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Abstract. In this paper, we establish the discreteness of transmission eigenvalues for Maxwell’s
equations. More precisely, we show that the spectrum of the transmission eigenvalue problem is
discrete if the electromagnetic parameters €, u, €, [ in the equations characterizing the inhomogeneity
and background are smooth in some neighborhood of the boundary and isotropic on the boundary,
and satisfy the conditions € # &, p # i, and €/u # €/f on the boundary. These are quite general
assumptions on the coefficients, which are easy to check. To our knowledge, our paper is the first
to establish discreteness of transmission eigenvalues for Maxwell’s equations without assuming any
restrictions on the sign combination of the contrasts e —€ and p— i near the boundary and allowing for
all the electromagnetic parameters to be inhomogeneous and anisotropic, except for on the boundary
where they are isotropic but not necessarily constant as is often assumed in the literature.
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1. Introduction. The transmission eigenvalue problem is at the heart of inverse
scattering theory for inhomogeneous media. This eigenvalue problem is a late arrival
in scattering theory with its first appearance in [11, 18], in connection with the in-
jectivity of the relative scattering operator. Transmission eigenvalues are related to
interrogating frequencies for which there is an incident field that doesn’t scatterer
by the medium. The transmission eigenvalue problem has a deceptively simple for-
mulation, namely, two elliptic PDEs in a bounded domain (one governs the wave
propagation in the scattering medium and the other in the background that occupies
the support of the medium) that share the same Cauchy data on the boundary, but
presents a perplexing mathematical structure. In particular, it is a non-self-adjoint
eigenvalue problem for a nonstrongly elliptic operator, and hence the investigation of
its spectral properties becomes challenging. Roughly, the spectral properties depend
on the assumptions on the contrasts in the media (i.e., the difference of the respective
coefficients in each of the equations) near the boundary. Questions central to the
inverse scattering theory include discreteness of the spectrum that is closely related
to the determination of the support of inhomogeneity from scattering data using lin-
ear sampling and factorization methods [5], location of transmission eigenvalues in the
complex plane that is essential to the development of the time domain linear sampling
method [9], and the existence of transmission eigenvalues as well as the accurate de-
termination of real transmission eigenvalues from scattering data, which has become
important since real transmission eigenvalues could be used to obtain information

*Received by the editors April 30, 2020; accepted for publication October 19, 2020; published
electronically February 4, 2021.
https://doi.org/10.1137/20M 1335121
Funding: The work of the first author was partially supported by the AFOSR grant FA9550-
20-1-0024 and NSF grant DMS-1813492.
fDepartment of Mathematics, Rutgers University, New Brunswick, NJ 08903 USA (fc292@math.
rutgers.edu).
tEcole Polytechnique Fédérale de Lausanne, EPFL, SB, CAMA, Station 8, CH-1015 Lausanne,
Switzerland (hoai-minh.nguyen@epfl.ch).

888

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/20M1335121
mailto:fc292@math.rutgers.edu
mailto:fc292@math.rutgers.edu
mailto:hoai-minh.nguyen@epfl.ch

Downloaded 02/08/21 to 128.179.253.50. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

DISCRETENESS OF TRANSMISSION EIGENVALUES 889

about the material properties of the scattering media. We refer the reader to [5] for
a recent and self-contained introduction to the topic.

This paper concerns the discreteness and location of transmission eigenvalues in
the scattering of time-harmonic electromagnetic waves by an inhomogeneous (pos-
sibly anisotropic) medium of bounded support. Let us introduce the mathematical
formulation of the electromagnetic transmission eigenvalue problem. To this end, let
Q be an open, bounded subset of R? representing the support of the inhomogene-
ity, which we assume to be of class C2. Let ¢, u, &, i be (3 x 3) symmetric, uni-
formly elliptic, matrix-valued functions defined in Q with L*°(£2) entries. A complex
number w is called an eigenvalue of the transmission eigenvalue problem, or a trans-
mission eigenvalue, associated with €, u, €, i1 in € if there exists a nonzero solution
(E,H,E,H) € [L*(Q)]'2 of the following system:

V x E = iwpH, V x E = iwjiH,

(1.1) in ©, R . in Q,
V x H = —iweE V x H=—-wék

(1.2) (E—E)xv=00ndQ, and (H—H)xv=0 ondQ,

where v denotes the outward unit normal vector to 0S2.

The main result that we prove in this paper is stated in Theorem 1.1 below. For
the reader’s convenience we first must clarify some terminology used in the formulation
of this theorem. A 3 x 3 matrix-valued function M defined in a subset O C R? is called
isotropic at « € O if it is proportional to the identity matrix at z, i.e., M(z) = ml
for some scalar m = m(x), where I denotes the 3 x 3 identity matrix. In this case, for
notational ease, we also denote m(x) by M (x). If M is isotropic for z € O, then M is
said to be isotropic in O. Condition (1.3) below is understood under the convention
m(z) = M(x).

THEOREM 1.1. Assume that

(i) &, i, &, fi are of class C* in some neighborhood of O,

(ii) €, u, €, [i are isotropic on O,

(iii)

(1.3) e£é, u#p, e/p#é/p on .

The set of the transmission eigenvalues of (1.1) and (1.2) is discrete with oo as the
only possible accumulation point.

The analysis used in the proof of Theorem 1.1 also allows us to obtain the following
result on the transmission eigenvalue free region of the complex plane C.

PROPOSITION 1.1. Assume that €, p1, €, i are of class C' in some neighborhood
of 01, isotropic on 0X), and

(1.4) e£E pAh e/uFéfi ondQ.
For oy > 0, there exists wy > 0 such that if w € C with |3(w?)| > v|w|? and |w| > wo,
then w is not a transmission eigenvalue.

Here and and in what follows, for z € C, let &(z) denote the imaginary part of z.

Remark 1.1. Since v > 0 can be chosen arbitrarily small, the result of Proposition
1.1, together with the fact that co is the only accumulation point of the transmission
eigenvalues proven in Theorem 1.1, implies that all the transmission eigenvalues w,
but finitely many, lie in two wedges of an arbitrarily small angle.
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The structure of the spectrum of the transmission eigenvalue problem is better
understood in the case of scalar inhomogeneous Helmoltz equations. In this case,
the transmission eigenvalue problem can be stated as follows. Let d > 2 and €2 be an
open, bounded Lipschitz subset of R%. Let A;, A3 be two (d x d) symmetric, uniformly
elliptic, matrix-valued functions defined in 2 and ¥; and 35 be two bounded positive
functions defined in §2. A complex number w is called an eigenvalue of the transmission
eigenvalue problem, or a transmission eigenvalue, if there exists a nonzero solution
(u1,usz) of the system

( ) d1V(A1Vu1) + szlul =0 in Q7
1.5

diV(AQVUQ) + (UZZQ'U/Q =0 in €,
(1.6) uy = ug, A1Vuy-v=A3Vus-v on 0.

