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A DEPENDENCE OF THE COST OF FAST CONTROLS FOR THE HEAT

EQUATION ON THE SUPPORT OF INITIAL DATUM

HOAI-MINH NGUYEN

Abstract. The controllability cost for the heat equation as the control time T goes to 0 is well-
known of the order eC/T for some positive constant C, depending on the controlled domain and
for all initial datum. In this paper, we prove that the constant C can be chosen to be arbitrarily
small if the support of the initial data is sufficiently close to the controlled domain, but not
necessary inside the controlled domain. The proof is in the spirit on Lebeau and Robbiano’s
approach in which a new spectral inequality is established. The main ingredient of the proof of
the new spectral inequality is three-sphere inequalities with partial data.

Key words: heat equations, fast controls, controllability cost, spectral inequalities, three-sphere
inequalities.
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1. Introduction

We are interested in the dependence of the cost of fast controls for the heat equation on the
support (location) of the initial data. Let ω ( Ω be a bounded, open subset of Rd (d ≥ 1), T > 0,
u0 ∈ L2(Ω), and f ∈ L2((0, T )× ω). Let A be a Lipschitz, symmetric, uniformly elliptic, matrix-
valued function defined in Ω. Consider the unique solution u ∈ L2((0, T );H1

0 (Ω))∩C([0, T ];L2(Ω))
of the system

(1.1)





∂tu− div
(
A(x)∇u

)
= f1ω in (0, T ) × Ω,

u = 0 on (0, T ) × ∂Ω,

u(t = 0, ·) = u0 in Ω.

Here and in what follows, 1D denotes the characteristic function of a set D of Rd. It is well-known
from the work of Gilles Lebeau and Luc Robbiano [8], via spectral inequalities and the work of
Andrei Fursikov and Yu Imanuvilov [5], via Carleman’s estimates that one can act on ω using f
to bring u from the initial state u0 (arbitrary) at time 0 to the final state 0 at time T (arbitrarily
positive).

For D ⊂ Ω, set

(1.2) c(T, ω,D) = sup
‖u0‖L2(Ω)=1

supp u0⊂D

inf
f∈L2((0,T )×ω)

u(T,·)=0 where u satisfies (1.1)

‖f‖L2((0,T )×ω).

For T ∈ (0, 1), one can prove that

(1.3) c1e
c2/T ≤ c(T, ω,Ω) ≤ C1e

C2/T ,

for some positive constants c1, c2, C1, and C2 independent of T . The second inequality follows
from the observability inequality [5, 8], and the first inequality was obtained by Luc Miller [13]
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and others [3, 22]. There is significant literature covering other aspects of the cost of the control
for heat equations [2, 4], the transport equation with small viscosities [1, 6, 10, 11], and the wave
equation [7, 19, 20]. The cost of fast controls were also considered for linear thermoelasticity [9],
Schrödinger equations [4, 11, 12, 18], and plate vibrations [12]. Similar questions were previously
addressed in finite dimensions by Thomas Seidman [21].

The goal of this paper is to show a dependence of c(T, ω,D) on D. More precisely, we prove

Theorem 1.1. Let T ∈ (0, 1) and ε > 0. Assume that ω ⋐ Ω is of class C2, and set, for r > 0,

(1.4) ωr =
{
x ∈ Rd; dist(x, ω) < r

}
.

There exist two constants δ ∈ (0, 1) and Cε > 0, depending only on ε, ω, Ω, and the elliptic and

Lipschitz constants of A, such that

(1.5) c(T, ω, ωδ) ≤ Cεe
ε/T .

Remark 1.1. The constants δ and Cε in Theorem 1.1 are independent of T .

When ω = Ω, the dependence of c2 and C2 on Ω has been studied extensively, see e.g. [3,13] and
the references therein. Nevertheless, to our knowledge, the dependence of the cost on the support
of initial datum for the heat equation has not been considered in the literature. Theorem 1.1 is
new even in one dimensional case.

Theorem 1.1 is expected in the sense that if the support of the initial data is not too far from the
controlled region, then it is easier to control. Even in this regard, this intuition is not completely
transparent since the propagation speed is infinite and hence the support of the solution at any
positive time is generally the whole domain Ω. Known examples used in the moment method for
the heat equations (mainly for one dimensional space) and other equations give the same size of
the control cost for initial datum formed by eigenfunctions of the corresponding operator. From
this aspect, Theorem 1.1 is thus unexpected.

