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Abstract

The current information landscape is characterised by a vast amount of relatively semantically
homogeneous, when observed in isolation, data silos that are, however, drastically seman-
tically fragmented when considered as a whole. Within each data silo, information can be
harvested without the risk of misinterpretation due to conforming to the same ontology that
formally defines the types and relations in the application domain. Nonetheless, when data
are retrieved from multiple and heterogeneous data silos, special consideration is required to
ensure a common and uniform interpretation. Establishing semantic bridges across semanti-
cally heterogeneous data silos, i.e., align the corresponding ontologies, becomes, thus, crucial.
At the same time, there is an exponential increase in the number of data as well as in the
number of heterogeneous data silos. It becomes apparent that the exponentially increasing
information landscape prohibits manual curation strategies and illustrates the importance of
an automatic computational approach that relies less on human expertise and intervention.

The focal point of this thesis is to build semantic bridges across heterogeneous data silos. We
first focus on discovering equivalence relations between entities appearing in the different
ontologies used by heterogeneous data silos. To decrease the required human expertise and in-
tervention, we propose to approach the problem of ontology alignment from a representation
learning perspective. We demonstrate that by exploiting transfer learning we can overcome the
main obstacles, i.e., the small sample size and the serious class imbalance problem, that have
been shown to hinder the application of machine learning to the problem. More precisely, our
approach is based on embedding ontological terms in a high-dimensional Euclidean space.
These terminological embeddings are automatically learned so as they are implicitly tailored
to the task of ontology alignment. We compare our proposed methods to state-of-the-art
systems based on feature engineering using a plethora of evaluation benchmarks. We present
significant performance improvements and we demonstrate the advantages that representa-
tion learning brings to the problem of ontology alignment.

Subsequently, we focus on discovering general relations, i.e., not particularly restricted to
equivalence relations, existing between entities appearing in the same ontology or knowledge
base. This problem is known under the terms knowledge base completion and link prediction.
Building on recent research highlighting the advantages of non-Euclidean space, we examine
the contribution of geometrical space to the task of knowledge base completion. We focus
on the family of translational models that, despite showing a lagging performance on certain
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Abstract

datasets, offer certain advantages with regard to the rules they can effectively represent. We
extend these models to the hyperbolic space so as to better reflect the topological properties
of knowledge bases. We empirically show, using a variety of link prediction datasets, that hy-
perbolic space allows to narrow down significantly the performance gap between translational
and bilinear models; illustrating that the lagging performance of translational models is not
an intrinsic characteristic of them. Another key outcome of this work is to demonstrate a new
promising direction for developing models that, although not fully expressive, allow to better
represent certain families of rules; opening up for more fine-grained reasoning tasks.

In summary, this thesis proposes new ways to approach the problems of ontology alignment
and link prediction in the setting of representation learning. It advances beyond the state-of-
the-art methods in a multitude of different ways. It also serves to strengthen our understanding
of the role of geometrical space for relation prediction and to illustrate prominent directions
for performing more fine-grained reasoning tasks in the embedding space.

Keywords: ontology matching, ontology alignment, sentence embeddings, word embeddings,
terminological embeddings, semantic similarity, denoising autoencoder, outlier detection,
knowledge base completion, link prediction, knowledge base, ontology, knowledge graph
embeddings, hyperbolic embeddings, quasi-chained rules, Poincaré-ball model

iv



Résumé

Le paysage actuel de I'information se caractérise par une grande quantité de silos de données
relativement homogenes sémantiquement, lorsqu’ils sont observés de facon isolée, mais qui
sont cependant radicalement fragmentés sémantiquement lorsqu’ils sont considérés dans leur
ensemble. Au sein de chaque silo de données, les informations peuvent étre collectées sans
risque d’erreur d’'interprétation en raison de leur conformité a une méme ontologie qui définit
formellement les types et les relations dans le domaine d’application. Néanmoins, lorsque les
données sont extraites de silos de données multiples et hétérogenes, une attention particuliere
est requise pour garantir une interprétation commune et uniforme. L'établissement de ponts
sémantiques entre des silos de données sémantiquement hétérogenes, c’est-a-dire I'aligne-
ment des ontologies correspondantes, devient donc crucial. Parallelement, le nombre de
données ainsi que le nombre de silos de données hétérogenes augmente exponentiellement.
Il apparait clairement que les stratégies de conservation manuelle ne sont pas adaptées a ce
paysage de I'information en croissance exponentielle, et ceci souligne I'importance d'une
approche informatique et automatique qui repose moins sur l'expertise et I'intervention
humaines.

Le point central de cette these est de construire des ponts sémantiques a travers des silos
de données hétérogenes. Nous nous concentrons d’abord sur la découverte des relations
d’équivalence pouvant exister entre les entités apparaissant dans les différentes ontologies
utilisées par des silos de données hétérogenes. Pour diminuer 1'expertise et 'intervention
humaines requises, nous proposons d’aborder le probléme de 1'alignement des ontologies
dans une perspective d’apprentissage de la représentation. Nous démontrons qu’en exploitant
I'apprentissage par transfert, nous pouvons surmonter les principaux obstacles, c’est-a-dire
la petite taille de I’échantillon et le grave probleme de déséquilibre de classe, qui entravent
I'application de 'apprentissage automatique au probléme. Plus précisément, notre approche
est basée sur le plongement de termes ontologiques dans un espace euclidien de grande di-
mension. Ces plongements de termes sont automatiquement appris de sorte a ce qu’ils soient
implicitement adaptés a la tache d’alignement des ontologies. Nous comparons nos méthodes
proposées a des systemes de pointe basés sur I'ingénierie des fonctionnalités en utilisant une
pléthore de reperes d’évaluation. Nous présentons des améliorations de performances signifi-
catives et nous démontrons les avantages que 'apprentissage de la représentation apporte au
probleme de 'alignement des ontologies.



Résumé

Par la suite, nous nous concentrons sur la découverte de relations générales, c’est-a-dire non
particulierement limitées aux relations d’équivalence, existant entre des entités de la méme
ontologie ou base de connaissances. Ce probléeme est connu sous le terme de prévision de liens.
En nous appuyant sur des recherches récentes mettant en évidence les avantages de I’espace
non-euclidien, nous examinons la contribution de I'espace géométrique a la tache de prévi-
sion de liens. Nous nous concentrons sur la famille des modéles translationnels qui, malgré
des performances plus faibles sur certains ensembles de données, offrent certains avantages
en ce qui concerne les axiomes qu'’ils peuvent modéliser efficacement. Nous étendons ces
modeles a I’espace hyperbolique afin de mieux refléter les propriétés topologiques des bases
de connaissances. Nous montrons empiriquement, en utilisant une variété de jeux de données
de prévision de liens, que I'espace hyperbolique permet de réduire significativement I'écart
de performance entre les modeéles translationnels et bilinéaires; illustrant ainsi que le retard
de performance des modeles translationnels n’en est pas une caractéristique intrinseque. Un
autre résultat clé de ce travail est de proposer une nouvelle direction prometteuse pour le
développement de modeles qui, bien que peu expressifs, permettent de mieux représenter
certaines familles de regles; ouvrant ainsi la voie a des taches de raisonnement plus fines.

En résumé, cette these propose de nouvelles facons d’aborder les problemes d’alignement
d’ontologies et de prévision de liens dans le cadre de I'apprentissage de la représentation. Elle
va au-dela des méthodes de pointe d'une multitude de facons différentes. Elle sert également
a renforcer notre compréhension du réle de I'espace géométrique pour la prédiction des
relations et a illustrer des directions importantes pour effectuer des taches de raisonnement
plus fines dans 'espace de plongement.

Mots clés : alignement de I'ontologie, plongement de phrases, plongement de mots, plonge-
ment de termes, similitude sémantique, auto-encodeurs débruiteurs, détection d’anomalies,
prévision de liens, ontologie, base de connaissances, plongement de graphique des connais-
sances, plongement hyperbolique, axiomes quasi-chainés, la boule de Poincaré
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|§ Introduction

“Do you wish me a good morning, or mean that it is a good morning
whether I want it or not; or that you feel good this morning; or thatitis a
morning to be good on?”

J.R.R. Tolkien, The Hobbit, or There and Back Again

The Information Age has provided a fertile ground for an interconnected world of human
beings and things without borders, but certainly not without its share of paradoxes. The quest
for information has opened the door for the quest for a systematic way of transforming the
information “cacophony into a symphony of meaning” [184] that will allow to harvest this
wealth of data and draw inferences out of it. At the time of writing, Gartner estimates that
4.8 billion Internet of Things (IoT) endpoints are available [78], while the total volume of
the accumulated digital data, measured in bytes, is claimed to exceed the total number of
stars in the observable universe [76, 55]. Nonetheless, this abundance of information came at
a cost that hinders both its exploration and exploitation; the sheer semantic inconsistency
encountered in the various heterogeneous information sources [112, 197, 62, 225, 228].

Data are not only heterogeneous due to the high variety of data structures and representations
they are expressed in, also known as syntactic heterogeneity [229, 113], but their heterogene-
ity also stems from the uncertainty in interpreting them leading to semantic heterogeneity
[90, 114]. The current information landscape is characterised by a vast amount of relatively se-
mantically homogeneous, when observed in isolation, data silos that are, however, drastically
semantically fragmented when considered as a whole [225, 112]. To guarantee a consensual
interpretation, the simultaneous transmission of the meaning of the various information
fields appearing in data seems to be necessary, which, unfortunately, is not an easy task to do
(182, 44, 184]. As the American linguist Ray Jackendoff framed it: “meaning is the ‘holy grail’
not only of linguistics, but also of philosophy, psychology, and neuroscience” [104, p. 288].
Nonetheless, although delivering the precise meaning constitutes a real scientific challenge,
constraining the possible interpretations is yet feasible by introducing axioms that help to



Chapter 1. Introduction

avoid invalid entailments [199, 86, 7]. For example, if a piston pump is defined to be a subtype
of a pump while it has been stated that no entity can be both a liquid and a pump, then it
could be safely concluded that a piston pump is not a liquid [224]. Building on this inferential
paradigm, applied ontologies aim to provide a rigorous and formal representation of common-
sense reality by explicitly specifying the relations existing among entities and constraining the
possible interpretations through careful and concise axiomatisation [198, 158, 85].

The pitfalls of semantic heterogeneity become more apparent when the data should be auto-
matically exploited by intelligent artificial agents [188, 243, 225, 96]. For instance, a conversa-
tional agent asked to arrange the details of a trip would need to access various heterogeneous
data sources to retrieve information about flight schedules, hotel availability, rental car of-
fers, public transport schedules, weather forecast, etc. One of the major challenges that the
agent would face is simply not to be lost in translation. To provide all the available rental car
offers, for example, the agent should be able to find the bearers of knowledge required to infer
whether the information fields automobile and car found in two distinct information sources
could be considered as equivalent in the given context without provoking any logical incon-
sistencies. Similarly to the pump example, an ontology containing all the domain-specific
synonyms of a specific term expressed through equivalence relations could be proven again
sufficient for successfully performing this inference. This line of thinking, however, carries
the unwarranted assumption of a perfect and complete lexicon of the existing synonymy
information. Nevertheless, despite the extend of machine-interpretable factual knowledge
available today, it is widely accepted that their coverage is still far from being complete [238].

As shown above, inferring that the terms automobile and car were synonymous under the
given context allows to bypass the heterogeneity gap and fuse different information sources.
Therefore, being able to automatically discover relations existing between entities constitutes
a central challenge for harvesting the wealth of heterogeneous data available today. The key
observation for transforming this computationally intractable problem at first sight into a
problem that can be tackled computationally is one prevailing pattern appearing both in
nature and language; that a similar context between entities is a sign of a possible existence
of common characteristics between them. For instance, it has been observed in nature that a
similar environmental context (e.g., available resources, climate, etc.) between non-coexisting
species can provoke the appearance of similar structures [82, 192]. A similar phenomenon is
observed in language where words that occur in similar context tend to have similar meaning
(e.g., oculist and eye-doctor) [46, 93, 189]. This phenomenon, that became known as distribu-
tional hypothesis [93], paved the way for harnessing co-occurence statistics between words
and phrases, extracted from a plurality of text corpora, as a way to quantify how semantically
close two distinct words or phrases are [133]. Their semantic similarity is measured in terms
of how similar is the distribution of the words that surrounds them.

Early attempts of exploiting the distributional hypothesis have focused on manually crafting
similarity functions. One classical example is the Pointwise Mutual Information [66, p. 28][35]
that quantifies the discrepancy between the probabilities of two words to co-occur and to



occur independently. Unfortunately discovering good similarity functions can be highly time
consuming. Another line of research has focused on mapping words to high-dimensional
vectors in Euclidean Space where the vectorial coordinates are created in such a way so that
they correlate with words’ occurrence statistics computed on text corpora. In this bag of words
model [93], the similarity of two distinct words is measured by using more easily defined simi-
larity functions in the Euclidean space (e.g., cosine similarity, distance-based similarityl, etc.)
[136, 92]. It should be noted that part of the difficulty in manually crafting similarity functions
has now been transferred in devising good bag of words vectorial representations. Naturally,
the bag of words vectorial representations are quite sparse —i.e., many of the vectorial co-
ordinates have really small absolute values; allowing for efficient storage and manipulation.
Interestingly, it has been shown that reducing their dimensionality is beneficial for various
mainstream tasks [136]. For that reason, various approaches have been proposed in the litera-
ture [175, 102, 48] that attempt to reduce the vectors’ dimensionality aiming at creating more
dense word representations and demonstrate better semantics capture capability.

To overcome the burden of manually crafting good dense vectorial representations for words,
there has been a recent rise of distributed representations (DRs) [18, 149, 150, 176, 179, 5, 50], in
which for example words are embedded in a high-dimensional Euclidean space and the word
vectorial representations are automatically learned in an unsupervised way. The way this works
is that the machine learns a mapping from words to high-dimensional vectors which take
account of the contexts in which words appear in a plurality of corpora. Vectors of words that
appear in the same sorts of context will then be closer together when measured by a similarity
function. As above, various similarity functions can be used such as the cosine similarity, the
distance-based similarity, etc. That the approach can work without supervision stems from
the fact that meaning capture is merely a positive externality of context identification, a task
that is not directly related to the meaning discovery task. At the same time, unlike bag of words
vectorial representations that neglect the syntactic information present in language, there
is a powerful family of DRs that allows to create syntax-aware distributed representations
(59, 60, 101, 227]. Suprisingly, DRs have demonstrated unprecedented improvements in
various natural language processing tasks [215, 40, 144, 227, 179, 50].

With this in mind, DRs have the potential to bring significant value to the task of automatically
discovering relations existing between entities, which can be described by different ontologies.
For example, a terminological embedding can be assigned to every ontological term in a way
that synonymous terms will have a high degree of similarity, as computed by a used similarity
function. Additionally, a relation embedding and an entity embedding can be assigned to every
relation and entity, respectively. These relations and entities could appear in different, or even
the same, ontologies. These relation and entity embeddings could be constructed in such a
way that if a certain relation exists between two entities, then the associated similarity function,
that will now operate on three operands, will be expected to have a high value. Learning such
embeddings would aid to go beyond the existing available knowledge and identify unknown
general relations existing between entities — not particularly restricted to synonymy relations.
In this thesis, we focus on devising such representation learning architectures that can detect
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relations between entities towards bridging the semantic gap that is currently existing.

1.1 Thesis Goals

The primary goal of this thesis is to exploit recent advancements in representation learning to
develop relation detection algorithms that discover relations between entities of potentially
different ontologies. Our aim is to remove the burden of manually crafting good terminological,
entity and relation representations and propose systems that offer substantial performance
improvements. Towards this direction, we devise representation learning based methods
that exploit semantic information extracted from external resources, including the ontologies
themselves, as well as statistical regularities that lay in ontological and knowledge base facts.

We begin by investigating the primary reasons that hindered the application of machine
learning to the problem of ontology alignment. We identify that two of the prime reasons are
(i) the relatively small sample size, i.e., very few ontology alignment scenarios are available
to guarantee generalisation, and (ii) the serious class imbalance problem, i.e., the number
of true alignments between two ontologies is several orders of magnitude smaller than the
number of all possible mappings hindering learning. We design one representation learning
based ontology alignment system which by exploiting transfer learning bypasses the aforemen-
tioned problems. The system shows state-of-the-art performance demonstrating significant
improvements with regard to the recall metric, nevertheless it undergoes a certain amount of
degradation in the precision metric. To tackle this shortcoming, we propose an outlier detec-
tion mechanism that successfully detects misalighments without significantly harming the
recall capability of the system. Finally, we explore different geometrical spaces for embedding
the entities and relations existing in ontologies and knowledge bases that have the potential to
better reflect their topological properties. To this end, we explore the hyperbolic space and
we show that the right choice of geometrical space does not only impact the performance of
embedding models for the task of relation prediction, but also opens up new opportunities for
developing embedding models that allow better representing certain families of ontological
axioms. Last but not least, our findings also shed light on understanding which ontologies
and knowledge bases mostly benefit from the use of hyperbolic embeddings.

Thesis Statement:

Despite the overwhelm of data, the current information landscape is drastically semantically
fragmented hindering both data exploration and exploitation. The exponentially increasing
data size deters manual curation strategies and necessitates a rethink in the current computa-
tional solutions, motivating an approach that relies less on human expertise and intervention.
Learning distributed representations of ontological terms, entities and relations provides a
sufficient workforce for automatically building semantic bridges between semantically heteroge-
neous systems and successfully generalising across a plethora of practical application domains.
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1.2 Thesis Contributions

Ontology alignment and knowledge base completion constitute challenging research prob-
lems with various prominent applications such as the automatic knowledge exchange and
acquisition between intelligent agents [217], acting as support tools for collaborative ontology
development initiatives (e.g., the OBO Foundry [201] and the Industrial Ontologies Foundry
[103]), information extraction from heterogeneous IoT devices [124], etc. This thesis proposes
to leverage semantic information and statistical regularities captured in external corpora,
semantic lexicons and the ontologies themselves to learn representations of ontological terms,
entities and relations as a key framework to improve the performance of ontology alignment
and knowledge base completion systems and to enforce robust domain generalisation. We
illustrate the benefits of our proposed methods using a plethora of practical domains and
show significant performance improvements over state-of-the-art approaches. Specifically,
this thesis makes the following key contributions:

First, we demonstrate one prominent direction to approach the problem of ontology align-
ment through representation learning. Our approach overcomes the main obstacles, i.e.,
the small sample size and the serious class imbalance problem, that have been shown to
hinder the application of machine learning approaches to the problem. To overcome these
problems, we exploit a transfer learning approach that retrofits pre-trained word DRs to the
task of semantic similarity using synonymy/antonymy information extracted from semantic
lexicons and the ontologies themselves. The method does not exploit information stemming
from ground-truth ontology alignments or misalignments for harnessing word DRs tailored to
the ontology matching task. We show significant performance improvements against state-
of-the-art systems, however at the cost of a certain amount of degradation in the precision
metric. Our method also removes the burden of manually crafting appropriate terminolog-
ical representations as well as semantic similarity functions tailored to the task of ontology
alignment.

Second, we investigate the primary reasons behind the aforementioned shortcoming and
devise a neural network architecture to tackle this issue. Specifically, we propose an ontology
matching system composed of two neural network components that learn terminological
embeddings tailored to semantic similarity. The first component discovers a large amount of
true alignments between two ontologies but is prone to errors. The second component cor-
rects these errors, i.e., discovers misalignments, by exploiting unsupervised outlier detection.
Aiming at increasing further the recall metric, the first component learns phrase embeddings
exploiting not only semantically similar words but also phrases. We compare our method to
state-of-the-art ontology matching systems and show significant performance gains in both
precision and recall metrics.

Third, our proposed solution illustrates a way of how we can minimize the number of similarity
functions required for aligning two ontologies. Traditionally, ontology matching approaches
have been based on feature engineering in order to obtain different measures of similarity
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[62]. This plethora of multiple and complementary similarity metrics has introduced various
challenges including choosing the most appropriate set of similarity metrics for each task,
tuning the various cut-off thresholds used on these metrics, etc. [39]. Unlike in our approach,
only one similarity distance is used. Therefore, there is a drastic decrease in the used similarity
metrics and thresholds.

Fourth, another contribution of the work presented in this thesis is that of demonstrating
that ontology matching can be performed in the absence of ontology’s structural information.
Specifically, it was an open question whether ontology’s structural information is mandatory
for performing ontology matching. Our proposed algorithms, presented in Chapter 4, manage
to compare favourably against state-of-the-art systems without using any kind of structural
information. Our results support that a great ontology matching performance can be achieved
even in the absence of any graph-theoretic information.

Fifth, we provide empirical support that external corpora and semantic lexicons provide
sufficient information to perform ontology matching Our methods rely on word vectors pre-
trained on large external corpora and on synonymy information provided by semantic lexicons
also including the ontologies to be matched. Consequently, we can conclude that external
corpora and semantic lexicons provide sufficient information to perform ontology matching
by only exploiting the ontological terms.

Finally, we show the advantages that non-Euclidean spaces bring to the task of knowledge
base completion. To this end, we quantify the contribution of geometrical space to the task
of discovering generic relations between entities. The experimental results validate that
the right choice of geometrical space is a critical decision that impacts the performance of
embedding models for this relation prediction task. Additionally, our results also shed light
on understanding which ontologies and knowledge bases mostly benefit from the use of
hyperbolic embeddings. Last but not least, our work shows a new promising direction for
developing models that, although not fully expressive, allow to better represent certain families
of ontological axioms; opening up for more fine-grained reasoning tasks.

1.3 Thesis Organization

This thesis is organized as follows:

* Chapter 2 provides the background and related work on key topics that will be explored
and extended in the context of this thesis.

¢ Chapter 3 introduces a representation learning approach tailored to ontology matching
problem. This Chapter describes an ontology matching approach that uses information
from ontologies and additional knowledge sources to extract synonymy/antonymy
information that is later used to refine pre-trained word vectors so that they are better
suited for the ontology matching task.
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e Chapter 4 illustrates the benefits of exploiting two neural network components that
learn terminological representations tailored to semantic similarity and misalignment
detection, respectively. The first component discovers a large amount of true alignments
between two ontologies but is prone to errors. The second component corrects these
€errors.

e Chapter 5 studies the impact of non-Euclidean spaces to the problem of detecting
unknown facts in ontologies and knowledge bases. To this end, the hyperbolic space is
exploited as a potential candidate for better representing the topological properties of
ontologies and knowledge bases.

* Chapter 6 concludes the thesis and presents future research directions.

1.3.1 Bibliographic Notes

This thesis was conducted under the supervision of my advisor, Dimitrios Kyritsis. Chapter 3
is based on a conference paper published in the Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies [120]. Chapter 4 is based on a journal paper published in the Journal of Biomed-
ical Semantics in 2018 [121]. Finally, Chapter 5 is based on a conference paper accepted
for publication in the 2020 Conference of the European Semantic Web Conference [123]. A
preliminary version of the aforementioned conference paper has appeared as a preprint on
arXiv [122].