The discreteness of transmission eigenvalues for the Helmholtz equation has been
investigated extensively in the literature. The first discreteness result appeared in
[29], whereas [26] proves the state-of-the-art results on the discreteness of transmis-
sion eigenvalues for anisotropic background and inhomogeneity under most general
assumptions on the coefficients using Fourier and multiplier approaches. More specif-
ically, it is shown in [26] that the transmission eigenvalue problem has a discrete
spectrum if the coefficients are smooth only near the boundary and
(i) Ai(z), Az(z) satisfy the complementing boundary condition with respect to
v(z) for all x € 99, i.e., for all z € O and for all £ € R?\ {0} with £-v =0,
we have

(Aov, v)(A26,€) — (Aav, €)* # (A1, V) (A€, ) — (A1, €)2,

(ii) <A11/, u>21 + <A21/, 1/>22 for all z € 992.

Additional results in [26] also include various combinations of the sign of contrasts
Ay — A and X7 — ¥y on the boundary. Previous results on discreteness can be found
in [3, 19, 32] and references therein. We must emphasize that the conditions (i) and
(ii) are more general than simply one sign contrasts As — A; and/or s — ¥; near
the boundary. To complete the picture on the transmission eigenvalue problem in the
scalar case, we remark that the first answer to the existence of transmission eigenvalues
for one sign contrast in () was given in [28], where the authors showed the existence of a
few real transmission eigenvalues for the index of refraction sufficiently large, followed
by [6, 8], which prove the existence of infinite real transmission eigenvalues removing
the size restriction on the index. The completeness of transmission eigenfunctions
and first estimates on the counting function are shown in [30, 31] for C*° boundary
and coefficients since they use semiclassical analysis and pseudodifferential calculus.
Again in a C'™ setting, [33, 34] prove the sharpest known results in the scalar case on
eigenvalue free zones and Weyl’s law for the scalar case improving an earlier result by
[17].

The story of the transmission eigenvalue problem for Maxwell’s equations is not as
complete as for the scalar case discussed above. One of the first results on discreteness
is given by Haddar in [14], which considers the case of p = é = =1, and e — T
invertible in 2. Chesnel in [10] employs the so-called T-coercivity to prove discreteness
when é = i = I, and € — I and ' — I are both greater than ¢l or both less than
—cl for some positive constant ¢ in a neighborhood of 9. Cakoni, Haddar, and
Meng in [7] use an integral equation approach to study discreteness for the case when
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pw = ¢ = j = I and the matrix-valued € becomes a constant not equal to 1 near the
boundary. Theorem 1.1 therefore adds to this list quite general conditions on the
coefficients for which the discreteness holds. To our knowledge, our paper is the first
to establish discreteness of transmission eigenvalues for Maxwell’s equation under sign
assumptions on the contrast € — € and pu — ji on the boundary, and allowing for all the
electromagnetic parameters to be inhomogeneous and anisotropic, except for on the
boundary where they are isotropic but not necessarily constant as is often assumed
in the literature. For the case of electromagnetic transmission eigenvalue problems,
other types of results are rather limited, and we refer the reader to [6] for the existence
of real transmission eigenvalues and [16] for the completeness of eigenfunctions for the
setting related to the one in [7] mentioned above.

The analysis in this paper is inspired by the concept of complementary conditions
suggested by Agmon, Douglis, and Nirenberg in their celebrated papers [1, 2] for el-
liptic systems. For Maxwell’s equations, the complementary condition for the Cauchy
problems has been recently investigated in [27] for general anisotropic coefficients in
the context of negative index metamaterials. To be able to apply the theory of com-
plementing conditions to the Maxwell equations, various forms of the Poincaré lemma
and Helmholtz decomposition are used with a suitable implementation of local charts.
The analysis in this paper is in the spirit of the one developed in [26]. The idea is to
show that the system

wn V x E =iwpH + J, in Q, V x E=iwpH + J, in Q,
1.7 R -
V x H = —iweE + Jp, in Q, V x H=—iwéE+ J,, in Q,

(1.8) (E—E)xv=00n09 and (H—H)xv=0ondQ,

is well-posed for some w € C, where (Je, Jyn, jg, jm) is the input, which belongs to an
appropriate functional space. Moreover, a key fact is to prove that the corresponding
transformation which maps the input (Je, Jyn, Je, jm) to the output (E,H,E, ﬁ) is
compact. It is worth mentioning that the compactness is one of the crucial/critical dif-
ferences between the study of the Maxwell equations and the Helmholtz equation. In
our analysis, the functional space for the input is well-chosen so that the compactness
property holds (see (4.22)) for w in some domain. For example, these facts hold under
the assumptions of Theorem 1.1 provided that iw = |w|e!™/4, i.e., w = |w|e~/* and
|w]| is large. To this end, we analyze the corresponding Cauchy problem with constant
coefficients in a half-space (Proposition 3.1). Using the decay of Maxwell equations
(Lemma 4.1), we can prove the uniqueness for (1.7) and (1.8). To establish the ex-
istence of a solution, the Banach-Necas-Babuska theorem is applied. Deriving (1.3)
and handling the compactness are the key differences in the analysis of this paper and
the one for the scalar case [26].

The Cauchy problem also naturally appears in the context of negative index ma-
terials after using reflections as initiated in [21]. The well-posedness and the limiting
absorption principle for the Helmholtz equations with sign-changing coefficients were
developed in [22] using the Fourier and multiplier approach. Recently, with Sil, the
second author investigated these problems for the Maxwell equations [27]. Both pa-
pers [22, 27] deal with the stability question of negative index materials and are the
starting point for the analysis of the discreteness of transmission eigenvalues for the
Helmholtz equation [26] and Maxwell’s equations in this work. Other aspects and
applications of negative index materials involving the stability and instability of the
Cauchy problem (1.7) and (1.8) are discussed in [23, 25, 24] and the references therein.
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The paper is organized as follows. In section 2, we introduce notation used fre-
quently in this paper. Section 3 is devoted to the analysis in the half space. The main
result in this section is Proposition 3.1. Condition (1.3) will appear very naturally
there. Finally, we present the proof of Theorem 1.1 in section 4. The choice of the
right functional space plays an important role there. The proof of Proposition 1.1 is
also given in this section.

2. Notation. The following notation is used frequently throughout the paper.
Denote

Ri = {:13 = (z1,22,23) € R3: 24 > 0}

and
R} = {a: = (x1,22,73) € R3; 23 = O}.

Let Q be a bounded, open subset of R3 and of class C?, or ) = Rf’r. We define the
spaces

H(curl, Q) = {u e LX)V xu e [LQ(Q)}?’},
Hy(curl, Q) = {u € H(curl,Q);u x v =0 on 5‘9},

H(div, Q) = {u € [L2(Q)%; divu € LQ(Q)}.
Set I' = 99, and for s = —1/2, or 1/2, define the trace space
H5,,(T) = {u € [H*(D)*;u-v =0 and divru € HS(P)}.

