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Abstract: We illustrate how, contrary to common belief, transient Fluctuation Relations (FRs) for
systems in constant external magnetic field hold without the inversion of the field. Building on
previous work providing generalized time-reversal symmetries for systems in parallel external
magnetic and electric fields, we observe that the standard proof of these important nonequilibrium
properties can be fully reinstated in the presence of net dissipation. This generalizes recent results
for the FRs in orthogonal fields—an interesting but less commonly investigated geometry—and
enables direct comparison with existing literature. We also present for the first time a numerical
demonstration of the validity of the transient FRs with nonzero magnetic field via nonequilibrium
molecular dynamics simulations of a realistic model of liquid NaCl.

Keywords: statistical mechanics; time reversibility; magnetic field; Fluctuation Relations; molecular
dynamics

1. Introduction

It is well known that the evolution equations of charged systems subject to an external
magnetic field (in this work, we focus on classical systems) are not invariant under the
standard time-reversal transformation,Ms, defined via inversion of the momenta

Ms(r, p) = (r,−p) , ∀(r, p) .
= Γ ∈M (1)

combined with the change t→ −t. Here t is the time variable and, in the equation above,
Γ is a point in the phase space M of an N-particle system, with positions r = {ri}N

i=1 and
momenta p = {pi}N

i=1. This fact originated the idea that these systems require special
treatment when discussing properties based on time reversibility. In particular, because the
currents (and therefore the magnetic field that they generate) are reversed under Ms,
classical text books [1,2] as well as current literature [3] report statistical relationships in the
presence of a magnetic field using pairs of systems with identical interparticle interactions
but under magnetic fields of opposite signs. For example, the Onsager reciprocal relations
were adapted by Casimir to relate cross-transport coefficients of systems under opposite
magnetic fields [4]. Similarly, Kubo [5] derived symmetry properties of time-correlation
functions of two such systems. In nonequilibrium statistical mechanics, results for currents,
response, and Fluctuation Relations (FRs) are typically presented under the same condi-
tions [3,6–8]. All these results are to be contrasted with their “standard” counterparts, i.e.,
those derived in the absence of magnetic fields, that refer to a single system.

The situation described above is somewhat unsatisfactory for two main reasons.
The first is conceptual: the introduction of a second system, while physically correct,
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blurs the distinction between the system and its external environment. Indeed, in the
evolution equations of the system, the magnetic field typically appears as an external agent
whose physical origin (e.g., moving charges originating a current) is not associated to
active degrees of freedom in the dynamical system. Its inversion then implicitly implies
extending the system to include the sources of the magnetic field, applying Ms to the
extended system, and then forgetting again about the additional degrees of freedom.
The second reason is practical: this commonly adopted approach reduces the predictive
power of the statistical relationships mentioned above. For example, within linear response
theory, null values of transport coefficients in experiments concerning a single system in
a given magnetic field cannot be predicted based on symmetry properties of the time-
correlation functions. Similarly, in the context of nonlinear response, which includes the
Fluctuation Relations [9–13], null cumulants of the dissipation cannot be identified via
symmetry [3].

Recently however, it was demonstrated that, for systems in a constant external mag-
netic field, these difficulties can be overcome, recovering the full predictive power of
statistical mechanics. The starting observation for these recent developments is that in-
variance of the Hamiltonian (and hence of the dynamical system) under Equation (1)
is a sufficient but not necessary condition for establishing the properties mentioned
above. Following a known approach in nonequilibrium statistical mechanics, alterna-
tive time-reversal operators—that do not necessitate inversion of the magnetic field—can
be introduced [14–18] and used instead ofMs to reinstate standard proofs. These new sym-
metries lack the intuitive property of retracing the coordinates in the backward propagation
in pairs of trajectories with opposite momenta, but they nonetheless identify pairs of trajec-
tories with opposite values of relevant observables (e.g., elements of the diffusion tensor or
of the instantaneous dissipation) and their physical effects can be predicted and measured.
This was illustrated numerically for the case of time-correlation functions in Refs. [16,17]
and for Fluctuation Relations in the presence of orthogonal electric and magnetic fields
in Ref. [19]. The lack of experimental evidence of the violation of the Onsager reciprocal
relations [20] might also be explained via these generalized time-reversal operators.

In this paper, we continue the investigation of the nonequilibrium behavior of classical
charged systems in external magnetic and electric fields and generalize and consolidate
previous work. We reconsider, in particular, FRs and extend the results presented in
Ref. [19] in two important ways. First, in contrast to the model considered in that paper,
which had no net dissipation because the electric and magnetic field were orthogonal,
here we consider the case of parallel fields. This leads to net currents and the presence of
the corresponding dissipation, as standard in the investigation of FRs [11,13]. Our results
can then be contrasted directly with existing work [3]. To prove the validity of FRs also
with this set up we (trivially) extend to the case of thermostatted evolution two generalized
time-reversal operators, different from the ones used in Ref. [19], and introduced in Ref. [17].
The use of these operators makes it possible to demonstrate the validity of a transient
FR that benefits from a fully single magnetic field description and therefore takes us
one step further in the single system approach to the statistical properties of objects in
constant magnetic field. The second addition to our previous work is the corroboration
of the transient FRs by molecular dynamics simulations of a realistic model of NaCl.
While these numerical results are not strictly surprising given the mathematical proof
of the FRs, they are nonetheless nontrivial. The onset and the observation of FRs in
realistic models of condensed-phase systems and within the size and time scales accessible
in the simulation requires an accurate integration of the evolving equations that fully
enforces the formal properties (e.g., generalized time-reversibility) required by the proof.
This is made possible in this work by the use of a recently developed symplectic and time-
reversible algorithm that includes a modified Nosé–Hoover thermostat to enforce constant
temperature [21]. Furthermore, since FRs require to consider values of the dissipation on
the tails of the probability distribution, ensuring a satisfactory signal-to-noise ratio can be
problematic. The combination of accurate integration of the system and sufficient statistics,
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however, made it possible to directly show the odd parity of the dissipation under the
proposed generalized time-reversal operators and verify the validity of the transient FR for
a representative value of the electric field.