¥4 Background & Related Work

“There is a science which studies being qua being, and the properties in-
herent in it in virtue of its own nature. This science is not the same as any
of the so-called particular sciences, for none of the others contemplates
being generally qua being; they divide off some portion of it and study the
attribute of this portion, as do for example the mathematical sciences.”

Aristotle, Metaphysics — Book IV

This chapter provides the background and related work on key topics that will be explored and
extended in the context of this thesis. To this end, we briefly introduce ontologies from both a
philosophical and an applied perspective and we provide a formal definition of an ontological
entity alignment. Next, we cover the background to the distributed representation learning as
well as its applications to ontology matching, sentence representation, outlier detection and
entity and relation representation on both Euclidean and non-Euclidean spaces.

2.1 Applied Ontologies

Historically, ontology emerged as a fundamental discipline of metaphysics, i.e., the philosoph-
ical branch devoted to the study of reality [7]. In that context, ontology became known as the
science of being qua being concerned with the study of what categories of entities can exist in
reality and of the relations that these entities share with each other. Its primary focus lays on
identifying the most fundamental features of reality common to all domains. Figure 2.1 shows
a part of the Porphyrian Tree that illustrates some of the fundamental categories proposed by
Aristotle [16]. For instance, the things that exist in reality, according to Aristotle, are divided
into Material and Immaterial substances. An Animal is an Animate Entity and it can also be
safely deduced that it is also a Material Substance. Discovering these fundamental categories
and the relations that shape them constitutes one of the holy grails of philosophy and its
impact on the scientific thought will be immeasurable.
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Thing
/ is_a \
Material Substance Immaterial Substance
/ is_a\
Animate Entity Nonanimate Entity
/ is_a \
Animal Vegetation
/ is_a
Human Nonrational Animal

Figure 2.1 — Part of the Porphyrian Tree.

In recent times, the term ontology has been extensively used in computer and information
science, however, with a different meaning compared to its traditional usage in philosophy. In
this setting, ontology refers to a “standardised representational framework” [11, p. xxi] used for
describing data and information using a consistent and formally defined set of terms including
the relations that associate these terms. Notably, these applied ontologies have been proven an
important ally in fostering semantic interoperability, i.e., “the ability of two or more systems
to exchange information in such a way that the meaning of the information generated by any
one system can be automatically interpreted by each receiving system accurately enough to
produce results useful to its end users” [11, p. 38]. For the rest of this thesis, when we refer to
an ontology, we will only mean an applied ontology. Based on this agreement, we also omit
the word “applied” for brevity.

2.1.1 Ontology Alignment Definition

Before we proceed with the formal definition of an ontological entity alignment, we will
introduce the needed formalism. Let O, O" denote two set of terms used in two ontologies and
let R be a set of binary relations’ symbols. For instance, =, #,is_a can be some of the R set’s
members. It is of importance to note that ontologies do formally define the set of relations
required for describing a certain domain. It should be highlighted that the set R of the binary
relations’ symbols may or may not have a non-empty intersection with the relations’ symbols
defined in the two aforementioned ontologies. For example, the set R can contain the symbol
for the equivalence relation, i.e., =, although this is not defined in either of the two ontologies.
We introduce aset T ={(e,1,€') | e€ O,¢' € O, r € R} to denote a set of possible binary relations
between O and O’ [83]. Moreover, let f: T — [0,1] € £ be a function, called “confidence
function”, that maps an element of T to a real number v, such that 0 < v < 1. The real number
v corresponds to the degree of confidence that exists a relation r between e and €’ [62].

10
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NCI Thesaurus Mouse Anatomy
Bone of the Upper Extremity - - ------------------ Forelimb Bone
Upper Extremity - ---------------------- Forelimb
is_a part_of part_of [is_a
CarpalBone -------------------------- Carpal Bone
is_a is_a
Triangular Bone - - - ------------ - Ulnar Carpal Bone

Figure 2.2 — Example of alignments between the NCI Thesaurus and the Mouse Ontology
(adapted from [22]). The dashed horizontal lines correspond to equivalence matchings be-
tween the NCI Thesaurus and the Mouse Anatomy ontology.

We call a set T of possible relations to be “valid despite integration inconsistency”, iff T
is satisfiable. As a counterexample, the set {(e,=,¢'), (e, %, €')} corresponds to a non-valid
despite integration inconsistency set of relations. It should be noted that in this section
we slightly differentiate from the notation used in Description Logics [13], where a relation
(Role) between two entities is denoted as: r(e,e’). Moreover, it is important to highlight
the role of the phrase “despite integration inconsistency” in our definition. The ontology
resulting from the integration of two ontologies O and O’ via a set of alignments T may lead to
semantic inconsistencies [107, 204]. As the focus of ontology alignment lays on the discovery
of alignments between two ontologies, we treat the procedure of inconsistency check as a
process that starts only after the end of the ontology matching process.?

Based on the aforementioned notations and definitions, we will proceed with the formal
definition of what an ontological entity alignment is. Let, T be a valid despite integration
inconsistency set of relations and f be a confidence function defined over T. Let (e,1,e') € T,
we define an ontological entity correspondence between two entities e € O and ¢’ € O’ as the
four-element tuple:

corr(e, €)= (e,r1,€, flere)) (2.1)

where r is a matching relation between e and ¢’ (e.g., equivalence, subsumption) and f (e, r,¢’) €
[0,1] is the degree of confidence of the matching relation between e and ¢’. According to the
examples presented in Figure 2.2, (triangular bone, =, ulnar carpal bone, 1.00) and (triangular
bone, is_a, forelimb bone, 1.00) present one equivalence as well as a subsumption entity
correspondence, accordingly.

In Chapter 3, we present an algorithm that discovers many-to-many equivalence correspon-
dences between two ontologies in the sense that we did not exclude the possibility of existence
of equivalence correspondences between terms of the same ontology O that map to one or

11
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more synonymous terms of another ontology O’. In Chapter 4, we focus on discovering one-
to-one equivalence correspondences between two ontologies. In absence of further relations,
the produced set of relations by our proposed algorithms will always correspond to a valid
despite integration inconsistency set. Finally, the work presented in Chapter 5 investigates
the role of the embedding space in the task of establishing general relations, i.e., not only
restricted to equivalence correspondences, between two entities e, ¢’ appearing in the same
ontology or knowledge base. This problem is also known in the literature as the knowledge
base completion (KBC) or the link prediction problem [168]. Please note that contrary to
the definition provided in [121], we did not restrict the two ontologies O, O’ to be distinct in
our definition in order to provide a unified framework for the discovery of relations between
entities appearing in distinct ontologies but also in the same ontology.

2.2 Distributed Representations

Distributed representations are rooted on the information processing theory of Connectionism
where information processing is performed not in terms of a serial symbol manipulation,
as reasoning based on an ontological model would require, but in terms of transformations
over “pattern[s] of activity distributed over many computing elements” [100, p. 77] [146].
Distributed representations, whose philosophical origin can even be traced back to Aristo-
tle’s work “De memoria et reminiscentia" [206] [10, p. 3], offer a powerful way to approach
problems that appear computationally intractable at first sight such as that of computing the
semantic similarity between two distinct terms. It should be noted that unlike the ontological
representations whose appropriateness is also measured in terms of how well the a priori
nature of reality is captured [85], the success of distributed representations is mostly measured
in a strictly functional way, i.e., whether or not they solve the task at hand in a satisfying way.

As illustrated in Chapter 1, learning distributed representations of ontological terms, entities
and relations that are tailored to the problem of ontology alignment and link prediction plays
the central role for this thesis. For that reason, the rest of this section presents and discusses
state-of-the-art representation learning techniques that, as will be proven in the next chapters,
provide a powerful tool for approaching the aforementioned problems. To this end, we begin
by studying the problem of learning distributed representations on Riemannian Manifolds. We
continue by presenting various state-of-the-art feature engineering approaches for ontology
alignment and discuss the early work on applying machine learning and representation
learning to the problem. Next, we overview the Siamese CBOW [116] and the Denoising
Autoencoder [231] architectures that are exploited and extended in Chapter 4 for deriving
terminological representations tailored to semantic similarity. Finally, we overview entity and
relation representations learning architectures on both Euclidean and non-Euclidean spaces
that are critical for the work presented in Chapter 5, where the contribution of geometrical
space for the task of link prediction is explored.

12
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2.2.1 Learning Distributed Representations on Riemannian Manifolds

In this section, we briefly cover some key notions of Differential Geometry that will allow us to
frame the problem of learning distributed representations on Riemannian manifolds. Going
beyond the classical Euclidean setting is the primary focus of Chapter 5 where the hyperbolic
space is exploited in an attempt to better represent the topological properties and axioms of
knowledge bases and ontologies. It should be noted that this section does not aim to provide
an exhaustive and in-depth coverage of this rich field. We welcome the interested readers to
refer to [209, 137] for a rigorous treatment of the field.

To begin with, a n-dimensional manifold .4, conceived as a generalisation to higher dimen-
sions of the notion of the surface in the three-dimensional Euclidean space, is a topological
space where around every point belonging in .# we can find a neighbourhood that contains
this point and locally resembles the Euclidean space. More precisely, a n-dimensional manifold
M is a topological space having the property that for every x € .# there is a neighbourhood
U such that x € U and U is homeomorphic to R”. A differentiable manifold (also known as
smooth or C*° manifold) is a manifold that can be locally linearly approximated allowing, thus,
to generalise various classical notions of Calculus. For instance, the tangent space Ty .4 of a
smooth manifold at x € .# generalises the notion of the tangent plane and is defined to be the
first order linear approximation of .4 around x. The tangent space constitutes a real vector
space that intuitively incorporates all the possible directions that are tangentially passing
through x.

Building on these definitions, a Riemannian manifold (4, g) is a smooth manifold equipped
with a collection g = (gx), ., of smoothly varying with respect to x inner products gy : Ty x
Ty — R [75]. The aforementioned collection of inner products g, known as Riemannian
metric, offers a natural way to locally introduce the notions of angle, curve’s length, volume,
etc. [209, Chapter 9]. Global notions can be defined in a later step by integrating these
local contributions. For example, the geodesic generalises the notion of a straight line in the
Euclidean space and it is defined as the shortest path connecting two points x, y € .4, given
by:

1
d(x,y) = inf fo g (7(0),7(0)dt 2.2)

where v : [0,1] — ./ is a piecewise smooth curve such that y(0) = x and y(1) = y. It should
be noted that the definition of the geodesic makes use of the local notion of length ds =

gy (Y(0,7(0)dt.

One fundamental tool in Mathematical Optimisation is that of moving with a constant speed
along the direction defined by the derivative of a function. For instance, let 2 = {(x;,y;) |
Xi€eX, V€W }?:1 be a set of observations, f : & — % be an approximation function and
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Figure 2.3 — A visualisation of a Riemannian manifold in the 3-dimensional space.

Z(:,-) = Rbe aloss function [195, Chapter 2]. Then, minimising the empirical risk on &:

1

1 n
Bn(w) = — L (f(xi;w), yi) (2.3)
=1
based on Stochastic Gradient Descent (SGD) requires taking a step in the negative gradient
direction as follows, where k denotes the index of the iterative sequence:

Wir1 = Wi — ai VL (f(xi; wi), yi,) (2.4)

where 1 < iy < nis arandom index, k € N the iteration index and ay. is a positive stepsize [29].
To generalise this notion in the Riemannian setting requires rethinking the SGD update as
moving along a geodesic y starting at y(0) = wy with velocity y(0) = —axV.Z (f (xi,; wi), Vi, )-
More precisely, the exponential map exp, at x € ./ is defined to be equal to y(1) where y is the
unique geodesic satisfying y,(0) = x and y,(0) = v, where v € T/ is a tangent vector to the
manifold at x used as the Riemannian analogue of the gradient [209, p. 333]. The logarithmic
map log, is defined to be the inverse map, i.e., log, = exp;! : .4 — Ty.4. It is worth noting
that the exponential map defines a natural way to projecta v € Ty.# to a point exp,(v) € 4 on
the manifold. Based on the above, the SGD update defined in Equation (2.4) can be rewritten
as follows, where k denotes the index of the iterative sequence:

Wi = expy, (VL (f (i wi), i) (2.5)

Figure 2.3 illustrates the above definitions. However, it can be the case that the exponential
map is not well-defined for every point for the manifold. Hopefully, the Riemannian manifolds
A whose every geodesic y : [a, b] — .4 can be extended to a geodesic from R to .4 have the
property that their exponential map is well-defined on the entire tangent space [209, p. 341].
One classical example of such manifolds, that are known as geodesically complete manifolds,
is the Poincaré-ball which is studied in Chapter 5.

14



2.2. Distributed Representations

The distributional hypothesis that was introduced in Chapter 1 provided a fertile ground for
the development of a plethora of machine learning-based methods for word and sentence
representations [48, 18, 149, 150, 176, 179, 5, 50]. A by now classical example constitutes
the work of Mikolov et al. [149] where the Skip-gram architecture was proposed. In the
rest of this section, we illustrate how this word embedding model can be adapted to the
Riemannian setting so as to provide an illustrative example of the definitions provided above.
The presentation of this section partially follows the works of [132, 150].

The Skip-gram architecture attributes a high-dimensional Euclidean vector to every word
appearing in a fixed vocabulary V. In the Riemannian setting, each words will be assigned to
a point in a Riemannian manifold .# . The classical training objective pushes the model to
predict from a given word its surrounding words in a sentence [150]. More precisely, Skip-gram
maximises the following average log probability:
1T
Lw)==) Y logpwujlw) (2.6)

r t=1-c<j<c
Jj#0
where w; € ./ for 1 < i < |V]|, and c is the context window that defines the limits of the
considered surrounding words for each word. Please note that the definition of the Skip-gram
loss, as defined in Equation (2.6), is rather problematic for words in corpora that do not have
enough surrounding words either on their left or on their right side. To simplify the notation,
we make the weak assumption that such words are omitted during training. The probability
p(w; | wy) can be formulated using the softmax function as follows:

ex] (Wi, wy)
p(wy | w) = o2t e w0) 2.7

ZiZl €xp (f(wir wt))

where f: .4 x 4 — R is a similarity function that quantifies the distributional similarity of
two given words. At this step, it should be noted that we differentiate from the work of Mikolov
et al. [150] and we do not introduce either the hierarchical softmax [155] or negative sampling,
since our primary focus is to illustrate the transition from a machine learning model defined
in Euclidean space to its analogue in Riemannian space.

To maximize the objective defined in Equation (2.6), we can use Stochastic Gradient Ascent
(SGA). Let V denote the Riemannian Gradient with respect to w and a be a positive stepsize
sequence. Then, the SGA update can be formulated as:

Wi+1 = €XPy, (VL (wy)) (2.8)

It should be noted that the exact computation of the exponential map is often difficult, whereas
first-order approximations of the exponential map are much more easier to compute [26].
More precisely, we define the retraction %,,(v) of an exponential map as a map from the
tangent space T,,.# to .4 having the property d (%w(tv),expw(tv)) = O(r3). Based on the
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definition of retraction, the SGA update can be written as:
Wi+1 = R, (VL (wy)) (2.9)

In the work of Bonnabel [26], it has been proven that there exist stepsize sequences (@) r>o
so that the sequence of updates defined in Equation (2.8) converges. Interestingly, it has
also been proven that there exist stepsize sequences (a) =g S0 that the sequence of updates
defined in Equation (2.9) converges when the curvature of the Riemannian manifold is non
positive [26]. One example of such manifold is the Poincaré-ball which is studied in Chapter 5.

2.2.2 Ontology Matching: From Feature Engineering to Representation Learning

Ontology matching is a rich research field where multiple and complementary approaches
have been proposed. In this section, we cover the state-of-the-art feature engineering ap-
proaches against which we compare our proposed representation learning based methods
that are presented in Chapters 3 and 4. Additionally, we briefly cover key machine learning
based algorithms for ontology matching based on binary classification that aided to raise
the understanding of the serious class imbalance problem that characterises the problem of
ontology matching and hinders learning. Finally, we discuss the early work on approaching
the problem of ontology matching through representation learning and motivate the key
obstacles of these approaches. At this point, it should be mentioned that ontology matching
is a rich and fruitful research field where multiple innovative ideas have been proposed. We
welcome the interested reader who seeks additional information to this rich field to refer to
62,197,171, 9].

The vast majority of ontology matching research follows the feature engineering approach
[234, 38,117, 106, 64, 163, 88]. Features are generated using a broad range of techniques [9, 92],
ranging from the exploitation of terminological information, including structural similarities
and logical constraints such as datatype properties, cardinality constraints, etc. Ontology
matching is done by acting on the aforementioned features in different ways. Heuristic
methods that rely on aggregation functions such as max, min, average, weighted sum, etc.,
to fuse the information found in these features are quite popular [9]. In parallel, they make
use of various external semantic lexicons such as Uberon, DOID, Mesh, BioPortal ontologies
and Wordnet as a means for incorporating background knowledge useful for discovering
semantically similar terms. CroMatcher [88], AML [67, 68] and XMap [53] extract various
sophisticated features and use a variety of the aforementioned external domain-specific
semantic vocabularies to perform ontology matching. Moreover, LogMap, AML and XMap
exploit complete and incomplete reasoning techniques so as to repair incoherent mappings
[147]. Unlike the aforementioned approaches, FCA_Map [255, 256] uses Formal Concept
Analysis [241] to derive terminological hierarchical structures that are represented as lattices.
The matching is performed by aligning the constructed lattices taking into account the lexical
and structural information that they incorporate.

16



2.2. Distributed Representations

Several works exploit supervised machine learning for Ontology Matching [54, 141, 140]. In
the work of Mao et al. [141], ontology mapping is explicitly casted as a binary classification
problem. The authors generate various domain independent features to describe the char-
acteristics of the entities and train an SVM classifier on a set which provides positive and
negative examples of entity alignments. In general, the number of real alignments is orders of
magnitude smaller than the number of possible alignments which introduces a serious class
imbalance problem [140] hindering learning. Since we only use supervision to refine the word
vector representations we avoid altogether the class imbalance problem in the work presented
in Chapter 3 and Chapter 4. Representation learning has so far limited impact on ontology
matching. To the best of our knowledge, only two approaches, [254] and [244, 205], have
explored so far the use of unsupervised deep learning techniques. Both of these approaches
use a combination of the class ID, labels, comments, etc. to describe an ontological entity in
their algorithms. Zhang et al. [254] are the first ones that investigated the use of word vectors
for the problem of ontology matching. They align ontologies based on word2vec [149] vectors
trained on Wikipedia. They were the first that reported that the general-purpose word vectors
were not good candidates for the task of ontology matching. Xiang et al. [244, 205] proposed an
entity representation learning algorithm based on Stacked Auto-Encoders [19, 36]. However,
training such powerful models with so small training sets is problematic. We overcome both
of the aforementioned problems in the works presented in Chapter 3 and Chapter 4 by using a
transfer learning approach, known to reduce learning sample complexity [177], which retrofits
pre-trained word vectors to a given ontological domain.

2.2.3 Learning Sentence Representations from Labeled Data

In this section, we briefly overview certain neural-based approaches for learning distributed
representations exploiting supervision that will be proven useful for the work presented
in Chapter 4, where we exploit such neural-based approaches for learning terminological
embeddings. To constrain the analysis, we compare neural language models that derive
sentence representations of short texts optimized for semantic similarity based on pre-trained
word vectors. Nevertheless, we consider in our comparison the Siamese CBOW model [116]
since the proposed sentence model in Chapter 4 is highly influenced by it. Likewise, we do not
focus on innovative supervised sentence models based on neural networks architectures with
more than three layers including [202, 111, 215, 40, 144, 227, 179, 50] and many others. The
most similar approach to our extension of Siamese CBOW is the work of Wieting et al. [240].
Wieting et al. address the problem of paraphrase detection where explicit semantic knowledge
is also leveraged. Unlike to our approach, a margin-based loss function is used, and negative
examples should be sampled at every step introducing an additional computational cost.
The most crucial difference is that this model was not explicitly constructed for alleviating
the coalescence of semantically similar and semantically associated terms that is discussed
in Chapters 3 and 4. Finally, the initial Siamese CBOW model was conceived for learning
distributed representations of sentences from unlabeled data. To take advantage of the
semantic similarity information already captured in the initial word embeddings, an important
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characteristic as demonstrated in various word vectors retrofitting techniques [70, 156, 240],
we propose in Chapter 4 to extend the initial model with an knowledge distillation reguralizer
[99]. Finally, we further extended the initial softmax setting, with a tempered softmax, with
the purpose of enabling the network to capture information hidden in small logit values. For
further information regarding the proposed architecture, please refer to the Section 4.2.2.

2.2.4 Autoencoders for OQutlier Detection

Neural network applications to the problem of outlier detection have been studied for a
long time [242, 143]. Autoencoders seem to be a recent and a very prominent approach to
the problem. As has been pointed out in [33], they can be seen as a generalization of the
class of linear schemes [94]. Usually, the reconstruction error is used as the outlier score
[33]. Recently, Denoising Autoencoders (DAEs) [231] have been used for outlier detection in
various applications, such as acoustic novelty detection [142], network’s intrusion detection
[33], anomalous activities’ discovery in video [248]. In Chapter 4, a novel autoencoder-based
outlier detection mechanism for discovering ontology misalignements is presented. To the
best of our knowledge, this is the first time that the problem of semantic similarity is seen
from the viewpoint of outlier detection based on DAEs. Unlike the other approaches, we
want to detect outliers in pairs of input. To achieve that, we use the cosine distance over the
two produced hidden representations as an outlier score, instead of using the reconstruction
error which is customary in the literature. Our motivation is that intrinsic characteristics of
the distribution of semantically similar terms are captured in the hidden representation and
their cosine distance could serve as an adequate outlier score. Unlike the majority of the
aforementioned research work, we do not train end-to-end the DAE but we follow a layer-wise
training scheme based on sentence representations produced by our extension of Siamese
CBOW. Our impetus is to let the DAE to act on a dataset with significant less noise and bias.
Please refer to Section 4.2.3 for concrete details on the proposed outlier detection architecture.

2.2.5 Learning Representations of Entities and Relations Existing in Ontologies
& Knowledge Bases

In Chapter 5, we explore the discovery of general relations, i.e., not only equivalence corre-
spondences, between entities appearing in the same ontology or knowledge base. There has
been a great line of research dedicated to the task of learning distributed representations for
entities and relations in ontologies and knowledge bases. To constrain the analysis, we only
consider shallow embedding models that do not exploit deep neural networks or incorporate
additional external information beyond the available facts. For an elaborated review of these
techniques, please refer to Nickel et al. [168] and Wang et al. [235]. We also exclude from our
comparison recent work that explores different types of training regimes such as adversarial
training, and/or the inclusion of reciprocal facts [30, 214, 115, 127] to make the analysis less
biased to factors that could overshadow the importance of the geometrical space.
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In general, the shallow embedding approaches can be divided into two main categories; the
translational [27] and the bilinear [167] family of models. In the translational family, the vast
majority of models [237, 105, 245, 58] generalise TransE [27], which attempts to model relations
as translation operations between the vector representations of the subject and object entities,
as observed in a given fact. In the bilinear family, most of the approaches [249, 169, 221]
generalise RESCAL [167] that proposes to model facts through bilinear operations over entity
and relations vector representations. In Chapter 5, we focus on the family of translational
models, whose performance has been lagging, and propose extensions in the hyperbolic
space which by exploiting the topological and the formal properties of KBs bring significant
performance improvements.