For a vector field u defined in a subset of R3, u; denotes its jth component for
1 < j < 3. We also denote, for s > 0,

(2.1) Q, = {x € Q; dist(z, 09Q) < s}

3. Analysis on a half space. In order to simplify presentation, we let k& € C be
k :=iw. Let €, u, £, 1 be four symmetric, uniformly elliptic matrix-valued functions
defined in Ri. In this section, we are interested in the following Cauchy problem for

Maxwell’s equations in R3 , with J,, J,,,, Joy Jm € L*(RY) and fe, fim € H(;}//Z(Rg),

V x E=kuH +J, in R, V x E =kiH + J. in R3,
) { V x H=—keE + J,, in RS, { Vx H = k2B + J, in B2,
and!
(3.2) (E—FE)xes=f.onRS and (H—H)xes=f, onR.

We begin with proving the following lemma.

leg = (0,0,1) € R3.
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LEMMA 3.1. Lety >0 and k € C with |S(k*)| = v|k|? and |k| > 1. Furthermore,
let A >1 and e, p be two positive constants such that A=' < e, u < A. For J., J,, €
[L2(R3)]3, there exists a unique solution (E, H) € [L*(R3)]% of the system

V x E =kpH in R},
(3.3) V x H = —keE + Jy,, in R3,

E xe3=0 on R}

Moreover, for some positive constant C depending only on A and v,

C

(3.4) H<E7H)”L2(R§’r) < m”JmHL?(Ri)
and

2 o
(3.5) () x esP(KP + 1627246 ) < o lmllpages,

9 B '

and if div J,, € L*(Q), then

1 .
(36) 1B s < (Imbices + v Il )

Here and in what follows, we denote the Fourier transform with respect to
(z1,22) € R? of an appropriate function u : R} — C by u”, i.e.,

1 . P
u}-(§7$3) == % /]R2 u(zl’x27x3)671(E1£1+12§2) d‘rl d'r2 for (551:3) = (61,5271'3) S Ri

Similar notation is used for an appropriate function defined on R§. We also identity
a vector (y1,¥2,0) € R3 with (y1,42) € R?.

Remark 3.1. We emphasize here that the constant C' appearing in (3.4)—(3.6) is
independent of k.

Proof. We have, from the system of (E, H),
(3.7) V x (V x E) + k*e¢pE = kpd,, in R3.

Multiplying (3.7) by @ (the conjugate of ) with ¢ € Hy(curl, R ) and integrating by
parts yields

(3.8) /R

Take ¢ = E. Since |$(k?)| > v|k|* and |k| > 1, after considering the imaginary part
and the real part of (3.8), we obtain

(V x B,V x w>+k26u/ (E.¢) :/Rs k(T ).

3 3
3 R

/ IV % E? + kPP < 0/ T2,
RY R}

which implies (3.4) since V x E = kpH in R3. The uniqueness of (E, H) follows.
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To derive (3.6), we note that

[V x E||L2(1R§r) < C||JmHL2(1R1)7

. c, ..
[ leEHL%Ri) < m” div JmHLZ(Ri)v

1Bl L2@s) < CllTmllL2(es ),
E xe3=0o0n Ri_.

It follows from the Gaffney inequality (see, e.g., [13, Theorem 3.7], [12, Theorem 1])
that £ € H'(R3)]? and

c . ..
(3.9) BNty < OMnlzaqeg + 1l div T Logag)

We also have
IV X Hlp2gz) < CllImllege ),

| div Hl| g2 (zs ) =0,
[H | r2es) < CllImll2 @y,
and, since E X e3 = 0 on Ri,
H~€3:OOIIR3_.

It follows from the Gaffney inequality again (see, e.g., [13, Theorem 3.9], [12, Theorem
1]) that H € H'(R3) and

c ., ..
(3.10) [H vz ) < CllImllr2gez ) + m” div Jel| L2 (r2 )-

Combining (3.9) and (3.10) yields (3.6).
To establish (3.5), we proceed as follows. Set, in R3,

(E,H)() = (B, H)(x/|K]) and fm(w):f];!fm(r/lkl)

We then have
- ko=, 4
VXE:mﬂHlnR+7

(3.11) Vxﬁz_ﬁgﬁﬁm in R%,

E xe3=0on R3.
Applying (3.4) to (E, I;f), we have
ICE, Bl 2e2) < CllTmllz2s ) = OV 2 [Tl r2s)  (by a change of variables).
This implies, by the trace theory,

(3.12) |H x esllg-1/2@me) < C||fIHH(cur1,Ri) < CHjm”LZ(Ri) = C|k|1/2||JmHL2(R1)~
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Note that _
HT (&) = [k[*H” (|k|¢) for & € R,

It follows that

1T < e33-1/2ma) = /R HT(©) xesf* (14 [¢7) /2 dg

= [ I (HlE) x eaP(1+ )2 de
This yields, by a change of variables,
(3.13) 7 ¢ eally ooy = [ L) x eaP P 4+ 161) 72 e
From (3.12) and (3.13), we obtain
@ty [T x el (kR +1ER) dE < ORI

Assertion (3.5) follows.

To prove the existence of (F, H), we first apply the Lax—Milgram theory for
the variational formula given in (3.8), where the bilinear form is defined by the left
hand side (LHS) and the linear functional is defined by the RHS in the Hilbert space
Ho(curl, RY). We then derive that there exists a solution E € Hp(curl, R3) of (3.7).
Set

1
H:mVinnRi.

Then
. 3
Vx E=kuH in R
and

VXﬂzkivX(VXE)z—kaEJerinRi.
n

In other words, (E, H) € [L*(R3)]% is a solution of (3.3). The proof is complete. O

We now state the main result of this section, which plays a key role in the proof
of Theorem 1.1.

PROPOSITION 3.1. Let v > 0, k € C with |3(k?)| > v|k|?, and |k| > 1, and let
A>1ande, p, €, 1 be four positive constants such that

A <e p, & <A
Assume that, for some Ay > 0,
le—él> A1, |p—pl>A1,  and |e/p—éE/pl > Ay

Let J., Jp,, J., Jm € LQ(Ri) and let fe, fm € H_l/g(div,Rg). There exists a unique
solution (E, H, FE, H) € [L*(R2)]'? of the system

(3.15) V x B =kuH + J, in R3, V x B =kpH + J, inR3,
3.15 R .
V x H=—keE + Jy, inR3, Vx H=—kéE+ J, inR3,
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(3.16) (E—E)xes=f, onRS, and (H—H)xes=fn onR3.
Moreover, we have

(3.17)  CIk| (B, H, E, H)|| 283 < 1(es Tons Jes Jn) | 1223 )

1/2

I ([ 107 SO + 1632 de ) i ovdive £l

Assume in addition that J., Jm, Je, Jym € H(div,Ri) with (Je,3 — Je3y Jm,3 — jm’3) c
[HY2(R3)1?, and fe, fm € HY?(div,R3). We have

(3.18)
C (1B, H, B, )|y ey + 1R (B, H, B D) )

IN

A~ A 1 ~ ~
e T Tes Tl + (Y ey iy T v T i T e

1 N .
+ mH(Je,B — Jess Ims = Jm )iz + K21 (fer fn) |2 rg)

1 . .
+ 1 (fes frdll vz mey + m”(dlvr fes dive fin)ll 1r2(mg)-

Here C' denotes a positive constant depending only on 7y, A, and A;.

