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Abstract: The concept of ranked order probability distribution unveils natural probabilistic interpreta-
tions for the kink waves (and hence the solitons) solving higher order dispersive Burgers’ type PDEs.
Thanks to this underlying structure, it is possible to propose a systematic derivation of exact solutions
for PDEs with a quadratic nonlinearity of the Burgers’ type but with arbitrary dispersive orders.
As illustrations, we revisit the dissipative Kotrweg de Vries, Kuramoto-Sivashinski, and Kawahara
equations (involving third, fourth, and fifth order dispersion dynamics), which in this context appear
to be nothing but the simplest special cases of this infinitely rich class of nonlinear evolutions.
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1. Introduction

In the vast realm of nonlinear PDEs, the scalar Burgers’s (BU) Equation [1],

∂tu(x, t) + u(x, t)∂xu(x, t) + ρ2∂2
xu(x, t) = 0, (1)

is doubtlessly commonly employed. Not only can BU be linearised (via the Hopf-Cole
logaritmic transformation), but exact solutions in terms of kink and soliton travelling
waves are also very easy to derive [1]. This makes it amazingly simple to observe the inter-
play between the nonlinearity and dispersion mechanisms. The higher order dispersive
generalisation of BU, namely,

∂tu(x, t) + u(x, t)∂xu(x, t) +
n+1

∑
j=2

ρj∂
j
xu(x, t) = 0, (2)

has also sustained attention (Without lost of generality, the first oder term of the form
ρ1∂xu(x, t) can always be removed from both Equations (1) and (2) via a Gallilean transfor-
mation of the form t 7→ t and x 7→ x− ρ1t.). Motivations to study Equation (2) are triggered
by its numerous potential applications [2–6] (see review in [4]). In addition, using the
so-called Tanh-method [7,8], Equation (2) also offers the possibility of displaying many exact
and explicit solutions of the dynamics. In particular, a vast “zoology” of beautiful kink and
soliton solutions of Equation (2) can be found in the available literature. We refrain here
from proposing an extensive list of this vast corpus of contributions; rather, we focus on a
small selection [9–11] directly relevant for our present purpose. Facing such a rich collection
of solutions, one might perhaps feel a need for a unifying pattern and possibly a simple
physical context helping to group many different kink solutions of Equation (2) under one
footing; unveiling such a pattern is the aim of this paper. Our physical and mathematical
inspiration emanates from studying Brownian swarm dynamics [12] with very large agent

Symmetry 2021, 13, 57. https://doi.org/10.3390/sym13010057 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym13010057
https://doi.org/10.3390/sym13010057
https://doi.org/10.3390/sym13010057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13010057
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/13/1/57?type=check_update&version=3


Symmetry 2021, 13, 57 2 of 17

populations. Adopting a mean-field approach, the collective swarm dynamics can be
stylised by hydrodynamic equations that possibly allow for exact solutions. Developed in
Section 2, we recall (see also [13]) that, for simple mutual interactions of the type “catch the
leader” or conversely “catch the laggards”, the resulting hydrodynamic evolution matches
Equation (1). Such interactions can be viewed as special cases (i.e., limited to large swarms
populations) of the more general class of dynamics introduced in [14,15]. In the specific
context of Brownian agents where the evolution is Markovian, Equation (1) with specific
boundary conditions can be alternatively interpreted as a nonlinear Fokker-Planck equa-
tion [16]. With this probabilistic interpretation, kink solutions directly describe travelling
probability distributions of the form P(ξ − vt) := P(x) with ξ ∈ R and v the travelling
velocity. From the probability distributions P(x), we can construct the class of ranked order
probability (ROP) distributions Pk:n(x) [17]. ROPs are derived by drawing independently
from P(x) a sample of n numbers, say {X1, X2, · · · , Xn}, and then ranking them so that

X(1) ≤ X(2) ≤ · · · ≤ X(n).

The distribution Pk:n(x) can then be expressed as [17]

Pk:n(x) = Prob
{
−∞ ≤ X(k) ≤ x

}
=

n

∑
j=k

(
n
j

)
Pj(x)[1− P(x)]n−j, k = 1, 2, · · · , n. (3)

Having introduced Pk:n(x), we now can informally state the central result of the paper
as follows:

Kink type probability distributions solving Equation (2) with specific coefficients
{

ρj
}

j=2,··· ,n+1
are nothing but ranked order distributions with a sampling size n derived from the kink type proba-
bility distribution solving Equation (1).

The paper is organised as follows: in Section 2, we introduce the Brownian swarm dy-
namics, its corresponding hydrodynamic picture, and the kink type probability distribution
(i.e., here a logistic distribution) that emerges. Ranked order logistic distributions and some
of their properties are briefly reviewed in Section 3. Section 4 contains the central result
of the paper, as stated above. In Section 5, we list a collection of special cases of highly
dispersive nonlinear evolutions classically encountered in mathematical physics. Namely,
for n = 2, n = 3, and n = 4, one recovers special cases of the dissipative Kortweg de Vries,
Kuramoto-Sivashinski, and Kawahara nonlinear dynamics. Elementary but cumbersome
technical details are systematically postponed to three appendices.

