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Abstract. Orthogonal maps are the solutions of the mathematical model of paper-folding,
also called the origami problem. They consist of a system of first-order fully nonlinear equations
involving the gradient of the solution. The Dirichlet problem for orthogonal maps is considered here.
A variational approach is advocated for the numerical approximation of the maps. The introduction
of a suitable objective function allows us to enforce the uniqueness of the solution. A strategy based
on a splitting algorithm for the corresponding flow problem is presented and leads to decoupling the
time-dependent problem into a sequence of local nonlinear problems and a global linear variational
problem at each time step. Numerical experiments validate the accuracy and the efficiency of the
method for various domains and meshes.
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1. Introduction. The Eikonal equation | \nabla u| = 1/c, with c > 0, is a prototypical
equation in analysis. It has various applications in science and engineering, such
as optics, wave propagation, material science, differential geometry, geophysics, and
image processing [14, 15, 32, 35, 36, 41, 43]. It is a classical example of a so-called first-
order implicitly, or fully, nonlinear equation [26, 27]. The analysis of such strongly
nonlinear models can be found, e.g., in [10, 11, 16, 25] (see also the references therein).

Inspired by [20], our interest in this article lies in the numerical approximation
of origami problems. The mathematical analysis of paper-folding problems has been
addressed, e.g., in [4, 16, 17, 18, 19], a related challenge being finding a so-called
orthogonal map.

Orthogonal maps, or isogeometric maps, are related to Eikonal equations in the
sense that they can be considered as a multivariate version of the classical, scalar,
Eikonal equation. More precisely, we are interested in the computation of the approx-
imate solutions of the Dirichlet problem for an orthogonal maps equation. Namely,
we want to find u : \Omega \subset \BbbR 2 \rightarrow \BbbR 2 satisfying\Biggl\{ 

\nabla u \in \scrO (2) in \Omega ,

u = g on \partial \Omega ,
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where g is a given, sufficiently smooth, function, and \scrO (2) is the space of orthonormal
2\times 2 matrix-valued functions. Note that \nabla u \in \scrO (2) can be written as \nabla u(\nabla u)T = I.

Although our initial application of orthogonal maps appears in the theory of
paper-folding, there exist similar related formulations in other fields, such as com-
putational geometry [1, 23], rigid maps [24, 42], or rigid displacements and bending
[2, 3]. The solutions to the orthogonal maps problem have a low regularity, and the
uniqueness of the solution is not even guaranteed. A possible definition of a gener-
alized solution is provided by the notion of viscosity solutions; see, e.g., [13]. On the
other hand, we introduce here a variational framework to enforce uniqueness of the
solution.

We address the solution of implicitly nonlinear equations from a variational view-
point. Such numerical methods have been devised, e.g., in [5, 8, 14, 15, 31] when
dealing with Eikonal-type equations, in [7, 9] when addressing the approximation of
the related second-order Monge--Amp\`ere equation, or in [12, 22, 29, 34] for the Pucci's
equation. Tentative approaches for the orthogonal maps problem, combining these
different methods, have been described in [33] or in [30, Chapter 8].

In this article, a calculus of variations approach is introduced to solve the orthog-
onal maps problem. The main ingredients of the methodology are

\bullet a penalization method to relax the orthogonality condition \nabla u(\nabla u)T = I;
\bullet the derivation of the Euler--Lagrange equation of the penalized and regular-
ized problem;

\bullet the introduction of a related initial value dynamical flow problem;
\bullet the use of an operator-splitting scheme (\`a la Marchuk--Yanenko) to time-
discretize the above flow problem;

\bullet a low-order C0-conforming finite element approximation.
The operator-splitting approach allows the decoupling of the differential operators
from the nonlinearities of the problem. It is worth noting that low-order finite element
approximations are well-suited to the Lipschitz continuous regularity of the solutions,
and to domains with curved boundaries.

The article is organized as follows: In section 2 we formulate the initial orthogonal
maps problem. Our computational approach is described and detailed in section 3.
The finite element implementation of our methodology is discussed in section 4. The
numerical experiments are presented in section 5. The conclusion includes some per-
spectives for future work.

2. Mathematical model. Let \Omega be an open bounded domain of \BbbR 2, and con-
sider g : \partial \Omega \rightarrow \BbbR 2 a sufficiently smooth given function on its boundary. The unit
square \Omega = (0, 1)2 is a typical domain when considering origami applications. The
problem of interest reads as follows: Find u = [u1, u2]

T : \Omega \rightarrow \BbbR 2 satisfying

(2.1)

\Biggl\{ 
\nabla u \in \scrO (2) in \Omega ,

u = g on \partial \Omega .

Here u1 (resp., u2) denotes the first (resp., second) component of the mapping u.
Actually u is a mapping that maps \Omega (the original sheet) into another domain of
\BbbR 2. The image u(\Omega ) of \Omega through this mapping corresponds to the resulting paper
sheet, described in the two-dimensional space, after the folding. Problem (2.1) can
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be equivalently written as

(2.2)

\left\{             

| \nabla u1| = 1 a.e in \Omega ,

| \nabla u2| = 1 a.e in \Omega ,

\nabla u1 \cdot \nabla u2 = 0 a.e in \Omega ,

u = g on \partial \Omega .

Remark 2.1 (orthogonal maps and rigid maps). Actually, problem (2.1) is derived
from the so-called rigid maps problem that consists in finding the map \~u : \Omega \subset \BbbR 2 \rightarrow 
\BbbR 3 such that

(2.3)

\Biggl\{ 
\nabla \~u \in \scrO (2, 3) in \Omega ,

\~u = \~g on \partial \Omega ,

where \scrO (2, 3) =
\bigl\{ 
A : \Omega \rightarrow R2\times 3 : ATA = I in \Omega 

\bigr\} 
. The solution to this equivalent

problem consists in finding the mapping \~u that embeds the folded paper \~u(\Omega ) into
\BbbR 3. A graphical representation of problems (2.1) and (2.3) can be found in Figure 1.
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Fig. 1. Visualization (bottom) of the orthogonal map u : \BbbR 2 \rightarrow \BbbR 2, where u(x, y) = ( - | x| , y) is
the solution to (2.1) when folding a paper sheet along a centered axis oriented with the Ox axis, and
visualization (top) of the rigid map \~u : \BbbR 2 \rightarrow \BbbR 3, where \~u(x, y) = (x/

\surd 
2, y, | x| /

\surd 
2) is the solution

to (2.3) when folding a paper sheet in \BbbR 3.

Remark 2.2 (determinant property and angle condition). A consequence of (2.1)
is that the solution u satisfies

(2.4) det\nabla u(x) = \pm 1 a.e.x \in \Omega .
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Moreover, for each vertex that lies at the intersection of folding lines, conditions
apply on the number of singularity lines crossing each other [16]. This property is
sometimes called the angle condition and typically states that the number of edges
coming from one vertex is even, and the determinant det\nabla u alternates between 1 and
 - 1 for adjacent regions touching the vertex.

The problem of interest (2.2) is reminiscent of the scalar Eikonal equation but
introduces a coupling between the two components; it can be seen therefore as a
vectorial Eikonal problem. Theoretical considerations of (2.1) or (2.2) have been ad-
dressed, e.g., in [16, 18, 20]. For instance, an explicit solution of the homogeneous
Dirichlet problem has been exhibited in [21]. Existence conditions of a solution have
been shown, but the uniqueness of that solution is generally not guaranteed (we can
easily construct problems with multiple solutions).

3. Numerical algorithms. The proposed solution method for (2.2) relies on
a mix of classical variational techniques. The underlying principles are the intro-
duction of the variational principle (energy to minimize), and of the corresponding
flow problem, which is solved by operator-splitting techniques. Ultimately, the split-
ting strategy allows the decoupling of the local nonlinearities and of the differential
operators (linear here).

3.1. Regularization and penalization. To solve (2.2) and to enforce the
uniqueness of the solution in some sense, we consider the following variational prob-
lem: Find u \in E\bfg satisfying

(3.1) J(u) \leq J(v) \forall v \in E\bfg ,

where

(3.2) J(v) =
C

2

\int 
\Omega 

| v  - f | 2 dx+
1

2

\int 
\Omega 

| \nabla v| 2dx,

and

(3.3) E\bfg = \{ v \in (H1(\Omega ))2, v| \partial \Omega = g, \nabla v \in \scrO (2) a.e. in \Omega \} .

