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Abstract Wepresent a newandflexible approach to repair reactive programswith respect to a
specification. The specification is given in linear-temporal logic. Like in previous approaches,
we aim for a repaired program that satisfies the specification and is syntactically close to
the faulty program. The novelty of our approach is that it produces a program that is also
semantically close to the original program by enforcing that a subset of the original traces
is preserved. Intuitively, the faulty program is considered to be a part of the specification,
which enables us to synthesize meaningful repairs, even for incomplete specifications. Our
approach is based on synthesizing a program with a set of behaviors that stay within a lower
and an upper bound.We provide an algorithm to decide if a program is repairable with respect
to our new notion, and synthesize a repair if one exists. We analyze several ways to choose
the set of traces to leave intact and show the boundaries they impose on repairability. We
also discuss alternative notions based on reward models to obtain repair systems that behave
similar to the original system. We have evaluated the approach on several examples.

Keywords Program repair · Reactive systems · Synthesis · Games · Linear temporal logic

1 Introduction

Writing a program that satisfies a given specification usually involves several rounds of debug-
ging. Debugging a program is often a difficult and tedious task: the programmer has to find
the bug, localize the cause, and repair it. Model checking [12,36] has been successfully used
to expose bugs in a program. There are several approaches [9,13,20,23,26,39,40,48] to auto-
matically find the possible location of an error. We are interested in automatically repairing a
program.Automatic program repair takes a programand a specification and searches for a cor-
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rect program that satisfies the specification and is syntactically close to the original program
(cf. [3,16,17,21,24,25,43,45]). Existing approaches follow the same idea: first, introduce
freedom into the program (e.g., by describing valid edits to the program), and then search for
a way of resolving this freedom such that the modified program satisfies the specification or
the given test cases.While these approaches have been shown very effective, they suffer from
a common weakness: they give little or no guarantees on preserving correct behaviors (i.e.,
program behaviors that do not violate the specification). Therefore, a user of a repair proce-
dure may later regret having applied a fix to a program because it introduced new bugs by
modifying behaviors that are not explicitly specified or for which no test case is available. The
approach presented by Chandra et al. [17] provides some guarantees by requiring that a valid
repair needs to pass a set of positive test cases. Correct behaviors outside these test cases are
left unconstrained and the repair can thus change them unpredictably. Ebnenasir et al. [4,19]
also observed the importance of maintaining existing behaviors. They present an approach to
repair program with respect to UNITY properties that guarantees that any arbitrary UNITY
properties is preserved. This is achieved by ensuring that the revised program does not exhibit
new behaviors. For reactive programs, it is in many case unavoidable to introduce new behav-
iors, as the program needs to respond to every possible input sequence correctly. E.g., if the
program violates a desired property on a particular input sequence, the revised version needs
to respond differently on the exact same sequence and therefore exhibit a new behavior. More
recently, Bonakdarpour et al. showed how to lift this restriction in the context of fault-tolerant
distributed systems [7] and authentication protocols [5] using domain knowledge. None of
the approaches allows the user to specify the behaviors that need to be preserved.

We present the first repair approach for reactive systems that constructs repairs that are
guaranteed to satisfy the specification and that are not only syntactically, but also semantically
close to the original program.We achieve this by allowing the user to defined a set of (correct)
traces that any valid repair needs to include. The key benefits of our approach are: (i) it
maintains correct program behavior, (ii) it is robust w.r.t. generous program modifications,
i.e., it does not produce degenerated programs if given too much freedom in modifying
the program, (iii) it works well with incomplete specifications, because it considers the
faulty program as part of the specification and preserves its core behavior, and finally (iv)
it is easy to implement on top of existing technology. We believe that our framework will
prove useful because it does not require a complete specification by taking the program
as part of the specification. It therefore makes writing specifications for programs easier.
Furthermore, specifications are often given as conjunctions of smaller specifications that are
verified individually. In order to keep desired behaviors, classical repair approaches repair a
program with respect to the entire specification. Our approach can provide meaningful repair
suggestions while focusing only on parts of the specification.

1.1 Outline

In Sect. 2 we introduce the used notation and present known results related to repair and
synthesis. Section 3 presents an example motivating the need for a new definition of program
repair. In Sect. 4, we define a new notion of repair for reactive programs and present an
algorithm to compute such repairs. The algorithm is based on synthesizing repairs with
respect to a lower and an upper bound on the set of generated traces. We present choices
for possible lower bounds in Sect. 5 and discuss limitations of any repair approach that is
based on preserving part of the program’s behavior in Sect. 6. Section 7 is dedicated to
alternative notions of “semantically close”. Finally, we present experimental results based on
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a prototype employing the NuSMV model checker in Sect. 8. Our implementation is based
on the idea of syntax-guided synthesis [1], which syntactically restricts the possible repair
candidates.

This article is based on [44]. It adds further analysiswith respect to optimal repair, suggests
alternative approaches to define “close” repairs, provides more details about the experimental
evaluation, and some new insides to improve the implementation.

2 Preliminaries

2.1 Words, languages, alphabet restriction and extension

Let AP be the finite set of atomic propositions. We define the alphabet over AP (denoted
ΣAP ) as the set of all evaluations of AP , i.e.,ΣAP = 2AP . If AP is clear from the context or
not relevant, then we omit the subscript in ΣAP . A word w is an infinite sequence of letters
from Σ. We use Σω to denote the set of all words. A language L is a set of words, i.e.,
L ⊆ Σω. Given a word w ∈ Σω, we denote the letter at position i by wi , where w0 is the
first letter. We use w..i to denote the prefix of w up to position i , and wi.. to denote the suffix
of w starting at position i . Given a set of propositions I ⊆ AP , we define the I-restriction of
a word w ∈ Σω

AP , denoted by w↓I, as w↓I = l0l1 · · · ∈ Σω
I with li = (wi ∩ I) for all i ≥ 0.

Given a language L ⊆ Σω
AP and a set I ⊆ AP , we define the I-restriction of L, denoted by

L↓I, as the set of I-restrictions of all the words in L, i.e., L↓I = {w↓I | w ∈ L}. Given a
word w ∈ Σω

I over a set of propositions I ⊆ AP , we use w↑AP to denote the extension of
w to the alphabet ΣAP , i.e., w↑AP = {w′ ∈ Σω

AP | w′↓I = w}. Extension of a language
L ⊆ Σω

I is defined analogously, i.e., L↑AP = {w↑AP | w ∈ L}. A language L ⊆ Σω
AP is

called I-deterministic for some set I ⊆ AP if for each word v ∈ Σω
I there is at most one

word w ∈ L such that w↓I = v. A language L is called I-complete if for each input word
v ∈ Σω

I there exists at least one word w ∈ L such that w↓I = v.

2.2 Machines, automata, and formulas

A (finite state) machine is a tuple M = (M, �I, �O,m0, δ,Ω), where M is a finite set of
states, �I(= 2I ) and �O(= 2O) are the input and the output alphabet, respectively, m0 ∈ Q
is the initial state, δ : Q × �I → Q is the transition function, and Ω : Q × �I → �O

is the output function. The input signals I and the output signalsO of M are required to
be distinct, i.e., I ∩ O = ∅. A run ρ of M on an input word w ∈ �I

ω is the sequence of
states that the machine visits while reading the input word, i.e., ρ = q0q1 · · · ∈ Mω such
that δ(qi , wi ) = qi+1 for all i ≥ 0. The output word M produces onw (denoted byMO(w))
is the sequence of output letters that the machine produces while reading the input word,
i.e., for the run q0q1 . . . of M on w, the output word is MO(w) = l0l1 · · · ∈ Σω

O with
li = Ω(qi , wi ) for all i ≥ 0. The combined input output word M produces on w is defined
asM(w) := (i0 ∪ o0)(i1 ∪ o1) . . . ∈ Σω

AP , where w = i0i1 . . . andMO(w) = o0o1 . . . . We
denote by L(M) the language of M, i.e., the set of combined input/output words L(M) =
{M(w) | w ∈ Σω

