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Assortment planning deserves much attention from practitioners and academics due to its direct impact
on retailers’ commercial success. In this paper we focus on the increasingly popular retail practice to
use combined product assortments with both “standard” and more fashionable and short-lived “variable”
products for building up store traffic of “loyal” and “non-loyal” heterogeneous customers and enlarging
the sales due to the potential cross-selling effect.
Addressing the assortment planning as a bilevel optimization problem, we focus on decision-dependent
uncertainties: the retailer’s binary decision about product inclusion influences the distribution of the
product’s demand. Furthermore, our model accounts for customers’ optimal purchase quantities, which
depend on budget constraints limiting the basket that a customer is able to purchase.
We propose iterative heuristics using optimal quantization of demand and customers budget distributions
to define the total assortment and the inventory level per product. These heuristics provide lower bounds
on the optimal value. We conduct a comparison to other existing lower bounds and we formulate upper
bounds via linear (LP) and semidefinite (SDP) relaxations for the performance evaluation of the heuristics
and for an efficient numerical solution in high-dimensional cases.
For managerial insights, we compare the proposed approach with three assortment planning strategies:
(1) the retailer does not carry variable products; (2) the retailer ignores the cross-selling effect; and
(3) the maximum space allocated to each product is fixed. Our results suggest that variable assortment
boosts the retailers profits if the cross-selling effect is not neglected in the decision about products quan-
tities.
© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

support which combines customer-centric merchandising with cus-
tomer economics insights.

Product assortment decisions have a direct impact on a re-
tailer’s commercial success. The goal of assortment optimization is
to specify which products and in which quantities should be in-
cluded in the assortment to maximize the retailer’s profit subject
to various constraints, such as limited shelf space for displaying
products or budget restrictions.

Research (Davenport & Harris, 2007; Liberatore & Luo, 2010;
Ranyard, Fildes, & Hu, 2015; SAS Institute, 2013) indicates that cus-
tomer analytics focusing on customer economics, personalized of-
fers and customer-centric merchandising identify profitable growth
opportunities for retailers. These opportunities go undetected oth-
erwise. In this paper, we propose a stylized OR model for decision
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First, maintaining customer loyalty for customer-centric mer-
chandising, we focus on the retailer’s assortment strategies driven
by the increasingly important commercial distinctions between
“standard” and “variable” products serving “loyal” and “non-loyal”
customers: standard assortment is a strategic tool to attract and
retain loyal customers who regularly visit the store for their cus-
tomary shopping and grow accustomed to a certain product range
(Billington & Nie, 2009; Grewal, Levy, Mehrotra, & Sharma, 1999;
Walters & Hanrahan, 2000); variable products are critical for the
increase of the overall store traffic by attracting non-loyal cus-
tomers who are rather opportunistic and are occasionally attracted
by special offers (Katsifou, 2013; Katsifou, Seifert, & Tancrez, 2014).
Next, implementing customer economics insights to the model, we
work with a common lifestyle and life-stage customer segment
“Shoppers on a Budget” (SAS Institute, 2013) by implementing cus-
tomers’ budget constraints to the model. Each customer’s budget is

0377-2217/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)


https://doi.org/10.1016/j.ejor.2020.02.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2020.02.019&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:anna.farkas@epfl.ch
mailto:argyro.katsifou@gmail.co
mailto:ralf.seifert@epfl.ch
https://doi.org/10.1016/j.ejor.2020.02.019
http://creativecommons.org/licenses/by/4.0/

A. Timonina-Farkas, A. Katsifou and R.W. Seifert/European Journal of Operational Research 285 (2020) 1058-1076 1059

Table 1
Variable assortment characteristics.

Retailer Introduction Sales Period % of the total
Frequency Week  Month > Month  assortment

Walmart ~ Weekly J 1

Target 1.5-3 months N N/A

Lidl Twice/week v 9

Aldi Twice/week J 4

Zara Twice/week N 75

uncertain to the retailer, who can only estimate the budget distri-
bution. To the best of our knowledge, current literature focusing on
the retailer’s product assortment considers the vendor’s shelf space
and his budget constraints while constantly neglecting customers’
budget limitations due to their modeling complexity. In this work,
we create a bilevel model, where the retailer’s optimal product as-
sortment decision directly depends on the customers’ optimal pur-
chase decision, which, in turn, depends on the customers’ budget
distribution.

Many retailers strive to take advantage of a combined assort-
ment of standard and variable products independently of a re-
tailer’s product variety strategy. The assortment of standard prod-
ucts is relatively stable over time, is not subject to seasonality and
is expected to be present at every time customers shop (Billington
& Nie, 2009). The main objective of this assortment is to support
the positioning and profitability of a retailer (Katsifou et al., 2014;
Walters & Hanrahan, 2000). Variable products, by contrast, are sea-
sonal, they are offered only temporarily, in limited quantities and
usually at very attractive prices. Variable products may provide re-
tailers with profits or even be loss-making if considered in isola-
tion (Katsifou, 2013; Katsifou et al., 2014), but they are important
because they help to increase the number of customers in a store:
this increased store traffic can influence sales of standard products,
resulting in expansion of overall sales. Attracting customers drawn
to promotions, retailers provide them with a sense of achievement
by proposing items on special offer (Marquard, 2007). Doing this
by rotating variable assortment items might be preferable to price
promotions of standard assortment items, since it allows retailers
to keep a steady set of standard products and helps to maintain
a consistent pricing over the long duration avoiding erosion of es-
tablished price points. Moreover, the cross-selling effect, which oc-
curs for both groups of customers, encourages loyal customers to
purchase variable products once in the store, and makes non-loyal
customers purchase standard products, increasing total profits.

As an example, Walmart offers a wide range of standard prod-
uct categories - from food and clothing to home electronics - as
well as a limited number (around 1% of the total assortment size)
of weekly “special buys” in order to create excitement or to clear
out stock (Marquard, 2007). “Limited-time-only deals” are also a
key part of US-based retailer Target’s strategy to attract shoppers.
These special items are usually offered for six-week to 90-day peri-
ods. By contrast, Lidl and Aldi, two of the most successful discount
retailers, compete effectively with a very narrow product assort-
ment. Their assortment consists of limited standard products, but
they continuously present variable assortment articles (called “sur-
prise buys” or “special items”), consisting of very diverse non-food
products (e.g., “back to school” special items or ski wear), with
the aim of keeping the shopping experience in the store special
(Kumar & Steenkamp, 2007; Zentes, Morschett, & Schramm-Klein,
2007). Table 1 summarizes the aforementioned assortment strate-
gies.

The rest of the paper is organized as follows. Section 2 provides
a literature review on the topic. In Section 3, we present the prob-
lem and the mathematical model. In Section 4, we formulate lower
and upper bounds on our bilevel optimization problem, propos-

ing heuristic solution procedures taking the dependency between
product demands and the total assortment decision into account.
In Section 5, we present and discuss illustrative examples and in-
sights: we compare the proposed approach with three different as-
sortment planning strategies: (1) in the first one, the retailer does
not carry variable products; (2) in the second, the retailer ignores
the cross-selling effect; and (3) in the third, the space allocated to
each type of product is fixed a priori.

2. Literature review

Works (Kok, Fisher, & Vaidyanathan, 2009; Mou, Robb, & De-
Horatius, 2018) provide the product assortment literature review:
studies that deal with the total assortment problem, examining
the strategic role of key product categories, are quite rare (Amit,
Mehta, & Tripathi, 2015; Ghoniem & Maddah, 2015; Katsifou, 2013;
Katsifou et al., 2014; Rabbani, Salehi, & Farshbaf-Geranmayeh,
2017). In our research, we devise a model to optimize the total
combined assortment of a retailer, taking into consideration the
role of both standard and variable assortments in generating store
traffic. The problem we study requires to explicitly model the inter-
dependence between the demand for a particular product and the
total assortment decision: the demand depends on characteristics
of customers attracted to the store, such as their attitude towards
risk and their budget; in turn, customers’ optimal purchase quanti-
ties depend on the selected assortment (standard or variable). Tak-
ing this interdependence into account in product assortment de-
cisions is one of the main contributions of our work. Indeed, to
the best of our knowledge, prior studies did not investigate the
influence of an uncertain customers’ budget and customers’ op-
timal purchase quantities on the store’s optimal assortment. The
work (Katsifou et al., 2014), where the authors construct a stylized
model for customers’ behavior based on their purchase baskets, is
in the same research stream: however, in Katsifou et al. (2014),
each customer is assumed to buy only one item of a product and
neither the customers’ optimal purchase quantities nor their bud-
get constraints are taken into account. In our work, we construct
and solve the bilevel optimization problem, explicitly accounting
for the interdependency between optimal demand and assortment
and addressing the asymmetrical influence of different products on
a store’s profits. Our solution approach is novel to the existing lit-
erature, it allows to introduce both lower and upper bounds on the
optimal profit and to handle large-scale problems.

Apart from looking at the retailers’ total product assortment se-
lection, we also explicitly tackle the inventory management of se-
lected products with a limited shelf space (Hiibner, Kuhn, & Kiihn,
2016). Product assortment and inventory management are two nat-
urally interconnected and critically important retailing decisions
that have a substantial impact on retailers’ profitability (Kok &
Fisher, 2007). Yet product assortment planning and multi-item in-
ventory management are two literature streams that have devel-
oped somewhat independently. Article (K6k et al., 2009) provides a
detailed review of the product assortment planning literature. One
of the first papers in the operations research literature integrating
inventory management into the product assortment planning prob-
lem is van Ryzin (1999). The article studies the trade-off between
product variety benefits and inventory costs using a Multinomial
Logit (MNL) model.

The MNL model is a widely used utility-based model where
each consumer chooses the product with the highest utility out
of the set of available choices (Ben-Akiva & Lerman, 1994). In van
Ryzin (1999), customers have homogeneous expected utilities and
can substitute if their favorite variant is not carried (assortment-
based substitution). The sale is lost if their favorite variant is car-
ried but temporarily unavailable (no stock-out-based substitution).
Through the use of the newsvendor framework, they compute the
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inventory level per product as well as the optimal assortment,
which is shown to consist of a certain number of the most pop-
ular products. In the same research stream, article (Li, 2007) stud-
ies a joint product assortment and inventory optimization problem
for a single period, providing a closed-form solution to determine
the optimal assortment when the store traffic is treated as a con-
tinuous random variable, and a heuristic for discrete store traffic.
Both studies assume that consumers are homogeneous with re-
spect to their preferences. This assumption is relaxed in Katsifou
et al. (2014), Katsifou (2013) and Mahajan and van Ryzin (2001).
The work Katsifou et al. (2014) is focused on loyal/non-loyal cus-
tomers and provides an assortment optimization model describing
consumer preferences and the choice of retailer in the MNL frame-
work (Anderson, de Palma, & Thisse, 1992).

