nicolson
method. The computations are very close to those performed in the Proposition 2.53
of Chapter 2, where the transport velocity field depends on the time. Here below, we will
use the midpoint formulation of the piecewise reconstructions, so that the computations
will be more direct.

Proposition 4.18 (Time error indicator for the transport equation and the Crank-Nicol-
son method).
Let (un)Nn=0, (ρn, µn)Nn=0 be the solutions of (4.43)-(4.45). Let uτ , pτ , ρτ , µτ the piecewise
reconstruction of the numerical solutions given by

uτ (t) = uτ,1(t) = u1/2 + (t− t1/2)∂u1, t ∈ [t0, t1],

ρτ (t) = ρτ,1(t) = ρ
1/2 + (t− t1/2)∂ρ1, µτ (t) = µτ,1(t) = µ

1/2 + (t− t1/2)∂µ1, t ∈ [t0, t1],
and for all n = 1, 2, ..., N − 1 and all t ∈ [tn, tn+1] by

uτ (t) = uτ,2(t) = un+1/2 + (t− tn+1/2)∂un+1 + 1
2(t− tn)(t− tn+1)∂2un+1,

ρτ (t) = ρτ,2(t) = ρn+1/2 + (t− tn+1/2)∂ρn+1 + 1
2(t− tn)(t− tn+1)∂2ρn+1,

µτ (t) = µτ,2(t) = µn+1/2 + (t− tn+1/2)∂µn+1 + 1
2(t− tn)(t− tn+1)∂2µn+1.

Then, for every n = 0, 1, 2, ..., N − 1 and any t ∈ (tn, tn+1) it holds∫
Ω

(
∂ρτ
∂t

+ uτ · ∇ρτ
)
ψdx =

∫
Ω
θn+1
ρ ψdx +

∫
Ω
εn+1
ρ ψdx,∀ψ ∈ L2(Ω),

where for n ≥ 1

θn+1
ρ =

(1
2(t− tn)(t− tn+1) + τn

2 (t− tn+1/2)
)(

∂2un+1∇ρn+1/2 + un+1/2 · ∇∂2ρn+1
)

+
(
(t− tn+1/2)2 + (τn+1 + τn)(t− tn+1/2)

)
∂un+1 · ∇∂ρn+1,

εn+1
ρ =

(1
2(t− tn)(t− tn+1)2 − (τn+1 + τn)τ

n

2 (t− tn+1/2)
)(

∂un+1 · ∇∂2ρn+1 + ∂2un+1 · ∇∂ρn+1
)

+
(

1
4(t− tn)2(t− tn+1)2 − (τn+1 + τn)(τn)2

4 (t− tn+1/2)
)
∂2un+1 · ∇∂2ρn+1,
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and (at n = 0)
θ1
ρ = (t− t1/2)

(
u1/2 · ∇∂ρ1 + ∂u1 · ∇ρ1/2

)
,

ε1ρ = (t− t1/2)2∂u1 · ∇∂ρ1.

For the viscosity, the same results holds, and we have for every n = 0, 1, 2, ..., N − 1 and
any t ∈ (tn, tn+1)∫

Ω

(
∂µτ
∂t

+ uτ · ∇µτ
)
ψdx =

∫
Ω
θn+1
µ ψdx +

∫
Ω
εn+1
µ ψdx,

where for n ≥ 1

θn+1
µ =

(1
2(t− tn)(t− tn+1) + τn

2 (t− tn+1/2)
)(

∂2un+1∇µn+1/2 + un+1/2 · ∇∂2µn+1
)

+
(
(t− tn+1/2)2 + (τn+1 + τn)(t− tn+1/2)

)
∂un+1 · ∇∂µn+1,

εn+1
µ =

(1
2(t− tn)(t− tn+1)2 − (τn+1 + τn)τ

n

2 (t− tn+1/2)
)(

∂un+1 · ∇∂2µn+1 + ∂2un+1 · ∇∂µn+1
)

+
(

1
4(t− tn)2(t− tn+1)2 − (τn+1 + τn)(τn)2

4 (t− tn+1/2)
)
∂2un+1 · ∇∂2µn+1,

and (at n = 0)
θ1
µ = (t− t1/2)

(
u1/2 · ∇∂µ1 + ∂u1 · ∇µ1/2

)
,

ε1µ = (t− t1/2)2∂u1 · ∇∂µ1.

Proof. We only prove the corresponding result for ρ, the one for µ being exactly the same
computation. Moreover, as we did previously in Propositions 4.16 and 4.17, we simplify
all the weak formulations by using the Convention 1.

The case n = 0 is straightforward by plugging the definition of ρτ on (t0, t1). Let n ≥ 1
and t ∈ (tn, tn+1). We proceed as previously and we gather together the terms of same
orders. We have

∂ρτ
∂t

+ uτ · ∇ρτ = ∂ρn+1 + un+1/2 · ∇ρn+1/2

+ (t− tn+1/2)
(
∂2ρn+1 + ∂un+1 · ∇ρn+1/2 + un+1/2 · ∇∂ρn+1

)
+ (t− tn+1/2)2∂un+1 · ∇ρn+1 + 1

2(t− tn)(t− tn+1)
(
∂2un+1∇ρn+1/2 + un+1/2 · ∇∂2ρn+1

)
1
2(t− tn)(t− tn+1)2

(
∂un+1 · ∇∂2ρn+1 + ∂2un+1 · ∇∂ρn+1

)
+ 1

4(t− tn)2(t− tn+1)2∂2un+1 · ∇∂2ρn+1.

The orange terms are eliminated using the numerical method (4.44). The red terms are
already of order 2 and the black terms of higher order. To express the blue terms as a
quantity of order 2, we consider the difference

∂ρn+1 + un+1/2 · ρn+1/2 − ∂ρn − un−1/2 · ∇ρn−1/2

and we divide by τn+1+τn/2. This yields to

∂2ρn+1 + un+1 − un−1

τn+1 + τn
· ∇ρn+1/2 + un−1/2 · ∇ρ

n+1 − ρn−1

τn+1 + τn
= 0,
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that we rewrite

∂2ρn+1 + un+1 − un−1

τn+1 + τn
· ∇ρn+1/2 + un+1/2 · ∇ρ

n+1 − ρn−1

τn+1 + τn

− (τn+1 + τ ) un+1 − un−1

τn+1 + τn
· ∇ρ

n+1 − ρn−1

τn+1 + τn
= 0

Using the identity
vn+1 − vn

τn+1 + τn
= vn+1 − vn

τn+1 − τn

2 ∂2vn+1

we finally arrive to

∂2ρn+1 +∂un+1 ·∇ρn+1/2 +un+1/2 ·∇∂ρn+1 = τn

2
(
∂2un+1 · ∇ρn+1/2 + un+1/2 · ∇∂2ρn+1

)
+ (τn+1 + τn)∂un+1 · ∇∂ρn+1 − (τn+1 + τn)τ

n

2
(
∂2un+1 · ∇∂ρn+1 + ∂un+1 · ∇∂2ρn+1

)
+ (τn+1 + τn)(τn)2

4 ∂2un+1 · ∇∂2ρn+1.

Multiplying by (t − tn+1/2) we obtain an expression for the blue terms, which concludes
the proof by gathering all the terms of same orders.

In the next two propositions, we state preliminary upper bounds that we will use to
prove an a posteriori error estimate for the numerical method (4.43)-(4.45).

Proposition 4.19 (Estimate for the velocity).
Let (u, p) be the exact velocity and pressure fields and ρ, µ the exact density and viscosity
that are solutions of (4.6)-(4.7).Let (un, pn)Nn=0, (ρn, µn)Nn=0 be the solutions of (4.43)-
(4.45). Let uτ , pτ , ρτ , µτ the piecewise reconstruction of the numerical solutions given by

uτ (t) = uτ,1(t) = u1 + (t− t1)∂u1, pτ (t) = pτ,0(t) = p1, t ∈ [t0, t1],

ρτ (t) = ρτ,1(t) = ρ1 + (t− t1)∂ρ1, µτ (t) = µτ,1(t) = µ1 + (t− t1)∂µ1, t ∈ [t0, t1],
and for all n = 1, 2, ..., N − 1 and all t ∈ [tn, tn+1] by

uτ (t) = uτ,2(t) = un+1 + (t− tn+1)∂un+1 + 1
2(t− tn)(t− tn+1)∂2un+1,

pτ (t) = pτ,1(t) = pn+1 + (t− tn+1)∂pn+1,

ρτ (t) = ρτ,2(t) = ρn+1 + (t− tn+1)∂ρn+1 + 1
2(t− tn)(t− tn+1)∂2ρn+1,

µτ (t) = µτ,2(t) = µn+1 + (t− tn+1)∂µn+1 + 1
2(t− tn)(t− tn+1)∂2µn+1.

Let assume finally that there exists 0 < γ < 1 and τ0 small enough such that for all τ ≤ τ0
we have

sup
t∈(0,T )

‖∇uτ (t)‖L2(Ω) ≤
γµmin

CSOBρmax
, (4.48)

where CSOB is the Sobolev constant of Proposition A.8 in Appendix. Then, there exists
a constant C > 0 that depends only on Ω such that for all τ ≤ τ0, it holds for all n =
0, 1, 2, ..., N − 1 and all t ∈ (tn, tn+1)

d

dt

∫
Ω
ρ(u− uτ )2(t)dx + µmin‖∇(u− uτ )(t)‖2L2(Ω)

≤ C

µmin(1− γ)2

(
‖θn+1

u,1 (t)‖2L2(Ω) + ‖θn+1
u,2 (t)‖2L2(Ω) + ‖εn+1

u,1 (t)‖2L2(Ω) + ‖εn+1
u,2 (t)‖2L2(Ω)

)
+ CL(uτ )
µmin(1− γ)2

(
(‖(ρ− ρτ )(t)‖2L2(Ω) + ‖(µ− µτ )(t)‖2L2(Ω)

)
, (4.49)
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where
L(uτ ) =

∥∥∥∥f − ∂uτ
∂t
− (uτ · ∇)uτ

∥∥∥∥2

L∞(Ω×(0,T ))
+ ‖D(uτ )‖2L∞(Ω×(0,T )),

and θn+1
u,1 , θ

n+1
u,2 , ε

n+1
u,1 and εn+1

u,2 are given by Proposition 4.17.

Proof. Let n = 0, 1, 2, .., N − 1 and t ∈ (tn, tn+1). We use the identity (4.24) and the fact
that div(u− uτ ) = 0. We have

1
2
d

dt

∫
Ω
ρ(u− uτ )2dx + 2

∫
Ω
µ|D(u− uτ )|2dx =∫

Ω
ρ
∂

∂t
(u− uτ ) · (u− uτ )dx +

∫
Ω
ρ(((u− uτ ) · ∇)(u− uτ )) · (u− uτ )dx

+ 2
∫

Ω
µD(u− uτ ) : D(u− uτ )dx−

∫
Ω

(p− pτ ) div(u− uτ )dx.

Using the fact that u, p, ρ, µ are the exact solution and rewriting the other terms, we have

1
2
d

dt

∫
Ω
ρ(u− uτ )2dx + 2

∫
Ω
µ|D(u− uτ )|2dx =∫

Ω
ρf · (u− uτ )dx−

∫
Ω
ρτ
∂uτ
∂t
· (u− uτ )dx−

∫
Ω
ρτ ((uτ · ∇)uτ ) · (u− uτ )dx

− 2
∫

Ω
µτD(uτ ) : D(u− uτ )dx +

∫
Ω
pτ div(u− uτ )dx

−
∫

Ω
(ρ− ρτ )∂uτ

∂t
· (u− uτ )dx−

∫
Ω

(ρ− ρτ )(uτ · ∇)uτ ) · (u− uτ )dx

− 2
∫

Ω
(µ− µτ )D(uτ ) : D(u− uτ )dx−

∫
Ω
ρ(((u− uτ ) · ∇)uτ ) · (u− uτ )dx.

Using Proposition 4.17, we finally have

1
2
d

dt

∫
Ω
ρ(u− uτ )2dx + 2

∫
Ω
µ|D(u− uτ )|2dx =

−
∫

Ω
(θn+1

u,1 + εn+1
u,1 ) · (u− uτ )dx−

∫
Ω

(θn+1
u,2 + εn+1

u,2 ) : D(u− uτ )dx

−
∫

Ω
(ρ− ρτ )

(
f − ∂uτ

∂t
− (uτ · ∇)uτ

)
· (u− uτ )dx

− 2
∫

Ω
(µ− µτ )D(uτ ) : D(u− uτ )dx−

∫
Ω
ρ(((u− uτ ) · ∇)uτ ) · (u− uτ )dx.

We now conclude by using Hölder, Poincaré and Young’s inequality, and the hypothesis
(4.52) to pass to the left hand side the quantity∫

Ω
ρ(((u− uτ ) · ∇)uτ ) · (u− uτ )dx.

Korn’s inequality yield the final result.

Proposition 4.20 (Estimate for the density and the viscosity).
Let u be the exact velocity field and ρ, µ the exact density and viscosity that are solutions
of (4.6)-(4.7). Let (un)Nn=0, (ρn, µn)Nn=0 be the solutions of (4.43)-(4.45). Let uτ , pτ , ρτ , µτ
the piecewise reconstructions of the numerical solutions given by

uτ (t) = uτ,1(t) = u1/2 + (t− t1/2)∂u1, t ∈ [t0, t1],

ρτ (t) = ρτ,1(t) = ρ
1/2 + (t− t1/2)∂ρ1, µτ (t) = µτ,1(t) = µ

1/2 + (t− t1/2)∂µ1, t ∈ [t0, t1],
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and for all n = 1, 2, ..., N − 1 and all t ∈ [tn, tn+1] by

uτ (t) = uτ,2(t) = un+1/2 + (t− tn+1/2)∂un+1 + 1
2(t− tn)(t− tn+1)∂2un+1,

ρτ (t) = ρτ,2(t) = ρn+1/2 + (t− tn+1/2)∂ρn+1 + 1
2(t− tn)(t− tn+1)∂2ρn+1,

µτ (t) = µτ,2(t) = µn+1/2 + (t− tn+1/2)∂µn+1 + 1
2(t− tn)(t− tn+1)∂2µn+1.

Then, for every n = 0, 1, 2, ..., N − 1 and any t ∈ (tn, tn+1), it holds

d

dt
‖(ρ− ρτ )(t)‖2L2(Ω) ≤ 2cn

(
‖θn+1
ρ (t)‖2L2(Ω) + ‖εn+1

ρ (t)‖2L2(Ω)

)
+
(
c−1
n + ‖∇ρτ‖2L∞(Ω×(0,T ))

2C2
P

µmin

)
‖(ρ− ρτ )(t)‖2L2(Ω) + µmin

2 ‖∇(u− uτ )(t)‖2L2(Ω),

(4.50)

where CP stands for the Poincaré constant of Ω and θn+1
ρ and εn+1

ρ are given by Proposition
4.18 and

cn =
{
T, n ≥ 1,
τ1, n = 0.

Likewise for the viscosity, it holds

d

dt
‖(µ− µτ )(t)‖2L2(Ω) ≤ 2cn

(
‖θn+1
µ (t)‖2L2(Ω) + ‖εn+1

µ (t)‖2L2(Ω)

)
+
(
c−1
n + ‖∇µτ‖2L∞(Ω×(0,T ))

2C2
P

µmin

)
‖(µ− µτ )(t)‖2L2(Ω) + µmin

2 ‖∇(u− uτ )(t)‖2L2(Ω),

(4.51)

where θn+1
µ and εn+1

µ are given by Proposition 4.18.

Proof. We only prove the result for the density, the same computations yield to the con-
clusion for the viscosity. Let n = 0, 1, 2, .., N − 1 and t ∈ [tn, tn+1]. Using the fact that u
is divergence free and that ρ satisfies the mass equation, we have

d

dt

1
2‖ρ− ρτ‖

2
L2(Ω) =

∫
Ω

∂

∂t
(ρ− ρτ )(ρ− ρτ )dx +

∫
Ω

(u · ∇(ρ− ρτ )) (ρ− ρτ )dx

= −
∫

Ω

∂ρτ
∂t

(ρ− ρτ )dx−
∫

Ω
(u · ∇ρτ ) (ρ− ρτ )dx

= −
∫

Ω

∂ρτ
∂t

(ρ− ρτ )dx−
∫

Ω
(uτ · ∇ρτ ) (ρ− ρτ )dx−

∫
Ω

((u− uτ ) · ∇ρτ ) (ρ− ρτ )dx.

By the Proposition 4.18, we then have

1
2
d

dt
‖ρ− ρτ‖2L2(Ω) = −

∫
Ω

(θn+1
ρ + εn+1

ρ )(ρ− ρτ )dx−
∫

Ω
((u− uτ ) · ∇ρτ ) (ρ− ρτ )dx.

We then conclude by using the Cauchy-Schwarz, Young’s and Poincaré inequalities, and
integrating over the time and we obtain

d

dt
‖ρ− ρτ‖2L2(Ω) ≤

2
ε

(
‖θn+1
ρ (t)‖2L2(Ω) + ‖εn+1

ρ (t)‖2L2(Ω)

)
+ (ε+ ‖∇ρτ‖2L∞(Ω×(0,T ))ε

′)‖(ρ− ρτ )(t)‖2L2(Ω)ds+ C2
P

ε′
‖∇(u− uτ )(t)‖2L2(Ω).

Anticipating the next proofs, we choose ε = c−1
n and ε′ = 2C2

P
µmin

.
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We now have all the ingredients to derive an a posteriori error estimate for the time
discretization (4.43)-(4.45). Observe that, contrary to what we were able to do in the
previous section for the spatial approximation, it is not possible to obtain a "close" estimate
for the velocity error independently of the viscosity/density errors, and inversely. This is
due to the fact that all the quantities have a priori the same order of convergence (namely
2), while in the case of the spatial approximation, the L2 norm ‖u−uh‖L2(Ω) converge faster
than ‖ρ− ρh‖L2(Ω) + ‖µ− µh‖L2(Ω), that converges in turn faster than ‖∇(u− uh)‖L2(Ω).
Therefore all the "bad" terms involving one unknown when trying to estimate the error for
another could be put in the higher order terms. For the time discretization, the estimate
must be done in "a one shot". Our final a posteriori error estimate is then contained in
the next Theorem

Theorem 4.21 (A posteriori error estimate in time for the Navier-Stokes equations with
variable density and viscosity).
Let (u, p) be the exact velocity and pressure fields and ρ, µ the exact density and viscosity
that are solutions of (4.6)-(4.7).Let (un, pn)Nn=0, (ρn, µn)Nn=0 be the solutions of (4.43)-
(4.45). Let uτ , pτ , ρτ , µτ the piecewise reconstructions of the numerical solutions given
by

uτ (t) = uτ,1(t) = u1 + (t− t1)∂u1, pτ (t) = pτ,0(t) = p1, t ∈ [t0, t1],

ρτ (t) = ρτ,1(t) = ρ1 + (t− t1)∂ρ1, µτ (t) = µτ,1(t) = µ1 + (t− t1)∂µ1, t ∈ [t0, t1],

and for all n = 1, 2, ..., N − 1 and all t ∈ [tn, tn+1] by

uτ (t) = uτ,2(t) = un+1 + (t− tn+1)∂un+1 + 1
2(t− tn)(t− tn+1)∂2un+1,

pτ (t) = pτ,1(t) = pn+1 + (t− tn+1)∂pn+1,

ρτ (t) = ρτ,2(t) = ρn+1 + (t− tn+1)∂ρn+1 + 1
2(t− tn)(t− tn+1)∂2ρn+1,

µτ (t) = µτ,2(t) = µn+1 + (t− tn+1)∂µn+1 + 1
2(t− tn)(t− tn+1)∂2µn+1.