I }.
A Büchi automaton is a tuple A = (S, �, s0,�,F) where S is a finite set of states, �

is the alphabet, s0 ∈ S is the initial state, � ⊆ S×� ×S is the transition relation, and
F ⊆ S is the set of accepting states. A run of A on a word w ∈ �ω is a sequence of states
s0 s1 s2 . . . ∈ Sω that respects the transition relation, i.e., (si , wi , si+1) ∈ � for all i ≥ 0. A
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word is accepted by a Büchi automaton A if there exists a run s0 s1 . . . that visits infinitely
often one of the accepting states, i.e., si ∈ F for infinitely many i . We denote by L(A) the
language of the Büchi automaton, i.e., the set of words accepted by A. A language that is
accepted by a Büchi automaton is calledω-regular. A Büchi automatonA = (S, �, s0,�,F)

is called deterministic is the transition relation � maps every state and letter pair to at
most one successor state, i.e, � can be seen as a (partial) function � : S×� → S. A
safety automaton is a Büchi automaton A = (S, �, s0,�,F) without transitions from non-
accepting to accepting states, i.e., ∀(s, w, s′) ∈ � : s /∈ F → s′ /∈ F. Note that in order for a
run to be accepting is has to visiting only accepting states. A parity automaton is like a Büchi
automatonA = (S, �, s0,�, λ)butwith a different acceptance condition: the set of accepting
states is replaced by a parity function λ : S → {0, . . . , d} that maps every state to a number
from finite set of natural numbers {0, . . . , d}. A word is accepted by a parity automaton A
if there exists a run s0 s1 . . . such that the maximal number assigned (by the parity function)
to a state that is visited infintely often is even, i.e., max{s|∀i≥0∃ j≥i :s=s j } λ(s) is even.

We use linear temporal logic (LTL) [33] over a set of atomic propositions AP to specify the
desired behavior of a machine. An LTL formula may refer to atomic propositions, Boolean
operators, and the temporal operators next X and until U. Formally, an LTL formula ϕ is
defined inductively as ϕ::=p | ¬ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ with p ∈ AP . The semantics of
an LTL formula ϕ is given with respect to words w ∈ Σω

AP using the satisfaction relation
|�. As usual, we define it inductively over the structure of the formula as follows: (i)w |�
p iff p ∈ w0, (ii)w |� ¬ϕ iff w �|� ϕ, (iii)w |� ϕ1 ∧ ϕ2 iff w |� ϕ1 and w |� ϕ2, (iv)w |�
X ϕ iff w1.. |� ϕ, and (v)w |� ϕ1 U ϕ2 iff ∃i ≥ 0 : wi.. |� ϕ2 and ∀ j, 0 ≤ j < i :
w j.. |� ϕ1. The Boolean operators ∨, →, and ↔ are derived as usual. We use the common
abbreviations for false, true, F, and G, i.e., false := p∧¬p, true := ¬false, F ϕ :=
true U ϕ, and Gϕ := ¬F¬ϕ. For instance, every word w with p ∈ wi for some i ≥ 0
satisfies F p. Dually, every word with p /∈ wi for all i ≥ 0 satisfies G¬p. The language of
ϕ, denoted L(ϕ), is the set of words satisfying formula ϕ. For every LTL formula ϕ one can
construct a Büchi automaton A such that L(A) = L(ϕ) [30,47]. For every LTL formula ϕ

one can construct a deterministic parity automaton such that L(A) = L(ϕ) [31,41]. We will
use the following lemma in Sect. 4.

Lemma 1 (Machine languages) The language L(M) of any machine M = (M, �I,

�O,m0, δ,Ω) is I -deterministic (input deterministic) and I -complete (input complete).

Proof It follows directly from the definition (i.e., from the fact that δ is a complete function).
��

2.3 Realizability and synthesis problem

The synthesis problem [15] asks to construct a system that satisfies a given formal specifica-
tion.

Definition 1 (Realizability and Synthesis) Given a language language L over the atomic
propositions AP partitioned into input and output propositions, i.e., AP = I ∪ O , and
a finite state machine M with input alphabet �I and output alphabet �O, we say that M
implements (realizes, or satisfies) L , denoted byM |� L , if L(M) ⊆ L . We say language L
is realizable if there exists a machine M that implements L . An LTL-formula ϕ is realizable
if L(ϕ) is realizable.
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Theorem 1 (Synthesis Algorithms [8,34,37]) There exists a deterministic algorithm that
checks whether a given LTL-formula (or an ω-regular language) ϕ is realizable, i.e., there
exists a machine M such that M |� ϕ. If ϕ is realizable, then the algorithm constructs M.

The synthesis problemcanbe solved by computingwinning strategies in turn-based games.

2.4 Games and winning objectives

Two-player turn-based games are played by two player (Player 0 and Player 1) that push a
pebble along the edges of a directed graph. The graph is partitioned into player-0 and player-1
states. Depending on the position of the pebble either Player 0 (in player-0 states) or Player 1
(in player-1 states) can decide along with outgoing edge the pebble is moved to the next state.
A play of the game is a sequence of states that the pebble visits. Formally, a game is a tuple
G = (S,S0,S1, s0,�), where S is a finite set of states partitioned into a set S0 of player-0
states and a set S1 of player-1 states, s0 is an (optional) initial state, and � : S×S is a
transition relation indicating the edges between the states. Without loss of generality, we can
assume that every state has at least one outgoing edge, i.e., ∀ s ∈ S ∃ s′ ∈ S : (s, s′) ∈ �. We
consider several types of games. They have the same structure but differ in the used winning
objective and the defined behaviors of Player 1.

A play is an infinite sequence s0 s1 . . . of states that respect the transition relation, i.e.,
(si , si+1) ∈ � for all i ≥ 0. A strategy for Player i is function π : S∗ Si → S that chooses a
successor state for all finite sequences of states that end in a player-i state. A strategy must
prescribe only available moves, i.e., for all sequences p ∈ S∗ and player-i states s ∈ Si ,
(s, π(p s)) ∈ �. A state s0 together with two strategies π0 and π1 for Player 0 and Player 1,
respectively, describes a unique play s0 s1 . . ., denoted by G(s0, π0, πi ), in which the strate-
gies are respected in all positions, i.e., ∀i ≥ 0 : si ∈ S0 → si+1 = π0(s0 . . . si )∧ si ∈ S1 →
si+1 = π1(s0 . . . si ).

A winning objective for a player is a function f : Sω → R that maps every play to
real value. We call an objective qualitative if it maps each play only to value 0 or 1;
value 1 indicates that Player 0 has won the play; on plays with value 0, Player 0
loses and Player 1 wins. Analogously to the acceptance conditions of automata, we
use safety and parity conditions to define wining objectives. Given a set F ⊆ S of
states, the safety objectives requires that only states in F are visited, i.e., f (s0 s1 . . .) =
1 if ∀i ≥ 0 : si ∈ F , otherwise f (s0 s1 . . .) = 0. Given a function λ :
S → {0, . . . , d} that maps every state to a priority, the parity objective requires
that of the states that are visited infinitely often, the greatest priority is even, i.e.,
f (s0 s1 . . .) = 1 if max{s|∀i≥0∃ j≥i :s=s j } λ(s) is even, otherwise f (s0 s1 . . .) = 0.
We also consider the following non-qualitative objective. Given a reward function
r : S → {0, . . . , d} that maps every state to a reward, the mean-payoff objec-
tive maps every play to the average reward seen along the play, i.e., f (s0 s1 . . .) =
lim infn≥0

1
n

∑n−1
i=0 r(si ).

