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a b s t r a c t 

Assortment planning deserves much attention from practitioners and academics due to its direct impact 

on retailers’ commercial success. In this paper we focus on the increasingly popular retail practice to 

use combined product assortments with both “standard” and more fashionable and short-lived “variable”

products for building up store traffic of “loyal” and “non-loyal” heterogeneous customers and enlarging 

the sales due to the potential cross-selling effect. 

Addressing the assortment planning as a bilevel optimization problem, we focus on decision-dependent 

uncertainties: the retailer’s binary decision about product inclusion influences the distribution of the 

product’s demand. Furthermore, our model accounts for customers’ optimal purchase quantities, which 

depend on budget constraints limiting the basket that a customer is able to purchase. 

We propose iterative heuristics using optimal quantization of demand and customers budget distributions 

to define the total assortment and the inventory level per product. These heuristics provide lower bounds 

on the optimal value. We conduct a comparison to other existing lower bounds and we formulate upper 

bounds via linear (LP) and semidefinite (SDP) relaxations for the performance evaluation of the heuristics 

and for an efficient numerical solution in high-dimensional cases. 

For managerial insights, we compare the proposed approach with three assortment planning strategies: 

(1) the retailer does not carry variable products; (2) the retailer ignores the cross-selling effect; and 

(3) the maximum space allocated to each product is fixed. Our results suggest that variable assortment 

boosts the retailers profits if the cross-selling effect is not neglected in the decision about products quan- 

tities. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Product assortment decisions have a direct impact on a re-

tailer’s commercial success. The goal of assortment optimization is

to specify which products and in which quantities should be in-

cluded in the assortment to maximize the retailer’s profit subject

to various constraints, such as limited shelf space for displaying

products or budget restrictions. 

Research ( Davenport & Harris, 2007; Liberatore & Luo, 2010;

Ranyard, Fildes, & Hu, 2015; SAS Institute, 2013 ) indicates that cus-

tomer analytics focusing on customer economics, personalized of-

fers and customer-centric merchandising identify profitable growth

opportunities for retailers. These opportunities go undetected oth-

erwise. In this paper, we propose a stylized OR model for decision
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upport which combines customer-centric merchandising with cus-

omer economics insights. 

First, maintaining customer loyalty for customer-centric mer-

handising, we focus on the retailer’s assortment strategies driven

y the increasingly important commercial distinctions between

standard” and “variable” products serving “loyal” and “non-loyal”

ustomers: standard assortment is a strategic tool to attract and

etain loyal customers who regularly visit the store for their cus-

omary shopping and grow accustomed to a certain product range

 Billington & Nie, 2009; Grewal, Levy, Mehrotra, & Sharma, 1999;

alters & Hanrahan, 20 0 0 ); variable products are critical for the

ncrease of the overall store traffic by attracting non-loyal cus-

omers who are rather opportunistic and are occasionally attracted

y special offers ( Katsifou, 2013; Katsifou, Seifert, & Tancrez, 2014 ).

ext, implementing customer economics insights to the model, we

ork with a common lifestyle and life-stage customer segment

Shoppers on a Budget” ( SAS Institute, 2013 ) by implementing cus-

omers’ budget constraints to the model. Each customer’s budget is
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Table 1 

Variable assortment characteristics. 

Retailer Introduction Sales Period % of the total 

Frequency Week Month > Month assortment 

Walmart Weekly 
√ 

1 

Target 1.5-3 months 
√ 

N/A 

Lidl Twice/week 
√ 

9 

Aldi Twice/week 
√ 

4 

Zara Twice/week 
√ 

75 
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ncertain to the retailer, who can only estimate the budget distri-

ution. To the best of our knowledge, current literature focusing on

he retailer’s product assortment considers the vendor’s shelf space

nd his budget constraints while constantly neglecting customers’

udget limitations due to their modeling complexity. In this work,

e create a bilevel model, where the retailer’s optimal product as-

ortment decision directly depends on the customers’ optimal pur-

hase decision, which, in turn, depends on the customers’ budget

istribution. 

Many retailers strive to take advantage of a combined assort-

ent of standard and variable products independently of a re-

ailer’s product variety strategy. The assortment of standard prod-

cts is relatively stable over time, is not subject to seasonality and

s expected to be present at every time customers shop ( Billington

 Nie, 2009 ). The main objective of this assortment is to support

he positioning and profitability of a retailer ( Katsifou et al., 2014;

alters & Hanrahan, 20 0 0 ). Variable products, by contrast, are sea-

onal, they are offered only temporarily, in limited quantities and

sually at very attractive prices. Variable products may provide re-

ailers with profits or even be loss-making if considered in isola-

ion ( Katsifou, 2013; Katsifou et al., 2014 ), but they are important

ecause they help to increase the number of customers in a store:

his increased store traffic can influence sales of standard products,

esulting in expansion of overall sales. Attracting customers drawn

o promotions, retailers provide them with a sense of achievement

y proposing items on special offer ( Marquard, 2007 ). Doing this

y rotating variable assortment items might be preferable to price

romotions of standard assortment items, since it allows retailers

o keep a steady set of standard products and helps to maintain

 consistent pricing over the long duration avoiding erosion of es-

ablished price points. Moreover, the cross-selling effect, which oc-

urs for both groups of customers, encourages loyal customers to

urchase variable products once in the store, and makes non-loyal

ustomers purchase standard products, increasing total profits. 

As an example, Walmart offers a wide range of standard prod-

ct categories - from food and clothing to home electronics - as

ell as a limited number (around 1% of the total assortment size)

f weekly “special buys” in order to create excitement or to clear

ut stock ( Marquard, 2007 ). “Limited-time-only deals” are also a

ey part of US-based retailer Target’s strategy to attract shoppers.

hese special items are usually offered for six-week to 90-day peri-

ds. By contrast, Lidl and Aldi, two of the most successful discount

etailers, compete effectively with a very narrow product assort-

ent. Their assortment consists of limited standard products, but

hey continuously present variable assortment articles (called “sur-

rise buys” or “special items”), consisting of very diverse non-food

roducts (e.g., “back to school” special items or ski wear), with

he aim of keeping the shopping experience in the store special

 Kumar & Steenkamp, 2007; Zentes, Morschett, & Schramm-Klein,

007 ). Table 1 summarizes the aforementioned assortment strate-

ies. 

The rest of the paper is organized as follows. Section 2 provides

 literature review on the topic. In Section 3 , we present the prob-

em and the mathematical model. In Section 4 , we formulate lower

nd upper bounds on our bilevel optimization problem, propos-
ng heuristic solution procedures taking the dependency between

roduct demands and the total assortment decision into account.

n Section 5 , we present and discuss illustrative examples and in-

ights: we compare the proposed approach with three different as-

ortment planning strategies: (1) in the first one, the retailer does

ot carry variable products; (2) in the second, the retailer ignores

he cross-selling effect; and (3) in the third, the space allocated to

ach type of product is fixed a priori. 

. Literature review 

Works ( Kök, Fisher, & Vaidyanathan, 2009; Mou, Robb, & De-

oratius, 2018 ) provide the product assortment literature review:

tudies that deal with the total assortment problem, examining

he strategic role of key product categories, are quite rare ( Amit,

ehta, & Tripathi, 2015; Ghoniem & Maddah, 2015; Katsifou, 2013;

atsifou et al., 2014; Rabbani, Salehi, & Farshbaf-Geranmayeh,

017 ). In our research, we devise a model to optimize the total

ombined assortment of a retailer, taking into consideration the

ole of both standard and variable assortments in generating store

raffic. The problem we study requires to explicitly model the inter-

ependence between the demand for a particular product and the

otal assortment decision: the demand depends on characteristics

f customers attracted to the store, such as their attitude towards

isk and their budget; in turn, customers’ optimal purchase quanti-

ies depend on the selected assortment (standard or variable). Tak-

ng this interdependence into account in product assortment de-

isions is one of the main contributions of our work. Indeed, to

he best of our knowledge, prior studies did not investigate the

nfluence of an uncertain customers’ budget and customers’ op-

imal purchase quantities on the store’s optimal assortment. The

ork ( Katsifou et al., 2014 ), where the authors construct a stylized

odel for customers’ behavior based on their purchase baskets, is

n the same research stream: however, in Katsifou et al. (2014) ,

ach customer is assumed to buy only one item of a product and

either the customers’ optimal purchase quantities nor their bud-

et constraints are taken into account. In our work, we construct

nd solve the bilevel optimization problem, explicitly accounting

or the interdependency between optimal demand and assortment

nd addressing the asymmetrical influence of different products on

 store’s profits. Our solution approach is novel to the existing lit-

rature, it allows to introduce both lower and upper bounds on the

ptimal profit and to handle large-scale problems. 

Apart from looking at the retailers’ total product assortment se-

ection, we also explicitly tackle the inventory management of se-

ected products with a limited shelf space ( Hübner, Kuhn, & Kühn,

016 ). Product assortment and inventory management are two nat-

rally interconnected and critically important retailing decisions

hat have a substantial impact on retailers’ profitability ( Kök &

isher, 2007 ). Yet product assortment planning and multi-item in-

entory management are two literature streams that have devel-

ped somewhat independently. Article ( Kök et al., 2009 ) provides a

etailed review of the product assortment planning literature. One

f the first papers in the operations research literature integrating

nventory management into the product assortment planning prob-

em is van Ryzin (1999) . The article studies the trade-off between

roduct variety benefits and inventory costs using a Multinomial

ogit (MNL) model. 

The MNL model is a widely used utility-based model where

ach consumer chooses the product with the highest utility out

f the set of available choices ( Ben-Akiva & Lerman, 1994 ). In van

yzin (1999) , customers have homogeneous expected utilities and

an substitute if their favorite variant is not carried (assortment-

ased substitution). The sale is lost if their favorite variant is car-

ied but temporarily unavailable (no stock-out-based substitution).

hrough the use of the newsvendor framework, they compute the
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inventory level per product as well as the optimal assortment,

which is shown to consist of a certain number of the most pop-

ular products. In the same research stream, article ( Li, 2007 ) stud-

ies a joint product assortment and inventory optimization problem

for a single period, providing a closed-form solution to determine

the optimal assortment when the store traffic is treated as a con-

tinuous random variable, and a heuristic for discrete store traffic.

Both studies assume that consumers are homogeneous with re-

spect to their preferences. This assumption is relaxed in Katsifou

et al. (2014) , Katsifou (2013) and Mahajan and van Ryzin (2001) .

The work Katsifou et al. (2014) is focused on loyal/non-loyal cus-

tomers and provides an assortment optimization model describing

consumer preferences and the choice of retailer in the MNL frame-

work ( Anderson, de Palma, & Thisse, 1992 ). 

Whereas ( Mahajan & van Ryzin, 2001 ) studies individual het-

erogeneity, we, similar to Katsifou et al. (2014) , are focused on

“customer type” heterogeneity. However, in contrast to a so-called

latent-class logit assortment problem, where a consumer belongs

to a market segment characterized by a “consideration set”, i.e., the

set of products that the customer is considering purchasing, we do

not bound product assortments available for loyal and non-loyal

customers. To model different attitudes towards standard and vari-

able products, we assume different risk-bearing abilities towards

them for loyal and non-loyal customers. Before, the work ( Méndez-

Diaz, Bront, Vulcano, & Zepala, 2010 ) studied the latent-class logit

assortment problem, where segments were allowed to overlap, i.e.,

a product could belong simultaneously to the consideration sets of

two or more segments. They proposed a branch-and-bound algo-

rithm to find the optimal solution to the constrained and the un-

constrained versions of the problem. In our research, we seek to

optimize the total assortment considering a joint retail space con-

straint ( Hübner et al., 2016 ), whereas ( Méndez-Diaz et al., 2010 )

examined only a single product category optimization problem,

and their model was constrained by the number of products to be

displayed. 

In another stream of research on product assortment planning,

exogenous demand models are used to model consumer choice.

These models specify a priori the demand for each product and

the probability that an individual will choose another product as

a substitute when his favorite product is not available. Compared

with the MNL model used in Katsifou et al. (2014) , the exogenous

demand model is more flexible in dealing with both assortment-

based and stock-out-based substitutions but requires more effort in

data collection and parameter estimation. Article ( Smith & Agrawal,

20 0 0 ) deploys an exogenous demand model, by assuming that de-

mand follows a negative binomial distribution ( Agrawal & Smith,

1996 ); the authors estimate substitution probabilities and over-

all cross-buy schemes of different products to populate a ma-

trix. Apart from assortment optimization, they use an approxi-

mate newsvendor model to compute the optimal stock level for

each product, subject to an assortment fill rate constraint. Arti-

cle ( Agrawal & Smith, 2003 ) extends this work and incorporates

the complementarity and the substitution effects in a set of prod-

ucts demanded by a customer. In our research, we do not consider

substitutions but we make a step forward in modeling optimal

demand: we formulate and solve a bilevel optimization problem

( Bard, 1991; 1998; Ben-Ayed & Blair, 1990; Calvete, Galé, & Ma-

teo, 2008; Colson, Marcotte, & Savard, 2007 ), where the retailer’s

first-level binary decision about product inclusion influences the

distribution of the product’s demand driven by the second-level

customer choice model. Each customer has his own optimization

problem to solve and the optimal solution depends on the assort-

ment available at the retailer. The optimal solution of the cus-

tomer’s optimization problem is the quantity to purchase under

the budget constraint. We model the customer’s choice of retailer

via a simplistic model ( Anderson et al., 1992; Ben-Akiva & Lerman,
994; Smith & Agrawal, 20 0 0 ) based on market shares. This al-

ows to avoid the MNL model independency assumption and the

ssumption about total number of retailers. 