In (3.2), C > 0 is a positive constant. In the first term of (3.2), the function f is a
given vector-valued function, which corresponds to some target solution, for instance,
given by prior information and/or existing data. In other words, the first term of the
objective function is a distance term to minimize (fidelity term). In most numerical
experiments, no a priori information is known about the solution, and we use f = 0.
The second term is a classical smoothing term.

Note that (2.2) itself has been transferred into a constraint in (3.3). To handle
such constraints, we use an approach which has been successful with the scalar Eikonal
equation in [5], namely, we penalize the constraint \nabla v \in \scrO (2) (or, equivalently, the
first three equations of (2.2)). Let \varepsilon 1 > 0 be a regularization parameter, and let \varepsilon 2 > 0
be a given (penalization) parameter. The modified objective function is defined as
follows:

J\varepsilon (v) := J(v) +
\varepsilon 1
2

\int 
\Omega 

| \nabla 2v| 2dx

+
1

4\varepsilon 2

\int 
\Omega 

\bigl[ 
(| \nabla v1| 2  - 1)2 + (| \nabla v2| 2  - 1)2 + | \nabla v1 \cdot \nabla v2| 2

\bigr] 
dx.(3.4)
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The second term is a biharmonic regularization we introduce to improve the conver-
gence of the numerical algorithm. The introduction of such a term has already been
experimented with for similar problems (see [6]) and will be discussed numerically
via experiments. We denote (\varepsilon 1, \varepsilon 2) by \varepsilon . The variational problem (3.1) becomes the
following: Find u\varepsilon \in V\bfg satisfying

(3.5) J\varepsilon (u
\varepsilon ) \leq J\varepsilon (v) \forall v \in V\bfg ,

where

(3.6) V\bfg = \{ v \in (H2(\Omega ))2, v| \partial \Omega = \=g\} .

The numerical approach to solving (3.5) relies on an appropriate reformulation
of the problem when considering the first-order optimality conditions, together with
the introduction of a flow problem.

Remark 3.1. In (3.6), we used \=g (an approximation of g belonging to (H3/2(\partial \Omega ))2)
to make the boundary data compatible with the regularizing term \varepsilon 1

2

\int 
\Omega 
| \nabla 2v| 2dx we

introduced in (3.2), this term forcing the (H2(\Omega ))2-regularity of the solutions of prob-
lem (3.1). Actually, the results of the numerical experiments reported in section 3
show that there is no need to regularize g in practice. Our explanation of this good
news is that the original function g, being necessarily piecewise affine over \partial \Omega (if \Omega 
is a rectangle), has the (W 1,\infty (\partial \Omega ) \cap Hs(\partial \Omega ))2-regularity for all s < 3/2. From this
observation, we feel justified using (for simplicity) g instead of \=g in the remainder of
this article (a very small abuse of language, indeed).

Remark 3.2. Indeed, if \Omega is a rectangle, a piecewise affine function f over \partial \Omega has
the (W 1,\infty (\partial \Omega ) \cap Hs(\partial \Omega ))2-regularity for all s < 3/2. This property comes from the

fact that a function f \in Hs(\BbbR ) if and only if (1 + | \xi | 2)s/2 \^f \in L2(\BbbR ), where \^f denotes
the Fourier transform of function f . In the case of a piecewise affine function with
a compact support, one can show via direct calculations that its Fourier transform
verifies the above inclusion for all s < 3/2.

3.2. First-order optimality conditions. We define the tensor-valued function
p\varepsilon := \nabla u\varepsilon . Problem (3.5) is equivalent to the following: Find p\varepsilon \in Q4 satisfying

(3.7) j\varepsilon (p
\varepsilon ) \leq j\varepsilon (q) \forall q \in Q4,

where

j\varepsilon (q) =
1

2

\int 
\Omega 

| q| 2 + C

2

\int 
\Omega 

| Bq+ u\bfg  - f | 2 dx+ I\nabla (q)

+
1

4\varepsilon 2

\int 
\Omega 

\bigl[ 
(| q1| 2  - 1)2 + (| q2| 2  - 1)2 + | q1 \cdot q2| 2

\bigr] 
dx,

(3.8)

where Q4 = (L4(\Omega ))2\times 2 and q1, q2 are the two column vectors of q, and where we
define
(i) the function u\bfg \in (H1(\Omega ))2 as the unique solution (harmonic extension) of\Biggl\{ 

\nabla 2u\bfg = 0 in \Omega ,

u\bfg = g on \partial \Omega ;

(ii) the function Bq as the unique solution in (H1
0 (\Omega ))

2 of

\nabla 2Bq = \nabla \cdot q in \Omega ;
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(iii) the functional I\nabla (q) as

I\nabla (q) =

\left\{     
\varepsilon 1
2

\int 
\Omega 

| \nabla \cdot q| 2dx if q \in \nabla V\bfg ,

+\infty otherwise.

Based on this change of variables, the first-order optimality conditions (Euler--
Lagrange equations) relative to (3.8) read as follows: Find p\varepsilon \in Q4 such that

(3.9)

\int 
\Omega 

p\varepsilon : qdx+ C

\int 
\Omega 

(Bp\varepsilon + u\bfg  - f) \cdot Bqdx+ \langle \partial I\nabla (p\varepsilon ),q\rangle 

+
1

\varepsilon 2

\int 
\Omega 

\biggl[ 
(| p\varepsilon 1| 2  - 1)p\varepsilon 1 \cdot q1 + (| p\varepsilon 2| 2  - 1)p\varepsilon 2 \cdot q2

+
1

2
p\varepsilon 1 \cdot p\varepsilon 2(p\varepsilon 2 \cdot q1 + p\varepsilon 1 \cdot q2)

\biggr] 
dx = 0 \forall q \in Q4.

Here, \partial I\nabla (\cdot ) denotes the subdifferential of the nonsmooth proper lower semicontinuous
(l.s.c.) convex functional I\nabla . In what follows, the superscript \varepsilon will be dropped for
simplicity.

3.3. Flow problem and operator-splitting algorithm. The solution method
for (3.9) relies on an associated initial value problem (flow in the dynamical systems
terminology), to be integrated from t = 0 to t = +\infty . This initial value problem is
defined as follows: Find p(t) \in Q4 for a.e. t \in (0,+\infty ) satisfying
(3.10)\int 

\Omega 

\partial p(t)

\partial t
: qdx+

\int 
\Omega 

p(t) : qdx+ C

\int 
\Omega 

(Bp(t) + u\bfg  - f) \cdot Bqdx+ \langle \partial I\nabla (p(t)),q\rangle 

+
1

\varepsilon 2

\int 
\Omega 

\biggl[ 
(| p1(t)| 2  - 1)p1(t) \cdot q1 + (| p2(t)| 2  - 1)p2(t) \cdot q2

+
1

2
p1(t) \cdot p2(t)(p2(t) \cdot q1 + p1(t) \cdot q2)

\biggr] 
dx = 0 \forall q \in Q4,

together with the given initial condition p(0) = p0. The initial condition p0 \in Q4 is
defined as \nabla u0, where u0 \in V\bfg satisfies

 - \nabla 2u0 = \bfitdelta in \Omega ,

where \bfitdelta = (0.0005, 0.0005)T is a small right-hand side (quasi-harmonic extension).
We apply an operator-splitting strategy to solve (3.10) (namely, a first-order

Marchuk--Yanenko scheme). Let \Delta t > 0 be a constant given time step, tn = n\Delta t,
n = 1, 2, . . . , to define the approximations pn \simeq p(tn). Starting from the initial con-
dition p0 = p0, the Marchuk--Yanenko scheme allows us, using pn for all n \geq 0, to
compute successively pn+1/2 and pn+1 using the two following intermediate steps:
(A) Prediction step: Find pn+1/2 \in Q4 satisfying

(3.11)

\int 
\Omega 

pn+1/2  - pn

\Delta t
: qdx+

\int 
\Omega 

pn+1/2 : qdx

+
1

\varepsilon 2

\int 
\Omega 

\biggl[ 
(| pn+1/2

1 | 2  - 1)p
n+1/2
1 \cdot q1 + (| pn+1/2

2 | 2  - 1)p
n+1/2
2 \cdot q2

+
1

2
p
n+1/2
1 \cdot pn+1/2

2 (p
n+1/2
2 \cdot q1 + p

n+1/2
1 \cdot q2)

\biggr] 
dx = 0

D
ow

nl
oa

de
d 

07
/3

1/
20

 to
 1

28
.1

79
.2

53
.6

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

NUMERICAL APPROXIMATION OF ORTHOGONAL MAPS B1347

for all q \in Q4. It is worth noting that this problem does not involve any deriva-
tives of the variable p, a significant simplification, indeed (see section 3.4).