Given a game G = (S,S0,S1, s0,�) and a qualitative objective f , a strategyπ0 iswinning
for Player 0, if for all player-1 strategies π1: f (G(s0, π0, π1)) = 1. We say that Player 0
wins a game, if she has a winning strategy. Winning and winning strategy for Player 1 are
defined analogously. Given a gameG = (S,S0,S1, s0,�) and a non-qualitative objective f , a
strategy π0 is optimal for Player 0, if for all player-0 strategies π ′

0, minπ1 f (G(s0, π0, π1)) ≥
minπ1 f (G(s0, π ′

0, π1)). Optimality for Player 1 is defined analogously.
Given a deterministic (parity) automaton A = (S,ΣI∪O , s0,�, λ), there is a simple way

to construct a game G = (S′,S0,S1, s′0,�′) (as follows) with parity objectives λ′ such that
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if Player 0 wins the game, then there exists a machine M = (M, �I, �O,m0, δ,Ω) with
L(M) ⊆ L(A):

S′ = S0 ∪S1
S0 = S×ΣI

S1 = S×ΣI × ΣO

�′ = {(s′0, (s0, wi )) | wi ∈ ΣI }
∪{((s, wi ), (s

′, wi , wo)) | �(s, wi ∪ wo, s
′)}

∪{((s, wi , wo), (s, w
′
i )) | w′

i ∈ ΣI }
and λ′((s, wi )) = λ′((s, wi , wo)) = λ(s). We call such a game a synthesis game. In practical
applications, this construction is often optimized or even avoided by going directly from LTL
to a game (cf. [6]).

A Markov decision process (MDP) is a tuple M = (S, s0, �O, A, p), where S is a finite
set of states, s0 is an initial state, Σ is a set of actions, A : S → Σ is the action or enable
function, and p : S×Σ × S → [0; 1] is a probability function, where p(s, a, s′) defines the
probability of moving from a state s to a successor state s′ using the action a. Intuitively, an
MDP can be seen as two-player games, in which the Player strictly alternate and Player 1
is replaced by a random player. In every joint step, Player 0 first chooses an action (leading
to a player-1 state) and then a successor from the player-1 state is chosen according to the
probability function. For more details about MDP, please see [35].

3 Example

In this section we give a simple example to motivate our definitions and highlight the differ-
ences to previous approaches such as [24].

Example 1 (Traffic Light) Assume we want to develop a sensor-driven traffic light system
for a crossing of two streets. For each street entering the crossing, the system has two sets

1 typedef enum {RED, YELLOW, GREEN} traffic light;
2 module Traffic (clock, sensor1, sensor2, light1, light2);
3 input clock, sensor1, sensor2;
4 output light1, light2;
5 traffic light reg light1, light2;
6 initial begin
7 light1 = RED;
8 light2 = RED;
9 end

10 always @(posedge clock) begin
11 case (light1)
12 RED: if (sensor1) // Repair: if (sensor1 & !(light2==RED & sensor2))
13 light1 = YELLOW;
14 YELLOW: light1 = GREEN;
15 GREEN: light1 = RED;
16 endcase // case (light1)
17 case (light2)
18 RED: if (sensor2)
19 light2 = YELLOW;
20 YELLOW: light2 = GREEN;
21 GREEN: light2 = RED;
22 endcase // case (light1)
23 end // always (@posedge clock)
24 endmodule // traffic

Fig. 1 Implementation of a traffic light system and a repair
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of lights (called light1 and light2) and two sensors (called sensor1 and sensor2).
By default both lights are red. If a sensor detects a car, then the corresponding lights should
change from red to yellow to green and back to red. We are given the implementation shown
in Fig. 1 as starting point. It behaves as follows: for each red light, the system checks if the
sensor is activated (Line 12 and 18). If yes, this light becomes yellow in the next step, followed
by a green phase and a subsequent red phase. Assume we require that our implementation is
safe, i.e., the two lights are never green at the same time. In LTL, this specification is written
as ϕ = G(light1 �= GREEN∨light2 �= GREEN). The current implementation clearly
does not satisfy this requirement: if both sensors detect a car initially, then the lights will
simultaneously move from red to yellow and then to green, thus violating the specification.

Following the approach in [24] we introduce a non-deterministic choice into the program
and then use a synthesis procedure to select among these options in order to satisfy the
specification. For instance, we replace Line 12 (in Fig. 1) by if(?) and ask the synthesizer
to construct a new expression for ? using the input and state variables. The synthesizer aims
to find a simple expression s.t. ϕ is satisfied. In this case one simple admissible expression
is false. It ensures that the modified program satisfies specification ϕ. While this repair is
correct, it is very unlikely to please the programmer because it repairs “toomuch”: it modifies
the behavior of the system on input traces on which the initial implementation was correct.
We believe it is more desirable to follow the idea of Chandra et al. [17] saying that a repair is
only allowed to change the behavior of incorrect executions. In our case, the repair suggested
above would not be allowed because it changes the behavior on correct traces, as we will
show in the next section.

4 Repair

In this section we first give a repair definition for reactive systems which follows the intuition
that a repair can only change the behavior of incorrect executions. Then, we provide an
algorithm to compute such repairs.

4.1 Definitions

Given a machine M and a specification ϕ, we say a machine M′ is an exact repair of M if
(i) M′ behaves like M on traces satisfying ϕ and (ii) if M′ implements ϕ. Intuitively, the
correct traces of M act as a lower bound for M′ because they must be included in L(M′).
Analogously, L(ϕ) acts as an upper bound for M′, i.e., it specifies the allowed traces.

Definition 2 (Exact Repair) A machineM′ is an exact repair of a machineM for a specifi-
cation ϕ, if (i) all the correct traces of M are included in the language of M′, and (ii) if the
language of M′ is included in the language of the specification ϕ, i.e.,

L(M) ∩ L(ϕ) ⊆ L(M′) ⊆ L(ϕ)

Note that the first inclusion defines the behavior of M′ on all input words to which M
responds correctly according to ϕ. In other terms, M′ has only one choice for inputs which
M treat correctly. Figure 2 illustrates Definition 2: the two circles depict L(M) and L(ϕ).
A repair has to (i) cover their intersection (first inclusion in Definition 2), which we depict
with the striped area in the picture, and (ii) lie within L(ϕ) (second inclusion in Definition 2).
One such repair is depicted by the dotted area on the right. Note that it covers the complete
intersection of L(ψ) and L(M).
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ϕ M ϕ M

M

Fig. 2 Graphical representation of Def. 2

Example 2 (Traffic Light, cont.) The repair suggested in Example 1 (i.e., to replace if
(sensor1) by if (false)) is not a valid repair according to Definition 2. The original
implementation responds correctly, e.g., to the input trace in which sensor1 is always high
and sensor2 is always low, but the repair produces different outputs. The initial implemen-
tation behaves correctly on any input trace on which sensor1 and sensor2 are never high
simultaneously. Any correct repair should include these input/output traces. An exact repair
(i.e, a repair according to Definition 2) replaces if (sensor1) by if (sensor1 &
!(light2 == RED & sensor2)). This repair retains all correct traces while avoid-
ing the mutual exclusion problem.

While Definition 2 excludes the undesired repair in our example, it is sometimes too
restrictive and can make repair impossible, as the following example shows.

Example 3 (Definition 2 is too restrictive) Assume a machine M with input r and output g
that always copies r to g, i.e., M satisfies G(r ↔ g). The specification requires that g is
eventually high, i.e., ϕ = F g. Definition 2 requires the repaired machine M′ to behave
likeM on all traces on whichM behaves correctly.M responds correctly to all input traces
containing at least one r , i.e., L(M) ∩ L(ϕ) = F(r ∧ g). Intuitively,M′ has to mimicM as
long as M still has a chance to satisfy ϕ (i.e., to produce a trace satisfying F(r ∧ g)). Since
M always has a chance to satisfy ϕ, M′ has to behave like M in every step, therefore M′
also violates ϕ, and cannot be repaired in this case.

In order to allow more repairs, we relax the restriction requiring that all correct traces are
included. There are many possible choices for the set of traces M′ has to mimic, therefore
we leave it up to the user to choose the specific restriction.

Definition 3 (Relaxed Repair) Let ψ define a language (by an LTL-formula or a Büchi
automaton). We sayM′ is a repair of M with respect to ψ and ϕ ifM′ behaves likeM on
all traces satisfying ψ andM′ implements ϕ. That is,M′ is a repair constructed fromM iff

L(M) ∩ L(ψ) ⊆ L(M′) ⊆ L(ϕ) (1)

In Fig. 3 we give a graphical representation of this definition. The two concentric circles
depict ϕ and ψ . (The definition does not require that L(ψ) ⊆ L(ϕ), but for simplicity we

ϕ ψ M ϕ ψ M

M

Fig. 3 Graphical representation of Def. 3
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depict it like that.) The overlapping circle on the right representsM. The intersection between
ψ and M (the striped area in Fig. 3) is the set of traces M′ has to mimic. On the right of
Fig. 3, we show one possible repair (represented by the dotted area). The repair covers the
intersection of L(M) and L(ψ), but not the intersection of L(ϕ) and L(M). The repair lies
completely in L(ϕ). The choice ofψ influences the existence of a repair. In Sect. 5 we discuss
several choices for ψ .