Whereas (Mahajan & van Ryzin, 2001) studies individual het-
erogeneity, we, similar to Katsifou et al. (2014), are focused on
“customer type” heterogeneity. However, in contrast to a so-called
latent-class logit assortment problem, where a consumer belongs
to a market segment characterized by a “consideration set”, i.e., the
set of products that the customer is considering purchasing, we do
not bound product assortments available for loyal and non-loyal
customers. To model different attitudes towards standard and vari-
able products, we assume different risk-bearing abilities towards
them for loyal and non-loyal customers. Before, the work (Méndez-
Diaz, Bront, Vulcano, & Zepala, 2010) studied the latent-class logit
assortment problem, where segments were allowed to overlap, i.e.,
a product could belong simultaneously to the consideration sets of
two or more segments. They proposed a branch-and-bound algo-
rithm to find the optimal solution to the constrained and the un-
constrained versions of the problem. In our research, we seek to
optimize the total assortment considering a joint retail space con-
straint (Hiibner et al., 2016), whereas (Méndez-Diaz et al., 2010)
examined only a single product category optimization problem,
and their model was constrained by the number of products to be
displayed.

In another stream of research on product assortment planning,
exogenous demand models are used to model consumer choice.
These models specify a priori the demand for each product and
the probability that an individual will choose another product as
a substitute when his favorite product is not available. Compared
with the MNL model used in Katsifou et al. (2014), the exogenous
demand model is more flexible in dealing with both assortment-
based and stock-out-based substitutions but requires more effort in
data collection and parameter estimation. Article (Smith & Agrawal,
2000) deploys an exogenous demand model, by assuming that de-
mand follows a negative binomial distribution (Agrawal & Smith,
1996); the authors estimate substitution probabilities and over-
all cross-buy schemes of different products to populate a ma-
trix. Apart from assortment optimization, they use an approxi-
mate newsvendor model to compute the optimal stock level for
each product, subject to an assortment fill rate constraint. Arti-
cle (Agrawal & Smith, 2003) extends this work and incorporates
the complementarity and the substitution effects in a set of prod-
ucts demanded by a customer. In our research, we do not consider
substitutions but we make a step forward in modeling optimal
demand: we formulate and solve a bilevel optimization problem
(Bard, 1991; 1998; Ben-Ayed & Blair, 1990; Calvete, Galé, & Ma-
teo, 2008; Colson, Marcotte, & Savard, 2007), where the retailer’s
first-level binary decision about product inclusion influences the
distribution of the product’s demand driven by the second-level
customer choice model. Each customer has his own optimization
problem to solve and the optimal solution depends on the assort-
ment available at the retailer. The optimal solution of the cus-
tomer’s optimization problem is the quantity to purchase under
the budget constraint. We model the customer’s choice of retailer
via a simplistic model (Anderson et al., 1992; Ben-Akiva & Lerman,

1994; Smith & Agrawal, 2000) based on market shares. This al-
lows to avoid the MNL model independency assumption and the
assumption about total number of retailers.

Overall, we consider “loyal” and “non-loyal” customers in our
bilevel optimization. The cross-selling effect may occur for both
groups of customers, encouraging loyal customers to purchase vari-
able products, as well as making non-loyal customers purchase
standard products. We describe the strength of the cross-selling
effect via coefficients of relative risk aversion towards standard
and variable products for different groups of customers. Further-
more, we distinguish between budget distributions and budget
constraints for each group of customers, limiting baskets that dif-
ferent customers are able to purchase.

We propose iterative heuristics to define the total assortment
and inventory level per product, taking the dependency between
the demand for a particular product and the total assortment deci-
sion explicitly into account. These heuristics provide lower bounds
on the optimal value of the optimization problem. We also formu-
late two upper bounds for the bilevel optimization problem via lin-
ear (LP) and semidefinite (SDP) relaxations (Fortet, 1960; Gaivoron-
ski, Lisser, & Lopez, 2011). These bounds are useful for the perfor-
mance evaluation of the heuristics, as well as for the efficiency of
solution estimation.

We use optimal quantization techniques (Monge, 1781; Rachev
& Riischendorf, 1998; Villani, 2008) instead of typical Monte-Carlo
simulations for the approximation of demand and customer’s bud-
get distributions. This allows to enhance both accuracy and effi-
ciency of the numerical solution, as the number of quantizers for
an accurate estimate can be much lower than in Monte-Carlo sam-
pling (Timonina, 2013). We consider optimality of scenario quan-
tization methods in the sense of minimal Kantorovich-Wasserstein
distance (Kantorovich, 1942), which allows to implement the struc-
tural information in order to take more accurate decisions, as well
as to bound the approximation error.

3. Problem and model formulation

We consider a retailer seeking to optimize the product assort-
ment and the inventory level per product in a store. We suppose
that retailer r selects the assortment from a set of candidate prod-
ucts. Product substitution is not considered and stock-outs result
in lost sales (Katsifou, 2013; Katsifou et al., 2014). With this prod-
uct assortment decision, the goal of the retailer is to attract as
large as possible share of the customer base, i.e., as many potential
customers as possible in a certain geographical area. In particu-
lar, the two product groups are primarily targeted at different cus-
tomer segments. In our model we separate the total customer base
into two segments: loyal and non-loyal customers represented by
the sets £ and Z, respectively. Loyal customers are attracted to the
store primarily by standard products (e.g., Aldi’s loyal customers do
their everyday shopping there mainly because standard products
satisfy their needs). On the other hand, non-loyal customers look
for special offers and are attracted to the store primarily by vari-
able assortments (e.g., Aldi’s non-loyal customers read the weekly
flyer with the “surprise buys” and decide whether to visit the store
or not).

Though loyal and non-loyal customers are attracted to the store
by standard and variable products respectively, they may decide,
once in the store, to purchase products from both product groups.
For instance, Aldi’s loyal customer who arrives at the store to
buy his customary standard products, may also buy some variable
products like a garden chair at an attractive price. On the other
hand, non-loyal customers that visit the store to buy variable prod-
ucts, may also decide, once in the store, to take the opportunity
to cover their daily needs by buying some standard products like
milk and orange juice. The fact that standard (respectively variable)
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products are bought by non-loyal (respectively loyal) customers is
commonly known as cross-selling effect.

The retailer has to resolve the trade-off between store attrac-
tiveness and the corresponding operational costs. By increasing the
number of products in the assortment, a higher number of cus-
tomers can be attracted to the store, driving up traffic and conse-
quently the retailers’ overall sales. On the other hand, the introduc-
tion of a product to the assortment comes with a setup order cost
as well as related inventory costs. Furthermore, as the shelf space
is limited, a larger number of products also means less storage
space and consequently lower inventory level per product while
the demand increases, leading to higher inventory costs. The low
inventory level may result in an increase in the stock-out probabil-
ity or in frequent replenishment (for standard products) and thus
a higher setup cost. The retailer has to find a trade-off between
standard and variable products, taking into consideration the shelf
space constraint. In general, the main objective of stocking variable
products is to attract non-loyal customers who will then buy both
variable and standard products.

The inventory policies vary between the two groups of prod-
ucts. Standard products are carried over a long time horizon, and
the retailer has to pay a holding cost for the units stored at the end
of each sales period. Variable products, by contrast, are rotated fre-
quently, resulting in a sequential one-period problem. At the end
of their sales period the unsold variable products cause an over-
stock cost. Our mathematical model described further investigates
the aforementioned trade-offs.

The remainder of this section is structured as follows: first,
we develop the retailer’s profit functions per product group with
respect to its own characteristics such as the sales period and
the inventory costs; second, we explicitly model the demands
per product taking into consideration customers’ store choice and
their optimal in-store purchase decision; finally, using the de-
mand as an input to the profit function, we give the mathemat-
ical formulation to maximize the retailer’s total profit subject to
the shelf space constraint. We formulate a bilevel optimization
problem, whose aim is not only to maximize the retailer’s total
profit but also to investigate optimal in-store purchase decisions of
customers.

3.1. Profit functions

We assume that standard products are carried by the retailer
over a long time horizon. A periodic review order-up-to inventory
policy (Nahmias, 2005) is used. The inventory of a standard prod-
uct j is replenished every period Tjs to reach the order-up-to inven-
tory level QJ?. The lead time is assumed to be negligible. The period
Tjs is defined prior to the optimization process for each product j
while the inventory level Q]? is a decision variable in our optimiza-
tion model.

To construct the profit function for standard products, one
needs to account for uncertain demand for these products. For this,

let ds (dﬂ, PIREE djt,.. dst,. .) be the stochastic demand

process described by probablllty distribution functions F].St(x)z
P(d;t <x) and corresponding density functions f]?t(x). For stan-
dard products, one can reasonably assume that random demands

(a LA, dS .) are independent normally distributed

i1 ]2"‘ jt? s jTjs»n

random variables with mean ,uj and standard deviation _/ ,uj., ap-

proximating the Poisson distribution (van Ryzin, 1999), i.e., F]St (x) =
T$

FjS (x), Vt. We denote by Dj =y djt the cumulative demand for

the standard product j during period Tjs with probability distribu-

tion Gj. y) = ]P’(D; <y) and corresponding density function gj.(y).

,ds ,d5
o G s,
dependent and normally distributed, we also know the distribution

of the variable DS: the probability distribution Gs(y) = IP(D; <y)is

As we assume random variables (d$ .) to be in-

normal with mean Ts and standard deviation /T].Suj..

Next, let K3 be the setup cost per positive order planned and
let c; be the proportional order cost per unit ordered. In this case,
the total fixed plus proportional order cost is K; + cj min{D;, st.},
where QJS. is the order-up-to level. As the inventory level at the end
of the cycle is max{QJs - D;, 0}, the holding cost from cycle to cy-
cle is equal to hj. max{QJS. —D;, 0} with hj. being the proportional
holding cost per unit stored. Further, if the demand exceeds the
level of inventory, the opportunity costs need to be taken into ac-
count. These costs are equal to uj. max{Dj. - QJS., 0} with uj. denot-
ing the loss-of-goodwill cost per unit. Also, let pj. be the selling
price per unit.