(B) Correction step: Find pn+1 \in Q4 satisfying

(3.12)

\int 
\Omega 

pn+1  - pn+1/2

\Delta t
: qdx+ C

\int 
\Omega 

(Bpn+1 + u\bfg  - f) \cdot Bq dx

+ \langle \partial I\nabla (pn+1),q\rangle = 0

for all q \in Q4. This problem is actually a (hidden) elliptic linear variational
problem whose solution will be addressed in section 3.5.

3.4. Local optimization problems. The subproblem (3.11) that arises in the
splitting algorithm does not involve any derivatives of the variable q. Therefore, it
can be solved pointwise a.e. in \Omega (see also, e.g., [6, 7, 9] for other instances of similar
simplifications). Suppose that

q =

\biggl[ 
q11 q12
q21 q22

\biggr] 
.

Using the above notation, a more explicit formulation of (3.11) reads as

(1 + \Delta t) p
n+1/2
11 +

\Delta t\mu n+1/2p
n+1/2
11

\varepsilon 2
 - pn11 +

\Delta t\kappa n+1/2p
n+1/2
21

2 \varepsilon 2
= 0,

(1 + \Delta t) p
n+1/2
12 +

\Delta t\mu n+1/2p
n+1/2
12

\varepsilon 2
 - pn12 +

\Delta t\kappa n+1/2p
n+1/2
22

2 \varepsilon 2
= 0,

(1 + \Delta t) p
n+1/2
21 +

\Delta t\lambda n+1/2p
n+1/2
21

\varepsilon 2
 - pn21 +

\Delta t\kappa n+1/2p
n+1/2
11

2 \varepsilon 2
= 0,

(1 + \Delta t) p
n+1/2
22 +

\Delta t\lambda n+1/2p
n+1/2
22

\varepsilon 2
 - pn22 +

\Delta t\kappa n+1/2p
n+1/2
12

2 \varepsilon 2
= 0,

(3.13)

where

\mu n+1/2 :=

\biggl( \Bigl( 
p
n+1/2
11

\Bigr) 2

+
\Bigl( 
p
n+1/2
12

\Bigr) 2

 - 1

\biggr) 
,

\lambda n+1/2 :=

\biggl( \Bigl( 
p
n+1/2
21

\Bigr) 2

+
\Bigl( 
p
n+1/2
22

\Bigr) 2

 - 1

\biggr) 
,

\kappa n+1/2 :=
\Bigl( 
p
n+1/2
11 p

n+1/2
21 + p

n+1/2
12 p

n+1/2
22

\Bigr) 
.

Actually, system (3.13) can be reformulated in a more condensed form. Let us denote
[p11, p12]

T by \alpha and [p21, p22]
T by \beta ; then (3.13) becomes

(1 + \Delta t)\alpha n+1/2 +
\Delta t(| \alpha n+1/2| 2  - 1)\alpha n+1/2

\varepsilon 2
+

\Delta t(\alpha n+1/2 \cdot \beta n+1/2)\beta n+1/2

2\varepsilon 2
= \alpha n,

(1 + \Delta t)\beta n+1/2 +
\Delta t(| \beta n+1/2| 2  - 1)\beta n+1/2

\varepsilon 2
+

\Delta t(\alpha n+1/2 \cdot \beta n+1/2)\alpha n+1/2

2\varepsilon 2
= \beta n.

(3.14)

The above nonlinear system consists of four cubic equations. It is solved using a
Newton--Raphson method. Algorithm (3.11), (3.12) requires the condition \Delta t \leq \varepsilon 2
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for system (3.14) to have a unique solution and guarantee the convergence as n \rightarrow +\infty .
One does not need safeguarding in practice.

In practice (see section 4), once a finite element discretization of \Omega is constructed,
(3.14) is solved pointwise on each element of the discretization. The number of systems
to solve thus depends on the number of elements of the triangulation.

3.5. Variational problems. The subproblem (3.12) that arises in the split-
ting algorithm is a well-posed, classical, linear elliptic variational problem. In order
to highlight this statement, let us consider the reverse change of variable and take
\nabla un+1 := pn+1. Problem (3.12) can be rewritten as follows: Find un+1 \in V\bfg such
that

(3.15)

\varepsilon 1\Delta t

\int 
\Omega 

(\nabla 2un+1) \cdot (\nabla 2v)dx+

\int 
\Omega 

\nabla un+1 : \nabla vdx+ C\Delta t

\int 
\Omega 

un+1 \cdot vdx

= C\Delta t

\int 
\Omega 

f \cdot vdx+

\int 
\Omega 

pn+1/2 : \nabla vdx, v \in (H2(\Omega ) \cap H1
0 (\Omega ))

2.

Problem (3.15) is a fourth-order linear elliptic variational problem of the biharmonic
type. We introduce a coupled problem with an auxiliary variable. The additional

equation reads as follows: Find wn+1 \in 
\bigl( 
H1

0 (\Omega )
\bigr) 2

such that

(3.16) wn+1 =  - \nabla 2un+1 in \Omega .

Aggregating (3.15) and (3.16) allows us to obtain a coupled second-order linear system

that reads as follows: Find (un+1,wn+1) \in V\bfg \times 
\bigl( 
H1

0 (\Omega )
\bigr) 2

such that

(3.17)

\left\{                 

\varepsilon 1\Delta t

\int 
\Omega 

\nabla wn+1 : \nabla vdx+

\int 
\Omega 

\nabla un+1 : \nabla vdx+ C\Delta t

\int 
\Omega 

un+1 \cdot vdx

= C\Delta t

\int 
\Omega 

f \cdot vdx+

\int 
\Omega 

pn+1/2 : \nabla vdx,\int 
\Omega 

\nabla un+1 : \nabla qdx - 
\int 
\Omega 

wn+1 \cdot qdx = 0

for all (v,q) \in 
\bigl( 
H1

0 (\Omega )
\bigr) 2 \times \bigl( 

H1
0 (\Omega )

\bigr) 2
.

Remark 3.3. It follows from (3.17) that the pair (un+1,wn+1) verifies wn+1 =
 - \nabla 2un+1 and

(3.18)

\left\{    - \varepsilon 1\Delta t\nabla 2wn+1 +wn+1 + C\Delta tun+1 = C\Delta tf  - \nabla \cdot pn+1/2 in \Omega ,

wn+1 = 0 on \Gamma .

Anticipating on the space discretization (to be addressed in section 4), boundary layer
thickness considerations suggest taking \varepsilon 1\Delta t of the order of h2 in (3.18), that is, taking
\varepsilon 1 of the order of h2/\Delta t. The same conclusion can be reached by balancing, after
space discretization, the main diagonals (or the largest eigenvalues) of the symmetric
matrices approximating the operators  - \varepsilon 1\Delta t\nabla 2 and I.

4. Finite element discretization.

4.1. Generalities. The space approximation of the time-stepping algorithm
(3.11)--(3.12) is addressed with piecewise linear continuous finite elements. As men-
tioned earlier, the use of low-order finite elements is appropriate for problems such as

D
ow

nl
oa

de
d 

07
/3

1/
20

 to
 1

28
.1

79
.2

53
.6

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

NUMERICAL APPROXIMATION OF ORTHOGONAL MAPS B1349

(2.1), due to the low regularity of the solution. Since the solutions of the orthogonal
maps equation are piecewise affine, the set of folding lines describes the discontinu-
ity set of the solution gradient, and higher-order methods will not bring additional
accuracy in the neighborhood of these lines.

Let us denote by h > 0 a space discretization step, together with an associated
triangulation \scrT h that satisfies the usual compatibility conditions (see, e.g., [28]). Let
us denote by \Sigma h the (finite) set of the vertices of \scrT h, by Nh the number of elements
in \Sigma h, and by \Sigma 0h the subset of those elements in \Sigma h not located on \Gamma (with N0h :=
card(\Sigma 0h)).