Example 4 (Example 3 continued) Example 3 shows that setting ψ to ϕ, i.e., F g in our
example, can be too restrictive. If we relaxψ and require it only to include all traces in which
g is true within the first n steps for some given n (i.e., ψ = ∨

0≤i≤n X
n g), then we can find a

repair. A possible repair is a machineM′ that copies r to g in the first n steps and keeps track
if g has been high within these steps. In this case,M′ continues mimickingM, otherwise it
sets g to high in step n + 1, independent of the behavior of M. This way M′ satisfies the
specification (F g) and mimics M for all traces satisfying ψ .

4.2 Reduction to classical synthesis

The following theorem shows that our repair problem can be reduced to the classical synthesis
problem.

Theorem 2 Let ϕ, ψ be two specifications and M, M′ be two machines with input signals

I and output signal O. MachineM′ satisfies Formula 1 (L(M)∩L(ψ)
(a)⊆ L(M′)

(b)⊆ L(ϕ))

if and only if M′ satisfies the following formula:

L(M′) ⊆ (
(L(M) ∩ L(ψ))↓I↑AP → L(M)

)

︸ ︷︷ ︸
(i)

∩L(ϕ)
︸︷︷︸
(i i)

(2)

For two languages A and B, A → B is an abbreviation for (�ω \A)∪B. Intuitively, Equa-
tion 2 requires that (i) M′ behaves like M on all input words that M answers conforming
to ψ and (i i) M satisfies specification ϕ.

Proof From left to right: We have to show that L(M′) is included in (i) and (i i). Inclusion
in (i i) follows trivially from (b). It remains to show L(M′) ⊆ (

L(M) ∩ L(ψ)
)↓I↑AP →

L(M). Letw ∈ L(M′). Ifw /∈ (
L(M)∩L(ψ)

)↓I↑AP , then the implication follows trivially.
Otherwise we have to show that w ∈ L(M). Since w ∈ (

L(M) ∩ L(ψ)
)↓I↑AP , it follows

that w↓I ∈ (
L(M) ∩ L(ψ)

)↓I . From w↓I ∈ (
L(M) ∩ L(ψ)

)↓I and the fact that L(M) is
input deterministic, we know that M(w↓I ) ∈ L(M)∩L(ψ) ⊆ L(M′) (due to (a)). Together
with L(M′) being input deterministic, it follows that M(w↓I ) = M ′(w↓I ) = w, and so
w ∈ L(M) holds.

From right to left: We have to show (a) and (b). (b) follows trivially from L(M′) ⊆ (i i).
It remains to show (a), i.e., that L(M)∩L(ψ) ⊆ L(M′). Assume a wordw ∈ L(M)∩L(ψ),
we have to show that w ∈ L(M′). Let w′ ∈ L(M′) be a word such that w↓I = w′↓I . Note
thatw′ exists becauseL(M′) is input complete.Wenow show thatw = w′, which implies that
w ∈ L(M′). Since w ∈ L(M) ∩L(ψ), it follows that w↓I (= w′↓I ) ∈ (L(M) ∩L(ψ))↓I .
Therefore, we know that w′ ∈ (

L(M) ∩ L(ψ)
)↓I↑AP . From L(M′) ⊆ (i) and from

w′ ∈ L(M′), it follows that w′ ∈ L(M). Since L(M) is input deterministic, w ∈ L(M),
w′ ∈ L(M), and w↓I = w′↓I , it follows that w = w′. ��

This theorem leads together with [34] to the following corollary, which allows us to use
classical synthesis algorithms to compute repairs.
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Corollary 1 (Existence of repair) A repair can be constructed from a machine M with
respect to specifications ψ and ϕ if and only if the language

(
(L(M) ∩ L(ψ))↓I↑AP → L(M)

) ∩ L(ϕ) (3)

is realizable.

4.3 Algorithm

Corollary 1 gives an algorithm to construct repairs based on synthesis techniques (cf. [24]). In
order to compute the language defined by Formula 3, we can use standard automata-theoretic
operations. More precisely, we construct a Büchi automaton Aϕ recognizing ϕ and a Büchi
automaton Aψ recognizing ψ . Note that M is a Büchi automaton in which all states are
accepting. Since Büchi automata are closed under conjunction, disjunction, projection, and
complementation, we can construct an automaton for

(
(M×Aψ)|I + M ) × Aϕ , where

A × B denotes the conjunction, A + B denotes the disjunction of automata A and B, Ā
denotes the complementation of A, and A|I the projection of automaton A with respect to
a set of proposition I . Once we have a Büchi automaton for the language in Formula 3, we
can use Theorem 1 to synthesize a repair.

This algorithm in unlikely to scale because the complementation of a Büchi automaton
induces an exponential blow-up in the worst case [18]. Furthermore, the projection operator
can introduce non-determinism that can complicate the application of a synthesis procedure
due to the need of an additional determinization step, leading to another exponential blow-
up [32,42]. In the following we show how to obtain an efficient algorithm by avoiding
complementation (Lemma 2) and projection (Lemma 3).

Lemma 2 Given a machine M with input signals I and output signals O and an LTL-
formula ϕ over the atomic propositions AP = I ∪ O, the following equalities hold:

Σ[ I ]ω \ (
L(M) ∩ L(ϕ)

)↓I = (
L(M) ∩ L(¬ϕ)

)↓I (4)

Σ[AP]ω \ (
L(M) ∩ L(ϕ)

)↓I↑AP = (
L(M) ∩ L(¬ϕ)

)↓I↑AP (5)

Proof Intuitively, Equation 4means that the set of inputwords onwhichMbehaves correctly,
i.e., satisfies ϕ, is the complement of the set of inputs on which M behaves incorrectly, i.e.,
violates ϕ and therefore satisfies ¬ϕ. Formally, we know from the semantics of LTL that
L(¬ϕ) = �ω \L(ϕ), which implies that

L(M) ∩ L(¬ϕ)
(a)= L(M) ∩ (

�ω \L(ϕ)
) (b)= L(M) \ L(ϕ). (6)

Equality 6.b follows from simple set theory. Furthermore, since L(M) is input deterministic
and input complete, we know that

∀ w,w′ ∈ L(M) : (w↓I = w′↓I ) → w = w′ (7)

∀ w ∈ Σ[AP]ω : ∃ w′ ∈ L(M) : w↓I = w′↓I (8)
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Fig. 4 Efficient implementation

We use these facts to show that for all A ⊆ �ω,Σ[ I ]ω \(
L(M)∩ A

)↓I = (
L(M)\ A)↓I

holds, which proves together with Equation 6 that Equation 4 is true:

v ∈ (
L(M) \ A)↓I ⇐⇒ ∃w ∈ L(M) \ A : (w↓I = v)

⇐⇒ ∃w ∈ L(M) : (w↓I = v) ∧ w /∈ A

Eq.8⇐⇒
Eq.7

∀w ∈ L(M) : (w↓I = v) → w /∈ A

⇐⇒ ∀w ∈ L(M) : w ∈ A → (w↓I �= v)

⇐⇒ ∀w ∈ L(M) ∩ A : (w↓I �= v)

⇐⇒ �w ∈ L(M) ∩ A : (w↓I = v) ⇐⇒ v /∈ (
L(M) ∩ A

)↓I

Equation 5 is a simple extension of Equation 4 to the alphabet Σ[AP]. It follows from
the fact that for any language L ⊆ Σ[ I ]ω : (Σω

I \ L)↑AP = Σ[ I ]ω↑AP \ L↑AP holds. ��
With the help of Lemma 2 we can simplify Formula 3 to

(
(L(M) ∩ L(¬ψ))↓I↑AP ∪ L(M)

) ∩ L(ϕ) (9)

This allows us to compute a repair using a synthesis procedure for the automaton(
(M×A¬ψ)|I + M ) × Aϕ , which is much simpler to construct.