We denote the profit margin by mj. = pj. —cj, set cuj = m§ +
h% + uj., which clearly satisfies cu$ > h% and cu® > m$, and use the
total demand mean and variance E(Dj.) = Tij- and Var(Dj.) = Tj,u§
for our Gaussian approximation of the Poisson distribution with

= E(d;t), Vt (van Ryzin, 1999). The expected profit, brought by
the standard product j € A; over one time unit, represents a lost-
sales model with zero lead time and, according to Appendix 1., is
equal to

HS S, S KS hi S S S
E( Ts) :mjuj—[Ts+T(Q T} 15)
cu
= - Q) y)dy |. 1
+ /Q - Q)EW) y} (1)

Compared to standard products, variable products have a signifi-
cantly shorter sales period (e.g., one week in Aldi). For this rea-
son, we suppose that the products are ordered at the beginning
of the sales period, with no replenishment opportunity. This pe-
riod is denoted Tj” and is supposed to be fixed externally, e.g., for
marketing reasons. Based on these characteristics, we naturally use
a newsvendor-like inventory policy (Nahmias, 2005) to derive the
inventory costs of a variable product j.

The inventory costs are similar to those encountered for the
standard products. A stock-out cost accounts for the lost sales
(Bijvank & Vis, 2011), and a setup cost is paid by the retailer for in-
troducing a new variable product. However, an over-stock cost re-
places the holding cost as the variable products are removed from
the assortment at the end of a period and cannot be sold in the
next one.

Analogous to standard products, let d“ (dv. e dv. IR d;’t,

jrv) be the stochastic demand process descrlbed by prob—

ability distribution functions F”(x) P(d}’ < x) with known pa-
rameters Vt and correspondmg density functions fj”t(x). Note
that te{1,2,...,Tj"} is finite in this case. As before, we in-

troduce cumulative demand DY = Zz] dj, for the variable prod-
uct j during period Tj” with probability distribution G'j(y):
]P’(D'J? <y) and corresponding density function gy(y). Although for
standard products one can reasonably assume that random de-

mands (dﬂ, ]2,...,dj[,...,d;Tjs,...) are independent identically

distributed random variables, for variable products a similar as-

sumption for vector (d¥. i dv. IR ij) should generally be relaxed,

particularly as the retailer aims to influence the demand by intro-
duction of these products. Furthermore, variable products are likely
to be very seasonal or at early stages of their life cycle where
demand distribution is changing. To account for this, one would
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need to employ coupling techniques to estimate the density of the
sum of dependent random variables (Hochrainer-Stigler, Timonina-
Farkas, Silm, & Balkovi¢, 2019). If random variables are indepen-
dent but not necessarily identically distributed, one uses indepen-
dent convolution to estimate the density g';(y). However, due to
the lack of data on variable products, we still use the assumption

that random variables (dﬂ,dﬂ,.. d}’t,.. ]TV) are independent

normally distributed variables with known mean Y 7 and standard

deviation u‘!, approximating the Poisson distribution (van Ryzin,

1999), i.e., F“(x) Fj’/(x), Vt.

Next, let K” be the setup cost per positive order planned and
let c}’ be the proportional order cost per unit of a variable product
ordered. In this case, the total fixed plus proportional order cost
is K}’ +C?Q}j, where Q}’ is the order placed. Also, let us denote by
Co'j the over-stock cost per unit. For variable products, there is no
holding cost from cycle to cycle and the total value of over-stock
co'Jf max{Q]'.’ - D';, 0} is being lost. The loss-of-goodwill cost is equal
to uJV max{DV —Q]'/, 0} with u‘; denoting the loss-of-goodwill cost
per unit. Let p? be the selling price per unit. Derived in Appendix
1.1, the expected profit brought by the variable product j € N, over
one time unit is equal to

Hl]} v,V I<U Cv v v,V
E\ g ) = mjtj - Tﬁf*(Q =T} 1)
J

cuy ; d co']’. Q ) vond
+TT,,[QJV(Y—Q;)g?(J/)Y+T7fO @ -2y |,
2)

where we denote the profit margin by m”
m’j + C'J/ + u;’ and where cu¥ > c}’ and cu¥ > mY.

Note that the profit function of a variable product j (Eq. (2)) is
defined on its sales period TV while the profit function of a stan-
dard product (Eq. (1)) is defined on a longer time horizon Tjs. This
timing difference can be explained in two ways when considering
the assortment decision (and thus when applying our approach as
described below). Either the assortment is decided every period T]V
depending on the potential variable products available for the par-
ticular period. Or the assortment is decided for a longer horizon
and it is supposed that the potential variable products, as a group,
keep the same characteristics (e.g., attractiveness and volume) in
each period (and thus, even if different in nature, the selected vari-
able products keep the same characteristics throughout the time
horizon). The first option gives a more stringent assortment deci-
sion but requires to adapt the assortment very frequently. The sec-
ond option gives a rather good picture of the strategic level of de-
cision (space sharing, number of products, general characteristics,
etc.).

In the rest of our work, we refer to the second assumption by
default but our approach can also be used in the first case, to op-
timize the assortment at every sales period Tj".

pj - c” and set cu;’

3.2. Demand model

Profit functions depend on mean demands of standard and
variable products, which can be influenced by the retailer’s assort-
ment decision. We derive mean demands per time unit based on
the retailer’s assortment decision, customers’ choice of the retailer
and in-store product choice. The total set of candidate products is
divided into two groups: the standard products, N5 = {1,..., Ns},
and the variable products, N, ={1,...,Ny}. The set of products
available at the retailer is known to customers and is repre-
sented by the binary vectors s = (Sy....,Sy,) and v = (V;,.... Vy,),

respectively. The products’ quantities are unknown to customers
due to customers’ inability to observe the backroom.

Customer i solves the following optimization problem to decide
about purchase quantities {isj and Silj’. of standard j € Ns and vari-
able j € Ay products:

= max Z ui; (85 + D ubi(ED,

’1 JeNs JjeNy
subject to Y pS¢S+ > phEl <
JjenNs JjeNy
0 <& < MSj, Vje N,
OféileM‘/_]) Vje Ny, (3)

where big M is a large enough number, B; is the customer’s budget,
pj., py are the products’ prices, utilities u,?j, u”] are the functions
describing risk-bearing ability of customer i and U} is the optimal

value.

We use isoelastic functions (51 )= L, uv.(EV) =
J Yij ij \>ij
@& , o
5 with  y;€[0,1), J;e [O 1) and exponential utili-
ij

ties uS ( S) =1-exp(— yug“l]) 5 ) =1—exp(— 8,1{-‘”) with
Yii» O >0Vl j to describe the behav10r of risk-averse customers.
Using isoelastic utility, one can distinguish between preferences
for small and large product quantities, as, increasing the risk-
aversion parameter, one observes an increase in the utility towards
small quantities and a decrease in the utility towards larger
amounts. Differently, incorporating the exponential utility for
modeling risk-averse customers, one can clearly rank customers
by their preferences: customers with a higher risk-bearing ability
parameter y; have higher utilities, converging to one in the
limit. Further, the risk-neutral set of customers has linear utility

functions and the risk-loving group of customers can be devscribed
by the utilities u; (;U) M, (E %ja'ﬁ”) with
Vij» 6;j<0. Modeling risk-neutral and rlsk-lovmg preferences of
customers would result in no diversification between products:
the customer selects a product with the lowest price.

Given the utility function, parameters y; and d; describe cus-
tomer i's attitude towards the product j for standard and variable
products correspondingly. In this article, we distinguish between
following coefficients of relative risk aversion (or, risk-bearing abil-
ities in case of exponential utilities), i.e.,

8, Vieﬁ, jeNy
5, Yiel, jeN,.

y,VieL, jeN;
v,VieL, jeNs

Yij = and 81] =

(4)
One could easily generalize the approach and distinguish between
coefficients of relative risk aversion for other customer segments
and product groups.

Further, the budget B; is known to the customer i, but unknown
to the retailer, who supposes B; to be distributed in line with the
lognormal distribution function H;(x) = P(B; < x) with parameters
ui and al.z (Aitchison & Brown, 1957; Prais & Houthakker, 1971).
We account for budget distributions that may vary for different
groups of customers, i.e.,

u, Yiel o Vierl
wi=14 _and o?= B (5)
o, Yiel o2, VieL.
By this, the retailer can better investigate how to develop strate-
gies to attract targeted types of customers from different bud-
get groups. Using problem (3), one can account for different cus-
tomer segments by varying risk aversion and budget parameters.
We model loyal customers i € £ who are regular at the retailer by
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5.5

W Variable products, risk aversion parameter 0.9
s|[lStandard products, risk aversion parameter 0.05|

WStandard products, risk-aversion parameter 0.7] |
WVariable products, risk-aversion parameter 0.4 ||

7o[lVariable products, risk neutral case | .
Z |EStandard products, risk neutral case| £
€ 60 =
g 35
S50 g
40 £
e 53
330 a
= ©2
g 20 £
= Q1
8—10 le)

0 0
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Product's number
a) Risk-neutral customers: no
diversification.

3 40 50
Product's number

b) Risk-averse customer
preferring standard products.

Optimal purchase quantity

60 70 80 90 60 70 80 90

30 40 50
Product's number

c) Risk-averse customer
preferring variable products.

Fig. 1. Optimal purchase quantities for different types of customers.

a lower risk aversion (or, a higher risk-bearing ability in case of
exponential utilities) for standard products than for variable ones.
Further, we model non-loyal customers i € £ who are in general
opportunistic by a higher risk aversion for standard products than
for variable ones. Also, as specified before, we distinguish cus-
tomer groups by their budget distributions, as the retailer would
like to attract different types of customers to the store and decide
which products to include in his assortment for profit maximiza-
tion. Fig. 1 demonstrates optimal purchase baskets of different cus-
tomers with isoelastic utility: on one side, risk-neutral customers
choose the cheapest product among all the products and do not
reduce the risk by diversification (Fig. 1a); on the other side, risk-
averse customers diversify among the products to reduce their risk
and prefer higher quantities of either standard or variable prod-
ucts.

Fig. 1(b) shows the optimal basket of a loyal customer with
parameters Yy = 0.05 and & = 0.9. Fig. 1(c) demonstrates the op-
timal basket of a non-loyal customer with parameters ¥ = 0.7 and
8 = 0.4. Compared to the article (Katsifou et al., 2014) and to the
previous works in the field, our work accounts for optimal pur-
chase quantities of customers by allowing them to buy more than
one unit of each product under their budget constraint.