From the triangulation \scrT h we define the following finite element spaces:

Vh = \{ v \in (C0(\Omega ))2,v \in (\BbbP 1)
2 \forall K \in \scrT h\} ,

V\bfg ,h = \{ v \in Vh,v(Q) = g(Q) \forall Q vertices of \scrT h belonging to \Gamma \} ,
Qh = \{ q \in (L\infty (\Omega ))2\times 2, q| K \in \BbbR 2\times 2 \forall K \in \scrT h\} ,

where \BbbP 1 is the space of two-variable polynomials of degree\leq 1. Note that the gradient
of functions in Vh belongs to Qh. Next, we equip Vh, and its subspaces V\bfg ,h, with
the following discrete inner product (based on classical quadrature formulas):

(v,w)0h =

Nh\sum 
k=1

mk\sum 
i=1

Wiv(\zeta \bfi ) \cdot w(\zeta i) \forall v,w \in Vh,

where Wi (resp., \zeta i) are the weights (resp., evaluation points) of a Gauss quadrature
rule of order \geq 2, and mk is the number of quadrature points in the element k
(supposed constant). The quadrature formulas we used are implemented in the library
libmesh [37]. The corresponding norm is | | v| | 0h :=

\sqrt{} 
(v,v)0h for all v \in Vh. In a

similar fashion, we equip the space Qh with the inner product and norm respectively
defined by

((p,q))0h =
\sum 

K\in \scrT h

| K| p| K : q| K

and | | | q| | | 0h =
\sqrt{} 

((q,q))0h (with | K| = area of K).
The discrete version of the numerical algorithm uses the same steps as the continu-

ous version presented in section 3. However, let us sketch the main discrete milestones
in what follows.

4.2. Discretization of the flow problem. The variational formulation of the
initial value problem (3.10) reads as follows: Find ph(t) \in Qh for a.e. t \in (0,+\infty )
satisfying

(4.1)

\int 
\Omega 

\partial ph(t)

\partial t
: qhdx+

\int 
\Omega 

ph(t) : qhdx+ C

\int 
\Omega 

(Bph(t) + u\bfg ,h  - f) \cdot Bqhdx

+ \langle \partial I\nabla h
(ph(t)),qh\rangle 

+
1

\varepsilon 2

\int 
\Omega 

\biggl[ 
(| p1,h(t)| 2  - 1)p1,h(t) \cdot q1,h + (| p2,h(t)| 2  - 1)p2,h(t) \cdot q2,h

+
1

2
p1,h(t) \cdot p2,h(t)(p2,h(t) \cdot q1,h + p1,h(t) \cdot q2,h)

\biggr] 
dx = 0 \forall qh \in Qh,

together with the given initial condition ph(0) = p0,h. Here, we define
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(i) the function u\bfg ,h \in V\bfg ,h as the unique element of V\bfg ,h verifying\int 
\Omega 

\nabla u\bfg ,h : \nabla vhdx = 0 \forall vh \in V\bfzero ,h;

(ii) the function Bqh as the unique element of V\bfzero ,h verifying\int 
\Omega 

\nabla Bqh : \nabla vhdx =

\int 
\Omega 

(\nabla \cdot qh) \cdot vhdx \forall vh \in V\bfzero ,h;

(iii) the functional I\nabla h
by

I\nabla h
(qh) =

\left\{   
\varepsilon 1
2
(\bfittheta h(qh),\bfittheta h(qh))0h if qh \in \nabla V\bfg ,h,

+\infty if qh \in Qh\setminus \nabla V\bfg ,h,

where \bfittheta h(qh) is uniquely defined from qh by\left\{   \bfittheta h(qh) \in V\bfzero ,h,

(\bfittheta h(qh), \varphi )0h = ((qh,\nabla \varphi ))0h \forall \varphi \in V\bfzero ,h.

(iv) The initial condition p0,h \in Qh is obtained as follows: First we calculate u0,h \in 
V\bfg ,h verifying \int 

\Omega 

\nabla u0,h : \nabla vhdx = \bfitdelta \forall \in vh \in V\bfzero ,h,

where \bfitdelta = (0.0005, 0.0005)T ; then, p0,h is calculated as the piecewise constant
gradient \nabla u0,h on each element K \in \scrT h.

We apply the operator-splitting strategy (3.11), (3.12) to solve (4.1), and we de-
note by pn

h the related approximations of ph(t
n). Starting from the initial condition

p0
h = p0,h, we compute successively p

n+1/2
h and pn+1

h via the following two interme-
diate steps:

(A) Prediction step: Find p
n+1/2
h \in Qh satisfying

(4.2)

\int 
\Omega 

p
n+1/2
h  - pn

h

\Delta t
: qhdx+

\int 
\Omega 

p
n+1/2
h : qhdx

+
1

\varepsilon 2

\int 
\Omega 

\biggl[ 
(| pn+1/2

1,h | 2  - 1)p
n+1/2
1,h \cdot q1,h + (| pn+1/2

2,h | 2  - 1)p
n+1/2
2,h \cdot q2,h

+
1

2
p
n+1/2
1,h \cdot pn+1/2

2,h (p
n+1/2
2,h \cdot q1,h + p

n+1/2
1,h \cdot q2,h)

\biggr] 
dx = 0

for all qh \in Qh.
(B) Correction step: Find pn+1

h \in Qh satisfying

(4.3)

\int 
\Omega 

pn+1
h  - p

n+1/2
h

\Delta t
: qhdx+ C

\int 
\Omega 

(Bpn+1
h + u\bfg ,h  - f) \cdot Bqh dx

+ \langle \partial I\nabla h
(pn+1

h ),qh\rangle = 0

for all qh \in Qh.
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4.3. Solution of the discrete local optimization problems. The finite-

dimensional nonlinear problem (4.2) can be solved trianglewise. Indeed, if p
n+1/2
h :=

\{ pn+1/2
K,h \} K\in \scrT h

, one can rewrite (4.2) as follows: For each triangle K \in \scrT h, solve

(1 + \Delta t) p
n+1/2
K,h,11 +

\Delta t\mu 
n+1/2
h p

n+1/2
K,h,11

\varepsilon 2
 - pnK,h,11 +

\Delta t\kappa 
n+1/2
h p

n+1/2
K,h,21

2 \varepsilon 2
= 0,

(1 + \Delta t) p
n+1/2
K,h,12 +

\Delta t\mu 
n+1/2
h p

n+1/2
K,h,12

\varepsilon 2
 - pnK,h,12 +

\Delta t\kappa 
n+1/2
h p

n+1/2
K,h,22

2 \varepsilon 2
= 0,

(1 + \Delta t) p
n+1/2
K,h,21 +

\Delta t\lambda 
n+1/2
h p

n+1/2
K,h,21

\varepsilon 2
 - pnK,h,21 +

\Delta t\kappa 
n+1/2
h p

n+1/2
K,h,11

2 \varepsilon 2
= 0,

(1 + \Delta t) p
n+1/2
K,h,22 +

\Delta t\lambda 
n+1/2
h p

n+1/2
K,h,22

\varepsilon 2
 - pnK,h,22 +

\Delta t\kappa 
n+1/2
h p

n+1/2
K,h,12

2 \varepsilon 2
= 0,

(4.4)

where

\mu 
n+1/2
h :=

\biggl( \Bigl( 
p
n+1/2
K,h,11

\Bigr) 2

+
\Bigl( 
p
n+1/2
K,h,12

\Bigr) 2

 - 1

\biggr) 
,

\lambda 
n+1/2
h :=

\biggl( \Bigl( 
p
n+1/2
K,h,21

\Bigr) 2

+
\Bigl( 
p
n+1/2
K,h,22

\Bigr) 2

 - 1

\biggr) 
,

\kappa 
n+1/2
h :=

\Bigl( 
p
n+1/2
K,h,11 p

n+1/2
K,h,21 + p

n+1/2
K,h,12 p

n+1/2
K,h,22

\Bigr) 
.

System (4.4) is similar to (3.13) and can be solved by Newton's techniques, taking
pn
K,h as an initial guess. When applied to the solution of problem (4.4), the Newton

method always converged and never required more than 10 iterations for the test
problems considered in section 5.

4.4. Solution of the discrete linear variational problems. Problem (4.3)
is equivalent to the following: Find (un+1

h ,wn+1
h ) \in V\bfg ,h \times V\bfzero ,h such that

(4.5)

\left\{           
\varepsilon 1\Delta t((\nabla wn+1

h ,\nabla vh))0h + ((\nabla un+1
h ,\nabla vh))0h + C\Delta t(un+1

h ,vh)0h

= C\Delta t(f ,vh)0h + ((p
n+1/2
h ,\nabla vh))0h,

((\nabla un+1
h ,\nabla qh))0h  - (wn+1

h ,qh)0h = 0

for all (vh,qh) \in V\bfzero ,h \times V\bfzero ,h.