2. Brownian Swarms and Burgers’ Evolution

The dynamic of a swarm consists in N-interacting Brownian agentsAj. j = 1, 2, · · · , N
will be here described by a set of N stochastic differential equations (SDE) [18]:

dXj(t) = u
[
Xj(t), X(t)

]
dt + σdWj(t),

X(t = 0) = x0,
(4)

where X(t) := (X1(t), X2(t), · · · , XN(t)) ∈ RN , and dWj(t) are N-independent White
Gaussian Noise (WGN) processes (i.e., formal derivatives of N-independent Brownian
motions). The swarm is here homogeneous since both the drift u

[
Xj(t), X(t)

]
: R×RN →

R and the noise amplitude σ are assumed to be j-independent. In Equation (4), the WGN
driving noise motivates the denomination Brownian swarms [12]. Since the drifts of the
agents depend on X(t), they effectively stylise mutual interactions between the Aj values.
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To characterise the swarm’s collective evolution, we may define an empirical repartition
density as

P(x, t) :=
1
N

N

∑
j=1

δ(Xj(t)− x), (5)

where δ(x) is the Dirac mass function. Focusing on large swarms (i.e., N → ∞), it is legit-
imate to adopt a hydrodynamic description, write limN→∞ P(x, t) ' P(x, t), and finally
assume that P(x, t) is C2(R)× C1(R+) is a probability density function, with

∫
R P(ξ, t)dξ = 1,

P(x, t = 0) = p0(x).

Since P(x, t) is normalised density, the quantity NP(x, t)dx stands therefore the instanta-
neous number of agents located within the infinitesimal interval [x, x + dx]. Under the
former hypothesis, we further focus on the subclass of dynamics for which the interactions
are expressible via a mean-field (MF) kernel:

u
[
Xj(t), X(t)

]
≡ u

[
Xj(t), P(x, t)

]
(6)

Equation (6) describes agents mutually interacting via their own repartition density. The ho-
mogeneous character of the interactions of Equation (6) and the specific choice of WGN
stochastic driving enable one to formally write the collective evolution by means of a
nonlinear parabolic PDE (i.e., a nonlinear Fokker-Planck (FP) equation) [16]: ∂tP(x, t) = −∂x{u[x, P(x, t), t]p(x, t)}+ σ2

2 ∂xxP(x, t).

P(x, 0) = p0(x).
(7)

Inspired from [14,15], we now further specialise the dynamics and consider two specific
types of mutual interactions [13]:

(a) Catch the leader interactions (CLEA). In this case, at any time t, Ak at location x deter-
mines nk(x, t), which counts the number of Ak leaders. Knowing nk(x, t), Ak adjusts
its drift according to the CLEA rule:

nk(x, t) = ∑n
j=1,j 6=k I

{
xj(t) ∈ [x, ∞]

}
,

uCLEA[Xk(t), X(t)] := nk(x,t)
N

(8)

where I
{

xj(t) ∈ [x, ∞]
}

is the indicator function. For large swarms N → ∞, the mean
field (MF) interactions governing the evolution of a representative agent (we now
drop the subscript k) is now written as

uCLEA[Xk(t), X(t)] = nk(x,t)
N = 1

N ∑n
j=1,j 6=k I

{
xj(t) ∈ [x, ∞]

} ∼= ∫ ∞
x PCLEA(ξ, t)dξ. (9)

Accordingly, the swarm’s evolution Equation (7) takes a special form:

∂tPCLEA(x, t) = −∂x

{[∫ +∞
x PCLEA(ξ, t)dξ

]
PCLEA(x, t)

}
+ σ2

2 ∂2
xPCLEA(x, t),

PCLEA(x, 0) = p0(x),

PCLEA(x, t) ≥ 0 and
∫ +∞
−∞ PCLEA(ξ, t)dξ = 1.

(10)
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(b) Catch the laggard interactions (CLAG). Similarly, at any time t, an agent Ak at location x
determines nk(x, t), which counts the number of Ak laggards. Ak then adjusts its drift
according to the CLAG rule:

nk(x, t) = ∑n
j=1,j 6=k I

{
xj(t) ∈ [−∞, x]

}
,

uCLAG[Xk(t), X(t)] := − nk(x,t)
N
∼= −

∫ x
−∞ PCLAG(ξ, t)dξ,

(11)

and the swarm’s evolution here is

∂tPCLAG(x, t) = ∂x

{[∫ x
−∞ PCLAG(ξ, t)dξ

]
PCLAG(x, t)

}
+ σ2

2 ∂2
xPCLAG(x, t),

PCLAG(x, 0) = p0(x),

PCLAG(x, t) ≥ 0 and
∫ +∞
−∞ PCLAG(ξ, t)dξ = 1.

(12)

Let us now introduce the following notations:

G(x, t) :=
∫ +∞

x
PCLEA(ξ, t)dξ and H(x, t) :=

∫ x

−∞
PCLAG(ξ, t)dξ. (13)

In terms of Equation (13), we now observe that both Equations (10) and (12) reduce to the
Burgers’ equation, but they must fulfill different boundary conditions (BCs), namely,

PCLEA(x, t) = −∂xG(x, t),

∂tG(x, t) = −G(x, t)∂xG(x, t) + σ2

2 ∂2
xG(x, t),

G(−∞, t) = 1 and G(+∞, t) = 0

(14)

and, similarly, 
PCLAG(x, t) = ∂x H(x, t),

∂tH(x, t) = +H(x, t)∂x H(x, t) + σ2

2 ∂2
x H(x, t),

H(−∞, t) = 0 and H(+∞, t) = 1.