The proof of Theorem 1.1 is in the spirit of Gilles Lebeau and Luc Robbiano’s approach [8]
in which we establish a new spectral inequality. Let 0 < λ1 ≤ λ2 ≤ . . . be the sequence of
the eigenvalues of the operator − div(A∇·) with the zero Dirichlet boundary condition, and let
e1, e2, . . . be the corresponding eigenfunctions, i.e.,

(1.6)

{
− div(A∇ei) = λiei in Ω,

ei = 0 on ∂Ω.

Assume that {ei, i ≥ 1} forms an orthogonal basis in L2(Ω). Set, for λ > 0,

(1.7) E≤λ =





∑

λi≤λ

aiei(x); ai ∈ R



 .

One of the key elements of Gilles Lebeau and Luc Robbiano’s approach is the following spectral
inequality

(1.8) ‖v‖H1(Ω) ≤ CeC
√
λ‖v‖L2(ω) ∀ v ∈ Eλ,

where C is a positive constant independent of λ.
In this paper, we also follow this approach. Nevertheless, to capture the dependence on the

support of the initial datum, we use and establish the following new spectral inequality (compare
with (1.8)).
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Proposition 1.1. Let ε ∈ (0, 1). There exist two constants δ ∈ (0, 1) and Cε > 0, depending

only on ε, ω, Ω, and the elliptic and Lipschitz constants of A, such that, for λ > 0,

‖v‖L2(ωδ) ≤ Cεe
ε
√
λ‖v‖L2(ω) ∀v ∈ Eλ.

Remark 1.2. It is important to emphasize here that the constants δ and Cε in Proposition 1.1
are independent of λ.

The proof of Proposition 1.1 is in the spirit of [8]. Nevertheless, we use three-sphere inequalities
with partial data, which was recently established by the author, to quantitatively capture the
dependence of the support. These inequalities have been derived and applied to the study of
cloaking using negative-index materials [15,16]. A typical example of these inequalities is, see [16,
Theorem 2.1],

Theorem 1.2. Let d ≥ 2, Λ ≥ 1, 0 < R1 < R3, and let Γ =
{
x = (x′, xd) ∈ ∂BR1 ;xd = 0

}
.

Denote Or =
{
x ∈ Rd; dist(x,Γ) < r

}
, Dr = BR3 \ (BR1 ∪Or), and Σr = ∂BR1 \ Ōr for r > 0.

For every α ∈ (0, 1), there exists r2 ∈ (0, R3 −R1), depending only on α, Λ, Γ, R1, and R3, such

that for every r1 ∈ (0, r2), there exists r0 ∈ (0, r1), depending only on r1, α, Λ, R1, and R3, such

that for (d×d) Lipschitz, uniformly elliptic, symmetric, matrix-valued function M defined in Dr0

verifying, in Dr0 ,

(1.9) Λ−1|ξ|2 ≤ 〈M(x)ξ, ξ〉 ≤ Λ|ξ|2 ∀ ξ ∈ Rd and |∇M(x)| ≤ Λ,

and for V ∈ [H1(Dr0)]
m satisfying

(1.10) |div(M∇V )| ≤ Λ1

(
|∇V |+ |V |

)
in Dr0 for some Λ1 ≥ 0,

we have

(1.11) ‖V ‖H1(BR1+r2
\BR1+r1

) ≤ C
(
‖V ‖H1/2(Σr0 )

+ ‖M∇V · x/|x|‖H−1/2(Σr0 )

)α
‖V ‖1−α

H1(Dr0 )
,

for some positive constant C, depending only on α, Λ, Λ1, R1, R3, and d.

The geometry of Theorem 1.2 is given in Figure 1.

We will use a variant of Theorem 1.2, given in Proposition 1.2, to derive Theorem 1.1. Neverthe-
less, we present Theorem 1.2 here to highlight the difference between the three-sphere inequalities
used in this paper and the standard three-sphere ones. In (1.11), one only uses the information of
Σr0 (a portion of ∂BR1 , see Figure 1) in the first interpolation term. The terminology partial data

comes from this. The constants r1, r2, and r0 are independent of Λ1, but the constant C does
depend on Λ1. If instead of Σr0 , one uses ∂BR1 , inequality (1.11) is then known. Using known
three-sphere inequalities and the arguments of the propagation of smallness, one can prove (1.2)
for some α ∈ (0, 1). Nevertheless, the non-triviality and the novelty of Theorem 1.2 rely on the
fact that, for a given arbitrary α ∈ (0, 1), (1.11) holds for some r0, r1, r2. Even if v is a solution
of the Laplace equation in two dimensions, using Hadamard three-sphere (circles) inequalities
and the arguments of propagation of smallness, as far as we know, one can only obtain (1.11) for
some small α, even though one replaces Σr0 by ∂BR1 \ {x0} for some x0 ∈ ∂BR1 . The possibility
to take α close to 1 is crucial for the proof of Theorem 1.1 where ε can be arbitrarily small.
This point is also crucial for the cloaking applications considered in [15,16]. Several applications
of Theorem 1.2 concerning variants of Hadamard’s three-circle inequalities with partial data are
given in [16].
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Figure 1. Geometry of Theorem 1.2 in two dimensions