Overall, we consider “loyal” and “non-loyal” customers in our

ilevel optimization. The cross-selling effect may occur for both

roups of customers, encouraging loyal customers to purchase vari-

ble products, as well as making non-loyal customers purchase

tandard products. We describe the strength of the cross-selling

ffect via coefficients of relative risk aversion towards standard

nd variable products for different groups of customers. Further-

ore, we distinguish between budget distributions and budget

onstraints for each group of customers, limiting baskets that dif-

erent customers are able to purchase. 

We propose iterative heuristics to define the total assortment

nd inventory level per product, taking the dependency between

he demand for a particular product and the total assortment deci-

ion explicitly into account. These heuristics provide lower bounds

n the optimal value of the optimization problem. We also formu-

ate two upper bounds for the bilevel optimization problem via lin-

ar (LP) and semidefinite (SDP) relaxations ( Fortet, 1960; Gaivoron-

ki, Lisser, & Lopez, 2011 ). These bounds are useful for the perfor-

ance evaluation of the heuristics, as well as for the efficiency of

olution estimation. 

We use optimal quantization techniques ( Monge, 1781; Rachev

 Rüschendorf, 1998; Villani, 2008 ) instead of typical Monte-Carlo

imulations for the approximation of demand and customer’s bud-

et distributions. This allows to enhance both accuracy and effi-

iency of the numerical solution, as the number of quantizers for

n accurate estimate can be much lower than in Monte-Carlo sam-

ling ( Timonina, 2013 ). We consider optimality of scenario quan-

ization methods in the sense of minimal Kantorovich-Wasserstein

istance ( Kantorovich, 1942 ), which allows to implement the struc-

ural information in order to take more accurate decisions, as well

s to bound the approximation error. 

. Problem and model formulation 

We consider a retailer seeking to optimize the product assort-

ent and the inventory level per product in a store. We suppose

hat retailer r selects the assortment from a set of candidate prod-

cts. Product substitution is not considered and stock-outs result

n lost sales ( Katsifou, 2013; Katsifou et al., 2014 ). With this prod-

ct assortment decision, the goal of the retailer is to attract as

arge as possible share of the customer base, i.e., as many potential

ustomers as possible in a certain geographical area. In particu-

ar, the two product groups are primarily targeted at different cus-

omer segments. In our model we separate the total customer base

nto two segments: loyal and non-loyal customers represented by

he sets L and L , respectively. Loyal customers are attracted to the

tore primarily by standard products (e.g., Aldi’s loyal customers do

heir everyday shopping there mainly because standard products

atisfy their needs). On the other hand, non-loyal customers look

or special offers and are attracted to the store primarily by vari-

ble assortments (e.g., Aldi’s non-loyal customers read the weekly

yer with the “surprise buys” and decide whether to visit the store

r not). 

Though loyal and non-loyal customers are attracted to the store

y standard and variable products respectively, they may decide,

nce in the store, to purchase products from both product groups.

or instance, Aldi’s loyal customer who arrives at the store to

uy his customary standard products, may also buy some variable

roducts like a garden chair at an attractive price. On the other

and, non-loyal customers that visit the store to buy variable prod-

cts, may also decide, once in the store, to take the opportunity

o cover their daily needs by buying some standard products like

ilk and orange juice. The fact that standard (respectively variable)
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roducts are bought by non-loyal (respectively loyal) customers is

ommonly known as cross-selling effect. 

The retailer has to resolve the trade-off between store attrac-

iveness and the corresponding operational costs. By increasing the

umber of products in the assortment, a higher number of cus-

omers can be attracted to the store, driving up traffic and conse-

uently the retailers’ overall sales. On the other hand, the introduc-

ion of a product to the assortment comes with a setup order cost

s well as related inventory costs. Furthermore, as the shelf space

s limited, a larger number of products also means less storage

pace and consequently lower inventory level per product while

he demand increases, leading to higher inventory costs. The low

nventory level may result in an increase in the stock-out probabil-

ty or in frequent replenishment (for standard products) and thus

 higher setup cost. The retailer has to find a trade-off between

tandard and variable products, taking into consideration the shelf

pace constraint. In general, the main objective of stocking variable

roducts is to attract non-loyal customers who will then buy both

ariable and standard products. 

The inventory policies vary between the two groups of prod-

cts. Standard products are carried over a long time horizon, and

he retailer has to pay a holding cost for the units stored at the end

f each sales period. Variable products, by contrast, are rotated fre-

uently, resulting in a sequential one-period problem. At the end

f their sales period the unsold variable products cause an over-

tock cost. Our mathematical model described further investigates

he aforementioned trade-offs. 

The remainder of this section is structured as follows: first,

e develop the retailer’s profit functions per product group with

espect to its own characteristics such as the sales period and

he inventory costs; second, we explicitly model the demands

er product taking into consideration customers’ store choice and

heir optimal in-store purchase decision; finally, using the de-

and as an input to the profit function, we give the mathemat-

cal formulation to maximize the retailer’s total profit subject to

he shelf space constraint. We formulate a bilevel optimization

roblem, whose aim is not only to maximize the retailer’s total

rofit but also to investigate optimal in-store purchase decisions of

ustomers. 

.1. Profit functions 

We assume that standard products are carried by the retailer

ver a long time horizon. A periodic review order-up-to inventory

olicy ( Nahmias, 2005 ) is used. The inventory of a standard prod-

ct j is replenished every period T s 
j 

to reach the order-up-to inven-

ory level Q 

s 
j 
. The lead time is assumed to be negligible. The period

 

s 
j 

is defined prior to the optimization process for each product j

hile the inventory level Q 

s 
j 

is a decision variable in our optimiza-

ion model. 

To construct the profit function for standard products, one

eeds to account for uncertain demand for these products. For this,

et d s 
j 
= (d s 

j1 
, d s 

j2 
, . . . , d s 

jt 
, . . . , d s 

jT s 
j 

, . . . ) be the stochastic demand

rocess described by probability distribution functions F s 
jt 
(x ) =

 (d s 
jt 

≤ x ) and corresponding density functions f s 
jt 
(x ) . For stan-

ard products, one can reasonably assume that random demands

(d s 
j1 

, d s 
j2 

, . . . , d s 
jt 
, . . . , d s 

jT s 
j 

, . . . ) are independent normally distributed

andom variables with mean μs 
j 

and standard deviation 

√ 

μs 
j 
, ap-

roximating the Poisson distribution ( van Ryzin, 1999 ), i.e., F s 
jt 
(x ) =

 

s 
j 
(x ) , ∀ t . We denote by D 

s 
j 
= 

∑ 

T s 
j 

t=1 
d s 

jt 
the cumulative demand for

he standard product j during period T s 
j 

with probability distribu-

ion G 

s 
j 
(y ) = P (D 

s 
j 
≤ y ) and corresponding density function g s 

j 
(y ) .
s we assume random variables (d s 
j1 

, . . . , d s 
jt 
, . . . , d s 

jT s 
j 

, . . . ) to be in-

ependent and normally distributed, we also know the distribution

f the variable D 

s 
j 
: the probability distribution G 

s 
j 
(y ) = P (D 

s 
j 
≤ y ) is

ormal with mean T s 
j 
μs 

j 
and standard deviation 

√ 

T s 
j 
μs 

j 
. 

Next, let K 

s 
j 

be the setup cost per positive order planned and

et c s 
j 

be the proportional order cost per unit ordered. In this case,

he total fixed plus proportional order cost is K 

s 
j 
+ c s 

j 
min { D 

s 
j 
, Q 

s 
j 
} ,

here Q 

s 
j 

is the order-up-to level. As the inventory level at the end

f the cycle is max { Q 

s 
j 
− D 

s 
j 
, 0 } , the holding cost from cycle to cy-

le is equal to h s 
j 
max { Q 

s 
j 
− D 

s 
j 
, 0 } with h s 

j 
being the proportional

olding cost per unit stored. Further, if the demand exceeds the

evel of inventory, the opportunity costs need to be taken into ac-

ount. These costs are equal to u s 
j 
max { D 

s 
j 
− Q 

s 
j 
, 0 } with u s 

j 
denot-

ng the loss-of-goodwill cost per unit. Also, let p s 
j 

be the selling

rice per unit. 

We denote the profit margin by m 

s 
j 
= p s 

j 
− c s 

j 
, set cu s 

j 
= m 

s 
j 
+

 

s 
j 
+ u s 

j 
, which clearly satisfies cu s 

j 
> h s 

j 
and cu s 

j 
> m 

s 
j 
, and use the

otal demand mean and variance E (D 

s 
j 
) = T j μ

s 
j 

and V ar (D 

s 
j 
) = T j μ

s 
j 

or our Gaussian approximation of the Poisson distribution with
s 
j 
= E (d s 

jt 
) , ∀ t ( van Ryzin, 1999 ). The expected profit, brought by

he standard product j ∈ N s over one time unit, represents a lost-

ales model with zero lead time and, according to Appendix 1.1, is

qual to 

 

(
�s 

j 

T s 
j 

)
= m 

s 
j μ

s 
j −

[
K 

s 
j 

T s 
j 

+ 

h 

s 
j 

T s 
j 

(
Q 

s 
j − T s j μ

s 
j 

)
+ 

cu 

s 
j 

T s 
j 

∫ ∞ 

Q s 
j 

(y − Q 

s 
j ) g 

s 
j (y ) dy 

]
. (1) 

ompared to standard products, variable products have a signifi-

antly shorter sales period (e.g., one week in Aldi). For this rea-

on, we suppose that the products are ordered at the beginning

f the sales period, with no replenishment opportunity. This pe-

iod is denoted T v 
j 

and is supposed to be fixed externally, e.g., for

arketing reasons. Based on these characteristics, we naturally use

 newsvendor-like inventory policy ( Nahmias, 2005 ) to derive the

nventory costs of a variable product j . 

The inventory costs are similar to those encountered for the

tandard products. A stock-out cost accounts for the lost sales

 Bijvank & Vis, 2011 ), and a setup cost is paid by the retailer for in-

roducing a new variable product. However, an over-stock cost re-

laces the holding cost as the variable products are removed from

he assortment at the end of a period and cannot be sold in the

ext one. 

Analogous to standard products, let d v 
j 
= (d v 

j1 
, d v 

j2 
, . . . , d v 

jt 
,

 . . , d v 
jT v 

j 

) be the stochastic demand process described by prob-

bility distribution functions F v 
jt 
(x ) = P (d v 

jt 
≤ x ) with known pa-

ameters ∀ t and corresponding density functions f v 
jt 
(x ) . Note

hat t ∈ { 1 , 2 , . . . , T v 
j 
} is finite in this case. As before, we in-

roduce cumulative demand D 

v 
j 
= 

∑ 

T v 
j 

t=1 
d v 

jt 
for the variable prod-

ct j during period T v 
j 

with probability distribution G 

v 
j 
(y ) =

 (D 

v 
j 
≤ y ) and corresponding density function g v 

j 
(y ) . Although for

tandard products one can reasonably assume that random de-

ands (d s 
j1 

, d s 
j2 

, . . . , d s 
jt 
, . . . , d s 

jT s 
j 

, . . . ) are independent identically

istributed random variables, for variable products a similar as-

umption for vector (d v 
j1 

, d v 
j2 

, . . . , d v 
jT v 

j 

) should generally be relaxed,

articularly as the retailer aims to influence the demand by intro-

uction of these products. Furthermore, variable products are likely

o be very seasonal or at early stages of their life cycle where

emand distribution is changing. To account for this, one would
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need to employ coupling techniques to estimate the density of the

sum of dependent random variables ( Hochrainer-Stigler, Timonina-

Farkas, Silm, & Balkovi ̌c, 2019 ). If random variables are indepen-

dent but not necessarily identically distributed, one uses indepen-

dent convolution to estimate the density g v 
j 
(y ) . However, due to

the lack of data on variable products, we still use the assumption

that random variables (d v 
j1 

, d v 
j2 

, . . . , d v 
jt 
, . . . , d v 

jT v 
j 

) are independent

normally distributed variables with known mean μv 
j 

and standard

deviation 

√ 

μv 
j 
, approximating the Poisson distribution ( van Ryzin,

1999 ), i.e., F v 
jt 
(x ) = F v 

j 
(x ) , ∀ t . 