The paper is organized as follows. In Section 2, we start by setting up our dynamical
system and discussing its properties. We then introduce the relevant generalized time-
reversal symmetries and compute the dissipation function and the transient FRs. In the
main text, we recall only the key definitions and properties necessary to proceed. A detailed
set of definitions, together with a summary of the derivation of the FRs can be found in
Appendix A, while the explicit calculation of the instantaneous dissipation is provided in
Appendix B. Section 3 provides details on the NaCl simulation and illustrates the theoretical
statements via appropriate numerical results.

2. Theory

Let us consider N particles of charge qi and mass mi in three dimensions and in the
presence of external uniform and static electric and magnetic fields. The Hamiltonian of
the system is

H(Γ) = H0(Γ)−
N

∑
i=1

qiE · ri =

=
N

∑
i=1

(
pi − qi A(ri)

)2

2mi
+

N

∑
i,j<i

V(rij)−
N

∑
i=1

qiE · ri

(2)

In the equation above, A(r) is the vector potential associated to the magnetic field
B = ∇r × A(r), E is the electric field, and V(rij) a pairwise additive interaction potential,
depending only on the modulus of the distance between particles: rij = |ri − rj|. We set
E = (0, 0, Ez) and B = (0, 0, Bz), i.e., the fields are parallel and oriented along the z-axis.
In the Coulomb gauge (∇r · A(r) = 0), a valid choice for the vector potential is A(r) =
Bz/2(−y, x, 0). The choice of the gauge does not affect the discussion below since it cannot
affect the evolution equations, see also [18]. This setting, while not completely general, is
typically adopted to discuss the time-reversal properties of systems in external magnetic
fields [3,6,22,23] and it describes relevant physical situations. In particular, in contrast with
previous work [19], this orientation of the electric and magnetic fields ensures the presence
of dissipation in the system and this is the framework in which FRs and their corollaries
are generally considered.

The Hamiltonian in (2) generates the motion of the system. The notation indicates
that, in the following, we shall consider as the equilibrium the state of the system when it
is subject to the internal interactions and the external magnetic field. The electric field then
acts as the external perturbation driving the system out of equilibrium. This definition of
the equilibrium state (slightly unusual in that it includes an external field) is viable because
the magnetic field does not perform work on the system. To prevent uncontrolled heating
up of the system when the external electric field is active, we introduce a Nosé–Hoover
thermostat. In particular, we shall consider a modified version of the thermostat that
was introduced to account for the presence of magnetic and electric fields in Ref. [21].
The corresponding dynamical system is

dxi
dt

=
px

i
mi

+ ωiyi

dyi
dt

=
py

i
mi
−ωixi

dzi
dt

=
pz

i
mi

d ln s
dt

= ξ

dpx
i

dt
= Fx

i + ωi(py
i −miωixi)− ξ(px

i + miωiyi)

dpy
i

dt
= Fy

i −ωi(px
i + miωiyi)− ξ(py

i −miωixi)

dpz
i

dt
= Fz

i + qiEz − ξ pz
i

dξ

dt
=

1
τ2

NH

[
K(Γ)− K∗

K∗

]
.
=

δK(Γ)
τ2

NH

(3)
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where ωi = qiBz/2mi is the cyclotron frequency of particle i and τNH is the characteris-
tic time of the thermostat. In the system above, the evolution of the Nosé variable ξ is
governed by the difference between the target kinetic energy K∗ = GkBT/2 and the instan-

taneous microscopic estimator of the kinetic energy K(Γ) = ∑
i,α

(pα
i −qi Aα(ri))

2

2mi
, with α = x, y, z.

(In the definition of the target kinetic energy, kB is the Boltzmann constant, T the target
temperature, and G the number of degrees of freedom of the system.) The dynamical
system above admits a conserved quantity analogous to the Nosé–Hoover constant of
the motion and given by HNH(Γ, ξ, s) = H(Γ) + K∗

[
τ2

NHξ2 + 2 ln s
]
. The characteristics of

Equation (3) can be summarized as follows. Firstly, note that when Bz = 0 (i.e., ωi = 0
for all particles) and Ez = 0, the dynamical system reduces to a standard Nosé–Hoover
thermostatted system. In this case, the Hamiltonian momenta are trivially proportional to
the particle’s velocities, the kinetic energy estimator of the temperature reduces to the usual
prescription, and the terms proportional to the Nosé variable ξ in the time derivatives of the
momenta are also standard. On the other hand, when Bz 6= 0 (but Ez = 0), the relationship
between the particle’s velocities and momenta includes a contribution arising from the
magnetic field, as indicated in the first three equations of (3). Furthermore, the estimator
of the temperature (a well defined quantity because the magnetic field does not perform
work) is adapted via the use of the instantaneous kinetic energy K(Γ), which employs the
velocities. This is a natural choice for a system in external magnetic because the Lorentz
force involves velocities, not momenta. Moreover, as shown for the reader’s convenience in
Appendix B, even in the presence of a nonzero vector potential, the canonical average value
of kinetic energy is proportional to the temperature. Adopting the instantaneous kinetic
energy as the regulator of the temperature, the dynamics of ξ is also governed by changes
in the velocities (not the momenta) of the particles. This is reflected in the evolution of
the particle’s momenta in (3), where the term proportional to the Nosé variables is easily
recognizable as the product between the mass and the velocity. As proved in Ref. [21],
when no electric field is present, the dynamics samples the equilibrium distribution

