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ON THE OPTIMAL CONTROLLABILITY TIME FOR LINEAR HYPERBOLIC

SYSTEMS WITH TIME-DEPENDENT COEFFICIENTS

JEAN-MICHEL CORON AND HOAI-MINH NGUYEN

Abstract. The optimal time for the controllability of linear hyperbolic systems in one dimensional
space with one-side controls has been obtained recently for time-independent coefficients in our
previous works. In this paper, we consider linear hyperbolic systems with time-varying zero-
order terms. We show the possibility that the optimal time for the null-controllability becomes
significantly larger than the one of the time-invariant setting even when the zero-order term is
indefinitely differentiable. When the analyticity with respect to time is imposed for the zero-order
term, we also establish that the optimal time is the same as in the time-independent setting.
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1. Introduction and statement of the main results

Hyperbolic systems in one dimensional space are frequently used in the modeling of many
systems such as traffic flow [2], heat exchangers [51], fluids in open channels [28, 22, 29, 24], and
phase transition [25]. Many other interesting examples can be found in [6] and the references
therein. The optimal time for the controllability of hyperbolic systems in one dimensional space
with one-side controls has been derived recently for time-independent coefficients [17, 20]. In this
paper, we consider hyperbolic systems with time-varying zero-order terms. It is known that these
systems are controllable in some positive time. In this paper, we show the possibility that the
optimal time for the null-controllability becomes significantly larger than the one of the time-
invariant setting even when the zero-order term is indefinitely differentiable. When the analyticity
with respect to time is imposed for the zero-order term, we also establish that the optimal time is
the same as in the time-independent setting. The first result is quite surprising since the zero-order
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2 J.-M. CORON AND H.-M. NGUYEN

term does not interfere with the characteristic flows of the system. The later result complement
to the first one can be then viewed as an extension of a well-known controllability property of
linear differential equations: if a linear control system is controllable in some positive time and is
analytic, then it is controllable in any time greater than the optimal time, which is 0.

Let us first briefly discuss known results for the time-independent coefficients to underline the
phenomena. Consider the system

(1.1) ∂tu(t, x) = Σ(x)∂xu(t, x) +C(x)u(t, x) for (t, x) ∈ R+ × (0, 1).

Here u = (u1, · · · , un)
T : R+ × (0, 1) → R

n (n ≥ 2), Σ and C are (n × n) real, matrix-valued
functions defined in [0, 1]. We assume that, for every x ∈ [0, 1], the matrix Σ(x) is diagonalizable
with m ≥ 1 distinct positive eigenvalues and k = n −m ≥ 1 distinct negative eigenvalues. Using
Riemann coordinates, one might assume that Σ(x) is of the form

(1.2) Σ(x) = diag
(
− λ1(x), · · · ,−λk(x), λk+1(x), · · · , λn(x)

)
,

where

(1.3) − λ1(x) < · · · < −λk(x) < 0 < λk+1(x) < · · · < λk+m(x).

In what follows, we assume that

(1.4) λi is of class C
2 on [0, 1] for 1 ≤ i ≤ n (= k +m),

and denote
u− = (u1, · · · , uk)

T and u+ = (uk+1, · · · , uk+m)T.

We are interested in the following type of boundary conditions and boundary controls. The
boundary conditions at x = 0 are given by

(1.5) u−(t, 0) = Bu+(t, 0) for t ≥ 0,

for some (k ×m) real constant matrix B, and at x = 1

(1.6) u+(t, 1) is controlled for t ≥ 0.

Let us recall that the control system (1.1), (1.5), and (1.6) is null-controllable (resp. exactly
controllable) at time T > 0 if, for every initial datum u0 : (0, 1) → R

n in [L2(0, 1)]n (resp. for
every initial datum u0 : (0, 1) → R

n in [L2(0, 1)]n and for every (final) state uT : (0, 1) → R
n in

[L2(0, 1)]n), there is a control U : (0, T ) → R
m in [L2(0, T )]m such that the solution of (1.1), (1.5),

and (1.6) (with u+ = U) satisfying u(t = 0, x) = u0(x) vanishes (resp. reaches uT ) at the time T :
u(t = T, ·) = 0 (resp. u(t = T, ·) = uT ).

Throughout this paper, we consider broad solutions in L2 with respect to t and x for an initial
datum in [L2(0, 1)]n and a control in [L2(0, T )]m (see, for example, [37, Section 3]). In particular,
the solutions belong to C([0, T ]; [L2(0, 1)]n) and C([0, 1]; [L2(0, T )]n). The well-posedness for broad
solutions for system (1.1), (1.5), and (1.6) even when Σ and C depending also on t is standard.

Set

(1.7) τi :=

∫ 1

0

1

|λi(ξ)|
dξ for 1 ≤ i ≤ n.

The exact controllability, the null-controllability, and the boundary stabilization problem of
hyperbolic system in one dimensional space have been widely investigated in the literature for
almost half a century, see, e.g., [6] and the references therein. Concerning the exact controllability
and the null-controllability related to (1.1), (1.5) and (1.6), the pioneer works date back to the
ones of Rauch and Taylor [40] and Russell [42]. In particular, it was shown, see [42, Theorem 3.2],
that system (1.1), (1.5), and (1.6) is null-controllable for time τk+τk+1, and is exactly controllable
at the same time if k = m and B is invertible. The extension of this result for quasilinear systems
was initiated by Greenberg and Li [27] and Slemrod [43].
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A recent efficient way in the study of the stabilisation and the controllability of system (1.1),
(1.5), and (1.6) is via a backstepping approach. The backstepping approach for the control of
partial differential equations was pioneered by Miroslav Krstic and his coauthors (see [35] for
a concise introduction). The backstepping method is now frequently used for various control
problems, modeling by partial differential equations in one dimensional space. For example, it
has been used to stabilize the wave equations [34, 47, 44], the parabolic equations in [45, 46],
nonlinear parabolic equations [50], and to obtain the null-controllability of the heat equation [16].
The standard backstepping approach relies on the Volterra transform of the second kind. It is
worth noting that, in some situations, more general transformations have to be considered as
for Korteweg-de Vries equations [8], Kuramoto–Sivashinsky equations [15], Schrödinger’s equation
[12], and hyperbolic equations with internal controls [53].

The use of backstepping approach for the hyperbolic system in one dimensional space was first
proposed by Coron et al. [21] for 2 × 2 system (m = k = 1). Later, this approach has been
extended and now can be applied for general pairs (m,k), see [23, 31, 4, 13, 17, 20, 32].

Set

(1.8) Topt :=

{
max

{
τ1 + τm+1, . . . , τk + τm+k, τk+1

}
if m ≥ k,

max
{
τk+1−m + τk+1, τk+2−m + τk+2, . . . , τk + τk+m

}
if m < k.

Involving the backstepping technique, we established [17, 20] that the null-controllability holds at
Topt for generic B and C, and the null-controllability holds for any T > Topt under the condition
B ∈ B. Here

(1.9) B :=
{
B ∈ R

k×m; such that (1.10) holds for 1 ≤ i ≤ min{k,m− 1}
}
,

where

(1.10) the i× i matrix formed from the last i columns and the last i rows of B is invertible.

Roughly speaking, the condition B ∈ B allows us to implement l controls corresponding to the
fastest positive speeds to control l components corresponding to the lowest negative speeds 1. It
is clear that B ∈ B for almost every k × m matrix B. It is worthy noting that the condition
T > Topt is necessary, see [17, Assertion 2) of Theorem 1.1]. The optimality of Topt was established
under the additional condition (1.10) being valid with i = m when k ≥ m, see [17, Proposition
1.6]. Our results improved the time to reach the null-controllability obtained previously. Similar
conclusions hold for the exact controllability under the natural conditions m ≥ k and (1.10) for
1 ≤ i ≤ k (see [17, 20, 32]). When the system is homogeneous, i.e., C ≡ 0, we established that
the null-controllability can be achieved via a time-independent feedback even for the quasilinear
setting [18]. We also constructed Lyapunov functions which yield the null-controllability for such
a system at the optimal time Topt [19].

In this paper, we are interested in hyperbolic systems with time-dependent coefficients in one
dimensional space. More precisely, instead of (1.1), (1.5), and (1.6), we deal with

(1.11) ∂tu(t, x) = Σ(x)∂xu(t, x) + C(t, x)u(t, x) for (t, x) ∈ R+ × (0, 1),

and (1.5), and (1.6).
The first result of the paper reveals that the optimal time for the null-controllability of system

(1.11), (1.5), and (1.6) might be significantly larger than the one for the time-independent setting
even when Σ is constant and C is indefinitely differentiable. More precisely, we have

1The i direction (1 ≤ i ≤ n) is called positive (resp. negative) if Σii is positive (resp. negative).
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Theorem 1.1. Let k ≥ 1, m ≥ 2, and Σ be constant such that (1.3) holds. Assume that

(1.12) Bk,1 6= 0, Bk,ℓ 6= 0, Bk,j = 0 for 2 ≤ j ≤ m with j 6= ℓ,

for some 2 ≤ ℓ ≤ m. There exists C ∈ C∞([0,+∞)× [0, 1]) such that for all ε > 0, system (1.11),
(1.5), and (1.6) is not null-controllable at time

(1.13) T = τk + τk+1 − ε.

Remark 1.1. The definition of the null-controllability for system (1.11), (1.5), and (1.6) is similar
to the one corresponding to (1.1), (1.5), and (1.6).

Remark 1.2. There are infinitely many matrices B ∈ B satisfying (1.12).

In a recent work, Coron et al. [14] establish the null-controllability of (1.11), (1.5), and (1.6)
for time τk + τk+1 for all k × m matrices B. They also obtain stabilizing feedbacks and derive
similar results when Σ depends on t. Combining Theorem 1.1 and their results, one obtains the
optimality for the time τk + τk+1 when m ≥ 2 and k ≥ 1, and for a large class of B.

The proof of Theorem 1.1 is based on constructing counter-examples for the associated observ-
ability inequality. The construction is inspired by the one given in the proof of [17, Assertion 2)
of Theorem 1.1] but much more involved.

When the analyticity of C with respect to time is imposed, the situation changes dramatically.
To state our results in this direction, we first introduce some notations. For a non-empty interval
(a, b) of R and a Banach space X , we denote

H
(
(a, b);X

)
=
{
Φ : (a, b) → X ; Φ is analytic

}
.

When the space X is clear, we simply call a Φ ∈ H
(
(a, b);X

)
that Φ is analytic in (a, b). For

m ≥ k, set

(1.14) Be :=
{
B ∈ R

k×m; such that (1.10) holds for 1 ≤ i ≤ k
}
.

Denote

(1.15) T1 = τk + τk+1.

Our main results for the analytic setting are the following two theorems. The first one on the
null-controllability is:

Theorem 1.2. Let k ≥ m ≥ 1, and let B ∈ B be such that (1.10) holds for i = m. Assume that
C ∈ H

(
I; [L∞(0, 1)]n×n

)
for some open interval I containing [0, T1]. System (1.11), (1.5), and

(1.6) starting from time 0 is null-controllable at any time T > Topt.

The second one on the exact-controllability is:

Theorem 1.3. Let m ≥ k ≥ 1, and let B ∈ Be. Assume, for some open interval I containing
[Topt − T1, Topt], that C ∈ H

(
I; [L∞(0, 1)]n×n

)
System (1.11), (1.5), and (1.6) starting from time

0 is exact-controllable at any time T > Topt.

Except for the case where m = 1 for which T1 = Topt, Theorems 1.2 and 1.3 are new to our
knowledge. Theorems 1.1 to 1.3 reveal the crucial role of the analytic assumption of the coefficients
on the optimal controllability time. It is well-known that a linear control system modeled by
differential equations is controllable in some time T and is analytic, then it is controllable in
any time greater than the optimal time, which is 0, see, e.g., [10, Chapter 1] or [48, Chapter 3].
Theorems 1.2 and 1.3, which are complement to Theorem 1.1, can be thus viewed as an extension
of this well-known result for linear hyperbolic systems in one dimensional space.

A related context to Theorem 1.3 is the one of the wave equation. For the wave equation with
time varying, first and zero-order terms being analytic in time, it is known that the controllability
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holds under a sharp geometric control condition, introduced in [5] (see also [40]). This can be
obtained by combining the results in [5], on the propagation of singularities for the wave equation,
and the unique continuation principle for the wave equations with coefficients analytic in time using
Carleman’s estimates due to Tataru-Hörmander-Robbiano-Zuily [49, 30, 41] (see also [36] for a
discussion). Related results concerning the Schrödinger equation are due to Nalini Anantharaman,
Matthieu Léautaud, and Fabricio Macià [3].

We now say a few words on the proof of Theorems 1.2 and 1.3. Theorem 1.3 is derived from
Theorem 1.2 using our arguments in the proof of [20, Theorem 3]. The proof of Theorem 1.2 is
inspired from the analysis in [20], in which we established similar result for the time-independent
setting. The crucial part of the analysis is then to locate the essential, analytic nature of the system,
the smoothness is not sufficient as shown previously in Theorem 1.1. This is done by exploring
both the orignal system and its dual one. The proof also involves the theory of perturbations of
analytic compact operators, see, e.g., [33]. As a consequence of our analysis, we also obtain the
unique continuation principle for hyperbolic systems for the optimal time in the analytic setting
(see Proposition 3.3), which has its own interest. The strategy of the proof is described in more
details at the beginning of Section 3.

The paper is organized as follows. Theorems 1.1 to 1.3 are given in Sections 2 to 4, respectively.
In the appendix, we establish properties of hyperbolic systems used in Section 3. The situation
is non-standard in the sense that the domains considered are not rectangle and the boundary
conditions are involved. The analysis is delicate and has its own interest.

2. Analysis in the smooth setting - Proof of Theorem 1.1

The starting point of the proof of Theorem 1.1 is the equivalence between the null-controllability
of system (1.11), (1.5), and (1.6) and its corresponding observability inequality. To this end, we
first introduce some notations and recall this property.

Fix T > 0 and define
FT : [L2(0, T )]m → [L2(0, 1)]n

FT (U) 7→ u(T, ·),

where u is the unique solution of system (1.11), (1.5), and (1.6) with u+(·, 1) = U and with
u(0, ·) = 0. Denote

Σ− = diag(−λ1, · · · ,−λk) and Σ+ = diag(λk+1, · · · , λk+m).

As usual, we have

Lemma 2.1. Let T > 0. We have, for ϕ ∈ [L2(0, 1)]n,

F∗
T (ϕ) = Σ+(1)v+(·, 1) in (0, T ),

where v is the unique solution of the system

(2.1) ∂tv(t, x) = Σ(x)∂xv(t, x) +
(
Σ′(x)− CT(t, x)

)
v(t, x) for (t, x) ∈ (0, T ) × (0, 1),

with, for 0 < t < T ,

(2.2) v−(t, 1) = 0,

(2.3) Σ+(0)v+(t, 0) = −BTΣ−(0)v−(t, 0),

and

(2.4) v(t = T, ·) = ϕ in (0, 1).
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The proof of Lemma 2.1 is standard and omitted, see, e.g., [20, the proof of Lemma 1] for a
closely related context.

From Lemma 2.1, one derives the following characterization of the null-controllability of system
(1.11), (1.5), and (1.6) in time T , whose proof is standard and omitted, see, e.g., [10, Section 2.3].

Lemma 2.2. Let T > 0. System (1.11), (1.5), and (1.6) starting at time 0 is null-controllable in
time T if and only if there exists a positive constant CT such that

‖v+(·, 1)‖L2(0,T ) ≥ CT ‖v(0, ·)‖L2(0,1),

for all solutions v of system (2.1), (2.2), and (2.3).

We are ready to give

Proof of Theorem 1.1. In what follows, we will assume that

T ≥ max
{
Topt, τk + τk+ℓ

}
,

where Topt is defined by (1.8); hence ε is assumed to be sufficiently small (note that τk + τk+1 >
max

{
Topt, τk + τk+ℓ

}
since 2 ≤ ℓ ≤ m). We will consider the coefficient C(t, x) satisfying the

following structure:

(2.5) Ci,j(t, x) =





−α(t, x) if (i, j) = (k, k + ℓ),

−β(t, x) if (i, j) = (k + 1, k + ℓ),

0 otherwise,

where α and β are two smooth functions defined later.
Since Σ is constant and C satisfies (2.5), system (2.1) is equivalent to, for (t, x) ∈ (0, T )× (0, 1),

(2.6) ∂tvj(t, x) = Σj,j∂xvj(t, x) if 1 ≤ j ≤ n with j 6= k + ℓ,

and

(2.7) ∂tvk+ℓ(t, x) = λk+ℓ∂xvk+ℓ(t, x) + α(t, x)vk(t, x) + β(t, x)vk+1(t, x)

(Σj,j = −λj if 1 ≤ j ≤ k and Σj,j = λj otherwise).
Under appropriate choices of α and β determined later, we will construct a smooth solution v

of system (2.6) and (2.7) for which, for t ∈ (0, T ),

(2.8) v−(t, 1) = 0,

(2.9) Σ+(0)v+(t, 0) = −BTΣ−(0)v−(t, 0),

and v satisfies the following additional conditions:

(2.10) v+(·, 1) = 0 and v(0, ·) 6≡ 0.