2.2.6 Hyperbolic Embeddings

In Chapter 5, we explore the contribution of geometrical space for the task of discovering
general relations between entities appearing in the same ontology or knowledge base. Specifi-
cally, we explore the hyperbolic space as a prominent alternative since it has the potential to
better represent the topological properties of ontologies and knowledge bases as it is further
explained in Chapter 5. There has been a growing interest in embedding scale-free networks
in the hyperbolic space [24, 172]. The majority of these approaches are based on maximum
likelihood estimation, that maximises the likelihood of the network’s topology given the em-
bedding model [172]. Additionally, Verbeek and Suri [230] investigated the conditions under
which general undirected graphs can be embedded in the hyperbolic space with minimum
distortion. Hyperbolic geometry was also exploited in various works as a way to exploit hierar-
chical information and learn more efficient representations [165, 166, 74, 190, 51, 219, 128].
However, this line of work has only focused on single-relational networks.

Recently and in parallel to our work presented in Chapter 5, two other works have explored
hyperbolic embeddings for KBs. Contrary to our work where Mobius or Euclidean addition
is used as a translational operation, Suzuki et al. [216] exploit vector fields with an attractive
point to generalise translation in Riemannian manifolds. Their approach, although promising,
shows a degraded performance on commonly used benchmarks. Similarly to our approach,
Balazevic et al. [14] extend to the hyperbolic space the family of translational models demon-
strating significant advancements over state-of-the-art. However, the authors exploit both
the hyperbolic as well as the Euclidean space by using the Mdbius Matrix-vector multiplica-
tion and Euclidean scalar biases.? Unlike our experimental setup, the authors also include
reciprocal facts. Although their approach is beneficial for knowledge base completion, it
becomes hard to quantify the contributions of hyperbolic space. This is verified by the fact
that their Euclidean model analogue performs in line with their “hybrid” hyperbolic-Euclidean
model. Finally, neither of these works studies the types of rules that their proposed models
can effectively represent.
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Word-level Representation Learning
for Ontology Alignment

“You shall know a word by the company it keeps!”

John Rupert Firth

While representation learning techniques have shown great promise in application to a num-
ber of different Natural Language Processing (NLP) tasks, they have had little impact on the
problem of ontology matching. Unlike past work that has focused on feature engineering,
we present a novel representation learning approach that overcomes many of the obstacles
of previous approaches. Our proposed method, dubbed DeepAlignment, refines pre-trained
word vectors aiming at deriving terminological representations that are tailored to the ontol-
ogy matching task. Unlike previous approaches that exploited machine learning, the absence
of explicit information relevant to the ontology matching task during the refinement process
enables DeepAlignment to overcome the small sample size that characterises the problem of
ontology matching. We empirically evaluate our method using standard ontology matching
benchmarks. We present significant performance improvements over the current state-of-the-
art, demonstrating the advantages that representation learning techniques bring to ontology
matching.

3.1 Introduction

Translation across heterogeneous conceptual systems is an important challenge for cognitive
science [81, 212]. Ontology Matching constitutes the task of establishing correspondences
between semantically related entities from different ontologies, as illustrated in Figure 3.1.
Similarly, ontology matching is crucial for accomplishing a mutual understanding across
heterogeneous artificial cognitive agents [217]. However, despite the many proposed solutions,
it is widely accepted that there is no solution robust enough to deal with the high ontological
linguistic variability [196, 197]; hampering, thus, the discovery of shared meanings.

Research in automatic ontology matching has focused on engineering features from termino-
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Entity Entity
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Figure 3.1 — Example of alignments (black lines) and misalignments (red crossed lines) between
ontologies.

logical, structural, extensional (ontology instances) and semantic model information extracted
from the ontological model. These features are then used to compute ontological entity simi-
larities that will guide the ontology matching. Deriving such features for a given problem is an
extremely time consuming task. To make matters worse, these features do not transfer in other
domains. As Cheatham and Hitzler [32] have recently shown, the performance of ontology
matching based on different textual features varies greatly with the type of ontologies under
consideration.

At the same time, machine learning research is characterised by a shift from feature engineer-
ing based approaches to feature and representation learning as a result of the performance
improvements brought by deep learning methods. A by now classical example is the unsu-
pervised learning of semantic word representations based on the distributional hypothesis
[93], i.e., the assumption that semantically similar or related words appear in similar contexts
(48, 18, 149, 150, 176]. Word vectors have the potential to bring significant value to ontology
matching given the fact that a great deal of ontological information comes in textual form.

One drawback of these semantic word embeddings is that they tend to coalesce the notions of
semantic similarity and semantic association [97]. For instance, the word “harness" is highly
associated with the word “horse", as they share strong associations, i.e., a harness is often used
on horses [136]. From an ontological point of view, however, these types should not be similar.
Moreover, as unsupervised learning requires even larger text corpora, the learned vectors tend
to bring closer words with similar frequency instead of similar meaning [71]. Clearly, word
representations that reflect frequency instead of meaning is an undesired feature if we seek
to exploit word vectors for ontology matching; alignment based on such representations will
reflect similar frequency instead of similar meaning.

A number of lightweight vector space representation refining techniques were introduced
recently in an effort to correct these biases [70, 156]. They use synonymy and antonymy con-
straints extracted from semantic lexicons to refine the learned word representations and make
them better suited for semantic similarity tasks. Such methods are a way to inject domain-
specific knowledge to tailor the learned word representations to a given task. As a result, we
can exploit the synonymy/antonymy constraints to learn semantic word representations that
are better candidates for ontology matching.

In this chapter, we learn representations of ontological entities instead of feature engineering
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them. We use the learned representations to compute the entities’ semantic distances and
to subsequently perform the ontology matching task. In order to represent the ontological
entities, we exploit the textual information that accompanies them. We represent words by
learning their representations using synonymy and antonymy constraints extracted from
general lexical resources and information captured implicitly in ontologies. We cast the
problem of ontology matching as an instance of the Stable Marriage problem [73] using the
entities semantic distances.

Our approach has a number of advantages. The word embeddings we establish are tailored to
the domains and ontologies we want to match. The method relies on a generic unsupervised
representation learning solution which is important given the small size of training sets in on-
tology matching problems. We evaluate our approach on the Conference dataset provided by
the Ontology Alignment Evaluation Initiative (OAEI) campaign and on a real world alignment
scenario between the Schema.org and the DBpedia ontologies. We compare our method to
state-of-the-art ontology matching systems and show significant performance gains on both
benchmarks. Our approach demonstrates the advantages that representation learning can
bring to the task of ontology matching and shows a novel way to study the problem in the
setting of recent advances in NLP.

3.2 Methods

We present an ontology matching approach that uses information from ontologies and ad-
ditional knowledge sources to extract synonymy/antonymy relations which we use to refine
pre-trained word vectors so that they are better suited for the ontology matching task. Since
the focus of this chapter lies in detecting equivalence relations between the entities of different
ontologies, we only exploit synonymy/antonymy relations. We represent each ontological
entity as the bag of words of its textual description, which we complement with the refined
word embeddings. We match the entities of two different ontologies by casting the problem of
ontology matching as an instance of the Stable Marriage problem. In order to compute the
ordering of preferences for each entity, that the Stable Marriage problem requires, we use the
entities’ pairwise distances. We compute the aforementioned distances using a variant of a
document similarity metric.

3.2.1 Preliminaries

In this chapter, we focus on discovering many-to-many equivalence mappings between on-
tologies. Please refer to Section 2.1.1 for a formal definition of what an entity correspondence
is. We will also introduce some additional notation used in this chapter. Let 1, u, € R% be two
d-dimensional vectors, we compute their cosine distance as follows: d(u;, uz) = 1—cos(uy, up).
For x € R, we define the rectifier activation function as: 7(x) = max(x,0).
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3.2.2 Learning Domain Specific Word Vectors

The counter-fitting method [156] uses synonymy and antonymy relations extracted from se-
mantic lexicons to refine and adapt pretrained word embeddings for given semantic similarity
tasks. We broaden the concept of antonymy relations and allow a larger class of ontology
relations to be conceived as antonyms. This allows us to inject domain knowledge encoded in
ontologies and produce more appropriate word vectors for the ontology matching task. In the
rest of the section we revise the main elements of the counter-fitting method and describe
how we can exploit it for learning domain specific word embeddings.

Let V ={v;, vy,...vn} be an indexed set of word vectors of size N. The counter-fitting method
transforms a pretrained vector set V into a new one V' = {v}, v3,... v} based on a set of syn-
onymy and antonymy constraints S and A, respectively. This is done by solving the following
non-convex optimization problem:

n{l/i,nklAR(V’) +x2SA(V) +x3VSP(V, V)

The AR(V') function defined as:

ARV = Y t(1-dW,v)))
(u,w)eA
is called antonym repel and pushes the refined word vectors of “antonymous" words to be
away from each other. As we already mentioned, we extend the notion of antonymy relations
with respect to its more narrow traditional linguistic definition. We consider that two entities
in a given ontology are “antonymous" if they have not been explicitly stated as equivalent, in
the sense of a logical assertion or a synonymy relation found in a semantic lexicon.

The SA(V') function defined as:

SAWV)= > dw,v))
(u,w)eS

is called synonym attract and brings closer the transformed word vectors of synonyms. In
order to extract synonymy information we search for paraphrases in semantic lexicons. Con-
cretely, let w; = {word?, wordzl, e, word,ln}, wy = {word?, wordg, e, wordfl} be the textual
information of two entities from different ontologies. If the combination {wordl.l, wordjz.}
or {word]%, word}} for some i € {1,...,m} and j € {1,...,n} appears as a paraphrase in any
semantic lexicon then we add the synonymy information (u, w) in the set S of synonymy
constraints.

The VSP(V, V') function defined as:

N
VSP(V, V=) ) td},v)-dw;,v))
i=1jeN(i)
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forces the refined vector space to reflect the original word-vector distances. N(i) is the set
of words that lie within p distance from the i-th word vector in the original vector-space.
The experiments show that the value of p does not affect significantly the performance of
the whole algorithm, so for computational efficiency we fix it to p = 0.05. We minimize the
objective function with stochastic gradient descent (SGD). We use as a convergence criterion
the norm of the gradient. We continue updating the model until this is smaller than 10~°. In
our experiments we typically observe convergence within less than 25 iterations.

3.2.3 Semantic Distance Between Entities

As before, let V' be the refined word vectors and w; = {word}, word?}, ey word,ln}, Wy =
{word?, wordzz, s, word%} be the textual information that describes two entities from differ-
ent ontologies. The textual information of an entity can be extracted from different sources
such as the entity’s name, label, comments, etc. We replace the appearance of a word with its
refined word vector. Hence, we end up with two sets of word vectors Q and S, respectively. In
order to estimate how semantically similar the corresponding terms of two entities are, we use
a semantic distance defined over the entities’ terminological representations, i.e., the set of
word vectors associated with each entity.

There have been many ways to compute the semantic similarity of two word sets, such as
the Word Moving Distance [126] and the Dual Embedding Space Model (DESM) [159]. We will
base our semantic distance § on a slight variation of the DESM similarity metric. Our metric 6
computes the distance of two sets of word vectors Q and S as follows:

1 B}
5Q,9=— > dg;9 (3.1)
1l 42
a1 s
where § = 328 Bl

is the normalised average of the word embeddings that constitute the

]
set of words S.

Hence, one of the word vectors’ sets is represented by the centroid of its normalized vectors.
The overall set-to-set distance 6 is the normalized average of the cosine distance d between the
computed centroid and the other’s set word vectors. A first observation is that the introduced
distance is not symmetric. Ideally, we would expect the semantic distance of two word sets
to be irrelevant of the order of the inputs. To make it symmetric, we redefine the distance
between two sets of word vectors as:

dis(w;,w2) =max(6(Q,S),0(S,Q)) 3.2)

It is important to note that dis(w;, w») is not a proper distance metric as it does not satisfy the
triangle inequality property. Despite this fact, it has proved to work extremely well on all the
ontology matching scenarios used for our system evaluation in this chapter.
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Algorithm extendMap(e, h, ©’, P, i., n, €, 1)

Input: source entity: e
hash function from integers to entities: &
subsumption’s transitive closure: 6’
sorted (increasingly) preference matrix: P,
index of optimal solution: i,
number of target’s ontology entities: n
e—optimality value: €
number of relatives: r

Output: sequence of e—optimal mappings

1: Initialization: list = @

2: opt = Peliy]

3: €' = h(iy)

4: for i =min(iy + 1, n) to min(iy, + r, n) do
5 tmp = Pe[i]

6: ifabs(opt—tmp)<ethen

7: e; = h(i)

8 if (e;,e) €0’ or (¢/,e;) € @' then
9 list.append(e — e;)

10: end if

11:  endif

12: end for

Figure 3.2 — Definition of extendMap algorithm.

3.2.4 Ontology Matching

Similar to the work in [244], we cast the ontology matching problem as an instance of the
extension of the Stable Marriage Assignment problem to unequal sets [73, 145]. A Stable
Marriage Assignment algorithm computes one-to-one mappings based on a preference m x n
matrix, where m and n is the number of entities in ontologies O and O, respectively. Note that
the violation of the triangle inequality by our semantic distance, defined in Equation (3.2), is
not an impediment to the Stable Marriage Assignment algorithm [73].

The majority of the ontology matching systems produce equivalence mappings with one-to-
one cardinality. Hence, one entity e in ontology O can be mapped to at most one entity in e’
in O" and vice versa. According to a recent review [9] only two out of almost twenty ontology
matching systems provide solutions to detect many-to-many mappings. However, ontology
developers focus on different degrees of granularity, so it is expected that one entity from a
given ontology can be aligned to more than one entity in another ontology and vice-verca.

To address this problem, we present the extendMap algorithm, shown in Figure 3.2, that
extends the one-to-one mappings of the previous step to many-to-many. The basic idea is
that certain alignments that were not contained in the solution of the instance of the Stable
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Marriage problem were very close to the optimal alignment, in terms of the semantic distance,
and they should also be included in the final alignment set. However, despite the use of refined
word vectors, we cannot totally avoid possible misalignments due to the semantic similarity
and semantic association coalescence. Therefore, any extension of the original alignment set
requires special consideration to avoid the inclusion of misalignments.

A way to circumvent the inclusion of significantly many misalignments is to add the constraint
that we can extend an one-to-one mapping to a many-to-many one if and only if every entity
that is going to be included in the initial alignment shares a subsumption relation with an
entity of the initial mapping. The idea behind this restriction stems from the fact that an
equivalence relation can be decomposed into two subsumption relations. Therefore, an entity
sharing a subsumption relation with an entity of the initial mapping can be considered a
probable candidate for extension since it already satisfies a necessary condition. Below, we
give a more formal definition of what we will call an e-optimal mapping between two entities
e and ¢’ that belong to two different ontologies O and O, respectively.

Definition 1 Let e — ¢’ be a mapping, identified by solving the instance of the Stable Marriage
problem, between the entities e € O and e’ € O', where O and O' are two different ontologies.
Let e — € be another mapping, where " € O'. Given an ¢ > 0, we call the mapping e — e"
e-optimal with respect to the mapping e — €' if and only if the following two conditions hold:

e |dis(wy,w2) —dis(wi,ws)| <€, wherewy, w2, w3 is the textual information of entities e, e’
and ée", respectively.

e ¢ and ¢" should share a subsumption relation. Equivalently, there must be a logical
assertion stating that either e’ is subclass of ¢’ or " is subclass of e'.

The subsumption restriction requires that the extended alignments share a subsumption re-
lation in order to reduce the possibility of matchings between entities that are semantically
associated. We iteratively search for e-optimal mappings according to the extendMap algo-
rithm, shown in Figure 3.2, to extend the established one-to-one mappings to many-to-many.
For efficiency reasons, we do not check all the entities, but only the r closest entities according
to the dis distance. As a final step, we iteratively pass through all the produced alignments
and we discard those whose semantic distance is greater than a hyperparameter value thres.

Last but not least, it should be noted that another strategy for computing optimal matchings
between ontologies is to cast the problem as an instance of the minimum weight graph
matching problem [62, p. 191]. Contrary to the Stable Marriage assignment problem where
only the relative ordering of the preferences is exploited, the minimum weight graph matching
problem exploits the full information provided by the semantic distance. Nonetheless, since
we cannot totally alleviate the problem of the semantic similarity and semantic association
coalescence, two semantically associated terms can have a really small semantic distance;
producing, thus, erroneous mappings. This line of thinking justifies our choice to cast the
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ontology matching problem as an instance of the Stable Marriage assignment problem in our
attempt to reduce erroneous mappings due to semantic association.

3.3 Results & Discussion

In this section, we present the experiments we performed on the OAEI conference dataset
and on a real world alignment scenario between the Schema.org and DBpedia ontologies.
One of the main problems that we have encountered with the comparative evaluation of our
algorithm is that even though numerous ontology matching algorithms exist, for only a very
small portion of them either the respective software or the system’s output is publicly available.
To the best of our knowledge, among all the systems tested in the conference dataset only AML
[38] and LogMap [106] are publicly available. As it happens these are two of the state-of-the-art
systems. Moreover, AML offers solutions to detect many-to-many alignments [69] and, thus,
constitutes a competitive baseline against which we will compare the performance of our
algorithm extendMap which also provides many-to-many alignments.

When training to refine the vector representations an unbalanced proportion of synonymy
and antonymy constraints sets can cause problems; the set with the lower cardinality will
have limited impact on the final word representations. To overcome this problem, we run
an additional step of the counter-fitting procedure using only a small random subset of
the supernumerary constraints and all the constraints of the minority set. We randomly
undersample the larger set and reduce its cardinality to that of the smaller set. We call
this additional step the recounter-fitting process. To demonstrate the importance of the
recounter-fitting process and test the behavior of the pre-trained word vectors in the absence
of synonymy and/or antonymy relations, we have conducted additional experiments which
we also present.

In all of our experiments we have applied the counter-fitting process upon the Paragram-SL999
word vectors provided by Wieting et al. [239]. With respect to the textual information extracted
for each entity, we have only used the entity’s ID (rdf:ID). To estimate the precision, recall
and F1 measure of all the systems, that we consider for testing, and check for the statistical
significance of the results we use an approximate randomization test with 1048576 shuffles, as
described in Yeh [250].

3.3.1 Semantic Lexicons

Let w, = {word?, wordzl,..., word}n}, ws = {word?, wordzz,..., word,zl} be the textual infor-
mation that accompanies two entities from different ontologies. We extracted the synonymy
and antonymy constraints that we used in the experiments from the following semantic
lexicons:

WordNet: a well known lexical database for the English language [152]. In our experiments we
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did not use WordNet synonyms. Instead, we have included WordNet antonymy pairs together
with the "antonymy" relations extracted by the ontologies. The strategy that we have followed
in order to create the WordNet’s antonymy pairs is to consider as antonyms every two words
with antonymous word senses.

PPDB 2.0: the latest release of the Paraphrase Database [174]. We have used this database in
two different ways. We have used the largest available single-token terms (XXXL version) in
the database and we have extracted the Equivalence relations as synonyms, and the Exclusion
relations as antonyms. Additionally, we have searched the whole XXXL version of PPDB for
paraphrases based on the words appeared in two entities from different ontologies. Namely,
our strategy was the following: If the pair (word;, wordjz.) or the pair (wordjz., word) ap-
peared on the PPDB and their type of relation was not Exclusion, we considered it as synonym.

WikiSynonyms: a semantic lexicon which is built by exploiting the Wikipedia redirects to
discover terms that are mostly synonymous [42]. In our experiments we have used it only on
the Schema.org - DBpedia scenario. Our strategy was the following: we search if there exist
synonyms in the WikiSynonyms for the w; and w». If this is the case, we extract them and we
stop there. In the opposite case we extract the synonyms for each wordl.1 and wordjz..

3.3.2 Hyperparameter Tuning

We tuned the hyperparameters on a set of 100 alignments which we generated by randomly
sampling the synonyms and antonyms extracted from WordNet and PPDB. We chose the vocab-
ulary of the 100 alignments so that it is disjoint to the vocabulary that we used in the alignment
experiments, described in Section 3.3.3, in order to avoid any information leakage from train-
ing to testing. We tuned to maximize the F1 measure. In particular, we did a coarse grid search
over a parameter space for x1,k2,k3, 1, € and thres. We considered x1, x> € [0.35,0.45] and
k3 € [0.1,0.2] with common step 0.01, r € [1,10] with step 1, € € [0.01,0.1] with step 0.01 and
thres € [0.3,0.7] with step 0.05. We trained for 25 epochs for each hyperparameter using SGD.
The best values were the following: k¥, = 0.4, k, =0.4, k3 =0.1, r =8,¢=0.07 and thres=0.5.
We used the selected configuration on all the alignment scenarios described below.

3.3.3 Evaluation Benchmarks

One of our evaluation benchmarks comes from the Ontology Alignment Evaluation Initiative
(OAEI), which organizes annual campaigns for evaluating ontology matching systems. The
external to OAEI evaluation benchmark comes from the provided alignments between the
Schema.org and the DBpedia ontologies. We provide some further details for each dataset
below:

OAEI Conference Dataset: It contains 7 ontologies addressing the same domain, namely the
conference organization. These ontologies are suitable for ontology matching task because of
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their heterogeneous character of origin. The overall performance (micro-precision, micro-
recall, micro-F1) of the systems is tested upon 21 different test cases. Specifically, we summed
up the individual true positives, false positives and false negatives based on the system results
for the different ontology matching tasks and, in the next step, we computed the performance
metrics. The original reference alignment is not closed under the alignment relation, so the
transitive closure should be computed before proceeding on the evaluation of the systems.

Schema.org - DBpedia Alignment: It corresponds to the incomplete mapping between
Schema.org* and DBpedia® ontologies. Schema.org [87] is a collaborative, community activity
with a mission to create, maintain, and promote schemas for structured data on the Internet,
on web pages, in email messages, and beyond. On the other hand, DBpedia [131] is a crowd-
sourced community effort to extract structured information from Wikipedia and make this
information available on the Web. This alignment corresponds to a real case scenario between
two of the most widely used ontologies in the web today.

3.3.4 Experimental Results

All the systems presented in the Conference dataset experiments (Table 3.1) fall into the cate-
gory of feature engineering. CroMatcher [88], AML [38], XMap [52] perform ontology matching
based on heuristic methods that rely on aggregation functions. LogMap and LogMapBio [106]
use logic-based reasoning over the extracted features and cast the ontology matching to a

satisfiability problem.