Lemma 3 (Avoiding input projection)Given a machineM and an LTL-formula ϕ, for every
word w ∈ �ω, w ∈ (L(M) ∩ L(ϕ))↓I↑AP ⇐⇒ M(w↓I ) ∈ L(ϕ) holds.

Proof

w ∈ (L(M) ∩ L(ϕ))↓I↑AP ⇐⇒ w↓I ∈ (L(M) ∩ L(ϕ))↓I

⇐⇒ ∃w′ ∈ L(M) ∩ L(ϕ) : w′↓I = w↓I

⇐⇒ ∃w′ ∈ L(M) : w′↓I = w↓I ∧ w′ ∈ L(ϕ)

⇐⇒ M(w↓I ) ∈ L(ϕ)

��
Due to Lemma 3 we can check if a word produced by M′ lies in (L(M) ∩ L(ϕ))↓I↑AP

by checking whether M treats the input projection of that word correctly. A synthesizer
looking for a solution to Equation 9 can simulate M and check its output against ¬ψ to
decide whetherM′ is allowed to deviate fromM. This allows us to solve our repair problem
using the simple setup we depict in Fig. 4. It shows five automata running in parallel:
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(1) The original machine M.
(2) The repair candidate M′, a copy of M that includes multiple options to modify M.
(3) A specification automaton Aϕ to check if the new machine M′ satisfies its objective.
(4) A specification automaton A¬ψ to check if the original machine M violates ψ .
(5) A specification automaton Aeq that checks if the outputs of M and M′ coincide, i.e.,

eq = G(
∧

o∈O o ↔ o′), where O is the set of outputs ofM and o′ is the copy of output
o ∈ O in machine M′.

Theorem 3 Given the setup depicted in Fig. 4, a repair option in M′ is a valid repair
according to Definition 3, if it satisfies the formula

ϕ ∧ (¬ψ ∨ eq). (10)

Proof Follows from Lemma 2 and Lemma 3. ��
Formula 10 forcesM′ to (1) behave according to ϕ and (2)mimic the behavior ofM, ifM

satisfiesψ .Note that all automata canbe constructed separately because they canbe connected
through the winning (or acceptance) condition. We avoid the monolithic construction of a
specification automaton and obtain the same complexity as for classical repair. E.g., if ϕ,
¬ψ , and eq are represented by Büchi automata, then we can check for ϕ ∧ (¬ψ ∨ eq) by
first merging the acceptance states of ¬ψ and eq , and then solving for a generalized Büchi
condition, which is quadratic in the size of the state space (|A¬ψ | × |M | × |M ′| × |Aϕ | × 2).

4.4 Implementation

Our prototype implementation is based on the following two ideas:

(1) If a synthesis problem can be decided by looking at a finite set of possible repairs1

(combinations of choices), then the choice of repair can be encoded using multiple initial
states.

(2) An initial state that does not lead to a counter example represents a correct repair. Any
model checker can be adapted to return such an initial state, if one exists. By default a
model checker returns the opposite, i.e., an initial state that leads to a counter-example
but it is not difficult to change it. E.g., in BDD-based model-checkers some simple set
operations suffice and in SAT-based checkers one canmake use of unsat-core to eliminate
failing initial states.

The main drawback of this approach is that the state space is multiplied by the number
of considered repairs. However, the approach has several benefits which make it particularly
interesting for program repair. First, it is easy to restrict the set of repairs to those that are
simple and readable. In our prototype implementation we adapt the idea of Syntax-Guided
Synthesis [1] and search for a repair within a given set of user-defined expressions. In the
examples, we derive these expressions manually from the operators used in the program
(see Sect. 8 for more details). Furthermore, we assume a given fault location that will be
replaced by one of the user-defined expressions (cf. [24,27]). Expression generation and fault
localization are interesting and active research directions (cf. Sect. 1) but are not addressed
in this chapter. We focus on the problem of deciding what constitutes a good repair. The
second main benefit is that we can adapt an arbitrary model checker to solve our repair
problem. We believe (based on initial experiments) that at the current state, model checkers

1 Note that any synthesis problem with memoryless winning strategies satisfies this condition.
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are significantly more mature than synthesis frameworks. In our implementation we used a
version of NuSMV [11] that we slightly modified to return an initial state that does not lead
to a counter example.

Note that using the syntax-guided approach (i.e., using a set of expressions to choose from)
is an implementation choice not a restriction of our approach. An implementation generating
arbitrary expression as in [24,27] is possible.

5 Discussion about choosing in the lower bound ψ

We present several different choices for ψ and analyze their strengths and weaknesses:

(1) ψ = ϕ

(2) If ϕ = f → g, then ψ = f ∧ g
(3) ψ = ∅

5.1 Exact

Choosing ψ = ϕ is the most restrictive choice. It requires that M′ behaves like M on
all words that are correct in M. While this is in general desirable, this choice can be too
restrictive as Example 3 in Sect. 4 shows. One might think that the problem in Example 3
is that ϕ is a liveness specification. The following example shows that choosing ψ = ϕ can
also be too restrictive for safety specifications.

Example 5 Let M be a machine with input r and output g; M always outputs ¬g, i.e., M
implements G(¬g). Assume ϕ = F(¬r) → G(g) = G(r)∨G(g). Applying Formula 9,
we obtain (G(¬g)∧ ¬(G(r)∨G(g)))↓I↑AP

2 ∧ (G(r)∨G(g)) = (F(¬r)∧G(g))∨(G(r)
∧G(¬g)). This formula is not realizable because amachine does not know if the environment
will always send a request (G(r)) or if the environment will eventually stop sending a request
(F(¬r)). A correct machine has to respond differently in these two cases. So, M cannot be
repaired if ψ = ϕ.

5.2 Assume-guarantee

It is very common that the specification is of the form f → g (as in the previous example).
Usually, f is an assumption on the environment and g is the guarantee the machine has to
satisfy if the environment meets the assumption. Since we are only interested in the behavior
ofM if the assumption is satisfied, it is reasonable to ask the repair to mimic only traces on
which the assumption and the guarantee is satisfied, i.e., choosing ψ = f ∧ g.

Example 6 (Example 5 continued) Recall Example 5, we decompose ϕ into assumption
F¬r and guarantee G g. Now, we can see that M is only correct on words on which the
assumption is violated, so the repair should not be required to mimic the behavior of M. If
we set ψ = F¬r ∧G g, then L(M) ∩ L(ψ) = ∅ and M′ is unrestricted on all input traces.

5.3 Unrestricted

If we choose ψ = ∅ the repair is unrestricted and the approach coincides with the work
presented in [24].

2 LTL is not closed under projection. We use LTL only to describe the corresponding automata computations.
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6 Reasons for repair failure

In the following we discuss why a repair attempt can fail. The first and simplest reason is
that the specification is not realizable. In this case, there is no correct system implementing
the specification and therefore also no repair. However, a machine can be unrepairable even
with respect to a realizable specification. The existence of a repair is closely related to the
question of realizability (Corollary 1). Rosner [38] identified two reasons for a specification
ϕ to be unrealizable.

(1) Input-completeness if ϕ is not input-complete, then ϕ is not realizable. For instance,
consider specification G(r) requiring that r is always true. If r is an input to the system,
the system cannot choose the value of r and therefore also not guarantee satisfaction
of ϕ.

(2) Causality/clairvoyance certain input-complete specifications can only be implemented
by a clairvoyant system, i.e., a system that has knowledge about future inputs (a system
that is non-causal). For instance, if the specification requires that the current output is
equal to the next input, written asG(o ↔ X i), then a correct system needs a look-ahead
of size one to produce a correct output.

The following lemma shows that given an input-complete specification ϕ, input-
completeness will not cause our repair algorithm to fail.

Lemma 4 (Input-completeness) If ϕ is input-complete, then
(
(L(M) ∩ L(ψ))↓I →

L(M)
) ∩ L(ϕ) is input-complete.