Let assume finally that there exists 0 < γ < 1 and τ0 small enough such that for all τ ≤ τ0
we have

sup
t∈(0,T )

‖∇uτ (t)‖L2(Ω) ≤
γµmin

CSOBρmax
, (4.52)

where CSOB is the Sobolev constant of Proposition A.8 in Appendix. Then, there exists a
constant C > 0 that depends only on Ω such that for all τ ≤ τ0

ρmin‖(u−uτ )(T )‖2L2(Ω)+µmin

∫ T

0
‖∇(u−uτ )(s)‖2L2(Ω)ds+‖(ρ−ρτ )(T )‖2L2(Ω)+‖(µ−µτ )(T )‖2L2(Ω)

≤ C exp(C∞T )
N−1∑
n=0

∫ tn+1

tn
cn‖θn+1

ρ (t)‖2L2(Ω)+‖ε
n+1
ρ (t)‖2L2(Ω)+‖θ

n+1
µ (t)‖2L2(Ω)+‖ε

n+1
µ (t)‖2L2(Ω)dt

+ C

µmin(1− γ)2 exp(C∞T )
N−1∑
n=0

∫ tn+1

tn
‖θn+1

u,1 (t)‖2L2(Ω)+‖θ
n+1
u,2 (t)‖2L2(Ω)+‖ε

n+1
u,1 (t)‖2L2(Ω)+‖ε

n+1
u,2 (t)‖2L2(Ω)dt,

(4.53)

where

C∞ = Cc−1
n T + L(uτ , ρτ , µτ )T
µmin(1− γ)2 ,
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L(uτ , ρτ , µτ ) =
∥∥∥∥f − ∂uτ

∂t
− (uτ · ∇)uτ

∥∥∥∥2

L∞(Ω×(0,T ))
+ ‖D(uτ )‖2L∞(Ω×(0,T ))

+ ‖∇ρτ‖2L∞(Ω×(0,T )) + ‖∇µτ‖2L∞(Ω×(0,T )),

and
cn =

{
T, n ≥ 1,
τ1, n = 0.

The error indicators θn+1
ρ , θn+1

µ , θn+1
u,1 , θ

n+1
u,2 , ε

n+1
ρ , εn+1

µ , εn+1
u,1 , ε

n+1
u,2 are given by Propositions

4.17 and 4.18.

Proof. The proof is straightforward by summing the three estimates (4.50),(4.51) and
(4.49) and then use the Gronwall’s Lemma. Note that the initial errors

‖(ρ− ρτ )(0)‖L2(Ω), ‖(µ− µτ )(0)‖L2(Ω), ‖(u− uτ )(0)‖L2(Ω)

are zero, and then disappear from the estimate, since

ρτ (0) = ρ0 = ρ0 = ρ(0)

and similarly for µ and u.

Remark 4.22 (Final remarks for the derivation of a posteriori error estimates for the
Navier-Stokes equations with variable density and/or viscosity).
Here, as we already pointed out for the results of Section 4.2 where we consider only the
spatial approximation of the equations, we never use in fact the particular form of the
density or the viscosity, namely that

ρ = ρ1ϕ+ ρ2(1− ϕ), µ = µ1ϕ+ µ2(1− ϕ).

In fact we only use the fact that both the density and the viscosity satisfies the transport
equation and are bounded. Therefore, our results stay valid for more general cases of
non-homogeneous Navier-Stokes equations, with more general coefficients.

Observe finally that all the results presented in this section are independent of the
dimension and hold in Rd, for d = 2 ou d = 3.

4.4 A numerical method to solve a free surface problem with
stabilized anisotropic finite elements and order two time
advancing schemes

In this section, we present a fully discretized method to approximate the solution of (4.6)-
(4.7). We will use the methods introduced in the previous Chapters, namely stabilized
anisotropic finite elements for the spatial approximation and the BDF2/Crank-Nicolson
method to advance in time. The BDF2 method is chosen to solve the Navier-Stokes
equations and the Crank-Nicolson scheme for the transport equation. For the spatial
discretization, the Petrov-Galerkin method introduced in Chapter 3 is used to solve the
momentum equations, and the SUPG method described in Chapter 2 is used to solve
the transport of the density and the velocity. The numerical method reads as follows.
For all h > 0, let Th be a conformal triangle of Ω into triangles K of diameter hK ≤ h.
We choose Vh, Qh the discrete functional spaces introduced in Chapter 3 to approximate
the velocity and the pressure. For the transport of the phase, we shall use Ψh that is
simply the set of piecewise linear functions on Th. Let also N be a positive integer and
0 = t0 < t1 < ... < tN = T be a partition of [0, T ]. Then starting from u0

h = rh(u0)
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and ϕ0
h = rh(ϕ0), where u0, ϕ0 are the initial velocity and phase, we are looking for any

n = 0, 1, ..N − 1 for (un+1
h , pn+1

h ) ∈ Vh ×Qh and ϕn+1
h ∈ Ψh, the solutions of

∫
Ω
ρn+1
h

(
∂un+1

h + βn+1τn+1

2 ∂2un+1
h

)
· vhdx +

∫
Ω
ρn+1
h (un+1

h · ∇)un+1
h · vhdx

+
∫

Ω
2µn+1

h D(un+1
h ) : D(vh)dx−

∫
Ω
pn+1
h div vhdx

+
∑
K∈Th

αn+1
K

∫
K
RNSh,n+1 ·

(
ρn+1
h (un+1

h · ∇)vh
)
dx =

∫
Ω
ρn+1
h fn+1 · vhdx, ∀vh ∈ Vh, (4.54)

−
∫

Ω
qh div un+1

h dx +
∑
K∈Th

αK

∫
K
RNSh,n+1 · ∇qhdx = 0, ∀qh ∈ Qh, (4.55)

∫
Ω

(
ϕn+1
h − ϕnh
τn+1 + un+1/2

h · ∇
(
ϕn+1
h + ϕnh

2

))
ψhdx

+
∑
K∈Th

δn+1
K

∫
K
Rtransporth,n+1

(
un+1/2
h · ∇ψh

)
dx = 0,∀ψh ∈ Ψh, (4.56)

ρn+1
h = ρ1ϕ

n+1
h + ρ2(1− ϕn+1

h ), µn+1
h = µ1ϕ

n+1
h + µ2(1− ϕn+1

h ), (4.57)

where we note fn+1 = f(tn+1), βn+1 = 1, n > 0, β1 = 0 and the residuals of the equations.

RNSh,n+1 = ρn+1
h fn+1 − ρn+1

h

(
∂un+1

h + βn+1τn+1

2 ∂2un+1
h

)
− ρn+1

h (un+1
h · ∇)un+1

h

+ div(2µn+1
h D(un+1

h ))−∇pn+1
h , (4.58)

and

Rtransporth,n+1 = ϕn+1
h − ϕnh
τn+1 + un+1/2

h · ∇
(
ϕn+1
h + ϕnh

2

)
. (4.59)

αn+1
K and δn+1

K are respectively the Navier-Stokes equations and the transport equation
stabilization parameter that we choose as follows. We define

αn+1
K =

αλ2
2,K

µn+1
K ξ(Ren+1

K )
, α > 0,

where

ξ(Ren+1
K ) =

{
1 if Ren+1

K ≤ 1,
ReK if Ren+1

K ≥ 1,

Ren+1
K =

‖ρn+1
h un+1

h ‖L∞(K)λ2,K

µn+1
K

,

and µn+1
K denotes the minimal viscosity in the triangle K at the iteration n + 1. For the

transport, we choose

δn+1
K = δλ2,K

‖un+1
h ‖L∞(K)

, δ > 0,

and we set δK = 0 in case un+1
h is null in K. In practice, we choose α = 0.01 and δ = 0.5.
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Remark 4.23 (Computational aspect).
In practice, the problem (4.54)-(4.57) is decoupled in the implementation. For simplifica-
tion, let us consider only the time discretization. Then given the solutions at step n, we
compute the solutions at step n+ 1 by solving first the transport problem

ϕn+1 − ϕn

τn+1 + u∗ + un

2 · ∇
(
ϕn+1
h + ϕnh

2

)
= 0,

and then by solving one step of the Newton method applied to the momentum equation

ρn+1
(

un+1 − un

τn+1 + βn+1τn+1

2 ∂2un+1
)

+ ρn+1
(
(u∗ · ∇)un+1

h + (un+1
h · ∇)u∗

)
− div(2µn+1D(un+1)) +∇pn+1 = ρn+1fn+1 + ρn+1(u∗ · ∇)u∗,

where we choose u∗ as the extrapolated velocity of un+1 obtained through

u∗ = 2un − un−1.

Since we need u1, to initialize the method, we solve at the first step the momentum
equation with an Euler method, using ρ0 and µ0, and then we solve the transport equation
with the Crank-Nicolson method using u1/2 as transport velocity to obtain ρ1, µ1. Finally,
we start the splitting presented above from n = 1.

4.5 Error indicators and adaptive algorithm for two fluids
flows separated by a free surface

In this section, we first introduce the error indicators for the numerical method presented
in Section 4.4 that we will use later on in our adaptive algorithm. The choice of the
error indicators are motivated by the semi-discrete a posteriori error estimates obtained
in the previous sections, namely Theorems 4.14 and 4.21. We first define the spatial error
indicators ηAu and ηAρ , ηAµ that stand respectively for the anisotropic spatial velocity error
indicator and the density/viscosity anisotropic spatial error indicators.

We choose to not put all the terms of the a posteriori error estimates in our error
indicators, and rather to choose those that are "natural" for us, based on the previous
results obtained when solving each equations separately. This is obviously an arbitrary
choice, and a more careful numerical analysis of the complete error estimators should be
performed to determine which parts are the dominant ones. However, in practice, we
obtain significant results with our choices, the most important is to choose quantities
that contained informations about the spatial and temporal discretizations for all the
unknowns.

For the velocity, we set

ηAu =

N−1∑
n=0

∑
K∈Th

(ηAK,n,u)2

1/2

, (4.60)

where

(ηAK,n,u)2

= τn+1
(∥∥∥ρn+1

h f − ρn+1
h

(
∂βn+1un+1

h

)
− ρn+1

h (un+1
h · ∇)un+1

h + div(2µn+1
h D(un+1

h ))−∇pn+1
h

∥∥∥
L2(K)

+ 1
2
√
λ2,K

∥∥∥[µn+1
h D(un+1

h ) · n
]∥∥∥
L2(∂K)

)
ω̃K

(
ΠZZ
h un+1

h − un+1
h

)
,
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where ΠZZ
h stands for the ZZ post-processing and ω̃K for the simplified anisotropic form

given by (1.18). Here ∂βn+1 stands for

∂un+1
h + βn+1τn+1

2 ∂2un+1
h

where βn+1 = 0 if we solve an Euler step (n = 0) and 1 otherwise (n > 0).
The spatial error indicator for the density and the viscosity are given by

ηAρ =

N−1∑
n=0

∑
K∈Th

(ηAK,n,ρ)2

1/2

, ηAµ =

N−1∑
n=0

∑
K∈Th

(ηAK,n,µ)2

1/2

, (4.61)

where

(ηAK,n,ρ)2 = τn+1
∥∥∥∂ρn+1

h + un+1
h · ∇ρn+1

h

∥∥∥
L2(K)

ω̃K(ΠZZ
h ρn+1

h − ρn+1
h ),

and
(ηAK,n,µ)2 = τn+1

∥∥∥∂µn+1
h + un+1

h · ∇µn+1
h

∥∥∥
L2(K)

ω̃K(ΠZZ
h µn+1

h − µn+1
h ).

By anticipating what follows, we define also the local error indicators in the direction
xi, i = 1, 2, that are given by

(ηAi,K,n,u)2

= τn+1
(∥∥∥ρn+1

h f − ρn+1
h

(
∂βn+1un+1

h

)
− ρn+1

h (un+1
h · ∇)un+1

h + div(2µn+1
h D(un+1

h ))−∇pn+1
h

∥∥∥
L2(K)

+ 1
2
√
λ2,K

∥∥∥[µn+1
h D(un+1

h ) · n
]∥∥∥
L2(∂K)

)
ω̃i,K

(
ΠZZ
h un+1

h − un+1
h

)
,

and
(ηAi,K,n,ρ)2 = τn+1

∥∥∥∂ρn+1
h + un+1

h · ∇ρn+1
h

∥∥∥
L2(K)

ω̃i,K(ΠZZ
h ρn+1

h − ρn+1
h ),

(ηAi,K,n,µ)2 = τn+1
∥∥∥∂µn+1

h + un+1
h · ∇µn+1

h

∥∥∥
L2(K)

ω̃i,K(ΠZZ
h µn+1

h − µn+1
h ).

For the time error indicators, we define for the velocity one

ηTu =

N−1∑
n=0

∑
K∈Th

(ηTK,n,u)2

1/2

, (4.62)

where

(ηTK,0,u)2 = (τ1)3
∥∥∥ρ1

h

(
(u1

h · ∇)∂u1
h + (∂u1

h · ∇)u1
h

)∥∥∥2

L2(K)
+ (τ1)3

∥∥∥2µ1
hD(∂u1

h)
∥∥∥2

L2(K)
.

and for n ≥ 1

(ηTK,n,u)2 = (τn+1)5
∥∥∥ρn+1

h

(
(un+1

h · ∇)∂2un+1
h + (∂un+1

h · ∇)∂un+1
h + (∂2un+1

h · ∇)un+1
h

)∥∥∥2

L2(K)

+ (τn+1)5
∥∥∥2µn+1

h D(∂2un+1
h )

∥∥∥2

L2(K)
.

Finally, for the density/viscosity error indicators, we choose

ηTρ =

N−1∑
n=0

∑
K∈Th

(ηTK,n,ρ)2

1/2

, ηTµ =

N−1∑
n=0

∑
K∈Th

(ηTK,n,µ)2

1/2

, (4.63)
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where

(ηTK,0,ρ)2 = (τ1)4
∥∥∥u1/2

h · ∇∂ρ
1
h

∥∥∥2

L2(K)
, (ηTK,0,µ)2 = (τ1)4

∥∥∥u1/2
h · ∇∂µ

1
h

∥∥∥2

L2(K)
,

and for n ≥ 1

(ηTK,n,ρ)2 = T (τn+1)5
∥∥∥un+1/2

h · ∇∂2ρn+1
h

∥∥∥2

L2(K)
, (ηTK,n,µ)2 = T (τn+1)5

∥∥∥un+1/2
h · ∇∂2µn+1

h

∥∥∥2

L2(K)
.

We now define the complete spatial and temporal error indicators by

ηA =

N−1∑
n=0

∑
K∈Th

(ηAK,n)2

1/2

,

where
(ηAK,n)2 = (ηAK,n,u)2 + (ηAK,n,ρ)2 + (ηAK,n,µ)2

and

ηT =

N−1∑
n=0

∑
K∈Th

(ηTK,n)2

1/2

,

where
(ηTK,n)2 = (ηTK,n,u)2 + (ηTK,n,ρ)2 + (ηTK,n,µ)2.

Finally, the complete spatial error indicator in direction xi, i = 1, 2 is defined by

ηiA =

N−1∑
n=0

∑
K∈Th

(ηAi,K,n)2

1/2

,

where
(ηAi,K,n)2 = (ηAi,K,n,u)2 + (ηAi,K,n,ρ)2 + (ηAi,K,n,µ)2

The goal of the adaptive algorithm is then, for a prescribed tolerance, to build a
sequence of meshes and time step such that the estimated relative error satisfies

(1− αdist)TOL ≤

 (ηA)2 + (ηT )2∫ T
0 |||uhτ , ρhτ , µhτ |||

2
L2(Ω)dt

1/2

≤ (1 + αdist)TOL, (4.64)

where

|||uhτ , ρhτ , µhτ |||2L2(Ω) = ‖
√

2µh,τD(uh,τ )‖2L2(Ω) + ‖ρh,τ‖2L2(Ω) + ‖µh,τ‖2L2(Ω),

and uh,τ , ρh,τ , µh,τ are continuous (linear or quadratic) piecewise reconstructions of the
numerical approximations. The parameter αdist will be set to 0.25 or 0.125 in the numerical
experiments, and controls how close is the estimator from the tolerance. In practice, the
smaller is αdist the larger is the number of remeshings/changes of the time steps necessary
to reach (4.64). To satisfy (4.64), we write TOL as

TOL =
√
TOL2

S + TOL2
T

where TOLS is the tolerance for the spatial error and TOLT the tolerance for the temporal
error and we impose that for any n

(1− αdist)2TOL2
S

∫ tn+1

tn
|||uhτ , ρhτ , µhτ |||2L2(Ω)dt ≤

∑
K∈Th

(ηAK,n)2

≤ (1 + αdist)2TOL2
S

∫ tn+1

tn
|||uhτ , ρhτ , µhτ |||2L2(Ω)dt, (4.65)
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and

(1− αdist)2TOL2
T

∫ tn+1

tn
|||uhτ , ρhτ , µhτ |||2L2(Ω)dt ≤

∑
K∈Th

(ηTK,n)2

≤ (1 + αdist)2TOL2
T

∫ tn+1

tn
|||uhτ , ρhτ , µhτ |||2L2(Ω)dt. (4.66)

Finally, as we did in Chapter 1,2 and 3, to equidistribute the spatial error indicator in the
two directions of anisotropy, we define for every P ∈ Th the pointwise error estimators

(ηAP,n)2 =
∑
K∈Th
P∈K

(ηAK,n)2, (ηAi,P,n)2 =
∑
K∈Th
P∈K

(ηAi,K,n)2, i = 1, 2.

Then, sufficient conditions to obtain (4.67) is that for all P ∈ Th and for i = 1, 2,

3(1− αdist)2TOL2
SσP,n

2NP

∫ tn+1

tn
|||uhτ , ρhτ , µhτ |||2L2(Ω)dt ≤ (ηAi,P,n)2

≤ 3(1 + αdist)2TOL2
SσP,n

2NP

∫ tn+1

tn
|||uhτ , ρhτ , µhτ |||2L2(Ω)dt, (4.67)

where the equidistribution factor σP,n is given by

σP,n
(ηA1,P,n)2 + (ηA2,P,n)2

(ηAP,n)2 .

The adaptive algorithm, including the resmeshing and the interpolation between meshes,
follows the procedure described in Chapter 1,2 and 3. Concerning the interpolation of the
old solutions on the new generated meshes, we use the conservative algorithm of [5].

4.6 A first and academic numerical experiment

We now perform numerical experiments for an example with a known exact solution in
order to check the convergence of the method (4.54)-(4.57).

We consider the continuous equations (4.6) in a cavity Ω =]0, 1[2. The viscosity is kept
constant to a value of 1 and we compute the force term f such that the exact solutions
are given by

u(x, t) =
(
t(1 + 4x2(1− x2)) + 1

0

)
, p(x, t) = 1− x1,

and
ρ(x, t) = 1 + ϕ(x, t), ϕ(x, t) = Hε

(
x1 − 0.25−

∫ t

0
u1(x, t)dt

)
.

ρ varies smoothly from 1 to 2 and is almost constant except in a boundary layer (initially
situated at x1 = 0.25) that is controlled by ε. Here we recall thatHε is the smoothing of the
Heavyside graph (1.25), that we used several times already. This experiment can be seen
as a modified Poiseuille flow. For the momentum equations, we apply Dirichlet boundary
conditions on the left, bottom and top side of Ω and Neumann boundary conditions on
the right side, so we do not have to impose a pressure. For the transport of ϕ, we impose a
inflow boundary condition on the left side of the domain. Finally, the equations are solved
until T = 0.45.
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To check the convergence of the method, we introduce the following quantities :

eu =
(∫ T

0 ‖∇(u− uhτ )(t)‖2L2(Ω)dt
)1/2

,

ep =
(∫ T

0 ‖(p− phτ )(t)‖2L2(Ω)dt
)1/2

,

eρ = ‖(ρ− ρhτ )(T )‖L2(Ω),

where uhτ , phτ , ρhτ a continuous piecewise reconstruction of the numerical approximations
unh, pnh, ρnh.