Remark 4.1. Let \varphi i, i = 1, . . . , Nh, be the piecewise linear basis functions of
Vh. Note that, by defining the classical stiffness and mass matrices A and M by
Ai,j =

\int 
\Omega 
\nabla \varphi i \cdot \nabla \varphi jdx, Mi,j =

\int 
\Omega 
\varphi i\varphi jdx, and suitable right-hand side F, the linear

system can be compactly written as\biggl( 
A+ C\Delta tM \varepsilon 1\Delta tA

A  - M

\biggr) \biggl( 
u
w

\biggr) 
=

\biggl( 
F
0

\biggr) 
.

Here we used a monolithic approach to solve this block-structured linear system.
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Remark 4.2. Note here that we could also have rewritten (4.5) as

(4.6)

\left\{           
\varepsilon 1\Delta t((\nabla wn+1

h ,\nabla vh))0h + (wn+1
h ,qh)0h + C\Delta t(un+1

h ,vh)0h

= C\Delta t(f ,vh)0h + ((p
n+1/2
h ,\nabla vh))0h,

((\nabla un+1
h ,\nabla qh))0h  - (wn+1

h ,qh)0h = 0

for every (vh,qh) belonging to V\bfzero ,h \times V\bfzero ,h. Then, using the previous matrix-vector
notation, the linear system would have become\biggl( 

C\Delta tM \varepsilon 1\Delta tA+M
A  - M

\biggr) \biggl( 
u
w

\biggr) 
=

\biggl( 
F
0

\biggr) 
.

5. Numerical experiments. In this section we are going to report on the re-
sults of numerical experiments aimed at assessing the robustness, the accuracy, and
the efficiency of our methodology. The computational domain (i.e., the paper sheet
to be folded) is chosen either as the unit square \Omega = (0, 1)2 or as the unit disk
\Omega = \{ (x, y) \in \BbbR 2 : x2 + y2 < 1\} . All the experiments have been performed on a
desktop computer with Intel Xeon E5-1650 (3.50 GHz \times 12) and 64 GB memory.

We consider several discretizations of the computational domain, using various
finite element meshes as shown in Figure 2. The influence of the chosen mesh on the
solution obtained by the algorithm is also discussed. For all the numerical experiments

we consider f = (0, 0)T , \varepsilon 2 = 5 \times 10 - 10, \Delta t = \varepsilon 2/2, C = 10, and \varepsilon 1 = h2

5\Delta t (unless
stated otherwise). The stopping criterion we use to decide on the flow stationarity
is either n \leq 1000 or | | pn+1  - pn| | L2(\Omega ) \leq 5 \times 10 - 4 (unless stated otherwise). We
observe numerically that for this stopping criterion, | | un+1  - un| | L2(\Omega ) is of the order
of 10 - 7.

The choice of f allows us to give an a priori estimate of the solution. With another
choice of f , another solution may be obtained, and numerical experiments have shown
some sensitivity with respect to the parameters f and C. The penalization constant
\varepsilon 2 is chosen in order to guarantee that the orthogonality conditions are satisfied
accurately. Values of \varepsilon 2 ranging from 10 - 5 to 10 - 10 are suitable. The number of
iterations of the Newton method in section 3.4 may decrease when \varepsilon 2 is larger. The
choice of \varepsilon 1 allows us to have a regularization term in (3.15) of the order of h2. In
light of these comments, a thorough sensitivity analysis has not been performed, but
the influence of some parameters will be discussed in the numerical experiments.

5.1. Smooth validation example. In the first experiment, the algorithm is
validated with a boundary condition that corresponds to a smooth mapping, without
any singularities. We consider

g(x) = x \forall x \in \partial \Omega .

An exact solution corresponding to this given boundary is the identity mapping
u(x) = x. This corresponds to an origami without any actual folding.

For such an example, when choosing \varepsilon 1 = 0.0 as a smoothing parameter, the
problem is solved up to machine precision for all meshes. Figure 3 visualizes the
graph of the two components of the computed approximate solution. Since the two
components of the solution are piecewise affine, the continuous piecewise affine finite
element approximation we advocated in section 4 is ideally suited to the solution of
the problem under consideration.
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Fig. 2. Finite element triangulations used for the numerical experiments. Top left: Structured
asymmetric mesh (\Omega = (0, 1)2, h = 0.04). Top right: Structured symmetric mesh (\Omega = (0, 1)2,
h = 0.125). Bottom left: Isotropic unstructured mesh (\Omega = (0, 1)2, h \simeq 0.02). Bottom right:
Isotropic unstructured mesh (\Omega = \{ (x, y) \in \BbbR 2 : x2 + y2 < 1\} , h \simeq 0.08).

Fig. 3. Smooth validation example. Graphs of the two components of the computed approximate
solution of (2.1) with g(x) = x on \partial \Omega . Left: Approximation of the first component u1. Right:
Approximation of the second component u2. These results have been obtained using a structured
asymmetric triangulation with h = 0.01.

Note that a very accurate (up to machine precision) approximation of the solution
can be obtained with \varepsilon 1 of the order of h2, together with \varepsilon 2 \simeq 10 - 7, and a stopping
criterion of | | pn+1  - pn| | L2(\Omega ) \leq 5 \times 10 - 10. Table 1 illustrates the results obtained
with the same setup as described previously. It shows that orthogonality conditions
are not jeopardized by the introduction of the well-chosen smoothing parameter.
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Table 1
Smooth validation example (\varepsilon 1 \simeq h2). (i) Variations with respect to h of the approximate

orthogonality conditions verified by \nabla u1,h and \nabla u2,h (columns 2, 3, and 4). (ii) Variations with
respect to h of the L2(\Omega ) norm of the computed approximation error u - uh and related convergence
orders (columns 5 and 6). (iii) Variations with respect to h of the number of time steps necessary
to achieve convergence (column 7). (\Omega = (0, 1)2, structured asymmetric meshes.)

h

\int 
\Omega 
| \nabla u1,h| dx

\int 
\Omega 
| \nabla u2,h| dx

\int 
\Omega 
| \nabla u1,h \cdot \nabla u2,h| dx | | u - uh| | L2 Rate Iter

0.02 1.0 1.0 1.89e-6 2.35e-07 - 31
0.01 1.0 1.0 8.94e-7 1.04e-07 1.17 36
0.005 1.0 1.0 4.38e-7 4.93e-08 1.07 40
0.0025 1.0 1.0 2.46e-7 2.72e-08 0.85 43

5.2. Simple folding and mesh dependency. For the second experiment, we
consider the unit square and the boundary data g given by

(5.1)
g1(x1, x2) =

\left\{   x1 if x1 < 0.5 and x2 = 0 or x2 = 1,
1 - x1 if x1 \geq 0.5 and x2 = 0 or x2 = 1,
0 otherwise,

g2(x1, x2) = x2 on \partial \Omega .

In this case, the exact solution to (2.1) is given by u = (u1, u2)
T , with

(5.2)
u1(x1, x2) =

\biggl\{ 
x1 if x1 < 0.5,
1 - x1 if x1 \geq 0.5,

u2(x1, x2) = x2 in \Omega .

The function u defined by (5.2) corresponds to a single folding of the domain \Omega 
along the middle line. This implies that the singularity is a line singularity along
x1 = 0.5. Thus, when choosing \varepsilon 1 = 0, the algorithm obtains a discretized solution
that is accurate up to machine precision. In the case of the structured meshes of
Figure 2, the mesh edges can be aligned with this line singularity or not, depending
on whether the vertical mesh edges are along x1 = 0.5. In the case of unstructured
meshes, the edges are never aligned with the line x1 = 0.5. Tables 2, 3, and 4

show results using \varepsilon 1 = h2

5\Delta t . One can observe that the results are more accurate
when using a structured mesh with edges aligned with the line singularity; when the
line singularity is not aligned with the (structured) mesh edges, the behavior of the
algorithm is actually similar to when the mesh is unstructured. Moreover, the number
of iterations (time steps) needed to obtain a stationary solution is larger for the two
latter cases. Finally, the convergence to the exact solution is superlinear when h \rightarrow 0
but more stable for structured meshes in Table 2.