By Lemma 2.2, the conclusion of Theorem 1.1 follows from this construction.

We now construct α and β. To this end, we first derive their constrains. From (2.7), we have,
for τk+ℓ ≤ t+ τk+ℓ ≤ T and 0 ≤ s ≤ 1,

d

ds

(
vk+ℓ(t+ τk+ℓs, 1− s)

)
= τk+ℓα(t+ τk+ℓs, 1− s)vk(t+ τk+ℓs, 1− s)

+ τk+ℓβ(t+ τk+ℓs, 1− s)vk+1(t+ τk+ℓs, 1− s).
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This implies, for τk+ℓ ≤ t+ τk+ℓ ≤ T ,

(2.11) vk+ℓ(t+ τk+ℓ, 0) =

∫ 1

0
τk+ℓα(t+ τk+ℓs, 1− s)vk(t+ τk+ℓs, 1− s) ds

+

∫ 1

0
τk+ℓβ(t+ τk+ℓs, 1− s)vk+1(t+ τk+ℓs, 1− s) ds+ vk+ℓ(t, 1).

It follows that, if vk+ℓ(t, 1) = 0 for τk+ℓ ≤ t+ τk+ℓ ≤ T , then

(2.12) vk+ℓ(t+ τk+ℓ, 0) =

∫ 1

0
τk+ℓα(t+ τk+ℓs, 1− s)vk(t+ τk+ℓs, 1− s) ds

+

∫ 1

0
τk+ℓβ(t+ τk+ℓs, 1− s)vk+1(t+ τk+ℓs, 1− s) ds

for τk+ℓ ≤ t+ τk+ℓ ≤ T .
We will assume that, for t ∈ (0, T ),

(2.13) τk+ℓα(t+ τk+ℓs, 1− s) = α̃(t+ τk+ℓ) for s ∈ [0, 1],

and

(2.14) τk+ℓβ(t+ τk+ℓs, 1− s) = β̃(t+ τk+ℓ) for s ∈ [0, 1],

for some functions α̃ and β̃ constructed later; this implies that the LHS of (2.13) and (2.14) are

constant with respect to s ∈ [0, 1]. Given α̃ and β̃ defined in R, one can verify that (2.13) and
(2.14) hold if

(2.15) α(t, x) = τ−1
k+ℓα̃(t+ τk+ℓx) and β(t, x) = τ−1

k+ℓβ̃(t+ τk+ℓx).

Under conditions (2.13) and (2.14), by replacing first s by 1− s and then t+ τk+ℓ by t, identity
(2.12) can be then written as, for t ∈ (τk+ℓ, T ),

(2.16) vk+ℓ(t, 0) = α̃(t)

∫ 1

0
vk(−τk+ℓs+ t, s) ds + β̃(t)

∫ 1

0
vk+1(−τk+ℓs+ t, s) ds.

We write (2.9) as

(2.17) v+(t, 0) = −Σ−1
+ BTΣ−v−(t, 0).

In what follows, we consider the solution v satisfying

(2.18) v1(T, ·) = · · · = vk−1(T, ·) = vk+1(T, ·) = · · · = vk+m(T, ·) = 0,

and

(2.19) vk(T, x) = 0 for 0 ≤ x ≤
T − τk+1

τk
< 1 since T < τk + τk+1.

From the system of v (2.6), (2.7), (2.8), and (2.9), the solution v is then uniquely determined by

vk(T, x) for
T−τk+1

τk
< x ≤ 1.

Since, for t ∈ (0, T ),

v1(t, 1) = · · · = vk−1(t, 1) = 0 (by (2.8))

and, for (t, x) ∈ (0, T ) × (0, 1),

∂tvj(t, x) = −λj∂xvj(t, x) for 1 ≤ j ≤ k − 1 (by (2.7)),

it follows from (2.18) that, for t ∈ (0, T ),

v1(t, 0) = · · · = vk−1(t, 0) = 0.
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We then derive from (1.12) and (2.17) that, for t ∈ (0, T ),

(2.20) vk+1(t, 0) = γk+1vk(t, 0) and vk+ℓ(t, 0) = γk+ℓvk(t, 0),

where

(2.21) γk+1 := λ−1
k+1λkBk,1

(1.12)

6= 0 and γk+ℓ := λ−1
k+ℓλkBk,ℓ

(1.12)

6= 0.

Since

∂tvk(t, x)
(2.6)
= −λk∂xvk(t, x),

vk(t, 1) = 0 for t ∈ (0, T ) by (2.8), and T ≥ τk + τk+l, one has, for t ∈ (τk+ℓ, τk+1),
∫ 1

0
vk(−τk+ℓs+ t, s) ds =

∫ γk(t)

0
vk(−τk+ℓs+ t, s) ds

(see Figure 1 for the definition of γk(t)). This implies, by (2.6) applied with i = k, for t ∈
(τk+ℓ, τk+1),

(2.22)

∫ 1

0
vk(−τk+ℓs+ t, s)ds = θk

∫ t

τk+ℓ

vk(s, 0) ds,

where

(2.23) θk =
γk(t)

t− τk+ℓ


=

1√
1 + τ2k+ℓ

√
1 + τ2k+ℓ

τk + τk+ℓ
=

1

τk + τk+ℓ


 : independent of t.

Similarly, since

∂tvk+1(t, x)
(2.6)
= λk+1∂xvk+1(t, x),

vk+1(t, 1) = 0 for t ∈ (0, T )

thanks to vk(t, 0)
(2.6),(2.19)

= 0 for t ∈ (τk+1, T ) and (2.20), and vk+1(T, ·)
(2.18)
= 0, we obtain, for

t ∈ (τk+ℓ, τk+1),
∫ 1

0
vk+1(−τk+ℓs+ t, s) ds =

∫ γk+1(t)

0
vk+1(−τk+ℓs+ t, s) ds

(see Figure 1 for the definition of γk+1(t)).
This implies, by (2.6) applied with i = k + 1, for t ∈ (τk+ℓ, τk+1),

(2.24)

∫ 1

0
vk+1(−τk+ℓs+ t, s) ds = θk+1

∫ τk+1

t
vk+1(s, 0) ds,

where

(2.25) θk+1 =
γk+1(t)

τk+1 − t


=

1√
1 + τ2k+ℓ

√
1 + τ2k+ℓ

τk+1 − τk+ℓ
=

1

τk+1 − τk+ℓ


 : independent of t.

Using (2.22) and (2.24), we derive from (2.16) that

vk+ℓ(t, 0) = α̃(t)θk

∫ t

τk+ℓ

vk(s, 0) ds + β̃(t)θk+1

∫ τk+1

t
vk+1(s, 0) ds for t ∈ (τk+ℓ, τk+1).

This implies, by (2.20),

(2.26) vk+ℓ(t, 0) = α̂(t)

∫ t

τk+ℓ

vk+ℓ(s, 0) ds + β̂(t)

∫ τk+1

t
vk+ℓ(s, 0) ds for t ∈ (τk+ℓ, τk+1),
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T

τk+ℓ

τk+1

t

t− τk+ℓ

t

x

τk+ℓ + τk

γk(t) γk+1(t)0 1

Figure 1. On the definition of γk and γk+1 for t ∈ (τk+ℓ, τk+1): γk(t) is the abscise
of the intersection of the line passing (0, t) and (1, t − τk+ℓ), and the line passing
(0, τk+ℓ) and (1, τk+ℓ + τk); γk+1(t) is the abscise of the intersection of the line
passing (0, t) and (1, t− τk+ℓ), and the line passing (0, τk+1) and (1, 0).

where

(2.27) α̂ = γ−1
k+ℓθkα̃ and β̂ = γk+1γ

−1
k+ℓθk+1β̃.

Since

τk + τk+1 − ε
(1.13)
= T,

it follows that, at least if ε > 0 is small enough so that T > τk+ℓ,

I := (τk+ℓ, τk+1) ∩ (T − τk, T ) 6= ∅.

Fix ϕ ∈ C∞
c (R) such that

(2.28) suppϕ ⊂ I and

∫

I
ϕ = 1.

Set

(2.29) vk+ℓ(t, 0) = ϕ(t) for t ∈ (τk+ℓ, τk+1) and α̂(t) = β̂(t) = ϕ(t) for t ∈ R.

One can check that (2.26) holds for this choice. From (2.20), we have

(2.30) vk(t, 0) = γ−1
k+ℓϕ(t) and vk+1(t, 0) = γk+1γ

−1
k+ℓϕ(t) for t ∈ (τk+ℓ, τk+1).

We have just presented arguments for a choice of α and β, and a choice of v(T, ·) so that (2.8),
(2.9), and (2.10) hold. We now proceed in the opposite direction to rigorously establish this.

Consider α and β defined by, for (t, x) ∈ (0, T )× (0, 1),

(2.31) α(t, x) = λk+ℓγk+ℓθ
−1
k ϕ(t+ τk+ℓx)

and

(2.32) β(t, x) = λk+ℓγ
−1
k+1γk+ℓθ

−1
k+1ϕ(t+ τk+ℓx),

as suggested by (2.15), (2.27), and (2.29), where ϕ is determined as above.
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Let v(T, ·) ∈ C∞
c (0, 1) be such that (2.18) holds and vk(T, ·) is chosen such that

vk(t, 0) = γ−1
k+ℓϕ(t) for t ∈ (T − τk, T ),

as suggested by (2.19) and (2.30). This implies, by (2.6) applied with i = k and the fact vk(t, 1) = 0
for t ∈ (0, T ) (see (2.2)),

(2.33) vk(t, 0) = γ−1
k+ℓϕ(t) for t ∈ (0, T )

since suppϕ ⊂ I ⊂ (T − τk, T ). One can check that (2.20) holds by the same arguments used to
derive it as before. One can also check that (2.26) holds by (2.28). Using (2.20), one then obtains
(2.16) for t ∈ (τk+ℓ, τk+1), which implies (2.12) for t ∈ (0, τk+1 − τk+ℓ). From (2.12) being valid for
t ∈ (0, τk+1 − τk+ℓ), and (2.7) (see also (2.11)), we derive that

(2.34) vk+ℓ(t, 1) = 0 for t ∈ (0, τk+1 − τk+ℓ).

Since α̂ = β̂ = 0 for t ∈ (τk+1, T ), which implies α̃ = β̃ = 0 for t ∈ (τk+1, T ), it follows from
(2.11) (see also (2.16)) that

(2.35) vk+ℓ(t+ τk+ℓ, 0) = vk+ℓ(t, 1) for t ∈ (τk+1 − τk+ℓ, T − τk+ℓ).

This implies, by (2.20) and (2.33),

(2.36) vk+ℓ(t, 1) = 0 for t ∈ (τk+1 − τk+ℓ, T − τk+ℓ).

Similarly, since vk+ℓ(T, ·) = 0, we derive from (2.31) and (2.32) 2 that

(2.37) vk+ℓ(t, 1) = 0 for t ∈ (T − τk+ℓ, T ).

Combining (2.34), (2.36), and (2.37) yields

(2.38) vk+ℓ(t, 1) = 0 for t ∈ (0, T ).

From the choice of v(T, ·) in (2.18), the property of v given in (2.6), and the fact v−(t, 1) = 0
for t ∈ (0, T ), we have, for 1 ≤ j ≤ k − 1,

vj(t, 0) = 0 for t ∈ [0, T ].

Since Bk,j = 0 for 2 ≤ j ≤ m with j 6= ℓ by (1.12), it follows from (2.17) that, for k+2 ≤ j ≤ k+m
with j 6= k + ℓ,

(2.39) vj(t, 0) = 0 for t ∈ [0, T ].

We derive from (2.6), the choice of v(T, ·) in (2.18), and (2.39) that, for k + 2 ≤ j ≤ k +m with
j 6= k + ℓ,

(2.40) vj(t, 1) = 0 for t ∈ [0, T ].

From (2.33) (see also (2.19)), we obtain that vk(t, 0) = 0 for t ∈ (τk+1, T ). This implies, by (2.17)
and (2.39) (see also (2.20)),

vk+1(t, 0) = 0 for t ∈ (τk+1, T ).

We derive that, by using (2.6) and (2.18),

(2.41) vk+1(t, 1) = 0 for t ∈ [0, T ].

We have, by (2.20) and (2.33),

vk+1(t, 0) = γk+1γ
−1
k+ℓϕ(t) for t ∈ (0, T ).

This implies, by (2.6),

vk+1(0, x) = γk+1γ
−1
k+ℓϕ(τk+1x) for x ∈ [0, 1].

2Since ϕ(t) = 0 for t > τk+1, (2.31) and (2.32) imply that α = β = 0 in the region of (t, x) which is below the
characteristic flow of vk+l passing (0, T ) in the xt-plane.
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We thus arrive, since suppϕ ⊂ (0, τk+1),

(2.42) v(0, ·) 6≡ 0.

From (2.38), (2.40), (2.41) and (2.42), we reach

v+(·, 1) = 0 and v(0, ·) 6≡ 0.

The proof is complete. �

3. Null-controllability in the analytic setting - Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. The proof is divided into three steps
described below:

• Step 1: for each τ , we characterize the space H(τ) (⊂ [L2(0, 1)]n), which is of finite dimension,
for which one can steer any element in H(τ)⊥ 3 at time τ to 0 in time Topt. (In particular, from
this definition of H(τ), one cannot steer any element in H(τ) \ {0} at time τ to 0 in time Topt.)
Moreover, we show that H(·) is analytic in a neighborhood I1 of [0, T1 −Topt] except for a discrete
subset, which is removable 4.

• Step 2: For each τ ∈ I1, we characterize the subspace J(τ) of H(τ) for which one can steer
every element ϕ in J(τ) from time τ to 0 in time Topt,+, i.e., in time Topt + δ for all δ > 0. Let
M(τ) be the orthogonal complement of J(τ) in H(τ). We also show that there exists a constant
ε0 such that, roughly speaking, the following property holds: if τ ∈ I1 and ϕ ∈ M(τ) \ {0}, then
one cannot steer ϕ from time τ to 0 in time Topt + ε0.

• Step 3: We give the proof of Theorem 1.2 using Steps 1 and 2.

Let us make some comments on these three steps before proceeding them. Concerning Step
1, the fact that H(τ) is of finite dimension already appeared in our previous analysis [20]. Some
necessary conditions on H(τ) are derived in [20] and the starting point of the analysis there is the
backstepping technique. In this paper, the (complete) characterization of H(τ) is given and it plays
a crucial role in our proof of Theorem 1.2. This characterization can be obtained by first applying
the backstepping technique (and then by using similar ideas given here). However, this way requires
a quite strong assumption on the analyticity of C in the step of using backstepping technique (see
Remark 3.4). To avoid it, we implement a new approach applied directly to the original system.
The analysis is though strongly inspired/guided by our understanding in the form obtained via the
backstepping. A part of technical points in this step is to establish the well-posedness of hyperbolic
equations with unusual boundary conditions (the boundary condition of a component can be given
both on the left at x = 0 for some interval of time and on the right at x = 1 for some other interval
of time), and in a domain which is not necessary to be a rectangle in xt plane. The analysis is
interesting but delicate, and presented in the appendix. After characterizing H(·), the analyticity of
H(·) is established by suitably applying the theory of perturbations of analytic compact operators,
see, e.g., [33]. These results are given in Proposition 3.1 in Section 3.1. Concerning Steps 1 and
2, the characterizations of all states for which one can steer from time τ to 0 in time Topt or in

time Topt,+ can be done for C ∈
[
L∞(I × (0, 1))

]n×n
. The analyticity of C is not required for this

purpose. It is in the proof of the existence of ε0, given in Step 2, that the analyticity of C plays a
crucial role. The analysis of Step 3 is also based on a technical lemma (Lemma 3.5). The approach
proposed in this paper is quite robust and might be applied to other contexts.