Next, let K 

v 
j 

be the setup cost per positive order planned and

let c v 
j 

be the proportional order cost per unit of a variable product

ordered. In this case, the total fixed plus proportional order cost

is K 

v 
j 
+ c v 

j 
Q 

v 
j 
, where Q 

v 
j 

is the order placed. Also, let us denote by

co v 
j 

the over-stock cost per unit. For variable products, there is no

holding cost from cycle to cycle and the total value of over-stock

co v 
j 
max { Q 

v 
j 
− D 

v 
j 
, 0 } is being lost. The loss-of-goodwill cost is equal

to u v 
j 

max { D 

v 
j 
− Q 

v 
j 
, 0 } with u v 

j 
denoting the loss-of-goodwill cost

per unit. Let p v 
j 

be the selling price per unit. Derived in Appendix

1.1, the expected profit brought by the variable product j ∈ N v over

one time unit is equal to 

�v 
j 

T v 
j 

)
= m 

v 
j μ

v 
j −

[
K 

v 
j 

T v 
j 

+ 

c v 
j 

T v 
j 

(
Q 

v 
j − T v j μ

v 
j 

)
+ 

cu 

v 
j 

T v 
j 

∫ ∞ 

Q v 
j 

(y − Q 

v 
j ) g 

v 
j (y ) dy + 

co v 
j 

T v 
j 

∫ Q v 
j 

0 

(Q 

v 
j − y ) g v j (y ) dy 

]
,

(2)

where we denote the profit margin by m 

v 
j 
= p v 

j 
− c v 

j 
and set cu v 

j 
=

m 

v 
j 
+ c v 

j 
+ u v 

j 
and where cu v 

j 
> c v 

j 
and cu v 

j 
> m 

v 
j 
. 

Note that the profit function of a variable product j ( Eq. (2) ) is

defined on its sales period T v 
j 

while the profit function of a stan-

dard product ( Eq. (1) ) is defined on a longer time horizon T s 
j 
. This

timing difference can be explained in two ways when considering

the assortment decision (and thus when applying our approach as

described below). Either the assortment is decided every period T v 
j 

depending on the potential variable products available for the par-

ticular period. Or the assortment is decided for a longer horizon

and it is supposed that the potential variable products, as a group,

keep the same characteristics (e.g., attractiveness and volume) in

each period (and thus, even if different in nature, the selected vari-

able products keep the same characteristics throughout the time

horizon). The first option gives a more stringent assortment deci-

sion but requires to adapt the assortment very frequently. The sec-

ond option gives a rather good picture of the strategic level of de-

cision (space sharing, number of products, general characteristics,

etc.). 

In the rest of our work, we refer to the second assumption by

default but our approach can also be used in the first case, to op-

timize the assortment at every sales period T v 
j 

. 

3.2. Demand model 

Profit functions depend on mean demands of standard and

variable products, which can be influenced by the retailer’s assort-

ment decision. We derive mean demands per time unit based on

the retailer’s assortment decision, customers’ choice of the retailer

and in-store product choice. The total set of candidate products is

divided into two groups: the standard products, N s = { 1 , . . . , N s } ,
and the variable products, N v = { 1 , . . . , N v } . The set of products

available at the retailer is known to customers and is repre-

sented by the binary vectors s = 

(
S 1 , . . . , S N s 

)
and v = 

(
V 1 , . . . , V N v 

)
,

espectively. The products’ quantities are unknown to customers

ue to customers’ inability to observe the backroom. 

Customer i solves the following optimization problem to decide

bout purchase quantities ζ s 
i j 

and ξ v 
i j 

of standard j ∈ N s and vari-

ble j ∈ N v products: 

 

∗
i = max 

ζ s 
i j 
,ξ v 

i j 

∑ 

j∈N s 
u 

s 
i j (ζ

s 
i j ) + 

∑ 

j∈N v 
u 

v 
i j (ξ

v 
i j ) , 

subject to 

∑ 

j∈N s 
p s j ζ

s 
i j + 

∑ 

j∈N v 
p v j ξ

v 
i j ≤ B i , 

0 ≤ ζ s 
i j ≤ MS j , ∀ j ∈ N s , 

0 ≤ ξ v 
i j ≤ MV j , ∀ j ∈ N v , (3)

here big M is a large enough number, B i is the customer’s budget,

p s 
j 
, p v 

j 
are the products’ prices, utilities u s 

i j 
, u v 

i j 
are the functions

escribing risk-bearing ability of customer i and U 

∗
i 

is the optimal

alue. 

We use isoelastic functions u s 
i j 
(ζ s 

i j 
) = 

(ζ s 
i j 
) 

1 −γi j 

1 −γi j 
, u v 

i j 
(ξ v 

i j 
) =

(ξ v 
i j 
) 

1 −δi j 

1 −δi j 
with γ ij ∈ [0, 1), δij ∈ [0, 1) and exponential utili-

ies u s 
i j 
(ζ s 

i j 
) = 1 − exp (−γi j ζ

s 
i j 
) , u v 

i j 
(ξ v 

i j 
) = 1 − exp (−δi j ξ

v 
i j 
) with

ij , δij > 0 ∀ i , j to describe the behavior of risk-averse customers.

sing isoelastic utility, one can distinguish between preferences

or small and large product quantities, as, increasing the risk-

version parameter, one observes an increase in the utility towards

mall quantities and a decrease in the utility towards larger

mounts. Differently, incorporating the exponential utility for

odeling risk-averse customers, one can clearly rank customers

y their preferences: customers with a higher risk-bearing ability

arameter γ ij have higher utilities, converging to one in the

imit. Further, the risk-neutral set of customers has linear utility

unctions and the risk-loving group of customers can be described

y the utilities u s 
i j 
(ζ s 

i j 
) = 

1 −exp (−γi j ζ
s 
i j 
) 

γi j 
, u v 

i j 
(ξ v 

i j 
) = 

1 −exp (−δi j ξ
v 
i j 
) 

δi j 
with

ij , δij < 0. Modeling risk-neutral and risk-loving preferences of

ustomers would result in no diversification between products:

he customer selects a product with the lowest price. 

Given the utility function, parameters γ ij and δij describe cus-

omer i ’s attitude towards the product j for standard and variable

roducts correspondingly. In this article, we distinguish between

ollowing coefficients of relative risk aversion (or, risk-bearing abil-

ties in case of exponential utilities), i.e., 

i j = 

{ 

γ , ∀ i ∈ L , j ∈ N s 

γ , ∀ i ∈ L , j ∈ N s 

and δi j = 

{ 

δ, ∀ i ∈ L , j ∈ N v 

δ, ∀ i ∈ L , j ∈ N v . 

(4)

ne could easily generalize the approach and distinguish between

oefficients of relative risk aversion for other customer segments

nd product groups. 

Further, the budget B i is known to the customer i , but unknown

o the retailer, who supposes B i to be distributed in line with the

ognormal distribution function H i (x ) = P (B i ≤ x ) with parameters

i and σ 2 
i 

( Aitchison & Brown, 1957; Prais & Houthakker, 1971 ).

e account for budget distributions that may vary for different

roups of customers, i.e., 

i = 

{ 

μ, ∀ i ∈ L 

μ, ∀ i ∈ L 

and σ 2 
i = 

{ 

σ 2 , ∀ i ∈ L 

σ 2 
, ∀ i ∈ L . 

(5)

y this, the retailer can better investigate how to develop strate-

ies to attract targeted types of customers from different bud-

et groups. Using problem (3) , one can account for different cus-

omer segments by varying risk aversion and budget parameters.

e model loyal customers i ∈ L who are regular at the retailer by
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Fig. 1. Optimal purchase quantities for different types of customers. 
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b  
 lower risk aversion (or, a higher risk-bearing ability in case of

xponential utilities) for standard products than for variable ones.

urther, we model non-loyal customers i ∈ L who are in general

pportunistic by a higher risk aversion for standard products than

or variable ones. Also, as specified before, we distinguish cus-

omer groups by their budget distributions, as the retailer would

ike to attract different types of customers to the store and decide

hich products to include in his assortment for profit maximiza-

ion. Fig. 1 demonstrates optimal purchase baskets of different cus-

omers with isoelastic utility: on one side, risk-neutral customers

hoose the cheapest product among all the products and do not

educe the risk by diversification ( Fig. 1 a); on the other side, risk-

verse customers diversify among the products to reduce their risk

nd prefer higher quantities of either standard or variable prod-

cts. 

Fig. 1 (b) shows the optimal basket of a loyal customer with

arameters γ = 0 . 05 and δ = 0 . 9 . Fig. 1 (c) demonstrates the op-

imal basket of a non-loyal customer with parameters γ = 0 . 7 and

= 0 . 4 . Compared to the article ( Katsifou et al., 2014 ) and to the

revious works in the field, our work accounts for optimal pur-

hase quantities of customers by allowing them to buy more than

ne unit of each product under their budget constraint. 

Next, based on the solution of the optimization problem (3) , we

an derive demands d s 
j 
(s , v ) and d v 

j 
(s , v ) 

d s j (s , v ) = 

∑ 

i ∈L 
P ir ζ

s 
i j + 

∑ 

i ∈ L 
P ir ζ

s 

i j and 

 

v 
j (s , v ) = 

∑ 

i ∈L 
P ir ξ

v 
i j + 

∑ 

i ∈ L 
P ir ξ

v 
i j , 

here P ir and P ir are the probabilities to choose the retailer r for

oyal and non-loyal customers correspondingly and we denote the

ptimal purchase quantities for non-loyal customers by ζ
s 

i j and ξ
v 
i j .

he probabilities P ir and P ir are modeled via a simplistic choice

odel ( Anderson et al., 1992; Ben-Akiva & Lerman, 1994 ) with

 ir = 1 − F 
(

− αU 

∗
i 

)
using the retailer r ’s market share α ∈ [0, 1]

nd the standard Gumbel distribution F ( · ) for unobserved cus-

omers’ preferences ε ( Kök & Fisher, 2007; Smith & Agrawal, 20 0 0;

mith, 2009 ). Note that the probability P ir is an increasing func-

ion of U 

∗
i 

and does not depend on the total number of retailers.

urther, the store choice probability can be bounded from below

nd from above by 
∫ ∞ 

ε=0 f (ε) dε ≤ P ir ≤
∫ ∞ 

ε= −U ∗
i 

f (ε) dε, where nei-

her the upper nor the lower bound depends on the market share

, which makes them easily usable, especially in case of absence

f any information about the market share or if the retailer ex-

ects it to change due to the introduction of variable products.

ifferently, one could model the probability that a customer i se-

ects the retailer r among known number of stores R via the MNL

odel, assuming independence between customers’ preferences, or

ia nested choice models, taking correlations between these pref-
rences into account ( Anderson et al., 1992; Ben-Akiva & Lerman,

994; Flores, Berbeglia, & Hentenryck, 2019; Katsifou et al., 2014;

mith, 2009 ). 

Note that the demands d s 
j 
(s , v ) and d v 

j 
(s , v ) are random vari-

bles, where randomness comes from the uncertainty in customer

 ’s budget B i ∼ H i ( x ). Means of the demands are, therefore, to be

omputed as μs 
j 
(s , v ) = E (d s 

j 
(s , v )) and μv 

j 
(s , v ) = E (d v 

j 
(s , v )) . Fur-

her, we use Gaussian type demand distributions with means μs 
j 

nd μv 
j 

and standard deviations 
√ 

μs 
j 

and 

√ 

μv 
j 

correspondingly as

n approximation to the Poisson distribution ( van Ryzin, 1999 ). 

.3. Optimization model 

Gathering the profit functions (1) and (2) for each type of prod-

ct, we can now formulate our optimization model, aiming to

aximize the retailer’s expected profit per time unit. 

The decision variables are the binary vectors s and v represent-

ng the standard and variable assortment decisions, and the inven-

ory levels Q 

s 
j 
, j ∈ N s and Q 

v 
j 
, j ∈ N v . The maximization of the ex-

ected profit is subject to a joint shelf space constraint. The vol-

me of a standard (respectively variable) product j is denoted by

 

s 
j 

(respectively by l v 
j 
), while the available shelf space is denoted

y C . 