To check the efficiency of our error indicators, we first compute eiZZu that stands for
the effectivity index of the ZZ post-processing of the gradient of the velocity and eiZZρ that
stands for the effectivity index of the ZZ post-processing of the gradient of the density.
Both are expected to be close to 1. We also compute the effectivity index

ei =
(

(ηA)2 + (ηT )2

e2
u + e2

ρ

)1/2

.

Note that to check the second order accuracy of ηT , we do not add the velocity contribution∑
K∈Th(ηTK,0,u)2 at the first time step (this error indicator being only of order 3/2 due to

the Euler step.)
Finally, to ensure that the semi-discrete a posteriori error estimate (4.41) yields an

upper bound of optimal order (in particular to determine the order of νIρ), we also compute
L2 error of the time derivative of the density

e∂tρ =
∥∥∥∥(∂ρ∂t − ∂ρhτ

∂t

)
(T )

∥∥∥∥
L2(Ω)

,

that is expected to behave as O(h3/2).
We first run a couple of experiments with constant time steps and fixed meshes. We

choose ε = 0.25.
The convergence results are reported in Table 4.1 where the mesh size and the time

step are chosen so that the error is mainly due to the space discretization. As expected eu
and ep are O(h) while eρ and e∂tρ are ' O(h1.8). All the errors indicators demonstrate the
expected behavior, namely ηAu = O(h) and ηAρ = O(h3/2). The ZZ post-processing of the
velocity is asymptotically exact and the global effectivity index ei stays close to a value
of 3. To test that the space error indicators are independent of the mesh aspect ratio, we
perform the same experiments with meshes of aspect ratio 10. The results are reported in
the Table 4.2.

eu ep eρ e∂tρ ηAu ηAρ ηTu ηTρ eiZZu eiZZρ ei

0.018 0.0067 0.0047 0.104 0.046 0.035 3.46e-6 0.0027 0.99 0.97 3.19
0.0089 0.0031 0.0012 0.025 0.023 0.013 1.28e-7 0.00018 1.00 0.95 3.00
0.0044 0.0013 0.00034 0.0062 0.012 0.0046 5.04e-9 1.16e-5 1.00 0.91 2.84

Table 4.1: Two fluids flows with a known solution. The aspect ratio is 1 and the first
grid has typical mesh size 0.05− 0.05 and the initial time step τ = 0.01. Then the grid is
refined in every direction by 2 and we choose τ = O(h2).
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eu ep eρ e∂tρ ηAu ηAρ ηTu ηTρ eiZZu eiZZρ ei

0.15 0.23 0.0064 0.099 0.48 0.016 5.42e-5 0.0029 0.98 0.92 3.23
0.077 0.088 0.0022 0.024 0.24 0.0053 1.73e-6 0.00019 0.98 0.92 3.15
0.0403 0.043 0.00076 0.0061 0.12 0.0018 1.35e-7 1.18e-5 0.99 0.88 3.04

Table 4.2: Two fluids flows with a known solution. The aspect ratio is 10 and the first
grid has typical mesh size 0.01 − 0.1 and the initial time step τ = 0.01. Then the grid is
refined in every direction by 2 and we choose τ = O(h2).

The second experiment consists to make the error due the space approximation negligi-
ble to check the second order accuracy in time of the method and the time error indicators.
The results are reported in the Table 4.3. It is shown that the errors and the time error
indicators are O(τ2). As previously observed for other time dependent equations, the
ZZ post-processing is less good (in this case for the transport problem), but this can be
attributed to the fact that the error due to the time discretization is dominating.

eu ep eρ ηAu ηAρ ηTu ηTρ eiZZu eiZZρ ei

0.018 0.012 0.032 0.047 0.033 8.97e-5 0.055 0.99 0.56 2.28
0.0045 0.0035 0.0087 0.012 0.0045 1.5e-5 0.017 0.99 0.49 2.18
0.0014 0.0013 0.0022 0.0029 0.00057 4.01e-6 0.0045 0.78 0.44 2.06

Table 4.3: Two fluids flows with a known solution. The aspect ratio is 1 and the first grid
has the mesh size 0.05 − 0.05 and the initial time step τ = 0.05. Then the time step is
divide by 2 and we choose h = O(τ2).

We now check the efficiency of our adaptive algorithm. We consider again the case
ε = 0.25. We recall the notations we use here below. We note:

• Nv : number of vertices of the mesh at final time.

• Nτ : number of time steps .

• Nm : number of remeshings.

• Nc : number of time step changes .

• ar : maximum aspect ratio at final time, the aspect ratio on an element K being
λ1,K/λ2,K .

• ar : Average aspect ratio at final time

We also denote by e =
(
e2

u + e2
ρ

)1/2
the total error. We run the adaptive algorithm

with TOLS = TOLT = TOL. The distribution parameter αdist is set to 0.25. The initial
grid is an isotropic grid of mesh size h = 0.1 and the initial time step τ = 0.01. The
convergence results are reported in the Table 4.4. It can been observed that the error, as
the indicators, are O(TOL). The number of time steps is multiplied by

√
2 as the tolerance

is divided by 2, showing that the method is of order 2 in time, even with moving meshes.
The number of vertices is approximatively multiplied by 3 when the tolerance is divided
by 2, so we are almost in an isotropic case. This can be explained by the fact that we must
refine the mesh with respect to both the velocity and the transport of the interface, that
are "orthogonal". The effectivity index of the ZZ post-processing of the velocity is still
close to 1, but the one of the density seems to stay constant around 0.5. To try to detect
the reasons of this behavior, we run the adaptive algorithm without adapting the time
step by setting TOL = TOLS and TOLT = 0. Instead we choose small time steps in such
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way τ = O(TOL2). The convergence result are reported in the Table 4.5. The effectivity
index corresponding to the transport problem is closer to 1 (around 0.8). Therefore, one
part of the explanation is that we must force the adaptive to choose small time steps
to guarantee a good convergence of the post-processing for the transport equation (for
instance by choosing TOLT � TOLS .) In Table 4.6, we report the result obtained when
TOLT = TOLS/10.

TOL e ηA ηT ei eiZZu eiZZρ ar ar Nv Nm Nτ Nc

0.125 0.085 0.13 0.12 2.09 0.85 0.26 10.37 2.58 512 11 4 13
0.0625 0.043 0.069 0.061 2.14 0.94 0.43 6.77 2.20 1361 6 7 12
0.03125 0.022 0.036 0.032 2.22 0.95 0.43 8.74 2.32 3545 6 11 8
0.015625 0.011 0.017 0.017 2.17 0.90 0.44 20.05 2.41 14932 10 17 18

Table 4.4: Two fluids flows with a known solution. Convergence results when the adaptive
algorithm is applied with TOLS = TOLT = TOL. The boundary layer is set to ε = 0.25.

TOL τ e ηA ηT ei eiZZu eiZZρ ar ar Nv Nm

0.0625 1e-3 0.025 0.071 2.6e-4 2.86 0.96 0.79 6.41 2.17 972 9
0.03125 2.5e-4 0.013 0.036 8.31e-5 2.78 0.98 0.78 10.61 2.26 4011 20

Table 4.5: Two fluids flows with a known solution. Convergence results when the adaptive
algorithm is applied with TOLS = TOL and TOLT = 0 The time step is chosen as
τ = O(TOL2). The boundary layer is set to ε = 0.25.

TOLS TOLT ηA ηT ei eiZZu eiZZρ ar ar Nv Nm Nτ Nc

0.125 0.0125 0.14 0.013 2.78 0.95 0.68 10.64 2.45 380 17 20 15
0.0625 0.00625 0.073 0.0064 2.92 0.97 0.79 8.82 2.26 1173 8 28 30
0.03125 0.003125 0.036 0.0032 2.89 0.98 0.83 10.49 2.41 3738 7 45 40

Table 4.6: Two fluids flows with a known solution. Convergence results when the adaptive
algorithm is applied with TOLT = TOLS/10. The boundary layer is set to ε = 0.25.

We change ε and we compute the solution to the same problem but where the boundary
layer is ε = 0.01. The convergence results are reported in the Table 4.7. The meshes and
the solution are represented in Figure 4.1 and Figures 4.2 and 4.3 for TOLS = 0.03125
and TOLT = 0.003125. Several conclusions can be made:

(i) The number of remeshings seems to depend on the tolerance.

(ii) The number of time steps increases drastically when the tolerance is divided by 2.

(iii) The post-processing of the density is clearly suboptimal, eiZZρ being close to 0.2.

We do not have any clear explanations for these bad results. This could be attributed
to the interpolation errors, that we cannot estimate, or simply to the fact that we are
approximating a really "stiff" problem, ε being small relatively to the complexity of the
present equations. Also the splitting between the two equations (momentum equation
and transport of the interface) could be a source of errors. In fact, we can observe in the
numerical experiments that eiZZρ starts close to 1, and decreases during the simulation. A
deeper numerical analysis should be performed to identify the sources of all theses errors.
We think that it could be interested to study

• The impact of the interpolation procedure between meshes.
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• The impact of the splitting.

• The impact of the amplitude and the non-divergence free nature of the approximated
velocity.

All these impacts are directly related to a bad conservation of the density during the
simulation. Nevertheless, Figure 4.1 indicates at least that the algorithm converges and
that the solution "looks" good. However, if we look carefully at the interface at final time,
we observe two things. First some oscillations occurs, secondly the mesh does not fit very
well to the interface and is, at first sight, too isotropic, see Figure 4.3 when we perform a
zoom on the final mesh, and Figure 4.4 where we represent the density along the x1 axes
at final time.

TOLS TOLT ηA ηT ei eiZZu eiZZρ ar ar Nv Nm Nτ Nc

0.125 0.0125 0.13 0.012 2.39 0.96 0.17 29 4.01 737 49 344 272
0.0625 0.00625 0.068 0.0061 2.64 0.97 0.22 78 6.99 1694 105 997 644
0.03125 0.003125 0.033 0.0031 3.15 0.88 0.32 145 8.5 5922 203 2240 1697

Table 4.7: Two fluids flows with a known solution. Convergence results when the adaptive
algorithm is applied with TOLT = TOLS/10. The boundary layer is set to ε = 0.01.

Figure 4.1: Approximated density obtained when using the adaptive algorithm with
TOLS = 0.03125 and TOLT = 0.003125. The boundary layer is ε = 0.01. t = 0 (left),
t = 0.45 (right).
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Figure 4.2: Adapted meshes obtained when using the adaptive algorithm with TOLS =
0.03125 and TOLT = 0.003125. The boundary layer is ε = 0.01. t = 0 (left), t = 0.45
(right).

Figure 4.3: Zoom on the final obtained when using the adaptive algorithm with TOLS =
0.03125 and TOLT = 0.003125. The boundary layer is ε = 0.01.
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Figure 4.4: Plot of the density at final time along the x-axe. The adaptive algorithm was
runned with TOLS = 0.03125 and TOLT = 0.003125. The boudary layer is ε = 0.01.

To counter these drawbacks, we can heuristically force the algorithm to mesh several
times in a row when a grid is accepted before going to the next time iteration. This
procedure produces meshes that are less "left behind" the solution. We also observe that
in this case, the oscillations around the interface are not present anymore, see Figures
4.5, 4.6 and Figure 4.7. This choice is obviously costly, since it implies to recompute
several times the solutions, but improves the quality of the solution and the mesh, that
is more anisotropic and has less points (here 3 times less for the present experiment). In
the present example, we only force one additional remeshing, and the resulting mesh is
already considerably better.

Figure 4.5: Final mesh obtained when using the adaptive algorithm with TOLS = 0.03125
and TOLT = 0.003125. The boundary layer is ε = 0.01. We force the algorithm to remesh
one more time when a mesh is accepted.
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Figure 4.6: Zoom on the final obtained when using the adaptive algorithm with TOLS =
0.03125 and TOLT = 0.003125. We force the algorithm to remesh one more time when a
mesh is accepted. The boundary layer is ε = 0.01.

Figure 4.7: Plot of the density at final time along the x1-axe. The adaptive algorithm was
runned with TOLS = 0.03125 and TOLT = 0.003125. We force the algorithm to remesh
one more time when a mesh is accepted. The boundary layer is ε = 0.01.

4.7 Application of the adaptive algorithm to the solutions
of some physical instabilities phenomena

In this section, we apply the adaptive strategy presented in Sections 4.5 and 4.6 to more
interesting situations. In every example, the flow is at rest at the beginning and the initial
interface function ϕ0 is of the type

ϕ0(x) = Hε(φ(x))

where Hε is the smoothing of the Heavyside graph (1.25). All the dynamical system
evolves only under the action of the gravitational force g. The two situations we will
consider are the following:
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(i) The growth of Rayleigh-Taylor and Kelvin-Helmoltz instabilities that appear be-
tween fluids of different densities and viscosities

(ii) The motion of rigid body into an incompressible fluid, that can be seen as a limit
problem when one of the two fluids has a "infinite" viscosity

We do not pretend to perform neither a deep physical analysis or numerical analysis
of this phenomena, we only consider them as an illustration for the performance of our
adaptive strategy. Some references will be mentioned, that treat these problems in a
more complete approach. The second situation will receive a special attention since it will
constitute the second part of this chapter.

Example 4.24 (Rayleigh-Taylor and Kelvin-Helmoltz instabilities).
Rayleigh-Taylor instabilities develop when an heavy fluid lies above a lighter one and starts
to move under the effect of the gravitation. We consider two layers of fluid with different
densities ρ1, ρ2 and equal viscosity µ = µ1 = µ2. The problem is solved in a rectangular
box Ω = (0, d)× (0, 4d) where we apply the natural boundary conditions u = 0 on the top
and bottom side and u · n = 0 on the left and right wall.

Initially, the two layers are at rest, and the free surface separated the two fluids is
slightly perturbed, choosing as initial condition for the phase function ϕ

ϕ0(x1, x2) = Hε

(
x2 − 2d− 0.1d cos

(2πx1
d

))
, (4.68)

Therefore, the initial distribution of density in Ω is a smooth function given by

ρ0 = ρ1ϕ0 + ρ2(1− ϕ0). (4.69)

The dynamic of the problem is mainly governed by the Atwood number and the
Reynolds number. They are defined in the following way : let ρmax = max(ρ1, ρ2), ρmin =
min(ρ1, ρ2), then we define the Atwood number

At = ρmax − ρmin
ρmax + ρmin

(4.70)

and the Reynolds number (we take the same definition as the one used in [53])

Re = ρming
1/2d3/2

µ
, (4.71)

where g is the intensity of the gravity field g. For the numerical experiments that follows,
we set d = 1 and we choose At = 0.2 that corresponds to a density ratio ρmax/ρmin = 1.5
or At = 0.5 that gives a ratio of 3. The Reynolds numbers is set to 100 or 1000.

When ρ1 > ρ2, that is to say with our choice for ϕ0 when the upper fluid is the heavier
one, it is well know that the situation is unstable and that the heavy fluid falls into the
light one, developing "mushroom" shapes (see Figure 4.8). The Atwood number controls
the length of the mushroom trunk and the Reynolds number the appearance of roll-ups.
A large amount of works is dedicated to the physical and mathematical studiers of the
Rayleigh-Taylor instabilities, we cite, among others, the classical references [30] and [40] for
the mathematical/physical approaches. From the numerical approximation perspectives,
the development of theses instabilities were carefully documented by Tryggvason [100] and
is still studied since this time [53].

For our experiments, we would like to capture the interface with accuracy, therefore
we choose the next parameters as follows :

1. To have a thin boundary layer, we set ε = 0.001.
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2. To capture the interface with accuracy, we force the error indicators to stay close to
the prescribed tolerance by setting αdist = 0.125.

3. Finally, as commented in the the previous section, to capture with accuracy the
interface, it is important to force the algorithm to mesh several times in a row when
a mesh is accepted. Therefore, we set the number of additional remeshings to 3.

4. Small time steps are necessary for avoiding oscillations and numerical instabilities
around the interface, therefore we choose TOLT ≤ TOLS .

We first check the convergence of the adaptive algorithm by comparing the evolution of the
interface and the meshes obtained with several choices for TOLS and TOLT for At = 0.2
and Re = 100. The initial grid is an isotropic grid of mesh size h = 0.025 and the initial
time step is chosen as τ = 0.001. The results are reported in the Figures 4.8 and 4.9. For
"large" tolerances, the symmetry of the solutions is not preserved and a lot of diffusion can
be observed around the boundary layer. In Figures 4.10 and 4.11, we zoom at the meshes
obtained with the finest tolerances. In Figure 4.12, we present the solution for At = 0.5
(Above fluid is 3 times heavier than the bottom fluid) and Re = 100. Finally, in Figure
4.13, we present the evolution of the solution when At = 0.2 and Re = 1000.

To conclude this example, we present two last experiments, one is the growth of the
Kelvin-Helmoltz instabilities, that appear along the interface when a shear of velocity
is present, the second is close to the shallow water experiment, where we observe the
evolution of waves at the surface of a water region. For the Kelvin-Helmoltz instability,
we start from a situation close what we did before, and we consider the evolution of two
fluids in a box Ω = (0, d) × (0, 4d) where we fix d = 0.1. The heavier fluid is put above
and has a density ρ1 = 1000 and viscosity µ1 = 1e− 3 while for the lighter fluid we choose
ρ2 = 780 and µ2 = 1.5e − 3. This corresponds to respectively water and ethanol. The
Atwood number is then 0.12 and the Reynolds number 5000. The initial interface function
is given by

ϕ0(x) = H0.001

(
x2 − 2d− 0.01d cos

(8πx1
d

))
.

The solution and the meshes are presented in Figure 4.14 at different times when the
adaptive algorithm is run where we choose as parameters TOLS = TOLT = 0.00125 and
αdist = 0.25. We still remesh 3 times in a row when a mesh is accepted by the algorithm.

The last experiment is inspired by the shallow water test case. We consider a small
cavity Ω =]−0.04, 0.04]×]−0.005, 0.005[ filled with water and air. At time t = 0, a "bump"
of water starts to move under the action of the gravity and waves appear, that rebound
on the walls of the cavity until the two fluids are at rest. We solve this problem using the
adaptive algorithm, where we set TOLS = TOLT = 0.025 and αdist = 0.25. The size of
the boundary layer is ε = 0.001 at the beginning. 3 additional remeshings are performed
at each step. In Figure 4.15, we represent the evolution of the free surface at several time
steps. In Figure 4.16, the corresponding meshes are presented.
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Figure 4.8: Evolution of the approximated interface function ϕnh obtained when using the
adaptive algorithm. The red phase is 1.5 heavier than the blue phase (At = 0.2) and
the Reynolds number is 100. Solution is presented at time t = 0, t = 1, t = 1.5, t = 2
(from left to right). Tolerances are set to TOLS = 0.125, TOLT = 0.0125 (top), TOLS =
0.0625, TOLT = 0.00625 (middle), TOLS = 0.03125, TOLT = 0.003125 (bottom).
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Figure 4.9: Evolution of the meshes generated when using the adaptive algorithm with
At = 0.2 and Re = 100. Solution is presented at time t = 0, t = 1, t = 1.5, t = 2
(from left to right). Tolerances are set to TOLS = 0.125, TOLT = 0.0125 (top), TOLS =
0.0625, TOLT = 0.00625 (middle), TOLS = 0.03125, TOLT = 0.003125 (bottom).
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Figure 4.10: Zoom at the meshes generated when using the adaptive algorithm with
TOLS = 0.03125 and TOLT = 0.003125. The Atwood number is 0.2 and the Reynolds
number 100. Meshes are presented at time t = 0 (top), t = 1 (middle), t = 1.5 (bottom).
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Figure 4.11: Zoom at the mesh at t = 2 generated when using the adaptive algorithm with
TOLS = 0.03125 and TOLT = 0.003125. The Atwood number is 0.2 and the Reynolds
number 100.