3Here and in what follows, for a closed subspace E of [L2(0, 1)]n, we denote ProfE the projection to E, and E⊥

its orthogonal complement, both with respect to the standard L2(0, 1)-scalar product.
4The analyticity of H(τ ) is understood via the analyticity of the mapping ProfH(τ). This convention is used

throughout the paper.
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The rest of this section containing four subsections is organized as follows. In the first section,
we introduce notations and present preliminary results related to observability inequalities, which
are the starting point of our analysis. Steps 1, 2, and 3 are then given in the second, the third,
and the fourth subsection, respectively.

3.1. Preliminaries. Fix τ ∈ I and T > 0 such that [τ, τ + T ] ⊂ I. Define

Fτ,T : [L2(τ, τ + T )]m → [L2(0, 1)]n

U 7→ u(τ + T, ·),

where u is the unique solution of the system

(3.1) ∂tu(t, x) = Σ(x)∂xu(t, x) + C(t, x)u(t, x) for (t, x) ∈ (τ, τ + T )× (0, 1),

(3.2) u−(t, 0) = Bu+(t, 0) for t ∈ (τ, τ + T ),

(3.3) u+(t, 1) = U(t) for t ∈ (τ, τ + T ),

(3.4) u(t = τ, ·) = 0 in (0, 1).

Set, for (t, x) ∈ I × (0, 1),

(3.5) C(t, x) = Σ′(x)− CT(t, x).

The following result provides the formula for the adjoint F∗
τ,T of Fτ,T .

Lemma 3.1. We have, for ϕ ∈ [L2(0, 1)]n,

F∗
τ,T (ϕ) = Σ+(1)v+(·, 1) in (τ, τ + T ),

where v is the unique solution of the system

(3.6) ∂tv(t, x) = Σ(x)∂xv(t, x) +C(t, x)v(t, x) for (t, x) ∈ (τ, τ + T )× (0, 1),

with, for 0 < t < T ,

(3.7) v−(t, 1) = 0,

(3.8) Σ+(0)v+(t, 0) = −BTΣ−(0)v−(t, 0),

and

(3.9) v(t = τ + T, ·) = ϕ in (0, 1).

The proof of Lemma 3.1 is quite standard and similar to the one of [20, Lemma 1]. The details
are omitted.

Using the same method, we also obtain the following two results, see, e.g., the proof of [20,
Lemma 2] for the analysis.

Lemma 3.2. Assume that u is a solution of (3.1)-(3.3) such that u+(·, 1) = 0 in (τ, τ +T ). Then,
for ϕ ∈ [L2(0, 1)]n, we have 5

∫ 1

0
〈u(τ + T, x), v(τ + T, x)〉 dx =

∫ 1

0
〈u(τ, x), v(τ, x)〉 dx,

where v is a solution of (3.6)-(3.9).

5The notation 〈·, ·〉 stands for the Euclidean scalar product in R
ℓ for ℓ ≥ 1.
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Lemma 3.3. Assume that u is a solution of (3.1)-(3.3). Then
∫ 1

0
〈u(τ + T, x), v(τ + T, x)〉 dx =

∫ 1

0
〈u(τ, x), v(τ, x)〉 dx,

where v is a solution of (3.6)-(3.8) satisfying v+(·, 1) = 0.

Applying the Hilbert uniqueness method, see e.g. [10, Chapter 2] and [39], we have

Lemma 3.4. Let E be a closed subspace of [L2(0, 1)]n. System (3.1)-(3.3) is null controllable at
the time τ + T for initial datum at time τ in E if and only if, for some positive constant Cτ,T ,

(3.10)

∫ τ+T

τ
|v+(t, 1)|

2 dt ≥ Cτ,T

∫ 1

0
|ProjEv(τ, x)|

2 dx ∀ϕ ∈ [L2(0, 1)]n,

where v is the solution of (3.6)-(3.9).

3.2. Characterization of states at time τ steered to 0 in time Topt. In what follows in
this section, we assume that I = (α, β) is an open bounded interval containing [0, T1] and set
I1 = (α, β − Topt).

We first characterize states which can be steered at time τ to 0 in time Topt. The following
proposition is the key result of this section and is the starting point of our analysis in the analytic
setting.

Proposition 3.1. Let k ≥ m ≥ 1 and let B ∈ B be such that (1.10) holds for i = m. Assume

that C ∈
[
L∞
(
I × (0, 1)

)]n×n
. There exist a compact operator K(τ) : [L2(0, 1)]n → [L2(0, 1)]n and

a continuous linear operator L(τ) : [L2(0, 1)]n → [L2(0, Topt − τk−m+1)]
m defined for τ ∈ I1 such

that they are uniformly bounded in I1 and, with

(3.11) H(τ) :=
{
ϕ ∈ [L2(0, 1)]n;ϕ+K(τ)ϕ = 0 and L(τ)ϕ = 0

}
,

the following two facts, concerning system (3.1)-(3.3), hold

i) one can steer ϕ ∈ H(τ)⊥ at time τ to 0 at time τ + Topt.
ii) one cannot steer any element ϕ in H(τ) \ {0} at time τ to 0 at time τ + Topt.

Assume in addition that C ∈ H(I, [L∞(0, 1)]n×n). Then K and L are analytic in I1.

We also obtain an explicit characterization of the space H(τ) in Proposition 3.1 via the dual
system. In fact, the characterization of H(τ) in (3.11) is proved using such a characterization. For
the later use in the proof of Theorem 1.2, we state it in a slightly more general form:

Lemma 3.5. Let k ≥ m ≥ 1 and let B ∈ B be such that (1.10) holds for i = m. Let ϕ ∈ [L2(0, 1)]n,
τ ∈ I, and T ≥ Topt be such that τ + T ∈ I. There exists a subspace H(τ, T ) of H(τ) such that
the following two facts, concerning system (3.1)-(3.3), hold

i) one can steer ϕ ∈ H(τ, T )⊥ at time τ to 0 at time τ + T .
ii) one cannot steer any element ϕ in H(τ, T ) \ {0} at time τ to 0 at time τ + T .

Moreover, ϕ ∈ H(τ, T ) if and only if there exists a solution v of the system

(3.12) ∂tv(t, x) = Σ(x)∂xv(t, x) +C(t, x)v(t, x) for (t, x) ∈ (τ, τ + T )× (0, 1),

with, for τ < t < τ + T ,

(3.13) v−(t, 1) = 0,

(3.14) Σ+(0)v+(t, 0) = −BTΣ−(0)v−(t, 0),

(3.15) v+(t, 1) = 0,



14 J.-M. CORON AND H.-M. NGUYEN

t

x

Topt

0 1

wk−m+1

Topt − τk−m+1

Ω

w+ = g

w = f

t

x

Topt

0

k −m+ 2 ≤ j ≤ k

1

Ω

wj

wk−m+1

Topt − τk−m+1

wj

Topt − τj

Figure 2. Geometry of the setting considered in the proof of Proposition 3.1
when Σ is constant. The boundary conditions imposed at x = 0 for wj with
k −m+ 2 ≤ j ≤ k are given on the left, and the boundary conditions imposed at
x = 1 and t = 0 are given on the right.

and

(3.16) v(τ, ·) = ϕ.

Remark 3.1. Assume that the assumptions in Theorem 1.3 hold. Let τ ∈ I and T > Topt.
Assume that τ + T1 ∈ I. We later prove that H(τ, T ) = {0} (see Proposition 3.3) which is the
unique continuation principle corresponding to (3.12)-(3.15).

As a consequence of Proposition 3.1 and the theory of analytic compact operators, see, e.g.,
[33], we can prove

Lemma 3.6. Assume that C ∈ H(I, [L∞(0, 1)]n×n). Then H(τ) is analytic in I1 except for a
discrete set, which is removable 6.

The proofs of Proposition 3.1, Lemmas 3.5 and 3.6 are given in the next three subsections,
respectively.

Before entering the details of the proof, we introduce some notations on the characteristic flows
which are used several times later. Extend λi in R with 1 ≤ i ≤ k + m by λi(0) for x < 0 and
λi(1) for x > 1. For (s, ξ) ∈ [0,+∞)× [0, 1], define xi(t, s, ξ) for t ∈ R by

(3.17)
d

dt
xi(t, s, ξ) = λi

(
xi(t, s, ξ)

)
and xi(s, s, ξ) = ξ if 1 ≤ i ≤ k,

and

(3.18)
d

dt
xi(t, s, ξ) = −λi

(
xi(t, s, ξ)

)
and xi(s, s, ξ) = ξ if k + 1 ≤ i ≤ k +m.

3.2.1. Proof of Proposition 3.1. Fix τ ∈ I1. Let v be a solution of the system

(3.19) ∂tv(t, x) = Σ(x)∂xv(t, x) +C(t+ τ, x)v(t, x) for (t, x) ∈ (0, Topt)× (0, 1),

6The analyticity of H(τ ) means the analyticity of ProjH(·).
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with, for 0 < t < Topt,

(3.20) v−(t, 1) = 0,

(3.21) Σ+(0)v+(t, 0) = −BTΣ−(0)v−(t, 0),

such that

(3.22) v+(t, 1) = 0 for t ∈ (0, Topt).

Recall that C is defined in (3.5).
The proof is now divided into two steps:

• Step 1: We give a characterization of v(0, ·) where v is a solution of (3.19)-(3.21) satisfying
(3.22).

• Step 2: We establish assertions i) and ii).

Step 1 is the key part of the proof. The operators K(τ) and L(τ) will be introduced in Step 1.
The proof of Step 2 is quite standard after Step 1 and the results in Section 3.1.

We now proceed with Steps 1 and 2.

• Step 1: For 1 ≤ i ≤ k ≤ j ≤ k +m, we denote, for a vector v ∈ R
k+m,

v−,≥i = (vi, · · · , vk)

and
v<i,≥j = (v1, . . . , vi−1, vj , · · · , vk+m).

Using condition (1.10) with i = 1, one can write the last equation of (3.21) in an equivalent
form:

(3.23) v−,≥k(t, 0) = Qkv<k,≥k+m(t, 0),

for some 1× k matrix Qk.
Using condition (1.10) with i = 2, one can write the last two equations of (3.21) in an equivalent

form:

(3.24) v−,≥k−1(t, 0) = Qk−1v<k−1,≥k+m−1(t, 0),

for some 2× k matrix Qk−1.
. . .
Using condition (1.10) with i = m− 1, one can write the last (m− 1) equations of (3.21) in an

equivalent form:

(3.25) v−,≥k−m+2(t, 0) = Qk−m+2v<k−m+2,≥k+2(t, 0),

for some (m− 1)× k matrix Qk−m+2.
Using condition (1.10) with i = m, one can write the last m equations of (3.21) in an equivalent

form:

(3.26) v−,≥k−m+1(t, 0) = Qk−m+1v<k−m+1,≥k+1(t, 0),

for some m× k matrix Qk−m+1.
Let Ω be the region of points (t, x) ∈ (0,+∞) × (0, 1) such that in the xt-plane they are below

the characteristic flow of vk−m+1 passing the point (1, Topt), see Figure 2.
Given f ∈ [L2(0, Topt)]

n and g ∈ [L2(0, 1)]m, we consider the system

(3.27) wt(t, x) = Σ(x)∂xw(t, x) +C(t+ τ, x)w(t, x) for (t, x) ∈ Ω,

(3.28) w(·, 1) = f in (0, Topt),

(3.29) w+(0, ·) = g in (0, 1),
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(3.30) w−,≥k(t, 0) = Qkw<k,≥k+m(t, 0) for t ∈ (Topt − τk, Topt − τk−1),

(3.31) w−,≥k−1(t, 0) = Qk−1w<k−1,≥k+m−1(t, 0) for t ∈ (Topt − τk−1, Topt − τk−2),

. . .

(3.32) w−,≥k−m+2(t, 0) = Qk−m+2w<k−m+2,≥k+2(t, 0) for t ∈ (Topt − τk−m+2, Topt − τk−m+1),

(see Figure 2).
For τ ∈ I1, define

(3.33)
T (τ) : [L2(0, 1)]n × [L2(0, 1)]m → [L2(Ω)]n

(f, g) 7→ w,

where w is the (broad) solution of (3.27)-(3.32) (see Definition A.1 for the definition of broad
solutions and Theorem A.1 for their existence and uniqueness, both in the appendix).

We claim that
(3.34)

v is a solution of (3.19)-(3.21) satisfying (3.22) if and only if v(0, ·) ∈ H(τ) defined in (3.11),

where K(τ) and L(τ) are determined below.

We now introduce K and L. Set w = T (τ)
(
0, v+(0, ·)

)
. By noting that v = w,

• DK) the operator K(τ) is determined/summarized (the details are given below) by

DKm) the m equations of system (3.21) imposed for w in (0, τk+m),
DKm−1) the first m− 1 equations of system (3.21) imposed for w in (τk+m, τk+m−1),

. . .
DK1) the first equation of system (3.21) imposed for w in (τk+2, τk+1),(

these above conditions are on v+(0, ·)
)
, and

DK−) v−(0, ·) = w−(0, ·).

• DL) L(τ) is defined by (3.21) in (0, Topt − τk−m+1).

Let us explain how to define the operators K(τ) and L(τ) from these conditions. To this end,
we first introduce some notations. For x ∈ [0, 1] and 1 ≤ j ≤ k +m, let τ(j, x) ∈ [0,+∞) be such
that

xj
(
τ(j, x), 0, x

)
= 0 for k + 1 ≤ j ≤ k +m,

and

xj
(
τ(j, x), 0, x

)
= 1 for 1 ≤ j ≤ k

(see Figure 3). Recall that xj(t, s, ξ) is defined in (3.17) and (3.18).
We now consider K(τ) and first deal with the conditions DKm), . . . , DK1). The condition

DKm) can be understood as follows. We have, for 1 ≤ j ≤ m,

d

dt
wk+j

(
t, xk+j(t, 0, x)

)
=
(
C
(
t+ τ, xk+j(t, 0, x)

)
w
(
t, xk+j(t, 0, x)

))
k+j

.

Integrating from 0 to τ(k + j, x) yields, for 1 ≤ j ≤ m and for x ∈
(
0, xk+j(0, τk+m, 0

)
,

wk+j(0, x) = wk+j

(
τ(k + j, x), 0

)
−

∫ τ(k+j,x)

0

(
C
(
t+ τ, xk+j(t, 0, x)

)
w
(
t, xk+j(t, 0, x)

))
k+j

dt.
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τℓ

x

τ(ℓ, x)

1

t

0

b)

τi

xj(·, 0, 1)

τj

xj(0, τi, 0)

1

t

0 x

τ(i, x)

xi(·, 0, 1)

a)

Figure 3. Σ is constant; a) the definition of xi(·, 0, 1), xj(·, 0, 1), xj(0, τi, 0), and
τj(x) for k + 1 ≤ j < i ≤ k + m; b) the definition of xℓ(·, 0, 0) and τ(ℓ, x) for
1 ≤ ℓ ≤ k.

Using the m equations of system (3.21), one has, for 1 ≤ j ≤ m and for x ∈
(
0, xk+j(0, τk+m, 0)

)
,

(3.35) wk+j(0, x) = −
(
Σ+(0)

−1BTΣ−(0)w−(τ(k + j, x), 0)
)
j

−

∫ τ(k+j,x)

0

(
C
(
t+ τ, xk+j(t, 0, x)

)
w
(
t, xk+j(t, 0, x)

))
k+j

dt.

Similarly, the condition DKm−1) can be written as, for 1 ≤ j ≤ m− 1 and for
x ∈

(
xk+j(0, τk+m, 0), xk+j(0, τk+m−1, 0)

)
,

(3.36) wk+j(0, x) = −
(
Σ+(0)

−1BTΣ−(0)w−(τ(k + j, x), 0)
)
j

−

∫ τ(k+j,x)

0

(
C
(
t+ τ, xk+j(t, 0, x)

)
w
(
t, xk+j(t, 0, x)

))
k+j

dt,

. . . , and the condition DK1) can be written as, for x ∈
(
xk+1(0, τk+2, 0), xk+1(0, τk+1, 0)

)
=(

xk+1(0, τk+2, 0), 1
)
,

(3.37) wk+1(0, x) = −
(
Σ+(0)

−1BTΣ−(0)w−(τ(k + 1, x), 0)
)

1

−

∫ τ(k+1,x)

0

(
C
(
t+ τ, xk+1(t, 0, x)

)
w
(
t, xk+1(t, 0, x)

))
k+1

dt.