Here, for simplicity, we assume that the store has no backroom

like in Aldi) but C could also represent the combined space in

helves and in the backroom if one exists, allowing for regular re-

lenishments of the store from the backroom. The aforementioned

escription leads to the following problem: 

ax s , v ,Q s 
j 
,Q v 

j 
∀ j 

[ ∑ 

j∈ N s S j E 

(
�s 

j 

T s 
j 

)
+ 

∑ 

j∈ N v V j E 

(
�v 

j 

T v 
j 

)] 
, 

subject to 

∑ 

j∈ N s S j Q 

s 
j 
l s 

j 
+ 

∑ 

j∈ N v V j Q 

v 
j 
l v 

j 
≤ C, 

s = (S 1 , . . . , S N s ) , S j ∈ { 0 , 1 } , ∀ j ∈ N s , 

Q 

s 
j 
≥ S j Q 

s 
j, min 

, Q 

s 
j 
≤ S j 

C 
l s 

j 

, ∀ j ∈ N s , 

v = (V 1 , . . . , V N v ) , V j ∈ { 0 , 1 } , ∀ j ∈ N v , 

Q 

v 
j 

≥ V j Q 

v 
j, min 

, Q 

v 
j 

≤ V j 
C 
l v 

j 

, ∀ j ∈ N v , 

(6) 

here Q 

s 
j, min 

≥ 1 and Q 

v 
j, min 

≥ 1 are minimal order quantities for

tandard j ∈ N s and variable j ∈ N v products. Note that con-

traints Q 

s 
j 
≥ S j Q 

s 
j, min 

and Q 

v 
j 

≥ V j Q 

v 
j, min 

prevent retailers order-

ng zero quantities of products; otherwise, it would be possi-

le to artificially increase the demand by setting S j = 1 or V j =
 with quantity Q j = 0 for some product j . This would not neces-

arily strongly influence the total cost, which would depend on

he setup cost and on the loss-of-goodwill. To avoid this, we sup-

ose that order quantities for products in the assortment should

e greater than Q 

s 
j, min 

and Q 

v 
j, min 

∀ j with minimal order quantities
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being greater than one item. To prevent retailers ordering non-zero

quantity of some product j while setting S j = 0 or V j = 0 , we im-

pose the following constraints: Q 

s 
j 
≤ S j 

C 
l s 
j 

and Q 

v 
j 

≤ V j 
C 
l v 
j 

. Note that

these constraints do not reduce the feasible set due to the available

capacity. 

Next, computing the profit of a standard or a variable product j

( Eqs. (1) and (2) ) requires the review period ( T s 
j 

or T v 
j 

). Setting the

review periods to T s 
j 

= 

Q s 
j 

μs 
j 

, ∀ j ∈ N s and T v 
j 

= 

Q v 
j 

μv 
j 

, ∀ j ∈ N v would

make the optimization problem (6) not convex-concave in the re-

tailer’s order quantities and in mean demands, which depend on

the customer’s choice model. Furthermore, for marketing reasons,

the review periods often need to be decided beforehand. Therefore,

we would like to use such estimates for the periods T s 
j 

or T v 
j 
, that

are independent of order quantities or mean demands. 

Knowing that Q 

s 
j 
≤ C 

l s 
j 

, ∀ j ∈ N s and Q 

v 
j 

≤ C 
l v 
j 

, ∀ j ∈ N v , we use

T s 
j 

= 

2 k s 

l s 
j ̂
 μs 
j 

, ∀ j ∈ N s and T v 
j 

= 

2 k v 

l v 
j ̂
 μv 
j 

, ∀ j ∈ N v for the approximations

of the review periods in our numerical tests with T s 
j 

> T v 
j 
, k s and

k v being some constants and ˆ μs 
j 
, ˆ μv 

j 
being the upper bounds of

mean demands introduced later in Section 4.3 . 

The assortment planning problem we study is a bilevel opti-

mization problem , where the retailer needs to solve the constrained

mixed integer non-linear problem (6) with means μs 
j 

and μv 
j 

and

standard deviations 
√ 

μs 
j 

and 

√ 

μv 
j 

dependent on the solution of

the customer’s concave optimization problem (3) , which is depen-

dent on the assortment vectors s and v . The mixed integer non-

linear problem (6) bears similarities with the knapsack problem

( Garey & Johnson, 1979 ), which is NP-hard. However, our assort-

ment problem is clearly more complex as the profit associated

with each product is a non-linear function of the inventory level,

and is dependent on other selected products. Moreover, the re-

tailer’s product selection depends on the continuous distribution

of the customers’ budget. This significantly complicates the estima-

tion of mean demands, making random sampling very inefficient

and inaccurate. 

4. Solution method 

4.1. Optimal quantization of probability distributions 

The retailer r solves the optimization problem (6) under un-

certain demands for standard and variable products D 

s 
j 
, j ∈ N s and

D 

v 
j 

j ∈ N v and uncertain customer i ’s budget B i . These random vari-

ables are given by their continuous distribution functions: we use

normal distributions, G 

s 
j 

and G 

v 
j 
, with means T s 

j 
μs 

j 
and T v 

j 
μv 

j 
and

standard deviations 
√ 

T s 
j 
μs 

j 
and 

√ 

T v 
j 
μv 

j 
for total demands D 

s 
j 

and

D 

v 
j 

correspondingly; for customer i ’s budget, we use the lognormal

distribution H i with mean and variance described in (5) . 

In order to solve the optimization problem (6) , the distribu-

tion functions need to be discretized, i.e., we need to find dis-

crete distributions, sitting on N points, which approximate our

continuous distributions at best. For this, we use optimal quan-

tization (see Monge, 1781; Rachev & Rüschendorf, 1998; Villani,

2008 ) rather than random (i.e., Monte Carlo) sampling with the

aim to receive an optimal rather than a random solution, mini-

mizing a distance measure. We use Kantorovich-Wasserstein dis-

tance (see Kantorovich, 1942; Villani, 2008 ) between probability

measures, as the measure of goodness of the approximation (Ap-

pendix 1.3). We denote discrete approximations of probability mea-

sures corresponding to continuous distributions, G 

s 
j 

for standard

j ∈ N s and G 

v 
j 

for variable products j ∈ N v , by ˜ P s 
j 
= 

∑ N 
i =1 ̃

 p s 
i j 
δ˜ z s 

i j 
nd 

˜ P v 
j 

= 

∑ N 
i =1 ̃

 p v 
i j 
δ˜ z v 

i j 
respectively, with corresponding vectors of

ptimal supporting points ˜ z s 
j 
, ˜ z v 

j 
and probabilities ˜ p 

s 
j 
, ˜ p 

v 
j 
. Fur-

her, discrete approximations of budget distributions for loyal

nd non-loyal customers sit correspondingly on optimal support-

ng points (B 1 , B 2 , . . . , B N ) with probabilities (b 1 , b 2 , . . . , b N ) and

n optimal supporting points ( B 1 , B 2 , . . . , B N ) with probabilities

( b 1 , b 2 , . . . , b N ) . Next, we reformulate the optimization problem

6) in a way suitable for its numerical solution, where all the dis-

rete approximations are sitting on N optimal supporting points.

learly, the larger the number N of optimal supporting points the

ner the approximation. 

.2. Problem reformulation 

Now, we reformulate the optimization problem (6) for a

umerical solution. For this, we introduce additional vectors
 

 

s 
j 
= ( ̃  q s 

1 j 
, ̃  q s 

2 j 
, . . . , ̃  q s 

N j 
) and 

˜ q v 
j 
= ( ̃  q v 

1 j 
, ̃  q v 

2 j 
, . . . , ̃  q v 

N j 
) , whose elements

hould satisfy the following properties for fixed Q 

s 
j 

and Q 

v 
j 

and for

ll i : 

 

 

s 
i j = 0 if ̃  z s i j − Q 

s 
j < 0 , otherwise ̃  q s i j = ̃

 z s i j − Q 

s 
j if ̃  z s i j − Q 

s 
j ≥ 0 , 

 

 

v 
i j = 0 if ̃  z v i j − Q 

v 
j < 0 , otherwise ̃  q v i j = ̃

 z v i j − Q 

v 
j if ̃  z v i j − Q 

v 
j ≥ 0 . (7)

he vectors ˜ q s 
j 

and 

˜ q v 
j 

are introduced in order to approximate

ntegrals 
∫ ∞ 

Q s 
j 
(y − Q 

s 
j 
) g s 

j 
(y ) dy, 

∫ ∞ 

Q v 
j 
(y − Q 

v 
j 
) g v 

j 
(y ) dy and 

∫ Q v 
j 

0 
(Q 

v 
j 
−

 ) g v 
j 
(y ) dy (see Appendix 1.2 for details). To satisfy Eq. (7) , deci-

ion variables ˜ q s 
j 

and 

˜ q v 
j 

need to attain their minimal values in the

easible set. This is guaranteed as the approximated integrals enter

he maximization problem (6) in the cost part. 

Therefore, the retailer’s optimization problem yields: 

max 
 , v ,Q s 

j 
,Q v 

j 
, ̃  q s 

j 
, ̃  q v 

j 
∀ j 

[ ∑ 

j∈ N s 
S j E 

(�s 
j 

T s 
j 

)
+ 

∑ 

j∈ N v 
V j E 

(�v 
j 

T v 
j 

)] 
, 

subject to 

∑ 

j∈ N s 
Q 

s 
j l 

s 
j + 

∑ 

j∈ N v 
Q 

v 
j l 

v 
j ≤ C, 

˜ z s j (s , v ) − Q 

s 
j e ≤ ˜ q 

s 
j , ˜ q 

s 
j ≥ 0 , ∀ j ∈ N s , ˜ z v j (s , v ) − Q 

v 
j e ≤ ˜ q 

v 
j , ˜ q 

v 
j ≥ 0 , ∀ j ∈ N v , 

E 

(�s 
j 

T s 
j 

)
= m 

s 
j μ

s 
j (s , v ) 

−
[ K 

s 
j 

T s 
j 

+ 

h 

s 
j 

T s 
j 

(
Q 

s 
j − T s j μ

s 
j (s , v ) 

)
+ 

cu 

s 
j 

T s 
j 

˜ p 

s 
j (s , v ) · ˜ q 

s 
j 

] 
, 

E 

(�v 
j 

T v 
j 

)
= m 

v 
j μ

v 
j (s , v ) 

−
[ K 

v 
j 

T v 
j 

+ 

c v 
j 
+ co v 

j 

T v 
j 

(
Q 

v 
j − T v j μ

v 
j (s , v ) 

)
+ 

cu 

v 
j 
+ co v 

j 

T v 
j 

˜ p 

v 
j (s , v ) · ˜ q 

v 
j 

] 
, 

Q 

s 
j ≥ S j Q 

s 
j, min , Q 

s 
j ≤ S j 

C 

l s 
j 

, ∀ j ∈ N s , 

Q 

v 
j ≥ V j Q 

v 
j, min , Q 

v 
j ≤ V j 

C 

l v 
j 

, ∀ j ∈ N v , 

s = (S 1 , . . . , S N s ) , S j ∈ { 0 , 1 } , ∀ j ∈ N s , 

v = (V 1 , . . . , V N v ) , V j ∈ { 0 , 1 } , ∀ j ∈ N v , (8)

here mean demands for L loyal and L non-loyal cus-

omers with N budget quantizers are computed as
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μ  

L

 

fi  
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p  

T  
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b  

t  

t  

t  

 

Q  

v  

s  

e  

t  

d  

l  

t  

t  

l  

s

4

 

z̃  

w  

l  

z̃  

l  

p  

p  

t  

p  

i

μ  

m  

r

 

b  

b  

a  

t  

m

 

d  

t  

r  

V  

a  

p  

W  

p  

i  

c  

p  

μ  

L

 

m  

a  

A  

w  

m  

μ  

T  

m  

s  

u  

s  

p  

a  

a

 

s  

t  

 

u  

r  

t  

(

1

 

V

 

d

m

 

, 
s 
j 
(s , v ) = L 

∑ N 
i =1 P ir b i ζ

s 
i j 

+ L 
∑ N 

i =1 P ir b i ζ
s 

i j ∀ j ∈ N s and μv 
j 
(s , v ) =

 

∑ N 
i =1 P ir b i ξ

v 
i j 

+ L 
∑ N 

i =1 P ir b i ξ
v 
i j ∀ j ∈ N v correspondingly. 

Note that the customer’s optimization problem (3) uniquely de-

nes optimal purchase quantities, optimal utilities and the store

hoice probability, given the type of customer (loyal or non-loyal)

nd his budget quantizer B i or B i . This is due to the fact that the

olution of the optimization problem (3) under (4) and (5) de-

ends solely on the customer’s budget and the customer’s type.

he above equations for mean demands, therefore, hold. Further-

ore, one could adapt the approach for the estimation of mean

emands μs 
j 
(s , v ) and μv 

j 
(s , v ) for the case when the number of

ustomers is unknown: instead of directly choosing L and L as the

umber of loyal and non-loyal customers, one could fix them to

e equal to one, but account for the true number of customers per

ime unit by changing time units, risk aversion and the budget dis-

ribution parameters (4), (5) , that are possible to estimate based on

he retailer’s data. We, however, proceed with the equations above.

Optimization problem (8) is easily solved numerically for

 

s 
j 
, ∀ j ∈ N s , Q 

v 
j 
, ∀ j ∈ N v under fixed assortment vectors s and

 . Clearly, with s and v being the decision variables, the exact

olution can be found only with complete enumeration. How-

ver, the computational time for complete enumeration (having

o examine (2 N s + N v − 1) combinations for a set of N s + N v candi-

ate products) quickly becomes prohibitive for large-scale prob-

ems. Thus, we propose several lower and upper bounds, with

he aim of finding a good solution for large-size problems. In

he following we present upper and lower bounds of the prob-

em (8) and, afterwards, we generate test data for the numerical

olution. 