Next, based on the solution of the optimization problem (3), we
can derive demands d; (s,v) and d}.’ (s,v)

di(s.v) = Y Pugs+ ) Pily; and

iel iel
— =
d}}(sv U) = Z]Pir%_fl]}‘ + Z]P)irgijv
iel iel

where P;, and P; are the probabilities to choose the retailer r for
loyal and non-loyal customers correspondingly and we denote the
optimal purchase quantities for non-loyal customers by Efj and E:}]
The probabilities P;, and P; are modeled via a simplistic choice
model (Anderson et al., 1992; Ben-Akiva & Lerman, 1994) with
Py =1-F(—aU;) using the retailer r's market share ae[0,1]
and the standard Gumbel distribution F(-) for unobserved cus-
tomers’ preferences € (Kok & Fisher, 2007; Smith & Agrawal, 2000;
Smith, 2009). Note that the probability P; is an increasing func-
tion of Uf and does not depend on the total number of retailers.
Further, the store choice probability can be bounded from below
and from above by [ f(e)de <P < [ . f(€)de, where nei-

ther the upper nor the lower bound dependsl on the market share
o, which makes them easily usable, especially in case of absence
of any information about the market share or if the retailer ex-
pects it to change due to the introduction of variable products.
Differently, one could model the probability that a customer i se-
lects the retailer r among known number of stores R via the MNL
model, assuming independence between customers’ preferences, or
via nested choice models, taking correlations between these pref-

erences into account (Anderson et al., 1992; Ben-Akiva & Lerman,
1994; Flores, Berbeglia, & Hentenryck, 2019; Katsifou et al., 2014;
Smith, 2009).

Note that the demands d;(s, v) and d]V(s, v) are random vari-
ables, where randomness comes from the uncertainty in customer
i's budget B; ~H;(x). Means of the demands are, therefore, to be
computed as ,uj.(s, V) = E(dj (s,v)) and pL]V(s, V)= E(d}’(s, v)). Fur-
ther, we use Gaussian type demand distributions with means M;

and /,L'; and standard deviations _/ /L§ and / //L]V correspondingly as

an approximation to the Poisson distribution (van Ryzin, 1999).
3.3. Optimization model

Gathering the profit functions (1) and (2) for each type of prod-
uct, we can now formulate our optimization model, aiming to
maximize the retailer’s expected profit per time unit.

The decision variables are the binary vectors s and v represent-
ing the standard and variable assortment decisions, and the inven-
tory levels QJS. , j€Ns and QY, j € Ny. The maximization of the ex-
pected profit is subject to a joint shelf space constraint. The vol-
ume of a standard (respectively variable) product j is denoted by
lj (respectively by l}.’), while the available shelf space is denoted
by C.

Here, for simplicity, we assume that the store has no backroom
(like in Aldi) but C could also represent the combined space in
shelves and in the backroom if one exists, allowing for regular re-
plenishments of the store from the backroom. The aforementioned
description leads to the following problem:

MaXsy,os.01 vj I:ZjeNs 5@(%) + 2jen, VJE<%)]
subject to 3=y SiQL + Xy, ViQYLY < C.
s=(51,....5n,), Sj€{0,1}, Vje AN,
Q= 5iQ} - Q < Sj%, Vje N,
v=i,....Vy), V; € {0,1}, Vje N,

Q 2 ViQmin @ =V VieN,

(6)

where Q]?,mm >1 and Q}{min > 1 are minimal order quantities for
standard j e AM; and variable je A, products. Note that con-
straints QJ? szQ;min and Q}’szQ}{mm prevent retailers order-
ing zero quantities of products; otherwise, it would be possi-
ble to artificially increase the demand by setting S;=1orV; =
1 with quantity Q; = 0 for some product j. This would not neces-
sarily strongly influence the total cost, which would depend on
the setup cost and on the loss-of-goodwill. To avoid this, we sup-
pose that order quantities for products in the assortment should

be greater than QJS. min and Q}’min Vj with minimal order quantities
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being greater than one item. To prevent retailers ordering non-zero
quantity of some product j while setting Sj=0o0rV; =0, we im-
pose the following constraints: QS < S] lS and Q” < Vj ﬁ Note that

these constraints do not reduce the fe351ble set due to the available
capacity.

Next, computing the profit of a standard or a variable product j
(Egs. (1) and (2)) requires the review period (TjS or T]V). Setting the

Y. VieN: and TV = 3. VjeN, would

make the optimization problem (6) not convex-concave in the re-
tailer’s order quantities and in mean demands, which depend on
the customer’s choice model. Furthermore, for marketing reasons,
the review periods often need to be decided beforehand. Therefore,
we would like to use such estimates for the periods Tjs or Tj", that
are independent of order quantities or mean demands

Knowing that QS < ]5, Vj e/\fS and Qv IV, Vje Ny, we use

review periods to Tjs =

TS = ,%"s, Vj e Ns and T“ = IV v, YjeNy for the approximations
J ] J J

of the review periods in our numerical tests with TjS > Tj“, kS and
kV being some constants and ﬂ;, ,&}’ being the upper bounds of
mean demands introduced later in Section 4.3.

The assortment planning problem we study is a bilevel opti-
mization problem, where the retailer needs to solve the constrained
mixed integer non-linear problem (6) with means ,uj. and ,u? and

standard deviations _/ ,uj and / ,u'j? dependent on the solution of

the customer’s concave optimization problem (3), which is depen-
dent on the assortment vectors s and v. The mixed integer non-
linear problem (6) bears similarities with the knapsack problem
(Garey & Johnson, 1979), which is NP-hard. However, our assort-
ment problem is clearly more complex as the profit associated
with each product is a non-linear function of the inventory level,
and is dependent on other selected products. Moreover, the re-
tailer’s product selection depends on the continuous distribution
of the customers’ budget. This significantly complicates the estima-
tion of mean demands, making random sampling very inefficient
and inaccurate.

4. Solution method
4.1. Optimal quantization of probability distributions

The retailer r solves the optimization problem (6) under un-
certain demands for standard and variable products Dj., jeNsand
D;! Jj € Ny and uncertain customer i’s budget B;. These random vari-
ables are given by their continuous distribution functions: we use
normal distributions, Gj and G‘;, with means Tjsuj and Tj",u’]’ and

standard deviations /T].Suj. and T”,u;f for total demands Dj. and
Dy correspondingly; for customer i’s budget, we use the lognormal
distribution H; with mean and variance described in (5).

In order to solve the optimization problem (6), the distribu-
tion functions need to be discretized, i.e., we need to find dis-
crete distributions, sitting on N points, which approximate our
continuous distributions at best. For this, we use optimal quan-
tization (see Monge, 1781; Rachev & Riischendorf, 1998; Villani,
2008) rather than random (i.e., Monte Carlo) sampling with the
aim to receive an optimal rather than a random solution, mini-
mizing a distance measure. We use Kantorovich-Wasserstein dis-
tance (see Kantorovich, 1942; Villani, 2008) between probability
measures, as the measure of goodness of the approximation (Ap-
pendix 1.3). We denote discrete approximations of probability mea-
sures corresponding to continuous distributions, Gj. for standard

jeNs and G}’ for variable products j e A, by ﬁjs = Z,N:] ﬁfjﬁ%

and P"

optlmal supporting points Ej, z}’ and probabilities 'ﬁ§ pY. Fur-
ther, discrete approximations of budget distributions for loyal
and non-loyal customers sit correspondingly on optimal support-
ing points (Bi,B,,...,By) with probabilities (bq,b,,...,by) and
on optimal supporting points (B1, By, ...,By) with probabilities
(by, by, ..., by). Next, we reformulate the optimization problem
(6) in a way suitable for its numerical solution, where all the dis-
crete approximations are sitting on N optimal supporting points.
Clearly, the larger the number N of optimal supporting points the
finer the approximation.

Z, 1 l]&v respectively, with corresponding vectors of

4.2. Problem reformulation

Now, we reformulate the optimization problem (6) for a
numerical solution. For this, we introduce additional vectors
Gj = (cﬁj,ﬁ;]., ...,qN]) and q] (ﬂj,ﬁgj,...,%j), whose elements
should satisfy the following properties for fixed st. and Q}’ and for
all i:

G; = 0ifZ; — Q; <0, otherwise Gj; =Z; — Q} if 7}, - Q; = 0,
-Qj <0, otherwise g a; = 2"1] -Q/ if?’ -Q/=0.(7)
The vectors ii; and &? are introduced in order to approximate
. 00 00 QY
integrals 3% (v~ Qg 0)dy. [Gi(y~ Qgi»dy and fy" (@) -
y)g']’.(y)dy (see Appendix 1.2 for details). To satisfy Eq. (7), deci-

sion variables iij. and ¢V need to attain their minimal values in the

feasible set. This is guaranteed as the approximated integrals enter
the maximization problem (6) in the cost part.
Therefore, the retailer’s optimization problem yields:

stSQ”q, ]VJ[ZSE<TS> ZVE<T">]

subject to » QS5+ Y QJIY <C,

q;; = 0ifZ;

JeNs jeNy
Zi(s,v) - Qje < q;,
q;>0, VjeNs, Zi(s,v)-Qle<q,
iiy>0 VjeNy,
HS
E(T—]) ms s (s, v)
K; hs S S S Cu;~ P~
[f+—(Q Tjuj(s,v)>+T—;pj-(s,v)~qj],

v
J

E(T—) =mjuj(s,v)
K” c"+ o“ ’ v
[ (Q T,-Mj(s,v))

cu" + co']’ ~y
s q,]

Q= S;Q i Q) < ],s, Vie N,

Q VQ]Umm’ Qv le, V] EN%

s=(51,...,5v). Sj€{0,1}, Vje N,
v=WV,....W,), V;€{0,1}, VjeN,, (8)
where mean demands for L loyal and L non-loyal cus-

tomers with N budget quantizers are computed as
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15(s.v) = LY Prbigs + LY 1P1rb§u VjeNs and pi(s.v) =
LZ,-:l IP’,,b,Eij +LZI-:1 IP,-rb,-%‘,-j Vj € Ny correspondingly.

Note that the customer’s optimization problem (3) uniquely de-
fines optimal purchase quantities, optimal utilities and the store
choice probability, given the type of customer (loyal or non-loyal)
and his budget quantizer B; or B;. This is due to the fact that the
solution of the optimization problem (3) under (4) and (5) de-
pends solely on the customer’s budget and the customer’s type.
The above equations for mean demands, therefore, hold. Further-
more, one could adapt the approach for the estimation of mean
demands ,uj(s, v) and ,u';(s, v) for the case when the number of

customers is unknown: instead of directly choosing L and L as the
number of loyal and non-loyal customers, one could fix them to
be equal to one, but account for the true number of customers per
time unit by changing time units, risk aversion and the budget dis-
tribution parameters (4), (5), that are possible to estimate based on
the retailer’s data. We, however, proceed with the equations above.