We now introduce some notations to state the local version of Theorem 1.2, which is used in
the proof of Proposition 1.1. For d ≥ 2 and x = (x1, x2, x̃) ∈ R × R × Rd−2, we use the polar
coordinate (r̂, θ) with θ ∈ (−π, π] for the pair (x1, x2); the variable x̃ is irrelevant for d = 2. For
0 < γ1 < γ2 < 1 and for R > 0, we denote

(1.12) Yγ1,γ2,R =
{
x ∈ Rd; θ ∈ (−π/2, π/2), γ1R < r̂ < γ2R, and |x̃| < R

}
,

(see also Figure 2). The following variant of Theorem 1.2 in a half plane, see [16, Theorem 3.1],
is the key ingredient of the proof of Proposition 1.1.

Proposition 1.2. Let d ≥ 2, Λ ≥ 1, and R∗ < R < R∗. Then, for any α ∈ (0, 1), there exists a

constant γ̂2 ∈ (0, 1), depending only on α, Λ, R∗, R∗, and d such that for every γ̂1 ∈ (0, γ̂2), there
exists γ̂0 ∈ (0, γ̂1), depending only on α, γ̂1, Λ, R∗, R∗, and d such that, for real, symmetric,

uniformly elliptic, Lipschitz matrix-valued functions M defined in Dγ̂0 := Yγ̂0,1,R verifying, in

Dγ̂0 ,

(1.13) Λ−1|ξ|2 ≤ 〈M(x)ξ, ξ〉 ≤ Λ|ξ|2 ∀ ξ ∈ Rd and |∇M(x)| ≤ Λ,

and for V ∈ [H1(Dγ̂0)]
m satisfying

(1.14) |div(M∇V )| ≤ Λ1

(
|∇V |+ |V |

)
in Dγ̂0 for some Λ1 ≥ 0,

we have, with Σγ̂0 = ∂Dγ̂0 ∩
{
x1 = 0

}
,

(1.15) ‖V ‖H1(Y
γ̂1,γ̂2,

R
4
) ≤ C

(
‖V ‖H1/2(Σγ̂0

) + ‖M∇V · η1‖H−1/2(Σγ̂0
)

)α
‖V ‖1−α

H1(Dγ̂0
)
,

for some positive constant C, depending only on α, γ̂1, Λ, Λ1, R∗, R∗, and d.

Here and in what follows, η1, · · · , ηd denotes the standard basis of Rd, i.e., η1 = (1, 0, . . . , 0),
. . . , ηd = (0, . . . , 0, 1).

The proof of Proposition 1.2 given in [16] is quite delicate and involves new (uniform) Car-
leman’s inequalities applied to second-order elliptic equations in which the coefficients might be
degenerate and in which the geometry of the considered domain is taken into account in the
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Figure 2. Geometry of Yγ1,γ2,
R
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, Σγ0
, and Dγ0

in two dimensions.

proof. The proof is much simpler for the case A = I and d = 2, but already contains several key
ideas [15].

The paper is organized as follows. Section 2 is devoted to the proof of Proposition 1.1. The
proof of Theorem 1.1 is given in Section 3.

2. Spectral inequality

This section is devoted to the proof of Proposition 1.1. The key ingredient of the proof is:

Lemma 2.1. Let M be a Lipschitz, symmetric, uniformly elliptic, matrix-valued defined in Ω×
(−1, 1) and let ϕ ∈ H1(Ω × (−1, 1)) be such that

|div(M∇ϕ)| ≤ Λ(|∇ϕ| + |ϕ|) in Ω× (−1, 1).

Set

Dr =
{
X = (x, xd+1) ∈ Rd+1; dist(X,ω × {0}) < r

}
for r > 0.

Given α ∈ (0, 1), there exist two constants δ ∈ (0, 1) and Cα > 0, depending only on α, ω, Ω, and
the Lipschitz and elliptic constants of M , such that

(2.1) ‖ϕ‖H1(Dδ) ≤ Cα

(
‖ϕ‖H1/2(ω×{0}) + ‖M∇ϕ · ηd+1‖H−1/2(ω×{0})

)α
‖ϕ‖1−α

H1(Ω×(−1,1))
.

Remark 2.1. The constant δ and Cα are independent of ϕ.