f0(Γ, ξ) = Z−1 exp[−βH0(Γ)] exp
[
−

Gτ2
NHξ2

2

]
(4)

whereZ is the partition function and β = (kBT)−1. As in standard Nosé–Hoover dynamics,
the variable s does not enter directly in the dynamics of the physical variables and in
the distribution. Furthermore, again as in the standard case, the marginal probability
obtained integrating Equation (4) with respect to ξ is the canonical density, in magnetic
field, for the physical variables. Finally, when both the magnetic and electric fields are
active, Equation (3) enables to maintain the instantaneous kinetic energy (a well defined
quantity both at equilibrium and far from it) close to a predefined reference value that
acts as a proxy for the temperature, a more problematic concept out of equilibrium [24,25].
Note that the systematic drift velocity induced by the electric field is not subtracted
from instantaneous kinetic energy. For the simulation set up chosen in the following
(see Section 3) the component of the velocity of the center of mass in the direction of the
electric field is constantly null and for more general systems it is usually small.

Let us now discuss the behavior under time reversal of the dynamical system in
Equation (3). Direct inspection shows that, as expected, standard time reversal does not
hold even considering a natural extension which includes the Nosé–Hoover auxiliary
variables by leaving s unchanged and changing the sign of ξ. This transformation will be
indicated in the following as

Mext
s (Γ, s, ξ) = (x, y, z,−px,−py,−pz, s,−ξ) (5)

The violation ofMext
s is due to the coupling between coordinates and momenta in-

duced by the magnetic field and seems to imply that a standard treatment of equilibrium
and nonequilibrium statistical mechanics relationships based on time reversal is indeed
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impossible. However, the proof of these relationships requires the existence of (at least) one
valid time-reversal operator and the even parity of the equilibrium distribution under this
operator, but it does not prescribe the specific form of the operator and, in particular, it does
not fix it toMs orMext

s . In fact, generalized time-reversal operators, different fromMs,
have already been used in the literature to investigate the equilibrium and nonequilibrium
statistical mechanics of deterministic particle systems [26]. This approach has recently
been extended to constant-energy systems in external magnetic and electric fields via the
introduction of a set of time-reversal symmetries valid in different conditions (e.g., different
orientation of the fields) [16,17]. In Ref. [19] these symmetries where adapted—for orthog-
onal orientation of the fields—to the isokinetic and Nosé–Hoover dynamics. Based on
these works, new generalized time-reversal symmetries can be defined also for the case,
considered in this paper, of Nosé–Hoover evolution in parallel (uniform and time inde-
pendent) electric and magnetic fields. In particular, let us denote as Mext the extended
phase space spanned by the dynamical system (3), and as Ut the associated time-evolution
operator for a time t. Generalized time-reversal operators in this extended phase space are
defined, in complete analogy with what is done in the physical phase space, as involutions
Mext satisfying

U−tX =MextUtMextX ∀t ∈ R , ∀X ∈Mext (6)

where X = (Γ, s, ξ) is a point of the extended phase space. Two operators that satisfy
Equation (6) can be defined for (3):

M(3)
ext(Γ, s, ξ) = (−x, y, z, px,−py,−pz, s,−ξ) (7a)

M(4)
ext(Γ, s, ξ) = (x,−y, z,−px, py,−pz, s,−ξ) (7b)

Invariance of the dynamical system under the transformations above and time inver-
sion can be verified easily by direct inspection of Equation (3). The notation adopted in
Equation (7) reflects the nomenclature introduced in Ref. [17] where related symmetries—
established in the absence of a thermostat—were first introduced. Note that the equilibrium
density Equation (4) is even under these transformations. As mentioned above, the validity
of the time-reversal operators defined in Equation (7) and the even parity of the equilibrium
probability density of the system is a sufficient condition to reinstate standard proofs of rel-
evant statistical mechanics relationships. Notably, these new time-reversal symmetries act
only on the active degrees of freedom of the dynamical system and do not require inversion
of the magnetic field. Based on these symmetries, we can then derive interesting results
within a single-system (single magnetic field) discussion of the dynamics. For example,
following the derivation in Ref. [17], it can be shown within linear response theory that
the yz and xz components of the diffusion and conductivity tensors of the system must
be zero.

In the following, we shall consider the implications of the newly introduced time-
reversal operators on nonequilibrium properties of the system, focusing in particular on
the transient fluctuation relation. These relations have been discussed in a variety of
publications, reviewed for instance in [11,13,27]. In the following, we shall introduce
and discuss only the concepts and quantities more directly related to our calculations.
A review of relevant notation and some mathematical proofs are also available in the
Appendices. The key quantity in the transient fluctuation relation is the instantaneous
dissipation function that, in the extended phase space, is defined as

Ω(0)(X)
.
= −Ẋ · ∇X ln f0 −Λ(X) (8)

where Λ(X) = ∇X · Ẋ is the phase-space expansion rate and f0 has been defined in
Equation (4). Substitution of Equation (4) in the definition above shows, after some
algebra reported in Appendix B and similar to the developments in Ref. [19], that Ẋ ·
∇X ln f0 = βξ2K(Γ)− β ∑N

i=1 qi ṙi · E−GξδK(Γ), with δK(Γ) defined as in the last equation
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of Equation (3). Furthermore, Λ(X) = −Gξ. Combining these results in Equation (8)
we obtain

Ω(0)(X) = V βJ(Γ) · E (9)

where V is the volume of the system and J(Γ) = V −1 ∑N
i=1 qi ṙi is the microscopic current.