.3. Upper bounds 

If the expected demands μs 
j 
(s , v ) , μv 

j 
(s , v ) , optimal quantizers

 

 

s 
j 
(s , v ) , ˜ z v 

j 
(s , v ) and corresponding probabilities ˜ p 

s 
j 
(s , v ) , ˜ p 

v 
j 
(s , v )

ere independent of assortment vectors s and v in the prob-

em (8) ∀ j ∈ N s , ∀ j ∈ N v , being fixed at some levels μs 
j 
, μv 

j 
,

 

 

s 
j 
, ˜ z v 

j 
, ˜ p 

s 
j 
, ˜ p 

v 
j 
, we would derive continuous relaxations, such as

inear and SDP relaxations , to bound the optimal value of the

roblem (8) from above. However, all these functions are de-

endent on assortment vectors s and v in our case. Therefore,

o impose the upper bound on the problem (8) , we first im-

ose upper bounds on μs 
j 
(s , v ) , ∀ j ∈ N s and μv 

j 
(s , v ) , ∀ j ∈ N v ,

.e., we find ˆ μs 
j 

and ˆ μv 
j 
, independent of s and v , such that 0 ≤

s 
j 
(s , v ) ≤ ˆ μs 

j 
and 0 ≤ μv 

j 
(s , v ) ≤ ˆ μv 

j 
, ∀ j, s , v , and we include the

ean functions to the set of decision variables in linear and SDP

elaxations. 

There are different methods for the estimation of upper

ounds ˆ μs 
j 

and ˆ μv 
j 
. It would be possible to compute the bounds

ased on the data on demand. However, as we do not have

ccess to the retailer’s data, we propose a simple approach

o compute the expected demand upper bounds based on our

odel. 

First of all, consider the upper bound P ir ≤ 1 − F (−U 

∗
i 
) , which

epends only on the customer i ’s optimal utility U 

∗
i 

. The higher

he utility, the larger the probability that the customer chooses the

etailer r . Note that the utility is at absolute maximum if S j and

 j are equal to 1 ∀ j in the customer’s model (3) , i.e., all products

re available at the retailer and customers assume the ability to

urchase as much as they wish under their budget constraints.

e denote the corresponding upper bound on the store choice

robability by W ir for a loyal and by W ir for a non-loyal customer

 . The maximal purchase quantity for each product is just the

ustomer’s budget divided by the price of the product. The up-

er bounds of the expected demands are, therefore, equal to
ˆ s 
j 
= L 

∑ N 
i =1 W ir b i 

B i 
p s 

j 

+ L 
∑ N 

i =1 W ir b i 
B i 
p s 

j 

∀ j ∈ N s and ˆ μv 
j 
=

 

∑ N 
i =1 W ir b i 

B i 
p v 

j 

+ L 
∑ N 

i =1 W ir b i 
B i 
p v 

j 

∀ j ∈ N v . 

In linear and SDP relaxations, we suppose that mean de-

ands for standard and variable products are decision vari-

bles belonging to intervals [0 , ˆ μs 
j 
] and [0 , ˆ μv 

j 
] correspondingly.

lso, we notice that the optimal quantizers ˜ z s 
j 
(s , v ) , ˜ z v 

j 
(s , v ) (as

ell as the probabilities ˜ p 

s 
j 
(s , v ) and 

˜ p 

v 
j 
(s , v ) ) depend on assort-

ent vectors s and v only through the mean functions μs 
j 
(s , v ) ,

v 
j 
(s , v ) as ̃  z s 

j 
(s , v ) = T s 

j 
μs 

j 
(s , v ) e + 

√ 

T s 
j 
μs 

j 
(s , v ) ̃  z s 

j 
(0) and ̃

 z v 
j 
(s , v ) =

 

v 
j 
μv 

j 
(s , v ) e + 

√ 

T v 
j 
μv 

j 
(s , v ) ̃  z v 

j 
(0) , where ˜ z s 

j 
(0) and 

˜ z v 
j 
(0) are opti-

al quantizers of the standard Gaussian distribution with corre-

ponding probability vectors ˜ p 

s 
j 
(0) and 

˜ p 

v 
j 
(0) . For simplicity, we

se the optimal weights ˜ p 

s 
j 
(0) and 

˜ p 

v 
j 
(0) of the standard Gaus-

ian distribution instead of ˜ p 

s 
j 
(s , v ) and 

˜ p 

v 
j 
(s , v ) in all our up-

er and lower bounds (alternatively, one could use uniform prob-

bilities): the higher the number of quantizers the better the

pproximation. 

To guarantee the upper bound and to have only linear con-

traints on 

˜ q s 
j 
, ˜ q v 

j 
in the relaxation, we use the linear approxima-

ion of the square root function going through points (0, 0) and

(T s 
j 

ˆ μs 
j 
, 

√ 

T s 
j 

ˆ μs 
j 
) for standard or (T v 

j 
ˆ μv 

j 
, 

√ 

T v 
j 

ˆ μv 
j 
) for variable prod-

cts. Using the linear approximation for ̃  z s 
j 
(s , v ) and ̃

 z v 
j 
(s , v ) in the

elaxations, one guarantees that ( ̃  p 

s 
j 
(0) , ̃  q s 

j 
) and ( ̃  p 

v 
j 
(0) , ̃  q v 

j 
) will at-

ain lower values and, therefore, the stock-out cost in the problem

8) will drop, leading to the upper bound on the profit (see Lemma 

.1 in Appendix 1.5 for the proof). 

Linear relaxation with decision variables X s 
j 
= S j μ

s 
j 

and X v 
j 

=
 j μ

v 
j 
, Y s 

j 
= S j Q 

s 
j 

and Y v 
j 

= V j Q 

v 
j 
, Z s 

j 
= S j · ( ̃  p 

s 
j 
(0) , ̃  q s 

j 
) and Z v 

j 
= V j ·

( ̃  p 

v 
j 
(0) , ̃  q v 

j 
) can be written in the following standard form intro-

uced by Fortet (1960) : 

ax 

[ ∑ 

j∈ N s 

{ 

(m 

s 
j + h 

s 
j ) X 

s 
j −

K 

s 
j 

T s 
j 

S j −
h 

s 
j 

T s 
j 

Y s j −
cu 

s 
j 

T s 
j 

Z s j 

} 

+ 

∑ 

j∈ N v 

×
{ 

(m 

v 
j + c v j + co v j ) X 

v 
j −

K 

v 
j 

T v 
j 

V j −
c v 

j 
+ co v 

j 

T v 
j 

Y v j −
cu 

v 
j 
+ co v 

j 

T v 
j 

Z v j 

] }
subject to 0 ≤ S j ≤ 1 , 0 ≤ μs 

j ≤ ˆ μs 
j , ∀ j ∈ N s , 

0 ≤ V j ≤ 1 , 0 ≤ μv 
j ≤ ˆ μv 

j , ∀ j ∈ N v , 

T s j μ
s 
j e + 

√ 

T s 
j 

ˆ μs 
j 

μs 
j ̃

 z s j (0) − Q 

s 
j e ≤ ˜ q 

s 
j , ˜ q 

s 
j ≥ 0 , ∀ j ∈ N s , 

T v j μ
v 
j e + 

√ 

T v 
j 

ˆ μv 
j 

μv 
j ̃

 z v j (0) − Q 

v 
j e ≤ ˜ q 

v 
j , ˜ q 

v 
j ≥ 0 , ∀ j ∈ N v , 

∑ 

j∈ N s 
Y s j l 

s 
j + 

∑ 

j∈ N v 
Y v j l 

v 
j ≤ C, Q 

s 
j ≤ S j 

C 

l s 
j 

, ∀ j ∈ N s , 

Q 

v 
j ≤ V j 

C 

l v 
j 

, ∀ j ∈ N v , 

0 ≤ X 

s 
j ≤ μs 

j , X 

s 
j ≥ μs 

j + S j − 1 , ∀ j ∈ N s , 

0 ≤ X 

v 
j ≤ μv 

j , X 

v 
j ≥ μv 

j + V j − 1 , ∀ j ∈ N v , 

S j Q 

s 
j, min ≤ Y s j ≤ Q 

s 
j , ∀ j ∈ N s , V j Q 

v 
j, min ≤ Y v j ≤ Q 

v 
j , ∀ j ∈ N v , 

Y s j ≥ Q 

s 
j + S j − 1 , ∀ j ∈ N s , Y v j ≥ Q 

v 
j + V j − 1 , ∀ j ∈ N v , 

0 ≤ Z s j ≤ ( ̃  p 

s 
j (0) , ̃  q 

s 
j ) , ∀ j ∈ N s , 

0 ≤ Z v j ≤ ( ̃  p 

v 
j (0) , ̃  q 

v 
j ) , ∀ j ∈ N v , 
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t  
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(

 

a  

s  

I  

t  

w  

i  

W  

c  

p  

m  

i

 

o  

a  

t  

t  

b

 

R  

s  

b  

s  

i

f  
Z s j ≥ ( ̃  p 

s 
j (0) , ̃  q 

s 
j ) + (S j − 1) ̂  μs 

j , ∀ j ∈ N s , 

Z v j ≥ ( ̃  p 

v 
j (0) , ̃  q 

v 
j ) + (V j − 1) ̂  μv 

j , ∀ j ∈ N v . (9)

Similar linear relaxation is used in Gaivoronski et al. (2011) for

the quadratic Knapsack problem with probability constraints. As

in Gaivoronski et al. (2011) , this relaxation provides a fast way to

have an upper bound on the optimization problem (8) . Relaxation

(9) does not necessarily result in a very tight upper bound. There-

fore, we also construct a SDP relaxation of the problem (8) . For

this, we first rewrite the problem (8) as a zero-one QCQP (quadrat-

ically constrained quadratic problem): 

ax x x 
T ˆ �x 

subject to x ≥ 0 , ∑ K 
i =1 ω 

k 
i 
x i ≤ αk , ∀ k = 1 , . . . , K, 

x i ∈ { 0 , 1 } , ∀ i = 1 , . . . , N s , N s (3 + N) + 1 , . . . , N s (3 + N) + N v

(10)

where K = (3 + N)(N s + N v ) ; ˆ � is an appropriate K × K sparse

matrix; ω 

k = (ω 

k 
1 
, . . . , ω 

k 
K 
) are appropriate K -vectors con-

structed for the objective function and all linear constraints

in the problem (8) with αk , ∀ k = 1 , . . . , K being the cor-

responding constants; decision vector x is defined by x T =
(s , Q 

s 
1 
, . . . , Q 

s 
N s 

, μs 
1 
, . . . , μs 

N s 
, ̃  q s 

1 
, . . . , ̃  q s 

N s 
, v , Q 

v 
1 , . . . , Q 

v 
N v 

, μv 
1 , . . . , μ

v 
N v 

, 

 q v 
1 
, . . . , ̃  q v 

N v 
) . 

Further, let X be the matrix 

[ 
x T x x T 

x 1 

] 
. We will use the mod-

ified matrix ˜ �= 
[ 

ˆ � 0 

0 0 

] 
with W k being the appropriate matrices

constructed based on constraints of (10) . Using these notations,

we can easily build a SDP relaxation of (10) . In relaxation (11) ,

we tighten the constraints so that the binary variables take val-

ues as close to 0 and 1 as possible. This is done to strengthen

the approximation shown to be weak in the studies of Helmberg,

Rendl, and Weismantel (20 0 0) for the quadratic knapsack problem,

Rendl and Sotirov (2003) for the quadratic assignment problem

and Gaivoronski et al. (2011) for the quadratic knapsack problem

with probability constraints. Similar to the work of Gaivoronski

et al. (2011) , we use Sherali-Adams constraints proposed in Sherali

and Adams (1990) and Sherali and Adams (1994) , which are gener-

ated by the multiplication of each constraint by the binary variable

it contains: this limits the space of solutions pushing binary vari-

ables to take values closer to 0 and 1. The only constraints contain-

ing binary variables S j or V j are Q 

s 
j 
≥ S j Q 

s 
j, min 

, Q 

s 
j 
≤ S j 

C 
l s 
j 

, ∀ j ∈ N s

and Q 

v 
j 

≥ V j Q 

v 
j, min 

, Q 

v 
j 

≤ V j 
C 
l v 
j 

, ∀ j ∈ N v and none of the constraints

contain several binary variables at once. This means an increase of

N s + N v in the number of linear constraints, as only N s + N v con-

straints are multiplied by S j , 1 − S j or V j , 1 − V j . 

Similar to the article ( Gaivoronski et al., 2011 ), we do not con-

struct a sequence of relaxations proposed in Sherali and Adams

(1990, 1994) but limit ourselves to the first relaxation in the se-

quence. Though the sequence of relaxations in Sherali and Adams

(1990, 1994) would lead to the integer polytope, building each

of the relaxations would soon become computationally expensive.