Recall that, by our convention, Je 3, Jm 3, je’g, jm13 denote the third component
of Je, Jm, Je, Jm. It is worth noting that the constant C' is independent of k.

Proof. Let (E',HY), (E?, H?), (E*, H"), (E? H?) € [L*(R3)]® be, respectively,
the unique solutions of the following systems:

V x E' = kpH' in R%, V x BE' = k' in R3,
V x H' = —keE' 4 J,,, in R, V x H' = —kéE' + J,, n R3,
E! x e3 =0 on R, E' x e3=0onR3,
V x B? = kuH? 4 J, in R3, V x B? = kjiitH? + J, in R3,
V x H? = —keE' in R?, V x H? = —kéE? in R3,
H? x e3 =0 on R}, H? x e3 =0 on R3.

We first establish (3.18). Applying Lemma 3.1, we obtain
(319) ||(E17H1,E2,H27E13H1,E27I:Iz)”Hl(Ri)
+ |k‘ H(E17H17E27H27E17£’17E27ﬁ2)”L2(R‘1)
1

< C<||(Je, Ty Jes jm)||L2(Ri) + m”(div Jo, div Jp,, div J,, div j,,L)||L2(R3)).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/08/21 to 128.179.253.50. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

DISCRETENESS OF TRANSMISSION EIGENVALUES 897

Using the trace theory, we derive from (3.19) that
(3:20) |(B', H',E* H* E',H",E* H*)||111/2(z3)
< C||(E17H17E27H27E17ﬁ17E27ﬁ2)||H1(R3_)

1 .
+ —|(div J., div Jp, div J,, div Jm)||L2(R3+)>.

—C<||(J€7JM7je7jm)”Lz(Rijr) |k|

We have
[ dive(H* x es)—dive(H' x es)l| g1/2(g3)
=|(VxH") e3—(VxH") “esll g2 ma)
= l(=keB" + Ju) - €3 — (—kEE" + J) - e3ll /2 a3
< CIRII(EY, BV 1/2(g + Cllms — Jomsllsrvre e
It follows from (3.20) that

(321) || diVF(Hl X 63) — diVF(ﬁl X €3)||H1/2(Rg) S C|k“ (H(Je, Jm, je, jm)HLZ(]Ri)

Aty o, div Sy, div Jo div )| 2 + |k‘HJ,ng m,3||H1/2(R3)).

+ gl

Similarly, we obtain

(3.22) [|divp(E" x e) — divp(E" x €3)| gr1/2rg) < C|k|(||(Je,Jm,je7 Tn) L2 (re)

1, . PR 1 .
+ I e div T div ey div o) ) + il e = Je,3||H1,2(Rg)).

Using the fact, for u € H'(R3),
(3.23) [P <2 [ ulogul < 2l 190l sy,
R3 R%

we have
||(E17H1aE27H2»E1,I:117EA127I:I2)||L2(Rg)

< OB H' B> H*, B', /', B? )| s

x (B, H', E?, H? E*, H', E? H2)||}ﬁ(R3 .
This yields
(324) k1/2||(E17H17E27H27E17]:117E27H2)||L2(Rg)

< Clk| ||(E1,H1,E1,H1)||L2(R3+) + C”(ElaHlaElvﬁl)”Hl(Ri)'
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By considering (E — E' — E2, H — H' — H? F — E' — E2 H — H' — H?), from
(3.19), (3.20), (3.21), (3.22), and (3.24), without loss of generality, one might assume
that

Je=Jy=Je=Jy=0inR}.

This will be assumed later on. Thus

(3.25) V x E = kpH in R%, V x E = kjH in R,
' V x H = —keE in R, V x H=—kéE in R},
(3.26) (E—FE)xes=f.onRS and (H—H)xes=f, onR.

Using the identity for a vector field A
Vx(VxA)=V(V-A)—AA,

we obtain the following equations for F and E:

AFE — k*’epE =0 in R3,
(3.27) { i

3 22070 ()i TR3
AFE — k*4pF = 0 in R
(recall that here the coefficients are all constants).
Consider the first two equations of the system for E and the first two equations

of the system for E in (3.27). Solving these equations using the Fourier transform
with respect to (x1, 22) yields

(3.28) EJ (& w3) = aj(§)e "oV PR i RY
(3.29) EY (&, w5) = a;(§)e "oV IR in RY

for j = 1,2, where
a;(€) = Ef (€,0) and  4;(¢) = E7 (€,0) for & € R®.

We then have, with a = (a1, as) and & = (a1, ds),

(3.30) a(€) — a(§) = h(€), where h(§) = —f7(€,0) x es.

Recall that we identify a vector (yi,y2,0) € R3 with (y1,y2) € R2.
Since div £ =0 in Ri, it follows that

Opy B3 = —(0p, E1 + 05, E2)  in R3.
This implies
Ouy B (&, w3) = —i€1 BY (§,23) — i&2FF (€,03)  in RY.
Using (3.28), we obtain

Oy B (&, w3) = —i€ - a(§)e "oV EPTR e in R
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We thus get

(3.31)
Ef (&,23) = — /OO i€ - a(€)e VISP TR R g — i€ a(g)e VI e in R3

VIEP + Rep v

Similarly, we have

i - a(g)e— VIR
VIER + k2]

Sinceﬂ'xeg—erngm on R3, and V x H = —keF and V x H = —kéE in
Ri, it follows that

(3.32) Ef(€,23) = in R3.

- 1
EE3 —ek3 = % dichs) fm on Rg.
Using (3.31) and (3.32), we derive that

al)  ctoal®)
VIEP+ R0 /IEP + RPen

Combining (3.30) and (3.33), and noting a = a — h, yields, on R?,

(3.33) on R%.