The average dissipation over a finite time-leg τ is defined as

Ω(0)
0,τ(X)

.
=

1
τ

∫ τ

0
dsΩ(0)(UsX) (10)

In the definition above, Ω(0)(UsX) indicates that the observable is averaged along a
trajectory of duration s starting from the initial conditions X, and the notation Ω(0)

0,τ(X)
on the left hand side underlines that—due to the finite time over which the average is
taken—the result of the integral depends on the initial conditions.

As required for the proof of the transient FRs and expected from the equations, in this
system the instantaneous dissipation is odd under Equation (7). In Figure 1 (top panel),
we show the behavior of this quantity underM(3)

ext (the behavior underM(4)
ext is the same).

In the figure, Ω(0)(t) is computed along a “forward” trajectory (in red), and along the
“backward” trajectory (in blue) identified byM(3)

ext for a molecular dynamics run of liquid
NaCl with realistic interactions (the details of the simulation are provided in the next
section). The two curves are obtained as follows: the dynamical system (3) is evolved for
500 fs (“forward” trajectory) and Ω(0)(t) is computed along the trajectory. The operator
M(3)

ext is then applied to the phase-space point obtained at the end of the evolution and
the system is evolved again via Equation (3) for 500 fs starting from the transformed point
(“backward” trajectory). Along this trajectory, we compute again Ω(0)(t). The odd parity of
the dissipation is apparent from the figure. As a curiosity, in the bottom panel of Figure 1,
we show the results for calculations in which the “backward” trajectory corresponds to
standard time-reversal in the extended phase space. The figure clearly shows the lack of
a specific signature for the dissipation under this symmetry, as expected from the theory.
The different behavior of the dissipation under the two symmetries is clearly apparent over
the relatively short propagation times reported in the figure. For larger systems—where
chaotic motion dominates—and longer times, verifying the validity of an expected time-
reversal symmetry might be problematic as numerical noise corrupts the symmetry of the
forward and backward signals. The stability and time-reversal properties of the integration
algorithm play a role on the propagation times for which symmetries can be verified and
this is one of the reasons why, as mentioned in the next section, we have employed the
symplectic algorithm introduced in Ref. [21] in our calculation. The effects of numerical
precision on the propagation might also be tested, to some extent, by changing the time
step and verifying the stability of the results obtained for the trajectories or the dissipation
function under the action of the different time-reversal operators.

Having computed and characterized the dissipation function, we now move to the
associated transient fluctuation relation. Details of the definitions and derivation of the FR
can be found in Appendix A. This relation provides an explicit expression for the ratio of
the initial probabilities to find the average dissipation function, Ω(0)

0,τ in a neighborhood of
size δ of the values A and of −A. Defining the subset of the phase space where the average
dissipation takes values in the interval (±A)δ = (±A − δ,±A + δ) as {Ω(0)

0,τ}(±A)δ
,

the transient FRs are given by [13,28]

µ0({Ω(0)
0,τ}(−A)δ

)

µ0({Ω(0)
0,τ}(+A)δ

)
=

∫
{Ω(0)

0,τ}(−A)δ

f0(X)dX∫
{Ω(0)

0,τ}(+A)δ

f0(X)dX
= exp

[
−τ[A + ε(δ, A, τ)]

]
(11)

where ε is a correction term obeying |ε(δ, A, τ)| ≤ δ. Previous discussions of (transient
albeit long-time limit) FRs in the presence of aligned static external electric and magnetic
fields [29], relied on the classical time-reversal and employed averages with respect to
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equilibrium distributions associated to opposite magnetic fields. The existence ofM(3)
ext

andM(4)
ext , however, enables to repeat the proof of the relation in a single-system picture.

The proof, detailed in Appendix A, follows the same steps as in the standard derivation,
but invokes the new operators instead of Ms where appropriate. In the next section,
the validity of this single-system relation is illustrated via molecular dynamics simulations.
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Figure 1. Instantaneous dissipation function from Equation (8) for 500 fs of the “forward” evolution
(red curve, open squares) and for 500 fs of the “backward” trajectory (blue curve, open triangles)

obtained via M(3)
ext (upper panel). The opposite values of the dissipation demonstrate the odd

signature under the generalized time-reversal transformation used. The same behavior is not
observed when the backward trajectory is obtained applyingMext

s (bottom panel) as the presence of
the magnetic field breaks the symmetry of the system under this transformation. Results are for the
nonequilibrium simulation set-up described in Section 3 for liquid NaCl.

3. Simulations and Results

In the following, the theoretical results presented in the previous section are illustrated
and further validated via molecular dynamics simulations of a realistic model of liquid
NaCl. The simulated system consists of 125 Na+ and 125 Cl− ions in a cubic box of side
20.9 Å. This corresponds to a physical density ρ = 1.3793 g cm−3 (or ionic number density
of 0.0275 Å−3). The temperature is set to T = 1550 K. Pair interactions are modeled using a
generalized Huggins–Mayer potential, with the parameters proposed by Tosi and Fumi
in Ref. [30] and ionic charges qNa = +1 e and qCl = −1 e (with e elementary charge) for
sodium and chloride, respectively. The magnetic field, directed along the z-axis, is set to to
the value of B = (0, 0, 50) cu ( cu stands for code units: a detailed description of these units
and of the conversion factors used in the code can be found in Ref. [21]), corresponding to
approximately Bz = 5× 106 T. The intensity of the field—huge on experimental scales—is
not unusual in the context of molecular dynamics simulations of interacting systems in
external fields [21,31–34] and is dictated by the relative strength of the external to the
interparticle forces. In particular, to observe appreciable effects of the external field in
a reasonable simulation time, the ratio between the average interparticle forces and the
average Lorentz forces has to be around one. The chosen intensity of the magnetic field
results in a value of this ratio approximately equal to 0.2. Note that the magnetic field is
part of the equilibrium Hamiltonian for our system. In the driven simulations, the electric
field—also directed along the z-axis—is chosen to be E = (0, 0, 10) cu, corresponding
approximately to Ez = 1× 109 V m−1. With this choice of the field, the ratio between the
average Lorentz forces and the average electrical drift forces (absolute value) is circa 1.