Proof of Lemma 2.1. Since ω is of class C2, by using local charts and a change of variables,
it suffices to prove the following result: Let M̂ be a Lipschitz, symmetric, uniformly elliptic,
matrix-valued function defined in Q := (−1, 1)d+1, and let ϕ̂ ∈ H1(Q) be such that

(2.2) |div(M̂∇ϕ̂)| ≤ Λ̂(|∇ϕ̂|+ |ϕ̂|) in Q.
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Q

x1

xd+1

δ

Σ

a)

Q

x1

xd+1

b)

Figure 3. a): Geometry of inequality 2.3 in two dimensions with Σ := Q ∩ {xd+1 =
0;x1 < 0}. b) The way to obtain (2.1) from (2.3) for d = 1; ω is the orange interval, Ω is
the blue interval, Dδ is the region whose boundary is violet.

Given α ∈ (0, 1), there exists δ > 0, depending only on α, and the Lipschitz and elliptic constants

of M̂ , such that

(2.3) ‖ϕ̂‖H1(Bδ) ≤ C
(
‖ϕ̂‖H1/2(Σ) + ‖M̂∇ϕ̂ · ηd+1‖H−1/2(Σ)

)α
‖ϕ̂‖1−α

H1(Q)
,

where Σ := Q ∩ {xd+1 = 0;x1 < 0} for some positive constant C depending only on α, the

Lipschitz and elliptic constants of M̂ , and Λ̂.
Here and in what follows in this proof, Br denotes the open ball centered at 0 and of radius

r > 0 in Rd+1.
It is important to note that in (2.3), the norms in the RHS are considered in the set Σ which is

defined by Q∩ {xd+1 = 0;x1 < 0} and is not given by the set Q∩ {xd+1 = 0}. See a) of Figure 3
for the geometry of (2.3) and b) of Figure 3 for the ideas behind using local charts and covering
arguments to obtain (2.1) from (2.3).

We will make a change of variables in order to apply Proposition 1.2. To this end, for X =
(x1, · · · , xd+1) ∈ Q \

{
xd+1 = 0;x1 ≤ 0

}
, define

R(X) = (y1, x2, · · · , xd, yd+1),

with (y1, yd+1) = r̂eiθ/2 if (x1, xd+1) = r̂eiθ for r̂ > 0, and θ ∈ (−π, π).
Set

ϕ̂1 = ϕ̂ ◦ R−1 in Q̂1 := R
(
Q \

{
xd+1 = 0;x1 ≤ 0

})
.

Set

f(x) = div(M̂∇ϕ̂)(x) in Q, f1(x) =
f

|det(∇R)|
◦ R−1(x) in Q1,

and

(2.4) M̂1 =
∇RM̂∇RT

|det(∇R)|
◦ R−1 in Q̂1.
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It is clear from (2.4) that the elliptic and Lipschitz constants of M̂1 are bounded by the elliptic

and Lipschitz constants of M̂ , up to a constant C, depending only on d.
Since div(M̂∇ϕ̂) = f in Q, it follows from a change of variables that

(2.5) div(M̂1∇ϕ̂1) = f1 in Q1.

We have
det(∇R)(x) = 1/2 for x ∈ Q,

|∇ϕ̂(x)| ≤ |∇R(x)||∇ϕ̂1 ◦ R(x)| ≤ C|∇ϕ̂1 ◦ R(x)| for x ∈ Q.

Since |f | ≤ C
(
|∇ϕ|+ |ϕ|

)
in Q by (2.2), we derive from (2.5) that

|div(M̂1∇ϕ̂1)| ≤ Λ̂1

(
|∇ϕ1|+ |ϕ1|

)
in Q1,

for some Λ̂1 > 0, depending only on Λ and d.
Set

(2.6) Γ1,+ =
{
(x1, . . . , xd+1);x1 = 0, xd+1 > 0, xj ∈ (−1, 1) for 2 ≤ j ≤ d

}

and

(2.7) Γ1,− =
{
(x1, . . . , xd+1);x1 = 0, xd+1 < 0, xj ∈ (−1, 1) for 2 ≤ j ≤ d

}
.

Apply Proposition 1.2 to ϕ̂1 with R = 1, γ̂1 = γ̂2/2, and γ̂0 = 0, and in Rd+1 with (x1, x2, x̃)
being replaced by

(
x1, xd+1, (x2, · · · , xd)

)
. There exists γ̂2 > 0 such that

‖ϕ̂1‖H1
(
(Bγ̂2

\Bγ̂2/2
)∩{x1>0}

) ≤ C‖ϕ̂1‖
1−α

H1(Q̂1)

×
(
‖ϕ̂1‖H1/2

(
Γ1,+

) + ‖M̂1∇ϕ̂1 · η1‖H1/2
(
Γ1,+

) + ‖ϕ̂1‖H1/2
(
Γ1,−

) + ‖M̂1∇ϕ̂1 · η1‖H1/2
(
Γ1,−

)
)α

.