9

(% diVRS fnl) 7

€.a € B € _ € € ht
VIR RE R Re) ke

which implies

VIEP + R2ep/IEP + 28 (e /&7 + K22 + &/[€7 + K%en)
(82 — )€ + k2eép(é/fi — e/ p)

E-a=

x (-\/mg h+ g) .
Since € # &, ¢/pu # €/j1, and |S(k2)| > ~|k|2, k| > 1, we get
(3.34) (€% — 2P + Keeuple /i — e/p)| = C(ER + k7).
We deduce that
€ a()] < (I h©)l + VIER + RPlg(©)1),
which yields, since a = @ — h,
(3.35) € a(©)|+1¢- a()] < (I hOI + VIEP + FPlg(©)])-
We have, in R3,

kaHl = aIQEg - &;SEQ, kﬂﬁl = &,32]@3 - amsEQ.
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Since Hy — Hy = fmo := fm - €2 with ez = (0,1,0) on R, it follows from (3.28),

(3.29), (3.31), (3.32) that

L[ &E&-a) E5 T I35
/3/ < \/m + ‘€|2 + kzé‘an(g))

- l —M 2 2 F
n ( VIER + k2ep " ma2(5)> + k28

We derive from (3.30) that

(3:36) % VI + i () — 1/ IEP + Fepia(€)

=<A §a0) __ ¢-ald) )62—;\/|€|2+k25uh2(€)+kf£,2(f)-

V1P +R2E0 py/I€P + K2ep

We thus obtain

TP+ 2 + oo/ JEP+ PP

(12 — (2 + k2ecpip/e — p/e)

(3.37)  ax(¢) =

’ { <¢ Zlii(/fgau ) ¢|Z|§2'i(2w> &~ VIR + Fepha(6) + kuﬂf£,2<5>} .

Since 1 # fi, e/p # £/ 1, and [S(2)] = y[k[2, [k > 1, we get

(3.39) (a2 = )2 + K2eéuiilu/e — 1/2)| = C(* + [kP).
Using (3.38), we derive from (3.37) that
A Cle]
0200 <ty (16 @1+ le-a@)]) + O (1na(€)] + 177260,

which yields, since @ —a = h,

Cl¢]

(3:39) a2 (&)] + laz(§)] < [HEEE

(Ig- a@l +I¢ - a(©)l) + (1)) + 17 ©))-
Combining (3.35) and (3.39) yields

(la2(€)1* + laz(©)*)VIE? + [kI2 < CIRP + [£71%) VIER + K2 + Clg(€)?e].

From the definition of g and h, we obtain

(3.40) /Rzucu( O + s @) VIER + B € < € (I(fer For)l32nsy

1 . .
1o o) g+ e foive ey )
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Similarly, we reach

) [ (a@F + 1O IVEPFTREAS < € (1o Fulracy

L .
+ |k ||(fe,fm)|‘%2(Rg) + W”(dwr Jfe,divr fm)|§-11/2(]R(3])> -
On the other hand, from (3.28), (3.29), (3.31), and (3.32), we have
a2 [ IVEVEF + WPIE B do < C [ 1(a).a() P VIR T RPde.
+

Combining (3.40), (3.41), and (3.42) yields

043 [ IVEVEE +kPIE )P de < O (1 fr) ocay
+

1 . .
+ |k ||(fevfm)|‘%2(]1§8) + W”(leF e, divp fm)|?{1/2(Rg)> :

Similarly, we obtain

(3.44) /RS \(VH,VH)]> + |k|*|(H, H)|? dz < C (H(fe,fm)llip/z(Rg)

i
1 . .
+ ‘k| ”(feafm)”%%]}{g) + ‘k|2 ”(leF fealeF fm)'?{”%R%)) '

Assertion (3.18) now follows from (3.43) and (3.44).

We next deal with (3.17), whose proof is in the same spirit. Applying Lemma 3.1,

we obtain

(3.45) |k|”(ElaHlaE2aH2aElaﬁ1aE27FI2)HL2(Ri)§CH(Jevavjevjm)”LZ(Ri’_)v
and, with w = E*, H*, E2, H2 F* H', F2, or H?,

(3.46) |k ( 7€) x o€ + 1) dg)m < Ces Ty Jes Jn)llacos-
As in the proof of (3.21) we obtain
| divp(H" x e3)—dive(H" X e3)[|-1/2 ()
=[(Vx H'") ez = (V x ﬁl) : €3|\H—1/2(Rg)
= [(—keE" + Jm) - €3 — (=kEE" + Jpn) - esll gr-12(x3)

< C|(=keE + J,,)) — (—kEE! + jM)||L2(R§’r) (by the trace theory),
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which yields, by (3.45),

(347)  ||dive(H" x e3) = dive(H" x e3) | g-1/2(mg) < Cll(Jes Tons ey Ton) | 2w )-
Similarly, we obtain

(348)  [dive(E" x e3) = dive(E" x e3) | g-12mg) < Cll(Jes Ty Jes Ton)l| 2o )-

_ Using (3.45)—(3.48), without loss of generality, one might assume that J. = J,,, =
Je —Jm—OmR3
Combining (3 35) and (3.39) yields

(la2(&)* + 1a2(&)P) (&> + [KI%) 72 < ORI + | £ + 1g(©) ) (€7 + 1k[*) 12,

From the definition of g and h, we obtain

(3.49) /(Iaz( )I? + laz(€)) (€I + [k[*) 712 de

< C (/ | (|§|2 + |k| ) 1/2 df + |k‘2 ||(d1VF fE7diVF fm)”?{l/?(Rg)) .

Similarly, we reach

(3.50) /(Ial( )I? + lan ()€ + [k[*) 712 de

<0 ([ 7 FTNORER + ) de s aive fovdive Fu s ) -

On the other hand, from (3.28), (3.29), (3.31), and (3.32), we have
o) [ WRIEEFd <0 [ K1) + k) ds
T
Combining (3.49), (3.50), and (3.51) yields

(3.52) / K2I(B, ) da

< C(W/ ( P(EP + [k*) 712 dé + ||(divp fe, divp fm)ni,l/z(Rg)).

Similarly, we obtain

(3.53) / (K[2|(H, 1) da

<0 (k8 [ 107, 20O PUSE? + K22 de + 1(dive fosdive fulBysaeg )

Assertion (3.17) now follows from (3.52) and (3.53).

The existence and uniqueness of (E, H, E.H ) follow from the computations given
above. The proof is complete. 0
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As a consequence of Proposition 3.1, we obtain the following.

COROLLARY 3.1. Let v > 0, k € C with |3(k?)| > ~|k|?, and |k| > 1, and
let €, p, €, i € [L®(R3)]3*3 be symmetric, uniformly elliptic, and of class C*. Let
A > 1 be such that

Al <e p & p<AinBiNRY  and ||(€,u,é7ﬂ)||cl(RimB1) <A.
Assume that €(0), £(0), 1(0), 4(0) are isotropic, and for some Ay > 0
le(0) = £(0)] = A1, |pu(0) — @(0)| > A1, and  [e(0)/p(0) —£(0)/f(0)] = As.