Example 4.25 (Motion of a rigid body in a incompressible fluid).
One method to simulate the motion of a rigid body into a incompressible fluid consists
to use a penalization approach [57]. More precisely, rather than simulate the interaction
between a viscous fluid and a solid body, we consider the latter as a fluid of viscosity 1/δ
with δ � 1. The evolution of a two fluids flow is then solved, and we can use the numerical
method presented above to approximate the solutions.

The data of the experiments are the following : we consider a square box Ω =]0, 0.1[2
in which a solid disk is falling. The disk has a radius r = 0.01 [m] for a density of 10′000
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Figure 4.12: Evolution of the approximated interface function ϕnh obtained when using the
adaptive algorithm. The red phase is 3 heavier than the blue phase (At = 0.5) and the
Reynolds number is 100. Solution is presented at time t = 0, t = 1, t = 2 (from left to
right). Tolerances are set to TOLS = 0.03125 and TOLT = 0.003125 .

Figure 4.13: Evolution of the approximated interface function ϕnh obtained when using the
adaptive algorithm. The red phase is 1.5 heavier than the blue phase (At = 0.2) and the
Reynolds number is 1000. Solution is presented at time t = 0, t = 1, t = 1.35, t = 1.65
(from left to right). Tolerances are set to TOLS = 0.03125 and TOLT = 0.003125 .
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Figure 4.14: Evolution of the solution and meshes when the adaptive algorithm is used to
simulate the fall of water into ethanol. Solution are presented at times t = 0, t = 1 and
t = 1.8 (from left to right). Kelvin-Helmoltz instabilies manifest in small waves appearing
along the interface.

Figure 4.15: Evolution of waves at the surface of water. The solution is presented at
time t = 0, 0.025, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1 [s] (from left to right, top to
bottom).
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Figure 4.16: Adapted meshes corresponding to the evolution of waves at the surface of
water. The solution is presented at time t = 0, 0.025, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
and 1 [s] (from left to right, top to bottom).

[kg/m3] and the surrounding fluid has a density of 1000 [kg/m3] for a viscosity of 1 [Pa],
that corresponds to glycerin. To model the disk, we penalize the fluid phase represented
it and set its viscosity to 10′000 [Pa]. At the beginning, the disk is at rest, centered at the
point (0.05, 0.05). The initial situation is represented through the initial interface function
that is given by

ϕ0(x) = H0.001

(
0.01−

√
(x1 − 0.05)2 + (x2 − 0.05)2

)
.

A remarkable result is proven in [56]: the disk will never touch the boundary of the
domain in a finite time. This is due to the fact that the pressure becomes infinite at the
bottom of the cavity, which prevents the disk to reach the bottom. To validate this result
numerically, we use our adaptive algorithm. In Figure 4.17, we represent the mesh, the
pressure and the velocity field that are computed at t = 0.14 [s] when the peak of pressure
is the highest. The adaptive algorithm was run with TOLS = 0.0025 and TOLT = 1.
Note that the time discretization is larger than the spatial one.

Our numerical simulation show indeed that the the disk does not collide with the
boundary of Ω. In the second part of this chapter, we will focus on this particular ex-
periment and present numerical results, obtained with another model, that also verify the
non-collision property.
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Figure 4.17: Falling disk into a viscous flow: zoom at the bottom of the cavity. Top :
pressure peak at time t = 0.14 ; the pressure is around 105 [Pa] under the disk. Middle :
amplitude of the velocity field at time t = 0.14 ; the disk is almost stopped and the fluid
under the disk is evacuated at a velocity around 1 [m/s]. Bottom : adapted mesh.
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Part 2. Application to the motion of a rigid body in a cavity
filled with an incompressible fluid

4.8 Problem statement and numerical method
In this part, we study the motion of a rigid disk of radius R inside a bounded, convex
cavity Ω ⊂ R2 filled with a fluid of constant viscosity and density. By sake of simplicity, we
choose Ω as a squared cavity. The fluid is governed by the incompressible Navier-Stokes
equations while the dynamic of the rigid disk is ruled by the Newton law. Given a final
time T ∈ (0,+∞], we denote by B(X(t)) the disk centered at X(t) where t ∈ [0, T ]. The
equations of motions reads [56]: find (X,u, p,V, ω) the solutions of

ρF
∂u
∂t

+ ρFu · ∇u− µF∆u +∇p = ρFg, (x, t) ∈ Ω \ B(X(t))× (0, T ],

div u = 0, (x, t) ∈ Ω \ B(X(t)× (0, T ],

u = 0, (x, t) ∈ ∂Ω× (0, T ],

u = V + ω(x−X(t))⊥, (x, t) ∈ ∂B(X(t))× (0, T ],

(4.72)

and 
−
∫
∂B(X(t))

(2µFD(u)− pI)ndσ = mV̇, t ∈ (0, T ],

−
∫
∂B(X(t))

(2µFD(u)− pI)(x−X(t))⊥ · ndσ = Jω̇, t ∈ (0, T ],
(4.73)

where g is gravitational acceleration, µF and ρF denote the viscosity and the density of
the fluid, m and J are the mass and the inertia of the disk. In the above system, (u, p)
are the velocity and pressure fields of the fluid and (V, ω) the translational and rotational
speeds of B(X(t)). In [56], it is shown that the disk will never touch the boundary of Ω
in a finite time. This is a really strange and unexpected behavior, and the goal of this
second part of Chapter 4 is too developed a numerical approach to verify it.

In [57], a penalization of the viscous stress tensor is introduced in order to model fluid-
rigid body interaction. We briefly explain the main idea. One may first observe that to
find a weak solution of (4.72) consists in particular to look at any t for u(t) ∈ HB(X(t))
where

HB(X(t)) =
{

v ∈ (H1
0 (Ω))2 : ∃(V, ω) ∈ R2 × R : v = V + ω(x−X(t))⊥ a.e. in B(X(t))

}
is the space of rigid motion inside B(X(t)). It can be shown (see for instance [96]) that
the space of rigid motion can be written as

HB(X(t)) =
{

v ∈ (H1
0 (Ω))2 : D(v) = 0 a.e. in B(X(t))

}
.

Moreover, it is shown (see for instance [77]) that constrains of the type D(u(t)) = 0 in
B(X(t)) can be well approximated by penalizing the momentum equation, which, roughly
speaking , consists to extend the velocity field inside the disk and considering the differ-
ential operator

div(2µX(t)D(u(t))), µX(t) = 1
ε
χB(X(t)) + µF (1− χB(X(t))), 0 < ε� 1,
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rather the laplacian term µF∆u(t). This means, physically, that the rigid body is modeled
as a fluid of "huge" viscosity.

The equations of motion (4.72), (4.73) can be then approximated by the following
two fluids flow system [57]. Starting from initial conditions (X0,u0), we are looking for
(X(t),u(t), p(t)) the solution of



ρX(t)
∂u
∂t

+ ρX(t)(u(t) · ∇)u(t)

−div(2µX(t)D(u(t))) +∇p(t) = ρX(t)g, in Ω× (0, T ],

div u(t) = 0, in Ω× (0, T ],

u = 0, on ∂Ω× (0, T ],

ρX(t) = ρBχB(X(t)) + ρF (1− χB(X(t))), in Ω× (0, T ],

µX(t) = 1
ε
χB(X(t)) + µF (1− χB(X(t))), in Ω× (0, T ],

Ẋ(t) = 1
πR2

∫
B(X(t))

u(t)dx, t ∈ (0, T ].

(4.74)

where 0 < ε � 1 is a penality parameter and ρB denotes the density of the disk. The
last equation in (4.74) is the Newton law for the conservation of the linear momentum.
Observe that we do not write any equation for the conservation of the angular momentum,
assuming that the disk falls without spinning. Moreover, observe that the formulation
(4.74) is exactly the one we were considering on the part 1 of the this chapter, the only
differences being that the transport equation is replaced by the evolution law of X(t).

Convergence of the solutions of (4.74) as ε goes to 0 was studied in [57, 77]. Note that
such a penalization method was also used to prove global existence of weak solutions to
the motion of rigid bodies in a viscous incompressible fluid [76].

Solutions of (4.74) are approximated using the backward Euler method and stabilized
anisotropic finite elements. The discretization of the Navier-Stokes equations are done
as it was proposed in Chapter 3 and the part 1 of Chapter 4 and we briefly recall it
below. Let T < ∞ be the final time. Let h > 0 and Th be a conformal triangulation
of Ω into triangles K of diameter hK ≤ h. We consider the finite spaces Vh and Qh
that are respectively the linear finite elements space for velocity and the linear finite
elements space for pressure. The discretization of the Navier-Stokes equations reads:
given a integer N > 0 and 0 = t0 < t1 < .... < tN = T a partition of [0, T ], starting from
X0
h = X0,u0

h = rh(u0), where rh stands for the Lagrange interpolant on Vh, for every
n = 0, 1, 2, ..., N − 1, we are looking for (un+1

h , pn+1
h ) ∈ Vh ×Qh the solution of

∫
Ω
ρXn+1

h

(
un+1
h − unh
τn+1 + (un+1

h · ∇)un+1
h

)
· vhdx+

∫
Ω
µXn+1

h
D(un+1

h ) : D(vh)dx

−
∫

Ω
pn+1
h div vhdx−

∫
Ω
qh div un+1

h dx

+
∑
K∈Th

αλ2
2,K

µFξ(ReK)

∫
K

(
ρXn+1

h
g− ρXn+1

h
(un+1

h · ∇)un+1
h −∇pn+1

h

)
·
(
ρXn+1

h
(un+1

h · ∇)vh +∇qh
)
dx

=
∫

Ω
ρXn+1

h
g · vh, ∀(vh, qh) ∈ Vh ×Qh, (4.75)
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where we note τn+1 = tn+1 − tn, the time step, α > 0 a positive dimensionless constant
and

ξ(ReK) =
{

1 if ReK ≤ 1,
ReK if ReK ≥ 1, (4.76)

where we define the local anisotropic Reynolds number ReK by

ReK =
ρB‖un+1

h ‖L∞(K)λ2,K

µF
, . (4.77)

The position of the disk is advanced solving

Xn+1
h −Xn

h

τn+1 = 1
πR2

∫
B(Xn+1

h
)
un+1
h dx. (4.78)

In the numerical experiments presented below, α is set to 0.1.

Remark 4.26 (Practical implementation).
In practice, equations (4.75) and (4.78) are decoupled by using a semi-implicit approxi-
mation. We first solve (4.75) with explicit coefficients ρXn

h
, µXn

h
instead of ρXn+1

h
, µXn+1

h
,

and then advance the disk center with

Xn+1
h −Xn

h

τn+1 = 1
πR2

∫
B(Xn

h
)
un+1
h dx.

The nonlinearity due the convective terms in (4.75) is handled at every iteration by solving
one step of a Newton method. Finally, ρXn

h
and µXn

h
are regularized using the approx-

imation (1.25) of the Heavyside graph: given ε′ > 0, we approximate the characteristic
function χB(Xn

h
) by the smooth function

χnε′(x) = Hε′ (R− |x−Xn
h|) .

Remark 4.27 (Fall of a sphere in 3D).
We focus on the 2D situation, but the "non-collision" results of [56] also holds in 3D
when considering the fall of a sphere inside a cubic cavity Ω and a similar numerical
approximation can be used to verify it. Indeed, the model (4.74) can be written for
Ω ∈ R3, in particular one may only have to change the equation for the motion of X(t) by

Ẋ(t) = 3
4πR3

∫
B(X(t))

u(t)dx.

The numerical method (4.75)-(4.78) reads then the same for the 3D case, we mainly
have to replace λ2,K by λ3,K in the stabilization parameter. In the following pages, a
derivation of error indicators will be done; these latter, and the computations presented
to derive them, are also generalizable to R3.

4.9 Error estimates

In this section, we prove a posteriori error estimates for the time and the space discretiza-
tion of a simplified model. Namely, we consider the steady Stokes version of equations
(4.74), that is to say, starting from the initial position X0, we are looking for the solution
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(X(t),uX(t), pX(t)) of

−div(2µX(t)D(uX(t))) +∇pX(t) = ρX(t)g, in Ω× [0, T ],

div uX(t) = 0, in Ω× [0, T ],

uX(t) = 0, on ∂Ω× [0, T ],

ρX(t) = ρBχB(X(t)) + ρF (1− χB(X(t))), in Ω× [0, T ],

µX(t) = 1
ε
χB(X(t)) + µF (1− χB(X(t))), in Ω× [0, T ],

Ẋ(t) = 1
πR2

∫
B(X(t))

uX(t)dx, t > 0,

X(0) = X0.

(4.79)

Note that here, and to simplify, we do not impose uX(0), but we assume that it is given
by solving the Stokes equations at t = 0. The solutions to (4.79) are then completely
determined by the initial position X0. To avoid trivial solutions, we assume that X0 is far
enough from the boundary of Ω, that is to say d(B(X0), ∂Ω) > 0.

The above simplified model can be understood as a rather good approximation of the
full model (4.74) since we work with quite highly viscous fluid and the "non-collision"
result is also true for the steady Stokes equations [56].

4.9.1 Semi-discrete error estimate for the time discretization

We now prove a semi-discrete a posteriori error estimate for the time discretization of the
simplified problem (4.79). We choose the forward Euler method. Given a integer N > 0
and 0 = t0 < t1 < .... < tN = T , starting from X0, for every n = 0, 1, 2, ..., N − 1, we ap-
proximate the exact position of the center X(tn+1) by Xn+1, and for every n = 0, 1, 2, ...N,
the exact Stokes solutions (uX(tn), pX(tn)) by the approximated solutions (uXn , pXn), ob-
tained by solving 

−div(2µXnD(uXn)) +∇pXn = ρXng, in Ω,

div uXn = 0, in Ω,

uXn = 0, on ∂Ω,

ρXn = ρBχB(Xn) + ρF (1− χB(Xn)), in Ω,

µXn = 1
ε
χB(Xn) + µF (1− χB(Xn)), in Ω,

Xn+1 −Xn

τn+1 = 1
πR2

∫
B(Xn)

uXndx,

X0 = X0

(4.80)

We do not claim anything on the well-posedness of problems (4.79) and (4.80), neither on
the a priori error analysis of the numerical method. So far, we will assume that there exists
a unique solution (uX(t), pX(t)) ∈ C([0, T ]; (H1

0 (Ω))2) × L2((0, T );L2
0(Ω)) associated with
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a unique solution X(t) ∈ C1[0, T ] to problem (4.79). Moreover, we assume that ε is small
enough such that d(B(X(t); ∂Ω) > 0 for all t ∈ [0, T ]. This is a reasonable assumption
since we can expect that the solutions of the penalized problem (4.79) converges to the
"non colliding" solution of [56].

We now prove a semi-discrete a posteriori error estimate for the problem (4.79) and
its numerical approximation (4.80). We make a few comments before presenting the main
proofs. Observe that problem (4.79) reads in fact: starting from X(0) = X0 find X(t), for
t > 0, such that

Ẋ(t) = F(X(t)),
where, for any x ∈ R2 such that B(x) is compactly supported in Ω, F(x) is given by

F(x) = 1
πR2

∫
B(x)

uxdx (4.81)

with ux being the unique solution to the Stokes problem

−div(2µxD(ux) +∇px = ρxg, in Ω,

div ux = 0, in Ω,

ux = 0, on ∂Ω,

ρX(t) = ρBχB(x) + ρF (1− χB(x)), in Ω,

µX(t) = 1
ε
χB(x) + µF (1− χB(x)), in Ω.

From this point of view, deriving a temporal a posteriori error estimate for the equa-
tions (4.79) and their numerical approximations (4.80) reduces to know how prove an a
posteriori error estimate for the forward Euler approximation of the autonomous ODE
y′ = f(y). This can be done provided f is Lipschitz continuous. Coming back to our
particular problem, the main work will consist then to prove that F given by (4.81) is Lip-
schitz. This is achieved in the Theorem B.10 in the Appendix. In the next proposition,
we show the main consequence of this result, that will be used to prove the a posteriori
error bound. We work under the assumption that the numerical method (4.80) converges.

Proposition 4.28.
Let (X(t),uX(t)), t ∈ [tn, tn+1] be the solution of (4.79) and (Xn,uXn), n = 0, 1..., N the
solution of (4.80). Let τ = max

n=0,1,2,...,N−1
tn+1− tn be the maximal time step size and let us

assume that for all n = 1, 2, 3, ...N, Xn converges to X(tn) as τ goes to 0. Then, if τ is
small enough, there exists C > 0 depending only on Ω such that for all t ∈ [tn, tn+1]∣∣∣∣∣ 1

πR2

∫
B(X(t))

uX(t)dx−
1

πR2

∫
B(Xn)

uXndx

∣∣∣∣∣ ≤ C ρB|g|
Rµ2
Fε

|X(t)−Xn|
d(B(X(t)); ∂Ω) , (4.82)

Proof. The proof of (4.82) is a direct consequence of Theorem B.10 in the Appendix
applied to problems (4.79) and (4.80). We only have to check that the ratio

|X(t)−Xn|
d(B(X(t)); ∂Ω)

is small enough and that
d(B(Xn); ∂Ω) > 0,

which is true since d(B(X(t); ∂Ω) > 0 and that the numerical method converges.
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We now introduce the piecewise linear reconstruction Xτ defined by

Xτ (t) = Xn + (t− tn)Xn+1 −Xn

τn+1 , t ∈ [tn, tn+1], n = 0, 1, 2, ..., N − 1. (4.83)

The main result of this section is semi-discrete a posteriori error estimate contained in the
theorem
Theorem 4.29 (A semi-discrete a posteriori error estimate for the time approximation
of the motion of a rigid disk into an incompressible fluid).
Let e(t) = X(t)−Xτ (t). Under the assumptions of Proposition 4.28, there exists a constant
C > 0 depending only on Ω, such that

|e(T )| ≤ CL
N−1∑
n=0

∫ tn+1

tn

1
d(B(X(t); ∂Ω))(t−tn)

∣∣∣∣∣Xn+1 −Xn

τn+1

∣∣∣∣∣ exp
(∫ T

t

CL

d(B(X(s)); ∂Ω)ds
)
dt

(4.84)

where L = ρB|g|
Rµ2
Fε
.

Proof. Let n ≥ 0 and t ∈ (tn, tn+1). Using (4.79) and (4.80), we have

ė(t) = 1
πR2

∫
B(X(t))

uX(t)dx−
1

πR2

∫
B(Xn)

uXndx.

Taking the scalar product of the last equation with e(t), using the Cauchy-Schwarz in-
equality and the Proposition 4.28 yields

1
2
d

dt
|e(t)|2 ≤ C L

d(B(X(t)); ∂Ω) |X(t)−Xn||e(t)|.

Without loss of generality, we assume that e(t) 6= 0, t ∈ (tn, tn+1). Therefore, dividing by
|e(t)| we get

d

dt
|e(t)| =

d

dt
|e(t)|2

2|e(t)| ≤ C
L

d(B(X(t)); ∂Ω) |X(t)−Xn|,

where we use that |e(t)| =
√
|e(t)|2. Applying the triangle inequality, we obtain

d

dt
|e(t)| ≤ C L

d(B(X(t)); ∂Ω) |Xτ −Xn|+ C
L

d(B(X(t)); ∂Ω) |e(t)|,

Multiplying the last inequality by exp
(
−
∫ t

0
CL

d(B(X(s));∂Ω)ds
)
, and integrating from tn to

tn+1

|e(tn+1)| exp
(
−
∫ tn+1

0

CL

d(B(X(t)); ∂Ω)dt
)
− |e(tn)| exp

(
−
∫ tn

0

CL

d(B(X(t)); ∂Ω)dt
)

≤ CL
∫ tn+1

tn

( |Xτ (t)−Xn|
d(B(X(t); ∂Ω))

)
exp

(
−
∫ t

0

CL

d(B(X(s)); ∂Ω)ds
)
dt,

Summing up over n leads to

|e(T )| ≤ CL
N−1∑
n=0

∫ tn+1

tn

|Xτ (t)−Xn|
d(B(X(t); ∂Ω)) exp

(∫ T

t

CL

d(B(X(s)); ∂Ω)ds
)
dt,

where we use that e(0) = 0 to get rid of the error at t = 0. The desired estimate is then
obtained by using the definition of Xτ .

