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Abstract: In this article, using numerical simulations we investigate the self-assembly of rod-like
particles in suspension due to depletion forces which naturally emerge due to the presence of smaller
spherical depletant particles. We characterize the type of clusters that are formed and the evolution
of aggregation departing from a random initial configuration. We show that eventually the system
reaches a thermodynamic equilibrium state in which the aggregates break and reform dynamically.
We investigate the equilibrium state of aggregation, which exhibits a strong dependence on depletant
concentration. In addition, we provide a simple thermodynamic model inspired on the theory of
self-assembly of amphiphilic molecules which allows us to understand qualitatively the equilibrium
aggregate size distributions that we obtain in simulation.

Keywords: depletion forces; self-assembly; Langevin dynamics

1. Introduction

Due to their entropic origin, depletion forces are ubiquitous in complex fluids. They originate in
solutions with high concentrations of microscopic particles of at least two different sizes. Above certain
threshold concentrations of the different species, the larger particles tend to aggregate to increase the
entropy of the system and thus minimize its free energy. This phenomenon can be seen as an effective
interaction between the larger particles mediated by the smaller ones, as formulated by Asakura and
Oosawa in their seminal work [1]. Depletion interactions are of paramount importance to understand
colloidal stability, as they can cause flocculation [2]. In addition, depletion forces are thought to be a
significant contributor in some biological phenomena of special relevance [3], such as the formation of
aggregates of erythrocytes in blood [4].

Since the first theoretical account of depletion forces was given by Asakura and Oosawa [1],
much effort has been devoted to determine, both theoretically [5–9] and experimentally [10,11],
the basic properties of the depletion interaction in a variety of colloidal systems. To test the theoretical
picture and gain further insight, computer simulations have been used to investigate the dependence of
depletion forces on distance, depletant concentration, and the geometry of the colloidal particles [12–15].
In addition, there is also a large amount of work devoted to the phenomenological description of the
structures generated by depletion in colloidal dispersions [16–19].

The interaction due to depletion can be markedly anisotropic depending on the shape of
the interacting colloids. A number of different naturally occurring and custom-made shapes
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have been investigated that self-assemble due to depletion forces into a rich variety of complex
structures [17,18,20,21]. In fact, due to its anisotropy, the effect of depletion has been proposed as a
possible driving force to direct the self-assembly of colloids into predesigned structures in the quest to
synthesize new functional materials [16–18,20,22].

In this article, we investigate using numerical simulations the aggregation of rod-like particles due
to depletion forces. In contrast to most simulation studies where the depletion interaction is introduced
via effective potentials between colloidal particles, in our approach we simulate the dynamics of
both the rod-like particles and smaller spherical depletant particles, which naturally induce the
emergence of depletion forces. Departing from a random configuration, we solve the evolution
of the system until the average aggregate size (and thermodynamic quantities such as rotational
and translational kinetic energies) reach a stationary state which we identify with thermodynamic
equilibrium. We characterize the equilibrium size distribution of the aggregates and the dependence
of aggregation on the concentration of depletant. In addition, we propose a new theoretical approach
in the discussion of depletion forces inspired on the theory of self-assembly of amphiphilic molecules,
which allows us to understand qualitatively the equilibrium distributions that we obtain in simulation.

2. Computer Simulations

We performed computer simulations of a system of long rods in a solution of smaller depletant
spherical particles in contact with a thermal bath. The rods, of length L and square section of
side a, are modeled with the help of a group of spherical beads which collectively behave as a
rigid body [23] (see Figure 1). The spherical beads forming a rod do not interact with one another,
but they interact with spherical beads belonging to other rods and with spherical depletant particles.
The interactions among all the spherical beads in the simulation are purely repulsive, modeled through
the Weeks–Chandler–Andersen (WCA) potential

V(r) =

4εij

[(
σij
r

)12
−
(

σij
r

)6
]
+ εij , r < 21/6σij

0 , r ≥ 21/6σij ,

Here, r is the distance between particles i and j, εij defines the energy, and σij is the range of the
interaction. In the cases considered, we have chosen εij ≡ ε = 1 for all interactions, σ11 ≡ σ = 1
for the interaction between the particles that form the rods, σ22 = 1.2 for interactions between
depletant particles, and σ12 = 1.1 for interactions between disc and depletant particles following the
Lorentz–Bertheloz rule. The values of σ11 and σ22 are a measure of the diameter of the beads forming
the rods and the depletant particles, respectively. The WCA potential is a continuous potential which
generates purely repulsive interactions. This allows us to discard direct particle interactions as a source
of colloidal aggregation. Periodic boundary conditions are applied in all three directions.