Since ϕ̂ = ϕ̂1 ◦ R in Q, it follows from a change of variables, see e.g. [14, Lemma 2], that

‖ϕ̂‖
H1

(
(Bγ̂2

\Bγ̂2/2
)\{xd+1=0;x1<0}

) ≤ C‖ϕ̂‖1−α
H1(Q)

(
‖ϕ̂‖H1/2(Σ) + ‖M̂∇ϕ̂ · ηd+1‖H−1/2(Σ)

)α
.

Since ϕ̂ ∈ H1(Q), and hence in particular ϕ̂ ∈ H1(Bγ̂2), we obtain

(2.8) ‖ϕ̂‖H1(Bγ̂2
\Bγ̂2/2

) ≤ C‖ϕ̂‖1−α
H1(Q)

(
‖ϕ̂‖H1/2(Σ) + ‖M̂∇ϕ̂ · ηd+1‖H−1/2(Σ)

)α
.

Using the fact
|div(M̂∇ϕ̂)| ≤ Λ̂(|∇ϕ|+ |ϕ|) in Q,

and M̂ is symmetric, uniformly elliptic and Lipschitz, one has 1

(2.9) ‖ϕ̂‖H1(Bγ2 )
≤ C‖ϕ̂‖H1(Bγ2\Bγ2/2

).

Assertion (2.3) now follows from (2.8) and (2.9) with δ = γ2. The proof is complete. �

Remark 2.2. One of the key points of the proof is the assertion (2.3). This assertion is known if
one replaces the set Q ∩ {xd+1 = 0;x1 < 0} by Q ∩ {xd+1 = 0} and the proof in this case can be
done as in [8]. However, this does not imply (2.1). The proof of (2.3) follows from Proposition 1.2,
which is non-trivial.

We are ready to give

1One can prove (2.9) using a contradiction argument and the unique continuation principle.
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Proof of Proposition 1.1. Since v ∈ E≤λ, there exists ai ∈ R with λi ≤ λ, such that

v(x) =
∑

λi≤λ

aiei(x) in Ω.

As in the spirit of [8], set, with X = (x, xd+1) ∈ Ω× R,

V (X) =
∑

λi≤λ

λ
−1/2
i ai sinh(λ

1/2
i xd+1)ei(x),

where sinh t = 1
2(e

t − e−t) for t ∈ R. Since − divx(A(x)∇ei(x)) = λiei(x) in Ω, it follows that

(2.10)





∂2
xd+1

V + divx
(
A(x)∇xV

)
= 0 in Ω× R,

V (X) = 0 for X ∈ Ω× {0},

∂xd+1
V (X) = v(x) for X ∈ Ω× {0}.

Given α ∈ (0, 1), by applying Lemma 2.1 to V , there exist two constants δ = δ(α) ∈ (0, 1) and
Cα > 0, depending only on α, ω, Ω, and the elliptic and Lipschitz constants of A, such that

(2.11) ‖V ‖H1(D2δ) ≤ Cα

(
‖V ‖H1/2(ω×{0}) + ‖∂xd+1

V ‖H−1/2(ω×{0})

)α
‖V ‖1−α

H1(Ω×(−1,1))
.

Using (2.10), we derive from (2.11) that

(2.12) ‖V ‖H1(D2δ) ≤ Cα‖v‖
α
L2(ω)‖V ‖1−α

H1(Ω×(−1,1))
.

Since A is Lipschitz, by the regularity theory of elliptic equations 2, one has

‖∂xd+1
V ‖L2(ωδ) ≤ Cα‖V ‖H1(D2δ),

which yields

(2.13) ‖v‖L2(ωδ) ≤ Cα‖V ‖H1(D2δ).

On the other hand, by the standard spectral inequality (1.8), one gets

(2.14) ‖V ‖H1(Ω×(−1,1)) ≤ CeC
√
λ‖v‖L2(ω),

for some positive constant C, depending only on ω, Ω, and the elliptic and Lipschitz constants of
A.

Combining (2.12), (2.13) and (2.14) yields

(2.15) ‖v‖L2(ωδ)

(2.13)

≤ Cα‖V ‖H1(D2δ)

(2.12)

≤ Cα‖v‖
α
L2(ω)‖V ‖1−α

H1(Ω×(−1,1))

(2.14)

≤ Cαe
C(1−α)

√
λ‖v‖L2(ω).