We now deal with the condition DK−). We have, for 1 ≤ j ≤ k,

d

dt
wj

(
t, xj(t, 0, x)

)
=
(
C
(
t+ τ, xj(t, 0, x)

)
wj

(
t, xj(t, 0, x)

))
j
.

Integrating from 0 to τ(j, x) yields, for 1 ≤ j ≤ k and for x ∈ (0, 1),

wj(0, x) = wj

(
τ(j, x), 1

)
−

∫ τ(j,x)

0

(
C
(
t+ τ, xj(t, 0, x)

)
w
(
t, xj(t, 0, x)

))
j
dt.
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Since f = 0, it follows that, for 1 ≤ j ≤ k and x ∈ (0, 1),

(3.38) wj(0, x) = −

∫ τ(j,x)

0

(
C
(
t+ τ, xj(t, 0, x)

)
w
(
t, xj(t, 0, x)

))
j
dt.

The operator K(τ) is then defined via (3.35)-(3.38), with v+(0, ·) = ϕ+ and w = T
(
τ, 0, v+(0, ·)

)

as follows:
- for 1 ≤ j ≤ m and x ∈ (0, 1),

(3.39)
(
K(τ)(ϕ)(x)

)
k+j

=
(
Σ+(0)

−1BTΣ−(0)w−(τ(k + j, x), 0)
)
j

+

∫ τ(k+j,x)

0

(
C
(
t+ τ, xk+j(t, 0, x)

)
w
(
t, xk+j(t, 0, x)

))
k+j

dt.

- for 1 ≤ j ≤ k and x ∈ (0, 1),

(3.40)
(
K(τ)(ϕ)(x)

)
j
=

∫ τ(j,x)

0

(
C
(
t+ τ, xj(t, 0, x)

)
w
(
t, xj(t, 0, x)

))
j
dt.

Using Proposition A.1 in the appendix, one can derive that K(τ) is uniformly bounded in I1
and is analytic in I1 if C ∈ H(I, [L∞(0, 1)]n×n).

The definition and the properties of L(τ) follow from DL), with v+(0, ·) = ϕ+ and w =
T
(
τ, 0, v+(0, ·)

)
as follows:

L(τ)(ϕ) = Σ+(0)w+(t, 0) +BTΣ−(0)w−(t, 0) in (0, Topt − τk−m+1).

It is clear that H(τ) ⊂
{
ϕ ∈ [L2(0, 1)]n;ϕ + K(τ)ϕ = 0 and L(ϕ) = 0

}
. It remains to prove

that

(3.41)
{
ϕ ∈ [L2(0, 1)]n;ϕ+K(τ)ϕ = 0 and L(τ)ϕ = 0

}
⊂ H(τ).

To this end, we introduce another operator T̂ related to T . Consider the system, for (f, g) ∈
[L2(0, 1)]n × [L2(0, 1)]m,

(3.42) ∂tŵ(t, x) = Σ(x)∂xŵ(t, x) +C(t+ τ, x)ŵ(t, x) for (t, x) ∈ (0, Topt)× (0, 1),

(3.43) ŵ(·, 1) = f in (0, Topt),

(3.44) ŵ+(0, x) = g(x) in (0, 1),

(3.45) ŵi(Topt, ·) = 0 in (0, 1), for 1 ≤ i ≤ k −m,

(3.46) ŵ−,≥k(t, 0) = Qkŵ<k,≥k+m(t, 0) for t ∈ (Topt − τk, Topt − τk−1),

(3.47) ŵ−,≥k−1(t, 0) = Qk−1ŵ<k−1,≥k+m−1(t, 0) for t ∈ (Topt − τk−1, Topt − τk−2),

. . .

(3.48) ŵ−,≥k−m+2(t, 0) = Qk−m+2ŵ<k−m+2,≥k+2(t, 0) for t ∈ (Topt − τk−m+2, Topt − τk−m+1),

(3.49) ŵ−,≥k−m+1(t, 0) = Qk−m+1ŵ<k−m+1,≥k+1(t, 0) for t ∈ (Topt − τk−m+1, Topt)

(it is at this stage that the condition (1.10) with i = m is required!).
For τ ∈ I1, define

(3.50)
T̂ (τ) : [L2(0, 1)]n × [L2(0, 1)]m → [L2

(
(0, Topt)× (0, 1)

)
]n

(f, g) 7→ ŵ,
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where ŵ is the unique broad solution of (3.42)-(3.49) (see Theorem A.2 in the appendix for the
existence and uniqueness of broad solutions; the definition of broad solutions is similar to Defini-
tion A.1).

It is clear that

(3.51) T (τ)(0, g) is the restriction of T̂ (τ)(0, g) in Ω for g ∈ [L2(0, 1)]m.

Fix

(3.52) ϕ0 ∈
{
ϕ ∈ [L2(0, 1)]n;ϕ+K(τ)ϕ = 0 and L(τ)ϕ = 0

}
.

Denote

w = T (τ)(0, ϕ0,+) and ŵ = T̂ (τ)(0, ϕ0,+).

Then, by (3.51),

(3.53) ŵ = w in Ω.

Since ϕ+K(τ)(ϕ) = 0 (see also the condition DK−)), we have

w(0, ·) = ϕ0 in (0, 1).

Since L(τ)(ϕ) = 0, we obtain

(3.54) Σ+(0)ŵ+(t, 0) = −BTΣ−(0)ŵ−(t, 0) for t ∈ (0, Topt − τk−m+1).

On the other hand, by the definition of T̂ (in particular, condition (3.49)), one has,

(3.55) Σ+(0)ŵ+(t, 0) = −BTΣ−(0)ŵ−(t, 0) for t ∈ (Topt − τk−m+1, Topt).

Combining (3.54) and (3.55) yields

(3.56) Σ+(0)ŵ+(t, 0) = −BTΣ−(0)ŵ−(t, 0) for t ∈ (0, Topt).

Thus ŵ is a solution of (3.19)-(3.21) satisfying (3.22) with ŵ(0, ·) = w(0, ·) = ϕ0.

• Step 2: We derive i) and ii). We begin with assertion ii). Let ϕ ∈ H(τ) \ {0} be arbitrary. By
Step 1, there exists a solution v of (3.19)-(3.21) such that

(3.57) v+(·, 1) = 0 in (0, Topt) and v(0, ·) = ϕ in (0, 1).

Set

v(τ)(t, x) = v(t− τ, x) for (t, x) ∈ (τ, τ + Topt).

Let w be a solution of (3.1) - (3.3) 7 with T = Topt, in which u is replaced by w, with w(τ, ·) =

v(τ)(τ, ·) = ϕ. By Lemma 3.3, we have
∫ 1

0
〈w(Topt + τ, x), v(τ)(Topt + τ, x)〉 dx =

∫ 1

0
〈w(τ, x), v(τ)(τ, x)〉 dx =

∫ 1

0
|ϕ|2 6= 0.

Therefore, one cannot steer ϕ from time τ to 0 at time τ + Topt.
We next establish assertion i) by a contradiction argument. Assume that this is not true. By

Lemma 3.4 with E = H(τ)⊥, there exists a sequence of solutions (vN ) of (3.19)-(3.21) such that

(3.58) lim
N→+∞

‖vN,+(·, 1)‖L2(0,Topt) = 0 and ‖ProjH(τ)⊥vN (0, ·)‖L2(0,1) = 1.

Set

ϕN = ProfH(τ)vN (0, ·) ∈ H(τ) ⊂ [L2(0, 1)]n.

Define

wN = T
(
τ)(0, ϕN,+

)
in Ω and ŵN = T̂

(
τ)(0, ϕN,+

)
in (0, Topt)× (0, 1).

7Condition(3.3) means that w+(t, 1) ∈ [L2(τ, τ + T )]m.
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Since ϕN ∈ H(τ), it follows from the definition of K(τ) that

wN (0, ·) = ϕN in (0, 1).

We derive from (3.51) that

ŵN (0, ·) = ϕN in (0, 1).

Replacing vN by vN − ŵN if necessary, without loss of generality, one can assume in addition that
vN (0, ·) ∈ H(τ)⊥, which yields in particular that ‖vN (0, ·)‖L2(0,1) = ‖ProjH(τ)⊥vN (0, ·)‖L2(0,1) = 1.
This will be assumed from now on.

Consider fN ∈ [L2(0, Topt)]
n defined by

fN = vN (·, 1).

Since vN,−(·, 1) = 0 in (0, Topt) and limN→+∞ ‖vN,+(·, 1)‖L2(0,Topt) = 0, it follows that

(3.59) lim
N→+∞

fN = 0 in [L2(0, Topt)]
n.

Set, in Ω,

uN = T (τ)(fN , vN,+(0, ·)).

Then

(3.60) uN = vN in Ω.

Since vN (0, ·) + K(τ)vN (0, ·) = 0, ‖vN (0, ·)‖L2(0,1) = 1, and K(τ) is compact, it follows that, for

some subsequence, vNk
(0, ·) → ϕ in [L2(0, 1)]n and hence ϕ ∈ H(τ)⊥ by (3.59) and the continuity

of T (τ) (see Proposition A.1 in the appendix). Set u = T (τ)(0, ϕ+). Since, by (3.60),

Σ+(0)uN,+(t, 0) = −BTΣ−(0)uN,+(t, 0) for t ∈ (0, Topt),

and

vN (0, ·) = T (τ)(fN , vN,+(0, ·)) in (0, 1),

we derive from (3.59), (3.60) and the continuity of T (τ) (see Proposition A.1 in the appendix)
that

Σ+(0)u+(t, 0) = −BTΣ−(0)u+(t, 0) for t ∈ (0, Topt),

and

ϕ(x) = T (τ)(0, ϕ+)(0, x) for x ∈ (0, 1).

This implies that ϕ ∈ H(τ). It follows that ϕ = 0 since ϕ ∈ H(τ)⊥. We deduce that

0 = ‖ProjH(τ)⊥ϕ‖ = lim
k→+∞

‖ProjH(τ)⊥vNk
(0, ·)‖ = 1.

We have a contradiction. Assertion i) is proved.

The proof is complete. �

3.2.2. Proof of Lemma 3.5. The proof of Lemma 3.5 follows from the one of Proposition 3.1 by
replacing Topt by T . One just notes here that H(τ, T ) is the set of v(0, ·) where v is a solution of
(3.19)-(3.21) satisfying (3.22) with Topt replaced by T . The details of the proof are omitted.
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3.2.3. Proof of Lemma 3.6. Set, for τ ∈ I1,

(3.61) E(τ) =
{
ϕ ∈ [L2(0, 1)]n;ϕ+K(τ)ϕ = 0

}
,

and

(3.62) let P (τ) be the generalized eigenspace of K(τ) with respect to the eigenvalue −1.

From (3.11), we have, for τ ∈ I1,

(3.63) H(τ) = E(τ) ∩
{
ϕ ∈ [L2(0, 1)]n;L(τ)ϕ = 0

}
.

Applying the theory of the perturbation of analytic compact operators, see e.g. [33], one derives
that

(3.64) P (τ) is analytic in I1 except for a discrete subset, which is removable.

Indeed, since K(τ) is compact, it follows that the eigenvalue −1 of K(τ) is isolated for each τ ∈ I1.
From [33, Section 3 of Chapter 7] (see also [33, Section 3 of Chapter 2]), for each τ there is a
γ > 0 (γ depends on τ) such that the sum of the eigenprojections for all the eigenvalues of K(τ)
lying inside {z ∈ C : |z + 1| < γ} is analytic. We now can apply the theory of the perturbation
of analytic operators in a finite dimensional space, see [33, Chapter 2], involving the theory of
algebraic functions, see e.g. [1, Section 2 of Chapter 8], to derive (3.64).

We have

E(τ)
(3.61)
=
{
ϕ ∈ [L2(0, 1)]n;ϕ+K(τ)ϕ = 0

}
(3.62)
=
{
ϕ ∈ P (τ);ϕ +K(τ)ϕ = 0

}
.

It follows that

(3.65) H(τ) =
{
ϕ ∈ P (τ);ϕ +K(τ)ϕ = 0 and L(τ)ϕ = 0

}
.

We now can use the theory of the perturbation of the null-space of analytic matrices. Applying
[26, Theorem S6.1 on page 388-389] and using (3.64), we derive that 8

(3.66) H(τ) is analytic in I1 except for a discrete subset, which is removable.

The proof is complete. �

3.3. Characterization of states at time τ steered to 0 in time Topt,+. Fix γ0 > 0 such that
[0, T1] ⊂ (α+ γ0, β − γ0). Set

(3.67) I2 = (α+ γ0, β − γ0 − Topt).

Given 0 < ε < γ0 and τ ∈ I2, consider the system, for V ∈ [L2(0, ε)]m,

(3.68)





∂tv(t, x) = Σ(x)∂xv(t, x) +C(t+ τ, x)v(t, x) for (t, x) ∈ (0, ε) × (0, 1),

v−(t, 0) = Bv+(t, 0) for t ∈ (0, ε),

v+(t, 1) = V (t) for t ∈ (0, ε),

v(0, ·) = 0 in [0, 1].

8One way to apply the theory of the perturbation of the null-space of analytic matrices can be done as follows.

One can first locally choose an analytic orthogonal basis
{

ϕ1(τ ), · · · , ϕℓ(τ )
}

of P (τ ). We then represent the operator

Id + K(τ ) (where Id denotes the identity map) in this basis after noting that it is an application from P (τ ) into

P (τ ). We also represent L(τ ) using the set
{

L(τ )(ϕ1(τ )), . . . ,L(τ )(ϕℓ(τ ))
}

for which the dimension of the span

space is constant outside a discrete set, which is removable.
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Define 9

T c
τ,ε : [L2(0, ε)]m → [L2(0, 1)]n

V 7→ v(ε, ·),

where v is the solution of (3.68). Consider two subsets Yτ,ε and Aτ,ε
10 of [L2(0, 1)]n defined by

(3.69) Yτ,ε = T c
τ,ε

{
[L2(0, ε)]m

}
and Aτ,ε = ProjH(τ+ε)

{
Yτ,ε

}
.

Given 0 < ε < γ0 and τ ∈ I2, we also define 11

T I
τ,ε : [L2(0, 1)]n → [L2(0, 1)]n

ϕ 7→ w(ε, ·),

where w is the solution of

(3.70)





∂tw(t, x) = Σ(x)∂xw(t, x) + C(t+ τ, x)w(t, x) for (t, x) ∈ (0, ε) × (0, 1),

w−(t, 0) = Bw+(t, 0) for t ∈ (0, ε),

w+(t, 1) = 0 for t ∈ (0, ε),

w(0, ·) = ϕ in [0, 1].

Set, for 0 < ε < γ0 and for τ ∈ I2,

(3.71) J(τ, ε) :=
{
ϕ ∈ H(τ); ProjH(τ+ε)T

I
τ,ε(ϕ) ∈ Aτ,ε

}
.

The motivation for the definition of T c
τ,ε and T I

τ,ε is:

Lemma 3.7. Let 0 < ε < γ0 and τ ∈ I2. Then J(τ, ε) is the space of (functions) states in H(τ)
such that one can steer them from time τ to 0 at time τ + Topt + ε. As a consequence, for τ ∈ I2,

(3.72) J(τ, ε′) ⊂ J(τ, ε) for 0 < ε′ < ε < γ0,

and the limit J(τ) of J(τ, ε) as ε → 0+ exists.

Remark 3.2. The monotone property of J(τ, ε) with respect to ε given in (3.72) will play a role
in our analysis.

Remark 3.3. The analyticity of C in I is not required in Lemma 3.7.

Proof of Lemma 3.7. Given ϕ ∈ J(τ, ε), by the definition of J(τ, ε), there exists V̂ ∈ [L2(0, ε)]m

such that

ProjH(τ+ε)ŵ(ε, ·) = 0,

where ŵ defined in (0, ε) × (0, 1) is the solution of the system

(3.73)





∂tŵ(t, x) = Σ(x)∂xŵ(t, x) + C(t+ τ, x)ŵ(t, x) for (t, x) ∈ (0, ε) × (0, 1),

ŵ−(t, 0) = Bŵ+(t, 0) for t ∈ (0, ε),

ŵ+(t, 1) = V̂ for t ∈ (0, ε),

ŵ(0, ·) = ϕ in [0, 1].