Proof Let wI ∈ �I
ω. If wI ∈ (L(M) ∩ L(ψ))↓I , then there is a word w ∈ L(M) ∩ L(ψ)

such that w↓I = wI . Therefore we have found a word for wI . If not, then a word for wI

exists because ϕ is input complete. ��
A failure due to missing causality can be split into two cases: the case in which the repair

needs finite look-ahead (see Example 7 below) and the case in which it needs infinite look-
ahead (see Example 8 below). The examples show that even if the specification is realizable
(meaning implementable by a causal system), the repair might not be implementable by a
causal system.

Example 7 Consider the realizable specification ϕ = g∨X r and a machineM that keeps g
low all the time, i.e.,M satisfies G(¬g). If input r is high in the second step,M satisfies ϕ.
An exact repair (according to Definition 2) needs to set g to low in the first step if the input
in the second step is high, because it has to mimic M in this case. On the other hand, it the
input in the second step is low, g needs to be set to high in the first step. So, any exact repair
has to have a look-ahead of at least one, in order to react correctly.

The following example shows a faulty machine and a (realizable) specification for which
a correct repair needs infinite look-ahead.

Example 8 Consider a machineMwith input r and output g that copies the input to the out-
put. Assume we search for a repair such that the modified machine satisfies the specification
ϕ = GF g requiring that g is high infinitely often. Machine M violates the specification
on all input sequences that keep r low from some point onwards, i.e., on all words fulfilling
F(G r). Recall that a repair M′ has to behave like M on all correct inputs. In this example,
M′ has to behave likeM on all finite inputs, because it does not knowwhether or not the input
word lies in F(G r) without seeing the word completely, i.e., without infinite look-ahead.
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Fig. 5 Two reasons for unrepairability. a M includes bad traces, b M cuts two valid machines

Theorem 4 (Possibility of repair)Assume that we cannot repairmachineMwith respect to a
realizable specificationϕ. Then a repairingmachine needs either finite or infinite look-ahead.

Proof Follows from [38], Corollary 1, and Lemma 4. ��

6.1 Characterization based on possible machines

Another way to look at a failed repair attempt is from the perspective of possible machines.
Recall, in Fig. 3 we depict a correct repair M′ as a circle covering the set of words in the
intersection ofM and ψ . In Fig. 5 we use the same graphical representations to explain two
reasons for failure. Figure 5a depicts several machines M′ realizing ϕ. A repair of M has
to be one of the machines realizing ϕ. As observed in [22], there are words satisfying ϕ that
cannot be produced by any correct machine (depicted as red crosses in Fig. 5a). E.g, recall
the specification ϕ = g ∨ X(r) in Example 7. The word in which g is low initially and r
high in the second step satisfies ϕ but will not be produced by any correct (causal) machine
because the machine cannot rely on the environment to raise r in the second step. If the
machine we are aiming to repair includes such a trace, a repair attempt with ψ = ϕ will fail.
In this case, we can replace ϕ (or ψ) by the strongest formula that is open-equivalent3 to ϕ

in order to obtain a solvable repair problem. However, even if ϕ is replaced by its strongest
open-equivalent formula, the repair attempt might fail for the reason depicted in Fig. 5b.
We again depict several machines M′ realizing ϕ. M shares traces with several of these
machines, but no machine covers the whole intersection of ϕ and M. In other words, an
implementing machine would have to share the characteristics of two machines.

7 Alternative notions of “semantically close”

The first inclusion in Definition 3 strictly defines the set of traces of a machineM a repaired
machine M′ has to include. We can relax or strengthen this requirement using rewards.
Rewards allows us to ask for the machine that agrees most of the time with M or for the
machine that agrees on the most traces with M. We will first present an example showing
where alternative notions make sense.

3 Two formulas ϕ and ϕ′ are open-equivalent if any machine M implementing ϕ also implements ϕ′ and
vice-versa [22].
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7.1 Letter-optimal solutions

One intuitive solution to the repair problem is a machine that “modifies the least number of
output letters”. If ϕ is a safety condition, then we search for a repair that stays within the safe
region. In order to find a valid repair that minimized the number of different output letters
between M and M′, our task is twofold: (1) stay in the safe region and (2) minimize the
number of timesM′ chooses an output that differs from the output ofM. Since we consider
infinite traces, we average the difference between M and M′ over the length of the trace.
This can be achieved using a mean payoff objective, as the following example illustrates.

Example 9 Let ϕ = G(r → g), and let M fulfill G((g↔X¬g)), i.e., the machine signals
g in every second step. Even if we choose ψ to be equal to ϕ, then a valid repairM′ could,
e.g., set g always high on every input trace for which M violates the specification, thus the
output of M′ would differs from that of M in every second step.

In order to guide M′ to choose output values that are similar to the ones from M, we
can reward M′ whenever it copies the behavior of M. To calculate such a machine M′, we
augment the synthesis game for ϕ4 and M (cf. Sect. 2) with rewards. Recall that Player 0
wins the synthesis game if she wins the safety game. The game is played in rounds. First
player 1 picks an input from �I, and then player 0 picks an output form �O. We extend the
game by granting a reward whenever the output chosen at a state is equal to the corresponding
output of M at this state and ask Player 0 to maximize the average reward long each play.
Recall that such an objectives is called mean-payoff objective.

In this example, an optimal strategy (i.e., the strategy that maximizes the grant) will give
a grant in every second step and whenever r is signaled.

In the following we generalize this idea to liveness specifications by adding a parity
condition to the mean-payoff game. For a discussion and implementation of two-player
games with mean-payoff and parity objectives, see e.g., [2].

Definition 4 (Letter-optimal repair) Let G = ((S×ΣAP ),S0,S1, s0,Δ) be a two player
game with a parity objective λ : S×ΣAP → N such that (1) player 0 controls the output
symbols, (2) player 1 controls the input symbols, and (3) the game is played in turns, i.e.,

(1) ∀(s, i ∪ o) ∈ S0 : ((s, i ∪ o), (s′, i ′ ∪ o′)) ∈ Δ → i = i ′,
(2) ∀(s, i ∪ o) ∈ S1 : ((s, i ∪ o), (s′, i ′ ∪ o′)) ∈ Δ → o = o′,
(3) ∀(s, s′) ∈ Δ∀i ∈ 0, 1 : s ∈ Si → s′ /∈ Si .

Such a game is generated, for example, to synthesize an LTL-formula. Let further M =
(M, �I, �O,m0, δ,Ω) be a machine. Then we define the Letter-Optimal parity game G′ by
combining G withM as follows. Let G′ = (M × (S×ΣAP ), M ×S0, M ×S1, (m0, s0),Δ′)
be a two player game, where ((m, (s, i ∪ o)), (m′, (s′, i ′ ∪ o′))) ∈ Δ′ if and only if ((s, i ∪
o), (s′, i ′ ∪ o′)) ∈ Δ and

s′ =
{
m if (b, i ∪ o) ∈ S1
δ(m, i) if (b, i ∪ o) ∈ S0

As reward function, we define r((m, (s, i ∪ o))) = 1 if Ω(m, i) = o and (s, i) ∈ S1,
and 0 otherwise. That is, a reward is assigned if the output of the machine and the output
of the last player-0 transition agree. In addition, we define λ′ : M × (S×ΣAP ) → N by
λ′(m, (s, i ∪ o)) = λ((s, i ∪ o)), i.e., we copy the parity condition.

4 Note that this extension can also be applied in addition to ψ , since our new repair notion is reducible to the
classical synthesis problem (cf. Sect. 4).
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A letter-optimal repair is a winning andmean-payoff optimal strategy for the defined game
and vice versa. The parity condition ensures that the repair is qualitatively correct (e.g., fulfills
an LTL-formula), while the quantitative (mean-payoff) condition ensures that as few letters
as possible are modified. Note that such games might require infinite memory strategies in
general, but ε-optimal finite memory strategies exist [2].

7.2 Trace-optimal solutions

Another intuitive solution to the repair problem is a machine that “modifies the least number
of traces on average”. We model the “on average” part using uniformly distributed inputs.
This requires us to combine adversarial and probabilistic opponents because we need to
assume that Player 1 is adversarial to ensure the correctness of the specification; on the other
hand, to optimize the “on average” modifications, we assume a probabilistic Player 1. In
the following we will focus on safety specifications because for those specifications one
can take a unified view by translating the adversarial behavior into probabilistic behavior.
For parity specification, a unified view is not possible: one has to keep them separately and
find a strategy that satisfies the parity condition against an adversarial player and optimizes
the mean-payoff condition against a probabilistic player. Note that one can compute such a
strategy by adapting the algorithm for mean-payoff-parity game [14] to handle a probabilistic
opponent.