System Precision Recall Micro-F1

DeepAlignment 0.71 0.80 0.75

CroMatcher 0.76 0.69 0.72

AML 0.79 0.65 0.71

DeepAlignment. 0.68 0.68 0.68

XMap 0.81 0.58 0.67

LogMap 0.79 0.58 0.66

LogMapBio 0.75 0.58 0.65

StringEquiv 0.83 0.50 0.62

Table 3.1 - Results on Conference OAEI dataset. StringEquiv corresponds to ontology matching
by simple string equivalence check.

Table 3.1 shows the performance of our algorithm compared to the five top performing systems
on the Conference 2016 benchmark, according to the results published in OAELS® It should be
noted that, traditionally, the performance of ontology matching systems is evaluated giving
equal importance to both precision and recall [62, p. 304]. DeepAligment achieves the highest
micro-F1 measure and the highest recall. We were able to perform statistical significance test
only for the two systems that were publicly available. DeepAlignment is significantly better
than both of them with a p-value < 0.05. In order to explore the performance effect of the
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Lexical Information
Synonyms Antonyms
- - 0.63 0.55 0.59

Precision Recall Micro-F1

- v 0.67 0.51 0.58
v - 0.69 0.72 0.71
v Restricted 0.65 0.78 0.71
v v 0.71 0.80 0.75

Table 3.2 — Experiments on Conference OAEI dataset.

many-to-many mappings that DeepAlignment produces we also did experiments where our
extendMap algorithm was not used, thus generating only one-to-one alignments. We give
these results under the DeepAlignment. listing. It can be seen that DeepAlignment.. achieves
the same level of recall as the state-of-the-art systems and this with no feature engineering.
When we compare the performance of DeepAlignment.. and DeepAlignment we see that the
use of extendMap generates correct many-to-many alignments and thus it does not produce
large numbers of false positives. In any case, however, we retain a small precision which
indicates a semantic similarity and semantic association coalescence.

We perform additional experiments to investigate the importance of the counter-fitting step,
which are summarized in Table 3.2. In all of these experiments, we have applied the extendMap
algorithm. The last row of Table 3.2, corresponds to the best result reported in Table 3.1. The
first row gives the results of executing the algorithm without the counter-fitting process, just
by providing the Paragram-SL.999 word vectors. The results support the importance of the
counter-fitting process, which succeeds in tailoring the word embeddings to the ontology
matching task. By injecting only antonymy information (second row), we observe an increase
in precision, but a decrease in recall. This behavior is due to the fact that the antonym repel
factor imposes an orthogonality constraint to the word vectors, leading to higher values
of the dis distance. In absence of synonymy information, the majority of words tend to
become “antonymous". The third row of Table 3.2 gives the performance when we also include
synonyms extracted from PPDB but no antonymy information. We can see that this leads to
alarge increase in all the recorded performance metrics. Finally, we also include antonymy
information only from the Cmt and the Conference ontologies found in the Conference dataset.
This has two effects: an increase in recall, but a decrease in precision. This can be explained by
the fact that even though all ontologies describe the same domain the description granularity
provided by each of them is not capable of giving all the antonymy relations needed to provide
more refined alignments.

System Recall
DeepAlignment,,  0.82
LogMap 0.5
AML 0

Table 3.3 — Results on aligning Schema.org and DBpedia ontologies.
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Table 3.3 summarizes the results obtained by aligning the Schema.org and DBpedia ontologies.
The fact that the alignment is incomplete restricts us on evaluating the performance only in
terms of the recall metric. To make the comparison as fair as possible, we did not apply the
extendMap algorithm. We should highlight that we have applied the recounter-fitting process
because the synonyms that we have extracted from the PPDB and WikiSynonyms were very
few compared to the constructed “antonyms". The results of the LogMap system show a quite
similar behavior with the experiments conducted in the conference dataset. However the
recall of AML is zero. It discovers none of the available alignments even though it manages
to recall other quite reasonable matchings, which, however, are not included in the ground
truth. According to our understanding, this might be an indication of the absence of domain
transferability of the extracted features as well as of the implemented metrics.

Parameters
- Recall
Recounter-fitting Synonyms Antonyms
- - - 0.71
- - v 0.76
- v - 0.84
- v v 0.76
v v Restricted  0.82

Table 3.4 — Experiments on aligning Schema.org and DBpedia ontologies. Restricted indicates
that we choose only a small random subset of the antonymy constraints.

We summarize in Table 3.4 the results of the experiments we did on the two domains to
study the effect of counter-fitting and recounter-fitting. As we can see, even without the
counter-fitting, the semantic embeddings show quite good results. This provides evidence on
the importance of using representation learning techniques instead of the classical feature
engineering choice. By injecting only antonymy information (second row), we observe a
different behavior in the recall metric compared to the one presented in Table 3.2. This can be
explained by the fact that while the antonym repel factor imposes an orthogonality constraint,
its effect is by no means universal to the whole word vector space. Therefore, a misalignment
can be pushed far away leaving the space open for a true alignment to be detected. With the
addition of the extracted synonyms, we observe an increase of 0.13 in the recall. However, the
insertion of the extracted “antonyms" leads to lower performance. This shows practically the
importance of applying the recounter-fitting process that allows both the synonym attract and
the antonym repel factors to affect the word vectors.

3.3.5 Further Analysis

DeepAlignment versus initial word vectors: To investigate the impact of the initial pre-
trained word vectors on DeepAlignment’s performance, we carried out two additional experi-
ments, this time using a set of word2vec vectors [149], trained on the Google news dataset’. We
report and compare the obtained results to the ones produced by the use of Paragram-S1.999
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Counter Word Conference Dataset Schema.org - DBpedia Dataset
fitting Vectors | Precision Recall Micro-F1 Recall
- word2vec 0.64 0.52 0.58 0.74
- Paragram 0.63 0.55 0.59 0.71
v word2vec 0.67 0.75 0.71 0.75
v Paragram 0.71 0.80 0.75 0.76

Table 3.5 — Dependency of DeepAlignment’s performance on the choice of the initial word
vectors. The reported results for the Schema.org - DBpedia scenario were obtained without
recounter-fitting.

vectors in Table 3.5. In the absence of counter-fitting, the word2vec vectors achieve better
results on the Schema.org - DBpedia scenario, however, they exhibit lower performance on
the conference dataset. This observation is in accordance with recent studies [98] which show
that different word vectors optimization objectives yield representations tailored to different
applications and domains. After the application of the counter-fitting process, the use of
Paragram-S1.999 vectors leads to a better performance. This fact provides additional evidence
that word vectors which reflect semantic similarity are better candidates for being further
tailored to the ontology matching task.

DeepAlignment versus lexicons’ coverage: The choice and coverage of the different lexi-
cal resources may have a determining factor on the performance of DeepAlignment. For
that reason, we present in Table 3.6 a set of experiments where we exclude a part of the
synonymy/antonymy relations from the various semantic lexicons. For both the matching sce-
narios, we experimented with excluding all the antonyms from PPDB and WikiSynonyms. For
the conference dataset, we additionally experimented with including only a subset of PPDB

Dataset Experimental Setting  Precision Recall Micro-F1
N f
0 anonyms Fom 067 076 071
PPDB & WikiSynonyms
Conference Only a subset of
PPDB synonyms 0.67 0.76 0.71
All available 071 080 075
synonyms/antonyms
No antonyms from 0.76
PPDB & Wiki ) ' )
Schema.org DBpedia & WikiSynonyms
No synonyms from ] 0.73 ]
WikiSynonyms ’
All availabl
available ) 0.76 ]

synonyms & antonyms

Table 3.6 — Dependency of DeepAlignment’s performance on the external resources’ coverage.
The reported results for the Schema.org - DBpedia scenario were obtained without recounter-
fitting.
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synonyms (50% coverage). Finally, we carried out one experiment where we excluded all the
synonymy information extracted from WikiSynonyms for the Schema.org - DBpedia scenario.
The resulted performance is presented in the rows 1, 4, 2, 5 of Table 3.6, respectively. The
reported results provide evidence that the greater the coverage of synonyms and antonyms,
the greater the performance of DeepAlignment will be.

3.4 Conclusions

In this chapter, we propose the refinement of pre-trained word vectors with the purpose of
deriving ontological entity descriptions which are tailored to the ontology matching task.
The refined word representations are learned so that they incorporate domain knowledge
encoded in ontologies as well as knowledge extracted from semantic lexicons. Unlike previous
approaches that exploited machine learning, the absence of explicit information relevant
to the ontology matching task during the refinement process enables DeepAlignment to
overcome the small sample size that characterises the problem of ontology matching. We
perform ontology matching by applying the Stable Marriage Assignment algorithm over the
entities’ pairwise distances. Our experimental results demonstrate significant performance
gains over the state-of-the-art and show a novel way to study the problem of ontology matching
under the setting of NLP.
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Phrase-level Representation Learning
for Ontology Alignment

“Never ask for the meaning of a word in isolation, but only in the context
of a sentence.”

Gottlob Frege, Introduction to The Foundations of Arithmetic

In the previous chapter, we presented a representation learning based ontology alignment
system which by exploiting transfer learning bypassed many of the obstacles that hindered the
application of machine learning to the problem of ontology alignment. The system showed
state-of-the-art performance demonstrating significant improvements with regard to the recall
metric, however, at the cost of a certain amount of degradation in the precision metric. To
tackle this shortcoming, we propose to go beyond the retrofitting of single word embeddings
by exploiting a novel mechanism that also allows the retrofitting of phrase embeddings. This
enables to make use of all the available paraphrase information and, thus, to better distinguish
between true cases of semantic similarity and cases of semantic association. Additionally,
we propose an outlier detection mechanism that successfully detects misalignments without
significantly harming the recall capability of the system. Our results provide evidence that
the approach produces embeddings that are especially well tailored to the ontology matching
task, while overcoming the previous obstacles.

4.1 Introduction

Ontologies seek to alleviate the Tower of Babel effect by providing standardized specifications
of the intended meanings of the terms used in given domains. Formally, an ontology is
“a representational artifact, comprising a taxonomy as proper part, whose representations
are intended to designate some combinations of universals, defined classes and certain
relations between them" [200]. Ideally, in order to achieve a unique specification for each
term, ontologies would be built in such a way as to be non-overlapping in their content. In
many cases, however, domains have been represented by multiple ontologies and there thus
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arises the task of ontology matching, which consists in identifying correspondences among
entities (types, classes, relations) across ontologies with overlapping content.

Different ontological representations draw on the different sets of natural language terms used
by different groups of human experts [63]. In this way, different and sometimes incommensu-
rable terminologies are used to describe the same entities in reality. This issue, known as the
human idiosyncrasy problem [200], constitutes the main challenge to discovering equivalence
relations between terms in different ontologies.

Ontological terms are typically common nouns or noun phrases. According to whether they
do or do not include prepositional clauses [253], the latter may be either composite (for
example Neck of femur) or simple (for example First tarsometatarsal joint or just Joint). Such
grammatical complexity of ontology terms needs to be taken into account in identifying
semantic similarity. But account must be taken also of the ontology’s axioms and definitions,
and also of the position of the terms in the ontology graph formed when we view these terms
as linked together through the is_a (subtype), part_of and other relations used by the ontology.

The primary challenge to identification of semantic similarity lies in the difficulty we face
in distinguishing true cases of similarity from cases where terms are merely “semantically
associated”®. As a concrete example, the word “harness" is semantically associated with the
word “horse" because a harness is often used on horses [136]. Yet the two expressions are
not semantically similar. The sorts of large ontologies that are the typical targets of semantic
similarity identification contain a huge number of such semantically associated term pairs.
This difficulty in distinguishing similarity from semantic association is a well-studied problem
in both cognitive science [222] and NLP [118].

Traditionally, feature engineering has been the predominant way to approach the ontology
matching problem [197]. In machine learning, a feature is an individual measurable property
of a phenomenon in the domain being observed [21]. Here we are interested in features of
terms, for instance the number of incoming edges when a term is represented as the vertex of
an ontology graph; or a terms’s tf-idf value — which is a statistical measure of the frequency of
aterm’s use in a corpus [207]. Feature engineering consists in crafting features of the data that
can be used by machine learning algorithms in order to achieve specific tasks. Unfortunately
determining which hand-crafted features will be valuable for a given task can be highly time
consuming. To make matters worse, as Cheatham and Hitzler have recently shown, the
performance of ontology matching based on such engineered features varies greatly with the
domain described by the ontologies [32].

As a complement to feature engineering, attempts have been made to develop machine-
learning strategies for ontology matching based on binary classification [141]. This means a
classifier is trained on a set of alignments between ontologies in which correct and incorrect
mappings are identified with the goal of using the trained classifier to predict whether an
assertion of semantic equivalence between two terms is or is not true. In general, the number
of true alignments between two ontologies is several orders of magnitude smaller than the
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number of all possible mappings, and this introduces a serious class imbalance problem
[140]. This abundance of negative examples hinders the learning process, as most data mining
algorithms assume balanced data sets and so the classifier runs the risk of degenerating into a
series of predictions to the effect that every alignment comes to be marked as a misalignment.

Both standard approaches thus fail: feature engineering because of the failure of general-
ization of the engineered features, and supervised learning because of the class imbalance
problem. Our proposal is to address these limitations through the exploitation of unsuper-
vised learning approaches for ontology matching drawing on the recent rise of distributed
representations (DRs), in which for example words and sentences are embedded in a high-
dimensional Euclidean space [37, 149, 150, 176, 129] in order to provide a means of capturing
lexical and sentence meaning in an unsupervised manner. The way this works is that the
machine learns a mapping from words to high-dimensional vectors which take account of
the contexts in which words appear in a plurality of corpora. Vectors of words that appear in
the same sorts of context will then be closer together when measured by a similarity function.
That the approach can work without supervision stems from the fact that meaning capture is
merely a positive externality of context identification, a task that is unrelated to the meaning
discovery task.

Traditionally, corpus driven approaches were based on the distributional hypothesis, i.e. the
assumption that semantically similar or related words appear in similar contexts [93]. This
meant that they tended to learn embeddings that capture both similarity (horse, stallion)
and relatedness (horse, harness) reasonably well, but do very well on neither [118, 97]. In an
effort to correct for these biases a number of pre-trained word vector refining techniques were
introduced [70, 118, 156]. These techniques are however restricted to retrofitting single words
and do not easily generalize to the sorts of nominal phrases that appear in ontologies. Wieting
et al. [240, 239] make one step towards addressing the task of tailoring phrase vectors to the
achievement of high performance on the semantic similarity task by focusing on the task of
paraphrase detection. A paraphrase is a restatement of a given phrase that use different words
while preserving meaning. Leveraging what are called universal compositional phrase vectors
[153] for the purposes of paraphrase detection provides training data for the task of semantic
similarity detection which extends the approach from single words to phrases. Unfortunately,
the result still fails as regards the problem of distinguishing semantic similarity and semantic
association on rare phrases [240] — constantly appearing on ontologies — which thus again
harms performance in ontology matching tasks.

In this work, we tackle the aforementioned challenges and introduce a new framework for
representation learning based ontology matching. Our ontology matching algorithm is struc-
tured as follows: To represent the nouns and noun-phrases in an ontology, we exploit the
context information that accompanies the corresponding expressions when they are used
both inside and outside the ontology. More specifically, we create vectors for ontology terms
on the basis of information extracted not only from natural language corpora but also from
terminological and lexical resources and we join this with information captured both explicitly
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and implicitly from the ontologies themselves. Thus we capture contexts in which words are
used in definitions and in statements of synonym relations. We also draw inferences from the
ontological resources themselves, for example to derive statements of semantic association
—the absence of a synonymous statement between two terms with closely similar vectors is
taken to imply that as a statement of semantic association obtains between them. We then
cast the problem of ontology matching as an instance of the Stable Marriage problem [73]
discovering in that way terminological mappings in which there is no pair of terms that would
rather be matched to each other than their current matched terms. In order to compute the
ordering of preferences for each term, that the Stable Marriage problem requires, we use
the terminological representations’ pairwise distances. We compute the aforementioned
distances using the cosine distance over the phrases representations learned by the phrase
retrofitting component. Finally, an outlier detection component sifts through the list of the
produced alignments so as to reduce the number of misalignments.

Our main contributions in this chapter are: (i) We demonstrate that word embeddings can
be successfully harnessed for ontology matching; a task that requires phrase representations
tailored to semantic similarity. This is achieved by showing that knowledge extracted from
semantic lexicons and ontologies can be used to inscribe semantic meaning on word vectors.
(ii) We additionally show that better results can be achieved on the discrimination task between
semantic similarity and semantic association, by casting the problem as an outlier detection.
To do so, we present a denoising autoencoder architecture, which implicitly tries to discover a
hidden representation tailored to the semantic similarity task. To the best of our knowledge,
the overall architecture used for the outlier detection as well as its training procedure is
applied for the first time to the problem of discriminating among semantically similar and
semantically associated terms. (iii) We use the biomedical domain as our application, due to
its importance, its ontological maturity, and to the fact that it constitutes the domain with
the larger ontology alignment datasets owing to its high variability in expressing terms. We
compare our method to state-of-the-art ontology matching systems and show significant
performance gains. Our results demonstrate the advantages that representation learning bring
to the problem of ontology matching, shedding light on a new direction for a problem studied
for years in the setting of feature engineering.

4.2 Methods

We present a representation learning based ontology matching algorithm that approaches the
problem as follows. We propose an ontology matching system that is composed of two neural
network components which learn which term alignments correspond to semantic similarity.
The first component discovers a large amount of true alignments between two ontologies but
is prone to errors. The second component corrects these errors. We present below an overview
of the two components.

We use the ontologies to generate negative training examples that correspond to semanti-
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cally associated examples, and additional knowledge sources to extract paraphrases that will
correspond to positive examples of semantic similarity. We use these training data to refine
pre-trained word vectors so that they are better suited for the semantic similarity task. This
task is accomplished by the first component, which we call phrase retrofitting component,
that retrofits word vectors so that when they are used to represent sentences, the produced
sentence embeddings will be tailored to semantic similarity. We represent each ontological
term as the bag of words of its textual description? which we complement with the refined
word embeddings. We construct sentence representations of the terms’ textual description by
averaging the phrase’s aforementioned word vectors. To inscribe semantic similarity onto the
sentence embeddings, we construct an optimization criterion which rewards matchings of se-
mantically similar sentence vectors and penalizes matchings of semantically associated ones.
Thus the optimization problem adapts word embeddings so that they are more appropriate to
the ontology matching task. Nonetheless, one of the prime motivations of our work comes
from the observation that although supervision is used to tailor phrase embeddings to the
task of semantic similarity, the problem of discriminating semantically similar vs semantically
associated terms is not targeted directly. This lack will lead to the presence of a significant
number of misalignments, hindering the performance of the algorithm.

For that reason, we further study the discrimination problem in the setting of unsupervised out-
lier detection. We use the set of sentence representations produced by the phrase retrofitting
component to train an denoising autoencoder [231]. The denoising autoencoder (DAE) aims
at deriving a hidden representation that captures intrinsic characteristics of the distribution
of semantically similar terms. We force the DAE to leverage new sentence representations by
learning to reconstruct not only the original sentence but also its paraphrases, thus boosting
the semantic similarity information that the new representation brings. Since we are using
paraphrases to do so we bring in additional training data, doing essentially data augmentation
for the semantically similar part of the problem. The DAE corresponds to our second compo-
nent which succeeds in discovering misalignments by capturing intrinsic characteristics of
semantically similar terms. We match the entities of two different ontologies using the Stable
Marriage algorithm over the terminological embeddings’ pairwise distances. We compute the
aforementioned distances using the cosine distance. Finally, we iteratively pass through all
the produced alignments and we discard those that violate a threshold which corresponds to
an outlier condition.

4.2.1 Preliminaries

We introduce some additional notation that we will use throughout this chapter. Let sen; =
{w{, wé, ..., w’ } be the phrasal description® of a term i represented as a bag of m word vectors.
We compute the sentence representation of the entity i, which we denote s;, by computing the
mean of the set sen;, as per [153]. Let s;, Sj € R4 be two d-dimensional vectors that correspond
to two sentence vectors, we compute their cosine distance as follows: dis(s;, s;) = 1—cos(s;, s;).
In the following, d will denote the dimension of the pre-trained and retrofitted word vectors.
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For x € R, we denote the rectifier activation function as: 7(x) = max(x,0), and the sigmoid

1
1+e "

function as: o(x) =

4.2.2 Building Sentence Representations

In this section, we describe the neural network architecture that will produce sentence em-
beddings tailored to semantic similarity. Quite recently several works addressed the challenge
of directly optimizing word vectors to produce sentence vectors by averaging the bag of the
word vectors [240, 116, 98]. The interplay between semantical and physical intuition is that
word vectors can be thought as corresponding to the positions of equally weighted masses,
where the center of their masses provides information of the mean location of their semantic

)«

distribution. Intuitively, the word vectors’ “center of the mass” provide a means for measuring
where the semantic content primarily “concentrates”. Despite the fact that vector addition
is insensitive to word order [153], it has been proven that this syntactic agnostic operation
provides results that compete favorably with more sophisticated syntax-aware composing
operations [98]. We base our phrase retrofitting architecture on an extension of the Siamese
CBOW model [116]. The fact that Siamese CBOW provides a native mechanism for discrimi-
nating between sentence pairs from different categories explains our choice to build upon

this architecture.

Siamese CBOW is a log-linear model aiming at predicting a sentence from its adjacent sen-
tences; addressing the research question whether directly optimizing word vectors for the
task of being averaged leads to better suited word vectors for this task compared to word2vec
[150]. Let V = {v1, vy,... vn} be an indexed set of word vectors of size N. The Siamese CBOW
model transforms a pre-trained vector set V into a new one, V' = {1}, v3,...v}}, based on
two sets of positive, S}, and negative, S;, constraints for a given training sentence s;. The
supervised training criterion in Siamese CBOW rewards co-appearing sentences while penal-
izing sentences that are unlikely to appear together. Sentence representations are computed
by averaging the sentence’s constituent word vectors. The reward is given by the pairwise
sentence cosine similarity over their learned vectors. Sentences which are likely to appear
together should have a high cosine similarity over their learned representations. In the initial
paper of Siamese CBOW [116], the set ST corresponded to sentences appearing next to a given
si, whereas S; corresponded to sentences that were not observed next to s;.

Since we want to be able to differentiate between semantically similar and semantically
associated sentences we let the sets S| and S; to be sentences that are semantically similar
and semantically associated to a given sentence s;. In the rest of the section we revise the main
elements of the Siamese CBOW architecture and describe the modifications we performed in
order to exploit it for learning sentence embeddings that reflect semantic similarity. To take
advantage of the semantic similarity information already captured in the initial word vectors,
an important characteristic as demonstrated in various word vectors retrofitting techniques
[70, 156, 240], we use knowledge distillation [99] to penalize large changes in the learned word
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vectors with regard to the pre-trained ones.