By choosing α such that C(1− α) = ε, we derive from (2.15) that

(2.16) ‖v‖L2(ωδ) ≤ Cεe
ε
√
λ‖v‖L2(ωδ).

The proof is complete. �

2One can directly apply the quotient method due to Louis Nirenberg [17].
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3. Proof of Theorem 1.1

The proof of Theorem 1.1 is based on the following lemma, which will be derived from the
spectral inequality stated in Proposition 1.1.

Lemma 3.1. Let 0 < T < 1, λ > 0, and let v0 ∈ Eλ. Let v ∈ L2((0, T ),H1
0 (Ω))∩C([0, T ], L2(Ω))

be the unique solution of the system

(3.1)





∂tv − div(A∇v) = 0 in (0, T ) × Ω,

v = 0 on (0, T ) × ∂Ω,

v(t = 0, ·) = v0 in Ω.

For ε > 0, there exist two constants δ ∈ (0, 1) and Cε > 0, depending only on ε, ω, and Ω, and
the elliptic and Lipschitz constants of A, such that

‖v(T, ·)‖L2(ωδ) ≤ Cεδ
−1T−1/2eε

√
λ‖v‖L2((0,T )×ω).

Recall that ωr is defined in (1.4).

Remark 3.1. The constants δ and Cε in Lemma 3.1 are independent of λ and T .

Proof. By Proposition 1.1, there exist δ ∈ (0, 1) and Cε > 0, such that

(3.2) ‖ξ‖L2(ω2δ) ≤ Cεe
ε
√
λ‖ξ‖L2(ω) for ξ ∈ E≤λ.

Since v0 ∈ E≤λ, it follows that v(t, ·) ∈ E≤λ for t ∈ (0, T ). We derive from (3.2) that

(3.3) ‖v(t, ·)‖L2(ω2δ) ≤ Cεe
ε
√
λ‖v(t, ·)‖L2(ω) for t ∈ (0, T ).

Fix ϕ ∈ C∞
c (Rd) such that 0 ≤ ϕ ≤ 1, ϕ = 1 in ωδ, suppϕ ⊂ ω2δ, and |∇α

xϕ| ≤ C/δ|α| for
all multi-indices α with |α| ≤ 2. Here and in what follows in this proof, C denotes a positive
constant, depending only on ω, Ω, and the elliptic and Lipschitz constants of A.

Set

(3.4) u(t, x) = ϕ(x)v(t, x) in (0, T ) × Ω,

and denote

(3.5) g(t, x) = −
(
2〈A(x)∇v(t, x),∇ϕ(x)〉 + v(t, x) div(A(x)∇ϕ(x))

)
in (0, T )× Ω,

where 〈·, ·〉 denotes the standard scalar product in Rd.
We derive from (3.1) and the symmetry of A that

{
∂tu− div(A∇u) = g in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω.

Multiplying the equation of u by u and integrating by parts in (t, T )×Ω, we obtain, for 0 ≤ t ≤ T ,

(3.6)
1

2

ˆ

Ω
|u(T, x)|2 dx+

ˆ T

t

ˆ

Ω
〈A(x)∇u(s, x),∇u(s, x)〉 dx ds

=
1

2

ˆ

Ω
|u(t, x)|2 dx+

ˆ T

t

ˆ

Ω
g(s, x)u(s, x) dx ds.
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We next estimate the last term of (3.6). Since, for x ∈ Ω and s ∈ (0, T ),

〈A(x)∇v(s, x),∇ϕ(x)〉u(s, x)
(3.4)
= 〈A(x)ϕ(x)∇v(s, x),∇ϕ(x)〉v(s, x)

(3.4)
= 〈A(x)(∇u(s, x) − v(s, x)∇ϕ(x)),∇ϕ(x)〉v(s, x),

it follows that, for s ∈ (0, T ),

(3.7)

∣∣∣∣
ˆ

Ω
〈A(x)∇v(s, x),∇ϕ(x)〉u(s, x) dx

∣∣∣∣ ≤ C

ˆ

Ω
δ−1|∇u(s, x)||v(s, x)| dx+

ˆ

Ω
δ−2|v(s, x)|2 dx.

We also have, for x ∈ Ω and s ∈ (0, T ),

(3.8) |v(s, x) div(A(x)∇ϕ(x))||u(s, x)| ≤ Cδ−2|v(s, x)|2,

since A is Lipschitz and |∇α
xϕ| ≤ C/δ|α| for all multi-indices α with |α| ≤ 2. Combining (3.7)

and (3.8) yields

(3.9)

∣∣∣∣
ˆ T

t

ˆ

Ω
g(s, x)u(s, x) dx ds

∣∣∣∣ ≤ C

ˆ T

t

ˆ

Ω
δ−1|∇u(s, x)||v(s, x)| dx ds

+

ˆ T

t

ˆ

Ω
δ−2|v(s, x)|2 dx ds.