Let Jo, I, Jey Jm € L*(R3) and assume that (E, H, E, H) € [L*(R*)]'? is a solution
of (3.15) and (3.16) with fo = f;, = 0. There exist 0 < 1o < 1 and ko > 1 depending
only on v, A, and Ay such that if the supports of E, H, E‘, H are in B,, N Rﬁ_ and
|k| > ko, then

(3.54) KL [(E, H, B, H) 123y < Cl(Jes Ty Jes Tn) 22 (e2 -
We also have, if Jo, Jy, Je, Jm € H(div,R%) and J. 35— Josy Jms — Jms € HY2(R3),
(3.55) ||(E, H, B, H)|| g my) + |kl | (B, H, B, H)| g2 r2)

< C(I(es Tms Jes Tl e + [ ey i T, div e i T 202

1 - -
+ e = Jes Jms = I3z )

Here C' denotes a positive constant depending only on 7y, A, and A;.

Remark 3.2. The constant C' in (3.55) is independent of k. Concerning the iso-
tropic properties of €, u, €, i, we emphasize here that e, u, €, [i are not required to
be isotropic in By NR3; we only assume that £(0), 1(0), £(0), 4(0) are.

Here and in what follows B, for » > 0 denotes the ball of radius r centered at the
origin.

Proof. We only prove (3.55). The proof of (3.54) is in the same spirit and even
easier, and omitted. We rewrite (3.15) under the form

V x E = ku(0)H + J} in R3, V x E = ki(0)H + J! in R,
V x H=—ke(0)E+JL in R3, V x H=—ké0)E+JL inR3,
where, in Ri,
Je (@) = Je(x) + k(p(x) = p(0) H(x),  Jp(2) = Jn(x) — k(e(x) — £(0) E(x),

T2 (@) = Je(@) + k(i(x) — p0) H(z), Jp,(z) =
From Proposition 3.1, we obtain
(3:56)  C (1B, H, By 1) i usy + k] (B, H, By )| p2es )
PO 1 A o
< H(‘]ela Jrlru ‘]ela J}n)”L?(Ri) + m || (le Jel7 div Jvlrm div ‘]617 div ‘]71n) ||L2(]Ri)

1 o .
+ WH(Jel?) - Je1737 ‘]1%'7,,3 - J717173)||H1/2(Rg)'
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On the other hand, from the definition of (J!,J}, J!, J1), one has
(3.57) o o
(s T I2s Ta) 2@y < Cll(Tes Tms Jes S L2y + Crol k| ||(B, H, B, H)|| L2 g2 ),

(3.58) T ||(div ey div Ty, div g2, div ) | e es)
|k:| ||(d1v Jo, div Jp, div J,, div J,, )HLZ(Ri)
+ CIl(B.H, B H)| s, + Cro H (VE, VH,VE, VH)‘ et
and
(3.59)
m”(‘]éﬁ - jeil}? ‘]71)1,3 - j71n,3)||H1/2(R3 |k| H( Je 139 Jm,B - jm,3)||H1/2(Rg)

+CTO||(E7H7EaH)HH1(Ri) +C||(E7H7Eaﬁ)”L2(R3_)

Here in the last inequality, we involved the trace theory and used

[ (@) = w1, et0) = 0D () = OV () =B [

< Cro|(E,H Eag)HHl(Ri)+C||(E7H7E7FI)I|L2(R1)-

Combining (3.56)—(3.59) yields

(3:60)  C (I, H, B, )l usy + 6] (B, H, By 1) | ges )

<N (Tes ms Jes Im)ll 2y + div J, div Jpn, div Je, div Jn) || 2 es )

1
i
||

1 A N

+ m”(Je,B = Je3y Im,s — Im )| 12w

+ (klro + )I(E, H, B, )l e, + roll (B, H, B, H) s

Fixro = min{C/4,1/4}, where C is the constant in (3.60). Take ko such that koro > 1.
One then can absorb the last two terms of the RHS of (3.60) by the LHS. The
conclusion then follows. O

4. Proof of Theorem 1.1. In this section, we give the proof of Theorem 1.1.
We begin with a result which yields the uniqueness and the stability of (1.7) and
(1.8).

PROPOSITION 4.1. Let v > 0, and let €, p, €, i € [L°(Q)]>*3 be symmetric.
Assume that there exist A > 1, Ay > 0, and sg > 0 such that

AT! <e € ,u< A a.e. ZHQ ||(€a/1’7é7ﬂ)”01((250) SAa

€, [, €, i are isotropic on OS2,
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and, for x € 01,
le(@) —é(@)| = A1, |u(@) — @) = Ay, and  [e(@)/p(x) — €(z)/(@)] = As.

There exist two positive constants kg > 1 and C > 0 depending only on A, Ay,
so, 7, and Q such that for k € C with 1S(k2)| > 'y|k|2A and |k| > ko, for every
(Je, Jms Jes Im) € [L?(Q)]*2 and for every solution (E,H,E, H) € [L*(Q)]'? of

@) { V x E=kuH + J. in Q, { VX?:kﬂI%+innQ,
V x H=—keE+ Jp, in Q, V x H=—kéE+ J,, in ),

(4.2) (E—E)xv=00n8Q, and (H—-H)xv=0 ondQ,

we have

(4.3) KL, H, B, H)l|12) < Cll(Jes Jms Jes Jm) | 2(0)-

Moreover, if (Je, Jm, Je, jm) € [H(div,Q)]* with (J. - v — Jo v, Jp v — Jom - v) €
[HY/2(09Q)])%, then

(4.4) |k|[(B, H, B, H)|| 2 + (B, H, B, H) |10, 1) < Cll(Jes Tons ey )220

s0/2

¢ 5 - C R .
+m”(diVJe,diVJm,diVJe,diVJm)HLZ(Q)—FWH(JS'I/—JE'V, Jm'V—Jm'V)||H1/2(Q).
Recall that € is given in (2.1).

Proof. We only prove (4.4). The proof of (4.3) is similar to the one of (4.4) and
even easier, and omitted. We use local charts for I' = 02. In what follows, we denote

Q= (_171)37 Qe =Q ﬁRia and Qo = QHR%

Let m > 1 and let ¢, € C2(R3), U, C R® open ball, and T; : U, — Q with
1 < ¢ < m be such that To(U, N Q) = Q4+, and Ty(U, NT) = Qo, supp ¢y € Uy, and
® =1 in a neighborhood of T", where

O =) ¢ in R
=1

In what follows, we also assume that the diameter of the support of ¢, is sufficiently
small and VT;(¢, ' (0)) is a rotation, ie., (VTeVTL)(p; '(0)) = I. Set, in QN Uy,

(B, H', B, H") = (p1E, o H, oo E, 0 H),
and
(JE,TE TE TE) = (@ede YV pu X B, 00T+ Voo x H, 0p Je+ NV oy X B, 0y I +V oy x H).