Remark 4.30.
The bound (4.84) is not a standard a posteriori error estimate since it involves the exact
solution X(t). In practice, and to obtain a computable error indicator, we will replace
d(B(X(s)); ∂Ω) by d(B(Xτ (s)); ∂Ω)
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4.9.2 Semi-discrete error estimate for the space approximation

In the section, we prove a (anisotropic) semi-discrete a posteriori error estimate for the
finite elements approximation of the simplified problem that are the Stokes equations
(4.79). We will assume that the exact trajectory X(t) is a priori known and we will focus
on the approximation at each t ∈ [0, T ] of the Stokes equations

−div(2µX(t)D(uX(t))) +∇pX(t) = ρX(t)g, in Ω,

div uX(t) = 0, in Ω,

uX(t) = 0, on ∂Ω,

ρX(t) = ρBχB(X(t)) + ρF (1− χB(X(t))), in Ω,

µX(t) = 1
ε
χB(X(t)) + µF (1− χB(X(t))), in Ω,

(4.85)

The equations (4.85) will be approximated by anisotropic, stabilized, piecewise continuous
finite elements. To stay in the framework of the previous chapters, we will do a last
simplification and regularize the characteristic function χB(X(t)) by using as approximation

χε′(x, t) = Hε′ (R− |x−X(t)|) ,

see Example 4.25.
Defining the smooth functions

ρ(x, t) = ρBχε′(x, t) + ρF (1− χε′(x, t)), µ(x, t) = 1
ε
ϕε′(x, t) + µF (1− ϕε′(x, t)),

then instead of (4.85), we consider for each t ∈ [0, T ] the steady Stokes equations with
smooth coefficients

−div(2µ(t)D(u(t))) +∇p(t) = ρ(t)g, in Ω,

div u(t) = 0, in Ω,

u(t) = 0, on ∂Ω,

(4.86)

The variational formulation of the previous equations reads: for each t ∈ [0, T ] find
(u(t), p(t)) ∈ (H1

0 (Ω))2 × L2
0(Ω)

∫
Ω

2µ(t)D(u(t)) : D(v)dx−
∫

Ω
p(t) div vdx =

∫
Ω
ρ(t)g · vdx, ∀v ∈ (H1

0 (Ω))2,

−
∫

Ω
q div u(t)dx = 0, ∀q ∈ L2

0(Ω). (4.87)

The well-posedness of (4.87) is guaranteed by the smoothness of ρ and µ, see for instance
[21] or Theorem B.4. Observe that both µ and ρ are bounded by construction. In partic-
ular, one have

µmin ≤ µ(x, t) ≤ µmax, ∀(x, t), µmin = min(µF , 1/ε), µmax = max(µF , 1/ε).
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Now, the equations (4.87) are discretized as follows: for all h > 0, let Th be a conformal
triangulation of Ω with triangles of diameter hK ≤ h. For any t ∈ [0, T ], we look for
(uh(t), ph(t)) ∈ Vh ×Qh the solution of∫

Ω
2µ(t)D(uh(t)) : D(vh)dx−

∫
Ω
ph(t) div vhdx =

∫
Ω
ρ(t)g · vhdx, ∀vh ∈ Vh,

−
∫

Ω
qh div uh(t)dx +

∑
K∈Th

αλ2
2,K
µF

∫
K

(ρ(t)g−∇ph(t)) · ∇qhdx = 0, ∀qh ∈ Qh. (4.88)

We now prove an a posteriori error estimate for the numerical error ‖∇(u−uh)‖L2(Ω).
The proof follows mainly the proof of Theorem 3.6 for the steady Navier-Stokes equations,
taking in account the variation of the coefficient as in Proposition 4.8. Here the situation
is simpler since we only consider the (linear) Stokes equations. Therefore, we will be quite
concise since the main arguments of the proof were already presented. Note also that the
proof is presented for the case of the particular problem (4.86), but works also for more
general Stokes equations with smooth variable coefficients.

As for the case of the steady Navier-Stokes equations, the pressure estimate is recovered
through a dual problem. For any t ∈ [0, T ], we look for (w(t), r(t)) ∈ (H1

0 (Ω))2 × L2
0(Ω)

the weak solution of 

−div(2µ(t)D(w(t))) +∇r(t) = 0, in Ω,

div w(t) = ph(t)− p(t), in Ω,

w(t) = 0, on ∂Ω.

(4.89)

By the Theorem B.4 in the Appendix, the following a priori estimate holds
µmin
µmax

‖∇w(t)‖L2(Ω) + µmin
µ2

max
‖r(t)‖L2(Ω) ≤ C‖P − ph(t)‖L2(Ω),

where C depends only on Ω. The a posteriori error estimate is contained in the Theorem

Theorem 4.31 (A semi-discrete a posteriori error estimate for the space approximation
of the Stokes equations with variable viscosity).
Let (u(t), p(t)) be the solution of (4.87), (uh(t), ph(t)) the solution of the finite elements
approximation (4.88) and (w(t), r(t)) the solution of the dual problem (4.89). Then there
exists a constant C > 0 that depends only on the reference triangle, in particular indepen-
dent of the mesh aspect ratio, such that for any t ∈ [0, T ]

µmin‖∇(u− uh)(t)‖2L2(Ω) + µ3
min

µ4
max
‖p(t)− ph(t)‖2L2(Ω)

≤ C
∑
K∈Th

(ηAK,u)2(t) + (ηAK,p)2(t) + (ηdiv
K )2(t), (4.90)

where

(ηAK,u)2 =
(
‖ρg + div(2µD(uh))−∇ph‖L2(K) + 1

2
√
λ2,K

‖[2µD(uh) · n]‖L2(∂K)

)
ωK(u−uh),

(ηAK,p)2 = µ3
min

µ4
max

(
‖ρg + div(2µD(uh))−∇ph‖L2(K) + 1

2
√
λ2,K

‖[2µD(uh) · n]‖L2(∂K)

)
ωK(w),

(ηdiv
K )2 = µ4

max
µ3

min
‖ div uh‖2L2(Ω).
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Proof. We note by C any positive constant that may depend only on the reference triangle
or the domain, which value can change from line to line. To simplify the notations, we
also do not write the dependence on t. Following the first step of the proof of Proposition
4.8, we can prove that

µmin‖∇(U− uh)‖2L2(Ω) ≤ C
∑
K∈Th

(
‖RSh‖L2(K) + 1

2
√
λ2,K

‖RSh,j‖L2(∂K)

)
ωK(u− uh)

(4.91)
+ ‖p− ph‖L2(Ω)‖ div(u− uh)‖L2(Ω), (4.92)

where
RSh = ρg + div(2µD(uh))−∇ph, RSh,j = [2µD(uh) · n].

Now, following the second part of the proof of Proposition 4.8, by using the dual problem
(4.89) one can establish for the pressure

‖p− ph‖L2(Ω) ≤

C

 ∑
K∈Th

(
‖RSh‖L2(K) + 1

2
√
λ2,K

‖RSh,j‖L2(∂K)

)
ωK(w) + µ4

max
µ2

min
‖∇(u− uh)‖2L2(Ω)


(4.93)

Combining estimates (4.91) and (4.93)as in the last part of the proof of Proposition 4.8
yields the result.

4.10 Error indicators and adaptive algorithm
We now briefly introduce the error indicators we use in the numerical experiments. Let
(unh)Nn=0, (Xn

h)Nn=0 be the approximated velocity fields and the approximated position of
the center of mass obtained with the numerical method (4.75)-(4.78). We introduce the
piecewise linear reconstructions uhτ and Xhτ defined by

uhτ (t) = unh + (t− tn)un+1
h − unh
τn+1 , (4.94)

Xhτ (t) = Xn
h + (t− tn)Xn+1

h −Xn
h

τn+1 , (4.95)

for t ∈ [tn, tn+1], n = 0, 1, 2, ..., N − 1. Moreover, we introduce the smooth version of the
density and the viscosity given by

ρhτ = ρBχhτ + ρF (1− χhτ ), µhτ = 1
ε
χhτ + µF (1− χhτ ),

where the smooth characteristic function χhτ is given by

χhτ (x, t) = Hε′ (R− |x−Xhτ (t)|) .

Based on (4.84), we choose ηT defined by

ηT =
N−1∑
n=0

ηTn , ηTn = 1
d(B(Xn+1

h ); ∂Ω)
(tn+1 − tn)2

2

∣∣∣∣∣Xn+1
h −Xn

h

τn+1

∣∣∣∣∣ , (4.96)

as the time error indicator for the error |X(T )−Xhτ (T )|.
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To adapt the mesh, we use the following space error indicator for ‖∇(u−uhτ )‖L2(0,T ;L2(Ω))
that is motivated by the estimate (4.90). We introduce the anisotropic error indicator η
given by

ηA =

 ∑
K∈Th

(ηAK,n)2

1/2

, (4.97)

where

(ηAK,n)2 =
∫ tn+1

tn

(
‖ρhτ (t)g + div(2µhτ (t)D(uhτ (t)))−∇phτ‖L2(K)

+ 1
2
√
λ2,K

‖2[µhτ (t)D(uhτ (t)) · n]‖L2(∂K)

)
ωK(Πhuhτ (t)− uhτ (t))dt.

where ΠZZ
h stands for the Zienkiewicz-Zhu (ZZ) post-processing.

Given a prescribed tolerance, the goal of the adaptive algorithm is to ensure that

0.875TOL ≤ ηA(∫ T
0 ‖
√

2µhτD(uhτ (t))‖2L2(Ω)dt
)1/2

+ ηT

T
≤ 1.125TOL. (4.98)

A sufficient condition is to ensure that for every n = 0, 1, 2, ...

0.8752β2TOL2
∫ tn+1

tn
‖
√

2µhτD(uhτ (t))‖2L2(Ω)dt ≤ (ηAK,n)2

≤ 1.1252β2TOL2
∫ tn+1

tn
‖
√

2µhτD(uhτ (t))‖2L2(Ω)dt, (4.99)

and
0.75(1− β)TOLτn+1 ≤ ηTn ≤ 1.25(1− β)TOLτn+1. (4.100)

If (4.99) is not satisfied, then the mesh is adapted following the anisotropic procedure
described in the previous chapters. If (4.100) does not hold, the time step is changed.
Here β > 0 is a parameter to be set, and used to distribute the error between time and
space. In practice, best results were obtained where β = 0.5, which means that the error
is equidistributed between time and space.

To build a new mesh from (4.99), we follow the procedure described in Chapter 3 for
the Navier-Stokes equations. The interpolation of computed values between meshes are
performed using the conservative algorithm described in [5].

4.11 Numerical results with non-adapted time steps and
non-adapted meshes

We now perform numerical experiments to verify the "non-collision" result of [56]. The
physical parameters chosen for our simulations are summarized in the Table 4.8. This
corresponds approximatively to the fall of a lead disk into glycerine. In order to check
if our numerical solutions exhibit the right behavior, we compare them to a reference
solution, computed through lubrication theory [94]. We briefly present how this reference
solution was computed. Let us denote by h(t) the height of the disk at time t. The velocity
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fall of the disk is then given by ḣ(t). The reference solution is obtained by solving the
Newton equation 

mḧe2 = mg− ρFπR2g + F + γḣe2, t ∈ (0, T ],

h(0) = 0.05, ḣ = 0,
(4.101)

where γ > 0. In the above equation, mg is the gravitational force acting on the disk (m
standing for its mass), ρFπR2g the Archimède force and γḣ takes in account the velocity
of the disk when approaching ∂Ω. The value of γ is 41.2 and was obtained by fitting
the solution of (4.101) with the numerical results obtained with non-adapted meshes and
constant time steps.

F is the repulsive force generated by the pressure under the disk and is computed by
scaling the equations (4.72) with respect to h. Its explicit expression can be found in

[94]. One can observe that the amplitude |F| goes like ḣ

h
. Observe that this quantity

corresponds to 1
d(B(Xn+1

h ); ∂Ω)

∣∣∣∣∣Xn+1
h −Xn

h

τn+1

∣∣∣∣∣ in (4.96).

We plot in Figure 4.18 the approximated evolution of the height of the ball obtained
with the reference solution and in Figure 4.19 the evolution of the pressure. We observe
that a peak of pressure appears around t = 0.1245 slowing down the disk and preventing
the collision.

side lenght of Ω a 0.1 m
radius of the disk R 0.01 m
density of the disk ρB 104 kg/m3

density of the fluid ρF 103 kg/m3

viscosity of the fluid µF 1 kg/m·s

initial position of the disk X0 (0.05, 0.05)
final time T 0.14

Table 4.8: Physical parameters for numerical simulations.

Figure 4.18: Evolution of the height of the disk given by the reference solution (4.101)
(left). Zoom (right)
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Figure 4.19: Evolution of the reference pressure under the disk(left). Zoom (right)

We first run some numerical tests without adapting the mesh or the time step in order
to check if our numerical methods can capture the behavior of the reference solution. To
do so, we fix a constant time step and build a "by-hand" adapted grid where the mesh
size is small in the region close the bottom of Ω. The time step is chosen as τ = 10−3

and the penalty parameter is set as ε = 10−5. Since we expect a priori that the disk falls
vertically, we improve the numerical method (4.78), keeping the first component of Xn

h

constant, and updating only the second with (4.78). The regularization parameter ε′ is
set to 10−4.

The numerical results are reported in Figure 4.20 where we plot the evolution of the
distance of the disk to ∂Ω, and in Figure 4.21 the peak of pressure. The mesh and the
solutions are represented in Figures 4.22. The numerical tests indicate a pressure appears
around t = 0.12. The amplitude of the peak is twice bigger than the one predicted by
(4.101).

Figure 4.20: Height of the disk computed through numerical method (4.75), (4.80) with a
constant mesh and a constant time step.
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Figure 4.21: Evolution of the pressure under the disk computed through numerical method
(4.75), (4.80) with a constant mesh and a constant time step.

Figure 4.22: Constant mesh used for numerical experiments without adaptive algorithm.
Typical mesh size is h = 0.01 in the corner, h = 0.001 in the middle of the cavity and
h = 0.0001 near the bottom.

4.12 Numerical results with adapted time steps and adapted
meshes

We now solve (4.75)-(4.78) with the adaptive algorithm presented in Section 4.10. The
initial grid is an isotropic grid of mesh size h = 0.0025 and we still fix ε = 10−5.

We first wait until t = 0.02 before starting to adapt the mesh, in order to initiate
the velocity field. Moreover, the numerical experiments performed on constant meshes
with constant time steps indicates that the time error indicator ηT (4.96) is relatively
small before the peak of pressure. Therefore, we choose to adapt the time steps only after
t = 0.11. Before t = 0.11, the time step is kept constant and chosen proportional to TOL
and we only check (4.99) with β = 1. After t = 0.11, we change both grid and time step
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when needed checking both (4.99) and (4.100) with β = 0.5, which corresponds to an
equidistribution of the error between time and space.

Finally, it was observed that the regularization parameter ε′ may have some impor-
tance. Indeed, if it is chosen too "huge", then the disk stops before reaching the distance
to the boundary obtained with the reference solution. If it chosen too "small", then the
adaptive algorithm has difficulty to converge when the prescribed tolerance TOL is large.
Therefore, we decide to choose ε′ going as O(TOL). In Table 4.9, we summarize our
choices for the numerical parameters.

TOL τ ε′

0.25 5e-3 1e-4
0.1875 3.75e-3 7.5e-5
0.125 2.5e-3 5e-5
0.0625 1.25e-3 2.5e-5
0.03125 6.25e-4 1.25e-5

Table 4.9: Numerical parameters for the adaptive algorithm. The initial time step and
the regularization parameter are chosen as O(TOL).

We plot for several values of TOL the evolution of the height of the ball in Figure
4.23 and evolution of the pressure and the time step in Figure 4.24. We can observe that
smaller time steps are chosen by the algorithm when the pressure peak is at its maximum.
Meshes and solutions are represented in Figures 4.25, 4.26 and 4.27 for TOL = 0.03125.
Zoom at time t = 0.12 is presented in Figures 4.28 and 4.29. All the numerical results
indicate that the disk does not touch the boundary of the domain.

Figure 4.23: Height of the disk computed through numerical method (4.75), (4.80) with
adapted time steps and adapted meshes (top left). Zoom (top right and bottom).
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Figure 4.24: Pressure under the disk computed through numerical method (4.75), (4.80)
with adapted time steps and adapted meshes (left). Evolution of the time step (right).

Figure 4.25: Adapted meshes generated with TOL = 0.03125 at time t = 6.25e − 4 (top
left), t = 0.11 (top right), t = 0.12 (bottom left), t = 0.14 (bottom right).
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Figure 4.26: Pressure field computed with TOL = 0.03125 at time t = 6.25e−4 (top left),
t = 0.11 (top right), t = 0.12 (bottom left), t = 0.14 (bottom right).
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Figure 4.27: Velocity field computed with TOL = 0.03125 at time t = 6.25e− 4 (top left),
t = 0.11 (top right), t = 0.12 (bottom left), t = 0.14 (bottom right).
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Figure 4.28: Zooms at the adapted mesh (top), pressure (middle) and velocity field (bot-
tom) with TOL = 0.03125 at time t = 0.12.
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Figure 4.29: Zooms at the adapted mesh (top), pressure (middle) and velocity field (bot-
tom) with TOL = 0.03125 at time t = 0.12.
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Conclusion and perspectives

In this thesis, a numerical method to solve a two fluids flow separated by a free surface has
been presented. We focused on the a posteriori error analysis, in order to derive accurate
error indicators. Based on these latter, we proposed a space-time adaptive algorithm. To
reduce the computational costs, and in the same time to solve the problem with accuracy,
it has been proposed to work with anisotropic finite elements and second order methods
to advance in time.

The complete systems of equations is a combination of the non-homogeneous Navier-
Stokes equations and the transport of the interface. For the derivations of the error indi-
cators and the proofs of the a posteriori error estimates, we decided to split the technical
difficulties into four chapters. In the first chapter, we presented the anisotropic framework
and solved Poisson equations with variable coefficients. We proved error estimates that
are valid for anisotropic meshes and we presented the procedure to build adapted meshes.

In the second chapter, we focused on the transport equation. We introduced a stabi-
lized finite elements method and we used the Crank-Nicolson method to approximate the
equation in time. We proved both a priori and a posteriori error estimates, and then we
studied a space-time adaptive algorithm.

In the third chapter, we first presented several ways to derive a posteriori error esti-
mates when using anisotropic finite elements to discretize the Stokes and the Navier-Stokes
equations. Then, we focused on BDF methods to advance in time, and we proved the cor-
responding error estimates. A space-time adaptive algorithm is presented.

In the last chapter, we finally study the two fluids flows problem and we proved semi-
discrete error estimates. The chapter has been separated into two parts. In the first one,
we proposed an adaptive algorithm to solve fluids instabilities, and in the second part,
we applied it to a limit case, used to approximate the motion of a rigid body into an
incompressible fluid.

Several questions are still open. We list three topics among others that we think could
be interesting perspectives for future works.

1. Only semi-discrete error estimates have been proven for the Navier-Stokes equations
and the two fluids flows equations. An a posteriori upper bound involving the space
and the time discretizations should be provided. Combining error estimates for
stabilized anisotropic finite elements with error estimates coming from second order
in time methods is not obvious. We presented it for the transport equation and
the Stokes equations (but only for the Backward Euler method). We know however
how to extend the proof for the Stokes equations and second order methods and it
might be done in a future publication. Then the result should be first adapted to
the Navier-Stokes equations, and finally to the two fluids flows problem.

2. Concerning the adaptive procedure, it has been observed that the numerical errors
coming from the meshes interpolation can have important consequences. Interpo-
lation of solutions between meshes should be investigated deeper, from both the
theoretical and the practical points of view. In particular, we only prove a posteriori
error estimates for the simpler case where the mesh is fixed and does not change
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during the simulation. We should derive estimates that take in account moving
meshes.