Our paraphrase retrofitting model retrofits a pre-trained set of word vectors with the purpose
of leveraging a new set V' by solving the following optimization problem:

H‘l/i,nKsLs(V') +x.pLxp(V, V), 4.1)

where ks and ki p are hyperparameters controlling the effect of Lg(V’) and Lxp(V, V') losses,
accordingly. The Lg(V') term is defined as % Zﬁ.\i 1 Ls;» where N denotes the number of the
training examples. The Lg, term corresponds to categorical cross-entropy loss defined as:

Ls,=— ).  plsi,s;)-log(pe(si,sj)), (4.2)

s;je{Sf u ST}

where p(-) is the target probability the network should produce, and py(:) is the prediction it
estimates based on parameters 8, using Equation 4.4. The target distribution simply is:

1 . +
-, ifs;eS]
P(si,sj)z{ s NS 4.3)

0, iijESl._.

For instance, if there are two positive and two negative examples, the target distribution is
(0.5, 0.5, 0, 0). For a pair of sentences (s;, s;), the probability pg(s;, sj)is constructed to reflect
how likely it is for the sentences to be semantically similar, based on the model parameter 6.
The probability py(s;, s;) is computed on the training data set based on the softmax function

as follows:
1/T

(cos(sf,s;’))

(4.4)

po(si,sj) = 0 on1T’
Zske{s; ush) e(cos(si S0))

where sg denotes the embedding of sentence sy, based on the model parameter 6. To en-
courage the network to better discriminate between semantically similar and semantically
associated terms, we extend the initial architecture by introducing the parameter T. The
parameter T, named temperature, is based on the recent work of [99, 135]. Hinton et al. [99]
suggest that setting T > 1 increases the weight of smaller logit (the inputs of the softmax
function) values, enabling the network to capture information hidden in small logit values.

To construct the set S*, we extract pairs of synonyms from semantic lexicons and the ontolo-
gies themselves. To construct the set S~, we sample a set of semantically associated terms
from the ontologies to be matched. Given a sentence s;, we compute its cosine distance with
every term from the two ontologies to be matched, based on the initial pre-trained word
vectors. Thereafter, we choose the n terms demonstrating the smaller cosine distance to be
the negative examples. To account for that fact that among these n terms there may be a
possible alignment, we exclude the n. closest terms. Equivalently, given the increasingly
sorted sequence of the cosine distances, we choose the terms in index positions starting from
n. up to n + n.. For computational efficiency, we carry this process out only once before the

41



Chapter 4. Phrase-level Representation Learning for Ontology Alignment

EPrediction

§Cosine

i Layer B

EAverage 0000 0000

iLookup [5555]~ [0660] © [0060]  [0660]  [0660]  [0606]  [0600] [06660 Gassl - [Goss] - [o5
"""""""""" Noun Phrase"""m"m Paraphrase of Noun Phrase NegauveExample(l) Negative Example (n)

Figure 4.1 — Phrase Retrofitting architecture based on a Siamese CBOW network [116] and
Knowledge Distillation [99]. The input projection layer is omitted.

training procedure starts.

Hinton et al. [99] found that using the class probabilities of an already trained network
as “soft targets” for another one network constitutes an efficient way of communicating
already discovered regularities to the latter network. We exploit, thus, knowledge distillation
to emit the original semantic information captured in the pre-trained word vectors to the
new ones leveraged by Siamese CBOW. Therefore, we add the Knowledge Distillation loss
Lxp(V, V) = %Zﬁ\il Lip, to the initial Siamese CBOW’s loss. The Lgp, term:

Lgp,=— Y, Po,(si,sj)-1og(pa(si,s))), (4.5)
sje{StuST}
is defined as the categorical cross-entropy between the probabilities obtained with the initial
parameters (i.e. 07) and the ones with parameters 0.

Based on the observations of Hinton et al. [99], these “soft targets” act as an implicit regural-
ization, guiding the Siamese CBOW’s solution closer to the initial word vectors. We would like
to highlight that we experimented with various regularizers, such as the ones presented in the
works of [70, 239, 156, 34], however, we obtained worse results than the ones reported in our
experiments. Figure 4.1 summarizes the overall architecture of our phrase retrofitting model.
The dashed rectangles in the Lookup Layer correspond to the initial word vectors, which are
used to encourage the outputs of the Siamese CBOW network to approximate the outputs
produced with the pre-trained ones in every epoch. The word embeddings are averaged in the
next layer to produce sentence representations. The cosine similarities between the sentence
representations are calculated in the penultimate layer and are used to feed a softmax function
so as to produce a final probability distribution. Specifically, we compute the cosine similarity
between the sentence representation of the noun phrase and the sentence representations of
every positive and negative example of semantic similarity. In the final layer, this probability
distribution is used to compute two different categorical cross entropy losses. The left loss
encourages the probability distribution values to approximate a target distribution, while the
right one penalizes large changes in the learned word vectors with regard to the pre-trained
ones. The double horizontal lines in the Cosine Layer highlight that these rectangles denote in
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fact the same probability distribution, computed in the penultimate layer.

4.2.3 Outlier Detection

The extension of the Siamese CBOW network retrofits pre-trained word vectors to become
better suited for constructing sentence embeddings that reflect semantic similarity. Although
we sample appropriate negative examples (i.e., semantically associated terms) from the ontolo-
gies to be matched, we will never have all the negative examples needed. Moreover, allowing a
larger number, n, of negative examples increases the computation needed making it inefficient.
We depart from these problems by further casting the problem of discriminating between
semantically similar and related terms as an outlier detection. To leverage an additional set of
sentence representations more robust to semantic similarity, we use the hidden representation
of a Denoising Autoencoder (DAE) [231].

The Siamese CBOW network learns to produce sentence embeddings of ontological terms that
are better suited for the task of semantic similarity. We now use the learned sentence vectors to
train a DAE. We extend the standard architecture of DAEs to reconstruct not only the sentence
representation fed as input but also paraphrases of that sentence. Our idea is to improve
the sentence representations produced by the Siamese CBOW and make them more robust
to paraphrase detection. At the same time, this constitutes an efficient data augmentation
technique; very important in problems with relatively small training data sets.

We train the autoencoder once the training of the Siamese CBOW network has been completed.
Even if layer-wise training techniques [19] are outweighed nowadays by end-to-end training,
we decide to adopt this strategy for two reasons. Firstly, we aim to capture with the DAE
intrinsic characteristics of the distribution of the semantically similar terms. DAEs have been
proven to really capture characteristics of the data distribution, namely the derivative of the
log-density with respect to the input [6]. However, training the DAE on a dataset that does not
reflect the true distribution of semantically similar terms introduces surely a barrier to our
attempt. Therefore, we leverage in advance sentence representations, through the Siamese
CBOW network, more robust to semantic similarity; an action that allows the DAE to act
on a dataset with significantly less noise and less bias. Secondly, combining the extended
Siamese CBOW architecture together with the DAE and training them end-to-end significantly
increases the number of the training parameters. This increase is a clear impediment to a
problem lacking an oversupply of training data.

Let x, y € R? be two d-dimensional vectors, representing the sentence vectors of two para-
phrases. Our target is not only to reconstruct the sentence representation from a corrupted
version of it, but also to reconstruct a paraphrase of the sentence representation based on
the partially corrupted one. The corruption procedure, used for regularising the autoencoder,
that we followed in our experiments is the following: for each input x, a fixed number of [vd]
(0 < v < 1) components are chosen at random, and their value is forced to 0, while the others
are left untouched. The corrupted input X is then mapped, as with the basic autoencoder,
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Figure 4.2 — Autoencoder architecture for outlier detection.

to a hidden representation i = 7(W % + b) from which we reconstructa z=o(W'h+ b’). The
dimension dj, of the hidden representation & € R% is treated as a hyperparameter. Similar to
the work in [231], the parameters are trained to minimize, over the training set, an average
reconstruction error. However, we aim not only to reconstruct the initial sentence but also its
paraphrases. For that reason, we use the following reconstruction loss: L(x, z) + L(y,z) =

d
=— ) [xplogzi + (1 — xp) log(1 — zi)]

k=1 (4.6)

d
=) lyklogzi + (1 - yi)log(l — zx)].
k=1
The xy, zx, yx correspond to the Cartesian coordinates of vectors x, z and y, respectively. The
overall process is depicted in Figure 4.2. In this figure, the Lookup and Average layers are
similar to the ones depicted in Figure 4.1. A sentence representation x is corrupted to X. The
autoencoder maps it to & (i.e., the hidden code) and attempts to reconstruct both x and the
paraphrase embedding y.

4.2.4 Ontology Matching

The two components that we have presented were build in such a way so that they learn
sentence representations which try to disentagle semantic similarity and semantic association.
We will now use these representations to solve the ontology matching problem. To align the
entities from two different ontologies, we use the extension of the Stable Marriage Assignment
problem to unequal sets [73, 145]. This extension of the stable marriage algorithm computes
1 -1 mappings based on a preference m x n matrix, where m and n is the number of entities
in ontologies O and O’, respectively. In our setting, a matching is not stable if: (i) there is
an element e; € O which prefers some given element e; € O’ over the element to which e; is
already matched, and (ii) e; also prefers e; over the element to which e; is already matched.
These properties of a stable matching impose that it does not exist any match (e;, ;) by which
both e; and e; would be individually matched to more similar entities compared to the entities
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Figure 4.3 — Overall proposed ontology matching architecture.

to which they are currently matched. This leads to a significant reduction in the number of
misalignments due to semantic association, provided that the learned representations do
reflect the semantic similarity.

The steps of our ontology matching algorithm are the following: We represent each ontological
term as the bag of words of its textual description, which we complement with the refined
word vectors produced by the phrase retrofitting component. In the next step, we construct
phrase embeddings of the terms’ textual description® by averaging the phrase’s word vectors.
We cast the problem of ontology matching as an instance of the Stable Marriage problem using
the entities’ semantic distances. We compute these distances using the cosine distance over
the sentences vectors. We iteratively pass through all the produced alignments and we discard
those with a cosine distance greater than a certain threshold, ¢;. These actions summarize the
work of the first component. Note that the violation of the triangle inequality by the cosine
distance is not an impediment to the Stable Marriage algorithm [73].

In the next step, we create an additional set of phrase vectors by passing the previously
constructed phrase vectors through the DAE architecture. Based on this new embedding’s
set, we iteratively pass through all the alignments produced in the previous step and we
discard those that report a threshold violation. Specifically, we discard those that exhibit a
cosine distance, computed over the vectors produced by the DAE, greater than a threshold %.
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This corresponds to the final step of the outlier detection process as well as of our ontology
matching algorithm. The overall ontology matching procedure is illustrated in Figure 4.3.

4.3 Results & Discussion

In this section, we present the experiments we performed on biomedical evaluation bench-
marks coming from the Ontology Alignment Evaluation Initiative (OAEI), which organizes
annual campaigns for evaluating ontology matching systems. We have chosen the biomedical
domain for our evaluation benchmarks owing to its ontological maturity and to the fact that its
language use variability is exceptionally high [148]. At the same time, the biomedical domain
is characterized by rare words and its natural language content is increasing at an extremely
high speed, making hard even for people to manage its rich content [233]. To make matters
worse, as it is difficult to learn good word vectors for rare words from only a few examples [194],
their generalization on their ontology matching task is questionable. This is a real challenge
for domains, such as the biomedical, the industrial, etc, in which existence of words with rare
senses is typical. The existence of rare words makes the presence of the phrase retroffiting
component crucial to the performance of our ontology alignment framework.

4.3.1 Biomedical Ontologies

We give a brief overview of the four ontologies used in our ontology mapping experiments.
Two of them (the Foundational Model of Anatomy and the Adult Mouse anatomical ontologies)
are pure anatomical ontologies, while the other two (SNOMED CT and NCI Thesaurus) are
broader biomedical ontologies of which anatomy consists a subdomain that they describe
[253]. Although more recent versions of these resources are available, we refer to the versions
that appear in the Ontology Alignment Evaluation Initiative throughout this work in order to
facilitate comparisons across the ontology matching systems.

Foundational Model of Anatomy (FMA): is an evolving ontology that has been under devel-
opment at the University of Washington since 1994 [187, 170]. Its objective is to conceptualize
the phenotypic structure of the human body in a machine readable form.

Adult Mouse Anatomical Dictionary (MA): is a structured controlled vocabulary describing
the anatomical structure of the adult mouse [95].

NCI Thesaurus (NCI) provides standard vocabularies for cancer [45] and its anatomy subdo-
main describes naturally occurring human biological structures, fluids and substances.

SNOMED C(Clinical Terms (SNOMED): is a systematically organized machine readable col-
lection of medical terms providing codes, terms, synonyms and definitions used in clinical
documentation and reporting [56].
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4.3.2 Semantic Lexicons

We provide below some details regarding the procedure we followed in order to construct pairs
of semantically similar phrases. Let (word}, wordzl, ...,word},), be a term represented as a
sequence of m words. The strategy that we have followed in order to create the paraphrases is

the following: We considered all the contiguous subsequences of this term. Namely, we con-

1
(i+1)’°°

Vi,jeN:0<1i< j< m. Based on these contiguous subsequences, we queried the semantic

sidered all the possible contiguous subsequences of the form: (wordl.l, word - wordjl.),
lexicons for paraphrases. Below we give a brief summary of the semantic lexicons that we used
in our experiments:

ConceptNet 5: a large semantic graph that describes general human knowledge and how it is
expressed in natural language [208]. The scope of ConceptNet includes words and common
phrases in any written human language.

BabelNet: a large, wide-coverage multilingual semantic network [160, 161]. BabelNet inte-
grates both lexicographic and encyclopedic knowledge from WordNet and Wikipedia.

WikiSynonyms: a semantic lexicon which is built by exploiting the Wikipedia redirects to
discover terms that are mostly synonymous [42].

Apart from the synonymy relations found in these semantic lexicons, we have exploited the
fact that in some of the considered ontologies, a type may have one preferred name and some
additional paraphrases [253], expressed through multiple rdfs:label relations.

4.3.3 Training

We tuned the hyperparameters on a set of 1000 alignments which we generated by subsampling
the SNOMED-NCI ontology matching task.'® We chose the vocabulary of the 1000 alignments
so that it is disjoint to the vocabulary that we used in the alignment experiments, described
in the evaluation benchmarks, in order to be sure that there is no information leakage from
training to testing. We tuned to maximize the F1 measure. We trained with the following
hyperparameters: word vector has size (d) 200 and is shared across everywhere. We initialized
the word vectors from word vectors pre-trained on a combination of PubMed and PMC
texts with texts extracted from a recent English Wikipedia dump [181]. All the initial out-
of-vocabulary word vectors are sampled from a normal distribution (¢ =0, 02 =0.01). The
resulted hyperparameters controlling the effect of retrofitting ks and knowledge distillation
krp were 10° and 103, accordingly. The resulted size of the DAE hidden representation (dj,)
is 32 and v is set to 0.4. We used T = 2 according to a grid search, which also aligns with the
authors’ recommendations [99]. For the initial sampling of semantically associated terms,
we used: n, =2 and n = 7. The best resulted values for the thresholds were the following:
t1 = t, = 0.2. The phrase retrofitting model was trained over 15 epochs using the Adam
optimizer [119] with a learning rate of 0.01 and gradient clipping at 1. The DAE was trained
over 15 epochs using the Adadelta optimizer [251] with hyperparameters e = 1e—8 and p = 0.95.
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4.3.4 Evaluation Benchmarks

We provide some details regarding the respective size of each ontology matching task in
Table 4.1. The reference alignment of the MA - NCI matching scenario is based on the work
of Bodenreider et al. [23]. To represent each ontological term for this task, we used the
unique rdfs:label that accompanies every type in the ontologies. The alignment scenarios
between FMA - NCI and FMA - SNOMED are based on a small fragment of the aforementioned
ontologies. The reference alignments of these alignment scenarios are based on the UMLS
Metathesaurus [22], which currently consists the most comprehensive effort for integrating
independently developed medical thesauri and ontologies. To represent each ontological
term for these tasks, we exploited the textual information appearing on the rdf:about tag
that accompanies every type in the ontologies. We did not use the rdf:about tag on the
MA - NCI matching scenario, since their rdf:about tags provide a language agnostic unique
identifier with no direct usable linguistic information. We would like to note that since the
Stable Marriage algorithm provides one-to-one correspondences, we have only focused on
discovering one-to-one matchings. In addition, a textual preprocessing that we performed
led a small number of terms to degenerate into a single common phrase. This preprocessing
includes case-folding, tokenization, removal of English stopwords and words coappearing
in the vast majority of the terms (for example the word “structure” in SNOMED). Thereafter,
we present in Table 4.1 the number of one-to-one types’ equivalences remained after the

preprocessing step.
Ontology Matching between: #Matchings
Ontologyl #Types | Ontology Il #Types
MA 2744 NCI 3304 1489
FMA 3696 NCI 6488 2504
FMA 10157 SNOMED 13412 7774

Table 4.1 — Respective sizes of the ontology matching tasks.

Last but not least, it is of significant importance to highlight that the reference alignments
based on UMLS Metathesaurus will lead to an important number of logical inconsistencies
[108, 3]. As our method does not apply reasoning, whether it produces or not incoherence-
causing matchings is a completely random process. In our evaluation, we have chosen to
also take into account incoherence-causing mappings. However, various concerns can be
raised about the fairness of comparing against ontology matching systems that make use of
automated alignment repair techniques [178, 3]. For instance, the state-of-the-art systems
AML [67, 68], LogMap and LogMapBio [106], which are briefly described in the next section,
do employ automated alignment repair techniques. Our approach to use the original and
incoherent mapping penalizes these systems that perform additional incoherence checks.

Nonetheless, our choice to include inconsistence mappings can be justified in the following
way. First, it is a direct consequence of the fact that we approach the problem of ontology
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matching from the viewpoint of discovering semantically similar terms. A great number
of these inconsistent mappings do correspond to semantically similar terms. Second, we
believe that ontology matching can also be used as a curation process during the ontological
(re)design phase so as to alleviate the possibility of inappropriate terms’ usage. The fact that
two distinct truly semantically similar terms from two different ontologies lead to logical
inconsistencies during the integration phase can raise an issue for modifying the source
ontology [108]. Third, although ontologies constitute a careful attempt to ascribe the intended
meaning of a vocabulary used in a target domain, they are error prone as every human
artifact. Incoherence check lays on the assumption that both of the ontologies that are going
to be matched are indeed error-free representational artifacts. We decided not to make this
assumption.

Therefore, we have chosen to treat even the systems that employ automated alignment repair
techniques error-prone. For that reason, we considered appropriate to report the performance
of the aforementioned systems on the complete reference alignment in the next section.
Nevertheless, we refer the reader to the [3] for details on the performance of these systems
on incoherence free subsets of the reference alignment set. Under the assumption that the
ontologies to be matched are error-free, it can be observed that the automated alignment
repair mechanisms of these systems are extremely efficient; a fact that demonstrates the
maturity and the robustness of these methods.

4.3.5 Experimental Results

Table 4.2 shows the performance of our algorithm compared to the six top performing systems
on the evaluation benchmarks, according to the results published in OAEI Anatomy track
(MA - NCI) and in the Large BioMed track (FMA-NCI, FMA-SNOMED).® To check for the
statistical significance of the results, we used the procedure described in [250]. The systems
presented in Table 4.2 starting from the top of the table up to and including LogMapBio fall
into the category of feature engineering.!' CroMatcher [88], AML [67, 68], XMap [53] perform
ontology matching based on heuristic methods that rely on aggregation functions. FCA_Map
[255, 256] uses Formal Concept Analysis [241] to derive terminological hierarchical structures
that are represented as lattices. The matching is performed by aligning the constructed lattices
taking into account the lexical and structural information that they incorporate. LogMap and
LogMapBio [106] use logic-based reasoning over the extracted features and cast the ontology
matching to a satisfiability problem. Some of the systems compute many-to-many alignments
between ontologies. For a fair comparison of our system with them, we have also restricted
these systems in discovering one-to-one alignments. We excluded the results of XMap for the
Large BioMed track, because it uses synonyms extracted by the UMLS Metathesaurus. Systems
that use the UMLS Metathesaurus as background knowledge will have a notable advantage
since the Large BioMed track’s reference alignments are based on it.

We describe in the following the procedure that we followed in order to evaluate the perfor-
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System MA - NCI FMA-NCI FMA-SNOMED
P R F1 P R F1 P R F1

AML 0.943 094 0.941 | 0.908 0.94 0.924 | 0.938 0.784 0.854

CroMatcher 0.942 0912 0.927 - - - - - -

XMap 0.924 0.877 0.9 - - - - - -
FCA_Map 0.922 0.841 0.880 | 0.89 0.947 0918 | 0.918 0.857 0.886
LogMap 0.906 0.850 0.878 | 0.894 0.930 0.912 | 0.933 0.721 0.814
LogMapBio 0.875 0900 0.887 | 0.88 0.938 0.908 | 0.93 0.727 0.816
Wieting 0.804 0.879 0.839 | 0.840 0.857 0.849 | 0.867 0.851 0.859
Wieting+DAE(O) | 0.952 0.871 0.909 | 0.909 0.851 0.879 | 0.929 0.832 0.878
SCBOW 0.847 0917 0.881 | 0.899 0.895 0.897 | 0.843 0.866 0.855
SCBOW+DAE(O) | 0.968 0.913 0.94 | 0.976 0.892 0.932 | 0.931 0.856 0.892

Table 4.2 — Performance of ontology matching systems across the different matching tasks.
Bold and underlined numbers indicate the best F1-score and the best precision on each
matching task, respectively.

mance of the various ontology matching systems. Since the incoherence-causing mappings
were also taken into consideration, all the mappings marked as “?” in the reference align-
ment were considered as positive. To evaluate the discovery of one-to-one matchings, we
clustered all the m-to-n matchings and we counted only once when any of the considered
systems discovers any of the m-to-n matchings. Specifically, let T = {(e,=,€') | e€ O,€' € O’}
be a set of clustered m-to-n matchings. Once an ontology matching system discovers for
the first time a (e, =, ¢') € T, we increase the number of the discovered alignments. However,
whenever the same ontology matching system discovers an additional (e., =, ¢’,) € T, where
(e,=,¢€") # (ex,=,€.), we did not take this discovered matching into account. Finally, to eval-
uate the performance of AML, CroMatcher, XMap, FCA_MAP, LogMap, and LogMapBio, we
used the alignments provided by OAEI 2016° and applied the procedure described above to
get their resulted performance.

To explore the performance details of our algorithm, we report in Table 4.2 its performance
results with and without outlier detection. Moreover, we included experiments in which
instead of training word embeddings based on our extension of the Siamese CBOW, we have
used the optimization criterion presented in [239] to produce an alternative set of word vectors.
As before, we present experiments on which we exclude our outlier detection mechanism and
experiments on which we allow it.!? We present these experiments under the listings: SCBOW,
SCBOW+DAE(O), Wieting, Wieting+DAE(O), accordingly.