In the simulations, periodic boundary conditions are enforced in all directions. The evo-
lution Equation (3) are integrated via a straightforward adaptation to the case of parallel
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(static and constant) magnetic and electric fields of the symplectic algorithm proposed in
Ref. [21] for the evolution of a thermalized classical charged system in perpendicular fields.
The long-range Coulombic interactions are treated using the Ewald summation method
with an Ewald smearing parameter α = 0.1 in code units. A timestep of δt = 0.25 fs is
chosen for all the simulations, ensuring that the fluctuations of the Nosé conserved quantity
are essentially zero. The characteristic time of the generalized Nosé–Hoover thermostat is
set to 5 fs, in accordance with the prescriptions for the value of τNH given in Ref. [35].

The results discussed in this work are obtained via the following simulation scheme.
Initial conditions are fixed by placing the ions in a BCC lattice, and sampling initial veloci-
ties from the Maxwell–Boltzmann distribution corresponding to the target temperature.
A preliminary equilibration run of 25 ps is then executed at null electric field to enforce the
target temperature via the generalized Nosé–Hoover thermostat. Following this, a long
equilibrium simulation (E = 0) is performed to sample the equilibrium probability distri-
bution f0. In this run, phase-space configurations are sampled every 500 fs (a sufficient
interval to ensure decorrelation) along a trajectory of total length equal to 25 ns, yield-
ing a sample of 5× 104 decorrelated configurations. From each of these configurations,
a nonequilibrium run is started where the electric field is switched on to the reference value
of E = (0, 0, 10) cu. The average dissipation function, Equation (10), is computed along
each driven trajectory for a set of values of τ, ranging from 5 to 500 fs. Probability distribu-
tion functions (PDFs) for the possible values of the average dissipation at different times
are then extracted through a histogramming process. Results for the PDFs are presented
in Figure 2, showing the typical shifting and narrowing around the driven value of the
dissipation as the simulation time lengthens.
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Figure 2. Probability distribution functions estimated from the normalized histogram of the average
dissipation function computed in nonequilibrium runs starting from 5× 104 decorrelated equilibrium
configurations for different values of τ. The main plot shows τ ranging from 0.005 to 0.5 ps, while
the inset shows the trend for the low values of τ ranging from 0.005 to 0.04 ps, i.e., just after the
switching on of the electric field that acts as the dissipative, nonequilibrium force.

From the probabilities of opposite values of the average dissipation functions, it is
possible to check Equation (11) for the system under investigation. Results are reported in
Figure 3 for τ ranging from 0.015 ps to 0.115 ps together with the corresponding theoretical
expectations, computed from Equation (11). As expected, the agreement between the
theoretical result (solid curves) and the molecular dynamics calculation suffers as the
length of the simulation and the value of A increase. The exponential behavior of the
calculated quantities is, however, apparent and the agreement between the two sets of
data is very good. To further quantify this agreement, in Table 1, we show the values for τ
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obtained from exponential fits performed on the numerical results and compare them with
the exact value. In this case too, the agreement is very good within error bars.
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Theoretical	expectation

Transient	FR	for	E	=	10

Figure 3. Simulation results for the transient fluctuation relation from the simulations described in
Section 3. The points represent the ratio between probabilities (on the y-axis) of obtaining opposite
values of the average dissipation (A, on the x-axis) at different values of τ from Figure 2. The statis-
tical error is obtained dividing the 5× 104 nonequilibrium runs in 50 blocks of 103 runs each and
computing the normalized histogram for each of them. The error reported on the plot is obtained
from the standard deviation on the single bin of the histograms relative to different blocks. Points are
the simulation results, while the solid lines represent theoretical expectations. Parameters obtained
from exponential fits performed on this set of numerical results are reported in Table 1. Note the
logarithmic scale on the y-axis.

Table 1. Comparison between the expected value of τ and the one obtained from the exponential fits
performed on the numerical results in Figure 3.

τexp ( ps) τsimul ( ps)

0.015 0.016± 0.001
0.025 0.026± 0.001
0.035 0.035± 0.001
0.045 0.044± 0.001
0.055 0.054± 0.001
0.065 0.063± 0.002
0.075 0.073± 0.002
0.085 0.086± 0.003
0.095 0.092± 0.003
0.105 0.103± 0.003
0.115 0.116± 0.005

4. Concluding Remarks

In this work, we have demonstrated that, and illustrated how, the transient FR can be
actually verified in nonequilibrium molecular dynamics simulations of particles subject to
magnetic and electric fields, and which are Nosé–Hoover thermostatted. The dissipation
function, as well as the deterministic thermostat, have been expressed for the case in
which electric and magnetic fields are parallel to each other. Although the applicability of
generalized time-reversal symmetries implicitly implies the validity of the (transient) FR,
based on the Nosé–Hoover canonical initial equilibrium distribution, the actual possibility
of verifying it in a concrete, realistic simulation is not obvious. In the first place, to the
best of our knowledge, this test has never been performed in presence of a magnetic field,
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which substantially modifies the dynamics of particles. In the second place, a verification
of the FR may be hindered by the combination of scarce statistics and noise in the signal.
Indeed, while the thermal noise becomes irrelevant at long observation (averaging) times,
such long times drastically reduce the statistics of negative dissipations. Our simulations
prove that the delicate balance allowing the verification of the FR, can be achieved for
systems of moderately large size. Future developments will address the steady-state FR,
which requires further conditions to be verified besides the time symmetry of the dynamics
and of the initial phase-space probability distribution [13,28,36,37].
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Appendix A. Mathematical Proof of the Transient Fluctuation Relation

In what follows, we summarize the derivation of the transient FRs for general systems,
stressing the role of time-reversal symmetry in the proof. General discussions about the
FRs can be found, for example, in Refs. [27,28,38–40].