3. The error indicator proposed for the two fluids flows problem contains four quanti-
ties: one involving the space discretization of the velocity, one its time discretization,
another one the space approximation of the interface and finally a last part involv-
ing the time approximation of the transport problem. The ratio between these four
quantities should be studied in order to improve the efficiency of the adaptive algo-
rithm.
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Appendix A

Some useful estimates

A.1 Gronwall’s type inequalities
Throughout all this document, we often use the Gronwall’s Lemma, or more precisely
a Gronwall’s lemma to conclude the estimates. We present below some of the different
(continuous and discrete) versions we use.

We first state a very general Gronwall’s Lemma in integral form. The proof can be
found in [34] or [21].

Theorem A.1 (A general Gronwall’s Lemma).
Let t0 ≥ 0 and f, g,G, h nonnegative functions and a constant H ≥ 0 such that

(i) f,G ∈ L∞(t0,∞)

(ii) g, h ∈ L1(t0,∞)

(iii) for all t ≥ t0 we have

f(t) +G(t) ≤ H +
∫ t

t0
h(s)ds+

∫ t

t0
g(s)f(s)ds.

Then, for all t ≥ t0,

f(t) +G(t) ≤ exp
(∫ t

t0
g(s)ds

)(
H +

∫ t

t0
h(s)ds

)
.

We also write the same result in a differential form, that is a direct consequence of the
previous theorem.

Theorem A.2 (A general Gronwall’s Lemma in differential form).
Let t0 ≥ 0 and f, g,G, h nonnegative functions and a constant H ≥ 0 such that

(i) g,H, h ∈ L∞(t0,∞)

(ii) f ∈W 1,∞(t0,∞)

(iii) for all t ≥ t0 we have

d

dt
f(t) +G(t) ≤ H + h(t) + g(t)f(t).

Then, for all t ≥ t0,

f(t) +
∫ t

0
G(s)ds ≤ exp

(∫ t

t0
g(s)ds

)(
f(0) +Ht+

∫ t

t0
h(s)ds

)
.
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We prove that, in some particular situations, it is possible to obtain an estimate that
does not depend exponentially on t.

Theorem A.3 (A Gronwall’s lemma type inequality with no exponential bound).
Let 0 ≤ t0 < T and t0 = t0 < t1 < t2 < ... < tN = T a partition of the interval [t0, T ]. Let
f, g, h,H four real functions such that

(i) f ∈ C0[t0, T ],

(ii) f ∈ C1[tn, tn+1], 0 ≤ n ≤ N − 1,

(iii) g, h,H ∈ C0[tn, tn+1] 0 ≤ n ≤ N − 1,

(iv) H ≥ 0,

(v) for all 0 ≤ n ≤ N − 1 and for all t ∈ [tn, tn+1], we have 1
2
d

dt
f2(t) + H(t) ≤

f(t)g(t) + h(t).

Then the following inequality holds

f2(T )+
N−1∑
n=0

∫ tn+1

tn
H(t)dt ≤ exp(1)

(
f2(t0) + (T − t0)

N−1∑
n=0

∫ tn+1

tn
g2(t)dt+ 2

N−1∑
n=0

∫ tn+1

tn
h(t)dt

)
.

Proof. Let n ≥ 0 and t ∈ [tn, tn+1]. Applying the Young’s inequality ab ≤ ε
2a

2 + 1
2εb

2 to
hypothesis (iii) yields

1
2
d

dt
f2(t) +H(t) ≤ 1

2(T − t0)f
2(t) + T − t0

2 g2(t) + h(t)

where we choose ε = 1
T−t0 . Multiplying the previous inequality by exp(−(t−t0)/T−t0) and

passing all the terms containing f to the left hand side, we obtain

d

dt

(
f2(t) exp(−(t−t0)/T−t0)

)
+ 2H(t) exp(−(t−t0)/T−t0)

≤ (T − t0)g2(t) exp(−(t−t0)/T−t0) + 2h(t) exp(−(t−t0)/T−t0).

Integrating between tn and tn+1, we have

f2(tn+1) exp(−(tn+1−t0)/T−t0)− f2(tn) exp(−(tn−t0)/T−t0)

+ 2
∫ tn+1

tn
H(t) exp(−(t−t0)/T−t0)dt ≤ (T − t0)

∫ tn+1

tn
g2(t) exp(−(t−t0)/T−t0)dt

+ 2
∫ tn+1

tn
h(t) exp(−(t−t0)/T−t0)dt.

Observe that since f is continuous in [0, T ], we can ensure that the sum

N−1∑
n=0

∫ tn+1

tn

d

dt

(
f2(t) exp(−(t−t0)/T−t0)

)
dt
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is telescopic. Therefore, summing up over n the last inequality yields

f2(T ) exp(−1) + 2
N−1∑
n=0

∫ tn+1

tn
H(t) exp(−(t−t0)/T−t0)dt

≤ f2(t0) + (T − t0)
N−1∑
n=0

∫ tn+1

tn
g2(t) exp(−(t−t0)/T−t0)dt

+ 2
N−1∑
n=0

∫ tn+1

tn
h(t) exp(−(t−t0)/T−t0)dt

≤ f2(t0) + (T − t0)
N−1∑
n=0

∫ tn+1

tn
g2(t)dt+ 2

N−1∑
n=0

∫ tn+1

tn
h(t)dt.

Finally, multiplying both sides by exp(1), we get

f2(T ) + 2
N−1∑
n=0

∫ tn+1

tn
H(t) exp(1− (t−t0)/T−t0)dt

≤ exp(1)
(
f2(t0) + (T − t0)

N−1∑
n=0

∫ tn+1

tn
g2(t)dt+ 2

N−1∑
n=0

∫ tn+1

tn
h(t)dt

)
.

Using that exp(1− (t−t0)/T−t0) ≥ 1 for all t ∈ [t0, T ] and H(t) ≥ 0 yields the result.

Remark A.4.
We justify below the choice of the value of ε in the proof above (we set h = H = 0 for
simplicity). Assume that we apply the Young’s inequality to hypothesis (iii) where ε is
any strictly positive number, that we will set later one to get the suitable upper bound.
We obtain

1
2
d

dt
f2(t) ≤ ε

2f
2(t) + 1

2εg
2(t)

Multiplying the previous inequality by exp(−ε(t−t0)) and passing all the terms containing
f to the left hand side, we obtain

d

dt

(
f2(t) exp(−ε(t− t0))

)
≤ 1
ε
g2(t) exp(−ε(t− t0)).

Continuing as in the proof, we integrate between tn and tn+1 and sum up over n yielding

f2(T ) exp(−ε(T − t0)) ≤ f2(t0) + 1
ε

N−1∑
n=0

∫ tn+1

tn
g2(t) exp(−ε(t− t0))dt

≤ f2(t0) + 1
ε

N−1∑
n=0

∫ tn+1

tn
g2(t)dt.

Finally, multiplying both sides by exp(ε(T − t0)), we get

f2(T ) ≤ exp(ε(T − t0))
(
f2(t0) + 1

ε

N−1∑
n=0

∫ tn+1

tn
g2(t)dt

)
.

Now, if we set for instance ε = 1, we obtain

f2(T ) ≤ exp((T − t0))
(
f2(t0) +

N−1∑
n=0

∫ tn+1

tn
g2(t)dt

)
,

which yields to nothing else than the classical Gronwall’s Lemma where the estimate grows
exponentially with the final time. To eliminate the exponential in the bound, and to obtain
a linear increase, the idea is to set ε = 1

T−t0 .
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We also use the discrete versions of the Gronwall’s Lemma, those proofs can be estab-
lished following for instance the steps presented in [59], Lemma 5.1.

Lemma A.5 (A discrete Gronwall’s Lemma).
Let N ≥ 1 be an integer. Let an, bn, cn, γn, µn be non-negative numbers for all 0 ≤ n ≤ N
and D ≥ 0 such that

am +
m∑
n=0

bn ≤
m−1∑
n=0

γnan +
m∑
n=0

µnan +
m∑
n=0

cn +D, ∀1 ≤ m ≤ N.

Assume that µn < 1 for all 0 ≤ n ≤ N . Then

am +
m∑
n=0

bn ≤ (a0 +
m∑
n=0

cn +D) exp
(
m−1∑
n=0

γn

)
exp

(
m∑
n=0

µn
1− µn

)
, ∀1 ≤ m ≤ N.

We may use also this version of the previous Lemma, written in a difference form :

Lemma A.6 (A discrete Gronwall’s Lemma).
Let N ≥ 1 be an integer. Let an, γn, 0 ≤ n ≤ N and bn, cnµn, 1 ≤ n ≤ N be non-negative
numbers such that

am − am−1 + bm ≤ γm−1am−1 + µmam + cm ∀1 ≤ m ≤ N.

Assume that µn < 1 for all 1 ≤ n ≤ N . Then

am +
m∑
n=1

bn ≤ (a0 +
m∑
n=1

cn +D) exp
(
m−1∑
n=0

γn

)
exp

(
m∑
n=1

µn
1− µn

)
, ∀1 ≤ m ≤ N.

Remark A.7.
In both Lemmas A.5 and A.6, observe that if µn = 0 for all n, we obtain a bound without
any size restriction on the coefficients.

A.2 A Sobolev inequality for the Navier-Stokes equations
Here, we state several inequalities that are common tools to analyse the trilinear form∫

Ω
((u · ∇)v) ·wdx

that comes in the study of the Navier-Stokes equations. The proofs are standard and can
be found in [21] or [99].

Proposition A.8.
Let d = 2, 3 and Ω a bounded, open, Lipschitz subset of Rd. Let u,v,w ∈ (H1

0 (Ω))d. Then
there exists a constant CSOB > 0 depending only on Ω such that

1.
∫

Ω
((u · ∇)v) ·wdx ≤ CSOB‖∇v‖L2(Ω)‖u‖

1−d/4
L2(Ω)‖∇u‖d/4L2(Ω)‖w‖

1−d/4
L2(Ω)‖∇w‖d/4L2(Ω).

2.
∫

Ω
((u · ∇)v) ·wdx ≤ CSOB‖∇u‖L2(Ω)‖∇v‖L2(Ω)‖∇w‖L2(Ω).

3. For any ε > 0,∫
Ω

((u ·∇)v) ·wdx ≤ CSOB
ε

‖∇v‖2(d−1)
L2(Ω)

2d−1 ‖u‖L2(Ω)‖w‖L2(Ω) + εd

4 ‖∇u‖L2(Ω)‖∇w‖L2(Ω).

4. If u,w are only in (H1(Ω))d, then we have∫
Ω

((u · ∇)v) ·wdx ≤ CSOB‖u‖H1(Ω)‖∇v‖L2(Ω)‖w‖H1(Ω).
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Appendix B

Stokes equations with variable
coefficients

B.1 A priori estimates for the Stokes equations with vari-
able coefficients

In this section, we study the well-posedness and prove a priori estimates for Stokes equa-
tions with variable coefficients. We use in particular these estimates in Sections 3.1, 3.4
and 3.6 of Chapter 3 and in Section 4.2 of Chapter 4 to derive the a priori estimates for
the dual problems. We focus on the two dimensional case, but the corresponding results
for R3 can be obtained after a few modifications.

The main goal is to study the existence of solutions to a general saddle point problem
of the form: find (u, p) ∈ (H1

0 (Ω))2 × L2
0(Ω) that satisfy

a(u,v) + b(v, p) = F (v), ∀v ∈ (H1
0 (Ω))2,

−b(u, q) =
∫

Ω gq,∀q ∈ L2
0(Ω),

where F ∈ (H−1(Ω))2, g ∈ L2
0(Ω) and a, b are bilinear forms of the type

a(u, v) =
∫

Ω

∇uA+AT∇uT

2 : ∇vA+AT∇vT

2 dx

b(v, q) = −
∫

Ω
q(BT∇) · vdx

where A and B are matrices. Note that some recent contributions were brought in [97] to
the analysis of the differential operator

∇uA+AT∇uT .

We first established basic properties of the bilinear forms a and b.

Proposition B.1.
Let Ω ⊂ R2 be a Lipschitz, connected, bounded, open set and A ∈ (L∞(Ω))2×2 a 2 × 2
matrix. Let a : (H1

0 (Ω))2 × (H1
0 (Ω))2 → R defined by

a(u,v) =
∫

Ω

∇uA+AT∇uT

2 : ∇vA+AT∇vT

2 dx, u,v ∈ (H1
0 (Ω))2. (B.1)

We assume moreover that there exists α > 0 such that

a(u,u) ≥ α
∫

Ω
D(u) : D(u)dx, for all u ∈ (H1

0 (Ω))2. (B.2)

Then a is bilinear, symmetric, continuous and coercive.
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Proof. Bilinearity and symmetry of a are evident. We show the continuity and the coer-
civity. By the Cauchy-Schwartz inequality and the sub-multiplicability of the Frobenius
product, we have that

a(u,v) ≤
∫

Ω
|∇uA|F |∇vA|Fdx ≤

∫
Ω
|∇u|F |A|F |∇v|F |A|Fdx ≤ ‖A‖2L∞(Ω)‖∇u‖L2(Ω)‖∇v‖L2(Ω),

where | · |F stands for the norm induced by the Frobenius product. Moreover, using Korn’s
inequality and the hypothesis (B.2), we obtain that

a(u,u) ≥ α

K2 ‖∇u‖2L2(Ω),

where K > 0 is the Korn’s constant of Ω satisfying

‖∇v‖L2(Ω) ≤ K‖D(v)‖L2(Ω), ∀v ∈ (H1
0 (Ω))2.

Remark B.2.
Observe that the hypothesis (B.2) is not necessary in the case where A can be written as

A = | det∇Φ|1/2(∇Φ)−1,

where Φ : Ω → Ω is a C1-diffeomorphism such that the singular values σi, i = 1, 2 of ∇Φ
are uniformly bounded i.e. there exists two constants C, c > 0 such that

c ≤ σi(∇Φ(x)) ≤ C, for all x ∈ Ω

Indeed, in this case, we can check that the bilinear form a is coercive by applying the
change of variable x = Φ(y) and u = ũ ◦ Φ

∫
Ω

∣∣∣∣∣∇uA+AT∇uT

2

∣∣∣∣∣
2

F

dx =
∫

Ω
| det∇Φ|

∣∣∣∣∣∇u(∇Φ)−1 + (∇Φ)−T∇uT

2

∣∣∣∣∣
2

F

dx

=
∫

Ω
|D(ũ)|2Fdy

≥ 1
K2

∫
Ω
|∇ũ|2Fdy

= 1
K2

∫
Ω
|det∇Φ||∇u(∇Φ)−1|2Fdx

= 1
K2

∫
Ω
|det∇Φ|∇u(∇Φ)−1(∇Φ)−T : ∇udx

≥ c2

K2

∫
Ω
λmin((∇Φ)−1(∇Φ)−T )∇u : ∇udx

≥ c2

C2K2

∫
Ω
|∇u|2Fdx,

where K is the Korn’s constant and we use that

det∇Φ ≥ σ1(∇Φ)σ2(∇Φ) ≥ c2, λmin((∇Φ)−1(∇Φ)−T ) ≥ σmin(∇Φ)−2 ≥ C−2,

with λmin, respectively σmin standing for the minimal eigenvalue, respectively the minimal
singular value.
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Proposition B.3.
Let Ω ⊂ R2 a Lipschitz, connected, bounded, open set and B ∈ (W 1,∞(Ω))2×2 be an
invertible 2×2 matrix such that B−1 ∈ (W 1,∞(Ω))2×2. Let assume moreover that ∇·BT =
0. Let b : (H1

0 (Ω))2 × L2
0(Ω)→ R be defined by

b(v, q) = −
∫

Ω
q(BT∇) · vdx. (B.3)

Then b is bilinear and continuous. Moreover, there exists a constant β > 0 depending only
on Ω and ‖B−1‖W 1,∞(Ω) such that

inf
q∈L2

0(Ω)
sup

v∈(H1
0 (Ω))2

b(v, q)
‖q‖L2(Ω)‖∇v‖L2(Ω)

≥ β. (B.4)

Proof. Bilinearity of b is obvious. To prove the continuity, we observe that thanks to
Cauchy-Schwarz inequality

b(v, q) = −
∫

Ω
q(BT∇) · vdx = −

∫
Ω
qB : ∇vdx

≤
∫

Ω
|q||B|F |∇v|Fdx ≤ ‖B‖L∞(Ω)‖q‖L2(Ω)‖∇v‖L2(Ω).

To show (B.4), it is sufficient to prove that there exists C1, C2 > 0 such that for all
q ∈ L2

0(Ω), there exists v ∈ (H1
0 (Ω))2 such that

b(v, q) ≥ C1‖q‖2L2(Ω), ‖∇v‖L2(Ω) ≤ C2‖q‖L2(Ω).

Let q ∈ L2
0(Ω). Using the standard inf-sup condition, there exists a constant C > 0

depending only on Ω and w ∈ (H1
0 (Ω))2 such that −∇·w = q and ‖∇w‖L2(Ω) ≤ C‖q‖L2(Ω).

We set v = B−1w. Then, using ∇ ·BT = 0, we have

b(v, q) = −
∫

Ω
(BT∇) · vqdx = −

∫
Ω
∇ · (Bv)qdx = −

∫
Ω
∇ ·wqdx = ‖q‖2L2(Ω).

Moreover,

‖v‖L2(Ω) = ‖∇(B−1w)‖L2(Ω) ≤ ‖B−1‖W 1,∞(Ω)‖∇w‖L2(Ω) ≤ ‖B−1‖W 1,∞(Ω)C‖q‖L2(Ω).

Then the claim is fulfilled with C1 = 1 and C2 = C‖B−1‖W 1,∞(Ω).

Theorem B.4.
Let Ω ⊂ R2 be a Lipschitz, connected, bounded, open set and f ∈ (H−1(Ω))2, g ∈ L2

0(Ω).
Moreover let A,B be 2 × 2 matrices such that A ∈ (L∞(Ω))2×2, B,B−1 ∈ (W 1,∞(Ω))2×2

and ∇ · BT = 0. Finally, let β be the inf-sup constant associated to B as given in (B.4).
We define the bilinear forms

a(u,v) =
∫

Ω

∇uA+AT∇uT

2 : ∇vA+AT∇vT

2 dx, u,v ∈ (H1
0 (Ω))2,

and
b(v, q) = −

∫
Ω
q(BT∇) · vdx, v ∈ (H1

0 (Ω))2, q ∈ L2
0(Ω).

Moreover, assume that there exists α > 0 such that

a(v,v) ≥ α
∫

Ω
D(v) : D(v)dx, for all v ∈ (H1

0 (Ω))2.
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Then there exists a unique solution (u, p) ∈ (H1
0 (Ω))2 × L2

0(Ω) of the Stokes problem
a(u,v) + b(v, p) = F (v),∀v ∈ (H1

0 (Ω))2,

−b(u, q) =
∫
Ω gq,∀q ∈ L2

0(Ω),
(B.5)

where F (v) = 〈f ,v〉H−1(Ω),H1
0 (Ω). Moreover, there exists a constant C > 0 depending only

on Ω such that

‖∇u‖L2(Ω) ≤ C
(

1
α
‖f‖H−1(Ω) +

(
1
β

+
‖A‖2L∞(Ω)

αβ

)
‖g‖L2(Ω)

)
, (B.6)

and

‖p‖L2(Ω) ≤ C
((

1
β

+
‖A‖2L∞(Ω)

αβ

)
‖f‖H−1(Ω) +

(
‖A‖2L∞(Ω)

β2 +
‖A‖4L∞(Ω)
αβ2

)
‖g‖L2(Ω)

)
.

(B.7)

Proof. Let us define Vg =
{

v ∈ (H1
0 (Ω))2 : (BT∇) · v = g

}
and V =

{
v ∈ (H1

0 (Ω))2 : (BT∇) · v = 0
}
.