Furthermore, the obtained result would still be an upper bound on

the problem (8) due to the fact that the mean demands μs 
j 

and μv 
j 

are included in the set of decision variables in our relaxations and

that we use the approximations (14) in Appendix 1.5. The semidef-
nite (SDP) relaxation with Sherali-Adams constraints yields 

max X, x trace ( ̃  � • X ) 
subject to x ≥ 0 , X 
 0 , 

trace ( ̃  W 

j(k ) 
k 

• X ) ≤ 0 , ∀ k = 1 , . . . , 2 N s , (3 + N) N s + 1 , . . . , 

(3 + N) N s + 2 N v , 

trace ( ˆ W 

j(k ) 
k 

• X ) ≤ αk , ∀ k = 1 , . . . , 2 N s , (3 + N) N s + 1 , . . . , 

(3 + N) N s + 2 N v 
trace (W k • X ) ≤ αk , ∀ k = 2 N s + 1 , . . . , (2 + N) N s , 

trace (W k • X ) ≤ αk , ∀ k = (2 + N) N s + 2 N v + 1 , . . . , 
(2 + N)(N s + N v ) 

diag 
(
(x 1 , . . . , x N s ) 

T (x 1 , . . . , x N s ) 
)

= (x 1 , . . . , x N s ) 
T , 

diag 
(
(x (3+ N) N s +1 , . . . , x (3+ N) N s + N v ) 

T (x (3+ N) N s +1 , . . . , 

x (3+ N) N s + N v ) 
)

= 

= (x (3+ N) N s +1 , . . . , x (3+ N) N s + N v ) 
T , 

(11)

here ˜ W 

j(k ) 
k 

and 

ˆ W 

j(k ) 
k 

are the matrices corresponding to Sherali-

dams constraint s described above and the multiplication is by bi-

ary variables S j (or V j ) and 1 − S j (or 1 − V j ), where j is uniquely

efined by k . 

Note that rounding optimal solutions of relaxations (9) and

11) would give some assortment vectors that could be used for

he computation of simplistic lower bounds of the problem (8) .

sing the linear relaxation and rounding the solution, one would

ain computational efficiency for very high-dimensional problems.

elow in this section, we test the efficiency and accuracy of the

roposed lower and upper bounds. 

.4. Lower bounds 

It is quite easy to construct multiple lower bounds for the prob-

em (8) by taking subsets of possible realizations of vectors s and

 and, therefore, bounding the feasible set of the problem. The re-

ult does not necessarily find the optimal product allocation but is

seful for the error bounding and, moreover, for the decision about

he assortment (as the retailer can be confident that he would not

e worse off). 

We consider several lower bounds for the optimization problem

6) : 

Rank and optimize: Suppose that only one single product is

vailable in the retailer’s assortment. Thus, the assortment vectors

 and v are fixed, containing only one single 1 in one of them.

n this case, the objective function of the problem (6) degenerates

o the profit resulted from the sales of the available product only,

hich is a concave function of the inventory level (it can be eas-

ly proven by taking the derivative of the objective function in (6) ).

e face a problem similar to the knapsack problem but with a

oncave profit function (instead of linear). One can maximize the

rofit and receive the quantity of the product, which is only opti-

al for these particular assortment vectors s and v but not for the

nitial problem. 

However, instead of maximizing the expected profit function,

ne can try to maximize the expected profit to space ratio of the

vailable product. This arises from the consideration that, due to

he limited shelf space, the retailer has to select those products

hat bring profit, without filling too much space. A product j can

e thus selected based on its expected profit to space ratio. 

The profit to space ratio has previously been adopted by Lim,

odrigues, and Zhang (2004) and Yang (2001) to solve the retail

helf space allocation problem as well as by Hansen and Heins-

roek (1979) in the joint problem of product selection and shelf

pace allocation. In our model, the expected profit to space ratio

s given by E 

( �s 
j 

l s 
j 
T s 

j 
Q s 

j 

)
for standard products j ∈ N s and by E 

( �v 
j 

l v 
j 
T v 

j 
Q v 

j 

)
or variable products j ∈ N v . The optimal slopes correspond to tan-



A. Timonina-Farkas, A. Katsifou and R.W. Seifert / European Journal of Operational Research 285 (2020) 1058–1076 1067 

g∫
∫
S  

p  

N  

s  

l  

a  

o  

m  

l  

q

 

N  

o  

s  

s

 

p  

p  

w  

e  

 

e  

o  

t

 

m  

t  

N  

a  

t  

t  

p  

c  

l  

t  

i  

p  

t  

i  

c  

w

p

 

Q  

a  

l  

a  

g  

s  

r  

a  

p  

F

 

b  

i  

m  

n  

S  

r  

p  

i

 

p  

s

4

 

t

 

A

 

 

 

 

 

 

t  

(

 

c

 

(  

p  

o  

p  

p  

c  

u  

u  

t  

i  

s  

t  

i

 

(

p  

M  

t  

i  

n  

t  
ent points, i.e., to Q 

s 
j 

and Q 

v 
j 

such that 

 ∞ 

Q s 
j 

yg s j (y ) dy = 

(m 

s 
j 
+ h 

s 
j 
) μs 

j 
T s 

j 
− K 

s 
j 

cu 

s 
j 

, ∀ j ∈ N s , 

 ∞ 

Q v 
j 

yg v j (y ) dy = 

(m 

v 
j 
+ c v 

j 
+ co v 

j 
) μv 

j 
T v 

j 
− K 

v 
j 

cu 

v 
j 
+ co v 

j 

, ∀ j ∈ N v . (12) 

equentially going through the products, one can optimize the ex-

ected profit to space ratio for each of them and rank all the

 s + N v products in the assortment based on their optimal profit to

pace ratios in descending order. After, instead of 2 N s + N v − 1 prob-

ems, one can solve N s + N v optimization problems (8) with fixed

ssortment vectors s and v , starting with the first-ranked product

nly and finishing with all products being included in the assort-

ent. Choosing the maximal optimal value between these prob-

ems, one decides about the assortment and the optimal order

uantities. 

The number of iterations in the algorithm is, therefore, 2(N s +
 v ) , where N s + N v iterations are devoted to the ranking based on

ptimal profit to space ratios and other N s + N v iterations are as-

igned to the solution of optimization problems (8) with fixed as-

ortment vectors. 

Tangent points Q 

s 
j 

and Q 

v 
j 

can be computed via different ap-

roximation algorithms based on implicit functions (12) . If the

oints are estimated using optimal quantization (see Appendix1.2),

e refer to the Rank and Optimize method as TgRankOpt . Differ-

ntly, one can approximate optimal slopes by 
(�s 

j 
) ∗

l s 
j 
T s 

j 
(Q s 

j 
) ∗ , ∀ j ∈ N s and

(�v 
j 
) ∗

l v 
j 
T v 

j 
(Q v 

j 
) ∗ , ∀ j ∈ N v , where (�s 

j 
) ∗, (�v 

j 
) ∗, (Q 

s 
j 
) ∗, (Q 

v 
j 
) ∗ are optimal

xpected profits and optimal quantities corresponding to standard

r variable products j ∀ j in the problem (8) . In this case, we refer

o the Rank and Optimize simply as RankOpt . 

Rank and approximate: Analogically to the Rank and Optimize

ethod, one ranks N s + N v products in the assortment based on

heir expected profit to space ratios. Further, instead of solving

 s + N v optimization problems, one uses a sequential procedure to

pproximate the solution: (1) the product with the highest profit

o space ratio is included first and the next selected product has

he second highest profit to space ratio; (2) as the first included

roduct has the highest marginal profit to space contribution, in-

reasing its inventory level offers the best yield; thus, its inventory

evel is increased until it reaches equal marginal profit contribu-

ion with the second product; (3) the addition of a third product

s then considered; in general, given the limited shelf space, the

rocess continues as long as the shelf space is not exceeded: when

he next product is included, the order quantities of the previously

ncluded products are updated so that the marginal profit to space

ontribution is equal for all of them; (4) the process terminates

hen m products are included in the assortment and the (m + 1) th 

roduct would violate the space constraint. 

Without constraints on minimal order quantities Q 

s 
j, min 

and

 

v 
j, min 

∀ j , this lower bound is at best as tight as the one of Rank

nd Optimize , as the order quantities are suboptimal. With minimal

ot sizes, one may be willing to set order quantities to the minimal

mounts already at the ranking step for products with optimal tan-

ent points below Q 

s 
j, min 

(or Q 

v 
j, min 

). Further, computing suboptimal

lopes at Q 

s 
j, min 

(or Q 

v 
j, min 

) for these products, one influences the

anking of products in comparison to RankOpt . The number of iter-

tions of the algorithm is less than or equal to 2(N s + N v ) , as the

rocess terminates as soon as the capacity constraint is violated.

urther, we refer to this method as TgRankApprox . 

Bound and round: Using either LP relaxation (9) or SDP upper

ound (11) , one obtains optimal relaxed S ∗
j 

and V ∗
j 
, ∀ j from the
nterval [0, 1]. After, to get a well-known lower bound on the opti-

ization problem (6) , one rounds the optimal solution in a conve-

ient way: the easiest rounding would imply S j = 1 if S ∗
j 
≥ 0 . 5 and

 j = 0 if S ∗
j 
< 0 . 5 (and similar for V j , ∀ j ); also, one could round the

elaxed solution in line with optimal quantities, meaning that the

roduct j is included in the assortment if its relaxed order quantity

s greater than the minimal lot size. 

Both variants would give lower bounds on the optimization

roblem (6) by evaluation of the objective function with these as-

ortment vectors. 

.4.1. Rank and optimize with dependencies 

In order to improve the lower bounds, we propose two heuris-

ics for our bilevel product assortment optimization problem. 

First of all, we propose the procedure described in Algorithm 1

lgorithm 1 Tangent points estimates. 

Obtain optimal quantizers ˜ z s 
j 
= ( ̃  z s 

1 j 
, . . . , ̃  z s 

N j 
) , ˜ z v 

j 
= ( ̃  z v 

1 j 
, . . . , ̃  z v 

N j 
)

and corresponding probabilities ˜ p 

s 
j 
= ( ̃  p s 

1 j 
, . . . , ̃  p s 

N j 
) , ˜ p 

v 
j 
= ( ̃  p v 

1 j 
, . . . , ̃  p v 

N j 
) for densities g s 

j 
(y ) and

g v 
j 
(y ) ; 

for k = 1 , . . . , N do 

Estimate the integrals 
∫ ∞ 

Q s 
j 

yg s 
j 
(y ) dy and 

∫ ∞ 

Q v 
j 

yg v 
j 
(y ) dy by the

dot products ( ̃  z s 
k j 

, . . . , ̃  z s 
N j 

) · ( ̃  p s 
k j 

, . . . , ̃  p s 
N j 

) and ( ̃  z v 
k j 

, . . . , ̃  z v 
N j 

) ·
( ̃  p v 

k j 
, . . . , ̃  p v 

N j 
) ; 

end for 

Further, for the estimates of tangent Q 

s 
j 

and Q 

v 
j 
, choose ̃  z s 

k j 
and˜ z v 

k j 
with minimal distances 

min k 

{ 

( ̃  z s 
k j 

, . . . , ̃  z s 
N j 

) · ( ̃  p s 
k j 

, . . . , ̃  p s 
N j 

)− (m 

s 
j 
+ h s 

j 
) μs 

j 
T s 

j 
−K s 

j 

cu s 
j 

} 

, ∀ j ∈ N s , 

min k 

{ 

( ̃  z v 
k j 

, . . . , ̃  z v 
N j 

) · ( ̃  p v 
k j 

, . . . , ̃  p v 
N j 

)− (m 

v 
j 
+ c v 

j 
+ co v 

j 
) μv 

j 
T v 

j 
−K v 

j 

cu v 
j 
+ co v 

j 

} 

, ∀ j ∈ N v .

Differently, one could choose the middle point between two

closest (in the sense of minimal distance) quantizers. 

o compute tangent points Q 

s 
j 

and Q 

v 
j 

based on implicit functions

12) using optimal quantizers. 

Clearly, as the number of optimal quantizers increases, the ac-

uracy of the approximation improves. 

Next, similar to the models considered in Katsifou et al.

2014) and Katsifou (2013) , the demand and consequently the

rofit from a product depend on the selected total assortment in

ur bilevel model. Therefore, in the solution procedure, the ex-

ected profit to space ratio for each selected and non-selected

roduct changes as the total assortment is built. In the extreme

ase, as a new product is introduced, a previously included prod-

ct j might become less profitable than other, non-included, prod-

cts. In another case, the cross-selling opportunity could lead to

he introduction of a less profitable but very attractive product to

ncrease overall store traffic. This shows that considering products

eparate from each other and sequentially selecting them based on

heir profit to space ratios is, in general, suboptimal, due to the

nterdependence of demands. 

Heuristics proposed in Katsifou et al. (2014) and Katsifou

2013) are based on the Rank and Approximate method for the 

roblem without constraints on minimal order quantities and with

onte-Carlo sampling of demand. We, however, propose to adapt

he Rank and Optimize method using optimal quantizers, taking

nto account interdependencies between demands. We select a

ew product depending on the expected profit to space ratio of

he current assortment and not just on the product’s own profit to
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space ratio. Due to the reoptimization step, we explicitly take min-

imal order quantities into account. 