Optimization problem (8) is easily solved numerically for
QJS., VjeNs, Q}’, Vj e Ny under fixed assortment vectors s and
v. Clearly, with s and v being the decision variables, the exact
solution can be found only with complete enumeration. How-
ever, the computational time for complete enumeration (having
to examine (2NstMr — 1) combinations for a set of N5+ N, candi-
date products) quickly becomes prohibitive for large-scale prob-
lems. Thus, we propose several lower and upper bounds, with
the aim of finding a good solution for large-size problems. In
the following we present upper and lower bounds of the prob-
lem (8) and, afterwards, we generate test data for the numerical
solution.

4.3. Upper bounds

If the expected demands uj (s,v), ,u‘j(s, v), optimal quantizers
Ej.(s, V), E‘f(s, v) and corresponding probabilities iij,(s, v), 'ﬁ'j(s, V)
were independent of assortment vectors s and v in the prob-
lem (8) VjeANs, VjeN,, being fixed at some levels uj ,u?,
7.;, 2‘}’ f)j 5']’ we would derive continuous relaxations, such as
linear and SDP relaxations, to bound the optimal value of the
problem (8) from above. However, all these functions are de-
pendent on assortment vectors s and v in our case. Therefore,
to impose the upper bound on the problem (8), we first im-
pose upper bounds on /Lj.(s, v), VjeN; and p,'j(s, v), Vje Ny,
i.e., we find ﬁ,; and ,a?, independent of s and v, such that 0 <
Mj- (s,v) < ﬂj. and 0 < /L;!(s, V) < ;l;!, Vj,s,v, and we include the
mean functions to the set of decision variables in linear and SDP
relaxations.

There are different methods for the estimation of upper
bounds ,a; and /l}%. It would be possible to compute the bounds
based on the data on demand. However, as we do not have
access to the retailer's data, we propose a simple approach
to compute the expected demand upper bounds based on our
model.

First of all, consider the upper bound P; <1 —F(-U;"), which
depends only on the customer i’s optimal utility U;. The higher
the utility, the larger the probability that the customer chooses the
retailer . Note that the utility is at absolute maximum if S; and
V; are equal to 1 Vj in the customer’s model (3), i.e., all products
are available at the retailer and customers assume the ability to
purchase as much as they wish under their budget constraints.
We denote the corresponding upper bound on the store choice
probability by W;, for a loyal and by W; for a non-loyal customer
i. The maximal purchase quantity for each product is just the
customer’s budget divided by the price of the product. The up-
per bounds of the expected demands are, therefore, equal to

25 =LY Wb 2t +LZ,1 bt VjeANs and Y=

LY, Wirbip*% +LZi:1 Wirbipf? VJ € Nv-

In linear and SDP relaxations, we suppose that mean de-
mands for standard and variable products are decision vari-
ables belonging to intervals |[O, ﬂ;] and |0, ﬂ}/] correspondingly.
Also, we notice that the optimal quantizers 5;(3, v), E‘]V(s, v) (as
well as the probabilities ﬁj.(s, v) and ﬁ';(s, v)) depend on assort-
ment vectors s and v only through the mean functions /L‘;-(S, V),

,u?(s, V) as Es.(s, V) = T?;Ls.(s, v)e+ /T?;H (s, v)ES. (0) and EV(s, V) =

(s v)e+ /T",u‘]’(s v)zV(O) where zS(O) and z (O) are opti-
mal quantizers of the standard Gaussian dlstrlbutlon with corre-
sponding probability vectors ffj(O) and fz‘j.(O). For simplicity, we
use the optimal weights ﬁj.(O) and ﬁ?(O) of the standard Gaus-
sian distribution instead of 135].(3, v) and ﬁ;f(s, v) in all our up-
per and lower bounds (alternatively, one could use uniform prob-
abilities): the higher the number of quantizers the better the
approximation.

To guarantee the upper bound and to have only linear con-
straints on iij., ﬁ? in the relaxation, we use the linear approxima-
tion of the square root function going through points (0, 0) and
(T35,
ucts. Using the linear approximation for Ej (s,v) and E}f(s, v) in the
relaxations, one guarantees that (f)j (0), E;) and (f)?(O), E?) will at-
tain lower values and, therefore, the stock-out cost in the problem
(8) will drop, leading to the upper bound on the profit (see Lemma
1.1 in Appendix 1.5 for the proof).

Linear relaxation with decision variables X]? :Sjui. and X].” =
VL;L?, Y]i: Sij and Y}’ = VjQ}’, Zj =S;- (p;.(O), qj) and Z]“. =
(p’Jf(O),q‘J?) can be written in the following standard form intro-
duced by Fortet (1960):

Sﬂi) for standard or (TJV@JV, /T]V,aj'{) for variable prod-

Ts Ts TS
jeNs jeNy

K3 hs cu’
max | 3 {(ms+ m)x; - s, - 24 - )+ 2

v v v v v
K]V B Cj-l-COij cuj +CO}Z"]},

v v v v
X {(mj+cj+coj)xj T“ 7Y 7 ¢
J

subject to 0 <S; <1, 0= uj <@ VjeN,

VjeNy,

TS
T;uj»eﬂ/ﬂ—’ju] Zj(0) - Qje < qj, 4= 0, Vj e A,

[TV N ‘
Tfpje+ ﬂ,,uj Zj(0) -Qje<gj. g; = 0. Vje N,
]

0<Vj<1 0<puj<pj,

IS WIESELEY
JjeNs JjeNy

Q) < le,‘v’]e/\/u,

0<Xj<ul, Xjz=pj+Si—1, Vjeh,

0<X'<uj, X/=ui+Vi—1, VjeN,

SiQimin =Y; <Qf, VieNs, ViQfnn <Y/ <Q}, VjieN,,
Y/ >2Qj+S;-1, VjeNs, Y/=Q/+V;-1 VjeN,
0<Z < (70).§). VjeA

0 =<7} < (§}(0).4)). Vi e M,
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7= (B0). 8) + (S DR, Vie A,
20 = (B5(0).8) + (Vj - DAY, Vjie Ay, 9

Similar linear relaxation is used in Gaivoronski et al. (2011) for
the quadratic Knapsack problem with probability constraints. As
in Gaivoronski et al. (2011), this relaxation provides a fast way to
have an upper bound on the optimization problem (8). Relaxation
(9) does not necessarily result in a very tight upper bound. There-
fore, we also construct a SDP relaxation of the problem (8). For
this, we first rewrite the problem (8) as a zero-one QCQP (quadrat-
ically constrained quadratic problem):

max, xT fx
subject tox > 0,
YK ok <oy, Yk=1,... K,

xe{0, 1}, Vi=1,....,Ns, NG+ N)+1,....,Ns(3+N) + N,,
(10)

where K= (3+N)(Ns+N,); T is an appropriate K xK sparse
matrix; k= (ok,... @) are appropriate K-vectors con-
structed for the objective function and all linear constraints
in the problem (8) with o, Vk=1,..., K being the cor-
responding constants; decision vector x is defined by xT =
(5.Qf s Qfy e i B B 0 Q1 Qe il 2
q'{,...,q}(,v).

o [xTx X7

Further, let X be the matrix [ x

1 } We will use the mod-

0

ified matrix ﬁ:[lg with W, being the appropriate matrices

constructed based on constraints of (10). Using these notations,
we can easily build a SDP relaxation of (10). In relaxation (11),
we tighten the constraints so that the binary variables take val-
ues as close to 0 and 1 as possible. This is done to strengthen
the approximation shown to be weak in the studies of Helmberg,
Rendl, and Weismantel (2000) for the quadratic knapsack problem,
Rendl and Sotirov (2003) for the quadratic assignment problem
and Gaivoronski et al. (2011) for the quadratic knapsack problem
with probability constraints. Similar to the work of Gaivoronski
et al. (2011), we use Sherali-Adams constraints proposed in Sherali
and Adams (1990) and Sherali and Adams (1994), which are gener-
ated by the multiplication of each constraint by the binary variable
it contains: this limits the space of solutions pushing binary vari-
ables to take values closer to 0 and 1. The only constraints contain-
ing binary variables S; or V; are Q5 = 5;Q5, . Q5 = Sjl%, VjeNs
and QY = V;Q} i, Qf < Vj%,

contain several binary variables at once. This means an increase of
Ns + Ny in the number of linear constraints, as only Ns + N, con-
straints are multiplied by S;, 1 —S; or V;, 1 -V;.

Similar to the article (Gaivoronski et al., 2011), we do not con-
struct a sequence of relaxations proposed in Sherali and Adams
(1990, 1994) but limit ourselves to the first relaxation in the se-
quence. Though the sequence of relaxations in Sherali and Adams
(1990, 1994) would lead to the integer polytope, building each
of the relaxations would soon become computationally expensive.
Furthermore, the obtained result would still be an upper bound on
the problem (8) due to the fact that the mean demands ,ui. and ;L;!
are included in the set of decision variables in our relaxations and
that we use the approximations (14) in Appendix 1.5. The semidef-

Vj e Ny and none of the constraints

inite (SDP) relaxation with Sherali-Adams constraints yields

maxy x trace(ﬁ oX)

subject to x>0, X >0,

trace(W/® ¢ X) <0, Vk=1.....2N,, B+ N)Ns + 1......
3+ N)Ns + 2Ny,

trace(Wk’(k) oX) <ay, Vk=1,..., 2Ns, B+N)Ns+1, ...,
(3+ N)Ns + 2N,

trace(W, e X) <o, Yk=2Ns+1,..., (2+ N)Ns,

trace(W, e X) <y, Vk= 2+ N)N; +2N, + 1, ...,

(2 +N)(Ns + Ny)
diag((xy. ... )T (xq, -, XNg)) = (X1, ..., xn)T,
diag((X3snNg+10 - XN NsN) T XGENNGA 1o -+
XB4+N)Ns+N,)) =
= (XGLNINe£1 - X @M Ns+Ny) T

(11)

where ij(k) and Wlf () are the matrices corresponding to Sherali-
Adams constraints described above and the multiplication is by bi-
nary variables §; (or V;) and 1 -S5; (or 1—-V;), where j is uniquely
defined by k.

Note that rounding optimal solutions of relaxations (9) and
(11) would give some assortment vectors that could be used for
the computation of simplistic lower bounds of the problem (8).
Using the linear relaxation and rounding the solution, one would
gain computational efficiency for very high-dimensional problems.
Below in this section, we test the efficiency and accuracy of the
proposed lower and upper bounds.