(15)

Kink type travelling waves solving Equations (14) and (15) are easily derivable [1] and they
respectively read 

G(x, t) = 1
2 −

1
2 tanh

[
γ
(
x− t

2
)]

,

H(x, t) = 1
2 + 1

2 tanh
[
γ
(
x− t

2
)]

,
(16)

with γ = 1
4σ2 . Writing T := tanh

[
γ
(
x− t

2
)]

, we observe that Equations (14) and (15) enjoy
the following property:

H(T) = 1− G(T) = G(−T). (17)

Note finally that, in this specific propagating mode, we have PCLEA(T) = PCLAG(T),
which is compatible with Equation (13).
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3. Ranked Order Logistic Distribution

The specific BCs in Equations (14) and (15), implying that both G(T) and H(T) are
probability distributions, allow us to now introduce sets of ROPs. Focusing on G(T),
we obtain Gn(T) := {Gk:n(T)}k=1,2,··· ,n:

G(T) = 1
2 (1− T),

Gk:n(T) := ∑n
j=k (

n
j)
[

1
2 (1− T)

]j[ 1
2 (1 + T)

]n−j
, k = 1, 2, · · · , n,

T := T(x, t) = tanh
[

1
4σ2

(
x− t

2
)]

Gk:n(−1) = 1 and Gk:n(+1) = 0

(18)

and similarly for the set Hn(T) := {Hk:n(T)}k=1,2,··· ,n. The elements of the sets Gn(T)
andHn(T) are T-polynomials, all with degree n. From the definition, we have the follow-
ing property:

Lemma 1.
Gk:n(−T) = 1− Gn−k+1:n(T) = Hk:n(T). (19)

Proof.

Gk:n(T) =
n

∑
j=k

(
n
j

)[
1
2
(1− T)

]j[1
2
(1 + T)

]n−j
.

The identity (a + b)n = ∑n
j=0 (

n
j)ajbn−j enables one to write

Gk:n(−T) = ∑n
j=k (

n
j)
[

1+T
2

]j[ 1−T
2

]n−j
= Hk:n(T) =

∑m=n−k
m=0 ( n

n−m)
[

1−T
2

]m[ 1+T
2

]n−m
=

[1+T+1−T]n

2 −∑n
m=n−k+1 (

n
m)
[

1−T
2

]m[ 1+T
2

]n−m
= 1− Gn−k+1:n(T).

Logistic Distribution

The logistic distribution L(z), discussed for example in [17] (see Chapter 5), reads as

L(2z) :=
1

1 + e2z =
e−z

[2 cosh(z)]
=

1
2
[1− tanh(z)]. (20)

Using Equation (20), we can directly express the solutions of the Burgers’ equation,
Equation (14), as G(T) = L[2γ(x− t/2)] (and similarly for Equation (15)). The associ-
ated ranked order logistic distribution is denoted as Lk:n[2γ(x− t/2)], and its moment
generating function Mk:n(u) is calculated in [17] (see Chapter 5) and reads

Mk:n(u) := E
{

eu[x− t
2 ]
}
=
∫
R eu[x− t

2 ]dGk:n(T) =
∫
R eu[x− t

2 ]dLk:n
[
2γ
(
x− t

2
)]

=

∫
R e2γuζ dLk:n(ζ) =

Γ
(

k+ u
2γ

)
Γ
(

n−k+1− u
2γ

)
Γ(k)Γ(n−k+1) ,

(
γ = 1

4σ2

)
.

(21)
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In particular, for the mean and the variance, we have [17] (see Chapter 5)

µk:n(t) = t
2 + 1

2γ [Ψ(k)−Ψ(n− k + 1)],

σ2
k:n = 1

4γ2

[
Ψ(1)(k) + Ψ(1))(n− k + 1)

]
,

(22)

where Ψ(z) := d
dz log[Γ(z)] is the digamma function, and Ψ(1)(z) = d2

dz2 Ψ(z).

From Equation (22), we have

µk:n(t) = t− µn−k+1:n(t),

σ2
k:n = σ2

n−k+1:n.
(23)

Remark 1. Consistent with basic intuition, we observe that the higher the sampling size n is,
the smaller the resulting variance is. From Equation (23), we also observe that, for odd sampling n,
we have

µ 1
2 (n+1):n(t) =

1
2 t ⇒ dG 1

2 (n+1):n[γ(x− t/2)] =:

g 1
2 (n+1):n[γ(x− t/2)]dx = g 1

2 (n+1):n[−γ(x− t/2)]dx, ∀n odd,
(24)

with g 1
2 (n+1):n(x, t) being the corresponding ranked order probability densities. Hence, for odd

sampling size n, the middle position is characterised as g 1
2 (n+1):n(x, t), which is described by a

symmetric probability density (here, a symmetric soliton). Conversely, for arbitrary n and k ≤ n,
the corresponding probability densities gk:n(x, t) deriving from Equations (14) and (15) propagate
as skew solitons.

Remark 2. The average distance ∆(n) separating the laggard and the leader positions reads as

∆(n) := µn:n(t)− µ1:n(t) =
1
γ
[Ψ(n)−Ψ(1)], n = 1, 2, · · · . (25)

Note that, since we have a kink type evolution (i.e., a stationary regime), ∆(n) is necessarily
time-independent. It is monotonously increasing with the sampling size n, and, for large samplings
n, we have Ψ(n) ' ln(n), implying that ∆(n) ' 1

γ ln(n).