It follows that, by the characterization of H(τ + ε), there exists Ṽ ∈ [L2(ε, Topt + ε)]m such that

w̃(Topt + ε, ·) = 0 in (0, 1),

9The sub-index c means that controls are used.
10The letter A means the attainability.
11The sub-index I means that initial data are considered.
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where w̃ defined in (ε, Topt + ε)× (0, 1) is the solution of the system

(3.74)





∂tw̃(t, x) = Σ(x)∂xw̃(t, x) + C(t+ τ, x)w̃(t, x) for (t, x) ∈ (ε, Topt + ε)× (0, 1),

w̃−(t, 0) = Bw̃+(t, 0) for t ∈ (ε, Topt + ε),

w̃+(t, 1) = Ṽ for t ∈ (ε, Topt + ε),

w̃(ε, ·) = ŵ(ε, ·) in [0, 1].

Let w be defined in (0, Topt + ε)× (0, 1) by ŵ in (0, ε)× (0, 1) and by w̃ in (ε, Topt + ε)× (0, 1).
Set

w(t, x) = w(t− τ, x) in (τ, τ + Topt + ε)× (0, 1).

Then w is a solution starting from ϕ at time τ and arriving at 0 at time τ + Topt + ε, i.e.,

(3.75)





∂tw(t, x) = Σ(x)∂xw(t, x) + C(t, x)w(t, x) for (t, x) ∈ (τ, τ + Topt + ε)× (0, 1),

w−(t, 0) = Bw+(t, 0) for t ∈ (τ, τ + Topt + ε),

w(τ, ·) = ϕ and w(τ + Topt + ε, ·) = 0 in [0, 1].

We have thus proved that one can steer ϕ ∈ J(τ, ε) at time τ to 0 at time τ + Topt + ε.
Conversely, let ϕ ∈ H(τ) be such that one can steer ϕ at time τ to 0 at time τ +Topt+ ε using a

control W ∈ [L2(τ, τ+Topt+ε)]m. Letw be the corresponding solution, and set w(t, x) = w(t+τ, x)
in (0, Topt + ε) × (0, 1). Since w(τ + ε, ·) is steered from time τ + ε to 0 at time τ + Topt + ε, it
follows from the characterization of H(τ + ε) that

ProjH(τ+ε)w(τ + ε, ·) = 0.

In other words,
ProjH(τ+ε)w(ε, ·) = 0.

This yields that ϕ ∈ J(τ, ε).

We thus proved that J(τ, ε) is the space of (functions) states in H(τ) such that one can steer
them from time τ to 0 at time τ + Topt + ε. The other conclusions of Lemma 3.7 are direct
consequences of this fact and the details of the proof are omitted. �

Concerning Aτ,ε, we have

Lemma 3.8. Let 0 < ε < γ0. Assume that C is analytic in I. We have

Aτ,ε is analytic in I2 except for a discret set, which is removable.

Recall that Aτ,ε is defined in (3.69).

Proof. Denote
l = max

τ∈I2
H is continuous at τ+ε

dimAτ,ε < +∞.

Fix τ0 ∈ I2 such that dimAτ0,ε = l and fix ξ1, · · · , ξl ∈ [L2(0, ε)]m such that
{
ProjH(τ0+ε)T

c
τ0,ε(ξj); 1 ≤ j ≤ l

}
is an orthogonal basis of Aτ0,ε.

Since, for fixed ε, T c
·,ε is analytic in I2 and H(· + ε) is analytic in I2 except for a discrete subset

which is removable, it follows that

(3.76) dim span
{
ProjH(τ+ε)T

c
τ,ε(ξj); 1 ≤ j ≤ l

}
= l in I2 except for a discrete subset.

This in turn implies, by the property of l,

(3.77) A(τ, ε) = span
{
ProjH(τ+ε)T

c
τ,ε(ξj); 1 ≤ j ≤ l

}
in I2 except for a discrete subset.
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Combining (3.76) and (3.77) yields the conclusion. �

Let

(3.78) M(τ) be the orthogonal complement of J(τ) in H(τ).

It is clear that for each τ ∈ I1, there exists some ετ > 0 such that one cannot steer any ϕ ∈
M(τ) \ {0} at time τ to 0 at time τ + Topt + ετ . The constant ετ can be chosen independently
of ϕ ∈ M(τ) \ {0}, for example, one can take ετ so that J(τ, ε) = J(τ) for 0 ≤ ε ≤ ετ/2. The
analyticity of C is not required for this purpose. Nevertheless, when the analyticity of C in I is
imposed, one can obtain a uniform lower bound for ετ for τ ∈ I2 in a sense which will be precise
now. The uniform lower bound of ετ will play a crucial role in our proof of Theorem 1.2. To
establish this property, for 0 < ε < γ0 and τ ∈ I2, we first write J(τ, ε) under the form

(3.79) J(τ, ε) =
{
ϕ ∈ H(τ); ProjAτ,ε

ProjH(τ+ε)T
I
τ,ε(ϕ) − ProjH(τ+ε)T

I
τ,ε(ϕ) = 0

}
.

Since the operator

ProjA·,ε
ProjH(·+ε)T

I
·,ε − ProjH(·+ε)T

I
·,ε is analytic in I2,

except for a discret subset, which is removable,

one has, as in the proof of Lemma 3.6,

J(·, ε) is analytic in I2 except for a discret set, which is removable.

We derive that for each n ∈ N with 1/n < γ0, there exists a discrete subset Dn of I2 such that

J(τ, 1/n) is analytic in I2 except for a discrete set Dn, which is removable 12.

As a consequence, one has

(3.80) dim J(·, 1/n) is constant in I2 \Dn.

Set

(3.81) D =
⋃

n∈N;1/n<γ0

Dn

and fix τ0 ∈ I2 \D. There exists 0 < ε0 < γ0 such that

J(ε, τ0) = J(τ0) for 0 < ε < ε0.

It follows from Lemma 3.7 and (3.80) that, for 0 < ε < ε0 and τ, τ ′ ∈ I2 \D, one has

(3.82) J(τ, ε) = J(τ) and dim J(τ) = dimJ(τ ′).

We thus proved

Lemma 3.9. There exists a discrete set D 13 and 0 < ε0 < γ0 such that

dimM(τ) = dimM(τ ′) for τ, τ ′ ∈ I2 \D,

and one cannot steer any v ∈ M(τ) \ {0} from time τ to 0 at time τ + Topt + ε0 for τ ∈ I2 \D.

We now summarize the results which have been derived in this section:

Proposition 3.2. There exist an orthogonal decomposition of H(τ) via H(τ) = J(τ)⊗M(τ) for
τ ∈ I1, a discrete subset D of I2, and a constant ε0 > 0 such that the following four properties
hold:

12Replacing γ0 by γ0/2 if necessary, one can even assume that Dn is finite.
13The set mentioned here is the union of the set D given in (3.81) and the set of τ ∈ I2 such that dimH(τ ) is

constant, which is discrete. For notational ease, we still use the same notation D.
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i) For ϕ ∈ J(τ), one can steer v at time τ to 0 at time τ + Topt + δ for all δ > 0.
ii) For ϕ ∈ M(τ)\{0}, there exists ετ > 0 such that one cannot steer ϕ at time τ to 0 at time

τ + Topt + δ for 0 < δ < ετ .
iii)

dimM(τ) = dimM(τ ′) for τ, τ ′ ∈ I2 \D,

iv) For τ ∈ I2 \D, and ϕ ∈ M(τ)\{0}, one cannot steer ϕ at time τ to 0 at time τ +Topt+ε0.

Proposition 3.2 also gives the characterization of states which can be steered at time τ to 0 at
time τ + Topt + δ for all δ > 0. Indeed, one has, for τ ∈ I1,

• For v ∈ H(τ) ∪ J(τ), one can steer v at time τ to 0 at time τ + Topt + δ for all δ > 0.
• For v ∈ M(τ) \ {0}, there exists ετ > 0 such that one cannot steer v at time τ to 0 at time
τ + Topt + δ for 0 < δ < ετ .

3.4. Null-controllability in time Topt,+ - Proof of Theorem 1.2. We first assume that 0 6∈ D.
We will prove that M(0) = {0} by contradiction, and the conclusion follows from Proposition 3.2.
Assume that there exists ϕ ∈ M(0) \ {0}. Since M(0) ⊂ H(0, Topt + ε0) by assertion iv) of

Proposition 3.2, it follows from Lemma 3.5 that there exists a solution v(0) of the system

(3.83) ∂tv
(0)(t, x) = Σ(x)∂xv

(0)(t, x) +C(t, x)v(0)(t, x) for (t, x) ∈ (0, Topt + ε0)× (0, 1),

with, for t ∈ (0, Topt + ε0),

(3.84) v(0)(t, 1) = 0,

(3.85) Σ+(0)v
(0)
+ (t, 0) = −BTΣ−(0)v

(0)
− (t, 0),

(3.86) v(0)(t = 0, ·) = ϕ in (0, 1).

Fix t1 ∈ (ε0/3, ε0/2) \D (recall that D is discrete). By Lemma 3.5, one has

v(0)(t1, ·) ∈ H(t1, Topt + ε0 − t1).

This in turn implies that, since H(t1, Topt + ε0 − t1) = M(t1) = H(t1, Topt + ε0) by assertion iv) of
Proposition 3.2,

v(0)(t1, ·) ∈ H(t1, Topt + ε0).

By Lemma 3.5 again, there exists a solution v(1) of the system

(3.87) ∂tv
(1)(t, x) = Σ(x)∂xv

(1)(t, x) +C(t, x)v(1)(t, x) for (t, x) ∈ (t1, t1 + Topt + ε0)× (0, 1),

with, for t ∈ (t1, t1 + Topt + ε0),

(3.88) v(1)(t, 1) = 0,

(3.89) Σ+(0)v
(1)
+ (t, 0) = −BTΣ−(0)v

(1)
− (t, 0),

(3.90) v(1)(t = t1, ·) = v(0)(t1, ·) in (0, 1).

Consider the solution v of system (3.6)-(3.8) for the time interval (0, t1 + Topt + ε0) with v(t1 +

Topt + ε0, ·) = v(1)(t1 + Topt + ε0, ·) (backward system). One can check that

v(t, ·) = v(1)(t, ·) for t ∈ (t1, t1 + Topt + ε0)

and, since v(1)(t1, ·) = v(0)(t1, ·),

v(t, ·) = v(0)(t, ·) for t ∈ (0, t1).
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For notational ease, we will denote this v by v(1). We thus proved that there exists a solution
v(1) of (3.6)-(3.8) such that

v(1)(·, 1) = 0 in (0, t1 + Topt + ε0),

and

v(1)(0, ·) = ϕ in (0, 1).

Continuing this process, there exist 0 = t0 < t1 < · · · < tN−1 ≤ T1 − Topt < tN < β − Topt and

a family of v(ℓ) with 1 ≤ ℓ ≤ N such that tℓ ∈ I \D,

(3.91) ∂tv
(ℓ)(t, x) = Σ(x)∂xv

(ℓ)(t, x) +C(t, x)v(ℓ)(t, x) for (t, x) ∈ (0, tℓ + Topt + ε0)× (0, 1),

with, for t ∈ (0, tℓ + Topt + ε0),

(3.92) v(ℓ)(t, 1) = 0,

(3.93) Σ+(0)v
(ℓ)
+ (t, 0) = −BTΣ−(0)v

(ℓ)
− (t, 0),

(3.94) v(ℓ)(t = 0, ·) = ϕ(·) in (0, 1),

and

ε0/3 ≤ tℓ − tℓ−1 ≤ ε0/2.

This implies, by Lemma 3.5, that one cannot steer ϕ from time 0 to 0 at time T1. We have a
contradiction since the system is null-controllable at the time T1. The conclusion follows in the
case 0 ∈ I2 \D.

The proof in the general case can be derived from the previous case by noting that, using the
same arguments, one has

M(τ0) = {0} for τ0 ∈ I2 \D and τ0 is close to 0.

The details are omitted.

The proof is complete. �

The proof of Theorem 1.2 also yields the following unique continuation principle:

Proposition 3.3. Let k ≥ m ≥ 1 and let B ∈ B be such that (1.10) holds for i = m. Assume that
C1 ∈ H(I, [L∞(0, 1)]n×n). Let τ ∈ I and T > Topt. Assume that τ + T1 ∈ I. Let v be a solution of
system

(3.95) ∂tv(t, x) = Σ(x)∂xv(t, x) + C1(t, x)v(t, x) for (t, x) ∈ (τ, τ + T )× (0, 1),

with, for τ < t < τ + T ,

(3.96) v−(t, 1) = 0,

(3.97) Σ+(0)v+(t, 0) = −BTΣ−(0)v−(t, 0),

(3.98) v+(t, 1) = 0.

Then v = 0.

Recall that T1 = τk + τk+1, see (1.15).

Proof. The conclusion of (3.3) follows from the proof of Theorem 1.1 applied to C(t, x) defined by
Σ′(x)− C(t, x)T = C1(t, x). �
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The unique continuation result stated in Proposition 3.3 can be seen as a variant of the unique
continuation principle for the wave equations whose first and zero-order terms are analytic in
time due to Tataru-Hörmander-Robbiano-Zuily. Our strategy was mentioned at the beginning of
Section 3. We do not know if such a unique continuation principle can be proved using Carleman’s
estimate as in the wave setting. It is worth noting that if this is possible then the analyticity of
C1 in time must be taken into account by Theorem 1.1. More importantly the conditions B ∈ B
and (1.10) holding for i = m have to be essentially used in the proof process since it is known
that the unique continuation does not hold without this assumption even in the case C1 ≡ 0.
The advantage of Carleman’s estimate might be that the analyticity of C1 is only required for a
neighborhood of [0, Topt] instead of [0, T1].

Remark 3.4. It is natural to compare the direct approach here with the one involving the back-
stepping technique. In the time-invariant setting, both approaches yield the same result since
(1.10) with i = m is not imposed to establish the compactness of K(τ) (see Step 1 of the proof
of Proposition 3.1). Nevertheless, (equivalent) control-forms obtained from the backstepping ap-
proach are easier to handle/understand. The analysis in this paper is strongly inspired/guided
by such control-forms. In the time-varying setting, one might derive the same conclusion under
the assumption that C is analytic in R and its holomorphic extension in {z ∈ C; |ℑ(z)| < γ} is
bounded for some γ > 0. This quite strong assumption on the analyticity of C comes from the
construction of the kernel in the step of using backstepping and might not be necessary.

4. Exact controllability in the analytic setting - Proof of Theorem 1.3

Theorem 1.3 can be derived from Theorem 1.2, as in the proof of [20, Theorem 3]. For the
convenience of the reader, we reproduce the proof.

We first consider the case m = k. Let T > Topt be such that T ∈ I. Set

w̃(t, x) = w(T − t, x) for t ∈ (0, T ), x ∈ (0, 1).

Then
w̃−(t, 0) = B̃−1w̃+(t, 0),

with w̃−(t, ·) = (w2k, . . . , wk+1)
T(T − t, ·), and w̃+(t, ·) = (wk, . . . , w1)

T(T − t, ·), and B̃ij = Bpq

with p = k− i and q = k−j. Note that the i× i matrix formed from the first i columns and rows of

B̃ is invertible. Using the Gaussian elimination method, one can find (k × k) matrices T1, . . . , TN

such that
TN . . . T1B̃ = U,

where U is a (k × k) upper triangular matrix, and Ti (1 ≤ i ≤ N) is the matrix given by the
operation which replaces a row p by itself plus a multiple of a row q for some 1 ≤ q < p ≤ N . It
follows that

B̃−1 = U−1TN . . . T1.

One can check that U−1 is an invertible, upper triangular matrix, and TN . . . T1 is an invertible,
lower triangular matrix. It follows that the i× i matrix formed from the last i columns and rows of

B̃−1 is the product of the matrix formed from the last i columns and rows of U−1 and the matrix

formed from the last i columns and rows of TN . . . T1. Therefore, B̃−1 ∈ B. One can also check
that the exact controllability of the system for w(·, ·) at the time T from time 0 is equivalent to
the null-controllability of the system for w̃(·, ·) at the same time from time 0. The conclusion of
Theorem 1.3 now follows from Theorem 1.2 by noting that C(·−T, ·) is analytic in a neighborhood
of [0, T1].

The case m > k can be obtained from the case m = k as follows. Consider ŵ(·, ·) the solution
of the system

∂tŵ(t, x) = Σ̂(x)∂xŵ(t, x) + Ĉ(t, x)ŵ(t, x),
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ŵ−(t, 0) = B̂ŵ+(t, 0), and ŵ+(t, 1) are controls.