Let us consider a dynamical system

Ẋ = G(X) (A1)

where X ∈ M is a point in the generic phase space M and G : M → M is a vector field.
For any observable Ψ ∈ O—where O is the space of all the classical observables—and time
interval [t, t + τ] with τ > 0, we define

Ψt,t+τ(X)
.
=
∫ t+τ

t
dsΨ(UsX) (A2)

which is also an observable. In the equation above, Us is the propagator for a time s
associated to G. The time average over a time τ of Ψ is given by Ψt,t+τ(X)

.
= τ−1Ψt,t+τ(X).

For any interval (a, b) ⊂ R we denote by {Ψ}(a,b) the set of phase-space points such that Ψ
takes values in (a, b):

M ⊃ {Ψ}(a,b)
.
= {X ∈M : Ψ(X) ∈ (a, b)} (A3)
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Let M be endowed with a probability measure µ0 of density f0, at time t = 0, so
that dµ0(X) = f0(X)dX is the probability of an infinitesimal volume element around X.
In what follows f0 is not (necessarily) stationary under Ut. The probability of finding the
value of Ψ in a given interval (a, b) at time t = 0 is given by

µ0({Ψ}(a,b)) =
∫
{Ψ}(a,b)

dµ0(X) =
∫
{Ψ}(a,b)

f0(X)dX

The proof of the transient FR necessitates two lemmas, given in the following.

Lemma A1. Given a time-reversal transformationM satisfying the definition in Equation (6)
and the generator of the dynamics of Equation (A1) for a time t, Ut, the Jacobian of the phase-space
coordinate transformation X′ =MUtX is given by

|J| =
∣∣∣∣dX′

dX

∣∣∣∣ = exp
[∫ t

0
dsΛ(UsX)

]
= exp

[
Λ0,t(X)

]
(A4)

where Λ(X) = ∇ · Ẋ is the phase-space expansion rate and Λ0,t(X) is its time integral over an
interval t.

The well-known proof of the lemma above forM equal to the identity can be found,
for example, in Ref. [35]. The transformationM does not substantially modify this proof
or explicitly appear in Equation (A4), because it preserves the phase-space volumes,
hence |dMU tX/dX| = |dUtX/dX|.

Lemma A2. For any pair of intervals (±A)δ = (±A− δ,±A + δ) ⊂ R with δ > 0 and for any
τ, the following relation between subsets of M holds

{Ψ0,τ}(−A)δ
=MUτ{Ψ0,τ}(+A)δ

where Ψ is any observable that is odd under the chosen time reversal symmetryM, i.e., Ψ(MX) = −Ψ(X).

In writing the relation above, we indicate the action of operators on sets of points
using the same symbolsM and Ut adopted for operators acting on phase-space points,
meaning that operators acting on a set produce the set of all transformed points under the
action of the operators acting on points. For instance, given E ⊂M, we takeME as the set
of transformed points {X′ =MX : X ∈ E}.

Proof. Let us begin by establishing the action ofMUτ on a subset of phase space. For any
interval (a, b) ⊂ R we may write (see Equation (A3)):

MUτ{Ψ}(a,b) =MUτ{X ∈M : Ψ(X) ∈ (a, b)} =
= {(X′ =MUτX) ∈M : Ψ(X) ∈ (a, b)} =
= {X′ ∈M : Ψ(X = (MUτ)

−1X′) ∈ (a, b)} =
= {X′ ∈M : Ψ(U−τMX′) ∈ (a, b)}

(A5)

where, in the last equality, we used the properties U−1
τ = U−τ andM−1 =M.

We will now show that, for any X ∈ {Ψ0,τ}(−A)δ
, thenMUτX ∈ {Ψ0,τ}(+A)δ

. Let us
consider the expression for the Ψ0,τ(U−τMX) that, based on Equations (A2) and (A5), is
the value of the time-averaged observable on a point of the transformed phase-space subset.
We have

Ψ0,τ(U−τMX) =
1
τ

∫ τ

0
dsΨ(UsU−τMX) =

1
τ

∫ τ

0
dsΨ(Us−τMX)
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where, in the last equality, the time-composition property of the propagator was employed.
Performing the change of variable t = s− τ, the integral becomes

Ψ0,τ(U−τMX) =
1
τ

∫ 0

−τ
dtΨ(UtMX) (A6)

Using the definition of time-reversal transformation, Equation (6), we have that
UtM =MU−t and Equation (A6) can be written as

Ψ0,τ(U−τMX) =
1
τ

∫ 0

−τ
dtΨ(MU−tX)

Another change of the integration variable u = −t and the exchange of the integration
extrema now yield

Ψ0,τ(U−τMX) =
1
τ

∫ τ

0
duΨ(MUuX) = − 1

τ

∫ τ

0
duΨ(UuX) = −Ψ0,τ(X) (A7)

In going from the second to the third equality, the odd parity of the observable was
used, while the last equality recognizes the definition of Equation (A2). From Equation (A7),
it immediately follows that if Ψ0,τ(U−τMX) ∈ [−A− δ,−A + δ] then Ψ0,τ(X) ∈ [+A−
δ,+A + δ] and vice versa for any phase-space point X, which completes the proof.