4. Nonlinear Evolution Equations Solved by Ranked Order Distributions

We now raise questions regarding the dynamics of the ranked order distributions
Gk:n(T) derived from the Burgers’ kink type solutions, Equations (14) and (15). Specifically,
we are looking for the sets of PDEs describing the evolution of Gk:n(T) (respectively
Hk:n(T)) for k = 1, 2, · · · , n. Since we already know that both Gk:n(T) and Hk:n(T) are T-
polynomials of degree n, it is natural to invoke the well known Tanh-method [7,8], commonly
used to derive solutions of nonlinear PDEs. This enables us to assert the following:

Proposition 1. The set Gn(T) consisting of the n ranked order distributions {Gk:n(T)}k=1,··· ,n

with T := tanh
[

1
4σ2

(
x− t

2
)]

solves a set of n distinct nth-order dispersion PDEs:

∂tGk:n(T) + Gk:n(T)[∂xGk:n(T)] + ∑n+1
j=2

[
ρj,{k:n}(σ)

]
∂

j
xGk:n(T) = 0, n = 1, 2, 3, · · · . (26)

The sets of coefficients
{

ρj,{k:n}(σ)
}

j=2,··· ,n+1
are solutions of n distinct sets of (2n + 2) nonlinear

algebraic relations.
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Proof. Consider a high order dispersive PDE of the type Equation (26):
∂tPn(T) + Pn(T)[∂xPn(T) + ∑n+1

j=2

[
ρj
]
∂

j
xPn(T) = 0, n = 1, 2, 3, · · · ,

T := T(x, t) := tanh
[
γ
(
x− t

2
)]

:= tanh(ζ),

Pn(−∞) = 1 and Pn(+∞) = 0.

(27)

Assume that Pn(T) is an nth degree T-polynomial solution of Equation (27). As a function
of ζ = γ(x− t

2 ) itself, Equation (27) is the ODE :

− γ

2
∂ζPn(T) + γPn(T)[∂ζPn(T)] +

n+1

∑
j=2

[
ρjγ

j
]
∂

j
ζPn(T) = 0, n = 1, 2, 3, · · · , (28)

After integrating once this ODE with respect to ζ (and with zero integration constant) and
imposing the boundary condition Pn(−∞) = 1 and Pn(∞) = 0, we immediately verify
that the kink’s travelling velocity is indeed 1

2 .
The polynomial Pn(T) is defined via a set of n + 1 coefficients aj for j = 0, 1, · · · , n

and the single parameter γ. Therefore, the set Ω :=
{

γ,
{

aj
}

j=0,1,··· ,n,
{

ρj
}

j=2,··· ,n+1

}
contains (2n + 1) parameters. The Tanh-method [7,8] consists in introducing an nth degree
T-polynomial Pn(T) into the evolution Equation (27) and in successively balancing all
identical T j contributions. This leads to a system of 2n + 2 nonlinear algebraic relations that
connect the 2n + 1 parameters of the set Ω. Since we have more relations than parameters,
there is a priori no guarantee that, in general, the Tanh-method [7] actually provides
a solution.

However, the ranked order set Gn(T) := {Gk:n(T)}k=1,2··· ,n is a very specific subclass
of dynamics enjoying an extra symmetry structure. As seen before, Gn(T) consists of n
distinct nth degree T-polynomials. Therefore, for Gn(T), we actually have n times sets of
the Ω-type, thus leading to n× (2n + 1) = 2n2 + n coefficients. Applying the Tanh-method
to the set Gn(T), we shall therefore obtain n × (2n + 2) = 2n2 + 2n algebraic relations.
However, for the specific set Gn(T), Equation (19) imposes n extra symmetry relations.
Taking into account this extra symmetry, we conclude that, for Gn(T), we effectively end
with (2n2 + 2n)− n = 2n2 + n nonlinear relations to determine 2n2 + n parameters. Hence,
for Gn(T), the number of relations now matches the number of parameters. Due to the
nonlinearity, this system of relations still does not necessarily possess a solution in general.
However, focusing on Gn(T), we consider the set of coefficients

{
aj,k:n

}
j=0,1,··· ,n

, implicitly

defined as

Pn(T) =
n

∑
j=0

aj,k:nT j := Gk:n(T) =
1
2n

n

∑
j=k

(
n
j

)
(1− T)j(1 + T)n−j. (29)

Going back to Equation (28), let us now adopt a similar notation and write ρj 7→ ρj;k:n to no-
tify the specific evolution of interest. Apply the Tanh-method, by introducing Equation (29)
into Equation (28) and use the specific coefficients

{
aj,k:n

}
j=0,1,··· ,n

. The successive balanc-

ing of the T j contributions produces only linear relations between the rescaled coefficients
ρ̂j,k:n := ρj,k:nγj−1. Linearity is due to the fact that, in Equation (27), only a linear super-
position of dispersive terms occurs. Summarising, for Gn(T), the number of algebraic
relations matches the number of parameters, and the choice of coefficients specified by
Equation (29) produces linear algebraic sub-systems connecting the remaining unknowns
ρ̂j,k:n. Hence, one can conclude that the Tanh-method always yields a kink type solution for
the specific subclass of Gn(T) dynamics.
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Remark 3. Using Proposition 1, we see that the travelling waves ∂xGk:n(T) are a superposition of
a bell and a kink profile waves and hence are skew solitons. The skewness which is due to the kink
profile component results exclusively from the underlying ranked order mechanism. Several explicit
illustrations based on the method exposed in the proof of Proposition 1 will be found in Section 5
and the corresponding appendices.