Here

Σ̂ = diag(−λ̂1, . . . ,−λ̂m, λ̂m+1, . . . λ̂2m),

with λ̂j = −(1 + m − k − j)ε−1 for 1 ≤ j ≤ m − k with positive small ε, λ̂j = λj−(m−k) if

m− k + 1 ≤ j ≤ m, and λ̂j+m = λj+k for 1 ≤ j ≤ m,

Ĉ(t, x) =

(
0m−k,m−k 0m−k,n

0n,m−k C(t, x)

)
,

and

B̂ =

(
Im−k 0m−k,m

0m−k,m B

)
,

where Iℓ denotes the identity matrix of size ℓ × ℓ for ℓ ≥ 1. Here 0i,j denotes the zero matrix of
size i × j for i, j, ℓ ≥ 1. Then the exact controllability of w at the time T from time 0 can be
derived from the exact controllability of ŵ at the same time from time 0. One then can deduce
the conclusion of Theorem 1.3 from the case m = k using Theorem 1.2 by noting that the optimal
time for the system of ŵ converges to the optimal time for the system of w as ε → 0+. �

Appendix A. Hyperbolic systems in non-rectangle domains

In this section, we give the meaning of broad solutions used to define T (τ) and T̂ (τ) and
study their well-posedness. We also establish the boundedness and the analyticity of T (τ) under
appropriate assumptions. The key point of the analysis is to find suitable weighted norms in order
to apply the fixed point arguments. This matter is subtle (see Remark A.3). In this section,
we assume that k ≥ m ≥ 1 although the arguments are quite robust and also work for the case
m > k ≥ 1 under appropriate modifications.

Let F ∈ [L∞(Ω)]n×n, (f, g) ∈ [L2(0, Topt)]
n × [L2(0, 1)]m, and γ ∈ [L2(Ω)]n. We first deal with

the following system, which is slightly more general than the system (3.27)-(3.32):

(A.1) ∂tw(t, x) = Σ(x)∂xw(t, x) + F (t, x)w(t, x) + γ(t, x) for (t, x) ∈ Ω,

(A.2) w(·, 1) = f in (0, Topt),

(A.3) w+(0, ·) = g in (0, 1),

(A.4) w−,≥k(t, 0) = Qkw<k,≥k+m(t, 0) for t ∈ (Topt − τk, Topt − τk−1),

(A.5) w−,≥k−1(t, 0) = Qk−1w<k−1,≥k+m−1(t, 0) for t ∈ (Topt − τk−1, Topt − τk−2),

. . .

(A.6) w−,≥k−m+2(t, 0) = Qk−m+2w<k−m+2,≥k+2(t, 0) for t ∈ (Topt − τk−m+2, Topt − τk−m+1).

Given a subset O of R2 and a point (t, x) ∈ R2, we denote

Ot =
{
y ∈ R; (t, y) ∈ O

}
and Ox =

{
s ∈ R; (s, x) ∈ O

}
.

We next give the definition of the broad solutions of system (A.1)-(A.6).
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Definition A.1. Let F ∈ [L∞(Ω)]n×n, (f, g) ∈ [L2(0, Topt)]
n × [L2(0, 1)]m, and γ ∈ [L2(Ω)]n. A

vector-valued function w ∈ Y :=
[
L2(Ω)

]n
∩C

(
[0, Topt]; [L

2(Ωt)]
n
)
∩C

(
[0, 1]; [L2(Ωx)]

n
)

14 is called
a broad solution of (A.1)-(A.6) if for almost (t1, ξ1) ∈ Ω, the following conditions hold

1. for 1 ≤ j ≤ k −m+ 1,

(A.7) wj(t1, ξ1) =

∫ t1

t

(
F
(
s, xj(s, t1, ξ1)

)
w(s, xj(s, t1, ξ1))

)

j
ds+

∫ t1

t
γj
(
s, xj(s, t1, ξ1)

)
ds+fj(t),

where t is such that xj(t, t1, ξ1) = 1;
2. for k −m+ 2 ≤ j ≤ k,

(A.8) wj(t1, ξ1) =

∫ t1

t

(
F
(
s, xj(s, t1, ξ1)

)
w(s, xj(s, t1, ξ1))

)
j
ds+

∫ t1

t
γj
(
s, xj(s, t1, ξ1)

)
ds+fj(t),

if t ∈ (0, Topt) where t is such that xj(t, t1, ξ1) = 1, otherwise,

(A.9) wj(t1, ξ1) =

∫ t1

t̂

(
F
(
s, xj(s, t1, ξ1)

)
w(s, xj(s, t1, ξ1))

)
j
ds

+

∫ t1

t̂
γj
(
s, xj(s, t1, ξ1)

)
ds+

(
Qlw<l,≥l+m(t̂, 0)

)
j−l+1

,

if t̂ ∈ (Topt − τl, Topt − τl−1) where t̂ is such that xj(t̂, t1, ξ1) = 0.
3. for k + 1 ≤ j ≤ k +m,

(A.10)

wj(t1, ξ1) =

∫ t1

t

(
F
(
s, xj(s, t1, ξ1)

)
w(s, xj(s, t1, ξ1))

)
j
ds+

∫ t1

t
γj
(
s, xj(s, t1, ξ1)

)
ds+ fj(t),

if t ∈ (0, Topt) where t is such that xj(t, t1, ξ1) = 1, otherwise
(A.11)

wj(t1, ξ1) =

∫ t1

0

(
F
(
s, xj(s, t1, ξ1)

)
w(s, xj(s, t1, ξ1))

)
j
ds+

∫ t1

0
γj
(
s, xj(s, t1, ξ1)

)
ds+ gj−k(η),

where η ∈ (0, 1) is such that xj(0, t1, ξ1) = η.

Recall that the characteristic flow xj with 1 ≤ j ≤ k +m is defined in (3.17) and (3.18).

In this definition, the term Qlw<l,≥l+m(t̂, 0) in (A.9) is required to be replaced by the corre-

sponding expression in the RHS of (A.7), or (A.8), or (A.10), or (A.11) with (t̂, 0) standing for
(t1, ξ1).

The well-posedness of broad solutions of (A.1)-(A.6) is given in the following.

Theorem A.1. Let F ∈
[
L∞
(
Ω
)]n×n

, (f, g) ∈
[
L2(0, Topt)

]n
×
[
L2(0, 1)

]m
, and γ ∈ [L2(Ω)]n.

There exists a unique broad solution w ∈ Y of (A.1)-(A.6). Moreover,

(A.12) ‖w‖Y ≤ C
(
‖f‖L2(0,Topt) + ‖g‖L2(0,1) + ‖γ‖L2(Ω)

)
,

for some positive constant C depending on an upper bound of ‖F‖L∞(Ω) and Σ.

Here we denote

‖w‖Y = max

{
sup

x∈[0,1]
‖w‖L2(Ωx), sup

t∈[0,Topt]
‖w‖L2(Ωt); 1 ≤ i ≤ n

}
.

14A function ϕ ∈ L2(Ω) is said to be in C
(

[0, Topt];L
2(Ωt)

)

if (tn) ⊂ [0, Topt] converging to t then

limn→+∞

(

‖f(tn, ·) − f(t, ·)‖L2(Ωtn
∩Ωt) + ‖f(tn, ·)‖L2(Ωtn

\Ωt) + ‖f(t, ·)‖L2(Ωt\Ωtn
)

)

= 0. Similar meaning is used

for C
(

[0, 1];L2(Ωx)
)

.
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1

t

x0

Topt

Topt − τk−m+1

uk−m+1

Topt − τℓ

uℓ

Topt − τℓ+1 uℓ+1

Ωℓ

Γℓ

Topt − τk

uk

Ωk

Figure 4. Geometry of Ωℓ and Γℓ with k −m+ 1 ≤ ℓ ≤ k for a constant Σ.

Remark A.1. The analysis of Theorem A.1 can be easily extended to cover the case where source
terms in L2 are added in (A.4)-(A.6).

Before giving the proof of Theorem A.1, let us introduce some notations. For k −m+ 1 ≤ ℓ ≤
k − 1, let Ωℓ be the region of Ω between the characteristic curves of xℓ and xℓ+1 both passing the
point (Topt, 1) in the xt-plane. We also denote Ωk the region of Ω below the characteristic curve
of xk passing the point (Topt, 1) in the xt-plane. Let Γℓ with k −m+ 1 ≤ ℓ ≤ k be the boundary
part of Ωℓ formed by the characteristic curve of xℓ passing the point (Topt, 1). See Figure 4.

The proof of Theorem A.1 is based on two lemmas below. The first one is the following.

Lemma A.1. Let F ∈
[
L∞(Ωk)

]n×n
, (f, g) ∈ [L2(0, Topt)]

n × [L2(0, 1)]m, and γ ∈ [L2(Ωk)]
n.

There exists a unique board solution w ∈ Yk := [L2(Ωk)]
n∩C

(
[0, Topt]; [L

2(Ωk,t)]
n
)
∩C
(
[0, 1]; [L2(Ωk,x)]

n
)

of the system

(A.13) ∂tw(t, x) = Σ(x)∂xw(t, x) + F (t, x)w(t, x) + γ(t, x) for (t, x) ∈ Ωk,

(A.14) w(·, 1) = f in (0, Topt),

(A.15) w+(0, ·) = g in (0, 1).

Moreover,

(A.16) ‖w‖Yk
≤ C

(
‖f‖L2(0,Topt) + ‖g‖L2(0,1) + ‖γ‖L2(Ωk)

)
,

for some positive constant C depending only on an upper bound of ‖F‖L∞(Ωk) and Σ.

Here we denote

‖w‖Yk
= max

{
sup

x∈[0,1]
‖w‖L2(Ωk,x), sup

t∈[0,Topt]
‖w‖L2(Ωk,t); 1 ≤ i ≤ n

}
.

The broad solutions considered in Lemma A.1 are defined similarly as the one of Definition A.1
as follows:
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Definition A.2. Let F ∈ [L∞(Ωk)]
n×n, and (f, g) ∈ [L2(0, Topt)]

n×[L2(0, 1)]m, and γ ∈ [L2(Ωk)]
n.

A vector-valued function w ∈ Yk is called a broad solution of (A.13)-(A.15) if for almost (t1, ξ1) ∈
Ωk, the following conditions hold

1. for 1 ≤ j ≤ k,
(A.17)

wj(t1, ξ1) =

∫ t1

t

(
F
(
s, xj(s, t1, ξ1)

)
w(s, xj(s, t1, ξ1))

)
j
ds+

∫ t1

t
γj
(
s, xj(s, t1, ξ1)

)
ds+ fj(t),

where t is such that xj(t, t1, ξ1) = 1;
2. for k + 1 ≤ j ≤ k +m,

(A.18)

wj(t1, ξ1) =

∫ t1

t

(
F
(
s, xj(s, t1, ξ1)

)
w(s, xj(s, t1, ξ1))

)
j
ds+

∫ t1

t
γj
(
s, xj(s, t1, ξ1)

)
ds+ fj(t),

if t ∈ (0, Topt) where t is such that xj(t, t1, ξ1) = 1, otherwise
(A.19)

wj(t1, ξ1) =

∫ t1

0

(
F
(
s, xj(s, t1, ξ1)

)
w(s, xj(s, t1, ξ1))

)
j
ds+

∫ t1

0
γj
(
s, xj(s, t1, ξ1)

)
ds+ gj−k(η),

where η ∈ (0, 1) is such that xj(0, t1, ξ1) = η.

Proof of Lemma A.1. For v ∈ [L2(Ωk)]
n, set

Tk(v)(t, x) = eLxv(t, x) for (t, x) ∈ Ωk,

where L is a large positive constant determined later.
We now introduce

‖v‖Ωk
:= max

{
sup

x∈[0,1]
‖(Tkv)i‖L2(Ωk,x), sup

t∈[0,Topt]
‖(Tv)i‖L2(Ωk,t); 1 ≤ i ≤ n

}
.

One can check that Yk equipped with the norm ‖ · ‖Ωk
is a Banach space. It is also clear that

‖ · ‖Ωk
is equivalent to ‖ · ‖Yk

.
The proof is now based on a fixed point argument. To this end, define Fk from Yk into itself as

follows: for v ∈ Yk, and for (t1, ξ1) ∈ Ωk and 1 ≤ j ≤ k +m:

(A.20)
(
Fk(v)

)
j
(t1, ξ1) is the RHS of (A.17), or (A.18), or (A.19)

under the corresponding conditions.

We claim that, for L large enough, Fk is a contraction mapping from Yk equipped with the
norm ‖ · ‖Ωk

into itself; and the conclusion follows then.
For v ∈ Yk, one can check that F(v) ∈ Yk.
Let v,w ∈ Yk be arbitrary. Fix ξ1 ∈ [0, 1]. Let 1 ≤ j ≤ k. We have for (t1, ξ1) ∈ Ωk, by (A.17),

(A.21) F(v)j(t1, ξ1)−F(w)j(t1, ξ1) =

∫ t1

t

(
F
(
s, xj(s, t1, ξ1)

)
(v − w)(s, xj(s, t1, ξ1))

)
j
ds,

where t = t(t1, ξ1) is such that xj(t, t1, ξ1) = 1. This implies

∫

Ωk,ξ1

e2Lξ1 |F(v)j(t1, ξ1)−F(w)j(t1, ξ1)|
2 dt1

≤ C

∫

Ωk,ξ1

sign(t− t1)

∫ t

t1

e2Lξ1 |v − w|2
(
s, xj(s, t1, ξ1)

)
ds dt1,
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where sign(θ) = 1 if θ > 0 and −1 if θ < 0. Here and in what follows in this proof, C denotes
a positive constant which depends only on an upper bound of ‖F‖L∞(Ωk) and Σ, and can change
from one place to another.

Since

e2Lξ1 |v −w|2
(
s, xj(s, t1, ξ1)

)
= e2L

(
ξ1−xj(s,t1,ξ1)

)
e2Lxj(s,t1,ξ1)|v − w|2

(
s, xj(s, t1, ξ1)

)
,

and, for s between t1 and t,
ξ1 − xj(s, t1, ξ1) ≤ 0,

by a change of variables x = xj(s, t1, ξ1)
15, one obtains, for 1 ≤ j ≤ k,

(A.22)

∫

Ωk,ξ1

e2Lξ1 |F(v)j(t1, ξ1)−F(w)j(t1, ξ1)|
2 dt1

≤ C

∫

Ωk;x≥ξ1

e2L(ξ1−x)e2Lx|v −w|2(s, x) ds dx ≤
C

L
‖v − w‖2Ωk

.

We next consider k + 1 ≤ j ≤ k +m. Using (A.18) and (A.19), similar to (A.22) for 1 ≤ j ≤ k,
we also reach (A.22) for k + 1 ≤ j ≤ k +m. Combining this with (A.22) for 1 ≤ j ≤ k yields

(A.23)

∫

Ωk,ξ1

e2Lξ1 |F(v)(t1, ξ1)−F(w)(t1, ξ1)|
2 dt1 ≤

C

L
‖v − w‖2Ωk

.

Fix t1 ∈ [0, Topt]. Let 1 ≤ j ≤ k. From (A.21), we obtain, for (t1, ξ1) ∈ Ωk,
∫

Ωk,t1

e2Lξ1 |F(v)j(t1, ξ1)−F(w)j(t1, ξ1)|
2 dξ1

≤ C

∫

Ωk,t1

sign(t− t1)

∫ t

t1

e2Lξ1 |v − w|2(s, xj(s, t1, ξ1)) ds dt1.

Similar to (A.22), we obtain, for 1 ≤ j ≤ k,

(A.24)

∫

Ωk,t1

e2Lξ1 |F(v)j(t1, ξ1)−F(w)j(t1, ξ1)|
2 dξ1

≤ C

∫

Ωk;x≥ξ1

e2L(ξ1−x)e2Lx|v − w|2(s, x) ds dt1 ≤
C

L
‖v − w‖2Ωk

.

Using (A.18) and (A.19), similar to (A.24) for 1 ≤ j ≤ k, we also reach (A.24) for k+1 ≤ j ≤ k+m.
Combining this with (A.24) for 1 ≤ j ≤ k yields

(A.25)

∫

Ωt1

e−2Lξ1 |F(v)(t1, ξ1)−F(w)(t1, ξ1)|
2 dξ1 ≤

C

L
‖v − w‖2Ωk

.

The claim now follows from (A.23) and (A.25). The proof is complete. �

The second lemma used in the proof of Theorem A.1 is the following.