4.4. Lower bounds

It is quite easy to construct multiple lower bounds for the prob-
lem (8) by taking subsets of possible realizations of vectors s and
v and, therefore, bounding the feasible set of the problem. The re-
sult does not necessarily find the optimal product allocation but is
useful for the error bounding and, moreover, for the decision about
the assortment (as the retailer can be confident that he would not
be worse off).

We consider several lower bounds for the optimization problem
(6):

Rank and optimize: Suppose that only one single product is
available in the retailer’s assortment. Thus, the assortment vectors
s and v are fixed, containing only one single 1 in one of them.
In this case, the objective function of the problem (6) degenerates
to the profit resulted from the sales of the available product only,
which is a concave function of the inventory level (it can be eas-
ily proven by taking the derivative of the objective function in (6)).
We face a problem similar to the knapsack problem but with a
concave profit function (instead of linear). One can maximize the
profit and receive the quantity of the product, which is only opti-
mal for these particular assortment vectors s and v but not for the
initial problem.

However, instead of maximizing the expected profit function,
one can try to maximize the expected profit to space ratio of the
available product. This arises from the consideration that, due to
the limited shelf space, the retailer has to select those products
that bring profit, without filling too much space. A product j can
be thus selected based on its expected profit to space ratio.

The profit to space ratio has previously been adopted by Lim,
Rodrigues, and Zhang (2004) and Yang (2001) to solve the retail
shelf space allocation problem as well as by Hansen and Heins-
broek (1979) in the joint problem of product selection and shelf
space allocation. In our model, the expected profit to space r;;ltio

spac L . Y
is given by E(lejS)Qj-) for standard products j € s and by E(W)

for variable products j € A;. The optimal slopes correspond to tan-
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gent points, i.e., to Qj and Q}’ such that

o (ms + hS)usTS — K3 )
st VG Wy = — . VieAs
J J
S (m¥ + c¥ + co) uuTY — KY )
[, vaioay = SIS iew  (12)
J J J

Sequentially going through the products, one can optimize the ex-
pected profit to space ratio for each of them and rank all the
Ns + Ny products in the assortment based on their optimal profit to
space ratios in descending order. After, instead of 2Ms+Nv — 1 prob-
lems, one can solve Ns + N, optimization problems (8) with fixed
assortment vectors s and v, starting with the first-ranked product
only and finishing with all products being included in the assort-
ment. Choosing the maximal optimal value between these prob-
lems, one decides about the assortment and the optimal order
quantities.

The number of iterations in the algorithm is, therefore, 2(Ns +
N,), where N + N, iterations are devoted to the ranking based on
optimal profit to space ratios and other Ns + N, iterations are as-
signed to the solution of optimization problems (8) with fixed as-
sortment vectors.

Tangent points Q]? and Q]'/ can be computed via different ap-
proximation algorithms based on implicit functions (12). If the
points are estimated using optimal quantization (see Appendix1.2),
we refer to the Rank and Optimize method as T;gRankOpt. Differ-
ently, one can approximate optimal slopes by % Vj e N; and

VY%
% Vj € Ny where (IT3)*, (ITV)*, (Q9)*, (Q¥)* are optimal

expected profits and optimal quantities corresponding to standard
or variable products jVj in the problem (8). In this case, we refer
to the Rank and Optimize simply as RankOpt.

Rank and approximate: Analogically to the Rank and Optimize
method, one ranks N;+ N, products in the assortment based on
their expected profit to space ratios. Further, instead of solving
Ns + Ny optimization problems, one uses a sequential procedure to
approximate the solution: (1) the product with the highest profit
to space ratio is included first and the next selected product has
the second highest profit to space ratio; (2) as the first included
product has the highest marginal profit to space contribution, in-
creasing its inventory level offers the best yield; thus, its inventory
level is increased until it reaches equal marginal profit contribu-
tion with the second product; (3) the addition of a third product
is then considered; in general, given the limited shelf space, the
process continues as long as the shelf space is not exceeded: when
the next product is included, the order quantities of the previously
included products are updated so that the marginal profit to space
contribution is equal for all of them; (4) the process terminates
when m products are included in the assortment and the (m + 1)t
product would violate the space constraint.

Without constraints on minimal order quantities st.vmm and
Q]?min Vj, this lower bound is at best as tight as the one of Rank
and Optimize, as the order quantities are suboptimal. With minimal
lot sizes, one may be willing to set order quantities to the minimal
amounts already at the ranking step for products with optimal tan-
gent points below st.’mm (or Q]'{min). Further, computing suboptimal
slopes at st.vmm (or Q]'{mm) for these products, one influences the
ranking of products in comparison to RankOpt. The number of iter-
ations of the algorithm is less than or equal to 2(Ns + Ny), as the
process terminates as soon as the capacity constraint is violated.
Further, we refer to this method as TgRankApprox.

Bound and round: Using either LP relaxation (9) or SDP upper
bound (11), one obtains optimal relaxed ij and Vj*, Vj from the

interval [0, 1]. After, to get a well-known lower bound on the opti-
mization problem (6), one rounds the optimal solution in a conve-
nient way: the easiest rounding would imply S; =1 if ij > 0.5 and
S;=0if S}f < 0.5 (and similar for V;, Vj); also, one could round the
relaxed solution in line with optimal quantities, meaning that the
product j is included in the assortment if its relaxed order quantity
is greater than the minimal lot size.

Both variants would give lower bounds on the optimization
problem (6) by evaluation of the objective function with these as-
sortment vectors.

4.4.1. Rank and optimize with dependencies

In order to improve the lower bounds, we propose two heuris-
tics for our bilevel product assortment optimization problem.

First of all, we propose the procedure described in Algorithm 1

Algorithm 1 Tangent points estimates.
Obtain optimal quantizers ij = (Esj,.‘.,?' ), 211’ = (Z'{j,...,i;(,j
and corresponding probabilities
p}:(ﬁslj,...,ﬁ;,j), pyz(ﬁ'{j,...,ﬁm) for densities gj.(y) and
g
fork=1,...,N do
Estimate the integrals [o¢ yg;(y)dy and Jov ygj(y)dy by the
] ~ ~ )
dg; proci:ylcts @ Z3) - (o By and (Z . 2) -
(Pyj> -+ PNj)s
end for
Further, for the estimates of tangent QJS. and QJ'.’, choose Efq and
E;éj with minimal distances

. ~ ~ ~ ~ (MS+h$) uSTS—K3 .
ming{ @+ B) - By By - T L Ve,

. ~ ~ ~ ~ (mY+c¥+co”) Wi TV —KY .
mmk{(zkj, ‘..,zNj) . (pzj,.,.,p'&j)_W . VieN,.

Differently, one could choose the middle point between two
closest (in the sense of minimal distance) quantizers.

to compute tangent points Qj and Q}’ based on implicit functions
(12) using optimal quantizers.

Clearly, as the number of optimal quantizers increases, the ac-
curacy of the approximation improves.

Next, similar to the models considered in Katsifou et al.
(2014) and Katsifou (2013), the demand and consequently the
profit from a product depend on the selected total assortment in
our bilevel model. Therefore, in the solution procedure, the ex-
pected profit to space ratio for each selected and non-selected
product changes as the total assortment is built. In the extreme
case, as a new product is introduced, a previously included prod-
uct j might become less profitable than other, non-included, prod-
ucts. In another case, the cross-selling opportunity could lead to
the introduction of a less profitable but very attractive product to
increase overall store traffic. This shows that considering products
separate from each other and sequentially selecting them based on
their profit to space ratios is, in general, suboptimal, due to the
interdependence of demands.

Heuristics proposed in Katsifou et al. (2014) and Katsifou
(2013) are based on the Rank and Approximate method for the
problem without constraints on minimal order quantities and with
Monte-Carlo sampling of demand. We, however, propose to adapt
the Rank and Optimize method using optimal quantizers, taking
into account interdependencies between demands. We select a
new product depending on the expected profit to space ratio of
the current assortment and not just on the product’s own profit to
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space ratio. Due to the reoptimization step, we explicitly take min-
imal order quantities into account.

The heuristic based on the Rank and Optimize method is pre-
sented in Algorithm 2. The heuristic takes interdependencies be-

Algorithm 2 Rank and Optimize with dependencies
Ranking step:

Ranking = {}, Products under Consideration = {\s U N}
while numel(Products under Consideration) > 0 do
for all j € Products under Consideration do
A;j = Ranking U j

. Vk € Aj, update the demands p(A;) for all standard and
variable products in A; by solving the problem (3) (note
that demands are changing depending on the set A;);

. Using Algorithm 1, compute the maximal profit to space
. . I1;(Qj.11j(A)))
C= A Rl R 22

ratio of the product j, ie., rj= max, o )

where IT;(Q;, j(A;)) is the profit of the product j de-
pending on the set of products A; through the mean
function and Q; is its quantity;

end for
Ranking= Ranking U {j = arg max; r;};
Products under Consideration = Products under Consideration \
{j = argmax;r;}.
end while

Reoptimization step:

Current Assortment = {}
for all j € Ranking do
A;j = Current Assortment U j

e  Solve the optimization problem (8) given the Current As-
sortment and compute the optimal value (T1;(Q;))*;

end for
Optimal assortment is A; : j = argmax;{(T1;(Q;))*}.

tween demands into account. First, it ranks the products based
on their expected profit to space ratios. Second, it progres-
sively includes products into the assortment choosing the as-
sortment with the maximal profit. In comparison to the heuris-
tic presented in Katsifou et al. (2014) and Katsifou (2013), the
Algorithm 2 assigns optimal order quantities to the selected as-
sortment at each iteration. The number of iterations is bounded by
(Ns + Ny + 1) [ 5387 + N5 + Ny

We use the example from Katsifou et al. (2014) to describe the
heuristic in more detail. Let us assume that we have three prod-
ucts N1, N2 and N3. First, we compute the profit to space ratios of
all Ns + N, products considering them in isolation from each other
(i.e., same as in Rank and Optimize and in Rank and Approximate
methods). We select product N3, which has the highest ratio. The
next product included is not necessarily the product with the sec-
ond highest profit to space ratio, but the one which maximizes the
profit to space ratio of the assortment. When considering whether
to include product N1, one updates the demand for and the profit
of products N3 and N1 as a function of the assortment {N3, N1}.
Similarly, when considering N2, one updates the demand for and
the profit of products N3 and N2 based on {N3, N2}. If combina-
tion {N3, N1} yields a higher profit to space ratio than combination
{N3, N2}, one chooses the product N1. Therefore, it may happen
that less profitable but more attractive product N1 is preferred to
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N2 since its combination with product N3 maximizes total profit
per space ratio.