Corollary 1. (Antisymmetry between the dispersion coefficients)
The ranked order travelling kink Gk:n(T) obeys the higher order dispersive Burgers’ equation

of Equation (26), in which the dispersive coefficients ρj,k:n(σ) satisfy an antisymmetry relation:

ρj,k:n = (−1)jρj,n−k+1:n (30)

Proof. (Corollary 1)
Define Gk:n(T) = 1− ϕ(−T). Therefore,

∂tGk:n(T) + Gk:n(T)[∂xGk:n(T)] + ∑n+1
j=2

[
ρj,k:n

]
∂

j
xGk:n(T) = 0,

∂t ϕ(−T) + ∂x ϕ(−T)− ϕ(T)[∂x ϕ(−T)] + ∑n+1
j=2

[
ρj,k:n

]
∂

j
x ϕ(−T) = 0,

(31)

Introduce the change of variables:
t 7→ τ = t, ∂t 7→ ∂τ + ∂z

⇒
x 7→ z = −x + t, ∂x 7→ −∂z

(32)

Equation (32) implies T 7→ −T. With Equation (32), the second line of
Equation (31) becomes

∂τ ϕ(T) + ϕ(T)[∂z ϕ(T)] +
n+1

∑
j=2

[
(−1)jρj,k:n

]
∂

j
z ϕ(T) = 0. (33)

In particular, for the choice ϕ(T) = Gn−k+1:n(T), Equation (33) implies

∂τGn−k+1:n(T) + Gn−k+1:n(T)[∂zGn−k+1:n(T)] +
n+1

∑
j=2

[
(−1)jρj,k:n

]
∂

j
zGn−k+1:n(T) = 0.

From the definition of Gn−k+1:n(T), we can alternatively write

∂τGn−k+1:n(T) + Gn−k+1:n(T)[∂zGn−k+1:n(T)] +
n+1

∑
j=2

[
ρj,n−k+1:n

]
∂

j
zGn−k+1:n(T) = 0.

Therefore, we conclude that (−1)jρj,k:n = ρj,n−k+1:n.

Corollary 2. (Parity relation)

For n odd, we have ρj, n+1
2 :n(σ) = 0 for all j odd.

Proof. (Corollary 2).

Taking k = n+1
2 in Equation (30) of Corollary 1, we have ρj, n+1

2 :n = (−1)jρj, n+1
2 :n. This

implies that ρj, n+1
2 :n = 0 for any odd j.



Symmetry 2021, 13, 57 9 of 17

While the explicit dispersion amplitudes
{

ρj,k:n

}
j=2,··· ,n+1

are generally cumbersome

to write down, the Tanh-method yields a simple form for the highest dispersion amplitude
ρn+1,k:n. Specifically, we obtain the following:

Corollary 3. (Recurrence relations for the highest dispersion coefficients)

ρn+1,k:n(σ) = (−1)n+1

[
n

∑
j=k

(−1)j
(

n
j

)]
2nΓ(n)
Γ(2n)

σ2n. (34)

Proof. (Corollary 3)
Denote φ

(l)
n (T) for l = 1, 2, 3 three unspecified T-polynomials of degree n. From the

definition of the ranked order distributions, we can write

Gk:n(T) =

[
n

∑
j=k

(−1)j
(

n
j

)]
Tn

2n + φ
(1)
n−1(T),

which implies
Gk:n(T)[∂xGk:n(T)] = −n

[
∑n

j=k(−1)j(n
j)
]2

γ T2n+1

22n + φ
(2)
2n (T),

(
γ = 1

4σ2

)
,

∂n+1
x Gk:n(T) = (−1)n+1 Γ(2n)

Γ(n−1)

[
∑n

j=k(−1)j(n
j)
]
γn+1 T2n+1

2n + φ
(3)
2n (T).

According to the Tanh-method, we introduce Gk:n(T) into Equation (26) and balance the
contributions of degree (2n + 1). This leads to

−n

[
n

∑
j=k

(−1)j
(

n
j

)]2

γ
T2n+1

22n + ρn+1,k:n(σ)(−1)n+1 Γ(2n)
Γ(n− 1)

[
n

∑
j=k

(−1)j
(

n
j

)]
γn+1 T2n+1

2n = 0,

from which Equation (34) follows directly.

5. Illustrations

The lower order sampling cases n = 2, n = 3, and n = 4 coincide with well studied
nonlinear high order dispersive evolutions of mathematical physics. Below we list simple
illustrations and postpone all details of calculations and technicalities to Appendices A–C.

5.1. Dissipative Kortweg de Vries Dynamics (Case n = 2 ⇒ Third Order Dispersion)

Here the equation of interest reads as

∂tG1:2(T) + G1:2(T)[∂xG1:2(T)] + ρ2,{1:2}(σ)∂
2
x[G1:2(T)] + ρ3,{1:2}(σ)∂

3
x[G1:2(T)] = 0,

G1:2(T) = 1
4
[
3− 2T − T2], T = tanh[ 1

4σ2 (x− t
2 )],

ρ2,{1:2}(σ) = − 5
6 σ2,

ρ3,{1:2}(σ) = (2− 1) 22Γ(2)
Γ(4) σ4 = σ4

3 .

(35)
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Using Equation (30) of Corollary 1, we also immediately have

∂tG2:2(T) + G2:2(T)[∂xG2:2(T)]ρ2,{2:2}(σ)∂
2
x[G2:2(T)] + ρ3,{2:2}(σ)∂

3
x[G2:2(T)] = 0,

G2:2(T) = 1
4
[
1− 2T + T2] T = tanh[ 1

4σ2 (x− t
2 )],

ρ2,{2:2}(σ) =
5
6 σ2,

ρ3,{2:2}(σ) = −
22Γ(2)
Γ(4) σ4 = − σ4

3 .

(36)

The solution G1:2(T) has been previously derived in [10]. The dissipative Kortweg de Vries
pde also referred as the Burgers-Kortweg de Vries equation is among the simplest evolution
where nonlinearity, dispersion and dissipation coexist and an extensive list of physically
relevant contexts is given in [10].