Using (3.9) and the ellipticity of A, and applying Young’s inequality, we derive from (3.6) that,
for t ∈ (0, T ),

ˆ

Ω
|u(T, x)|2 dx ≤

ˆ

Ω
|u(t, x)|2 dx+ Cδ−2

ˆ T

t

ˆ

Ω
|v(s, x)|2 dx ds.

Integrating the above inequality with respect to t from 0 to T , we derive that
ˆ

Ω
|u(T, x)|2 dx ≤ Cδ−2T−1

ˆ T

0

ˆ

Ω
|v(s, x)|2 dx ds.

Since v = ϕu, 0 ≤ ϕ ≤ 1, ϕ = 1 in ωδ, and suppϕ ⊂ ω2δ, it follows that
ˆ

ωδ

|v(T, x)|2 dx ≤ Cδ−2T−1

ˆ T

0

ˆ

ω2δ

|v(t, x)|2 dx dt.

We derive from (3.3) that
ˆ

ωδ

|v(T, x)|2 dx ≤ Cεδ
−2T−1eε

√
λ

ˆ T

0

ˆ

ω
|v(t, x)|2 dx dt,

which is the conclusion. The proof is complete. �

We are ready to give

Proof of Theorem 1.1. Fix λ = c0/T
2 where c0 is a large positive constant determined later. Set

(3.10) H :=





∑

λi≤λ

aie
−λi(T/3−t)ei(x); ai ∈ R, x ∈ Ω, t ∈ (0, T/3)



 ⊂ L2

(
(0, T/3) × Ω

)
.

Equip H with the standard scalar product in L2
(
(0, T/3) × Ω

)
. Then, H is a Hilbert space (of

finite dimensions).
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Let ϕ ∈ H, and set

(3.11) v(t, x) = ϕ(T/3 − t, x) for (t, x) ∈ (0, T/3) × Ω.

It follows from the definition of H in (3.10) that
{

∂tv − div(A∇v) = 0 in (0, T/3) × Ω,

v = 0 on (0, T/3) × ∂Ω,

and moreover, v(t = 0, ·) ∈ E≤λ.
By Lemma 3.1, there exist two constants δ ∈ (0, 1) and Cε > 0, depending only on ε, ω, Ω, c0,

and the Lipschitz and elliptic constants of A, such that

‖v(T/3, ·)‖L2(ωδ) ≤ Cεδ
−1T−1/2‖v‖

L2
(
(0,T/3)×Ω

).

This implies, by (3.11),

(3.12) ‖ϕ(0, ·)‖L2(ωδ) ≤ Cεδ
−1T−1/2eε/T ‖ϕ‖

L2
(
(0,T/3)×ω

).

Fix such constants δ and Cε.
Fix u0 ∈ L2(Ω) with suppu0 ⊂ ωδ. We will construct a control with support in (0, T ) × ω,

which steers u0 from time 0 to 0 at time T for which the cost is bounded by Cεe
ε/T ‖u0‖L2(Ω).

Since u0 ∈ L2(Ω) with suppu0 ⊂ ωδ, using the Riesz representation theorem, we derive from
(3.12) that there exists f1 ∈ H, such that

(3.13)

ˆ

Ω
u0(x)ϕ(0, x) dx =

ˆ T/3

0

ˆ

ω
f1(s, x)ϕ(s, x) dx ds for ϕ ∈ H,

and

(3.14) ‖f1‖L2
(
(0,T/3)×ω

) ≤ Cεδ
−1T−1/2eε/T ‖u0‖L2(Ω).

Let u1 ∈ L2((0, T/3);H1
0 (Ω)) ∩ C([0, T/3];L2(Ω)) be the unique solution of the system

(3.15)





∂tu1 − div
(
A(x)∇u1

)
= f11ω in (0, T/3) × Ω,

u1 = 0 on (0, T/3) × ∂Ω,

u1(t = 0, ·) = u0 in Ω.

Since {
∂tϕ+ div(A∇ϕ) = 0 in (0, T/3) × Ω,

ϕ = 0 on (0, T/3) × ∂Ω,
for ϕ ∈ H,

multiplying the equation of u1 by ϕ (∈ H) and integrating by parts in (0, T/2) × Ω, we obtain
ˆ

Ω
u1(T/3, x)ϕ(T/3, x) dx −

ˆ

Ω
u1(0, x)ϕ(0, x) dx =

ˆ T/3

0

ˆ

ω
f1(s, x)ϕ(s, x) dx ds for ϕ ∈ H.