The dynamics of rods and depletant particles is solved by integrating numerically the Langevin
stochastic equations of motion. In addition to particle–particle interactions, these equations consider
the effect of the medium through a viscous dragging force opposing the motion of particles and a
stochastic force corresponding to thermal noise. In our treatment, we have neglected the effect of
sedimentation assuming that the particles considered are neutrally buoyant. All simulations were
performed using the simulation package HOOMD-blue 2.2.3 [24,25] running on Tesla P100 GPUs
(See Supplementary Materials).

We report results obtained by considering systems with 125 rods (each one composed of 194 beads)
of length L = 20σ and square section of side a = 4.5σ in a cubic simulation box of side Lbox = 80σ

(see Figure 1). We consider four different cases with different concentrations of depletant particles,
cD = 0.088σ−3, 0.098σ−3, 0.118σ−3, 0.129σ−3. The number of particles in the system varies from 69,735
to 90,375 depending on the depletant concentration considered. The system is prepared departing
from a lattice configuration with all rods and depletant particles in a large simulation box to avoid
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overlaps. Next, a short simulation is performed in which the dimensions of the simulation box are
reduced as time advances until the desired density of particles is reached. From that configuration we
perform Langevin simulations with fixed volume, temperature, and number of particles to investigate
the formation of aggregates due to the emergent depletion interaction. The temperature of the system
is set to kBT = 1, kB is the Boltzmann constant, and the time step used is dt = 0.0001 in the reduced
units defined by ε and σ. The number of integration steps of the simulation depends on the time
the system takes to attain equilibrium, ranging from 1.5× 108 to 5× 108 steps depending on the
conditions considered. Such long equilibration times require long computational times for each of the
thermodynamic states considered, limiting the number of cases that we can explore. The performance
of the simulations required about 2500 h of computation on the GPUs.

a (b1)

(b2)

(b3)

(b4)

b

Figure 1. (a) Snapshot of simulated system. The spherical beads forming the rods are represented
in gray. Depletant particles are represented by orange beads. (b) Frequent assemblies observed in
simulations: (b1) monomer; (b2) pair of side-to-side assembled rods; (b3) bundle of four rods with
side-to-side aggregation; (b4) top view of large bundle, formed exclusively by side-to-side bonds.
All rods are identical, different colors were used for visualization purposes.

3. Thermodynamical Model

To understand the results from numerical simulations we built a simple thermodynamical model
which allows us to predict the type of aggregate distribution that we might expect in equilibrium.
The model is based on self-assembly theory [26,27] and a simplified account of the depletion interaction
between rods which emerges due to the presence of depletant.

The effective depletion interaction potential between two colloidal particles is, to a good
approximation, given by [1,7,28]

W(h) = −cDkBTVov , (1)

where T the temperature, cD the concentration of the depletant particles, and Vov the overlap volume
of the regions around the colloidal particles excluded to the presence of depletant. The range of the
interaction is given by the size of the depletant particles D, which is much smaller than the length and
width of the aggregating rods.

For a slender body with length L and radius R (R/L� 1), the side-to-side interactions dominate
over tip-to-tip interactions. This is because the reduction of the volume excluded to the presence of
depletant is much smaller in the latter than in the former situation (to order R/L). As a consequence,
aggregates are formed on the plane perpendicular to the axis of the colloids. For long rods with a square
section of side a, we can easily quantify the interaction potential (Equation (1)) as the side-to-side
overlap volume of two parallel rods separated a distance d is given by aL(D− d) if d < D, and 0 if
d > D.

Due to the short range of the depletion interaction (∼ D � a� L), we can consider that the total
interaction energy of an aggregate is proportional to the number of contacts m between rods within
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the aggregates, U = −mε0. Here, ε0 = cDkBTaLD f /2 is the average energy of a single bond, with f
a numerical factor which must account for the fact that there is a distribution of different degree of
overlap between rods.

The equilibrium distribution of the number of aggregates formed due to depletion forces between
rods can be understood using self-assembly theory. This approach was developed to describe
the aggregation of amphiphiles [26,27] and it has also been used to theoretically account for the
self-assembly of magnetic colloids [29,30]. In this formulation, aggregates with different size or internal
energy are considered as different species which in equilibrium can reversibly convert into one another.