5.2. Kuramoto-Sivashinsky (KS) Dynamics (Case n = 3 ⇒ Fourth Order Dispersion)

∂tG2:3(T) + G2:3(T)[∂xG2:3(x, t)] + ∑4
j=2 ρj,{2:3}(σ)∂

j
x[G2:3(T)] = 0,

G2:3(x, t) = 1
4
[
T3 − 3T + 2

]
, T = tanh[ 1

4σ2 (x− t
2 )],

ρ2,{2:3}(σ) = − 19
3 σ2,

ρ3,{2:3}(σ) = 0,

ρ4,{2:3}(σ) = 2
[

23Γ(3)
Γ(6)

]
σ6 = 2

15 σ6.

(37)

and 

∂tG3:3(T) + G3:3(T)[∂xG3:3(T)] + ∑4
j=2 ρj,{3:3}(σ)∂

j
x[G3:3(T)] = 0,

G3:3(T) =
[

1−T
2

]3
, T = tanh[ 1

4σ2 (x− t
2 )],

ρ2,{3:3}(σ) = − 47
60 σ2,

ρ3,{3:3}(σ) = − 2
5 σ4,

ρ4,{3:3}(σ) = −
23Γ(3)
Γ(6) σ6 = − 1

15 σ6.

(38)

Observe that ρ3,{2:3}(σ) = 0 in accordance with the parity constraint expressed in
Corollary 2. Finally, the use of Equation (30) in Corollary 1 yields immediately{

ρj,{1:3}

}
j=1,2,3

for the dispersion amplitudes of G1:3(T).

Strictly speaking the KS system does not includes a third order derivatives. Whenever
one is interested in evolutions which simultaneously include nonlinearity, dispersion,
dissipation and instability, the simplest pde possible includes all derivatives up to fourth
order as in Equations (37) and (38). This generalised version is known as the Kuramto-
Sivanshinsky-Benney (KSB) equation [19]. It was initially introduced to describe the
nonlinear evolution of a fluid flowing on an inclined plane [20]. The instability present in
KSB is due to the fact that in this case after integrating once Equation (28), one ends with
third order nonlinear ode’s for which chaotic evolutions exist [19].
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5.3. The Kawahara Fifth Order Dispersive Dynamics (Case n = 4 ⇒ Fifth Order Dispersion)

Since the full exact expressions become rapidly cumbersome, we limit here to the
G4:4(T) kink type solution. The solution G4:4(T) has been derived in [9].

∂tG4:4(T) + G4:4(T)[∂xG4:4(T)] + ∑5
j=2 ρj,{4:4}(σ)∂

j
x[G4:4(T)] = 0,

G4:4(T) =
[

1−T
2

]4
, T := tanh

[
1

4σ2

(
x− t

2
)]

,

ρ2,{4:4}(σ) = − 29
40 σ2,

ρ3,{4:4}(σ) = − 179
480 σ4,

ρ4,{4:4}(σ) = − 11
120 σ6,

ρ5,{4:4}(σ) = −
24Γ(4)
Γ(8) σ8 = − 1

120 σ8.

(39)

Similar results follow for
G3:4(T) = 5− 12T + 6T2 + 4T3 − 3T4,

G2:4(T) = 11− 12T − 6T2 + 4T3 + 3T4 = 1− G3:4(−T),

G1:4(T) = 15− 4T − 6T2 − 4T3 − T4 = 1− G4:4(−T).

In particular, by using Equation (30) of Corollary 1, we can read the coefficients defining
the evolution of G1:4(T). In addition, from Corollary 3, we directly obtain the higher order
dispersive coefficients:

ρ5,{1:4}(σ) =
24Γ(4)
Γ(8) σ8 = 1

120 σ8 = −ρ5,{4:4}(σ),

ρ5,{2:4}(σ) = 3 24Γ(4)
Γ(8) σ8 = 1

30 σ8 = −ρ5,{3:4}(σ),

ρ5,{3:4}(σ) = −3 24Γ(4)
Γ(8) σ8 = − 1

30 σ8,

ρ5,{4:4}(σ) = −
24Γ(4)
Γ(8) σ8 = − 1

120 σ8.

The Kawahara fifth order dispersive dynamics is relevant to model surface and internal
waves [6] and for nonlinear waves in a viscoelastic tube [9]. Here Equation (28) reduces to a
nonlinear fourth order ode for which a foison of different behaviours exist and in particular
including chaotic ones.

6. Conclusions and Perspectives

The rich modelling platform offered by the Burgers’ pde is here used in the context
of swarms of Brownian agents. Adopting an hydrodynamic picture the agents’ spatial
probability distributions obey to a Burger’s equation. The ranked order interactions of the
type “catch the leader” or “catch the laggard” generate the Burgers’ quadratic nonlinearity
and impose specific boundary conditions. It results that the swarm evolution solving the
Burgers’ eq. exhibits a tanh-kink type traveling wave. The joint presence of ranked order
interactions and probability distributions trigger natural questions regarding the evolution
of ranked order distributions (ROD) based on the nominal kink solution of the Burgers’
eq. In a traveling reference frame, this Burger’s kink wave is a stationary and so will
necessarily be all the derived ROD’s. Moreover as shown here, the ROD are also traveling
kinks but solving Burger’s dynamics with higher orders dispersion terms (HODBU). This
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last amazing property emanates from the rather exceptional properties of the nominal tanh-
kink (logistic type) distribution. Indeed the tanh functions are solutions of Riccati equations,
a property at the cornerstone of the tanh-method developed to solved nonlinear pde’s
and in particular the HODBU. In the light of these observations, one may rise questions
about potential feasibility of this approach either to other stochastic Markovian agents,
(Cauchy agents for examples) or to vectorial Brownian agents. In this last case, higher
orders Burgers’ eqs. will be involved and obviously the concept of spatial order for these
higher dimension cases has to be suitably redefined. Such investigations remain so far fully
open. In addition, let us point out some byproducts and other perspectives:

(a) The HODBU evolutions possess a direct probabilistic interpretation of and hence their
associated PDEs enjoy the property of positivity conservation.