The proof shows that the lemma is a direct consequence of time-reversal invariance of
the dynamical system underM. We can now derive the following:

Theorem A1 (Transient Ω-FR). For any pair of intervals (±A)δ = (±A− δ,±A + δ) ⊂ R
with δ > 0 and for any τ, there exists ε(δ, A, τ) such that

µ0({Ω(0)
0,τ}(−A)δ

)

µ0({Ω(0)
0,τ}(+A)δ

)
= exp

[
−τ[A + ε(δ, A, τ)]

]
with |ε(δ, A, τ)| ≤ δ.

Proof. We shall consider first a generic observable and then specialize to the case of the
dissipation function. Let us then consider an observable Ψ which is odd under the time-
reversal transformationM, i.e., Ψ(MX) = −Ψ(X). The ratio between the probabilities to
find the value of its time average for a time τ of the observable in a neighborhood of size δ
of certain values +A and −A can be written as

µ0({Ψ0,τ}(−A)δ
)

µ0({Ψ0,τ}(+A)δ
)
=

∫
{Ψ0,τ}(−A)δ

f0(X)dX∫
{Ψ0,τ}(+A)δ

f0(X)dX
(A8)

Using Lemma A2
{Ψ0,τ}(−A)δ

=MUτ{Ψ0,τ}(+A)δ
(A9)

the domain of integration in the numerator of the RHS of Equation (A8) can be written as∫
{Ψ0,τ}(−A)δ

f0(X)dX =
∫
MUτ{Ψ0,τ}(+A)δ

f0(X)dX (A10)

following which the integral at the numerator can be expressed as

µ0({Ψ0,τ}(−A)δ
)

µ0({Ψ0,τ}(+A)δ
)
=

∫
{Ψ0,τ}(+A)δ

f0(MUτX)d(MUτX)∫
{Ψ0,τ}(+A)δ

f0(X)dX
(A11)
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It is now possible to recognize in the integral in the numerator of the RHS of Equation (A11)
a change of variables of the kind X′ = MUτX. We can then apply Lemma A1 so that
Equation (A8) takes the form

µ0({Ψ0,τ}(−A)δ
)

µ0({Ψ0,τ}(+A)δ
)
=

∫
{Ψ0,τ}(+A)δ

f0(MUτX) exp
[
Λ0,τ(X)

]
dX∫

{Ψ0,τ}(+A)δ

f0(X)dX
(A12)

If the equilibrium density f0 is even under the time-reversal transformationM, i.e.,
f0(MX) = f0(X), the ratio of the probabilities is then given by

µ0({Ψ0,τ}(−A)δ
)

µ0({Ψ0,τ}(+A)δ
)
=

∫
{Ψ0,τ}(+A)δ

f0(UτX) exp
[
Λ0,τ(X)

]
dX∫

{Ψ0,τ}(+A)δ

f0(X)dX
(A13)

To proceed, we now consider the time integral of Ω(0) from Equation (8) in the
interval 0, τ

Ω(0)
0,τ(X) = ln

[
f0(X)

f0(UτX)

]
−Λ0,τ(X) (A14)

The result above is obtained by observing that the first term on the RHS of Equation (8)
is the total time derivative of the logarithm of f0 and that Λ0,τ(X) denotes the time integral
of the second term. Using Equation (A14) and multiplying and dividing the integrand in
the numerator by f0(X), Equation (A8) can be recast in the form

µ0({Ψ0,τ}(−A)δ
)

µ0({Ψ0,τ}(+A)δ
)
=

∫
{Ψ0,τ}(+A)δ

f0(X) exp
[
−Ω(0)

0,τ
]
dX∫

{Ψ0,τ}(+A)δ

f0(X)dX
.
=
〈

exp
[
−Ω(0)

0,τ
]〉(0)
{Ψ0,τ}(+A)δ

(A15)

where the last equality defines the conditional phase-space average of exp
[
−Ω(0)

0,τ
]

with
respect to the measure µ0, over the set of initial conditions X such that Ψ0,τ ∈ (+A)δ.
We now move to the case Ψ = Ω(0) to obtain

µ0({Ω(0)
0,τ}(−A)δ

)

µ0({Ω(0)
0,τ}(+A)δ

)
=
〈

exp
[
−Ω(0)

0,τ
]〉(0)
{Ω(0)

0,τ}(+A)δ

(A16)

One final observation takes us to the usual form of the transient FR given in Section 2:
The average above is conditioned on Ω(0)

0,τ taking values in (+A)δ = (+A− δ,+A + δ).
This implies that Ω(0)

0,τ at the exponent of the right hand side can be approximated as Aτ
plus a correction term ε(δ, A, τ) not larger than δ. Thus,

µ0({Ω(0)
0,τ}(−A)δ

)

µ0({Ω(0)
0,τ}(+A)δ

)
=
〈

exp
[
−Ω(0)

0,τ
]〉(0)
{Ω(0)

0,τ}(+A)δ

= exp
[
−[A + ε(δ, A, τ)]τ

]
(A17)

Note that the only requirements for the proof above are invariance of the dynamics and
of f0 underM, and that the dissipation is odd under the same time-reversal. The specific
form of the time-reversal operatorM is irrelevant, as long as Equation (6) is satisfied.