We have visualized in Figure 4 (i) the graphs of the two components of the
computed approximate solution (first row); (ii) the values of det\nabla u (second row (left));
(iii) the image u(\Omega ) \subset \BbbR 2 (second row (right)), which shows that the initial domain
\Omega is folded in half (note that this illustration is postprocessed from the computed
approximations of u1 and u2).

5.3. Double diagonal folding. Let us consider now the unit square \Omega = (0, 1)2

and the boundary data defined by

(5.3) g(x1, x2) = (0, | x1  - x2| ), (x1, x2) \in \partial \Omega .
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Table 2
Simple folding. (i) Variations with respect to h of the approximate orthogonality conditions

verified by \nabla u1,h and \nabla u2,h (columns 2, 3, and 4). (ii) Variations with respect to h of the L2(\Omega )
norm of the computed approximation error u  - uh and related convergence orders (columns 5 and
6). (iii) Variations with respect to h of the number of time steps necessary to achieve convergence
(column 7). (\Omega = (0, 1)2, structured asymmetric meshes, line singularity aligned with mesh edges.)

h

\int 
\Omega 
| \nabla u1,h| dx

\int 
\Omega 
| \nabla u2,h| dx

\int 
\Omega 
| \nabla u1,h \cdot \nabla u2,h| dx | | u - uh| | L2 Rate Iter

0.02 0.9732 1.0 0.0028 1.87e-03 - 57
0.01 0.9866 1.0 0.0008 6.43e-04 1.54 65
0.005 0.9933 1.0 0.0002 2.22e-04 1.53 72
0.0025 0.9966 1.0 5.92e-05 7.76e-05 1.51 79

Table 3
Simple folding. (i) Variations with respect to h of the approximate orthogonality conditions

verified by \nabla u1,h and \nabla u2,h (columns 2, 3, and 4). (ii) Variations with respect to h of the L2(\Omega )
norm of the computed approximation error u  - uh and related convergence orders (columns 5 and
6). (iii) Variations with respect to h of the number of time steps necessary to achieve convergence
(column 7). (\Omega = (0, 1)2, isotropic unstructured meshes.)

h

\int 
\Omega 
| \nabla u1,h| dx

\int 
\Omega 
| \nabla u2,h| dx

\int 
\Omega 
| \nabla u1,h \cdot \nabla u2,h| dx | | u - uh| | L2 Rate Iter

0.05 0.9413 1.0 0.0167 6.20e-03 - 48
0.026 0.9700 1.0 0.0024 2.45e-03 1.33 96
0.013 0.9849 1.0 0.0011 1.10e-03 1.15 184
0.006 0.9925 1.0 0.0003 3.13e-04 1.82 117

Table 4
Simple folding. (i) Variations with respect to h of the approximate orthogonality conditions

verified by \nabla u1,h and \nabla u2,h (columns 2, 3, and 4). (ii) Variations with respect to h of the L2(\Omega )
norm of the computed approximation error u  - uh and related convergence orders (columns 5 and
6). (iii) Variations with respect to h of the number of time steps necessary to achieve convergence
(column 7). (\Omega = (0, 1)2, structured asymmetric meshes, line singularity not aligned with mesh
edges.)

h

\int 
\Omega 
| \nabla u1,h| dx

\int 
\Omega 
| \nabla u2,h| dx

\int 
\Omega 
| \nabla u1,h \cdot \nabla u2,h| dx | | u - uh| | L2 Rate Iter

0.0196 0.9724 1.0 0.0094 4.72e-03 - 58
0.0099 0.9864 1.0 0.0048 2.44e-03 0.95 66
0.0049 0.9932 1.0 0.0024 1.25e-03 0.96 157
0.0024 0.9966 1.0 0.0027 4.39e-04 1.50 553

A corresponding exact solution is

(5.4)

u1(x1, x2) = d(x, \partial \Omega ) \forall x in \Omega ,

u2(x1, x2) =

\biggl\{ 
min(x2, 1 - x1) if x1 < x2,
min(x1, 1 - x2) otherwise.

For this test example, the line singularities are aligned with the two diagonals of
\Omega (x1 = x2 and 1  - x1 = x2). When using the structured symmetric mesh (see
Figure 2, top right) and \varepsilon 1 = 0.0, the algorithm obtains an approximated solution
that is highly accurate, since the singularities are aligned with mesh edges. Indeed,
after 170 iterations (time steps of the splitting algorithm), the numerical solution
satisfies | | u  - uh| | L2(\Omega ) = 1.45 \times 10 - 8,

\int 
\Omega 
| \nabla u1| dx = 1.0,

\int 
\Omega 
| \nabla u2| dx = 1.0, and\int 

\Omega 
| \nabla u1 \cdot \nabla u2| dx = 3.88\times 10 - 8.
Numerical results are reported in Tables 5 and 6 for the structured asymmetric

and unstructured triangulations, respectively. Similar convergence orders are observed
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Fig. 4. Simple folding. Visualization of the graph of the first and second components of the
computed approximate solution uh (= (u1,h, u2,h)) of (2.1) with \Omega = (0, 1)2 and g given by (5.1).
Top left: First component of the computed approximate solution u1,h. Top right: Second component
of the computed approximate solution u2,h. Bottom left: Visualization of det\nabla uh. Bottom right:
Visualization of the domain uh(\Omega ).

for both types of triangulations, since none of them match exactly the singularity of
the gradient solution. Figure 5 illustrates the approximate solution uh. One can see
that the two components actually satisfy the orthogonality conditions. Figure 5 (bot-
tom left) visualizes det\nabla uh and shows that the angle condition (see Remark 2.2) is
satisfied. Figure 5 (bottom right) visualizes the image u(\Omega ) of \Omega through the mapping
u. Table 7 illustrates the dependency of the solution with respect to the smoothing
parameter \varepsilon 1. One observes that, as \varepsilon 1 \rightarrow 0, the L2(\Omega )-approximation error decreases
and the orthogonality properties verified by\nabla u1 and\nabla u2 are better satisfied by\nabla u1,h

and \nabla u2,h. On the other hand, the number of iterations necessary to achieve con-
vergence increases as \varepsilon 1 \rightarrow 0. This numerical example shows that the introduction
of the regularization term, such that \varepsilon 1 \not = 0, leads to, overall, better convergence
properties of the time-stepping algorithm. Numerical results have consistently shown
that the introduction of this term not only helps the convergence of the time-stepping
algorithm towards a stationary solution, but also allows us to reduce drastically the
number of time iterations in some cases.

The sensitivity of the results with respect to the target function f is now investi-
gated. When modifying the target function f , the algorithm is able to track different
solutions of the orthogonal maps problem. Let us consider f1(x1, x2) = ( - 2000, 0)T .
Figure 6 (left column) illustrates snapshots of the two components of the numerical
solution uh, for h = 0.01, and of the determinant det\nabla uh, and shows that the first
component is the concave up version of the one illustrated in Figure 6 when f = 0,
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Table 5
Double diagonal folding. (i) Variations with respect to h of the approximate orthogonality

conditions verified by \nabla u1,h and \nabla u2,h (columns 2, 3, and 4). (ii) Variations with respect to h
of the L2(\Omega ) norm of the computed approximation error u  - uh and related convergence orders
(columns 5 and 6). (iii) Variations with respect to h of the number of time steps necessary to
achieve convergence (column 7). (\Omega = (0, 1)2, structured asymmetric meshes.)

h

\int 
\Omega 
| \nabla u1,h| dx

\int 
\Omega 
| \nabla u2,h| dx

\int 
\Omega 
| \nabla u1,h \cdot \nabla u2,h| dx | | u - uh| | L2 Rate Iter

0.02 0.9672 0.9615 0.0710 3.86e-03 - 64
0.01 0.9837 0.9804 0.0370 1.55e-03 1.31 71
0.005 0.9918 0.9901 0.0189 6.58e-04 1.23 75
0.0025 0.9959 0.9950 0.0095 2.95e-04 1.15 84

Table 6
Double diagonal folding. (i) Variations with respect to h of the approximate orthogonality

conditions verified by \nabla u1,h and \nabla u2,h (columns 2, 3, and 4). (ii) Variations with respect to h
of the L2(\Omega ) norm of the computed approximation error u  - uh and related convergence orders
(columns 5 and 6). (iii) Variations with respect to h of the number of time steps necessary to
achieve convergence (column 7). (\Omega = (0, 1)2, isotropic unstructured meshes.)