SCBOW+DAE(O) is the top performing algorithm in two of the three ontology mappings tasks
(FMA-NCI, FMA-SNOMED); in these two its F1 score is significantly better than that of all
the other algorithms. In MA-NCA its F1 score is similar to AML, the best system there, but
the performance difference is statistically significant. At the same time, SCBOW+DAE(O)
achieves the highest precision on two out of three ontology matching tasks. In terms of
recall, SCBOW+DAE(O) demonstrates lower performance in the ontology matching tasks.
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However, we would like to note that we have not used any semantic lexicons specific to the
biomedical domains compared to the other systems. For instance, AML uses three sources
of biomedical background knowledge to extract synonyms. Specifically, it exploits the Uber
Anatomy Ontology (Uberon), the Human Disease Ontology (DOID), and the Medical Subject
Headings (MeSH). Hence, our reported recall can be explained due to the lower coverage
of biomedical terminology in the semantic lexicons that we have used. Our motivation for
relying only on domain-agnostic semantic lexicons'® stems from the fact that our intention is
to create an ontology matching algorithm applicable to many domains. The success of these
general semantic lexicons for such a rich in terminology domain, provides additional evidence
that the proposed methodology may also generalize to other domains. However, further
experimentation is needed to verify the adequacy and appropriateness of these semantic
lexicons to other domains. It is among our future directions to test the applicability of our
proposed algorithm to other domains.

Comparing the recall of SCBOW and SCBOW+ DAE(O), we see that the incorporation of the
DAE produces sentence embeddings that are tailored to the semantic similarity task.!* The
small precision of SCBOW, in all experiments, indicates a semantic similarity and semantic
association coalescence. Considering both the precision and the recall metric, we can observe
that the outlier detection mechanism identifies misalignments while preserving most of the
true alignments. This fact provides empirical support on the necessity of the outlier detection.
To validate the importance of our phrase retrofitting component, we further analyze the
behavior of aligning ontologies based on the word embedding produced by running the
procedure described in [239] (listed as Wieting). As we can see SCBOW achieves statistically
significant higher recall than Wieting in all our experiments and in two of the three cases
statistically significant greater precision. This behavior indicates the superiority of SCBOW in
injecting semantic similarity to word embeddings as well as to produce word vectors tailored
to the ontology matching task. We further extended the Wieting experiment by applying
our outlier detection mechanism trained on the word vectors produced by the procedure
described in [239]. It can be seen that this extension leads to the same effects as the ones
summarized in the SCBOW - SCBOW+DAE(O) comparison. These results give evidence that
our DAE-based outlier detection component constitutes a mechanism applicable to various
sentence embeddings’ producing architectures.

4.3.6 Ablation Study

In this section, an ablation study is carried out to investigate the necessity of each of the
described components, as well as their effect on the ontology matching performance. Figure
4.4 shows a feature ablation study of our method. In Table 4.3, we give the descriptions of the
experiments. We conducted experiments on which the phrase retrofitting component was
not used, hence the ontology matching task was only performed based on the pre-trained
word vectors. Moreover, we have experimented on performing the ontology matching task
with the features generated by the DAE. Our prime motivation was to test whether the features
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Figure 4.4 — Feature ablation study of our proposed approach across all the experimental

ontology matching tasks.

produced by the DAE could be used to compute the cosine distances needed for estimating
the preference matrix used by the Stable Marriage’s algorithm. Hence, we differentiate in this
subsection and we allow the DAE features to be used for Matching and/or Outlier Detection.

To begin with, it can be observed that all the performance metrics’ figures undergo the same
qualitative behavior. This result demonstrates that our algorithm exhibits a consistent behav-
ior under the ablation study across all the experiments, which constitutes an important factor
for inducing conclusions from experiments. The experiment W2V gives the results of execut-
ing the algorithm without the phrase retrofitting process, just by providing the pre-trained
word vectors [181]. The performance of W2V in terms of Precision/Recall is systematically
lower compared to all cases in which the initial word2vec vectors are retrofitted. These results
support the importance of the phrase retrofitting process (experiments of which are presented
under the listing SCBOW in Figure 4.4), which succeeds in tailoring the word embeddings to
the ontology matching task. The pre-trained word vectors, even though they were trained
on PubMed and PMC texts, retain small precision and recall. This fact indicates a semantic
similarity and semantic association coalescence and sheds light on the importance of the

Experiment’s Code: Phrase DAE Features:
Retrofitting Matching Outlier Detection

wav - - -
DAE(O) - - v
DAE(M) - v -
DAEMMO) - v v
SCBOW v - -
SCBOW+DAE(O) v - v
SCBOW+DAE(M) v v -
SCBOW+DAE(MO) v v v

Table 4.3 — Ablation study experiment’s listings.
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Terminology to be matched Matching based on SCBOW Matching based on word2vec

MA-NCI

gastrointestinal tract digestive system respiratory tract

tarsal joint carpal tarsal bone metacarpo phalangeal joint

thyroid gland epithelial tissue thyroid gland medulla prostate gland epithelium

FMA-NCI

cardiac muscle tissue heart muscle muscle tissue

set of carpal bones carpus bone sacral bone

white matter of telencephalon brain white matter white matter

FMA-SNOMED

zone of ligament of ankle joint accessory ligament of ankle joint | entire ligament of elbow joint

muscle of anterior compartment entire interosseus muscle
compartment of lower leg

ofleg of hand

dartos muscle dartos layer of scrotum tendon of psoas muscle

Table 4.4 — Sample misalignments produced by aligning ontologies using either SCBOW or
word2vec vectors.

retrofitting procedure.

Training the DAE on the pre-trained word vectors - DAE(O) - adds a significant performance
gain on precision, which witnesses the effectiveness of the architecture for outlier detection.
However, DAE(O)’s precision is almost the same as the one presented in the SCBOW exper-
iment. Only when the phrase retrofitting component is combined with the DAE for outlier
detection - SCBOW+DAE(O) - we manage to surpass the aforementioned precision value
and achieve our best F1-score. Finally, our experiments on aligning ontologies by only using
the DAE features demonstrate that these features are inadequate for this task. One prime
explanation of this behavior is that DAE features are only exposed to synonymy information.
At the same time, the dimensionality reduction of DAE features may lead them to lose a lot of
valuable information captured in them for discriminating between semantically similar and
semantically associated terms. Note also that the preference matrix required by the Stable
Marriage solution requires each term of an ontology O to be compared across all the possible
terms of another ontology O'. Thereafter, the vectors based on which the preference matrix will
be computed need to capture the needed information adequate for discriminating between
semantically similar and semantic associated terms.

4.3.7 Error Analysis

Recent studies provide evidence that different sentence representations objectives yield dif-
ferent intended representation preferable for different intended applications [98]. Moreover,
our results reported in Table 4.2 on aligning ontologies with word vectors trained based on
the method presented in [239] provide further evidence in the same direction. In Table 4.4,
we demonstrate a sample of misalignments produced by aligning ontologies using the Stable
Marriage’s solution based on a preference matrix computed either on SCBOW or word2vec
vectors. It can be seen that the SCBOW misalignments demonstrate even a better spatial
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consistency compared to the word2vec misalignments. This result combined with high F1-
score reported in the SCBOW results in Table 4.4 show that ontological knowledge can be
an important ally in the task of harnessing terminological embeddings tailored to semantic
similarity. Moreover, this error analysis provides additional support for the significance of
retrofitting general-purpose word embeddings before being applied in a domain-specific
setting. It can be observed that general-purpose word vectors capture both similarity and
relatedness reasonably well, but neither perfectly as it has been already observed in various
works [118, 97].

4.3.8 Runtime Analysis

In this section, we report the runtimes of our ontology matching algorithm for the different
matching scenarios. Since our method — SCBOW+DAE(O) - consists of three major steps, we
present in Table 4.5 the time devoted to each of them as well as their sum. In brief, the steps
of our algorithm are the following: the training of the phrase retrofitting component (Step
1), the solution to the stable marriage assignment problem (Step 2), and finally the training
of the DAE-based outlier detection mechanism (Step 3). All the reported experiments were
performed on a desktop computer with an Intel® Core™ i7-6800K (3.60GHz) processor with
32GB RAM and two NVIDIA® GeForce® GTX'" 1080 (8GB) graphic cards. The implementation
was done in Python using Theano [20, 17].

Running Time (seconds)

Matching Task
Stepl Step2 Step3 Total
MA - NCI 337 34 36 407
FMA - NCI 490 82 40 612

FMA - SNOMED 609 490 41 1140

Table 4.5 - Runtimes of the steps in the proposed algorithm.

As it can be seen on Table 4.5, the majority of the time is allotted to the training of the phrase
retrofitting framework. In addition, it can be observed that the training overhead of the outlier
detection mechanism is significantly smaller compared to the other steps. However, one
important tendency can be observed in the FMA - SNOMED matching scenario. Specifically,
the runtime of the second step has considerably increased and is comparable to the runtime
of the first step. This can be explained by the worst-case time complexity of the McVitie and
Wilson’s algorithm [145], that has been used, which is 0O (n?). Moreover, the computation of the
preference matrix required for the defining the stable marriage assignment problem’s instance
has worst-case time complexity @ (n?). At the same time, the space complexity of the second
step is @(n?), since it requires the storage of the preference matrices. On the contrary, various
techniques [130, 47] and frameworks [20, 17, 1, 173] have been proposed and implemented
for distributing the training and inference task of DRs. Although our implementation exploits
these highly optimized frameworks for DRs, the choice of using the McVitie and Wilson’s
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System Training MA - NCI FMA - NCI FMA - SNOMED
Data P R F1 P R F1 P R F1

SCBOW SL 0.845 0.911 0.877 | 0.897 0.840 0.868 | 0.795 0.773 0.784

SCBOW SL+AS | 0.847 0.917 0.881 | 0.899 0.895 0.897 | 0.843 0.866 0.855

SCBOW + DAE(O) SL 0.946 0.905 0.925 | 0972 0.830 0.895 | 0.912 0.759 0.829
SCBOW + DAE(O) | SL+AS | 0.968 0.913 0.94 | 0.976 0.892 0.932 | 0.931 0.856 0.892

Table 4.6 — Proposed algorithm’s performance in relation to the used synonymy information
sources. SL denotes the setting where the used synonyms only come from ConceptNet 5,
BabelNet, and WikiSynonyms, whereas AS denotes the setting where the additional synonyms
found in the ontologies to be matched have also been used.

algorithm introduces a significant performance barrier for aligning larger ontologies than
the ones considered in our experiments. However, it was recently shown that a relationship
exists between the class of computing greedy weighted matching problems and the stable
marriage problems [139]. The authors exploit this strong relationship to design scalable
parallel implementations for solving large instances of the stable marriage problems. It
is among our future work to test the effectiveness of those implementations as well as to
experiment with different graph matching algorithms that will offer better time and space
complexity.

4.3.9 Importance of the Ontology Extracted Synonyms

As described in Section 4.3.2, apart from the synonymy information extracted from Con-
ceptNet 5, BabelNet, and WikiSynonyms, we have exploited the fact that, in some of the
considered ontologies, a type may have one preferred name and some additional paraphrases
expressed through multiple rdfs:label relations. In this section, we provide an additional
set of experiments that aims to measure the importance of these extracted synonyms. This
extracted synonymy information constitutes the 0.008%, 0.26%, 0.65% of the training data
used in the MA - NCI, FMA - NCI, FMA - SNOMED matching scenarios, respectively. The high
variance in their contribution to the training data provide us a means for partially evaluating
the correlation between the relative change in the training data and the F1-score.

In Table 4.6, we compare the performance of SCBOW and SCBOW+DAE(O) trained with only
the available information from the semantic lexicons, with that presented in Table 4.2 where all
the the synonymy information was available. It can be observed that the additional synonymy
information affects positively both SCBOW and SCBOW+DAE(O). To better illustrate this
correlation, we present in Figure 4.5 how the relative change in the training data is reflected to
the relative difference in the performance of our algorithm.

It transpires that the F1-score’s relative change monotonically increases with the relative
difference in the available data. This behavior constitutes a consistency check for our proposed
method, since it aligns with our intuition that increasing the synonymy information leads
to producing terminological embeddings more robust to semantic similarity. Regarding
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Figure 4.5 — Correlation between the relative change in training data’s size and F1-score.

the additional benefit that this additional synonymy information brings, a maximum gain
of 0.07 in the F1-score is observed across all the matching scenarios. This fact provides
supplementary empirical support on the adequacy of the used general semantic lexicons as a
means of providing the semantic similarity training data needed by our method. Although
this additional synonymy information is important for comparing favorably with the state-of-
the-art systems, it does not constitute a catalytic factor for the method'’s success.

Nonetheless, further experimentation is needed to verify the adequacy of these general se-
mantic lexicons as well as to investigate the correlation between the training data size and the
proposed method’s performance. We leave for future work the further experimentation with
supplementary matching scenarios, different training data sizes and synonymy information
sources.

4.3.10 Threshold Sensitivity Analysis

In this section, we perform a sensitivity analysis for the thresholds #; and #,. These thresholds
constitute a means for quantifying if two terms are semantically similar or semantically asso-
ciated. It is worth noting that the tuning of these thresholds can be decoupled. Equivalently,
the #; threshold can be tuned to optimize the performance of SCBOW, and based on the
resulted value the tuning of #, can be performed so as to optimize the performance of the
outlier detection mechanism. Figure 4.6 shows a threshold sensitivity analysis of our method.
For exploring the effect of ;, we present on the left sub-figure of Figure 4.6 the performance
of SCBOW for all the different matching scenarios when varying the value of threshold #
between 0 and 1.0. Similarly, the right sub-figure of Figure 4.6 shows the performance of
SCBOW+DAE(O) when £ is set to 0.2 and the value of ¢, varies in [0, 1.0].

To begin with, it can be seen that both of the threshold sensitivity analysis’ figures undergo
analogous qualitative behavior across the different ontology matching tasks. At the same time,
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Figure 4.6 — Sensitivity analysis of the proposed algorithm’s performance with different thresh-
old values.

it is observed that the performance (F1-score) monotonically increases when the value of #
varies between 0 and approximately 0.2. In the #; sub-figure, the performance monotonically
decreases with #; € [0.2,0.6] and reaches an asymptotic value at about 0.6. In the case of #,
although the performance decreases when the value of #, exceeds 0.2, the rate of the decrease
is significantly lower compared to the rate of decrease of t;.

It can be seen that although further tuning and experimentation with the values of #;, %
can give better results for each ontology matching task, the values that resulted from the
hyperparameter tuning (described in Section 4.3.3) are significantly close to the optimal ones.
Moreover, it can be concluded that #; values greater than 0.2 have a greater negative impact
on the performance compared to the performance drop when #, exceeds 0.2. Finally, it should
be highlighted that apart from the hyperparameter tuning, no additional direct supervision
based on the ground truth alignments is used by our method when we align the ontologies of
the considered matching scenarios.

4.3.11 Implications & Limitations

Traditionally, ontology matching approaches have been based on feature engineering in order
to obtain different measures of similarity [62]. This plethora of multiple and complementary
similarity metrics has introduced various challenges including choosing the most appropriate
set of similarity metrics for each task, tuning the various cut-off thresholds used on these
metrics, etc. [39]. As a solution to these challenges, various sophisticated solutions have
been proposed such as automating the configuration selection process by applying machine
learning algorithms on a set of features extracted from the ontologies [39]. Unlike in our
approach, only one similarity distance is used; the cosine distance upon the learned features
of the phrase retrofitting and the DAE framework. Therefore, there is a drastic decrease in the
used similarity metrics and thresholds.

At the same time, it was an open question whether ontology’s structural information is really
required for performing ontology matching. Our proposed algorithm manages to compare
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favorably against state-of-the-art systems without using any kind of structural information.
Our results support that a great ontology matching performance can be achieved even in the
absence of any graph-theoretic information. However, we avoid to conclude that structural
information is not necessary. We leave for future work the investigation of how the ontology’s
structural information can be exploited in the frame of DRs. Similarly, our method relies on
word vectors pre-trained on large external corpora and on synonymy information provided by
semantic lexicons also including the ontologies to be matched. Consequently, we can make
the conclusion that external corpora and semantic lexicons provide sufficient information to
perform ontology matching by only exploiting the ontologies’ terms.

Nonetheless, our approach has also certain shortcomings. To begin with, our proposed al-
gorithm is restricted on discovering one-to-one correspondences between two ontologies.
At the same time, the use of the McVitie and Wilson’s algorithm in our current implemen-
tation introduces a significant performance barrier for aligning lager ontologies than the
ones considered in our experiments. Although our experimental results demonstrated that
high precision can be achieved without using the OWLs reasoning capabilities, our recall
remains lower compared to the state-of-the-art systems across all the ontology matching tasks.
Taking into account the results presented in Section 4.3.9, it may be concluded that more
synonymy information is required to be extracted from supplementary semantic lexicons so
as to increase this performance metric. This observation introduces another one weakness of
our algorithm; that of closely depending on available external corpora and semantic lexicons.
All the aforementioned open questions and shortcomings demonstrate various interesting
and important directions for our future work and investigation.

4.4 Conclusions

In this chapter, we address the problem of ontology matching from a representation learning
perspective. We propose the refinement of pre-trained word vectors so that when they are used
to represent ontological terms, the produced terminological embeddings will be tailored to
the ontology matching task. The retrofitted word vectors are learned so that they incorporate
domain knowledge encoded in ontologies and semantic lexicons. We cast the problem of
ontology matching as an instance of the Stable Marriage problem using the terminological
vectors’ distances to compute the preference matrix. We compute the aforementioned dis-
tances using the cosine distance over the terminological vectors learned by our proposed
phrase retrofitting process. Finally, an outlier detection component, based on a denoising
autoencoder, sifts through the list of the produced alignments so as to reduce the number
of misalignments. Our experimental results demonstrate significant performance gains over
the state-of-the-art and indicate a new pathway for ontology matching; a problem which has
been traditionally studied under the setting of feature engineering.
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5] The Role of Geometrical Space for
Link Prediction

“There is no branch of mathematics, however abstract, which may not
some day be applied to phenomena of the real world.”

Nikolai Ivanovich Lobachevsky

The primary focus of the previous two chapters was on discovering equivalence relations
between ontological terms. In this chapter, we study the problem of discovering general
relations i.e., not particularly restricted to equivalence relations, between entities appearing in
the same ontology or knowledge base, known as link prediction or knowledge base completion.
This is of significant importance since both ontologies and knowledge bases contain a plethora
of different relations such as the subsumption or the mereology relation. Building on recent
research highlighting the advantages of non-Euclidean space, we examine the contribution
of geometrical space to the task of knowledge base completion. We focus on the family of
translational models whose performance has been lagging. We extend these models to the
hyperbolic space so as to better reflect the topological properties of knowledge bases. We
investigate the type of regularities that our model, dubbed HyperKG, can capture and show
that it is a prominent candidate for effectively representing a subset of Datalog rules. We
empirically show, using a variety of link prediction datasets, that hyperbolic space allows to
narrow down significantly the performance gap between translational and bilinear models
and effectively represent certain types of rules.

5.1 Introduction

Learning in the presence of structured information is an important challenge for artificial
intelligence [157, 186, 79]. Knowledge Bases (KBs) such as WordNet [151], Freebase [25], YAGO
[213] and DBpedia [131] constitute valuable such resources needed for a plethora of practical
applications, including question answering and information extraction. However, despite
their formidable number of facts, it is widely accepted that their coverage is still far from
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being complete [203, 238]. This shortcoming has opened the door for a number of studies
addressing the problem of automatic knowledge base completion (KBC) or link prediction
[168]. The impetus of these studies arises from the hypothesis that statistical regularities lay in
KB facts, which when correctly exploited can result in the discovery of missing true facts [246].
Building on the great generalisation capability of distributed representations, a great line of
research [167, 27, 249, 169, 221] has focused on learning KB vector space embeddings as a way
of predicting the plausibility of a fact.

An intrinsic characteristic of knowledge graphs is that they present power-law (or scale-free)
degree distributions as many other networks [65, 211]. In an attempt of understanding scale-
free networks’ properties, various generative models have been proposed such as the models
of Barabdasi and Albert [15] and Van Der Hofstad [226]. Interestingly, Krioukov et al. [125]
have shown that scale-free networks naturally emerge in the hyperbolic space. Recently, the
hyperbolic geometry was exploited in various works [165, 166, 74, 190] as a means to provide
high-quality embeddings for hierarchical structures. Hyperbolic space has the potential
to bring significant value in the task of KBC since it offers a natural way to take the KB’s
topological information into account. Furthermore, many of the relations appearing in KBs
lead to hierarchical and hierarchical-like structures [134].

At the same time, the expressiveness of various KB embedding models has been recently
examined in terms of their ability to express any ground truth of facts [115, 236]. Moreover,
Gutiérrez-Basulto and Schockaert [89] have proceeded one step further and investigated the
compatibility between ontological axioms and different types of KB embeddings. Specifically,
the authors have proved that a certain family of rules, i.e., the quasi-chained rules which
form a subset of Datalog rules [2], can be exactly represented by a KB embedding model
whose relations are modelled as convex regions; ensuring, thus, logical consistency in the
facts induced by this KB embedding model. In the light of this result, it seems important that
the appropriateness of a KB embedding model should not only be measured in terms of fully
expressiveness but also in terms of the rules that it can model.

In this chapter, we explore geometrical spaces having the potential to better represent KBs’
topological properties and rules and examine the performance implications on KBC. We focus
on the family of translational models [27] that attempt to model the statistical regularities as
vector translations between entities’ vector representations, and whose performance has been
lagging. We extend the translational models by learning embeddings of KB entities and rela-
tions in the Poincaré-ball model of hyperbolic geometry. We do so by learning compositional
vector representations [153] of the entities appearing in a given fact based on translations. The
implausibility of a fact is measured in terms of the hyperbolic distance between the compo-
sitional vector representations of its entities and the learned relation vector. We prove that
the relation regions captured by our proposed model are convex. Our model becomes, thus, a
prominent candidate for representing effectively quasi-chained rules.

Among our contributions is the proposal of a novel KB embedding model as well as a reg-
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ularisation scheme on the Poincaré-ball model, whose effectiveness we prove empirically.
Furthermore, we prove that translational models do not suffer from the restrictions identified
by Kazemi and Poole [115] in the case where a fact is considered valid when its implausibility
score is below a certain non-zero threshold. We evaluate our approach on various benchmark
datasets and our experimental results show that our work makes a big step towards (i) closing
the performance gap between translational and bilinear models and (ii) enhancing our under-
standing of which KBs mostly benefit from exploiting hyperbolic embeddings. Last but not
least, our work demonstrates that the choice of geometrical space plays a significant role for
KBC and illustrates the importance of taking both the topological and the formal properties of
KBs into account.

5.2 Methods

We present an extension of translational models to the Poincaré-ball model of hyperbolic
geometry. We represent both entities and relations as points in a high dimensional hyperbolic
space. We construct a composite vectorial representation of the entities appearing in a given
fact by exploiting translational and permutational operations. We measure the implausibility
of a given fact through the hyperbolic distance between the composite vectorial representation
of the entities and the vectorial representation of the relation. In addition, we propose a novel
regularisation scheme on the Poincaré-ball model. We also resolve certain misconceptions
regarding the expressivity of translational models. Finally, we demonstrate that our proposed
model is a prominent candidate for effectively representing quasi-chained rules.

5.2.1 Preliminaries

We introduce some definitions and additional notation that we will use throughout this chapter.
We denote the vector concatenation operation by the symbol & and the inner product by ¢, -).
We define the rectifier activation function as: [-]; := max(:,0).