We have
(4.5)
{ V x B = kuH' + J! in QN Uy, { V x B = kpH' + Jf in QN Uy,

V x H' = —keE* + J, in QN Uy,

m

V x H! = —kéE* + J, in QN Uy,
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(4.6) (E*—EYxv=00m00NnU;, and (H'—H") xv=00ndQnU,.

Given a diffeomorphism 7 from an open D onto an open D', the following stan-
dard notation is used:

T *xu(z') = VT (z)u(z),

VT (@)a(z)VT" () _ VT (z)j(x)
det VT (z) ’ det VT (x)

with ' = T (x), for a matrix-valued function a, and for vector fields u and j defined
in D. Set, in @4,

(B, 1Y B ) = (Tox B Tox HY To « B Ty « HY),
(EZ,MZ,éZ,ﬂZ) = (72*5772*/%72*5;72*:&)7
(I8, 38,3838 = (TeuJE Teudby, Ten JE Ten JE).

er“mrverTm

T.a(z') = and  T.j(x)

By a change of variables (see, e.g., [23, Lemma 7)),
V x Bf = kpfHE + 3¢ in Q. V x Bf = kaH 4+ J¢ in Qo

*7) { V x Hf = —ke'E + J¢, in Q4 { V x Hf = —kéB 4+ T, in Q.
(4.8) (B —Exv=00nQy, and (H'—H") xv=0o0n Q.

Since Vﬁ(gpzl(O)) is a rotation, and €, u, &, i are isotropic on 952, one has

£4(0), u(0), £(0), 4*(0) are isotropic.

By considering the diameter of supp ¢, sufficiently small, one can then apply Corol-
lary 3.1 to (Ef, H*, EX, HY). We then obtain
(49) C(IE, BT,y + K] I(E, HE BB 12, )

1
[k]
1
[k

We have, by [20, Corollary 3.59],
I[(div J2, div J%,, div JE, div 38) | 1200, ) < C|l(div JE, div JE,, div JE, div JE) || 22 0nws).

< ||(J£7 ana jﬁv jfn)||L2(Q+) + || (le Jﬁa div an) div jia div jfn) “LQ(Q+)

(3 e5—J - e5, T e —J° - e3)ll172(qo)-

+

and we also obtain
(38 es—J-e3, 0, ea—J0,-€3) | vz < CNJE-v—=JE v, b v =0 vl 2 aanu,) -

We deduce from (4.9) that

(410) C(H(EeuH€>Ee7ﬁe)HH1(QﬁUg) + |k| ||(EZ7HZ7Eeaﬁeﬂle(QﬂUg))

") A 1 ~ ~
< ”(Jeev Jﬁw Jfﬂjfn)HLz(QﬂUz) + m”(div vadiv Jﬁmdiv Jf,div Jrl;z)HLz(QﬂUz)

1 . R
+ m”(‘]ee V= Jf Vydm V= Iy V)HHl/‘Z(c’?QﬁUg)-
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Take the sum with respect to £. We then have, for some 79 < so/4,
(411) C(H(EaHaEA‘le{)HHl(QTO) + |k| H(EaHvEA‘aH)HLQ(QTO))

A A 1 A A
§ ||(J€, Jm, Je, Jm)”L?(Q) + m”(dlv Je, div Jm, div Je, div Jm)||L2(Q)

1 A R
" ﬂ”ue e vdm v = Jm V)12 00)

A A 1 A oA
+ H(E7H7EaH)HL2(QSO/2) + m||(E?HaE7H)”H1(Q

s0/2)"
Applying Lemma 4.1 below, we have
(412) ||(E7 H7 Ea FI)”LQ(Q\QTO) < cle_cglk‘ H(E7 H7 E‘a }AI)HLQ(QTO)

for some positive constants ¢1, ca depending only on A, v, 79, and Q. Since (g, u, €, i) €
C (374 \ Qry /2), it follows from (4.1) that

(413) (B, H, B, H)llu1(q., \0n) < CIKN (B, H, B, H)l| 1260, \0, )

PR (G . s
+ Cl[(Je, Ty Jes Im) | L2y + m”(dlv Je, div Jp, div Je, div Jp) || L2(0)-

Taking ko sufficiently large and |k| > ko, from (4.12) and (4.13), one can absorb the
last two terms of the RHS of (4.11) by the LHS of (4.11). We then have
(414) C(H(E)Ha A7g)||H1(Q7O) + |k| H(E)HaEvﬁ)HLQ(QTO))

PN 1 o o
S ||(Je, Jm, Je, Jm)||L2(Q) + m”(dlv Je, div Jm, div Je, div Jm)||L2(Q)

1 N A
+ m”(:]e V= Je -V, Jm V= Jm . V)||H1/2(8Q)'
Using (4.12) and (4.14), we derive from (4.13) that

(4.15) CH(E>H7E7I:I)HHl(QsO/Q\QTO) < (e T Jes ) 2200

1

_|_
K|

: : s 1 - -
||(d1VJe7d1VJm7dlvJe,leJ7n)||L2(Q)+m||(J6'V_Je'l/,J77L'V—Jm'l/)||H1/2(8Q).

The conclusion now follows from (4.12), (4.14), and (4.15). The proof is complete. 0O

In the proof of Proposition 4.1, we used the following decay result on the Maxwell
equations.

LEMMA 4.1. Let v > 0, k € C with |S(k?)| > v|k|? and |k| > 1, and let e, €
[L®(Q)]2*3 be symmetric and uniformly elliptic, i.e.,

AV <e p &< A
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for some A > 1. Given J., J,, € L*(Q), let (E, H) € [L*(2)]° be a solution of

VX E=kuH+ J. in Q,
V x H=—keFE + J,, in .

For all s > 0, there exists two positive constants c; and co depending only on A, ~, s,
and € such that

[(E, H)||L2(\a.) < c1exp(—calk))|[(E, H)| 2.) + c1ll(Je, Jm)ll 22(0)-
Proof. Let (E*, H') € [L?(2)]° be the unique solution of

V x E' = kpH' + J, in ©,
(4.16) V x H' = —keE' + J,,, in Q,
E' x e3 =0 on Of.

As in the proof of Lemma 3.1, we have
1B HY) |22 () < Cll(Jes Im) |l 20 -

Considering (E — E', H — H'), without loss of generality, one might assume that
Je = J; = 0 in . This is now assumed in what follows.

Fix ¢ € C?(9) such that ¢ = ¢s in Q\ Q, and ¢ = 0 in O/, and |[Vy| < ¢ in Q,
where ¢ is a small positive constant defined later. (The smallness of ¢ depends only
on v, A, and ; it is independent of s.) Set ¢(z) = e/*¥@) and E'(z) = ¢(z)E(x)
and H!(z) = ¢(x)H(x) for x € Q. We have

V x E'=kpH' + J} in Q,
V x H' = —keE' + J}, in Q,

where
J'=V¢xE and J}

m

= Vo x H in Q.