In dilute solutions of rods in which we can assume ideal mixing, the chemical potential of a rod
in an aggregate with n rods and m contacts is given by [27]

µn,m = µ0 +
1
n

[
kBT ln

(
φn,m

n

)
−mε0

]
, (2)

where φn,m = cn,m/c0 is the concentration of rods in aggregates with n rods and m contacts over a
reference concentration c0. The conditions of thermodynamic equilibrium for the different species
(µn,m = µ1 , ∀n, m) and the conservation of the total rod concentration φR = ∑∞

n=1 ∑
mn,max
m=mn,min φn,m

completely define the state of the system, leading to a geometric distribution in the number of
monomers per aggregate [27,29,30]. Thus, the probability of finding an aggregate of n rods is given by

P(n) ∼
(

e1/〈n〉 − 1
)

e−n/〈n〉 . (3)

Here, 〈n〉 is the average number of rods per aggregate, which depends on the ratio ε0/kBT and
the total rod concentration φR. In particular, self-assembly theory predicts that in equilibrium the
average number of rods per aggregate should scale as 〈n〉 ∼ √φR for 〈n〉 � 1. Note that due to the
entropic origin of the depletion interaction, the distribution of aggregates (Equation (3)) does not
depend on the temperature of the system.

4. Results and Discussion

We identify the formation of aggregates as the simulations advance. Aggregation of rods
is observed to increase as the depletant concentration increases, in agreement with Equation (1).
A significant aggregation of rods is observed for systems with concentrations of depletant high enough
to induce depletion interactions able to overcome thermal fluctuations. The colloidal rods tend to
assemble forming bundles, with preferential side-to-side over tip-to-tip or tip-to-side aggregation.
In Figure 1b, we show representative morphologies obtained in our simulations. In all cases, the most
likely structure is the single rod (Figure 1b1). Aggregation of pairs of rods occur almost exclusively
through side-to-side interactions. Note that due to the existence of grooves on the side surfaces of
the rods, the assembly between two rods takes place out-of-registry (Figure 1b2). For cases with
high depletant concentration, larger bundles are formed; they still maintain, however, preference for
side-to-side formations (Figure 1b3,b4).

In Figure 2, we show the radial distribution function (RDF) of the centers of the rods of a typical
simulation in which aggregates are formed. The RDF exhibits a very prominent peak at the distance
of minimum approach, r ≈ a, indicating the existence of aggregation. Due to the way the rods
are constructed, with parallel planes of spheres, there is also a prominent peak corresponding to
side-to-side aggregation of two rods whose sides are displaced by one plane (see Figure 2). The third
peak corresponds to side-to-side arrangements of at least three rods forming an L-shape in the plane
perpendicular to the axis of the rods (see picture in Figure 2). The last well-distinguishable peak
is originated by side-to-side aggregates with at least three rods on a row. This RDF evidences the
formation of aggregates with preference to side-to-side over tip-to-tip interactions between the rods.
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Figure 2. Radial distribution function for the centers of the rods for the case with cD = 0.129σ−3.
The pictures in the interior identify the configurations which originate the different peaks in the RDF.
Note that while the configurations corresponding to the first, second, and fourth peaks are represented
using a side view of the rods, the configuration leading to the third peak is represented using a top
view of the rods.

To characterize the formation of aggregates, we calculate the average number of discs per
aggregate as a function of simulation time, n(t), from the trajectories of the simulations. We consider
that two rods belong to the same aggregate if at least 10 of their constituent beads (there are 36 on
the long sides and 25 on each tip) are within a distance of 1.5σ. This distance corresponds to the
first minimum of the radial distribution function of the beads which define the shape of the rods.
We checked that the results that we obtain do not depend qualitatively on the exact values that we use
to define the aggregation criterion, within a reasonable range.