(b) A physically intuitive and particularly simple interpretation is immediately available
for the kink type solutions.

(c) The HODBU kinks are generally skewed and the origin of the skewness is clearly
understood from the underlying construction of the ranked order distributions.

(d) The unveiled ranked order structure opens imagination to write down further nonlin-
ear evolution. For example the corresponding PDEs for joint ranked order distribu-
tions as defined in [17].

(e) The intimate relation with swarm dynamics opens possibilities for applications. In the
domain of mean-field games for example, the HODBU kink type solutions can be
interpreted as the quasi-ergodic states of games jointly solving a Fokker-Planck and a
Hamilton-Jacobi-Belmann system of PDEs [21].
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Appendix A. Dissipative Kortweg De Vries—Third Order Dispersive Dynamics

Consider for k = 1, 2, the following dynamics:

∂tGk:2(x, t) + Gk:2(x, t)∂x[Gk:2(x, t)] + ρ2(σ)∂
2
x[Gk:2(x, t)] + ρ3(σ)∂

3
x[Gk:2(x, t)] = 0. (A1)

In this appendix, in particular Equation (A1), we adopt for the calculations the simplified
notation ρj,k:2(σ) := ρj(σ) for j = 2, 3.

Appendix A.1. Case G1:2(t)

Write T := tanh
[
γ(x− t

2 )
]

with γ := 1
2σ2 . We have

G1:2(T) =
(

2
2

)
1
4
[1− T]2 +

(
2
1

)
1
4
[1− T][1 + T] =

3
4
− 1

2
T − 1

4
T2. (A2)

We have
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∂xG1:2(T) = −2∂tG1:2(T) =
γ
2
[
(T3 + T2 − T − 1

]
,

∂2
xG1:2(T) =

γ2

2
[
−3T4 − 2T3 + 4T2 + 2T − 1

]
,

∂3
xG1:2(T) = γ3[6T5 + 3T4 − 10T3 − 4T2 + 4T + 1

]
,

G1:2(T)∂xG1:2(T) =
γ
8
[
−T5 − 3T4 + 2T3 + 6T2 − T − 3

]
.

Balancing the successive powers of T leads to a system of six equations:

(a) − γ
8 + 6ρ2(σ)γ

3 = 0,

(b) − 3γ
8 − ρ2(σ)

3γ2

2 + 3ρ3(σ)γ
3 = 0,

(c) − γ
4 + γ

4 − ρ2(σ)γ
2 − 10ρ3(σ)γ

3 = 0,

(d) − γ
4 + 3γ

4 + 2ρ2(σ)γ
2 − 4ρ3(σ)γ

3 = 0,

(e) + γ
4 −

γ
8 + ρ2(σ)γ

2 + 4ρ3(σ)γ
3 = 0,

( f ) + γ
4 −

3γ
8 − ρ2(σ)

γ2

2 + ρ3(σ)γ
3 = 0.

(A3)

In Equation (A3), we observe that we have

(i) (c) + (e) ⇔ (a),

(ii) (d) + ( f ) ⇔ (b),

(iii) (a) + (c) ⇔ (e),

(iv) (b) + ( f ) ⇔ (d),

thus showing that ρ1(σ) and ρ2(σ) can be calculated as a function of γ := 1
4σ2 . Solving

Equation (A3), we obtain

ρ2(σ) = −
5
6

σ2 and ρ3(σ) =
1
3

σ4. (A4)

Appendix A.2. Case G2:2(T)

G2:2(T) =
[

1− T
2

]2
T := tanh

[
γ

(
x− t

2

)]
,

and we obtain

∂xG2:2(T) = −2∂tG2:2(T) = 1
2 γ
[
−T3 + T2 + T − 1

]
,

∂2
xG2:2(T) = 1

2 γ2[3T4 − 2T3 − 4T2 + 2T + 1
]
,

∂3
xG2:2(T) = 1

2 γ3[−12T5 + 6T4 + 20T3 − 8T2 + 8T + 2
]
,

G2:2(T)∂xG2:2(T) =
γ
8
[
−T5 + 3T4 − 2T3 − 2T2 + 3T − 1

]
.
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Balancing the successive powers of T, we obtain the following system of six equations:

(a) − γ
8 − 6ρ2(σ)γ

3 = 0,

(b) 3γ
8 + 3ρ1(σ)

2 γ2 + 3ρ3(σ)γ
3 = 0,

(c) + γ
4 −

γ
4 − ρ2(σ)γ

2 + 10ρ3(σ)γ
3 = 0,

(d) − γ
4 −

γ
4 − 2ρ2(σ)γ

2 − 4ρ3(σ)γ
3 = 0,

(e) − γ
4 + 3γ

8 + ρ2(σ)γ
2 − 4ρ3(σ)γ

3 = 0,

( f ) + γ
4 −

γ
8 + ρ2(σ)

2 γ2 + ρ3(σ)γ
3 = 0.

(A5)

We observe that, in Equation (A5), we have the following dependencies:

(i) (d) + ( f ) ⇔ (b),

(ii) (c) + (e) ⇔ (a),

(iii) (b) + ( f ) ⇔ (d),

(iv) (a) + (b) ⇔ (e) + ( f ).

With γ = 1
4σ2 , Equation (A5) yields

ρ2(σ) =
5
6

σ2 and ρ3(σ) = −
1
3

σ4.

This result also follows immediately by using Corollary 1 when applied for k = 1 and
n = 2.