Multiplying the first equation with H'!, integrating by parts in Q \ 2, for s/4 < 7 <
s/2, and using the second equation, we have

/ k<uH1,H1>d:c+/%/ (eE', EY) dx
O\Q, Q\Q,

< [ WL e [ (B ) d
\Q2, a(NQ,)

This yields

(4.17)

/ k2<,uH1,H1>dx+\k|2/ (eE', EY) dx
Q\Q, Q\Q,

< |k:\/ HEY + |J,L|\E1|dx+0|k|/ (B[ + |H'?) d.
Q\Q, a(Q\Q,)
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By the definition of J!, J! and of E! and H!,
|J2| < clk||EY, [JL| <clk[|H'[inQ, and E'—E=H"—H=0inQ)s,

we derive from (4.17) that, for ¢ sufficiently small,

/ k2<uH17H1>dx+|k|2/ (eE', EY) dx
Q\Q,

<Clb| [ (BP+|HP) d
Q\Q, A(ONQ,)

The conclusion follows by taking 7 such that

s

[ (EP+EPds < st [ (BP+IHP) o
A(NQ,) Q
This yields

/ (B + [H'[?) do < Cs / (B + |HP) dr,
AN,

s

and the conclusion follows by the definition of E' and H'. The proof is complete. O

Remark 4.1. The proof of Lemma 4.1 is quite standard; see, e.g., [15, Theorem
2.2] for a variant dealing with the Helmholtz equation.

We next establish the following.

PROPOSITION 4.2. Assume that the assumptions of Proposition 4.1 hold. There
exist two positive constants ko > 1 and C > 0 depending only on A, A1, 7y, sg, and
such that for k € C with |S(k2)| > y|k|? and |k| > ko, and for every (Jo, Jom, Je, Jm) €
[L2(Q)]3, there exists a unique solution (E,H,E,H) € [L2(Q)]'? of (4.1) and (4.2).
Moreover,

(4'18) |k| ||(E7 H, Ea H)HH(Q) < C||(Je7 I jea jm)||L2(Q)~
Before giving the proof, we denote

H,(Q) = {(u,v) € [H(curl, Q)] (u —v) x v =0 on 8(2}.

One can check that H;(Q) is a Hilbert space equipped with the natural scalar product
induced from the one of [H (curl, Q)]2.

Proof. Applying Proposition 4.1, it suffices to establish the existence. Consider
the following equation:

(@19) [ (WYX BV x ) + BB ) - [ (@7 x B x )+ BB 9)
Q Q

- /leJe,v X @) + (T 0) — /Q</:flfe,v X 3) + k(s §)

for all (¢, ) € H1 ().
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We first note that system (4.1) and (4. 2) and system (4.19) are equivalent in the
following sense. If (£, H, E, H) e [L*(Q)]'? is a solution of (4.1) and (4.2), then
(E,E) € Hy(Q) is a solution of (4.19). Conversely, if (E, E) € H; () is a solution of

1

a
[
9
(4.19), then (E, H, E, H) € [L%(22)]'2 is a solution of (4.1) and (4.2), where

(4.20) H:k_lu_1<V><E—Je) and H—kl“—l(vXE—je).

The first assertion is clear. Concerning the second assertion, we have, by considering
0,0 € CHQ) in (4.19),

V x (u—lv x E) Y R2E =V x (uLL) + kJy, in Q

and
V x (prlv X E) Y E2E =V x (hy ' J,) + kJp in Q.

This yields, by (4.20),
VxH=-keE°+J, inQ and V x H=—ikéE + J,, in Q.
This in turn implies, by using (4.19) again, that
(H—H) xv=0on .

Therefore, the equivalence is proved.
Consider
a: Hl(Q> X Hl(Q> —C

defined as follows. For (E, E) € H;(Q) and (¢, ¢) € Hy(Q), a((E, E), (¢, $)) is given
by the RHS of (4.19). It is clear that a is bilinear and continuous. Define

AH(Q) — H (Q)

by, for (E, E) € Hy(Q),

<A(Ea E)v (va @»H(curl,ﬂ) = a((EvE)v (907 95)) for all (Sﬁa @) € Hl(Q)

Applying Proposition 4.1 and using the equivalence of system (4.1) and (4.2) and
system (4.19), we have

||A(E)E)||H(CUTI,Q) > Ck'H(E7E)”H(Cur1,Q)-
This yields, for all (E, E) € H,(Q),
(4.21) a((E,E), A(E, E)) > Cy|(E, E)|lu, o) | AE, E) 1, 0)-

On the other hand, if a((E, E), (¢, ¢)) = 0 for all (E, E) € H,(Q) and for some
(807 @) € Hl(Q)a then
p=p=0in Q.

Indeed, this is just a consequence of Proposition 4.1 and the equivalence of system
(4.1) and (4.2) and system (4.19) (applied to k). Combining this and (4.21), we obtain
the existence of a solution of (4.19) by the Banach-Necas-Babuska theorem. This in
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turn implies the existence of a solution (4.1) and (4.2) using the equivalence of system
(4.1) and (4.2) and system (4.19). The proof is complete. d

Denote

(4.22)
H(Q) = {(u, v, @,9) € [L2(Q)]'2; div(ew) = div(uv) = div(2a) = div(io) = 0 in O,

and5u~u—éﬂ~u=;w-u—ﬂﬁ-u=00n6(2},

and let
”(ua v, i, O)”H(Q) = ” (uv v, i, '[})”LQ(Q)'
One can check that H(2) is a Hilbert space with the corresponding scalar product.
We are ready to give the proof of our main theorem.

Proof of Theorem 1.1. Fix k € C satisfying the assumptions in Proposition 4.2.
Define the operator

T H(Q) —~  H(Q),
(4.23) o o
(Jél?‘]}r],?‘];?(]'f]ﬁ) '—> (E7 H7 E’ H)?

where (E, H, E, H) € [L?(Q)]'? is the unique solution of (4.1) and (4.2) with
(Jer Ty Jes m) = (T, —€JE, pul), —201).

Since div J, = div J,, = divJ, = div J,, = 0, it follows that

(4.24) div(¢E) = div(uH) = div(¢E) = div(aH) = 0.

We derive that (E, H, E, H) € H().

We claim that T is compact. Indeed, this follows from (4.24) and (4.18). By
the theory of compact operator (see, e.g., [4]), the spectrum of T is discrete. It is
clear that an eigenfunction pair of the ITE problem corresponding to the eigenvalue
w is an eigenfunction pair of T' corresponding to the eigenvalue k = iw. Hence, the
spectrum of the ITE problem is discrete, and the only possible accumulation point
of the transmission eigenvalues is co since they coincide with the eigenvalues of the
inverse of T'. 0

Finally, we present the following.

Proof of Proposition 1.1. Proposition 1.1 is just a consequence of Proposition 4.1
by noting that the solution given there is 0 if (Je, Jm, Je, Jm) = 0. O
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