h

\int 
\Omega 
| \nabla u1,h| dx

\int 
\Omega 
| \nabla u2,h| dx

\int 
\Omega 
| \nabla u1,h \cdot \nabla u2,h| dx | | u - uh| | L2 Rate Iter

0.05 0.9346 0.9279 0.1305 9.93e-03 - 61
0.026 0.9677 0.9618 0.0724 3.93e-03 1.33 83
0.013 0.9840 0.9805 0.0393 1.73e-03 1.18 313
0.006 0.9920 0.9901 0.0208 7.63e-04 1.18 292

while the second component remains unchanged. The numerical solution satisfies\int 
\Omega 

| \nabla u1| dx = 1.01,

\int 
\Omega 

| \nabla u2| dx = 0.98,

\int 
\Omega 

| \nabla u1 \cdot \nabla u2| dx = 0.047

after 120 iterations. A second variation in the fidelity term is illustrated by a pertur-
bation of the target function f around the null function 0, through a local perturbation
around the midpoint (0.5, 0.5). Figure 6 (right column) illustrates the snapshots of
the two components of the numerical solution uh, and of the determinant det\nabla uh,
obtained when

f2(x1, x2) =

\Biggl\{ 
 - 2000 if (x1  - 0.5)2 + (x2  - 0.5)2 \leq 2h,

0 otherwise,

where h = 0.01 is the mesh size. The numerical solution satisfies\int 
\Omega 

| \nabla u1| dx = 0.96,

\int 
\Omega 

| \nabla u2| dx = 0.97,

\int 
\Omega 

| \nabla u1 \cdot \nabla u2| dx = 0.040

after 615 iterations. We can observe that the local perturbation of the target func-
tion induces a local perturbation of the approximation of the first component of the
solution, which corresponds to an additional folding in the mapping. The sensitivity
of the solution with respect to the target function is thus limited to the neighborhood
of the perturbation. This is a consequence of the low regularity of the piecewise affine
solutions.
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Fig. 5. Double diagonal folding. Snapshots of the numerical stationary solution of (2.1) with
g given by (5.3). Top left: First component u1. Top right: Second component u2. Bottom left:
Visualization of det\nabla u = \pm 1. Bottom right: Visualization of the domain u(\Omega ).

Table 7
Double diagonal folding. (i) Variations with respect to \varepsilon 1 of the approximate orthogonality

conditions verified by \nabla u1,h and \nabla u2,h (columns 2, 3, and 4). (ii) Variations with respect to \varepsilon 1 of
the L2(\Omega ) norm of the computed approximation error u - uh and related convergence orders (column
5). (iii) Variations with respect to \varepsilon 1 of the number of time steps necessary to achieve convergence
(column 6). (\Omega = (0, 1)2, structured asymmetric mesh, h = 0.01.)

\varepsilon 1

\int 
\Omega 
| \nabla u1,h| dx

\int 
\Omega 
| \nabla u2,h| dx

\int 
\Omega 
| \nabla u1,h \cdot \nabla u2,h| dx | | u - uh| | L2 Iter

2\times 10 - 3 0.8337 0.8554 0.2242 2.99e-02 37

10 - 3 0.8873 0.8880 0.1878 1.87e-02 41

2\times 10 - 4 0.9517 0.9444 0.1023 6.32e-03 52

10 - 4 0.9658 0.9595 0.0758 4.03e-03 55

0.0 0.9960 0.9965 0.0142 1.84e-03 413
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Fig. 6. Double diagonal folding. Snapshots of the numerical stationary solution of (2.1) with g
given by (5.3) and nonzero target functions f (first row: first component, u1,h; second row: second
component, u2,h; third row: det\nabla uh). Left column: Numerical results when f = f1. Right column:
Numerical results when f = f2.

5.4. A nonsmooth example with a point singularity. For this example, we
have \Omega = (0, 1)2 and the boundary data g defined by

(5.5)

g1(x1, x2) =

\biggl\{ 
min (x1, 1 - x1) if x2 = 1,
0 otherwise,

g2(x1, x2) =

\left\{       
x2 if x2 \geq x1 and x1 \leq 0.5,
x2 if x1 > 0.5 and x2 >  - x1 + 1,
x1 if x2 \leq x1 and x1 \leq 0.5,
1 - x1 if x2 > x1 and x2 \leq  - x1 + 1.
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An exact solution to the related problem (2.1) is

(5.6)

u1(x1, x2) =

\left\{   x1 if x2 \geq x1 and x1 \leq 0.5,
1 - x1 if x1 > 0.5 and x2 >  - x1 + 1,
x2 if x2 \leq x1 and x2 \leq  - x1 + 1,

u2(x1, x2) =

\left\{       
x2 if x2 \geq x1 and x1 \leq 0.5,
x2 if x1 > 0.5 and x2 >  - x1 + 1,
x1 if x2 \leq x1 and x1 \leq 0.5,
1 - x1 if x2 > x1 and x2 \leq  - x1 + 1.

The main numerical difficulty here is the point singularity, located at (0.5, 0.5). In the
neighborhood of this point, the numerical approximation of det\nabla u oscillates between
the values +1 and  - 1, which increases significantly the number of iterations required
to achieve convergence.

However, using the structured symmetric mesh, the line singularities are again
aligned with the mesh edges, and a very accurate solution is obtained. Indeed, with
\varepsilon 1 = 0, and after 130 time steps, we have

| | u - uh| | L2(\Omega ) = 2.77 \cdot 10 - 10,\int 
\Omega 

| \nabla u1,h| dx = 1.0,

\int 
\Omega 

| \nabla u2,h| dx = 1.0,

\int 
\Omega 

| \nabla u1,h \cdot \nabla u2,h| dx = 1.25 \cdot 10 - 9.

We obtained the results reported in Table 8 using structured asymmetric meshes.
These results show a convergence of order 0.9--1.0, approximately. One observes also
that the number of time steps required to achieve quasi-stationarity increases drasti-
cally with 1/h; this is due to the oscillatory behavior of function t \rightarrow uh(t). Various
geometrical aspects of the computed approximate solution have been visualized in Fig-
ure 7. In particular, Figure 7 (bottom left) shows that det\nabla u satisfies accurately the
angle condition; however, accuracy deteriorates close to the singular point (0.5, 0.5).

Table 8
Nonsmooth example with point singularity. (i) Variations with respect to h of the approximate

orthogonality conditions verified by \nabla u1,h and \nabla u2,h (columns 2, 3, and 4). (ii) Variations with
respect to h of the L2(\Omega ) norm of the computed approximation error u - uh and related convergence
orders (columns 5 and 6). (iii) Variations with respect to h of the number of time steps necessary
to achieve convergence (column 7). (\Omega = (0, 1)2, structured asymmetric meshes.)

h

\int 
\Omega 
| \nabla u1,h| dx

\int 
\Omega 
| \nabla u2,h| dx

\int 
\Omega 
| \nabla u1,h \cdot \nabla u2,h| dx | | u - uh| | L2 Rate Iter

0.02 0.9703 0.9667 0.0422 5.71e-03 - 333
0.01 0.9852 0.9831 0.0219 2.89e-03 0.98 675
0.005 0.9926 0.9915 0.0113 1.52e-03 0.93 1438
0.0025 0.9963 0.9957 0.0058 7.88e-04 0.94 3316

5.5. Curved boundaries. Finally, in order to investigate the capabilities of
our methodology at handling domains \Omega with curved boundaries, we consider the
particular problem (2.1), where \Omega is the open unit disk centered at (0, 0), and g is
the restriction to \partial \Omega of the vector-valued function u defined by

(5.7)

u1(x1, x2) =

\biggl\{ 
x1 if x1 < 0.5,
1 - x1 if x1 \geq 0.5,

u2(x1, x2) =

\biggl\{ 
x2 if x2 < 0.5,
1 - x2 if x2 \geq 0.5,
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Fig. 7. Nonsmooth example with point singularity. Visualization of the solution uh of problem
(2.1) with g given by (5.5). Top left: Component u1,h. Top right: Component u2,h. Bottom left:
Visualization of det\nabla uh. Bottom right: Visualization of the domain uh(\Omega ).

with (x1, x2) \in \Omega . The function u we just defined is an exact solution to the above
problem. Actually, this solution corresponds to a double folding: one folding along
the horizontal diameter of \Omega (Ox1 axis) and one folding along the vertical diameter
of \Omega (Ox2 axis). We have reported in Table 9, for various values of h, the results

we obtained, taking \varepsilon 1 = h2

5\Delta t . These results (obtained using isotropic unstructured
meshes) show first-order convergence (actually, slightly better than first). They show
also that the gradients of the components u1,h and u2,h of uh verify accurately the
orthogonality properties of \nabla u1,h and \nabla u2,h. Geometrical aspects of uh have been
visualized in Figure 8, uh(\Omega h) in particular (in Figure 8 (bottom right)), \Omega h being a
polygonal approximation of \Omega .