Using (3.13), we derive that

(3.16)

ˆ

Ω
u1(T/3, x)ϕ(T/3, x) dx = 0 for ϕ ∈ H.
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In other words, the projection of u(T/3, ·) into E≤λ is 0. Thus,

(3.17) u1(T/3, x) =
∑

λi>λ

〈u1(T/3, ·), ei〉L2(Ω)ei(x) in Ω,

where 〈·, ·〉L2(Ω) denotes the standard scalar product in L2(Ω).
On the other hand, by the standard energy estimate, we have

ˆ

Ω
|u1(T/3, x)|

2 dx ≤ 2

ˆ

Ω
|u1(0, x)|

2 dx+ C

ˆ T/3

0

ˆ

ω
|f1(s, x)|

2 ds dx.

We derive from (3.14) that

(3.18) ‖u1(T/3, ·)‖L2(Ω) ≤ Cεδ
−1T−1/2eε/T ‖u0‖L2(Ω).

Let u2 ∈ L2((T/3, 2T/3);H1
0 (Ω))∩C([T/3, 2T/3];L2(Ω)) be the unique solution of the system

(3.19)





∂tu2 − div
(
A(x)∇u2

)
= 0 in (0, T/3) × Ω,

u2 = 0 on (0, T/3) × ∂Ω,

u2(t = T/3, ·) = u1(T/3, ·) in Ω.

It follows from (3.17) and (3.18) that

‖u2(2T/3, ·)‖L2(Ω) ≤ e−λT/3‖u2(T/3, ·)‖L2(Ω) ≤ Cεδ
−1T−1/2eε/T−λT/3‖u0‖L2(Ω),

which yields, since λ = c0/T
2,

(3.20) ‖u2(2T/3, ·)‖L2(Ω) ≤ Cεδ
−1T−1/2eε/T−c0/(3T )‖u0‖L2(Ω).

On the other hand, there exists f3 ∈ L2((2T/3, T ) × Ω) with support in [2T/3, T ] × ω, such
that

(3.21) ‖f3‖L2
(
(2T/3,T )×Ω

) ≤ CeC/T ‖u2(2T/3, ·)‖L2(Ω),

and

(3.22) u3(T, ·) = 0 in Ω,

where u3 ∈ L2
(
(2T/3, T );H1

0 (Ω)
)
∩ C

(
[2T/3, T ];L2(Ω)

)
is the unique solution of the system

(3.23)





∂tu3 − div
(
A(x)∇u3

)
= f3 in (2T/3, T ) × Ω,

u3 = 0 on (T/2, T ) × ∂Ω,

u3(t = 2T/3, ·) = u2(2T/3, ·) in Ω.

Define f ∈ L2
(
(0, T ) × Ω

)
as follows

(3.24) f(t, x) =





f11ω in (0, T/3) × Ω,

0 in (T/3, 2T/3) × Ω,

f3 in (2T/3, T ) × Ω.

Since supp f3 ⊂ [2T/3, T ] × ω, it follows that

supp f ⊂ [0, T ]× ω̄.
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Let u ∈ L2
(
(0, T );H1

0 (Ω)
)
∩ C

(
[0, T ];L2(Ω)

)
be the unique solution of the system

(3.25)





∂tu− div
(
A(x)∇u

)
= f in (0, T )× Ω,

u = 0 on (T/2, T ) × ∂Ω,

u(t = 0, ·) = u0 in Ω.

It follows from (3.15), (3.19), (3.22), and (3.23) that

u3(T, ·) = 0 in Ω.

Combining (3.14) and (3.21), and using (3.20), we deduce that

‖f‖L2((0,T )×Ω) ≤ Cεδ
−1T−1/2eε/T ‖u0‖L2(Ω)

(
1 + e−c0/(3T )+C/T

)
.

By fixing c0 such that c0/3 ≥ C, we obtain

‖f‖L2((0,T )×Ω) ≤ Cεδ
−1T−1/2eε/T ‖u0‖L2(Ω).

The conclusion follows by replacing ε by ε/2 and noting that

T−1/2eε/(2T ) ≤ Cεe
ε/T ;

this follows by considering the case T ≥ ε and the case 0 < T < ε. �

Remark 3.2. The conclusion of Theorem 1.1 also holds if in the definition of c(T,w,D), one
additionally requires that supp f ⋐ [0, T ]×ω. The conclusion in this case follows by applying the
established result for the set

{
x ∈ ω; dist(x, ∂ω) ≥ γ

}
for small γ after noting that the constant

δ for such a set is independent of γ for small γ.
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