Example 10 Consider the following formula.

ϕ = (i ∧ X i → ((o ∧ X o) ∨ (¬o ∧ X¬o))) ∧ (i ∧ X¬i → (¬o ∧ X¬o))

as specification over input alphabet �I = {i} and output alphabet �O = {o}. It requires on
input i i . . . either output oo . . . or output ¬o¬o . . . . On input i¬i it requires output ¬o¬o.
Consider further a faulty machine M that writes o constantly. The machine is correct on
input words starting with i i and words starting with ¬i . It is incorrect on all words starting
with i¬i .

Our goal is to minimize the number of traces that are modified. We therefore assign to
each trace a payoff, either 1 or 0. An unchanged trace gets payoff 1, while a changed trace
gets payoff 0. To “count” the number of changed traces in a set of traces, we take the average
payoff of all traces in that set. If all traces are changed, then the payoff is 0; if none of the
traces was changed, then the payoff is 1. If half of the traces have changed, then the payoff
is 0.5.

The minimal number of traces a repaired system has to change is all traces that start with
i , i.e., 50 % of all possible traces.

The following definition provides an MDP whose optimal strategy provides a machine
that is correct for a safety specification and has a minimal number of changed traces.

Definition 5 (Trace-optimal MDP) Let A = (S, s0, �,�,F) be a realizable, deterministic
safety automaton, and let M = (M,m0, �I, �O, δ,Ω) be a machine not fulfilling A.

We define the Word-Optimal MDP M as follows. Let M = ((M ∪ {⊥,�}) ×
S×�I, (�, s0, i0),�O, A, p) be an MDP, where i0 is some letter in �I, A(m, s) = {o ∈
�O | ∃ s′ : (s, i ∪ o, s′) ∈ �}, i.e., the set of outputs allowed by the safety automaton in state
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s for input i . Further, the probability function is defined as

p((m, s, i), o)(m′, s′, i ′) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
| �I | m = � ∧ m′ = m0 ∧ s′ = s0
1

| �I | m �= ⊥ ∧ Ω(m, i) = o∧
m′ = δ(m, i) ∧ (s, i ∪ o, s′) ∈ �

1
| �I | m �= ⊥ ∧ Ω(m, i) �= o∧

m′ = ⊥ ∧ (s, i ∪ o, s′) ∈ �
1

| �I | m = ⊥ ∧ m′ = ⊥ ∧ (s, i ∪ o, s′) ∈ �

0 otherwise

As reward function, we define r((m, s, i), o) = 1 if m �= ⊥, and 0 otherwise.

The initial state (modeled by �) defines the distribution of the first letter. Subsequently,
the machine and the safety automaton move synchronously, depending on the random input
letter. If the strategy for an MDP makes a choice that differs from the choice of M, then
the first component of the state of the MDP goes to ⊥ immediately, signaling that we “left”
the machine. On the other hand, if the strategy for an MDP never differs from the choice
of M, then the first component of the states of a trace will always be an element of M .
Therefore, the reward we chose will provide an average payoff of 1 if the behavior of M is
never left, and a payoff of 0 if the behavior differs at least once. In that sense, the reward
function “counts” changed and unchanged traces. An optimal, i.e., maximizing strategy for
M therefore changes the minimal number of traces.

8 Empirical results

In this section we first describe the repair we synthesized for the traffic light example from
Sect. 3. Then, we summarize the results on a set of example we analyzed. All experiments
were run on a 2.4GHz Intel(R) Core(TM)2 Duo laptop with 4 GB of RAM.

8.1 Traffic light example

In the traffic light example, we gave the synthesizer the option to choose from 250 expressions
(all possible logical expression over combinations of light colors and signal states). NuSMV
returns the expression (s2 ∧ s1 ∧ (l2 �= RED)) ∨ (¬s2 ∧ s1 ∧ l2 �= GREEN), which is
equivalent to s1 ∧ ((s2 ∧ l2 �= RED) ∨ (¬s2 ∧ l2 �= GREEN)) in 0.2 seconds. The repair
forbids the first light from turning yellow if the second light is already green. This is not the
repair we suggested in Sect. 3 because the synthesizer has freedom to choose between the
expressions that satisfy the new notion. Our new approach avoids the obvious but undesired
repair of leaving the first light red, irrespective of an arriving car. This is the solution NuSMV
provides (within 0.16s) if we use the previous repair notion [24].

8.2 Experiment description

In order to empirically test the viability of our approach and to confirm our improved repair
suggestions, we applied our approach to several examples.Wewill first describe the examples
we considered, and then we will analyze the results.
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1 binary search(array, needle) {
2 lower := 1
3 upper := len(array);
4 i := (upper − lower)/2;
5 while( array[i] != needle
6 && array[upper] > needle
7 && array[lower] < needle) {
8 if (array[i] < needle) {
9 lower = i;

10 } else {
11 upper = i;
12 }
13 i = (upper − lower)/2;
14 return i;
15 }
16 }

Fig. 6 Faulty implementation of a binary search algorithm

8.2.1 Binary search

Figure 6 shows an implementation of a binary search algorithm that includes a common
mistake related to the assignment of lower. The implementation loops forever if the array
has even length and the target value (needle) is in the rightmost element. We can check
the implementation against the following property to reveal the mistake.

ϕ = sorted(array) ∧ needle ∈ array �⇒ Farray[i] = needle.

In order to repair the implemenation we allow the synthesizer to replace the assignment
to lower with i, lower + 1, lower - 1, upper, i - 1, or i + 1. Synthesizing
with ψ = ϕ will not allow us to find a solution to this example. In order to see that, consider
the array as input symbol and the returned value as output symbol. We then demand that the
synthesizer finds a solution such that

(1) The two implementations return the same result when the input was invalid
(2) The two implementations return the same result when the input was valid and the broken

implementation returns the correct result

It makes more sense to demand that the two implementations return the same result if
the input is valid and the original implementation returns the correct result (Sect. 5). In fact,
given this specification, the synthesizer returns the correct result lower + 1.

8.2.2 PCI

This example models the PCI Bus protocol, and is taken from the NuSMV distribution. The
arbiter has to give bus access to six elements, all of which can demand access at any time.
The solution is to have three smaller two-input arbiters that decide for priority between a
pair of elements each, and one three-input arbiter that takes the decision of the two-input
arbiters as input. They can run either in a fixed-priority or in a round-robin mode. For each
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bus element, there is a specification demanding that the element eventually can access the
bus, if it demands it.

We introduced a bug in the round-robin mode of the two-input arbiter, which gave access
to a element 1 if element 2 requested it (a simple off-by-one error). This meant that, for
example, the processor would never receive access to the bus, i.e., one of the specifications
is violated. We freed the behavior of the offending round-robin scheduler, thus allowing the
synthesizer a lot of choice.

Using the classical synthesis approach, we can guarantee access to the processor by always
granting access to this processor. We have repaired the arbiter according to the violated prop-
erty, but significantly restricted its behavior and introduced new bugs, that lead to violations
for other properties. With our approach, the synthesizer finds an implementation that guar-
antees access for all bus elements, although the specification refers only to one of clients.

8.2.3 Read–write lock example

A read–write lock can be implemented using a semaphore and a lock. In read–write locks
there can be arbitrarily many readers to some data-structure. However, if a thread wants to
write to the data-structure, then it tries to acquire a write-lock. Once it tries to acquire a
write-lock, an implemenation can stop granting access to new readers. It then waits until all
readers have left the data-structure, grants the write-lock, and only starts granting read- or
write-locks, once the write-lock is released.

Consider the implementation shown in Fig. 7. Our specification demands that if whatever
happens in . . . is bounded, then there is no deadlock. The implementation violates this
specification. Consider a run in which two threads simultaneously try to acquire the write-
lock. The system can grant one half of the locks to one thread, the rest of the locks to the
other thread. Since no thread has all locks, none can proceed and none of them releases all
locks. Therefore the system is in a deadlock.