Appendix B. Kuramoto-Sivanshansky—Fourth Order Dispersive Dynamics

For k = 1, 2, 3, consider the following dynamics:

∂tGk:3(x, t) + Gk:3(x, t)∂x[Gk:3(x, t)] + ρ2(σ)∂
2
x[Gk:3(x, t)] + ρ3(σ)∂

3
x[Gk:3(x, t)] + ρ4(σ)∂

4
x[Gk:3(x, t)] = 0. (A6)

In this appendix, in particular Equation (A6), we adopt the simplified notation ρj,k:3(σ) =
ρj(σ) for j = 2, 3, 4.

Appendix B.1. Case k = 2

From Corollary 2, we a priori know that odd derivatives are not present in the evolu-
tion of G2:3(T).

Writing T := tanh
[
γ(x− 1

2 t)
]

with γ = 1
4σ2 , we have

G2:3(T) = (3
3)
[

1−T
2

]3
+ (3

2)
[

1−T
2

]2 1+T
2 = 1

4
[
T3 − 3T + 2

]
, T := tanh

[
γ(x− 1

2 t)
]
.
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This leads to

∂xG2:3(T) = −2∂tG2:3(T) = − 3
4 γ
[
T4 − 2T2 + 1

]
,

∂2
xG2:3(T) = 3

4 γ2[4T5 − 8T3 + 4T
]

∂3
xG2:3(T) = − 3

4 γ3[20T6 − 44T4 + 28T2 − 4
]

∂4
xG2:3(T) = 3

4 γ4[120T7 − 296T5 + 232T3 − 56T
]

G2:3(T)∂xG2:3(T) = 3
16 γ
[
−T7 + 5T5 − 2T4 − 7T3 + 4T2 + 3T − 2

]
(A7)

Introducing Equation (A7) into the evolution Equation (A6) and equating the succes-
sive powers of T to zero, we obtain 8 relations. Since ρ2 = 0 for Corollary 2, only four
relations remain: 

(a) − 3γ
16 + 90ρ4(σ)γ

4 = 0,

(b) 15γ
16 + 3ρ2(σ)γ

2 − 222ρ4(σ)γ
4 = 0,

(c) − 21γ
16 − 6ρ2(σ)γ

2 + 174ρ4(σ)γ
4 = 0,

(d) 9γ
16 + 3ρ2(σ)γ

2 − 42ρ4(σ)γ
4 = 0.

(A8)

In Equation (A8), we observe that
(b) + (c) + (d) ⇔ (a)

(b)− (d) ⇔ (a)

Therefore, ρ1(σ) and ρ3(σ) can be calculated in terms of γ = 1
4σ2 , and the solution of

Equation (A8) is
ρ2(σ) = − 19

3 σ2,

ρ3(σ) = 0,

ρ4 = 2
15 σ6.

(A9)

Appendix B.2. Case k = 3

For G3:3(T), we can use the result recently derived in [11] using Lie symmetry (see
Section 5 of this paper (See in particular Equations (5.3)–(5.5)) in this paper with the
identifications α = ρ1(σ), β = ρ2(σ) and γ = ρ3(σ).)), and we end with

G3:3(T) =
[

1−T
2

]3
,

ρ2(σ) = − 47
60 σ2,

ρ3(σ) = − 2
5 σ4,

ρ4(σ) = − 1
15 σ6.
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Appendix C. Kawahara—Fifth-Order Dispersive Dynamics

For k = 1, 2, 3, 4, the evolution reads in this case as

∂tGk:4(x, t) + Gk:4(x, t)∂x[Gk:4(x, t)] + +∑5
j=2 ρj,k:4(σ)∂

j
x[Gk:4(x, t)] = 0. (A10)

In this appendix, in particular Equation (A10), we adopt the simplifying notation ρj,k:4(σ) =
ρj(σ) for j = 2, 3, 4, 5. We shall make use of the result derived in Equation (6.7) of [9]
with the following identifications: m = 1, C0 = 1

2 , α = ρ1(σ), β = ρ2(σ), γ = ρ3(σ),
and δ = ρ4(σ). We then have

∂tG4:4(Υ) + G4:4(Υ)∂xG4:4(Υ) +
5

∑
j=2

ρj(σ)∂
j
xG4:4(Υ) = 0

for which the kink type solution is given in the following form (see Equation (6.7) in [9]
with m = 1):

G4:4(Υ) =
105ρ4

3(σ)

(11)4ρ2
4(σ)

e−4Υ[1− T2(Υ)]2, T(Υ) := tanh
[

ρ3(σ)
44ρ4(σ)

(
x− t

2
)]

,

ρ2(σ)ρ4(σ)

ρ2
3(σ)

= 179
4(11)2 ,

ρ2
4(σ)

ρ3
3(σ)

= 29
4(11)3 ,

ρ3
4(σ)

ρ4
3(σ)

= − 120
(11)4 .

(A11)

Using the identities

sinh(4x) = 4 sinh(x) cosh(x) + 8 sinh3(x) cosh(x)
cosh(4x) = 8 cosh4(x)− 8 cosh2(x) + 1,

we have

e−4Υ[1− T2(Υ)]2 =
e−4Υ

cosh(Υ)4 =
cosh(4Υ)− sinh(4Υ)

cosh(Υ)4 = (1− T)4.

With the constraints given in Equation (A11), one ends with G4:4(Υ) =
[

1−T
2

]4
. Imposing

finally that Υ = 1
4σ2

(
x− t

2
)
, we derive the following set of coefficients:

ρ2(σ) = − 29
420 σ2,

ρ3(σ) = − 179
420 σ4,

ρ4(σ) = − 11
105 σ6,

ρ5(σ) = − 1
105 σ8.
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