Lemma A.2. Let k −m + 1 ≤ ℓ ≤ k − 1, F ∈
[
L∞(Ωℓ)

]n×n
, γ ∈ [L2(Ωℓ)]

n, and hj ∈ L2(Γℓ+1)

for 1 ≤ j ≤ k + m and j 6= ℓ + 1. There exists a unique board solution w ∈ Yℓ := [L2(Ωℓ)]
n ∩

C
(
[0, Topt]; [L

2(Ωℓ,t)]
n
)
∩C

(
[0, 1]; [L2(Ωℓ,x)]

n
)
of the system

(A.26) ∂tw(t, x) = Σ(x)∂xw(t, x) + F (t, x)w(t, x) + γ(t, x) for (t, x) ∈ Ωℓ,

(A.27) wj = hj on Γℓ+1, for 1 ≤ j ≤ k +m and j 6= ℓ+ 1,

15xj is continuously differentiable with respect to s, t1, ξ1 when xj(s, t1, ξ1) is in Ω̄ since Σ is of class C2.
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(A.28) w−,≥ℓ+1(0, ·) = Qℓ+1w<ℓ+1,≥k+ℓ+1 for t ∈ (Topt − τℓ+1, Topt − τℓ).

Moreover,

‖w‖Yℓ
≤ C




∑

1≤j≤k+m;j 6=ℓ+1

‖hj‖L2(Γℓ) + ‖γ‖L2(Ωℓ)


 ,

for some positive constant C depending only on an upper bound of ‖F‖L∞(Ωℓ) and Σ.

Remark A.2. The analysis of Lemma A.2 can be easily extended to cover the case where source
terms in L2 are added in (A.28).

The broad solutions considered in Lemma A.2, which are in the same spirit of the ones in
Lemma A.1, are defined as follows:

Definition A.3. Let k−m+1 ≤ ℓ ≤ k− 1, F ∈
[
L∞(Ωℓ)

]n×n
, γ ∈ [L2(Ωℓ)]

n, and hj ∈ L2(Γℓ+1)
for 1 ≤ j ≤ k + m and j 6= ℓ + 1. A vector-valued function w ∈ Yℓ is called a broad solution of
(A.26)-(A.28) if for almost (t1, ξ1) ∈ Ωℓ, the following conditions hold

1. for 1 ≤ j ≤ ℓ and for k + 1 ≤ j ≤ k +m,
(A.29)

wj(t1, ξ1) =

∫ t1

t

(
F
(
s, xj(s, t1, ξ1)

)
w(s, xj(s, t1, ξ1))

)

j
ds+

∫ t1

t
γj
(
s, xj(s, t1, ξ1)

)
ds+ hj(t),

where t is such that xj(t, t1, ξ1) ∈ Γℓ+1;
2. for ℓ+ 1 ≤ j ≤ k,

(A.30) wj(t1, ξ1) =

∫ t1

t̂

(
F
(
s, xj(s, t1, ξ1)

)
w(s, xj(s, t1, ξ1))

)
j
ds

+

∫ t1

t̂
γj
(
s, xj(s, t1, ξ1)

)
ds+

(
Qℓ+1w<ℓ+1,≥ℓ+m+1

)
j−ℓ

(t̂, 0)

if t̂ ∈ (Topt − τℓ+1, Topt − τℓ) where t̂ is such that xj(t̂, t1, ξ1) = 0, otherwise,
(A.31)

wj(t1, ξ1) =

∫ t1

t

(
F
(
s, xj(s, t1, ξ1)

)
w(s, xj(s, t1, ξ1))

)
j
ds+

∫ t1

t
γj
(
s, xj(s, t1, ξ1)

)
ds+ hj(t),

where t is such that xj(t, t1, ξ1) ∈ Γℓ+1.

As in Definition A.1, the term Qℓ+1w<ℓ+1,≥ℓ+m+1(t̂, 0) in (A.30) is required to be replaced by

the corresponding expression in the RHS of (A.30) or (A.31) with (t̂, 0) standing for (t1, ξ1).

Proof of Lemma A.2. The key part of the proof is to introduce an appropriate weighted norm,
which is adapted to the geometry and the boundary conditions considered, for which the fixed
point argument works (see Remark A.3 for comments on this point).

We begin with the case where Σ is constant. For 1 ≤ j ≤ k+m, let ~vj be the unit vector parallel
to the characteristic curve of xj directed to the boundary for which the boundary condition for vj
is given (~vj is parallel to (1,Σjj)

T in the xt-plane). Set

G1 =
{
~vj; 1 ≤ j ≤ ℓ, k + 1 ≤ j ≤ k +m

}
and G2 =

{
~vj; ℓ+ 1 ≤ j ≤ k

}
.

Here are some useful observations. There exist two non-zero vectors ~u1 and ~u2 such that

a1) G1 ∪G2 ∪ {~u1} lies strictly on one side of the line containing ~u2
a2) G1 is a subset of the open, solid, cone centered at the origin and formed by ~u1 and ~u2, i.e.,

in the set
{
s1~u1 + s2~u2; s1, s2 > 0

}
.
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Topt − τℓ

Topt − τℓ+1

Γℓ

Γℓ+1

~vℓ

~vℓ+1

~vℓ

~v1

~vk+m

~vk+1

~u1

~vℓ+1

~vk

~u2

Figure 5. Geometry of ~vj for 1 ≤ j ≤ n, and ~u1 and ~u2 for Ωℓ when Σ is constant.

a3) G2 is a subset of the open, solid, cone centered at the origin and formed by ~u1 and −~u2,
i.e., in the set

{
s1~u1 − s2~u2; s1, s2 > 0

}
.

(For example, one can choose ~u1 = (0,−1)T and ~u2 is close to ~vℓ but with a larger slope in the
xt-plane, see Figure 5.)

We are ready to introduce the weighted norm used. For v ∈ [L2(Ωℓ)]
n, set

(A.32) Tℓ(v)(t, x) = eLy1(t,x)v(t, x) for (t, x) ∈ Ωℓ,

where y1(t, x) is the first component of (y1, y2)(t, x) which is the coordinate of (t, x) corresponding
to the basis ~u1 and ~u2 (in the xt-plane).

We now introduce

(A.33) ‖v‖Ωℓ
:= max

{
sup

x∈[0,1]
‖(Tℓv)i‖L2(Ωℓ,x), sup

t∈[0,Topt]
‖(Tℓv)i‖L2(Ωℓ,t); 1 ≤ i ≤ n

}
.

One can check that Yℓ equipped with the norm ‖ ·‖Ωℓ
is a Banach space. It is also clear that ‖ ·‖Ωℓ

is equivalent to ‖ · ‖Yℓ
.

The proof is now based on a fixed point argument as in the one of Lemma A.1. To this end, define
Fℓ from Yℓ equipped with the norm ‖ · ‖Ωℓ

into itself as follows: for v ∈ Yℓ and for (t1, ξ1) ∈ Ωℓ:

(A.34)
(
Fℓ(v)

)
i
(t1, ξ1) is the RHS of (A.29), or (A.30), or (A.31)

under the corresponding conditions.

Fix ξ1 ∈ [0, 1]. Let 1 ≤ j ≤ ℓ or k + 1 ≤ j ≤ k +m. We have, for (t1, ξ1) ∈ Ωℓ, by (A.29),

(A.35) F(v)j(t1, ξ1)−F(w)j(t1, ξ1) =

∫ t1

t

(
F
(
s, xj(s, t1, ξ1)

)
(v − w)

(
s, xj(s, t1, ξ1)

))
j
ds,

where t is such that xj(t, t1, ξ1) ∈ Γℓ+1. This implies

(A.36)

∫

Ωℓ,ξ1

e2Ly1(t1,ξ1)|F(v)j(t1, ξ1)−F(w)j(t1, ξ1)|
2 dt1

≤ C

∫

Ωℓ,ξ1

sign(t− t1)

∫ t

t1

e2Ly1(t1,ξ1)|v − w|2
(
s, xj(s, t1, ξ1)

)
ds dt1.

Here and in what follows in this proof, C (resp. c) denotes a positive constant which depends only
on an upper bound of ‖F‖L∞(Ωk) and Σ (resp. Σ), and can change from one place to another.



CONTROLLABILITY OF TIME-DEPENDENT LINEAR HYPERBOLIC SYSTEMS 35

We have

(A.37) e2Ly1(t1,ξ1)|v − w|2
(
s, xj(s, t1, ξ1)

)

= e2L
(
y1(t1,ξ1)−y1(s,xj(s,t1,ξ1))

)
e2Ly1(s,xj(s,t1,ξ1))|v − w|2

(
s, xj(s, t1, ξ1)

)
,

and, for s between t1 and t,

(A.38) y1(t1, ξ1)− y1(s, xj(s, t1, ξ1)) ≤ −c|ξ1 − xj(s, t1, ξ1)| by a2) and the definition of G1.

Making a change of variables x = xj(s, t1, ξ1), we derive from (A.36) that, for 1 ≤ j ≤ ℓ or
k + 1 ≤ j ≤ k +m,

(A.39)

∫

Ωℓ,ξ1

e2Ly1(t1,ξ1)|F(v)j(t1, ξ1)−F(w)j(t1, ξ1)|
2 dt1

≤ C

∫

Ωℓ

e−cL|ξ1−x|e2Ly1(s,x)|v − w|2(s, x) ds dx ≤
C

L
‖v −w‖2Ωℓ

.

We next deal with ℓ+ 1 ≤ j ≤ k. Set

Ωℓ,ξ1,1 =
{
t1 ∈ [0, Topt]; (A.30) holds

}
and Ωℓ,ξ1,2 =

{
t1 ∈ [0, Topt]; (A.31) holds

}
.

We have, by (A.30), for t1 ∈ Ωℓ,ξ1,1,

(A.40) F(v)j(t1, ξ1)−F(w)j(t1, x1)

=

∫ t1

t̂

(
F
(
s, xj(s, t1, ξ1)

)
(v − w)(s, xj(s, t1, ξ1))

)
j
ds+

(
Qℓ+1(v − w)<ℓ+1,≥ℓ+m+1

)
j−ℓ

(t̂, 0)

where t̂ = t̂(t1, ξ1) is such that xj(t̂, t1, ξ1) = 0.
We next estimate

∫

Ωℓ,ξ1,1

sign(t̂− t1)

∫ t̂

t1

e2Ly1(t1,ξ1)|v − w|2
(
s, xj(s, t1, ξ1)

)
ds dt1.

We have, for s between t1 and t̂,

(A.41) y1(t1, ξ1)− y1(s, xj(s, t1, ξ1)) ≤ −c|ξ1 − xj(s, t1, ξ1)| by a3) and the definition of G2.

Making a change of variables x = xj(s, t1, ξ1), we derive from (A.37) that

∫

Ωℓ,ξ1,1

sign(t̂− t1)

∫ t̂

t1

e2Ly1(t1,ξ1)|v − w|2
(
s, xj(s, t1, ξ1)

)
ds dt1

≤ C

∫

Ωℓ

e−cL|ξ1−x|e−2Ly1(s,x)|v − w|2(s, x) ds dx.

This implies

(A.42)

∫

Ωℓ,ξ1

sign(t̂− t1)

∫ t̂

t1

e2Ly1(t1,ξ1)|v − w|2(s, xj(s, t1, ξ1)) ds dt1 ≤
C

L
‖v − w‖2Ωℓ

.

By (A.39), we also have

(A.43)

∫

Ωℓ,0

e2Ly1(t̂,0)|Qℓ+1(v −w)<ℓ+1,≥ℓ+m+1(t̂, 0)|
2 dt̂ ≤

C

L
‖v − w‖2Ωℓ

.
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Using (A.41), and making a change of variable t̂ = t̂(t1, ξ1), we derive that

(A.44)

∫

Ωℓ,ξ1

eLy1(t1,ξ1)|Qℓ+1(v − w)<ℓ+1,≥ℓ+m+1(t̂(t1, ξ1), 0)|
2 dt1

≤ C

∫

Ωℓ,0

e2Ly1(t̂,0)|Qℓ+1(v −w)<ℓ+1,≥ℓ+m+1(t̂, 0)|
2 dt̂.

Combining (A.30), (A.42), (A.43), and (A.44) yields, for ℓ+ 1 ≤ j ≤ k,

(A.45)

∫

Ωℓ,ξ1,1

e2Ly1(t1,ξ1)|F(v)j(t1, ξ1)−F(w)j(t1, x1)|
2 dt1 ≤

C

L
‖v − w‖2Ωℓ

.

Using similar arguments, we also obtain, for ℓ+ 1 ≤ j ≤ k,

(A.46)

∫

Ωℓ,ξ1,2

e2Ly1(t1,ξ1)|F(v)j(t1, ξ1)−F(w)j(t1, x1)|
2 dt1 ≤

C

L
‖v − w‖2Ωℓ

.

We derive from (A.45) and (A.46) that

(A.47)

∫

Ωℓ,ξ1

e2Ly1(t1,ξ1)|F(v)j(t1, ξ1)−F(w)j(t1, x1)|
2 dt1 ≤

C

L
‖v − w‖2Ωℓ

.

From (A.39) and (A.47), we obtain

(A.48)

∫

Ωξ1

e2Ly1(t1,ξ1)|F(v)(t1, ξ1)−F(w)(t1, x1)|
2 dt1 ≤

C

L
‖v − w‖2Ωℓ

.

For t1 ∈ (0, Topt), by the same approach used to derive (A.48), we also have

(A.49)

∫

Ωt1

e2Ly1(t1,ξ1)|F(v)(t1, ξ1)−F(w)(t1, x1)|
2 dξ1 ≤

C

L
‖v − w‖2Ωℓ

.

The conclusion in the case where Σ is constant now follows from (A.48) and (A.49).

We next make necessary modifications to derive the conclusion in the general case. The idea is to
find a replacement for y1(t, x) which is increasing when one follows the characteristic flows directed
to the boundary for which the boundary conditions are imposed. To this end, for 1 ≤ j ≤ k+m, let
~vj = ~vj(t, x) be the unit vector tangent to the characteristic curve of xj at the point (t, x) directed
to the boundary where the boundary condition for vj is given. The vector ~vj(t, x) is parallel to

(1,Σjj(x))
T in the xt-plane and so that one can choose it independent of t and in fact we will do.

We will denote it by ~vj(x) from now on. Set

G1(x) =
{
~vj(x); 1 ≤ j ≤ ℓ, k + 1 ≤ j ≤ k +m

}
and G2(x) =

{
~vj(x); ℓ+ 1 ≤ j ≤ k

}
.

Let ϕ(x) be such that

~vℓ(x) is parallel to and has the same direction with (ϕ(x), 1)T.

Set, in the xt-plane,
~u1(x) = (0,−1)T,

and
~u2(x) = (ϕ(x)− ε, 1)T,

where ε is a constant which is positive and sufficiently small, the smallness of ε is independent of
x, such that, ϕ(x) > 2ε, and

a1) G1(x) ∪G2(x) ∪ {~u1(x)} lies on one side of the line containing ~u2(x)
a2) G1(x) is a subset of the open solid cone centered at the origin and formed by ~u1(x) and

~u2(x), i.e., in the set
{
s1~u1(x) + s2~u2(x); s1, s2 > 0

}
.
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a3) G2(x) is a subset of the open solid cone centered at the origin and formed by ~u1(x) and
−~u2(x), i.e., in the set

{
s1~u1(x)− s2~u2(x); s1, s2 > 0

}
.

Fix such a positive constant ε. For a point (x0, t0) ∈ Ωℓ, let (x(s), t(s)) for s ∈ [α, β] ⊂ R be a
(piecewise) C1 regular curve 16 in Ω̄ℓ (in the xt-plane) starting from (0, 0) and arriving at (x0, t0).
We first claim that

(A.50)

∫ β

α
y1
(
x′(s), t′(s), x(s), t(s)

)
|(x′(s), t′(s))| ds depends on (t0, x0)

but is independent of the curve and the parametrization.

Here y1
(
t′(s), x′(s), t(s), x(s)

)
is the first coordinate of the vector (t′(s), x′(s))/|(t′(s), x′(s))| in the

bases ~u1(t(s), x(s)) and ~u2(t(s), x(s)).
We now establish the claim. For notational ease, we assume that |(t′(s), x′(s))| = 1. We first

compute y1
(
t′(s), x′(s), t(s), x(s)

)
. Let a and b in R be such that

(x′(s), t′(s)) = a(0,−1) + b(ϕ(x(s)) − ε, 1).

We have

a = −t′(s) +
x′(s)

ϕ(x(s)) − ε
and b =

x′(s)

ϕ(x(s)) − ε
.