In Katsifou et al. (2014), each customer is assumed to buy only
one item of a product and neither the optimal purchase quantities
of customers nor their budget constraints are taken into account.
Via this simplified model for customer purchases, article (Katsifou
et al., 2014) presents a profit ratio heuristic for the product as-
sortment optimization with MNL customer choice model and with
prices being the decision variables in the retailer’s optimization. In
our bilevel model, the prices are considered to be fixed, influencing
both the customer choice (3) and the retailer’s profit (6). Consider-
ing prices as decision variables would significantly complicate the
problem: the use of the heuristic similar to the one proposed in
Katsifou et al. (2014) would not be possible, as the expected de-
mand would tend to infinity with prices being close to zero and
the computation of optimal prices based on the expected demand
times its profit margin would not be feasible.

Instead of using Algorithm 1 in the ranking step of Algorithm 2,
one can use the approximation z(Tn(fg)*)* where (IT;)* and (Q;)* are

P ]

the optimal profit and the optimal quantity corresponding to the
(standard or variable) product j in the problem (8) with fixed as-
sortment vectors. Further, this method allows to cut the number of
iterations by Ns + Ny, keeping track of the optimal values already
at the ranking step and, after, choosing the maximal one without
an additional reoptimization step. In the numerical part, we refer
to the Algorithm 2 as TgRankOptDepend and to the alternative algo-
rithm with reduced number of iterations and approximated profit
to space ratios as CutEnum.

4.5. Accuracy and efficiency analysis

In this section we assess the efficiency and accuracy of lower
and upper bounds proposed for the problem (8). We compare the
resulting optimal values and the computational times of these al-
gorithms with those of complete enumeration (CE).

We consider small- to large-dimensional problems starting with
random selection of sizes from Ns ={2,3,4,5}, N, ={2,3,4,5}
and proceeding to Ny = 40, N, = 40 products. Note that CE would
need 2Ns+Nv _ 1 jterations each of increasing complexity, which re-
sults in more than 1 mln. iterations for Ns + N, > 20. Therefore, we
use CE for the solution of small-dimensional cases only.

The number of loyal and non-loyal potential customers is L =
L =10 at every time increment and the store capacity is set at
C =1500. All distributions are discretized optimally with N =10
number of quantizers (note that one does not require high num-
ber of quantizers for univariate distributions, as the discretization
is minimizing the Kantorovich-Wasserschtein distance).

For accuracy and efficiency tests we use parameters listed in
Tables 2 and 3. In the customer model, the location and the scale
parameters of the budget distribution have a higher spread for
non-loyal customers (due to larger uncertainty about them). The
risk aversion towards standard products is higher for non-loyal
customers, while the risk aversion towards variable products is
larger for the loyal group of customers. In the retailer model, the
variable products are supposed to offer a lower margin than stan-
dard products (40 or 80% of the minimum between the small-
est standard products’ profit margin and the order cost of the
corresponding variable product), and their setup cost is supposed
to be higher. By this, variable products tend to be more costly
(Table 3) but are mainly intended to attract non-loyal customers
to the store. We generate values of the parameters randomly and
compute lower and upper bounds for each random parameter in-
stance.
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Fig. 2. Optimal values and approximation error for problems with different sizes.
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Fig. 3. Ratio of running times for problems with different sizes.

Table 2
Customer model parameter values.

Parameter  Loyal customers  Non-loyal customers
w, U[7.5, 8.5] U[6.5, 8.5]
0,0 U[0.45, 0.55] U[0.4, 0.6]
2 U[0.05, 0.07] U[0.6, 0.7]
8,8 U[0.9, 0.95] U[0.5, 0.6]

Table 3
Retailer model parameter values.

Parameter Standard products Variable products
stlmin’ QJ"{min 1 1

I uU[0.1, 0.5] u[o.1, 1]

¢ cf IEU[50. 100] 1YU[50, 100]

ms, my {20%.30%,40%) of ¢, (40%, 80%) of min { ming_; VN({m?},c}f}
Ks, K}’ 500% of cj, 750% of c}(

u;, ut 50% of m; 30% of my

cu;, cuf m’ + h% +us my + ¢l +ul

co']f - {5%, 10%, 25%} of c'j
hjs v 2;;000 ;000

0 i il

In Figs. 2 and 3 (and from the corresponding tables), we see
that lower bounds RankOpt and TgRankOpt with optimal quantizers
are able to find solutions within 10% accuracy in reasonable time
compared to CE (both of the bounds are linear in the number of
iterations w.r.t. the problem dimension). This ability to find good
solutions in short time is important when larger (realistic) size in-
stances have to be solved.

The heuristics CutEnum and TgRankOptDepend, taking interde-
pendence between assortment and the demand explicitly into ac-
count at each iteration, are, obviously, slower than RankOpt and
TgRankOpt (they have quadratic number of iterations w.r.t. the
problem dimension): these bounds, however, improve the accu-

racy of the solution. Further, the lower bound TgRankApprox, based
on the algorithm developed in Katsifou et al. (2014), provides a
very fast solution estimate, which, however, drops below 50% ac-
curacy with high standard deviation for our bilevel problem with
minimal lot sizes. Note that simply rounding the LP relaxation,
one would get a more accurate estimate in even better time. For
higher dimensional cases, as one can see in Fig. 2 for Ny = N, = 40,
the performance of both bounds TgRankApprox and of LP round-
ing improves, while the running time stays much lower for the LP
rounding, making this method very time-efficient even with opti-
mal quantization.

Comparing the performance of two upper bounds, one can
immediately observe that the LP relaxation becomes more time-
efficient if the dimension of the problem increases, while the time-
efficiency of the SDP relaxation drops compared to CE (see Fig. 3):
this is due to the fact that the number of variables in the SDP
relaxation grows quadratically with an increase in dimension (i.e.,
the number of elements of matrix X increases). To improve the ef-
ficiency of the SDP relaxation, one would require separate research
on faster computational algorithms for its solution.

Next, Fig. 4(a) demonstrates the behavior of the upper (SDP)
bound w.r.t. lower bounds (LP with rounding and CutEnum) and
w.r.t. the number of products. Fig. 4(b) shows the optimal values
of the upper bounds w.r.t. the location parameter of the customer’s
budget distribution: the performance of the LP relaxation drops
w.r.t. the performance of the SDP relaxation as the budget of
customers increases (Fig. 4(b)).

In order to further improve the upper bounds for large-scale
problems, one would need to find a way to estimate the mean de-
mand close to its optimum in the initial problem instead of taking
ranges 0 < poj. < /lj., 0< u'j < /Sc'j, Vj in the relaxations. Also, one
could impose even stronger constraints (rather than LP constraints
introduced by Fortet (1960) or Sherali-Adams constraints (Sherali
& Adams, 1990) for the SDP relaxation) to keep assortment vectors
as close to a binary solution as possible.
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Fig. 4. Behavior of the bounds dependent on the number of products and on the location parameter of the customer’s budget distribution.

4.6. Functional properties

One of the main contributions of our work is the ability of the
model to account for optimal purchase quantities of customers un-
der their budget constraints. Moreover, the budget of a particular
customer is unknown to the retailer, who estimates the budget dis-
tribution function. Increasing the location parameter of the distri-
bution function implies that the average customer is able to pur-
chase more quantities and a broader set of products. While most
customers can be satisfied, this leads to an increase in the retailer’s
profit. However, if the budget of the average customer increases
too much and the capacity of the retailer is not adjusted, the re-
tailer would start facing higher loss-of-goodwill costs and would

1300 10
8

) 1200
Capacity level 7
Location parameter of the non-loyal

customer's budget

a) Higher customer demands.

1100 "¢

customers towards variable products

observe a decrease in his profits: this is due to the retailer’s in-
ability to satisfy customers with very high demands (Fig. 5). In or-
der to satisfy more customers, the retailer would need to increase
his capacity level (Fig. 5a)). If the customers from the same bud-
get group would become more risk-averse towards purchasing the
products, the retailer’s profit would logically decrease (Fig. 5b)).
Next, computing the profit of a standard or a variable prod-
uct j requires the review period (TJ.S or T]V). Introducing the re-
view periods as the decision variables would make the optimiza-
tion problem not convex-concave. Furthermore, for marketing rea-
sons, 2tlge review periods are often decided beforehand. We use

TP =5, VieNs and T! = % Vje Ny as the approximations
jT B iy

x10*
25
24

$23

7 6
10 9 8
Location parameter of
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Risk aversion of non-loyal 92 11

b) Customers’ risk-aversion.

Fig. 5. Optimal purchase quantities for different types of customers.
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Fig. 6. Optimal purchase quantities for different review periods.
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of the review periods in our numerical tests with k% and k¥ be-
ing some constants. We choose the parameters k* and kV in such
a way that the retailer’s overall profit is as high as possible. As
expected, in Fig. 6 we observe that the problem is not convex-
concave in review periods with a maximum dependent on the
customers’ budget. While it was not our objective to maximize
the profit based on the ratio of review periods, the observation
that variable products should be refreshed more often than stan-
dard ones (Tj" < Tjs ) coincides with examples of retailers in practice
(Appendix 1.4).

5. Benchmark strategies

In this section, our aim is to illustrate how our model can con-
tribute to retail practice, by providing finely constructed assort-

ments to attract loyal and non-loyal customers, and to balance
profitable and attractive products. For this, we compare our ap-
proach with benchmark strategies commonly used in practice, and
easier to solve due to their simplified structure. The scenarios are
presented in the following.

Base case (BC): The store carries only a standard assortment and
thus only attracts loyal customers. Variable products are not con-
sidered by the store manager.

Crude case (CC): Both standard and variable items are carried
and cross-selling occurs in the store, affecting the demand for each
product. However, for simplicity, when product assortment and
inventory decisions are taken, the cross-selling effect is ignored,
i.e.,, the assortments are decided based on the assumption that
loyal (respectively non-loyal) customers buy only standard (vari-
able) products.
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Dogmatic case (DC): The maximal space allocated to each of the
standard and the variable products is fixed and limited a priori,
from an external decision in the following way:

cps
QL <, J 7 ,]e/\fs and
Z NI
cav
QVlY < — J , J ENy.
' Z?Vil/h Sit

The standard and the variable products are to be placed in this
space and their inventory levels are decided based on the cus-
tomers they attract.