The heuristic based on the Rank and Optimize method is pre-

sented in Algorithm 2 . The heuristic takes interdependencies be-

Algorithm 2 Rank and Optimize with dependencies 

Ranking step: 

Ranking = {} , Products under Consideration = {N s ∪ N v } 
while numel(Products under Consideration) > 0 do 

for all j ∈ Products under Consideration do 

A j = Ranking ∪ j 

• ∀ k ∈ A j , update the demands μk (A j ) for all standard and

variable products in A j by solving the problem (3) (note

that demands are changing depending on the set A j ); 
• Using Algorithm 1, compute the maximal profit to space

ratio of the product j, i.e., r j = max Q j 

(
� j (Q j ,μ j (A j )) 

l j Q j 

)
,

where � j (Q j , μ j (A j )) is the profit of the product j de-

pending on the set of products A j through the mean

function and Q j is its quantity; 

end for 

Ranking = Ranking ∪ { j = arg max j r j } ; 
Products under Consideration = Products under Consideration 

{ j = arg max j r j } . 
end while 

Reoptimization step: 

Current Assortment = {} 
for all j ∈ Ranking do 

A j = Current Assortment ∪ j 

• Solve the optimization problem (8) given the Current As-

sortment and compute the optimal value (� j (Q j )) 
∗; 

end for 

Optimal assortment is A j : j = arg max j { (� j (Q j )) 
∗} . 

tween demands into account. First, it ranks the products based

on their expected profit to space ratios. Second, it progres-

sively includes products into the assortment choosing the as-

sortment with the maximal profit. In comparison to the heuris-

tic presented in Katsifou et al. (2014) and Katsifou (2013) , the

Algorithm 2 assigns optimal order quantities to the selected as-

sortment at each iteration. The number of iterations is bounded by

(N s + N v + 1) 
⌈

N s + N v 
2 

⌉
+ N s + N v . 

We use the example from Katsifou et al. (2014) to describe the

heuristic in more detail. Let us assume that we have three prod-

ucts N 1, N 2 and N 3. First, we compute the profit to space ratios of

all N s + N v products considering them in isolation from each other

(i.e., same as in Rank and Optimize and in Rank and Approximate

methods). We select product N 3, which has the highest ratio. The

next product included is not necessarily the product with the sec-

ond highest profit to space ratio, but the one which maximizes the

profit to space ratio of the assortment . When considering whether

to include product N 1, one updates the demand for and the profit

of products N 3 and N 1 as a function of the assortment { N 3, N 1}.

Similarly, when considering N 2, one updates the demand for and

the profit of products N 3 and N 2 based on { N 3, N 2}. If combina-

tion { N 3, N 1} yields a higher profit to space ratio than combination

{ N 3, N 2}, one chooses the product N 1. Therefore, it may happen

that less profitable but more attractive product N 1 is preferred to
 2 since its combination with product N 3 maximizes total profit

er space ratio. 

In Katsifou et al. (2014) , each customer is assumed to buy only

ne item of a product and neither the optimal purchase quantities

f customers nor their budget constraints are taken into account.

ia this simplified model for customer purchases, article ( Katsifou

t al., 2014 ) presents a profit ratio heuristic for the product as-

ortment optimization with MNL customer choice model and with

rices being the decision variables in the retailer’s optimization. In

ur bilevel model, the prices are considered to be fixed, influencing

oth the customer choice (3) and the retailer’s profit (6) . Consider-

ng prices as decision variables would significantly complicate the

roblem: the use of the heuristic similar to the one proposed in

atsifou et al. (2014) would not be possible, as the expected de-

and would tend to infinity with prices being close to zero and

he computation of optimal prices based on the expected demand

imes its profit margin would not be feasible. 

Instead of using Algorithm 1 in the ranking step of Algorithm 2 ,

ne can use the approximation 

(� j ) 
∗

l j T j (Q j ) 
∗ , where ( �j ) 

∗ and ( Q j ) 
∗ are

he optimal profit and the optimal quantity corresponding to the

standard or variable) product j in the problem (8) with fixed as-

ortment vectors. Further, this method allows to cut the number of

terations by N s + N v , keeping track of the optimal values already

t the ranking step and, after, choosing the maximal one without

n additional reoptimization step. In the numerical part, we refer

o the Algorithm 2 as TgRankOptDepend and to the alternative algo-

ithm with reduced number of iterations and approximated profit

o space ratios as CutEnum . 

.5. Accuracy and efficiency analysis 

In this section we assess the efficiency and accuracy of lower

nd upper bounds proposed for the problem (8) . We compare the

esulting optimal values and the computational times of these al-

orithms with those of complete enumeration (CE). 

We consider small- to large-dimensional problems starting with

andom selection of sizes from N s = { 2 , 3 , 4 , 5 } , N v = { 2 , 3 , 4 , 5 }
nd proceeding to N s = 40 , N v = 40 products. Note that CE would

eed 2 N s + N v − 1 iterations each of increasing complexity, which re-

ults in more than 1 mln. iterations for N s + N v ≥ 20 . Therefore, we

se CE for the solution of small-dimensional cases only. 

The number of loyal and non-loyal potential customers is L =
 = 10 at every time increment and the store capacity is set at

 = 1500 . All distributions are discretized optimally with N = 10

umber of quantizers (note that one does not require high num-

er of quantizers for univariate distributions, as the discretization

s minimizing the Kantorovich-Wasserschtein distance). 

For accuracy and efficiency tests we use parameters listed in

ables 2 and 3 . In the customer model, the location and the scale

arameters of the budget distribution have a higher spread for

on-loyal customers (due to larger uncertainty about them). The

isk aversion towards standard products is higher for non-loyal

ustomers, while the risk aversion towards variable products is

arger for the loyal group of customers. In the retailer model, the

ariable products are supposed to offer a lower margin than stan-

ard products (40 or 80% of the minimum between the small-

st standard products’ profit margin and the order cost of the

orresponding variable product), and their setup cost is supposed

o be higher. By this, variable products tend to be more costly

 Table 3 ) but are mainly intended to attract non-loyal customers

o the store. We generate values of the parameters randomly and

ompute lower and upper bounds for each random parameter in-

tance. 
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Fig. 2. Optimal values and approximation error for problems with different sizes. 

Fig. 3. Ratio of running times for problems with different sizes. 

Table 2 

Customer model parameter values. 

Parameter Loyal customers Non-loyal customers 

μ, μ U [7.5, 8.5] U [6.5, 8.5] 

σ , σ U [0.45, 0.55] U [0.4, 0.6] 

γ , γ U [0.05, 0.07] U [0.6, 0.7] 

δ, δ U [0.9, 0.95] U [0.5, 0.6] 

Table 3 

Retailer model parameter values. 

Parameter Standard products Variable products 

Q s 
j, min 

, Q v 
j, min 

1 1 

l s 
j 
, l v 

j 
U [0.1, 0.5] U [0.1, 1] 

c s 
j 
, c v 

j 
l s 

j 
U[50 , 100] l v 

j 
U[50 , 100] 

m 

s 
j 
, m 

v 
j 

{ 20% , 30% , 40% } of c s 
j 

{40%, 80%} of min 

{ 
min i =1 , ... ,N s { m 

s 
i 
} , c v 

j 

} 
K s 

j 
, K v 

j 
500% of c s 

j 
750% of c v 

j 

u s 
j 
, u v 

j 
50% of m 

s 
j 

30% of m 

v 
j 

cu s 
j 
, cu v 

j 
m 

s 
j 
+ h s 

j 
+ u s 

j 
m 

v 
j 
+ c v 

j 
+ u v 

j 

co v 
j 

– { 5% , 10% , 25% } of c v 
j 

h s 
j 

c s 
j 

–

T s 
j 
, T v 

j 
2 ′ 0 0 0 

ˆ μs 
j 
l s 

j 

2 ′ 0 0 0 
ˆ μv 

j 
l v 

j 
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In Figs. 2 and 3 (and from the corresponding tables), we see

hat lower bounds RankOpt and TgRankOpt with optimal quantizers

re able to find solutions within 10% accuracy in reasonable time

ompared to CE (both of the bounds are linear in the number of

terations w.r.t. the problem dimension). This ability to find good

olutions in short time is important when larger (realistic) size in-

tances have to be solved. 

The heuristics CutEnum and TgRankOptDepend , taking interde-

endence between assortment and the demand explicitly into ac-

ount at each iteration, are, obviously, slower than RankOpt and

gRankOpt (they have quadratic number of iterations w.r.t. the

roblem dimension): these bounds, however, improve the accu-
acy of the solution. Further, the lower bound TgRankApprox , based

n the algorithm developed in Katsifou et al. (2014) , provides a

ery fast solution estimate, which, however, drops below 50% ac-

uracy with high standard deviation for our bilevel problem with

inimal lot sizes. Note that simply rounding the LP relaxation,

ne would get a more accurate estimate in even better time. For

igher dimensional cases, as one can see in Fig. 2 for N s = N v = 40 ,

he performance of both bounds TgRankApprox and of LP round-

ng improves, while the running time stays much lower for the LP

ounding , making this method very time-efficient even with opti-

al quantization. 

Comparing the performance of two upper bounds, one can

mmediately observe that the LP relaxation becomes more time-

fficient if the dimension of the problem increases, while the time-

fficiency of the SDP relaxation drops compared to CE (see Fig. 3 ):

his is due to the fact that the number of variables in the SDP

elaxation grows quadratically with an increase in dimension (i.e.,

he number of elements of matrix X increases). To improve the ef-

ciency of the SDP relaxation, one would require separate research

n faster computational algorithms for its solution. 

Next, Fig. 4 (a) demonstrates the behavior of the upper (SDP)

ound w.r.t. lower bounds ( LP with rounding and CutEnum ) and

.r.t. the number of products. Fig. 4 (b) shows the optimal values

f the upper bounds w.r.t. the location parameter of the customer’s

udget distribution: the performance of the LP relaxation drops

.r.t. the performance of the SDP relaxation as the budget of

ustomers increases ( Fig. 4 (b)). 

In order to further improve the upper bounds for large-scale

roblems, one would need to find a way to estimate the mean de-

and close to its optimum in the initial problem instead of taking

anges 0 ≤ μs 
j 
≤ ˆ μs 

j 
, 0 ≤ μv 

j 
≤ ˆ μv 

j 
, ∀ j in the relaxations. Also, one

ould impose even stronger constraints (rather than LP constraints

ntroduced by Fortet (1960) or Sherali-Adams constraints ( Sherali

 Adams, 1990 ) for the SDP relaxation) to keep assortment vectors

s close to a binary solution as possible. 
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4.6. Functional properties 

One of the main contributions of our work is the ability of the

model to account for optimal purchase quantities of customers un-

der their budget constraints. Moreover, the budget of a particular

customer is unknown to the retailer, who estimates the budget dis-

tribution function. Increasing the location parameter of the distri-

bution function implies that the average customer is able to pur-

chase more quantities and a broader set of products. While most

customers can be satisfied, this leads to an increase in the retailer’s

profit. However, if the budget of the average customer increases

too much and the capacity of the retailer is not adjusted, the re-

tailer would start facing higher loss-of-goodwill costs and would
Fig. 5. Optimal purchase quantities fo

Fig. 6. Optimal purchase quantities
bserve a decrease in his profits: this is due to the retailer’s in-

bility to satisfy customers with very high demands ( Fig. 5 ). In or-

er to satisfy more customers, the retailer would need to increase

is capacity level ( Fig. 5 a)). If the customers from the same bud-

et group would become more risk-averse towards purchasing the

roducts, the retailer’s profit would logically decrease ( Fig. 5 b)). 

Next, computing the profit of a standard or a variable prod-

ct j requires the review period ( T s 
j 

or T v 
j 

). Introducing the re-

iew periods as the decision variables would make the optimiza-

ion problem not convex-concave. Furthermore, for marketing rea-

ons, the review periods are often decided beforehand. We use

 

s 
j 

= 

2 k s 

l s 
j ̂
 μs 
j 

, ∀ j ∈ N s and T v 
j 

= 

2 k v 

l v 
j ̂
 μv 
j 

, ∀ j ∈ N v as the approximations
r different types of customers. 

 for different review periods. 
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Fig. 7. Profit of scenarios and the proportion of space for standard and variable products when the shelf space increases (less cross-selling). 
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Fig. 8. Profit scenarios and the proportion of space for standard and variable products when the shelf space increases (more cross-selling: δ = 0 . 7 , δ = 0 . 2 ). 
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Fig. 9. Profit of CP and CC scenarios when the shelf space increases. 
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f the review periods in our numerical tests with k s and k v be-

ng some constants. We choose the parameters k s and k v in such

 way that the retailer’s overall profit is as high as possible. As

xpected, in Fig. 6 we observe that the problem is not convex-

oncave in review periods with a maximum dependent on the

ustomers’ budget. While it was not our objective to maximize

he profit based on the ratio of review periods, the observation

hat variable products should be refreshed more often than stan-

ard ones ( T v 
j 

< T s 
j 
) coincides with examples of retailers in practice

Appendix 1.4). 