Thus

y1
(
t′(s), x′(s), t(s), x(s)

)
= −t′(s) +

x′(s)

ϕ(x(s)) − ε
.

It follows that

(A.51)

∫ β

α
y1
(
x′(s), t′(s), x(s), t(s)

)
ds = −t0 +Φ(x0),

where

Φ(ξ) =

∫ ξ

0

1

ϕ(s) + ε
ds for ξ ∈ [0, 1].

The claim is proved.
Define

Y1 : Ωℓ → R,

(t, x) 7→ −t+Φ(x).

The proof in the general case follows as in the constant case with Tℓ now defined by

(A.52) Tℓ(v)(t, x) = eLY1(t,x)v(t, x).

One just notes that (A.38) and (A.41) hold with y1 replaced by Y1. Indeed, one has

Y1

(
s, xj(s, t1, ξ1)

)
− Y1(t1, ξ1) =

∫ s

t1

y1
(
∂θxj(θ, t1, ξ1), xj(θ, t1, ξ1)

)
|∂θxj(θ, t1, ξ1)| dθ

≥ Csign(s− t1)

∫ s

t1

y1
(
~vj(xj(θ, t1, ξ1)), xj(θ, t1, ξ1)

)
dθ ≥ C|t1 − s| ≥ C|xj(s, t1, ξ1)− ξ1|.

The details are omitted. �

We are ready to give

16Regularity means that (x′(s), t′(s)) 6= (0, 0) for s ∈ [α, β] such that (x′(s), t′(s)) is well-defined.
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Proof of Theorem A.1. We first prove the uniqueness. Assume that f = 0, g = 0, and γ = 0. Then
the restriction of w into Ωk is 0 by Lemma A.1. It follows that the restriction of w into Ωk−1 = 0
by Lemma A.2, . . . , the restriction of w into Ωk−m+1 = 0 by Lemma A.2. Therefore, w = 0 in Ω.

To establish the existence, we proceed as follows. Let w(k) be the unique broad solution in Ωk

corresponding to (f, g), let w(k−1) be the unique broad solution in Ωk−1 where the data on Γk come

from w(k), . . . , let w(k−m+1) be the unique broad solution in Ωk−m+1 where the data on Γk−m+2

come from w(k−m+2) 17. The corresponding solution is obtained by gluing these solutions together.
The proof is complete. �

Remark A.3. The introduction of appropriate weighted norms plays a crucial role in the proof
of the well-posedness of broad solutions considered so far in this section, in particular in the proof
of Lemma A.2. The introduction of weighted norms in order to be able to apply the fixed point
argument used in establishing the well-posedness of hyperbolic system is not new. The standard
one is e−Lt where L is a large positive number, see e.g. [38, (1.18), p. 78] or [7, (3.36), p. 50], while
the weight e−Lx is used in [52, 11] to prove exponential stability; see also [9, V defined in Section
3.2] for the Euler equations of incompressible fluids. In [17], we used the weight e−L1x−L2t where
L1 and L2 are two large positive numbers with L2 being much larger than L1. The introduction
of e−L1x in the weight is to handle the non-local term from the boundary condition imposed on
the right (at x = 1) considered there. In these settings, t-direction has a privileged role. In the
settings considered in this section, the domain is not a rectangle with respect to t and x, and the
boundary conditions are quite complicated. Therefore, the time direction and the space direction
play almost the same role here. In the setting of Lemma A.1, the privileged direction is x-direction
so the weighted norm is chosen of the form eLx. In Lemma A.2, the new weighted norm introduced
in (A.33) with Tℓ given by (A.32) or (A.52) adapts the geometry and the boundary conditions,
imposed in a nontrivial way. It is interesting to note that Y1 is a non-linear function of t and x.
The analysis here is inspired by [17] (see also [18]).

As a consequence of Theorem A.1, we can prove

Proposition A.1. Let C ∈
[
L∞
(
I × (0, 1)

)]n×n
. Define, for τ ∈ I1,

(A.53)
T (τ) : [L2(0, Topt)]

n × [L2(0, 1)]m → Y

(f, g) 7→ w,

where w is the solution of (3.27)-(3.32). Then T (τ) is uniformly bounded in I1. Assume in
addition that C ∈ H(I, [L∞(0, 1)]n×n). Then T (τ, ·, ·) is analytic in I1.

Proof. By Theorem A.1, for each (f, g) ∈ [L2(0, 1)]n × [L2(0, 1)]m, there exists a unique broad
solution w ∈ Y of (3.27)-(3.32). Hence T (τ) is well-defined. The uniform boundedness of T is also
a direct consequence of Theorem A.1, in particular of (A.12).

We next deal with the analyticity of T and thus assume that C ∈ H(I, [L∞(0, 1)]n×n). Fix
τ0 in a sufficiently small neighborhood of I1 (in the complex plane). We will prove that T is
differentiable at τ0 in the complex sense. For notational ease, we will assume that τ0 = 0.

Fix (f, g) ∈ [L2(0, Topt)]
n× [L2(0, 1)]n. Set w(τ) = T (τ)(f, g) in Ω for τ in a small neighborhood

(in the complex plane) of 0 and let v ∈ Y be the unique broad solution of the system

(A.54) vt(t, x) = Σ(x)∂xv(t, x) +C(t, x)v(t, x) +Cτ (t, x)w
(0)(t, x) for (t, x) ∈ Ω,

(A.55) v(·, 1) = 0 in (0, Topt),

17The data coming from w(k) on Γk, . . . , w(k−m+2) on Γk−m+2 are given by the RHS of (A.17)-(A.19) in
Definition A.2 for (t1, ξ1) ∈ Γk, and (A.29)-(A.31) in Definition A.3 for (t1, ξ1) ∈ Γℓ with ℓ = k − 1, . . . , k −m+ 1,
respectively.
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(A.56) v+(0, ·) = 0 in (0, 1),

(A.57) v−,≥k(t, 0) = Qkv<k,≥k+m(t, 0) for t ∈ (Topt − τk, Topt − τk−1),

(A.58) v−,≥k−1(t, 0) = Qk−1v<k−1,≥k+m−1(t, 0) for t ∈ (Topt − τk−1, Topt − τk−2),

. . .

(A.59) v−,≥k−m+2(t, 0) = Qk−m+2v<k−m+2,≥k+2(t, 0) for t ∈ (Topt − τk−m+2, Topt − τk−m+1).

Here Cτ (τ, x) denotes the derivative of C(τ, x) with respect to τ in the complex sense. The
existence and uniqueness of v follows from Theorem A.1.

We claim that

(A.60) the derivative of T at 0 is given by T1 where T1(f, g) = v in Ω

(the derivative of T is considered in the complex sense). To this end, for τ in a small neighborhood
(in the complex plane) of 0 but not 0, we consider dw ∈ Y defined by

dw :=
1

τ

(
w(τ) − w(0) − τv

)
in Ω.

Then dw ∈ Y is a broad solution of the system

(A.61) ∂tdw(t, x) = Σ(x)∂xdw(t, x) +C(t, x)dw(t, x)

+
1

τ

(
C(t+ τ, x)−C(t, x)

)
w(τ)(t, x)−Cτ (t, x)w

(0)(t, x) in Ω,

and (A.55)-(A.59) with v replaced by dw. We derive from Theorem A.1 that

(A.62) ‖dw‖Y ≤ C
(
‖w(τ)‖L2(Ω) + ‖w(0)‖L2(Ω)

)
≤ C

(
‖f‖L2(0,Topt) + ‖g‖L2(0,1)

)
.

Using the definition of dw, we can write the last two terms in (A.61) under the form

(A.63)
1

τ

(
C(t+ τ, x)−C(t, x)

)(
w(0) + τdw + τv

)
−Cτ (t, x)w

(0)(t, x)

=
1

τ

(
C(t+ τ, x)−C(t, x)− τCτ (t, x)

)
w(0)(t, x) +

1

τ

(
C(t+ τ, x)−C(t, x)

)(
τdw + τv

)
.

Note that the L2(Ω)-norm of the RHS of (A.63) is bounded by

C|τ |
(
‖w(0)‖L2(Ω) + ‖dw‖L2(Ω) + ‖v‖L2(Ω)

)
.

Applying Theorem A.1 again, we derive from (A.62) that

(A.64) ‖dw‖Y ≤ C|τ |
(
‖w(0)‖L2(Ω) + ‖v‖L2(Ω) + ‖f‖L2(0,Topt) + ‖g‖L2(0,1)

)
.

By noting that

‖w(0)‖L2(Ω) + ‖v‖L2(Ω) ≤ C
(
‖f‖L2(0,Topt) + ‖g‖L2(0,1)

)
,

claim (A.60) follows from (A.64). The proof is complete. �

Remark A.4. Let C ∈
[
L∞
(
I × (0, 1)

)]n×n
. One can prove that T (τ) is strongly continuous,

i.e., T (τ)(f, g) → T (τ0)(f, g) in Y as τ → τ0 in I1 for all (f, g) ∈ [L2(0, Topt)]
n × [L2(0, 1)]m.

Indeed, let assume that τ0 = 0 for notational ease. Set w(τ) = T (τ)(f, g) in Ω for τ ∈ I1 and for

(f, g) ∈ [L2(0, Topt)]
n × [L2(0, 1)]m. Denote δw = w(τ) − w(0) in Ω. We have, in Ω

∂tδw(t, x) = Σ(x)∂xδw(t, x) +C(t+ τ, x)δw(t, x) +
(
C(t+ τ, x)−C(t, x)

)
w(0)(t, x),
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and δw satisfies the same boundary conditions as dw. Applying Theorem A.1, one has

‖δw‖Y ≤ C‖g‖L2(Ω),

where g(t, x) =
(
C(t + τ, x) − C(t, x)

)
w(0)(t, x). Since ‖g‖L2(Ω) → 0 as τ → 0, the conclusion

follows.

We next discuss the broad solutions used in the definition of T̂ (τ) and their well-posedness. Let

F ∈
[
L∞
(
(0, Topt) × (0, 1)

)]n×n
, (f, g) ∈ [L2(0, Topt)]

n × [L2(0, 1)]m, and let q ∈ [L2(0, 1)]k−m 18.
Consider the system

(A.65) ∂tŵ(t, x) = Σ(x)∂xŵ(t, x) + F (t, x)ŵ(t, x) + γ(t, x) for (t, x) ∈ Ω,

(A.66) ŵ(·, 1) = f in (0, Topt),

(A.67) ŵ+(0, ·) = g in (0, 1),

(A.68) ŵj(Topt, ·) = qj in (0, 1), for 1 ≤ j ≤ k −m,

(A.69) ŵ−,≥k(t, 0) = Qkŵ<k,≥k+m(t, 0) for t ∈ (Topt − τk, Topt − τk−1),

(A.70) ŵ−,≥k−1(t, 0) = Qk−1ŵ<k−1,≥k+m−1(t, 0) for t ∈ (Topt − τk−1, Topt − τk−2),

. . .

(A.71) ŵ−,≥k−m+2(t, 0) = Qk−m+2ŵ<k−m+2,≥k+2(t, 0) for t ∈ (Topt − τk−m+2, Topt − τk−m+1),

(A.72) ŵ−,≥k−m+1(t, 0) = Qk−m+1ŵ<k−m+1,≥k+1(t, 0) for t ∈ (Topt − τk−m+1, Topt).

We have the following result, which implies the well-posedness of T̂ (τ).

Theorem A.2. Let F ∈
[
L∞
(
(0, Topt) × (0, 1)

)]n×n
, (f, g) ∈ [L2(0, Topt)]

n × [L2(0, 1)]m, q ∈

[L2(0, 1)]k−m 19, and γ ∈ [L2(Ω)]n. There exists a unique broad solution

ŵ ∈ Ŷ :=
[
L2
(
(0, Topt)× (0, 1)

)]n
∩ C

(
[0, Topt]; [L

2(0, 1)]n
)
∩C

(
[0, 1]; [L2(0, Topt)]

n
)

of (A.65)-(A.72). Moreover,

‖ŵ‖Ŷ ≤ C
(
‖f‖L2(0,Topt) + ‖g‖L2(0,1) + ‖q‖L2(0,1) + ‖γ‖

L2
(
(0,Topt)×(0,1)

)
)
,

for some positive constant C depending only on an upper bound of ‖F‖L∞(Ωℓ) and Σ.

Here we denote

‖ŵ‖Ŷ = max

{
sup

x∈[0,1]
‖ŵ‖L2(0,Topt), sup

t∈[0,Topt]
‖ŵ‖L2(0,1); 1 ≤ i ≤ n

}
.

Remark A.5. The analysis of Theorem A.2 can be extended to cover the case where source terms
in L2 are added in (A.69)-(A.72).

The definition of broad solutions ŵ ∈ Ŷ of (A.65)-(A.72) is similar to the one given in Def-
inition A.1 and left to the reader. The proof of (A.2) is similar to the one of Theorem A.1.
Nevertheless, in addition to Lemmas A.1 and A.2, we also use the following.

18q is irrelevant when k = m.
19q is irrelevant when k = m.
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Lemma A.3. Set Ωk−m = [0, Topt] × (0, 1) \ Ω. Let F ∈ [L∞(Ωk−m)]n×n γ ∈ [L2(Ωk−m)]n,
hj ∈ L2(Γk−m+1) for 1 ≤ j ≤ k +m and j 6= k−m+ 1, and let qj ∈ L2(Γk−m) for 1 ≤ j ≤ k −m

where Γk−m = {Topt} × (0, 1). There exists a unique broad solution w ∈ Yk−m :=
[
L2(Ωk−m)

]n
∩

C
(
[0, Topt];

[
L2(Ωk−m,t)

]n)
∩ C

(
[0, 1];

[
L2(Ωk−m,x)

]n)
of the system

(A.73) ∂tw(t, x) = Σ(x)∂xw(t, x) + F (t, x)w(t, x) + γ(t, x) for (t, x) ∈ Ωk−m,

(A.74) wj = hj on Γk−m+1, for 1 ≤ j ≤ k +m and j 6= k −m+ 1,

(A.75) wj = qj on Γk−m, for 1 ≤ j ≤ k −m,

(A.76) w−,≥k−m+1(0, ·) = Qk−m+1w<k−m+1,≥k+1 for t ∈ (Topt − τk−m+1, Topt).

Moreover,

‖w‖Yℓ
≤ C




∑

1≤j≤k+m;j 6=k−m+1

‖hj‖L2(Γk−m+1) +
∑

1≤j≤k−m

‖qj‖L2(Γk−m) + ‖γ‖L2(Ωk−m)


 ,

for some positive constant C depending only on an upper bound of ‖F‖L∞(Ωk−m) and Σ.

Remark A.6. The analysis of Lemma A.3 can be extended to cover the case where source terms
in L2 are added in (A.76).

Proof. The proof of Lemma A.3 is similar to the one of Lemma A.2. We just mention here how
to define G1, G2 and determine ~u1 and ~u2 in the general case (Σ is not required to be constant).
For 1 ≤ j ≤ k +m, let ~vj = ~vj(t, x) be the unit vector tangent to the characteristic curve of xj at
the point (t, x) directed to the boundary where the boundary condition for vj is given. The vector

~vj(t, x) is parallel to (1,Σjj(x))
T in the xt-plane and so that we can choose it independent of t and

in fact we will do. We denote it by ~vj(x) from now on. Set

G1(x) =
{
~vj(x); 1 ≤ j ≤ k−m,k+1 ≤ j ≤ k+m

}
and G2(x) =

{
~vj(x); k−m+1 ≤ j ≤ k

}
.

Let ϕ(x) be such that

~v1(x) is parallel to and has the same direction with (ϕ(x), 1)T.

Set, in the xt-plane,

~u1(x) = (0,−1)T,

and

~u2(x) = (ϕ(x) − ε, 1)T if k > m, otherwise ~u2 = (1, 0)T,

where ε is positive and sufficiently small, the smallness of ε is independent of x, such that, ϕ(x) > 2ε
(the choice of ε is irrelevant when k = m), and

a1) G1(x) ∪G2(x) ∪ {~u1(x)} lies on one side of the line containing ~u2(x).
a2) G1(x) is a subset of the open solid cone centered at the origin and formed by ~u1(x) and

~u2(x).
a3) G2(x) is a subset of the open solid cone centered at the origin and formed by ~u1(x) and

−~u2(x).

The rest of the proof is then almost unchanged and left to the reader. �
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Université Paris-Diderot SPC, CNRS, INRIA,

Laboratoire Jacques-Louis Lions, équipe Cage, Paris, France
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