Quasi-chained Rules. Let E,N and V be disjoint sets of entities, (labelled) nulls and variables,
respectively.!® Let R be the set of relation symbols. A term t is an element in EUNUYV; an
atom « is an expression of the form R(t1, £2), where R is a relation between the terms 17, f». Let
terms(a) := {f;, t}; vars(a) := terms(a) NV and By, for n =0, Hy for k = 1 be atoms with terms
in EUV. Additionally, let X; € Vfor j = 1. A quasi-chained (QC) rule o [89] is an expression of
the form:

BiA...ABp—3Xy,...,Xj.Hi A... A H, (5.1)

whereforalli:1<i<n

|(vars(B1) U...Uvars(B;_1)) Nvars(B;)| <1

The QC rules constitute a subset of Datalog rules. A database D is a finite set of facts, i.e., a
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set of atoms with terms in E. A knowledge base (KB) % consists of a pair (£, D) where X is an
ontology whose axioms are QC rules and D a database. It should be noted that no constraint
is imposed on the number of available axioms in the ontology. The ontology could be minimal
in the sense of only defining the relation symbols. However, any type of rule, whether it is the
product of the ontological design or results from formalising a statistical regularity, should
belong to the family of QC rules. The Gene Ontology [12] constitutes one notable example of
an ontology that exhibits QC rules.

Circular Permutation Matrices. An orthogonal matrix is defined as a real square matrix
whose columns and rows are orthogonal unit vectors (i.e., orthonormal vectors), i.e.,

Q'Q=QQ"=1 (5.2)

where [ is the identity matrix. Orthogonal matrices preserve the vector inner product and,
thus, they also preserve the Euclidean norms. Let 1 < i < n, we define the circular permutation
matrix I1; to be the orthogonal nxn matrix that is associated with the following circular
permutation of a n-dimensional vector x:

X1 Xpei Xpeigsl o Xn

(5.3)
Xit1 Xn X1 Xi

where x; is the ith coordinate of x and i controls the number of n — i successive circular shifts.

Hyperbolic Space. In this work, we exploit the Poincaré-ball model of the hyperbolic geometry.
The Poincaré-ball model is the Riemannian manifold P" = (B", d),), where B" = {x € R" : | x|l <
1} and d,, is the distance function:

dy(u,v) =acosh (1 +26(u,v)) (5.4)

lu-v)?

50w, v) =
) = i a =119

The Poincaré-ball model presents a group-like structure when it is equipped with the Mébius
addition [223, 185], defined by:

A+ 2uuy+ vlHu+ A - ul®)v

uHv
1+2¢u, v) + |ul?|v|?

(5.5)

The isometries of (B", d),) can be expressed as a composition of a left gyrotranslation with
an orthogonal transformation restricted to B”, where the left gyrotranslation is defined as
L, :v— ulv [4, 185]. Therefore, circular permutations constitute zero-left gyrotranslation
isometries of the Poincaré-ball model.
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5.2.2 Hyperbolic Knowledge Graph Embeddings

The database of a KB consists of a set of facts in the form of R(subject,object). We will
learn hyperbolic embeddings of entities and relations such that valid facts will have a lower
implausibility score than the invalid ones. To learn such representations, we extend the work
of Bordes et al. [27] by defining a translation-based model in the hyperbolic space; embedding,
thus, both entities and relations in the same space.

Let s,r,0 € B" be the hyperbolic embeddings of the subject, relation and object, respec-
tively, appearing in the R(subject, object) fact. We define a term embedding as a function
¢ B xB" — B", that creates a composite vector representation for the pair (subject,object).
Since our motivation is to generalise the translation models to the hyperbolic space, a natural
way to define the term embeddings is by using the Mébius addition. However, we found
out empirically that the normal addition in the Euclidean space generalises better than the
Mobius addition. We provide a possible explanation for this behaviour in an ablation study
presented in the Results & Analysis section. To introduce non-commutativity in the term
composition function, we use a circular permutation matrix to project the object embeddings.
Non-commutativity is important because it allows to model asymmetric relations with com-
positional representations [169]. Therefore, we define the term embedding as: s+ I1 5O, where
B is a hyperparameter controlling the number of successive circular shifts. To enforce the
term embeddings to stay in the Poincaré-ball, we constrain all the entity embeddings to have
a Euclidean norm less than 0.5. Namely, [le|l < 0.5 and ||7|| < 1.0 for all entity and relation
vectors, respectively. It should be noted that the entities’ norm constraints do not restrict term
embeddings to span the Poincaré-ball. We define the implausibility score as the hyperbolic
distance between the term and the relation embeddings. Specifically, the implausibility score
of a fact is defined as:

fr(s,0) =dp(s+1lgo,r) (5.6)

Figure 5.1 provides an illustration of the HyperKG model in P?. We follow previous work [27]
to minimise the following hinge loss function:

L= Y |r+felso-fa(s,0h], (5.7)
R(s,0)~B,
R'(s',0')~N

where P is the training set consisting of valid facts, N is a set of corrupted facts. To create
the corrupted facts, we experimented with two strategies. We replaced randomly either the
subject or the object of a valid fact with a random entity (but not both at the same time). We
denote with #;.¢s, the number of negative examples. Furthermore, we experimented with
replacing randomly the relation while retaining intact the entities of a valid fact. We denote
with #;,.¢5, the number of “relation-corrupted” negative examples. We employ the “Bernoulli”
sampling method to generate incorrect facts [237, 105, 246].

As pointed out in different studies [27, 49, 127], regularisation techniques are really beneficial
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Figure 5.1 — A visualisation of HyperKG model in the P? space. The geodesics of the disk model
are circles perpendicular to its boundary. The zero-curvature geodesic passing from the origin
corresponds to the line € : y — x = 0 in the Euclidean plane. Reflections over the line € are
equivalent to [T permutations in the plane. s,I1; 0, s+11; 0 are the subject vector, the permuted
object vector and the composite term vector, respectively. g(r1), g(r2) denote the geometric
loci of term vectors satisfying relations R;, R», with relation vectors r1,72. f;, f2, t3 are valid
term vectors for the relation R».

for the task of KBC. Nonetheless, very few of the classical regularisation methods are directly
applicable or easily generalisable in the Poincaré-ball model of hyperbolic space. For instance,
the ¢, regularisation constraint imposes vectors to stay close to the origin, which can lead
to underflows. The same holds for dropout [210], when a rather large dropout rate was
used.'® In our experiments, we noticed a tendency of the vectors to stay close to the origin.
Imposing a constraint to the vectors to stay away from the origin stabilised the training
procedure and increased the model’s generalisation capability. It should be noted that as the
points in the Poincaré-ball approach the ball’s boundary their distance d, (u, v) approaches
dy(u,0) + dy(0,v), which is analogous to the fact that in a tree the shortest path between two
siblings is the path through their parent [190]. Building on this observation, our regulariser
further imposes this “tree-like” property. Additionally, since the volume in hyperbolic space
grows exponentially, our regulariser implicitly penalises crowding. Let © := {ei}li]ill U{ri}ll.}il1 be
the set of all entity and relation vectors, where |E|, |R| denote the cardinalities of the sets E, R,
respectively. 2 (0) defines our proposed regularisation loss function:

|E[+|R]
ZO) =Y 1-16;1* (5.8)

i=1

The overall embedding loss is now defined as £'(0) = £ (0©) + AZ(0), where A is a hyper-

64



5.2. Methods

parameter controlling the regularisation effect. We define a; := 0.5, if 8; corresponds to an
entity vector and a; := 1.0, otherwise. To minimise £’ (0), we solve the following optimisation
problem:
@' — argmin £’(©) s.t.V0,€0:0;| < a;. (5.9)
©

To solve Equation (5.9), we follow Nickel and Kiela [165] and use Riemannian SGD (RSGD; 26).
In RSGD, the parameter updates are of the form:

041 =Rg, (-nVrZL'0)))

where Ny, denotes the retraction onto the open d-dimensional unit ball at @, and n denotes
the learning rate. The Riemannian gradient of %#’(0) is denoted by Vg € JyB. The Riemannian
gradient can be computed as Vg = WV £, where Vg denotes the Euclidean gradient of
%£'(@). Similarly to Nickel and Kiela [165], we use the following retraction operation g (v) =
0+v.

To constrain the embeddings to remain within the Poincaré ball and respect the additional
constraints, we use the following projection:

. aB/ (|0 +¢) if||@|=a
proj@, a) = (5.10)
(7] otherwise,

where ¢ is a small constant to ensure numerical stability. In all experiments we used £ = 107°.
Let a be the constraint imposed on vector 0, the full update for a single embedding is then of
the form: -

(1—16:1)

041 — proj 9t—ﬂTVE,a . (5.11)

We initialise the embeddings using the Xavier initialization scheme [80], where we use Equa-
tion (5.10) for projecting the vectors whose norms violate the imposed constraints.

5.2.3 Convex Relation Spaces

In this section, we investigate the type of rules that HyperKG can model. Recently, Wang et al.
[236] proved that the bilinear models are universal, i.e., they can represent every possible fact
given that the dimensionality of the vectors is sufficient. The authors have also shown that the
TransE model is not universal. In parallel, Kazemi and Poole [115] have shown that the FTransE
model [72], which is the most general translational model proposed in the literature, imposes
some severe restrictions on the types of relations the translational models can represent. In
the core of their proof lies the assumption that the implausibility score defined by the FTransE
model approaches zero for all given valid facts. Nonetheless, this condition is less likely to be
met from an optimisation perspective [245].

Additionally, Gutiérrez-Basulto and Schockaert [89] studied the types of regularities that
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KB embedding methods can capture. To allow for a formal characterisation, the authors
considered hard thresholds Ar such that a fact R(s, 0) is considered valid iff si(s,0) < Ag,
where sg(.,.) is the implausibility score. It should be highlighted that KB embeddings are often
learned based on a maximum-margin loss function, which ideally leads to hard-threshold
separation. The vector space representation of a given relation R can then be viewed as a
region n(R) in R2" defined as follows:

n(R)={s®o0|sg(s,0) < Ag} (5.12)

Based on this view of the relation space, the authors prove that although bilinear models are
fully expressive, they impose constraints on the type of rules they can learn. Specifically, let
Ri(X,Y)—S(X,Y), R(X,Y) — S(X, Y) be two valid rules. The bilinear models impose either
that R (X,Y) — R (X, Y) or R (X, Y) — R1(X,Y); introducing, thus, a number of restrictions
on the type of subsumption hierarchies they can model. Gutiérrez-Basulto and Schockaert
[89], additionally, prove that there exists a KB embedding model with convex relation regions
that can correctly represent knowledge bases whose axioms belong to the family of QC rules.
Equivalently, any inductive reasoning made by the aforementioned KB embedding model
would be logically consistent and deductively closed with respect to the ontological rules. It
can be easily verified that the relation regions of TransE [27] are indeed convex. This result
is in accordance with the results of Wang et al. [236]; TransE is not fully expressive. However,
it could be a prominent candidate for representing QC rules consistently. Nonetheless, this
result seems to be in conflict with the results of Kazemi and Poole [115]. Let ng (s,0) be
the implausibility score of TransE, we demystify this seeming inconsistency by proving the
following lemma:

Lemma 1 The restrictions proved by Kazemi and Poole [115] do not apply to the TransE model
when a fact is considered valid iﬁcng (s,0) < Ag for sufficient A > 0.

We prove Lemma 1 in Appendix A.1, by constructing counterexamples for each one of the
restrictions. Since the restrictions can be lifted for the TransE model, we can safely conclude
that they are not, in general, valid for all its generalisations. In parallel, we built upon the
formal characterisation of relations regions, defined in Equation (5.12) and we prove that the
relation regions captured by HyperKG are indeed convex. Specifically, we prove:

Proposition 1 The geometric locus of the term vectors, in the form of s +I1go, that satisfy the
equation dy(s +Tlgo,r) < Ag for some Ag > 0 corresponds to a d-dimensional closed ball in the
Euclidean space. Let p = % (1= rl®), the geometric locus can be written as

2 2 2
r r
R L G L

Tp+l (p+D12 p+l’

(5.13)

s+Ilgo—
b p+1

where the ball’s radius is guaranteed to be strictly greater than zero.
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Figure 5.2 — A visualisation of the probability density functions using a histogram with log-log
axes.

The proof of Proposition 1 can also be found in the Appendix A.1. By exploiting the triangle
inequality, we can easily verify that the relation regions captured by HyperKG are indeed
convex. Figure 5.1 provides an illustration of the geometric loci captured by HyperKG in B2.
This result shows that HyperKG constitutes another one prominent embedding model for
effectively representing QC rules.

5.3 Results & Discussion

We evaluate our HyperKG model on the task of KBC using two sets of experiments. We conduct
experiments on the WN18RR [49] and FB15k-237 [220] datasets. We also construct two datasets
whose statistical regularities can be expressed as QC rules to test our model’s performance in
their presence. WN18RR and FB15k-237 constitute refined subsets of WN18 and FB15K that
were introduced by Bordes et al. [27]. Toutanova and Chen [220] identified that WN18 and
FB15K contained a lot of reversible relations, enabling, thus, various KB embedding models to
generalise easily. Exploiting this fact, Dettmers et al. [49] obtained state-of-the-art results only
by using a simple reversal rule. WN18RR and FB15k-237 were carefully created to alleviate this
leakage of information.

To test whether the scale-free distribution provides a reasonable means for modelling topo-
logical properties of knowledge graphs, we investigate the degree distributions of WN18RR
and FB15k-237. Similarly to Steyvers and Tenenbaum [211], we treat the knowledge graphs as
undirected networks. We also compare against the distribution of the frequency of word usage
in the English language; a phenomenon that is known to follow a power-law distribution [257].
To do so, we used the frequency of word usage in Herman Melville’s novel “Moby Dick” [162].
We followed the procedure described by Alstott et al. [8]. In Figure 5.2, we show our analysis
where we demonstrate on a histogram with log-log axes the probability density function with
regard to the observed property for each dataset, including the fitted power-law distribution.
It can be seen that the power-law distribution provides a reasonable means for also describing
the degree distribution of KBs; justifying the work of Steyvers and Tenenbaum [211]. The
fluctuations in the cases of WN18RR and FB15k-237 could be explained by the fact that the
datasets are subsets of more complete KBs; a fact that introduces noise which in turn can
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explain deviations from the perfection of a theoretical distribution [8].

5.3.1 Evaluation Benchmarks

To test our model’s performance on capturing QC rules, we extract from Wikidata [232, 61]
two subsets of facts that satisfy the following rules:

(@ is_aX,Y)Apart_of(Y,Z)— part_of(X,Z)

(b) part_of(X,Y)Ais_a(Y,Z)— part_of(X,Z)

The relations is_a, part_of correspond to the subsumption and the mereology relation,
respectively, which are two of the most common relations encountered in KBs [193]. Recent
studies have noted that many real world KB relations have very few facts [247], raising the
importance of generalising with limited number of facts. To test our model in the presence of
sparse long-tail relations, we kept the created datasets sufficiently small. For each type of the
aforementioned rules, we extract 200 facts that satisfy them from Wikidata. We construct two
datasets that we dub WD and WD, .. The dataset WD contains only the facts that satisfy rule
(a). WD, extends WD by also including the facts satisfying rule (b). The evaluation protocol
was the following: For every dataset, we split all the facts randomly in train (80%), validation
(10%), and test (10%) set, such that the validation and test sets only contain a subset of the
rules’ consequents in the form of part_of(X, Z). Table 5.1 provides details regarding the
respective size of each dataset.

Dataset |[E|] |R| | #Train #Valid #Test
WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 | 14,541 237 | 272,115 17,535 20,466
WD 418 2 550 25 25
WD, 763 2 1,120 40 40

Table 5.1 - Statistics of the experimental datasets.

5.3.2 Evaluation Protocol & Implementation Details

In the KBC task the models are evaluated based on their capability to answer queries such as
R(subject,?) and R(2,0bject) [27]; predicting, thus, the missing entity. Specifically, all the
possible corruptions are obtained by replacing either the subject or the object and the entities
are ranked based on the values of the implausibility score. The models should assign lower
implausibility scores to valid facts and higher scores to implausible ones. We use the “Filtered”
setting protocol [27], i.e., not taking any corrupted facts that exist in KB into account. We
employ two common evaluation metrics: Mean Reciprocal Rank (MRR), and Hits@10 (i.e.,
the proportion of the valid/test triples ranking in top 10 predictions). Higher MRR or higher
Hits@10 indicate better performance.
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Dataset Model #negsy  #negsy n A n Y, B
WNI18RR HyperKG 10 0 0.01 0.8 100 1.0 [%J
WN18RR HyperKG (M6bius addition) 10 0 0.01 - 100 1.0 LgJ
WN18RR HyperKG (no regularisation) 10 0 0.01 0.0 100 1.0 Lg]
FB15k-237 | HyperKG 5 0 0.01 0.2 100 0.5 [%J
FB15k-237 | HyperKG (Mobius addition) 5 0 0.01 - 100 0.5 Lg]
FB15k-237 | HyperKG (no regularisation) 5 0 001 0.0 100 05 [5]
WD HyperKG 1 1 0.8 0 100 7 [%J
WD, , HyperKG 1 1 0.1 0 100 7 [%J

Table 5.2 - HyperKG’s hyperparameters used across the different experiments.

The reported results are given for the best set of hyperparameters evaluated on the validation
set using grid search. Varying the batch size had no effect on the performance. Therefore,
we divided every epoch into 10 mini-batches. The hyperparameter search space was the fol-
lowing: #egs, €{1,2,3,4,5,8,10,12,15}, #5¢¢5, € 10,1,2}, 7 €{0.8,0.5,0.2,0.1,0.05,0.01,0.005},
B e {L%"J, 151,1%1,0}, v € {7.0,5.0,2.0,1.5,1.0,0.8,0.5,0.2,0.1}, the embeddings’ dimension
n € {40, 100,200}, and A € {2.0,1.5,1.0,0.8,0.6,0.4,0.2,0.1,0.0}. We used early stopping based
on the validation’s set filtered MRR performance, computed every 50 epochs with a maximum
number of 2000 epochs. We report in Table 5.2 the best hyperparameters for our HyperKG
model that were used across the different experiments. For WD and WD ,, we did not use the
“Bernoulli” sampling method, but instead we corrupted the subject and object of a fact with
equal probability.

For the experiments on the WD and WD, , datasets, we used the public available implementa-
tions of TransE [27] and ComplEx [221] provided in the OpenKE framework [91]. The reported
results are given for the best set of hyperparameters evaluated on the validation set using grid
search. We divided every epoch into 64 mini-batches.

The hyperparameter search space for TransE was the following: the dimensionality of embed-
dings n € {50,100}, SGD learning rate € {0.0001,0.0005,0.001,0.005}, /;-norm or L-norm, and
margin y € {1,3,5,7}. The highest MRR scores were achieved when using /;-norm, learning
rate at 0.005, y = 7 and n = 50 for both WD and WD .

The hyperparameter search space for ComplEx was the following: z € {50,100}, A € {0.1,0.03,
0.01,0.003,0.001,0.0003,0.0}, ag € {1.0,0.5,0.2,0.1,0.05,0.02,0.01}, € {1,2,5, 10} where n the
dimensionality of embeddings, A the L, regularisation parameter, « the AdaGrad’s initial
learning rate, and n the number of negative examples generated per positive training triple.
For WD, the highest MRR score was achieved using a learning rate of 0.05, A =0.1,n=5and n
=50. For WD, ., the highest MRR score was achieved using a learning rate of 0.05, A = 0.1, =
5and n =100.
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WNI18RR FB15k-237

Method Type MRR H@10 | MRR H@10
DISTMULT [249] [*] Bilinear 043 49 | 024 41
ComplEx [221] [*] Bilinear 0.44 51 0.24 42
TransE [27] [%] Translational | 0.22 50 | 029 46

HyperKG (Mobius addition) | Translational | 0.30 44 0.19 32
HyperKG (no regularisation) | Translational | 0.30 46 0.25 41
HyperKG Translational | 0.41 50 0.28 45

Table 5.3 — Experimental results on WN18RR and FB15k-237 test sets. MRR and H@10 denote
the mean reciprocal rank and Hits@10 (in %), respectively. [x]: Results are taken from Nguyen
etal. [164].

5.3.3 Results & Analysis

Table 5.3 compares the experimental results of our HyperKG model with previous published re-
sults on WN18RR and FB15k-237 datasets. We have experimentally validated that both datasets
present power-law degree distributions. Additionally, WN18RR contains more hierarchical-
like relations compared to FB15k-237 [14]. We compare against the shallow KB embedding
models DISTMULT [249], ComplEx [221] and TransE [27], which constitute important repre-
sentatives of bilinear and translational models. We exclude from our comparison recent work
that explores different types of training regimes such as adversarial training, the inclusion of
reciprocal facts and/or multiple geometrical spaces [30, 214, 115, 127, 14] to make the analysis
less biased to factors that could overshadow the importance of the embedding space. We give
the results of our algorithm under the HyperKG listing.

Although HyperKG belongs to the translational family of KB embedding models, it achieves
comparable performance to the other models on the WN18RR dataset. When we compare the
performance of HyperKG and TransE, we see that HyperKG achieves almost the double MRR
score. This consequently shows that the lower MRR performance of TransE is not an intrinsic
characteristic of the translational models, but a restriction that can be lifted by the right choice
of geometrical space. With regard to Hits@10 on WN18RR, HyperKG exhibits slightly lower
performance compared to ComplEx. On the FB15k-237 dataset, however, HyperKG and TransE
demonstrate almost the same behaviour outperforming DISTMULT and ComplEx in both
metrics. Since the performance gap between TransE and HyperKG is small, we hypothesise
that this is due to a less fine-grained hyperparameter tuning. Overall, the hyperbolic space
appears to be more beneficial for datasets that contain many hierarchical-like relations such
as WN18RR, without a significant performance degradation in the other case.

We also report in Table 5.3 two additional experiments where we explore the performance
boost that our regularisation scheme brings as well as the behaviour of HyperKG when the
Mobius addition is used instead of the Euclidean one. In the experiment where the Mdbius
addition was used, we removed the constraint for the entity vectors to have a norm less than
0.5. Although the M&bius addition is non-commutative, we found beneficial to keep the
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WD WD,
MRR H@10 | MRR H@10
ComplEx | 0.92 98 0.81 92
TransE 0.88 96 0.89 98
HyperKG | 0.98 98 0.93 98

Method

Table 5.4 — Experimental results on WD and WD, ;. test sets. MRR and H@10 denote the mean
reciprocal rank and Hits@10 (in %), respectively.

permutation matrix. Nonetheless, we do not use our regularisation scheme. Therefore, the
implausibility score is d) (s 25} [Igo,r). To investigate the effect of our proposed regularisa-
tion scheme, we show results where our regularisation scheme, defined in Equation (5.8),
is not used, keeping, however, the rest of the architecture the same. Comparing the perfor-
mance of the HyperKG variation using the Mébius addition against the performance of the
HyperKG without regularisation, we can observe that we can achieve better results by using
the Euclidean addition. This can be explained as follows. Generally, there is no unique and
universal geometrical space adequate for every dataset [84]. To recover Euclidean Space from
the Poincaré-ball model equipped with the Mobius addition, the ball’s radius should grow
to infinity [223]. Instead, by using the Euclidean addition and since the hyperbolic metric is
locally Euclidean, HyperKG can model facts for which the Euclidean Space is more appropriate
by learning to retain small distances. Last but not least, we can observe that our proposed
regularisation scheme is beneficial in terms of both MRR and Hits@10 on both datasets.