Appendix B. Derivation of the Dissipation Function for the Generalized Nosè–Hoover
Thermostatted System

The dissipation function Ω(0)(X) for the dynamical system (3) is obtained from the
definition (8)

Ω(0)(X) = −Ẋ · ∇X ln f0 −∇X · Ẋ
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substituting Ẋ from Equations (3) and the expression for f0 from Equation (4). Let us
consider first the term ∇X · Ẋ. Noting that the variable s does not enter the dynamics we
have ∇X · Ẋ = ∇Γ · Γ̇ +∇ξ ξ̇ = ∇Γ · Γ̇ where the last equality holds because the variable
ξ is not involved in the evolution equation for ξ̇. The evolution equations of the physical
variables in the dynamical system (3) can be written, in vector notation, as

ṙi = ∇pi H

ṗi = −∇ri H − ξ
(

pi − qi A(ri)
) (A18)

where the explicit form of H is given in Equation (2). Using this writing it is easy to
show that

∇X · Ẋ = ∇Γ · Γ̇ =
N

∑
i

[
∇ri · ṙi +∇pi · ṗi

]

=
N

∑
i

[
∇ri · ∇pi H −∇pi · ∇ri H − ξ∇pi

(
pi − qi A(ri)

)]
= −Gξ

(A19)

where G = 3N. We now move to the calculation of the first term in the definition of the
dissipation function:

Ẋ · ∇X ln f0(X) = Ẋ · 1
f0
∇X f0(X) (A20)

We have

1
f0
∇X f0(X) =

1
f0

(
∇Γ
∇ξ

)
Z−1 exp[−βH0(Γ)] exp

[
−

Gτ2
NHξ2

2

]
=

(
−β∇Γ H0(Γ)
−Gτ2

NHξ

)
(A21)

so that
Ẋ · 1

f0
∇X f0(X) = −βΓ̇ · ∇ΓH0(Γ)− Gτ2

NHξ̇ξ (A22)

The last term in the equation above is directly computed using the expression of ξ̇
given in Equation (3) to obtain

− Gτ2
NHξξ̇ = −GξδK(Γ) (A23)

where δK(Γ) =

[
K(Γ)−K∗

K∗

]
, with K(Γ) the kinetic energy of the system and K∗ = G/2β

(see Section 2). To compute the first term of the RHS of Equation (A22) it is convenient to
write the evolution equations for the physical variables (see system (3)) in the form

ṙi = ∇pi H0

ṗi = −∇ri H0 + qiE− ξ
(

pi − qi A(ri)
) (A24)

with H0 defined in Equation (2). Using the equations above, we have

−βΓ̇ · ∇Γ H0(Γ) = −β
N

∑
i

[
ṙi · ∇ri H0 + ṗi · ∇pi H0

]

= −β
N

∑
i

[
qiE · ∇pi H0 − ξ

(
pi − qi A(ri)

)
· ∇pi H0

] (A25)

From the first of Equation (A24) we have ∇pi H0 = ṙi, so that substituting in the first
term of the RHS of Equation (A25) we get

− β
N

∑
i

qiE · ∇pi H0 = −β
N

∑
i

qiE · ṙi = −βV J(Γ) · E (A26)
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where the microscopic estimator of the electric current J(Γ) = ∑N
i qi ṙi/V has been in-

troduced, together with the box volume V , as in Section 2. The second term in the
RHS of Equation (A25) is easily computed substituting ∇pi H0 = m−1

i
(

pi − qi A(ri)
)

in
its expression

ξβ
N

∑
i

(
pi − qi A(ri)

)
· ∇pi H0 = ξβ

N

∑
i

(
pi − qi A(ri)

)2

mi
= ξβ2K(Γ) (A27)

where, in the last equality, we used the definition of the kinetic energy of the system,
K(Γ). Combining Equations (A26) and (A27), we then get −βΓ̇ · ∇Γ H0(Γ) = −βV J(Γ) ·
E + ξβ2K(Γ). Using this result together with Equation (A23), Equation (A22) can be
rewritten as

Ẋ · 1
f0
∇X f0(X) = −βV J(Γ) · E + ξβ2K(Γ)− GξδK(Γ) (A28)

Substituting Equations (A28) and (A19) in the definition of the dissipation function
we get

Ω(0)(X) = −Ẋ · ∇X ln f0 −∇X · Ẋ = βV J(Γ) · E− ξβ2K(Γ) + GξδK(Γ) + Gξ (A29)

Using the definitions of δK(Γ) and of K∗ and after trivial simplifications, we finally obtain

Ω(0)(X) = βV J(Γ) · E (A30)

which is the result given in Section 2.
We conclude this Appendix showing that, as indicated in Section 2, the microscopic

kinetic energy provides an estimator of the temperature also in the presence of an external
magnetic field in the equilibrium ensemble characterized by the canonical equilibrium
density f0. To proceed, let us consider

〈K〉 = 1
Z

∫
dΓ
( N

∑
i

(
pi − qi A(r)

)2

2mi

)
exp

[
−β

( N

∑
i

(
pi − qi A(r)

)2

2mi
+ V(r)

)]
(A31)

with Z =
∫

dΓ exp
[
−β

(
∑N

i

(
pi−qi A(r)

)2

2mi
+ V(r)

)]
, the partition function. In the absence

of the magnetic field, i.e., for A(r) = 0, the expression above reduces to the standard kinetic
energy estimator of the temperature. When A(r) 6= 0, the estimator can be identified by
performing the change of variables p′i = pi− qi A(r), r′i = r. (The Jacobian for this change of
variables is one.) In the new variables, the integrals over r′i and p′i are independent, and the
integral over positions can be trivially simplified with the same one in the denominator.
Indicating with Zp′ the remaining normalization, we then have

〈K〉 = 1
Zp′

∫
d3 p′1 . . . d3 p′N

( N

∑
i

(p′i)
2

2mi

)
exp

[
−β

N

∑
i

(p′i)
2

2mi

]
=

G
2β

(A32)

in complete analogy with the standard case.
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