In Figure 3, we represent the average number of rods per aggregate as a function of simulation
time for the case with depletant concentration cD = 0.118σ−3. As the simulation progresses, depletion
forces induce the self-assembly of rods into clusters of increasing size until a plateau is reached in
which the formation and breaking up of bundles are compensated. Once n(t) reaches a plateau,
the system is in thermodynamic equilibrium and average quantities are collected. We checked that
the potential, translational, and rotational kinetic energies reach a plateau in equilibrium, and that the
translational and rotational kinetic energies satisfy the equipartition theorem.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Simulation steps (×108)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

n
(t

)

Figure 3. Black dotted line: Average number of rods per aggregate as a function of simulation time
for the case with cD = 0.118σ−3. The dashed red line indicates the average number that is computed
taking the average over the frames once the system has reached equilibrium.
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In Figure 4, we show the average number of rods per aggregate in equilibrium as a function
of the concentration of depletant cD. Our results show a substantial increase of aggregation with
cD. In fact, the strength of the attractive depletion interaction between rods increases linearly with
depletant concentration (see Equation (1), inducing the formation of larger aggregates. This result is
consistent with the expectation from thermodynamic models of self-assembly [27,30], which predict
an exponential dependence of aggregation on the strength of the mutual attractive interaction.

0.08 0.09 0.10 0.11 0.12 0.13
cD(σ−3)

1

2

3

4

5

6

7
〈n
〉

Figure 4. Number of rods per aggregate in equilibrium for systems with different depletant concentration cD.

From our simulations we also have access to the size distribution of clusters. We analyzed
the average size distribution of the different systems considered once they reach thermodynamic
equilibrium. In Figure 5, we represent the average probability of finding a cluster of a given size n
(i.e., composed of n rods) for systems with different depletant concentration. For the lowest value
of cD (Figure 5a), the distribution indicates a large proportion of single rods (≈50%) and decays
monotonically with cluster size. As the depletant concentration increases, the distribution becomes
flatter, with less dominance of single monomers and more weight of larger sizes. The distributions
obtained from simulation are subject to significant fluctuations due to the reduced size of the systems
considered (with 125 rods), especially for the highest depletant concentration, cD = 0.129σ−3, in which
there is a wider range of statistically significant possible aggregates. In Figure 5, we also show the
theoretical geometrical distributions (Equation (3)), which correspond to the values of 〈n〉 for each cD
obtained from numerical simulations. Despite the statistical fluctuations in the distributions obtained
from simulation, the agreement with the geometrical distributions is reasonable.

The predominance of side-to-side aggregation and the type of size distribution of clusters should
be independent of the cross section of the rods as long as their aspect ratio is small enough (R/L� 1).
In contrast, the strength of the depletion interaction can be affected by the shape of the rods’s cross
section, as it determines the overlap volume excluded to the presence of depletant (see Equation (1).
Consequently, the concentration of depletant which marks the inset of strong aggregation can be
greatly dependent on the shape of the rods’ cross section.
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Figure 5. Frequency of occurrence P(n) versus aggregate size n as obtained from numerical simulations
(gray bars) for systems with depletant concentrations: (a) cD = 0.088σ−3, (b) cD = 0.098σ−3,
(c) cD = 0.118σ−3, and (d) cD = 0.129σ−3. Superimposed to the results from numerical simulations
we plot the geometric distribution given by Equation (3) using the average values 〈n〉 obtained from
numerical simulations (dashed black line).

5. Conclusions

We investigated the self-assembly of slender rods in solution due to the effective depletion
interaction that emerges due to the presence of depletant particles. We performed computer simulations
at fixed temperature and volume of a simple model composed of rod-like particles and smaller
spherical depletant particles which interact solely through repulsive interactions. In this system,
depletion forces between rods emerge naturally for certain values of the concentration of rods and
depletant, inducing the aggregation of rods into clusters.

We verified that, as expected, clusters form preferentially due to side-to-side interactions, growing
in the plane perpendicular to the axes of the rods. Aggregation due to tip-to-tip interactions is
anecdotal. We characterized the growth of these clusters over time, observing a monotonical increase
in the average size of aggregates up to a stable plateau when the system reaches the equilibrium state.

The equilibrium state was analyzed for systems with different depletant concentration. We observe
that the aggregates’ average size increases rapidly with depletant concentration, as expected. Indeed,
mean-field thermodynamic models of aggregation anticipate an exponential increase of the average
aggregate size with the strength of the interaction governing self-assembly. In our case, the formation
of clusters is led by the depletion interaction, which increases linearly with depletant concentration.
We also obtained the size distributions obtained in equilibrium from our numerical simulations.
We show that the numerical results are consistent with a geometrical distribution predicted by basic
thermodynamic models of self-assembly.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/22/10/1114/s1:
python script to set up the system and perform the simulations using HOOMD-blue 2.2.3 reported in this article.
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