Observe that if u ∈ Vg is a solution of

a(u,v) = F (v), ∀v ∈ V, (B.8)

then, from the inf-sup condition (B.4), we can find a unique p ∈ L2
0(Ω) such that

b(v, p) = F (v)− a(u,v), ∀v ∈ (H1
0 (Ω))2,

and
‖p‖L2(Ω) ≤

1
β

(
‖f‖H−1(Ω) + ‖A‖2L∞(Ω)‖∇u‖L2(Ω)

)
.

Moreover, we trivially obtain that∫
Ω
q (BT∇) · udx =

∫
Ω
gq,∀q ∈ L2

0(Ω).

So it is sufficient to prove that (B.8) is uniquely solvable. Observe that V ⊂ (H1
0 (Ω))2

is an Hilbert space, since it is a close space. By the inf-sup condition (B.4), there exists
u0 ∈ V ⊥ such that (BT∇) · u0 = g, and ‖∇u0‖L2(Ω) ≤

1
β
‖g‖L2(Ω). Now, we consider the

variational problem : find w ∈ V the solution of

a(w,v) = F (v)− a(u0,v), ∀v ∈ V. (B.9)

Proposition B.1 ensures that (B.9) is well-posed by the Lax-Milgram Lemma. Moreover,
standard elliptic theory ensures that the following a priori estimate holds

‖∇w‖L2(Ω) ≤
K2

α

(
Cp‖f‖H−1(Ω) + ‖A‖2L∞(Ω)‖∇u0‖L2(Ω)

)
.

Then u = w + u0 ∈ Vg is the unique solution of (B.8). Finally, using the estimate on u0,
we finally obtain the following a priori bound for u

‖∇u‖L2(Ω) ≤
K2

α

(
Cp‖f‖H−1(Ω) +

‖A‖2L∞(Ω)
β

‖g‖L2(Ω)

)
+ 1
β
‖g‖L2(Ω),

where Cp stands for the Poincaré constant and K for the Korn’s constant of Ω. This
implies (B.6). Combining the latter with the estimate for the pressure yields (B.7).
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Remark B.5.
Observe that g ∈ L2

0(Ω) is necessary for (B.5) being well-posed. Indeed, if u ∈ (H1
0 (Ω))2

satisfies (BT∇) · u = g then thanks to the divergence theorem, we must have∫
Ω
gdx =

∫
Ω

(BT∇) · udx =
∫

Ω
∇ · (Bu)dx =

∫
∂Ω
Bu · ndx = 0,

where n stands for the unit outer normal of Ω.

Theorem B.6.
Let Ω ⊂ R2 be a Lipschitz, connected, bounded, open set. Let f1, f2 ∈ (L2(Ω))2, A1, A2 ∈
(L∞(Ω))2×2 be symmetric positive definite matrices, B1, B2 ∈ (W 1,∞(Ω))2×2 such that
B−1

1 , B−1
2 ∈ (W 1,∞(Ω))2×2. Assume moreover that ∇ ·BT

1 = ∇ ·BT
2 = 0 and let us define

for i = 1, 2, the bilinear and linear forms

ai(u,v) =
∫

Ω

∇uAi +ATi ∇uT

2 : ∇vAi +ATi ∇vT

2 dx,

bi(v, q) = −
∫

Ω
q(BT

i ∇) · vdx,

Fi(v) =
∫

Ω
fi · vdx.

Finally, assume that there exists α1, α2 > 0 such that

ai(v,v) ≥ αi
∫

Ω
D(v) : D(v)dx, for all v ∈ (H1

0 (Ω))2.

Then, for i = 1, 2, there exists unique solutions (ui, pi) ∈ (H1
0 (Ω))2 × L2

0(Ω) of the varia-
tional problems {

ai(ui,v) + bi(v, pi) = Fi(v), ∀v ∈ (H1
0 (Ω))2,

−bi(ui, q) = 0, ∀q ∈ L2
0(Ω). (B.10)

Moreover, for i = 1, 2, let βi > 0 be the inf-sup constant associate to the bilinear forms bi.
Then, there exists a constant C > 0 depending only on Ω such that

‖∇(u1−u2)‖L2(Ω) ≤ C
(

1
α1
‖f1 − f2‖L2(Ω) +

(‖A1‖L∞(Ω) + ‖A2‖L∞(Ω))‖∇u2‖L2(Ω)
α1

‖A1 −A2‖L∞(Ω)

+
(
‖p2‖L2(Ω) +

(
1
β1

+
‖A1‖2L∞(Ω)
α1β1

)
‖∇u2‖L2(Ω)

)
‖B1 −B2‖L∞(Ω)

)
, (B.11)

and

‖p1 − p2‖L2(Ω) ≤ C
((

1
β1

+
‖A1‖2L∞(Ω)
α1β1

)
‖f1 − f2‖L2(Ω)

+
(

1
β1

+
‖A1‖2L∞(Ω)
α1β1

)
(‖A1‖L∞(Ω) + ‖A2‖L∞(Ω))‖∇u2‖L2(Ω)‖A1 −A2‖L∞(Ω)

+
((

1
β1

+
‖A1‖2L∞(Ω)
α1β1

)
‖p2‖L2(Ω) +

(
‖A1‖2L∞(Ω)

β2
1

+
‖A1‖4L∞(Ω)
α1β2

1

)
‖∇u2‖L2(Ω)

)
‖B1 −B2‖L∞(Ω)

)
.

(B.12)

Proof. Observe that under the present hypothesis, the well-posedness of the problems
(B.10) is guaranteed for i = 1, 2 thanks to Theorem B.4. Taking the difference between
(B.10) with i = 1 and (B.10) with i = 2, we get{

a1(u1 − u2, v) + b1(v, p1 − p2) = F (v), ∀v ∈ (H1
0 (Ω))2,

−b1(u1 − u2, q) = (g, q), ∀q ∈ L2
0(Ω), (B.13)
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where (·, ·) stands for the usual inner product between L2 functions,

F (v) =
∫

Ω
(f1 − f2)vdx−

∫
Ω

∇u2(A1 −A2) + (A1 −A2)T∇uT2
2 : ∇vA1 +AT1∇vT

2 dx

−
∫

Ω

∇u2A2 +AT2∇uT2
2 : ∇v(A1 −A2) + (A1 −A2)T∇vT

2 dx−
∫

Ω
p2((B1−B2)T∇)·vdx,

and
g = −((B1 −B2)T∇) · u2. (B.14)

Then the estimates (B.11), (B.12) are obtained observing that the problem (B.13) satisfies
the hypothesis of Theorem B.4 and that

‖F‖H−1(Ω)

≤ C‖f1−f2‖L2(Ω)+‖A1−A2‖L∞(Ω)(‖A1‖L∞(Ω)+‖A2‖L∞(Ω))‖∇u2‖L2(Ω)+‖B1−B2‖L∞(Ω)‖p2‖L2(Ω),

‖g‖L2(Ω) ≤ ‖B1 −B2‖L∞(Ω)‖∇u2‖L2(Ω),

where C > 0 depends only on Ω.

Remark B.7.
In fact, we can prove the following general bound by combining (B.11) and (B.12) with
the a priori estimates for u2 and p2

‖∇(u1 − u2)‖L2(Ω) + ‖p1 − p2‖L2(Ω)

≤ C
(
‖f1 − f2‖L∞(Ω) + ‖A1 −A2‖L∞(Ω) + ‖B1 −B2‖L∞(Ω)

)
,

where C depends on Ω, ‖f1‖L2(Ω), ‖f2‖L2(Ω), ‖A1‖L∞(Ω), ‖A2‖L∞(Ω), α1, α2, β1, β2.

To conclude this section, we study the higher regularity of the solutions to the saddle
point problem (B.5). In the case the coefficients of the matrices A and B are sufficiently
smooth, it can be shown that the solutions belongs to (H2(Ω))2 ×H1(Ω).

We focus on a particular example, that we used in Chapter 3 and 4. In the notations
introduced above, we consider now f ∈ (L2(Ω))2, g = 0, B = I and A = (2µ)1/2I where µ is
a strictly positive function that belongs to C0,1(Ω) (which is equivalent to be inW 1,∞(Ω)).
In this situation, the Stokes problem (B.5) reads : find (u, p) ∈ (H1

0 (Ω))2 × L2
0(Ω) the

solutions of ∫
Ω

2µD(u) : D(v)dx−
∫

Ω
p div vdx =

∫
Ω

f · vdx,∀v ∈ (H1
0 (Ω))2,∫

Ω
q div u = 0,∀q ∈ L2

0(Ω).

The last problem corresponds to the variational formulation of the PDE

− div(2µD(u)) +∇p = f
div u = 0.

In what follows, we show, under appropriate hypothesis on Ω, that this problem has a
unique (H2(Ω))2 ×H1(Ω) solution.

Theorem B.8 (H2−H1 regularity of solutions to Stokes equations with smooth variable
coefficients).
Let Ω ⊂ R2 be a Lipschitz, connected open set. Let f ∈ (H−1(Ω))2 and µ ∈ C0,1(Ω)
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such that 0 < µmin ≤ µ ≤ µmax. Then, there exists a unique weak solution (u, p) ∈
(H1

0 (Ω))2 × L2
0(Ω) of the Stokes equations

−div(2µD(u)) +∇p = f , in Ω,

div u = 0, in Ω,

u = 0, on ∂Ω,

(B.15)

that satisfies the a priori estimate

µmin‖∇u‖L2(Ω) + µmin
µmax

‖p‖L2(Ω) ≤ C‖f‖H−1(Ω), (B.16)

where C > 0 depends only on Ω.
Moreover, if we assume that Ω is a smooth domain or a convex polygon and f ∈

(L2(Ω))2, then (u, p) ∈ (H2(Ω))2 × (H1(Ω)) and there exists C ′ > 0 depending only on Ω
such that

µmin‖u‖H2(Ω) + µmin
µmax

‖p‖H1(Ω) ≤ C ′
(
1 + ‖µ−1∇µ‖L∞(Ω)

) µmax
µmin

‖f‖L2(Ω). (B.17)

Proof. In what follows, we denote by C any positive constant that may depend only
on Ω, but which value can change from line to line. The existence and uniqueness of
(u, p) ∈ (H1

0 (Ω))2 × L2
0(Ω), as the a priori estimate (B.16), are direct consequences of

Theorem B.4.
Under the additional hypothesis that Ω is smooth or a convex polygon, and f is a L2

function, then one can prove that (u, p) ∈ (H2(Ω))2 × (H1(Ω)), see for instance [21]. We
briefly explain the main argument. Let us consider the weak formulation of (B.15). It
reads∫

Ω
2µD(u) : D(v)dx−

∫
Ω
p div vdx =

∫
Ω

f · vdx, ∀v ∈ (H1
0 (Ω))2,∫

Ω
q div udx = 0, ∀q ∈ L2

0(Ω). (B.18)

Now, since µ belongs in particular to W 1,∞(Ω) and does not vanish, we can choose
v = µ−1w in (B.18) and we obtain that (u, µ−1p) ∈ (H1

0 (Ω))2 × L2(Ω) are weak solutions
of ∫

Ω
2D(u) : D(w)dx−

∫
Ω
µ−1p div wdx

=
∫

Ω
f(µ−1w)dx−

∫
Ω

2µD(u)∇µ−1wdx +
∫

Ω
p∇µ−1wdx,∀w ∈ (H1

0 (Ω))2,∫
Ω
q div udx = 0, ∀q ∈ L2

0(Ω). (B.19)

Observe that (B.19) is nothing else than the variational formulation of the Stokes problem

−∆u +∇(µ−1p) = µ−1f + 2µ−1D(u)∇µ+ p∇µ−1, in Ω,

div u = 0, in Ω,

u = 0, on ∂Ω,

(B.20)
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where we use that −div(2D(u)) = −∆u since div u = 0 and that µ∇µ−1 = − µ
µ2∇µ =

−µ−1∇µ. Moreover observe that

µ−1f + 2µ−1D(u)∇µ+ p∇µ−1 ∈ (L2(Ω)).

Thus, using the regularity results of [21] (for smooth domains) or [62] (for convex poly-
gons), we have that u ∈ (H2(Ω))2 and µ−1p ∈ H1(Ω), which implies that p ∈ H1(Ω)
since

∇p = µ
(
∇(µ−1p)−∇µ−1p

)
∈ (L2(Ω))2.

So far, we have then proven that (u, p) ∈ (H2(Ω))2 × H1(Ω). To derive (B.17), we use
again the strong formulation (B.20) for which the following a priori estimate is valid (see
again the references pointed out above)

‖u‖H2(Ω) + ‖µ−1p‖H1(Ω) ≤ C‖g‖L2(Ω)

where C depends only on Ω and we note

g = µ−1f + 2µ−1D(u)∇µ+ p∇µ−1.

Bounding the L2 norm of g by using the H1−L2 a priori estimate (B.16), we obtain that

‖u‖H2(Ω) ≤ C
(
1 + ‖µ−1∇µ‖L∞(Ω)

)
‖f‖L2(Ω)

µmax
µ2

min
. (B.21)

Moreover we also have that

‖µ−1p‖H1(Ω) ≤ C
(
1 + ‖µ−1∇µ‖L∞(Ω)

)
‖f‖L2(Ω)

µmax
µ2

min
.

Since again one can write

∇p = µ
(
∇(µ−1p)−∇µ−1p

)
,

and using a last time that ∇µ−1 = µ−2∇µ and the a priori estimate (B.16), we compute
that

‖p‖H1(Ω) ≤ C
(
1 + ‖µ−1∇µ‖L∞(Ω)

)
‖f‖L2(Ω)

µ2
max
µ2

min
. (B.22)

Combining estimates (B.21) and (B.22) yields finally (B.17).

Remark B.9.
Observe that the strong formulation (B.20) is exactly the one that we obtain if we develop

−div(2µD(u)) +∇p = f

and then divide by µ.

B.2 Lipschitz continuity of steady Stokes flows around disks
In this section, we consider the following situation. Let Ω =]0, a[2, a > 0, be a square in R2.
LetR > 0 and X = (X1, X2),Y = (Y1, Y2) ∈ Ω. We denote by B(X), respectively B(Y) the
open disks of radius R centered at X, respectively Y. We assume that B(X),B(Y) ⊂⊂ Ω
i.e. the disks are compactly included in Ω. In particular, that means that ∂B(X)∩∂Ω 6= ∅
and ∂B(Y) ∩ ∂Ω 6= ∅. For all X′ ∈ R2, we define then the piecewise constant coefficients

µX′ = µBχB(X′) + µF (1− χB(X′)), ρX′ = ρBχB(X′) + ρF (1− χB(X′)), (B.23)
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where µB, µF , ρB, ρF > 0. To simplify the notation later, we note

ρmin = min(ρB, ρF ), (B.24)
ρmax = max(ρB, ρF ), (B.25)
µmin = min(µB, µF ), (B.26)
µmin = max(µB, µF ). (B.27)

The main result is the Theorem B.10 below, that is used in the proof of Proposition
4.28 in the second part of Chapter 4. It is the main tool to derive the a posteriori error
estimate 4.84 for the falling disk experiment. The main result of Theorem B.10 is that
the map F defined for X′ ∈ R2 by

F(X′) =
∫
B(X′)

uX′dx

, where uX′ is the solution of a Stokes problem, is locally Lipschitz.
Theorem B.10 (Lipschitz continuity of solutions to steady Stokes equations with variable
coefficients).
Let (uX, pX), (uY, pY) ∈ (H1

0 (Ω))2 × L2
0(Ω) be the solutions of the problems{

−div(2µXD(uX)) +∇pX = ρXg,
div uX = 0, (B.28)

{
−div(2µYD(uY)) +∇pY = ρYg,
div uY = 0, (B.29)

where µX, ρX, µY and ρY are defined in (B.23). If |X−Y|
d(B(X); ∂Ω) is small enough, then

there exists a constant C > 0 depending only on Ω such that∣∣∣∣∣ 1
πR2

∫
B(X)

uXdx− 1
πR2

∫
B(Y)

uYdx
∣∣∣∣∣ ≤ Cµmaxρmax|g|

Rµ2
min

|X−Y|
d(B(X); ∂Ω) . (B.30)

Remark B.11.
Note that both problems (B.28), (B.29) (in weak form) satisfy assumptions of Theorem
B.4 and then are well posed in (H1

0 (Ω))2×L2
0(Ω). Moreover, the following a priori estimate

holds
‖∇uX‖L2(Ω), ‖∇uY‖L2(Ω) ≤ C

ρmax
µmin

|g|, (B.31)

‖pX‖L2(Ω), ‖pY‖L2(Ω) ≤ C
ρmaxµmax
µmin

|g|, (B.32)

where C > 0 depends only on Ω.
The key point of the proof of Theorem B.10 consists to map B(X) into B(Y) with a

suitable diffeomorphism. Reproducing what was done in [54] in the framework of random
domains, we introduce the mapping Φ : Ω→ Ω defined by (y1, y2) = Φ(x1, x2) with

y1 = x1 + (Y1 −X1)ϕ1(x1)ϕ2(x2), y2 = x2 + (Y2 −X2)ϕ1(x1)ϕ2(x2), (B.33)

where for i = 1, 2 we note

ϕi(xi) =



1, xi ∈ [Xi −R,Xi +R],

xi
Xi −R

− xi(xi −Xi +R)
(Xi −R)2 , xi ∈ [0, Xi −R],

xi − a
Xi +R− a

− (xi − a)(xi −Xi −R)
(Xi +R− a)2 , xi ∈ [Xi +R, a].

(B.34)

We shall observe that the boundary of Ω is fixed by Φ.
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Proposition B.12.
Assume that |X−Y|

d(B(X); ∂Ω) is small, then the mapping Φ defined by (B.33) is a (C1(Ω̄))2 ∩

(W 2,∞(Ω))2 diffeomorphism from Ω to Ω. Moreover, the jacobian matrix of Φ is given by

∇Φ = ∇Φ(x1, x2) =
(

1 + δ1ϕ
′
1ϕ2 δ1ϕ1ϕ

′
2

δ2ϕ
′
1ϕ2 1 + δ2ϕ1ϕ

′
2

)
, (B.35)

where we note for i = 1, 2

δi = Yi −Xi, ϕi = ϕi(xi), ϕ′i = ϕ′i(xi). (B.36)

In particular, there exists c > 0 independent of Ω,X,Y and R such that for all x ∈ Ω

det∇Φ(x) ≥ c. (B.37)

Proof. We first prove that Φ ∈ (C1(Ω̄))2 ∩ (W 2,∞(Ω))2. A direct computation yields

ϕ′i(xi) =



0, xi ∈ [Xi −R,Xi +R],

2
Xi −R

− 2xi
(Xi −R)2 , xi ∈ [0, Xi −R],

1
Xi +R− a

− 2xi −Xi −R− a
(Xi +R− a)2 , xi ∈ [Xi +R, a],

(B.38)

and

ϕ′′i (xi) =



0, xi ∈]Xi −R,Xi +R[,

− 2
(Xi −R)2 , xi ∈]0, Xi −R[,

− 2
(Xi +R− a)2 , xi ∈]Xi +R, a[.

(B.39)

Since ϕ′i ∈ C0[0, a], ϕ′′i ∈ L∞(0, a), i = 1, 2, we necessarily obtain that Φ ∈ (C1(Ω̄))2 ∩
(W 2,∞(Ω))2. A direct computation yield that

∇Φ = ∇Φ(x1, x2) =
(

1 + δ1ϕ
′
1ϕ2 δ1ϕ1ϕ

′
2

δ2ϕ
′
1ϕ2 1 + δ2ϕ1ϕ

′
2

)
,

and
det∇Φ = 1 + δ1ϕ

′
1ϕ2 + δ2ϕ1ϕ

′
2.