We now add an additional mutex, because we suspect that we have to lock the writer
locking function, but we do not know how and when exactly. Figure 8 shows the extended
implementation. We leave the actual condition when to acquire and release the lock free. Our
repair method will only activate the condition in function write_lock. If any other lock
is added, the change modifies runs that were implementing the specification before. Only the
traces where two or more threads try to acquire the writer-lock are affected. This is not the
case for the original repair approach, which can enable locks everywhere.

8.2.4 Processor

Here we take a model processor from the VIS distribution. We introduce a bug that shows
up when executing the XOR opcode, i.e., where the processor has to store the bit-wise xor of
two words.
We have several different repair models for this example, varying in the number and structure
of candidates. In the first model, we restrict repair to the faulty component. Here, classical
synthesis and our new approach provide the same result.

In the other model, we have more freedom in repairs. In this case, classical synthesis will
allow changes that are not relevant to the specification, thereby introducing new bugs. Our
approach, on the other hand, forbids such repairs and finds the only repair not inducing new
bugs.
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1 struct rw lock {semaphore sem(N THREADS)};
2
3 write lock(rw lock) {
4 for i from 1 to N THREADS {
5 sem−−;
6 }
7 }
8
9 read lock(rw lock) {

10 sem−−;
11 }
12
13 release read lock(rw lock) {
14 sem++;
15 }
16
17 release write lock(rw lock) {
18 for i from 1 to N THREADS {
19 sem++;
20 }
21 }
22
23 THREAD i {
24 while (∗) {
25 if (∗) {
26 read lock(lock);
27 ....;
28 release read lock(lock);
29 } else {
30 write lock(lock);
31 ....;
32 release write lock(lock);
33 }
34 }
35 }

Fig. 7 Faulty implementation of a read–write lock

8.3 Results

We report the results in Table 1; For each example, we report the number of choices for
the synthesizer (Column #Repairs), the time and number of BDD variables to (1) verify the
correctness of the repair that we obtain (Column Verification), (2) find a repair with our new
approach (Column Repair), and (3) solve the classical repair problem (Column Classical
Repair).

In order to synthesize a repair, we followed the approach described in Sect. 4.4 (Fig. 4), i.e.,
we manually added freedom to the model and wrote formula for ¬ψ and equality checking.
For all but one of the examples (Processor (1)), the previous approach synthesizes degenerated
repairs, while our approach leads to a correct program repair.

AG (→) is Example 5 from Sect. 5. It uses the original specification for ψ , i.e., ψ =
F(¬r) → G(g). We let the synthesizer choose between all possible Boolean combinations
of g, r and a memory bit containing the previous value of g. Our approach fails to find
a repair. AG (&) is Example 6 from Sect. 5 with ψ = F(¬r) ∧ G(g), using the same
potential repairs. In this case, a valid repair is found. As in the Assume-Guarantee examples,
we have two different choices for ψ in the Binary Search (BS) example. In the case that
ψ = sorted → correct , there is no repair available, while for ψ = sorted ∧ correct we
find the correct repair.
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1 struct rw lock {semaphore sem(N THREADS)};
2 mutex m;
3
4 write lock(rw lock) {
5 if (?) lock(m);
6 for i from 1 to N THREADS {
7 sem−−;
8 }
9 if (?) unlock(m);

10 }
11
12 read lock(rw lock) {
13 if (?) lock(m);
14 sem−−;
15 if (?) unlock(m);
16 }
17
18 release read lock(rw lock) {
19 if (?) lock(m);
20 sem++;
21 if (?) unlock(m);
22 }
23
24 release write lock(rw lock) {
25 if (?) lock(m);
26 for i from 1 to N THREADS {
27 sem++;
28 }
29 if (?) unlock(m);
30 }

Fig. 8 Read–write lock implementation extended with mutex option

Table 1 Experimental results

#Rep. Verification Repair Class. repair

Time #Vars Time #Vars Time #Vars

AG (→) 212 n/a n/a 0.038 16 0.012 14

AG (&) 212 0.015 14 0.025 14 0.012 12

BS (→) 5 n/a n/a 0.78 27 0.1 21

BS (&) 5 0.232 27 0.56 27 0.1 21

RW-lock 16 0.222 34 0.232 34 0.228 22

Traffic 255 0.183 68 0.8 68 0.155 63

PCI 27 0.3 56 0.8 56 0.5 53

Processor (1) 2 2 m 02 s 135 2 m 41 s 135 0.5 69

Processor (2) 4 4 m 28 s 138 5 m 07 s 138 0.5 69

Processor (3) 25 5 m 23 s 140 18 m 05 s 140 0.5 71

The RW-Lock example demonstrates that our approach can also be used to synthesize
locks. The synthesizer can choose between 16 options (which represent release/acquire
actions of different locks at different locations). Our notion of repair forbids the acquisi-
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tion of other locks (the repair we obtained in 27 ms with the approach in [24]), because this
would imply for example that two threads asking for a read-lock at the same time have to wait
for each other. Our notion of repair encodes that runs that were unobstructed before remain
unobstructed in the new implementation as well, as long as they do not lead to a dead-lock.
Our experiments show that our notion of repair urges the synthesizer to find the intended
solution by forcing it to leave correct program runs unchanged. We therefore believe that our
approach makes synthesis as a development methodology more practical.

The Processor examples demonstrate what happens in complex models when increasing
the amount of freedom in a model. They also show how repairing partial specifications may
lead to the introduction of newbugs. InProcessor (1), theminimal amount of non-determinism
is introduced, i.e., only as much freedom as strictly necessary to repair. Here, the classical
approach and our new approach give the same result. In Processor (2), we introduce more
freedom, which leads to incorrect repairs with the classical approach. In particular, the fault
is in the ALU of the processor, and the degenerated repairs incorrectly execute the AND
instruction, which is handled correctly in the original model. We allow replacing the faulty
and the a correct instruction by either a XOR, AND, OR, SUB or ADD instruction. Finally,
Processor (3) shows that the time necessary for synthesis grows sub-linearly with the number
of repair options.

On average, synthesizing a repair takes 2.3 times more time than checking its correctness.
Our newapproach seems to be one order ofmagnitude slower than the classical approach. This
is expected because finding degenerated repairs is usually much simpler. (This is comparable
to finding trivial counter examples.) In order to find correct repairs with the approach of [24],
we would need to increase the size of the specification, which will significantly slow down
the approach.

We also rerun the processor example using a commercial tool with an option to focus on
sequential equivalence checking. We observed an 20% performance increase with the option
enabled, which is a preliminary confirmation of your hypothesis that tools specialized in
solving the sequential equivalence checking problems are well suited for this task.

Finally, during our experiments we observed that we can speed-up the computation be
requiring only a subset of the outputs to follow the fault machineM, ifM satisfies the lower
bound ψ . E.g., only outputs that are in the cone-of-influence of the repair location need to
be compared.

9 Future work and conclusions

9.1 Future work

Investigation of ways to increase the computational power of a repaired machine seems
interesting. Every machineM′ repairingM has to behave likeM until it concludes thatM
does not respond to the remaining input word correctly. As shown in Example 7, M′ might
not know early enough if M will fail or succeed. Therefore, studying repairs with finite
look-ahead is an interesting direction. To extend the applicability of our approach to infinite
state programs, one could explore suitable program abstraction techniques (cf. [46]). We are
also planing to investigate if simulation distances [10] can be used to find a semantically close
repair. Finally, we are planing to continue our experiments with model checkers specialized
in solving the sequential equivalence checking problem [28,29]. We believe that such solvers
perform well on our problem, because M′ and M have many similar structures.
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9.2 Conclusion

When fixing programs, we usually fix bugs one by one; at the same time, we try to leave as
many parts of the program unchanged as possible. In this chapter, we introduced a new notion
of program repair that supports thismethod. The approach allows an automatic program repair
tool to focus on the task at hand instead of having to look at the entire specification. It also
facilitates finding repairs for programs with incomplete specifications, as they often show up
in real word programs.
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