Complete problem (CP): This scenario corresponds to our com-
plete model. The combined assortment and the inventory level

for each product are decided taking into consideration the cross-
selling effect. The space allocation between the standard and the
variable assortments is not fixed a priori.

In the following, we show the benefits brought by our approach
for a balanced assortment, and analyze the impact of the space
constraint, profit margin and cross-selling effect on the results of
the aforementioned scenarios. For the tests, we assume that there
are 40 standard and 40 variable candidate products.

5.1. Impact of the space constraint

We demonstrate the results of our approach (CP), and also com-
pare the results of the BC, CC, DC and CP when the shelf space
constraint varies in the interval [700,4000]. Fig. 7 shows that,
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as expected, CP outperforms all the benchmarks in all instances,
and in particular the base case (BC) where no variable items are
included. Thus, the retailer benefits by including variable prod-
ucts to his assortment and considering the increased demand for
standard products due to variable products (cross-selling effect)
when deciding on the combined assortment. However, if the ca-
pacity is low, the optimal profit of our approach CP may coincide
with the optimal profit of the base case BC, meaning that small
shops may not necessarily benefit from including variable prod-
ucts. Note that we do not consider the case of not including any of

the products and, therefore, optimal values may in general become
negative.

In Fig. 7(a), the profit difference between the CP and the BC in-
creases until some capacity level is reached as more variable prod-
ucts can be included in the assortment, increasing the cross-selling
effect. Further, the profit difference between CP and BC converges
to some level due to the concavity of our optimization problem.
The shelf space at which the retailer stops filling the shop up to
full capacity is lower for the BC case, due to the absence of the
cross-selling effect and impossibility of benefiting further from an
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increase in order quantities for standard products. Also, due to the
constraints on minimal order quantities Q]ﬁmm, Vj=1,...,Ns and

;{mm, Vj=1,...,Ny, the decision to include variable products to
the assortment in CP may delay with respect to the point at which
the retailer stops filling the shop up to full capacity in the base
case BC.

The impact of the space constraint on the structure of the com-
bined assortment, and the increasing number of variable items in-
cluded, can also be seen in Fig. 8, where we reduce the wholesale
price for variable products and increase the cross-selling effect by
setting the risk-aversion parameters towards variable products to
8 =0.7 and § = 0.2. With this, the space ratio devoted to variable
products becomes higher than the space ratio devoted to standard
products at some capacity level (Fig. 8).

Next, we observe that the crude case CC outperforms the dog-
matic approach DC. This is due to the fact that DC is limited to the
dedicated space and CC is not. Importantly, the profit of the re-
tailer adopting the crude approach for his assortment decision can
decrease with increasing capacity due to the growing holding/over-
stock cost resulting from the neglection of the cross-selling effect
(Fig. 9). In general, the performance of CC and DC strongly depends
on the strength of the cross-selling effect.

5.2. Impact of profit margin

To gain additional insight into the combined problem of prod-
uct assortment and inventory management, we compare the per-
formance of our approach and of the benchmarks when profit
margin varies. The standard and variable products’ profit margins
pj, —cj. and p?—c‘j may change due to two reasons: either the
price of the product changes or the ordering cost starts to vary. For
standard assortment, both of those lead to a change in the profit
margin mj. = psj - cj. and in the parameter cuj. = mj. + hj. + uj corre-
sponding to the loss-of-goodwill. Furthermore, the change in price
(not in ordering cost though) influences the mean demand through
the customers’ choice model. For variable assortment, the situation
changes: price changes still influence the mean demand through
the customers’ choice model; however, changes in the order cost
c}f do not influence the parameter cu'j = p'; + u'j corresponding to
the loss-of-goodwill. Thus, one needs to consider at least two
cases in order to study the impact of changes in the profit mar-
gin: the case, when the product price varies (Fig. 10) (Casado
& Ferrer, 2013) and the case, when the ordering cost changes
(Fig. 11).

The space constraint is fixed at C = 1500. Figs. 10 and 11 con-
firm that our approach (CP) outperforms the BC. Under the CP sce-
nario, the order quantities of standard products are reduced due to
the decrease in purchase ability of customers and due to the drop
in demand if the standard products’ profit margins are high due to
the price increase (Casado & Ferrer, 2013). In response, the quan-
tities of variable products increase and thus make the majority of
the assortment (Fig. 10).

Next, we start to vary the wholesale price (order cost) for vari-
able products instead. Changes in the order cost c'j’ do not influence
the parameter cu'; = p']f + u'; corresponding to the loss-of-goodwill
and, moreover, they do not influence the customers’ choice model
and the mean demand. A decrease in the wholesale price for vari-
able products makes it beneficial for the retailer to include more
in number and in order quantity of variable products compared to
the case with the price increase (Fig. 11).

As seen in Figs. 10 and 11, the scenarios (CC and DC) are out-
performed by our approach CP. The performance of the dogmatic
case DC improves if the wholesale price for variable products de-
creases. For lower values of the order cost for variable products,
the DC outperforms the base case BC: this is due to the fact that

variable products become much more profitable, so that the space
limited by the dogmatic approach still leads to a better payoff than
the payoff of not including variable products at all.

5.3. Impact of the cross-selling effect

The cross-selling effect is one of the most important character-
istics of our problem. We analyze the impact of loyal customers’
risk aversion parameter § towards variable products on optimal
profits for CP, BC, CC and DC and on optimal product space ratios.
The lower the risk aversion towards variable products, the more
customers will buy variable products: varying § one influences the
number of loyal customers buying variable products and the quan-
tities they purchase.

First, Fig. 12 confirms that our approach (CP) consistently
outperforms the BC. With our model, the retailer benefits by
considering the cross-selling effect when he is deciding on the
total assortment and the inventory level per product. As the loyal
customers become more willing to buy variable products, the ben-
efit that the retailer gains with our approach increases. One can
see that as the risk aversion parameter § drops, the cross-selling
effect increases and the retailer increases the quantity of variable
products in the assortment in response to the gain in their de-
mand (otherwise, the loss-of-goodwill for variable products would
be too high). A similar effect is observed for the case when a
part of customers is risk-neutral: in Fig. 12, the retailer places
more emphasis on the variable assortment as a response to the
risk-neutral customers’ purchasing power.

Next, we observe that the scenario CC converges towards our
approach (CP) as the risk aversion of loyal customers for variable
products increases: this is due to the fact that high risk aversion
parameters imply low cross-selling also in the complete problem
CP. At the same time, the scenario CC starts outperforming base
case BC after some level of risk aversion parameter, meaning that
even low cross-selling effect generates positive profit by inclusion
of variable assortment. The dogmatic approach DC, limiting space
allocated for each of the products, is outperformed by all other
methods, being, furthermore, outperformed by the case with no
products included (zero payoff).

The impact of the cross-selling effect on the structure of the
combined assortment, and the increasing number of variable
items included, can also be seen in Fig. 13, where we vary the
wholesale price for variable products and reduce the risk-aversion
parameters towards variable products for both loyal and non-
loyal customers (8§ = 0.7, § =0.2). The space devoted to variable
products outperforms the space devoted to standard ones at some
capacity level in case of lower risk aversion.

Further parameters having influence on the cross-selling effect
are the customers’ budget parameters: if the location parameter of
the customers’ budget distribution is too low, it does not allow to
purchase enough quantities of the products, which influences the
mean demand. For different utility models, changing the location
parameter [t of the lognormal distribution for non-loyal customers
with fixed scale parameter & = 0.5, we obtain Figs. 14 and 15,
clearly suggesting an increase in variable product quantities as
the response to the increase in customers’ budget. From this
also follows that the assortment consisting to a large extent of
variable products is optimal in the absence of non-loyal customers’
budget constraint and independently of the utility type (note that
isoelastic utility would imply variable assortment only).

Clearly, as the location parameter of the non-loyal customer’s
budget distribution increases, non-loyal customers may purchase
more quantities of the products, increasing the demand. Due to the
fixed capacity, the unsatisfied demand for both types of products
also increases, as seen in Fig. 14. However, we observe that optimal
unsatisfied demand ratios are stable after variable products being
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included to the assortment (before this, all unsatisfied demand cor-
responds to standard products, as there is no demand for variable
products in the base case BC).

6. Conclusion

This paper contributes in different aspects to the joint prob-
lem of product assortment planning and inventory management
optimization. We consider an assortment consisting of “standard”
and “variable” products serving “loyal” and “non-loyal” customers
with uncertain budgets. The cross-selling effect may occur for both
groups of customers, encouraging different customers to purchase
products from different groups. We describe the strength of the
cross-selling effect via coefficients of relative risk aversion towards
standard and variable products and we distinguish between budget
distributions and budget constraints for each group of customers,
limiting baskets that different customers are able to purchase.
Next, we formulate and solve a bilevel optimization problem
under decision-dependent uncertainty, where the retailer’s binary
decision about product inclusion influences the distribution of the
product’s demand. Each customer has his own optimization prob-
lem to solve and the optimal solution depends on the assortment
available at the retailer and optimized under the store’s shelf space
constraint. The optimal solution of the customer’s optimization
problem is the quantity to purchase under the budget constraint.
For the numerical solution, we propose heuristic algorithms,
providing lower bounds on the optimal value of the optimization
problem and taking the interdependency between the assortment
and the demand explicitly into account. We make a comparison to
existing lower bounds and we formulate two upper bounds for the
bilevel optimization problem via LP and SDP relaxations. Proposed
heuristics are more accurate than other lower bounds in finding
the optimal solution, being quadratic in the number of iterations.
Using optimal quantization techniques instead of typical Monte-
Carlo simulations for the approximation of demand and customer’s
budget distributions, we enhance both accuracy and efficiency of
the solution, as the necessary number of quantizers is much lower
than in Monte-Carlo sampling. Using the optimal quantization for
the lower bounds allows to devise high-dimensional assortments.
For very high-dimensional problems, one could round the optimal
solution of the LP upper bound, which would result in a very fast
solution estimate. According to our results, a retailer benefits from
a combined assortment if he selects it taking into consideration
the cross-selling effect that occurs. Conversely, if he includes
variable products in the assortment and ignores the cross-selling
effect, he might lose a significant amount of profit. In this case,
it can be even more profitable for him to carry only standard
products; this, however, strongly depends on the customer’s
budget distribution, as too high optimal demands of customers
lead to a decrease in the retailer’s expected profit due to the
increase in lost sales. The variety of techniques proposed in our
work can be used to address more complete product assortment
strategies in the future. Our results can be extended by including
price decisions or dynamic product substitution. Further, in the
presence of numerical data on demand, the proposed bounds can
be tightened via introduction of constraints on mean demands.
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