Assuming that |X−Y|
d(B(X);∂Ω) is small enough, we can ensure that det∇Φ ≥ c in Ω for a c > 0

independent of Ω,X,Y and R. Therefore, since its jacobian never vanishes, Φ is invertible
and its inverse Φ−1 belongs to (C1(Ω̄))2 ∩ (W 2,∞(Ω))2.

Since Φ is a diffeomorphism, then in particular the Piola’s identity holds. It will be
used in the proof of Theorem B.10 later. We recall it in the next proposition

Proposition B.13.
Let Φ be the mapping defined by (B.33). Then

∇ · (det∇Φ(∇Φ)−T ) = 0 almost everywhere in Ω. (B.40)

Proof. A proof can be found in [33] and in [80].

358



Proposition B.14.
If |X−Y|
d(B(X); ∂Ω) is small enough, then there exists two constants c, C > 0 independent of

Ω,X,Y and R such that for all x ∈ Ω

i) c ≤ det∇Φ(x) ≤ 1 + C
|X−Y|

d(B(X); ∂Ω) ,

ii) c ≤ σi(∇Φ(x)) ≤ C
(

1 + |X−Y|
d(B(X); ∂Ω)

)
, c ≤ σi((∇Φ(x))−1) ≤ C

(
1 + |X−Y|

d(B(X); ∂Ω)

)
,

iii) c ≤ det
(
(∇Φ(x))−1

)
≤ 1 + C

|X−Y|
d(B(X); ∂Ω) ,

iv) |1− det∇Φ(x)| ≤ C |X−Y|
d(B(X); ∂Ω) ,

v) σi(I − (∇Φ)−1(x)) ≤ C |X−Y|
d(B(X); ∂Ω) , σi(I − (∇Φ)(x)) ≤ C |X−Y|

d(B(X); ∂Ω) ,

where for a matrix A ∈ R2×2, we denote by σi(A), i = 1, 2 its singular values.

Proof. In what follows, we will denote by c or C any positive constant, independent of
Ω, R,X,Y, but which values can change from line to line. We also omit to note the
dependence on x. We only prove i) and ii). iii), iv), v) can be obtained in the same way.

i) Observe that the lower bound is already proven in Proposition B.12. We only have
to prove the upper one. Since det∇Φ = 1 + δ1ϕ

′
1ϕ2 + δ2ϕ1ϕ

′
2. Using the fact that

ϕi ≤ 1, |ϕ′i| ≤ 2 max
( 1
|Xi −R|

,
1

|Xi −R+ a|

)
≤ 2 1

d(B(X); ∂Ω) ,

yields the result.

ii) We recall that the singular values are given by

σi(∇Φ) = (λi(∇Φ∇ΦT ))1/2,

where λi, i = 1, 2, satands for the eigenvalues. To get an upper bound for the singular
values, we use the Gerschgorin’s theorem. We have that

λi(∇Φ∇ΦT ) ≤ max
i=1,2

 2∑
j=1
|∇Φ∇ΦT |ij

 ≤ C (1 + |X−Y|
d(B(X); ∂Ω) +

( |X−Y|
d(B(X); ∂Ω)

)2)
,

which implies that

σi(∇Φ) ≤ C
(

1 + |X−Y|
d(B(X); ∂Ω)

)1/2

+ C
|X−Y|

d(B(X); ∂Ω) .

Using that
√

1 + x ≤ 1 + x for all x ≥ 0 yields the desired estimate. Recalling that

(∇Φ)−1(∇Φ)−T = 1
(det∇Φ)2

(
(∇Φ∇ΦT )22 −(∇Φ∇ΦT )12
−(∇Φ∇ΦT )12 (∇Φ∇ΦT )11

)
.

We then obtain by the same argument that

λi((∇Φ)−1(∇Φ)−T ) ≤ c−2C

(
1 + |X−Y|

d(B(X); ∂Ω) +
( |X−Y|
d(B(X); ∂Ω)

)2)
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which yields the upper bound for σi((∇Φ)−1). Finally, for the lower bounds, we
recall that

λi(∇Φ∇ΦT ) = 1
λi((∇Φ)−1(∇Φ)−T )

implying that
λi(∇Φ∇ΦT ), λi((∇Φ)−1(∇Φ)−T ) ≥ c2.

Corollary B.15.
Under the assumption of Proposition B.14, there exists C > 0 independent of Ω,X,Y and
R such that

i) ‖ det∇Φ(∇Φ)−1‖L∞(Ω) ≤ C
(

1 + |X−Y|
d(B(X); ∂Ω)

)
,

ii) ‖I − det∇Φ(∇Φ)−1‖L∞(Ω) ≤ C
|X−Y|

d(B(X); ∂Ω) ,

Proof. i) is a direct consequence of the Proposition B.14, using the fact that for every
matrix A

|A|F ≤
√

(2) max
i=1,2

σi(A),

and that ( |X−Y|
d(B(X); ∂Ω)

)2
≤ |X−Y|
d(B(X); ∂Ω) if |X−Y|

d(B(X); ∂Ω) is small .

For ii) observe that

‖I − det∇Φ(∇Φ)−1‖L∞(Ω) ≤ ‖I − (∇Φ)−1‖L∞(Ω) + ‖(1− det∇Φ)(∇Φ)−1‖L∞(Ω).

We then conclude as previously.

Proposition B.16.
Let v ∈ (H1

0 (Ω))2, q ∈ L2(Ω). Let us define ṽ = v ◦ Φ, q̃ = q ◦ Φ where Φ is given by
(B.33). Under the assumption of Proposition B.14, we have that ṽ ∈ (H1

0 (Ω))2, q̃ ∈ L2(Ω).
Moreover, the followings estimates hold

i) ‖∇ṽ‖L2(Ω) ≤ C
(

1 + |X−Y|
d(B(X); ∂Ω)

)
‖∇v‖L2(Ω),

ii) ‖p̃‖L2(Ω) ≤
(

1 + C
|X−Y|

d(B(X); ∂Ω)

)
‖p‖L2(Ω),

where C > 0 is independent of Ω,X,Y and R.

Proof.
In what follows, we will denote by c or C any positive constants, independent of Ω, R,X,Y,
but which values can change from line to line. Making the change of variables x = Φ−1(y)

‖∇ṽ‖2L2(Ω) =
∫

Ω
∇ṽ : ∇ṽdx =

∫
Ω
∇v∇Φ : ∇v∇Φ|det∇Φ−1|dy ≤ C

∫
Ω
|∇Φ|2F |∇v|2Fdy,

where we use that

∇Φ−1(y) = (∇Φ)−1(Φ(y)), and det(∇Φ)−1 = 1
det∇Φ ≤

1
c
,
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with c as in Proposition B.14. Then, recalling that for all matrix |A|F ≤
√

2σmax(A) and
using estimates of Proposition B.14 we finally obtain that

‖∇ṽ‖2L2(Ω) ≤ C
2
(

1 + |X−Y|
d(B(X); ∂Ω)

)2
‖∇v‖2L2(Ω),

where C > 0 is independent of Ω,X,Y and R. Therefore, we immediately obtain that
ṽ ∈ (H1(Ω))2. Moreover, since Φ fixes the boundary of Ω, we have that ṽ ∈ (H1

0 (Ω))2.

By the same arguments, we have

‖p̃‖2L2(Ω) =
∫

Ω
p̃2dx =

∫
Ω
p2|det∇Φ−1|dy ≤

(
1 + C

|X−Y|
d(B(X); ∂Ω)

)2
‖p‖2L2(Ω),

where we use again that
∇Φ−1(y) = (∇Φ)−1(Φ(y)),

but this time we use the estimate

det(∇Φ)−1 ≤
(

1 + C
|X−Y|

d(B(X); ∂Ω)

)
≤
(

1 + C
|X−Y|

d(B(X); ∂Ω)

)2
.

We are now in position to prove the Theorem B.10.

Proof of Theorem B.10. For the whole proof, we will denote by C any positive constant,
which value can change from line to line and depends only on Ω. We first write both
problems in a weak form. (uX, pX), (uY, pY) ∈ (H1

0 (Ω))2 × L2
0(Ω) are solutions of the

variational problems
∫

Ω 2µXD(uX) : D(v)dx−
∫

Ω pX div vdx =
∫

Ω ρXg · vdx, ∀v ∈ (H1
0 (Ω))2,

∫
Ω div(uX)qdx = 0,∀q ∈ L2

0(Ω),
(B.41)


∫

Ω 2µYD(uY) : D(v)dy−
∫

Ω pY div vdy =
∫

Ω ρXg · vdy,∀v ∈ (H1
0 (Ω))2,

∫
Ω div(uY)qdy = 0,∀q ∈ L2

0(Ω).
(B.42)

Part 1. We do the change of variable y = Φ(x) in (B.42), where Φ is the mapping defined
in (B.33). Observe that we have for u ∈ (H1(Ω))2

∇y = (∇Φ)−T∇x, ∇yu = ∇xũ(∇Φ)−1, divy u = ((∇Φ−T )∇) · ũ,

where ũ = u ◦Φ. Noting ũY = uY ◦Φ, p̃Y = pY ◦Φ, ṽ = v ◦Φ, q̃ = q ◦Φ, the equations of
Problem (B.42) can be written as

∫
Ω

2µX det∇Φ∇ũY(∇Φ)−1 + (∇Φ)−T∇ũTY
2 : ∇ṽ(∇Φ)−1 + (∇Φ)−T∇ṽT

2 dx

−
∫

Ω
p̃Y det∇Φ((∇Φ)−T∇) · ṽdx =

∫
Ω

det∇ΦρXg · ṽdx, (B.43)

∫
Ω
q̃ det∇Φ((∇Φ)−T∇) · ũYdx = 0. (B.44)

The main step of the proof consists to reproduce the strategy of the one of Theorem B.6
applied to the problems (B.41) and (B.43), (B.44). To do so, test functions must be taken
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in the same spaces. By Proposition B.16, ũY, ṽ ∈ (H1
0 (Ω))2. Nevertheless, we do not have

that p̃Y, q̃ ∈ L2
0(Ω). In fact they belong to the following subspace of L2(Ω)

L2
Φ(Ω) =

{
q̃ ∈ L2(Ω) :

∫
Ω
q̃ det(∇Φ)−1dx = 0

}
. (B.45)

Observe that if q̃ = q ◦ Φ, q ∈ L2
0(Ω), then the mean value of q̃ can be estimated by

1
Ω

∫
Ω
q̃dx = 1

Ω

∫
Ω
q det(∇Φ)−1dx ≤ C |X−Y|

d(B(X); ∂Ω)

∫
Ω
|q|dx ≤ C |X−Y|

d(B(X); ∂Ω)‖q‖L2(Ω)

(B.46)
since det((∇Φ)−1) = (det∇Φ)−1 can be written as 1 + g(x1, x2) where g is bounded by

C
|X−Y|

d(B(X); ∂Ω) . We translate the problem to L2
0(Ω) observing the following. First of all,

we recall that div uY = 0 almost everywhere in Ω. By change of variable, we get that,
noting q̃ = q ◦ Φ,∫

Ω
q̃ det∇Φ((∇Φ)−T∇) · ũYdx =

∫
Ω
q div uYdx = 0 for all q̃ ∈ L2(Ω), (B.47)

so in particular ∫
Ω
q det∇Φ((∇Φ)−T∇) · ũYdx = 0, for all q ∈ L2

0(Ω).

Moreover, letting p̄Y = p̃Y −
1
Ω

∫
Ω
p̃Ydx ∈ L2

0(Ω), we have for all v ∈ (H1
0 (Ω))2

∫
Ω
p̄Y det∇Φ((∇Φ)−T∇) · vdx =

∫
Ω
p̃Y det∇Φ((∇Φ)−T∇) · vdx

− 1
Ω

∫
Ω
p̃Ydx

∫
Ω

det∇Φ((∇Φ)−T∇) · vdx =
∫

Ω
p̃Y det∇Φ((∇Φ)−T∇) · vdx,

where we use that, thanks to Proposition B.13 and divergence theorem,∫
Ω

det∇Φ((∇Φ)−T∇) · vdx =
∫

Ω
∇ · (det∇Φ(∇Φ)v)dx =

∫
∂Ω

det∇Φ(∇Φ)v · nds = 0.

Consequently, (ũY, p̃Y) ∈ (H1
0 (Ω))2 × L2

Φ(Ω) is a solution to (B.43), (B.44) if and only if
(ũY, p̄Y) ∈ (H1

0 (Ω))2 × L2
0(Ω) is a solution to (B.48), (B.49). We will then consider the

following equivalent problem to (B.42) (we omit the tilde in the test functions)∫
Ω

2µX det∇Φ∇ũY(∇Φ)−1 + (∇Φ)−T∇ũTY
2 : ∇v(∇Φ)−1 + (∇Φ)−T∇vT

2 dx

−
∫

Ω
p̄Y det∇Φ((∇Φ)−T∇) · vdx =

∫
Ω

det∇ΦρXg · vdx, for all v ∈ (H1
0 (Ω))2, (B.48)∫

Ω
q det∇Φ((∇Φ)−T∇) · ũYdx = 0, for all q ∈ L2

0(Ω). (B.49)

We now proceed as in the proof of Theorem B.6. We take the difference between (B.41)
and (B.48), (B.49) and adding/subtracting the appropriate terms to obtain the following∫

Ω
2µXD(uX − ũY) : D(v)dx−

∫
Ω

(pX − p̄Y) div vdx = ρF

∫
Ω\B(X)

(1− det∇Φ)g · vdx

+
∫

Ω\B(X)
p̄Y((I − det∇Φ(∇Φ)−1)∇) · vdx

− 2µF
∫

Ω\B(X)
(I − (∇Φ)−1)∇ũY : D(v)dx

− 2µF
∫

Ω\B(X)

∇ũY(∇Φ)−1 + (∇Φ)−T∇ũTY
2 : (I − det∇Φ(∇Φ)−1)∇vdx, (B.50)

362



∫
Ω
q div(uX − ũY)dx = −

∫
Ω\B(X)

q((I − det∇Φ(∇Φ)−T )∇) · ũYdx. (B.51)

Observe that the right hand sides in both above equations are computed only on Ω\B(X)
since ∇Φ = I in B(X). To conclude, we apply a priori estimates of Theorem B.4 with

F (v) = ρF

∫
Ω\B(X)

(1− det∇Φ)g · vdx +
∫

Ω\B(X)
p̄Y((I − det∇Φ(∇Φ)−1)∇) · vdx

− 2µF
∫

Ω\B(X)
(I − (∇Φ)−1)∇ũY : D(v)dx

− 2µF
∫

Ω\B(X)

∇ũY(∇Φ)−1 + (∇Φ)−T∇ũTY
2 : (I − det∇Φ(∇Φ)−1)∇vdx,

and
g = −((I − det∇Φ(∇Φ)−T )∇) · ũY.

In the notations of Theorem B.4 we have α = 2µmin, A =
√

2µXI and β depends only on
Ω. Therefore, there exists a constant C > 0 depending only on Ω such that

‖∇uX −∇ũY‖L2(Ω)

≤ C

µmin

(
‖1− det∇Φ‖L∞(Ω)ρF |g|+

∥∥∥I − det∇Φ(∇Φ)−1
∥∥∥
L∞(Ω)

‖p̄Y‖L2(Ω)

+µF
∥∥∥I − (∇Φ)−1

∥∥∥
L∞(Ω)

‖∇ũY‖L2(Ω)

+(µF + µmin + µmax)
∥∥∥I − det∇Φ(∇Φ)−1

∥∥∥
L∞(Ω)

‖∇ũY‖L2(Ω)

)
. (B.52)

Note that we have using Proposition B.16 and a priori estimate (B.31), (B.32) that

‖∇ũY‖L2(Ω) ≤ C
(

1 + |X−Y|
d(B(X); ∂Ω)

)
‖∇uY‖L2(Ω)

≤ C
(

1 + |X−Y|
d(B(X); ∂Ω)

)
ρmax
µmin

|g|, (B.53)

and

‖p̄Y‖L2(Ω) ≤ 2‖p̃Y‖L2(Ω) ≤ C
(

1 + |X−Y|
d(B(X); ∂Ω)

)
‖pY‖L2(Ω)

≤ C
(

1 + |X−Y|
d(B(X); ∂Ω)

)
ρmaxµmax
µmin

|g|. (B.54)

Recalling that we assume |X−Y|
d(B(X); ∂Ω) small, so we can bound all the high order terms

by |X−Y|
d(B(X); ∂Ω) , we finally obtain

‖∇uX −∇ũY‖L2(Ω) ≤ C
µmaxρmax|g|

µ2
min

|X−Y|
d(B(X); ∂Ω) . (B.55)

Part 2.
We prove (B.30). By change of variable, we have

1
πR2

(∫
B(X)

uXdx−
∫
B(Y)

uYdx
)

= 1
πR2

(∫
B(X)

uXdx−
∫
B(Y)

ũY det∇Φdx
)

= 1
πR2

(∫
B(X)

(uX − ũY)dx +
∫
B(Y)

ũY(1− det∇Φ)dx
)
.
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Using Cauchy-Schwarz and Poincaré inequalities yields

1
πR2

(∫
B(X)

uXdx−
∫
B(Y)

uYdx
)
≤ C√

πR

(
‖∇uX −∇ũY‖L2(Ω) + ‖1− det∇Φ‖L∞(Ω)‖∇ũY‖L2(Ω)

)
.

Finally, by estimate iv) of Proposition B.14, (B.53) and (B.55), we finally obtain that

1
πR2

(∫
B(X)

uXdx−
∫
B(Y)

uYdx
)
≤ Cµmaxρmax|g|

Rµ2
min

|X−Y|
d(B(X); ∂Ω) ,

where all the higher order terms in |X−Y|
d(B(X); ∂Ω) were bounded by |X−Y|

d(B(X); ∂Ω) .

Remark B.17.
Note that if, for X′ ∈ R2, the function µX′ , ρX′ given by (B.23) are Lipschitz functions
with respect to the position of the center X′ (for instance by using a regularization of the
characteristic functions χB(X′)), then the proof is easier. By taking directly the difference
between the problems (B.41) and (B.42) and using the Lipschitz continuity of the coeffi-
cients, one can prove that there exists a constant K that does not depend on X and Y
such that

‖∇(uX − uY)‖L2(Ω) ≤ K|X−Y|, (B.56)

that is to say the flow are Lipschitz continuous with respect to the position of the center
of the disks (compared with (B.55) in the proof above where we obtain a similar result for
uX and ũY). Then, we can easily estimate that∣∣∣∣∣
∫
B(X)

uXdx−
∫
B(Y)

uYdx
∣∣∣∣∣ ≤

∣∣∣∣∣
∫
B(X)

uXdx−
∫
B(X)

uYdx
∣∣∣∣∣+
∣∣∣∣∣
∫
B(X)

uYdx−
∫
B(Y)

uYdx
∣∣∣∣∣

≤
∫
B(X)

|uX − uY|dx +
∫
B(X)\B(X)∩B(Y)

|uY|dx +
∫
B(Y)\B(X)∩B(Y)

|uY|dx

≤ C‖∇(uX−uY)‖L2(Ω)+‖uY‖L∞(Ω)|B(X)\B(X)∩B(Y)|+‖uY‖L∞(Ω)|B(Y)\B(X)∩B(Y)|,

where C depends only on Ω and we use the fact uY is bounded, since it belongs to
(H2(Ω))2 (see Theorem B.8) due to the smoothness of the coefficients. Then, computing
that |B(X) \ B(X)∩B(Y)|, |B(Y) \ B(X)∩B(Y)| ≤ C ′|X−Y| where C ′ depends only on
the radius R and using (B.56), we can conclude finally that∣∣∣∣∫

BX
uXdx−

∫
BY

uYdx
∣∣∣∣ ≤ C ′′|X−Y|,

C ′′ depends on Ω, R,uY and K.
These manipulations (in particular to prove (B.56)) are unfortunately not possible in

the case of non-smooth coefficients. This is why we use the diffeomorphism Φ to define
every quantities on B(X).
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