. Benchmark strategies 

In this section, our aim is to illustrate how our model can con-

ribute to retail practice, by providing finely constructed assort-
ents to attract loyal and non-loyal customers, and to balance

rofitable and attractive products. For this, we compare our ap-

roach with benchmark strategies commonly used in practice, and

asier to solve due to their simplified structure. The scenarios are

resented in the following. 

Base case (BC): The store carries only a standard assortment and

hus only attracts loyal customers. Variable products are not con-

idered by the store manager. 

Crude case (CC): Both standard and variable items are carried

nd cross-selling occurs in the store, affecting the demand for each

roduct. However, for simplicity, when product assortment and

nventory decisions are taken, the cross-selling effect is ignored,

.e., the assortments are decided based on the assumption that

oyal (respectively non-loyal) customers buy only standard (vari-

ble) products. 
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Dogmatic case (DC): The maximal space allocated to each of the

standard and the variable products is fixed and limited a priori,

from an external decision in the following way: 

Q 

s 
j l 

s 
j ≤ S j 

C ̂  μs 
j ∑ N s 

j=1 
ˆ μs 

j 
+ 

∑ N v 
j=1 ˆ μv 

j 

, j ∈ N s and 

Q 

v 
j l 

v 
j ≤ V j 

C ̂  μv 
j ∑ N s 

j=1 
ˆ μs 

j 
+ 

∑ N v 
j=1 ˆ μv 

j 

, j ∈ N v . 

The standard and the variable products are to be placed in this

space and their inventory levels are decided based on the cus-

tomers they attract. 

Complete problem (CP): This scenario corresponds to our com-

plete model. The combined assortment and the inventory level
or each product are decided taking into consideration the cross-

elling effect. The space allocation between the standard and the

ariable assortments is not fixed a priori. 

In the following, we show the benefits brought by our approach

or a balanced assortment, and analyze the impact of the space

onstraint, profit margin and cross-selling effect on the results of

he aforementioned scenarios. For the tests, we assume that there

re 40 standard and 40 variable candidate products. 

.1. Impact of the space constraint 

We demonstrate the results of our approach (CP), and also com-

are the results of the BC, CC, DC and CP when the shelf space

onstraint varies in the interval [70 0, 40 0 0]. Fig. 7 shows that,
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Fig. 13. Space allocated to standard and variable products w.r.t. capacity. 
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s expected, CP outperforms all the benchmarks in all instances,

nd in particular the base case (BC) where no variable items are

ncluded. Thus, the retailer benefits by including variable prod-

cts to his assortment and considering the increased demand for

tandard products due to variable products (cross-selling effect)

hen deciding on the combined assortment. However, if the ca-

acity is low, the optimal profit of our approach CP may coincide

ith the optimal profit of the base case BC, meaning that small

hops may not necessarily benefit from including variable prod-

cts. Note that we do not consider the case of not including any of
he products and, therefore, optimal values may in general become

egative. 

In Fig. 7 (a), the profit difference between the CP and the BC in-

reases until some capacity level is reached as more variable prod-

cts can be included in the assortment, increasing the cross-selling

ffect. Further, the profit difference between CP and BC converges

o some level due to the concavity of our optimization problem.

he shelf space at which the retailer stops filling the shop up to

ull capacity is lower for the BC case, due to the absence of the

ross-selling effect and impossibility of benefiting further from an
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increase in order quantities for standard products. Also, due to the

constraints on minimal order quantities Q 

s 
j, min 

, ∀ j = 1 , . . . , N s and

Q 

v 
j, min 

, ∀ j = 1 , . . . , N v , the decision to include variable products to

the assortment in CP may delay with respect to the point at which

the retailer stops filling the shop up to full capacity in the base

case BC. 

The impact of the space constraint on the structure of the com-

bined assortment, and the increasing number of variable items in-

cluded, can also be seen in Fig. 8 , where we reduce the wholesale

price for variable products and increase the cross-selling effect by

setting the risk-aversion parameters towards variable products to

δ = 0 . 7 and δ = 0 . 2 . With this, the space ratio devoted to variable

products becomes higher than the space ratio devoted to standard

products at some capacity level ( Fig. 8 ). 

Next, we observe that the crude case CC outperforms the dog-

matic approach DC. This is due to the fact that DC is limited to the

dedicated space and CC is not. Importantly, the profit of the re-

tailer adopting the crude approach for his assortment decision can

decrease with increasing capacity due to the growing holding/over-

stock cost resulting from the neglection of the cross-selling effect

( Fig. 9 ). In general, the performance of CC and DC strongly depends

on the strength of the cross-selling effect. 

5.2. Impact of profit margin 

To gain additional insight into the combined problem of prod-

uct assortment and inventory management, we compare the per-

formance of our approach and of the benchmarks when profit

margin varies. The standard and variable products’ profit margins

p s 
j 
− c s 

j 
and p v 

j 
− c v 

j 
may change due to two reasons: either the

price of the product changes or the ordering cost starts to vary. For

standard assortment, both of those lead to a change in the profit

margin m 

s 
j 
= p s 

j 
− c s 

j 
and in the parameter cu s 

j 
= m 

s 
j 
+ h s 

j 
+ u s 

j 
corre-

sponding to the loss-of-goodwill. Furthermore, the change in price

(not in ordering cost though) influences the mean demand through

the customers’ choice model. For variable assortment, the situation

changes: price changes still influence the mean demand through

the customers’ choice model; however, changes in the order cost

c v 
j 

do not influence the parameter cu v 
j 
= p v 

j 
+ u v 

j 
corresponding to

the loss-of-goodwill. Thus, one needs to consider at least two

cases in order to study the impact of changes in the profit mar-

gin: the case, when the product price varies ( Fig. 10 ) ( Casado

& Ferrer, 2013 ) and the case, when the ordering cost changes

( Fig. 11 ). 

The space constraint is fixed at C = 1500 . Figs. 10 and 11 con-

firm that our approach (CP) outperforms the BC. Under the CP sce-

nario, the order quantities of standard products are reduced due to

the decrease in purchase ability of customers and due to the drop

in demand if the standard products’ profit margins are high due to

the price increase ( Casado & Ferrer, 2013 ). In response, the quan-

tities of variable products increase and thus make the majority of

the assortment ( Fig. 10 ). 

Next, we start to vary the wholesale price (order cost) for vari-

able products instead. Changes in the order cost c v 
j 

do not influence

the parameter cu v 
j 
= p v 

j 
+ u v 

j 
corresponding to the loss-of-goodwill

and, moreover, they do not influence the customers’ choice model

and the mean demand. A decrease in the wholesale price for vari-

able products makes it beneficial for the retailer to include more

in number and in order quantity of variable products compared to

the case with the price increase ( Fig. 11 ). 

As seen in Figs. 10 and 11 , the scenarios (CC and DC) are out-

performed by our approach CP. The performance of the dogmatic

case DC improves if the wholesale price for variable products de-

creases. For lower values of the order cost for variable products,

the DC outperforms the base case BC: this is due to the fact that
ariable products become much more profitable, so that the space

imited by the dogmatic approach still leads to a better payoff than

he payoff of not including variable products at all. 

.3. Impact of the cross-selling effect 

The cross-selling effect is one of the most important character-

stics of our problem. We analyze the impact of loyal customers’

isk aversion parameter δ towards variable products on optimal

rofits for CP, BC, CC and DC and on optimal product space ratios.

he lower the risk aversion towards variable products, the more

ustomers will buy variable products: varying δ one influences the

umber of loyal customers buying variable products and the quan-

ities they purchase. 

First, Fig. 12 confirms that our approach (CP) consistently

utperforms the BC. With our model, the retailer benefits by

onsidering the cross-selling effect when he is deciding on the

otal assortment and the inventory level per product. As the loyal

ustomers become more willing to buy variable products, the ben-

fit that the retailer gains with our approach increases. One can

ee that as the risk aversion parameter δ drops, the cross-selling

ffect increases and the retailer increases the quantity of variable

roducts in the assortment in response to the gain in their de-

and (otherwise, the loss-of-goodwill for variable products would

e too high). A similar effect is observed for the case when a

art of customers is risk-neutral: in Fig. 12 , the retailer places

ore emphasis on the variable assortment as a response to the

isk-neutral customers’ purchasing power. 

Next, we observe that the scenario CC converges towards our

pproach (CP) as the risk aversion of loyal customers for variable

roducts increases: this is due to the fact that high risk aversion

arameters imply low cross-selling also in the complete problem

P. At the same time, the scenario CC starts outperforming base

ase BC after some level of risk aversion parameter, meaning that

ven low cross-selling effect generates positive profit by inclusion

f variable assortment. The dogmatic approach DC, limiting space

llocated for each of the products, is outperformed by all other

ethods, being, furthermore, outperformed by the case with no

roducts included (zero payoff). 

The impact of the cross-selling effect on the structure of the

ombined assortment, and the increasing number of variable

tems included, can also be seen in Fig. 13 , where we vary the

holesale price for variable products and reduce the risk-aversion

arameters towards variable products for both loyal and non-

oyal customers ( δ = 0 . 7 , δ = 0 . 2 ). The space devoted to variable

roducts outperforms the space devoted to standard ones at some

apacity level in case of lower risk aversion. 

Further parameters having influence on the cross-selling effect

re the customers’ budget parameters: if the location parameter of

he customers’ budget distribution is too low, it does not allow to

urchase enough quantities of the products, which influences the

ean demand. For different utility models, changing the location

arameter μ of the lognormal distribution for non-loyal customers

ith fixed scale parameter σ = 0 . 5 , we obtain Figs. 14 and 15 ,

learly suggesting an increase in variable product quantities as

he response to the increase in customers’ budget. From this

lso follows that the assortment consisting to a large extent of

ariable products is optimal in the absence of non-loyal customers’

udget constraint and independently of the utility type (note that

soelastic utility would imply variable assortment only). 

Clearly, as the location parameter of the non-loyal customer’s

udget distribution increases, non-loyal customers may purchase

ore quantities of the products, increasing the demand. Due to the

xed capacity, the unsatisfied demand for both types of products

lso increases, as seen in Fig. 14 . However, we observe that optimal

nsatisfied demand ratios are stable after variable products being
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ncluded to the assortment (before this, all unsatisfied demand cor-

esponds to standard products, as there is no demand for variable

roducts in the base case BC). 

. Conclusion 

This paper contributes in different aspects to the joint prob-

em of product assortment planning and inventory management

ptimization. We consider an assortment consisting of “standard”

nd “variable” products serving “loyal” and “non-loyal” customers 

ith uncertain budgets. The cross-selling effect may occur for both

roups of customers, encouraging different customers to purchase

roducts from different groups. We describe the strength of the

ross-selling effect via coefficients of relative risk aversion towards

tandard and variable products and we distinguish between budget

istributions and budget constraints for each group of customers,

imiting baskets that different customers are able to purchase.

ext, we formulate and solve a bilevel optimization problem

nder decision-dependent uncertainty, where the retailer’s binary

ecision about product inclusion influences the distribution of the

roduct’s demand. Each customer has his own optimization prob-

em to solve and the optimal solution depends on the assortment

vailable at the retailer and optimized under the store’s shelf space

onstraint. The optimal solution of the customer’s optimization

roblem is the quantity to purchase under the budget constraint.

or the numerical solution, we propose heuristic algorithms,

roviding lower bounds on the optimal value of the optimization

roblem and taking the interdependency between the assortment

nd the demand explicitly into account. We make a comparison to

xisting lower bounds and we formulate two upper bounds for the

ilevel optimization problem via LP and SDP relaxations. Proposed

euristics are more accurate than other lower bounds in finding

he optimal solution, being quadratic in the number of iterations.

sing optimal quantization techniques instead of typical Monte-

arlo simulations for the approximation of demand and customer’s

udget distributions, we enhance both accuracy and efficiency of

he solution, as the necessary number of quantizers is much lower

han in Monte-Carlo sampling. Using the optimal quantization for

he lower bounds allows to devise high-dimensional assortments.

or very high-dimensional problems, one could round the optimal

olution of the LP upper bound, which would result in a very fast

olution estimate. According to our results, a retailer benefits from

 combined assortment if he selects it taking into consideration

he cross-selling effect that occurs. Conversely, if he includes

ariable products in the assortment and ignores the cross-selling

ffect, he might lose a significant amount of profit. In this case,

t can be even more profitable for him to carry only standard

roducts; this, however, strongly depends on the customer’s

udget distribution, as too high optimal demands of customers

ead to a decrease in the retailer’s expected profit due to the

ncrease in lost sales. The variety of techniques proposed in our

ork can be used to address more complete product assortment

trategies in the future. Our results can be extended by including

rice decisions or dynamic product substitution. Further, in the

resence of numerical data on demand, the proposed bounds can

e tightened via introduction of constraints on mean demands. 
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