6. The Dirichlet problem with homogeneous boundary conditions. In
this section, we will elaborate on the solution of the orthogonal maps problem (2.1)
with homogeneous Dirichlet boundary conditions: Find a vector-valued function u(=
[u1, u2]

T ) : \Omega \rightarrow \BbbR 2 verifying

(6.1)

\Biggl\{ 
\nabla u \in \scrO (2) in \Omega ,

u = 0 on \partial \Omega .

The choice of homogeneous boundary conditions actually corresponds to the case
where the image of the whole boundary \partial \Omega is the single point 0 = (0, 0). If the
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Table 9
Double folding of the unit disk. (i) Variations with respect to h of the approximate orthogonality

conditions verified by \nabla u1,h and \nabla u2,h (columns 2, 3, and 4). (ii) L2(\Omega ) norm of the approximation
error u - uh and related convergence rates (columns 5 and 6). (iii) Number of iterations necessary
to achieve convergence (column 7). These results have been obtained using an isotropic unstructured
triangulation of the unit disk.

h

\int 
\Omega 
| \nabla u1,h| dx

\int 
\Omega 
| \nabla u2,h| dx

\int 
\Omega 
| \nabla u1,h \cdot \nabla u2,h| dx | | u - uh| | L2 Rate Iter

0.05 0.9623 0.9623 0.0719 1.27e-02 - 75
0.025 0.9807 0.9807 0.0430 5.76e-03 1.03 379
0.013 0.9902 0.9902 0.0217 2.72e-03 1.08 557
0.006 0.9949 0.9949 0.0110 1.11e-03 1.29 427
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Fig. 8. Double folding of the unit disk. Visualization of the computed approximate solution
uh = (u1,h, u2,h) of problem (2.1), (5.3), with \Omega being the unit disk centered at (0, 0). Top left:
Graph of u1,h. Top right: Graph of u2,h. Bottom left: Visualization of det\nabla uh. Bottom right:
Visualization (postprocessing) of the domain uh(\Omega h). These results have been obtained using an
isotropic unstructured triangulation with h = 0.08.

condition \nabla u\nabla uT = I is incompatible with the homogeneous boundary condition (as
is the case if \Omega is a rectangle), the solution of the regularized least-squares problem
(3.1) will develop a fractal behavior near the boundary \Omega [16, 20], in a similar fashion
as in [8, 14, 30] for a scalar Eikonal equation. Such a fractal behavior makes the
convergence of our time-stepping method very slow or can even prevent it, which
makes this example a very stringent one. Actually, in this case, the introduction of
the regularization term with \varepsilon 1 \not = 0 becomes crucial to ensure convergence of the
algorithm, smooth the fractal behavior of the solution, and to avoid the blow-up of
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the number of time steps.
One first approach would be to fold the domain \Omega into a segment, e.g., \{ 0\} \times [0, 1].

This could be achieved by repeatedly folding along the axis Ox2 (sequential folding).
Then the procedure can be completed by repeatedly folding the obtained segment
along the other axis Ox1. However, let us remark that the limit solution obtained
when proceeding like this iteratively is not a solution to (6.1), as the solution mapping
is the null mapping, with a range restricted to the point (0, 0).

Figure 9 illustrates snapshots of the results (first component, u1,h; second compo-
nent, u2,h) when folding once, twice, and three times along the axis Ox2 only. We use a
uniform asymmetric triangulation with h = 1/160, \varepsilon 2 = 5\times 10 - 12, and \varepsilon 1 = h2/(5\Delta t).
We note that the numerical solution starts to present some instabilities when folding
several times. This issue will be addressed in section 7.

Fig. 9. Sequential folding for the construction of a sequence of numerical approximations of
(2.1), with boundary data converging to g = 0. Snapshots of the numerical stationary solution (left:
first component, u1,h; right: second component, u2,h), when folding once, twice, or three times along
one axis (first through third row).

In a second step, we focus on the case with homogeneous Dirichlet boundary con-
ditions (6.1). Figure 10 visualizes the results obtained by the methodology discussed
in sections 2--4, using a uniform asymmetric triangulation with h = 1/200 (thus one
has 40,401 vertices and 80,000 triangles). A close inspection shows that the angle
condition is not satisfied everywhere and that \varepsilon 1 induces a smoothing of the lines of
discontinuities of the singular set.

D
ow

nl
oa

de
d 

07
/3

1/
20

 to
 1

28
.1

79
.2

53
.6

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

B1364 CABOUSSAT, GLOWINSKI, GOURZOULIDIS, AND PICASSO

Fig. 10. Homogeneous orthogonal maps-Dirichlet problem (6.1) with \Omega = (0, 1)2. Visualization
of the approximate solutions (left: component u1,h; right: component u2,h). Results obtained using
a uniform asymmetric triangulation with 40,401 vertices and 80,000 triangles.

7. On the perspective of using adaptivity methods. Finally, in this sec-
tion, we will illustrate the interest of using adaptivity techniques for the solution of
the orthogonal maps problem (2.1). In order to improve convergence (and other prop-
erties), one can consider modifying the finite element approximation. A possible (and
classical) approach, based on error estimates for the Poisson problem introduced in
[38, 39, 40], is to adapt the finite element mesh to better follow the line singularities
and better approximate, via mesh refinement, the oscillatory behavior of the solution
near the boundary \partial \Omega .

Figure 11 visualizes the results obtained via mesh adaptivity for the sequential
folding problem introduced in the previous section, when folding three times along
the axis Ox2 and once along the axis Ox1 (\varepsilon 2 = 5 \times 10 - 12 and \varepsilon 1 = 0). We start
from a coarse isotropic unstructured mesh with 540 vertices and 998 triangles and end
up with an unstructured triangulation with 501 vertices and 895 triangles. One can
observe the better accuracy (sharpness of the folding lines) due to the space adaptivity
approach.

Fig. 11. Sequential folding for the construction of a sequence of numerical approximations of
(2.1), with boundary data converging to g = 0 (Figure 9 continued). Snapshots of the numerical
stationary solution (left: first component, u1,h; right: second component, u2,h) when folding three
times along one axis and once along the other axis.

Figure 12 visualizes the results obtained with homogeneous Dirichlet boundary
conditions (6.1), via mesh adaptivity, starting from a coarse isotropic unstructured
mesh with 266 vertices and 154 triangles; we end up with an unstructured triangula-
tion with 22,871 vertices and 42,987 triangles. The adaptive method smooths some
of the oscillations and allows a sharper tracking of the lines of discontinuities of the
singular set.

Therefore, mesh adaptation looks promising for orthogonal maps problems, and
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Fig. 12. Homogeneous orthogonal maps-Dirichlet problem (6.1) with \Omega = (0, 1)2. Visualization
of the approximate solutions computed with mesh adaptation. Left column: Component u1,h. Right
column: Component u2,h. Results obtained using an unstructured adapted triangulation with 22, 871
vertices and 42, 987 triangles.

dedicated (anisotropic) adaptive methods will be investigated in the future.

8. Conclusions and perspectives. We have discussed an operator-splitting/
finite element methodology for the numerical solution of the Dirichlet problem for or-
thogonal maps. This methodology is based on a variational principle, the introduction
of the associated flow problem, and a time-stepping splitting algorithm. The results
reported in section 5 show the robustness and the flexibility of this methodology and
its ability to approximate solutions with line singularities on convex domains, with
convergence orders close to 1 for the L2(\Omega ) norm of the approximation error.

Preliminary numerical experiments have illustrated that for some stringent in-
stances (e.g., with homogeneous boundary data), a fractal behavior of the solution
next to the domain boundary appears, and the approximation of the solution is more
difficult to obtain. An adaptive mesh algorithm approach allows us to obtain a more
accurate solution, but also ensures the convergence of the time-stepping algorithm.
Such nontrivial approaches will be investigated in the future.
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