Table 5.4 reports the results on the WD and WD, ;. datasets. We compare HyperKG perfor-
mance against that of TransE and ComplEx. It can be observed that none of the models
manages to totally capture the statistical regularities of these datasets. All the models undergo
similar Hits@10 performance on both datasets. HyperKG and TransE, that both have convex
relation spaces, outperform ComplEx on both datasets in terms of MRR and Hits@10. Further-
more, the translational models show a relatively steady performance compared to ComplEx,
whose performance deteriorates in the presence of the two rules appearing in WD . Our
results point to a promising direction for developing less expressive KB embedding models
which can, however, better represent certain types of rules.

5.4 Conclusions

In this chapter, we examined the importance of the geometrical space for the task of KBC. We
showed that the lagging performance of translational models compared to the bilinear ones
is not an intrinsic characteristic of them but a restriction that can be lifted in the hyperbolic
space. Our results validated that the right choice of geometrical space is a critical decision
that impacts the performance of KB embedding models. Our findings also shed light on
understanding which KBs mostly benefit from the use of hyperbolic embeddings. Moreover,
we demonstrated a new promising direction for developing models that, although not fully
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expressive, allow to better represent certain families of rules; opening up for more fine-grained
reasoning tasks.
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Conclusion

MR. MARTIN: [ have a little girl, my little daughter, she lives
with me, dear lady. She is two years old, has a white eye and
a red eye, she is very pretty, and her name is Alice, dear lady.

MRS. MARTIN: What a bizarre coincidence! I, too, have a
little girl. She is two years old, has a white eye and a red eye,
she is very pretty, and her name is Alice, too, dear sir!

MR. MARTIN: How curious it is and what a coincidence! And
bizarre! Perhaps they are the same, dear lady!

Eugene Ionesco, The Bald Soprano

Metaphorically speaking, the current information landscape, as discussed in Chapter 1, can
be thought of consisting of a vast number of complexes of semantically connected islands
[112]. Within each complex of islands, information can be harvested without the risk of
misinterpretation. Nonetheless, when a message is traversed between two such complexes of
islands, special consideration is required in order to ensure that it is interpreted in a common
and uniform way. Establishing semantic bridges across these heterogeneous complexes of
islands becomes, thus, crucial for accomplishing a mutual understanding. In addition, the
information landscape is characterised by an exponential increase in the number of islands
that are emerging on the information ocean as well as in the number of new complexes that
are being formed. It becomes, thus, apparent that the exponentially increasing information
landscape prohibits manual curation strategies and illustrates the importance of an automatic
computational approach that relies less on human expertise and intervention.

The goal of this thesis has been to demonstrate that learning distributed representations of
ontological terms, entities and relations provides a sufficient workforce for automatically
building semantic bridges between semantically heterogeneous complexes of islands and
successfully generalising across a plethora of practical application domains. Figure 6.1 illus-
trates the idea by showing a part of the Porphyrian Tree, presented in Figure 2.1 of Chapter 2,
where learned representations are assigned to every term and relation that appear in it. For
brevity and ease of human-readability, the entity embeddings were omitted. Making the
liaison with the fast and slow thinking [110], the distributed representations are exploited to
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Figure 6.1 — Part of Porphyrian Tree extended with distributed representations.

provide fast approximate answers, whereas ontologies provide the needed mechanism for
slow reasoning [154]. In this thesis, we demonstrated that this fast and approximate thinking
can be harnessed to discover equivalence relations between terms appearing in different on-
tologies. The novel proposed approaches have been shown to present significant performance
improvements over the current state-of-the-art. Furthermore, we showed that the geometrical
space over which the representations are learned affects drastically the performance of link
prediction and we illustrated the importance for evaluating the models in terms of the families
of rules that they can capture. In the rest of this chapter, we summarise the key contributions
of this thesis and discuss interesting future directions that could address open challenges
related to the challenging problems of ontology alignment and link prediction.

6.1 Summary of contributions
In the following, we summarise the contributions of this thesis.

In Chapter 3, we demonstrated that we can approach the problem of ontology alignment
through representation learning. Our key proposal was to refine pre-trained word vectors aim-
ing at deriving terminological representations that are tailored to the ontology matching task.
We demonstrated that by exploiting transfer learning we can overcome the main obstacles,
i.e., the small sample size and the serious class imbalance problem, that have been shown
to hinder the application of machine learning to the problem. We empirically evaluated our
algorithm using a standard ontology matching benchmark as well as a real world alignment
scenario between Schema.org and the DBpedia ontologies. We compared our method against
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state-of-the-art ontology matching systems based on feature engineering and our method
showed significant performance gains on both benchmarks, however at the cost of a certain
amount of degradation in the precision metric. Our experiments on the real world scenario
also illustrated the fact that hand-crafted features and similarity metrics can indeed fail to gen-
eralise in specific domains. Interestingly, even without retrofitting, pre-trained word vectors
achieved high recall on the Schema.org - DBpedia ontology matching scenario. Additionally,
our ablation study provided empirical evidence that the initial choice of pre-trained word
vectors affects the final performance and that choosing initial word vectors that are already
tailored to semantic similarity can lead to a performance boost. Finally, our ablation study
provided empirical support that (i) the initial choice of the semantic lexicons affects the per-
formance and that (ii) higher coverage of synonymy and antonymy information has a positive
effect on the final performance.

In Chapter 4, we addressed the shortcomings of the previous proposed method. We proposed
to go beyond the retrofitting of single word embeddings by exploiting a novel architecture that
allowed tailoring phrase embeddings to semantic similarity. Since not all ontological terms
consist of common nouns or short noun phrases, the newly proposed retrofitting architecture
enabled to make use of all the available paraphrase information and, thus, to better distinguish
between true cases of semantic similarity and cases of semantic association. Additionally,
we proposed a novel outlier detection mechanism that successfully detected misalignments
without significantly harming the recall capability of the system. To evaluate the performance
of our proposed algorithm, we used the biomedical domain as our application, due to its im-
portance, its ontological maturity, and to the fact that it constitutes the domain with the larger
ontology alignment datasets owing to its high variability in expressing terms. We compared
our method to state-of-the-art ontology matching systems based on feature engineering and
showed significant performance gains. Specifically, our algorithm was the top performing
algorithm in two of the three ontology mappings tasks while the performance difference in
the third ontology matching scenario was really small.

In an extensive ablation study, we empirically validated the effectiveness as well as the im-
portance of the novel phrase retrofitting architecture and the outlier detection mechanism.
Furthermore, we illustrated again the importance of retrofitting by demonstrating that the
initial pre-trained word vectors do not achieve good performance despite being trained on
biomedical corpora. One of the key outcomes of this work was to show that general semantic
lexicons can be an adequate source of synonymy information even for the biomedical domain
which is characterised by a high degree of linguistic variability. Furthermore, our error analysis
of sampled misalignments showed that the retrofitted word vectors demonstrate an even bet-
ter spatial consistency compared to the pre-trained word vectors; providing additional support
to the importance of tailoring the initial representations to semantic similarity. A key outcome
of this work was to show that we can drastically decrease the number of similarity functions,
and, thus, the number of cut-off thresholds, required for aligning two ontologies. Additionally,
our results demonstrated that a great ontology matching performance can be achieved even
in the absence of any graph-theoretic information; answering, thus, an open question in the
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field of ontology matching. Specifically, our work provided empirical evidence that external
corpora and semantic lexicons provide sufficient information to perform ontology matching
by only exploiting the ontologies’ terms.

Last but not least, in Chapter 5, we studied the problem of discovering general relations
between entities appearing in the same ontology or knowledge base. We did so by learning
entity and relation embedding by exploiting statistical regularities laying in the ontological
or KB facts. We began by clarifying certain misconceptions regarding the expressiveness
of the family of translation models. In the next, building on recent research highlighting
the advantages of non-Euclidean space, we examined the contribution of geometrical space
to the task of knowledge base completion. Despite the fact that the family of translational
models has certain advantages with regard to the rules it can effectively represent, recent
work has shown that it demonstrates worse performance compared to the bilinear family of
shallow knowledge graph embeddings. Our work focused on examining whether the lower
performance of translational models in certain datasets is an intrinsic characteristic of them
or a restriction that can be lifted by the right choice of geometrical space. We chose the
hyperbolic space since recent work had illustrated its advantages for harnessing high quality
embeddings for hierarchical and/or scale-free graphs; properties that also appear in ontologies
and knowledge bases. We evaluated our method using a variety of link prediction datasets and
our experimental results showed that the hyperbolic space allows to narrow down significantly
the performance gap between translational and bilinear models; illustrating that the lagging
performance of translational models is not an intrinsic characteristic of them.

Another key outcome of our work was to demonstrate that the appropriateness of a KB
embedding model should not only be measured in terms of fully expressiveness but also
in terms of the rules that it can model. Our experimental results validated the superior
performance of translational models against that of the bilinear ones on datasets containing
facts that satisfy quasi-chained rules. Therefore, our work pointed to a new promising direction
for developing models that, although not fully expressive, allow to better represent certain
families of rules; opening up for more fine-grained reasoning tasks. Another contribution of
our work was the proof that our proposed translational model in the hyperbolic space is also
a prominent candidate for representing effectively quasi-chained rules. Finally, among our
contributions was the proposal of a novel KB embedding model as well as a regularisation
scheme on the Poincaré-ball model whose effectiveness we proved empirically.

6.2 Future Directions

The results, presented in this thesis, indicate several interesting directions for future research.
The last section of this thesis is devoted to discuss some unaddressed or open issues and
propose directions for future work.
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6.2.1 Ontology Alignment Performance versus Semantic Lexicons

In Chapters 3 and 4, it was demonstrated that we can harness terminological embeddings
tailored to ontology alignment by extracting synonymy information from semantic lexicons
and the ontologies themselves. It was shown that there exist publicly available semantic lexi-
cons that can provide both domain-neutral as well as domain-specific synonymy information.
Furthemore, the results presented in Section 4.3.9 provided supplementary empirical support
on the adequacy of the used general semantic lexicons to provide the required synonymy
information to train our proposed methods. In accordance with our intuition, the results pre-
sented in Sections 3.3.5 and 4.3.9 provided evidence that the greater the coverage of synonyms,
the greater the performance of our proposed algorithms will be. It is worth noting that the vast
majority of the state-of-the-art systems based on feature engineering also exploit information
extracted from semantic lexicons. Nonetheless, despite the fact that our work has illustrated
that the number of used similarity metrics can be drastically reduced and the features can
be learned instead of being engineered, the problem of identifying the appropriate semantic
lexicons remains open.

In the future, it would be interesting to gain further insight into which existing semantic lexi-
cons are more appropriate for the target application domain. For instance, a recommendation
system could be constructed to propose, in advance, which is the most appropriate combi-
nation of semantic lexicons to be used for a specific ontology matching scenario. One of the
main obstacles that such an approach could face is the small sample size that characterises the
problem of ontology matching. However, as this thesis illustrated, quite often such problems
can be circumvented by the use of a transfer learning approach that successfully generalises
to the task at hand. Moreover, considering the example of WikiSynonyms [42] that exploits the
Wikipedia redirects to discover terms that are mostly synonymous, another approach could be
to devise a robust method to extract synonymous domain-specific terms in an automatic way.
The induction of domain-specific lexicons constitutes an active field of research [218, 174, 252]
and further research on this regard could also be beneficial for ontology alignment based on
evidence provided by the results reported in this thesis.

6.2.2 Further Embedding Models & Spaces

Recent work has demonstrated that Transformer-based architectures [227] can bring sig-
nificant performance improvements in various NLP tasks [50, 183, 41]. It is interesting to
observe that our proposed approaches presented in Chapters 3 and 4 and the aforementioned
Transformer-based architectures share one important common characteristic; both of them
fine-tune task-agnostic representations, learned in a self-supervised way, to the task at hand.
Therefore, it would be a prominent future direction to experiment with this new family of
architectures. It is important to note that the architectures presented in Sections 3.2.2 and 4.2.2
can easily be extended to this setting. Moreover, the outlier detection mechanism presented in
Section 4.2.3 can also be easily adapted by replacing the Siamese CBOW representations with
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the representations computed by a Transformer-based architecture. One possible drawback
could be the time increase in computing the pairwise distances between terms, however, there
are already existing architectures [191] that drastically decrease the computation time and
with future research on this direction, we believe that this shortcoming could be eliminated.

There are also interesting challenges for link prediction. One important direction is to inves-
tigate different embedding spaces and which types of rules these can effectively represent.
For instance, recent work has explored the usage of quantum embeddings [77] that learn
entity and relation embeddings in a way that logical operation can be directly performed over
these embeddings. Additionally, it is of equal importance to understand whether SGD-based
optimisation algorithms can indeed discover KB embeddings that are consistent according
to a specific family of rules. If so, one intriguing question is whether certain regularisation
schemes have an implicit bias to discover such solutions. Answers to these questions could
be of significant help in speeding up the inference time and fostering interpretability of KB
embedding models.

6.2.3 Discovering General Relations between Entities of Distinct Ontologies

The focus of Chapters 3 and 4 has laid in devising terminological embeddings tailored to
semantic similarity. This, in turn, enabled the discovery of equivalence relations between
entities appearing in different ontologies. Furthermore, the work presented in Chapter 5
focused on learning entity and relation representations in a way that these reflect statistical
regularities occurring in a specific ontology or knowledge base. This made possible the
discovery of general relations, i.e., not restricted to equivalence relations, between entities of
the same ontology or knowledge base. One prominent direction is to extend our work and
allow the discovery of general relations between entities appearing in different ontologies.
This would be of significant importance since both ontologies and knowledge bases contain
a plethora of different relations, e.g., the subsumption, the mereology relation, etc., and the
ontological alignments should by no means be restricted to equivalence relations.

One way to approach this problem would be to learn joint representations of terms and
entities by coupling the individual losses of the two different tasks and introducing two hyper-
parameters to control the effect of the two losses. This could allow the structural information
stemming from the the statistical regularities captured in the graph to flow into the joint
entity-terminological embeddings. This could also help to shed more light on the importance
of the structural information for ontology matching. As it was mentioned in Section 4.3.11,
our results support that a great ontology matching performance can be achieved even in the
absence of any graph-theoretic information. However, the question whether the structural
information can be beneficial remains open. From another point of view, the synonymy
information that will be captured in the joint entity-terminological embeddings would allow
the discovery of general relations between entities from distinct ontologies and knowledge
bases, since, now, different ontologies are embedded in the same space and the problem of
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predicting general relations can be seen as a link prediction one. Another one approach could
be to exploit Transformer-based architectures and treat the triples appearing in ontologies as
simple sentences in the form of subject, predicate, object. Likewise, the synonymy information
can also be treated in a similar setting, e.g., term_x, is_synonymous_to, term_y. Recent
work [28, 180] has started exploring such architectures for jointly embedding sentences and
information coming from knowledge bases and this could be a prominent approach for
discovering general relations.

6.2.4 A Communicational Approach for Ontology Alignment

As illustrated in the epigraph of this chapter, quite often, humans achieve a mutual understand-
ing through multi-step communication interactions. Nonetheless, the problem of ontology
alignment has been traditionally approached in a more static way. Recent work [138, 109]
has made the first steps towards incorporating multi-step interactions during the ontology
alignment process. However, the usage of representation learning has not yet been explored
by this line of research. One interesting approach could be to exploit the recent work in the
field of conversational Artificial Intelligence [43, 31] and cast the problem as that of achieving
semantic coordination through multi-step communication interactions between two agents
whose application domain is described by different ontologies. In that setting, ontological
reasoning could be exploited as a source of argumentation and alignments will be accepted if
and only if both agents agree that the resulted alignments respect their common understanding
of the world. One of the possible advantages of this approach is that of the interpretability
of the results, especially, in the case where the agents’ arguments avoid the phenomenon of
language degeneration by respecting the main structural levels of natural language. Another
advantage is that the overall alignment procedure could potentially allow for end-to-end
differentiation, which is not the case when we cast ontology alignment as an instance of the
Stable Marriage problem; opening up, thus, for an end-to-end differentiable approach.
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.\ Appendix

A.1 Omitted Proofs

Proof of Lemma 1: We begin by introducing the TransE model [27]. In the TransE model, the
entities and the relations are represented as vectors in the Euclidean space. Let, s, 7,0 € R?
denote the subject, relation and the object embeddings, respectively. The implausibility score
for a fact R(s, o) is defined as ||s + r — o||, where ||.|| denotes either the ¢; or the > norm. Let P
define a set of valid facts. In the following we introduce some additional definitions needed
for the introduction of the restrictions.

e Arelation r is reflexive on a set E of entities if (e, r, e) € P for all entities e € E.

* Arelation r is symmetric on a set E of entities if (e}, 1,e2) € P <= (e, 1,€;1) € P for all
pairs of entities e}, e, € E.

¢ Arelation r is transitive on a set E of entities if (e;,7,e2) € PA (e3,1,e3) € P = (e;,1,e3) €
Pforalle;,ep,e3€E.

In the following, we list the restrictions mentioned in Kazemi and Poole [115].

e R1:Ifarelation r is reflexive on A c E, r must also be symmetric on A.
e R2:If r is reflexive on A c E, r must also be transitive on A.

* R3:Ifentity e; has relation r with every entity in A c E and entity e, has relation r with
one of the entities in A, then e, must have the relation r with every entity in A.

Letn,meN, i,jeRand ae€R}. Let v = (v1,v2,..., V) € R and u € R". We denote with
(v1, Va,..., Um; u) the concatenation of vectors v and u. Let 0,, € R” be the zero n-dimensional
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vector. For each restriction, we consider a minimum valid set of instances that could satisfy
the restriction and we construct a counterexample that satisfies restriction’s conditions but
not the conclusion. In the following, we assume that ||.|| denotes the ¢, norm. It can be easily
verified that these counterexamples also apply, with no modification, when the ¢; norm is
used.

R1 : This restriction translates to:

leg+r—eil <a
les+r—ex|l <ap=les+tr—eil<a (A.1)

ley+r—ezxl <a
Letn=1,r=(a;0,-1),e1=(i—a;0,_1) and ez = (i + a;0,,_1), then:

lea+r—eill =I((i +2a-(i—a));0,-1)| =

||e2+r—e1||=\/§a>a (A.2)

R2: This restriction translates to:

les+r—eill <a
let+r—ezxl <a
lea+r—e3ll <a;=>l|e+r—esll<a (A.3)

lea+r—ezxl <a

les+r—esll <a
Letn=1,r=(a;0,_1),e1=(i—a;0,_1),e2=(i+a;0,_1) and e3 = (i +3a;0,_;), then:

ler+r—esll=I((—(+3a);0n-1)l=

||e1+r—e3||:\/?_>a>a A4)

R3: This restriction translates to:
let+r—eill <a
lea+r—esl|l<a

les+r—ex|l <a

let+r—e3l|l =<a

lea+r—ejll<a
les+r—e3ll <a
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Letn=2,r=(a;0,_1),e1 =(i;0,,-1), e2 = (i + 37“, £:0,-2) and e3 = (i +2a;0,-1), then:

. 3a . a
lea+r—eill = ||(l+?+a—l;§;0n—2)” =
V26
Ilez+r—e1ll=7a>a (A.6)

This ends our proof.

Proof of Proposition 1: Let ||s+Ilgo| <1, |lr]l <1 and Ar > 0, we investigate the type of
the geometric locus of the term vectors in the form of s + I1go that satisfy the following equa-
tion:

dp(s+TIlgo,r) < Ag (A7)
To simplify the notation, we denote x := s + I[Igo.

dy(x,r) < AR
1+26(x,r) <cosh(Ag)
cosh(Ag) -1

ox,r) < — (A.8)

>
—

Let a = (cosh(Ap) — 1)/2. We should note that @ > 0, since Vx € R* : cosh(x) > 1. Then, we
have:

llx—r?

<
- lxDa—1r® -

(A.9)

Be setting p = a(1 — || r|?), the inequality A.9 becomes:

lx—rlI* < p(1 - x|*) =
P+DIx|>-2%xr+|rl’<p =
2
7l - [y
p+1 p+1 p+1
<P el el
p+1° “p+1 (p+1)2 p+1

IxI?—2%x

(A.10)

We prove in the following that:

o Ir|® _||1‘||2
e+l (p+1)2 p+1

> 0. (A.11)

First, we note that since ||r|| < 1, we also have that p > 0 based on the fact that ¢ > 0 and

83



Appendix A. Appendix

1—|r||? > 0. Then, we have:

P, Ir)? _||"||2:
e+l (p+1)2 p+1

1 Ir)? )
=——|p+——~—Irl
p+1 p+1

We observe that # > 0, hence, it is sufficient to check whether 1 — ﬁ 7112 > 0. We note that

i R 1 i
since ||r]l <1 and p > 0, we have o1 < 5T However, orT < 1. This concludes our proof.

It should be noted that since no specific property of the non-commutative composite vector
representation of the pair (s, 0) was used in the proof above (the proof works for a general
x € B"), this Proposition also demonstrates a general property of the Poincaré-ball model: its
hyperbolic balls correspond to Euclidean balls of different centers and radii.
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10.

11.

12.

13.

14.

Notes

. Let (X, dx) be a metric space and x, y € X, the distance-based similarity, simx(x,y), is defined as simx(x,y) =

1

. We provide further justification for this choice in Section 4.3.4.

. The matrix, used in M6bius multiplication, and the biases are defined on Euclidean space and are learned through

Euclidean SGD.

. https://github.com/schemaorg/schemaorg/blob/sdo-callisto/data/releases/3.2/schema.ttl

. http://downloads.dbpedia.org/2014/dbpedia_2014.owl.bz2

. http://oaei.ontologymatching.org/2016/

. https://code.google.com/p/word2vec

. This term is known in the NLP community as “conceptually associated”. We have chosen to depart from the

standard terminology for reasons summarized in [11, p. 7].

. We provide further details on the textual information used in our experiments in Section 4.3.4.

These are available on OAEI's 2016 Large BioMed Track.

For a detailed overview and comparison of the systems please refer to [57].

We have also performed hyperparameter tuning in the SNOMED-NCI matching task and the resulted hypeparam-
eters were the same as the ones reported in [239].

Except for the synonymy information found in some ontologies and is expressed through multiple labels (rdfs:1abel)
for a given type.

All the experiments are statistically significant with a p-value < 0.05.
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Notes

15. Only existential variables can be mapped to labelled nulls.

16. In our experiments, we noticed that a rather small dropout rate had no effect on the model’s generalisation
capability.
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