
mathematics

Article

Some Properties of the Kilbas-Saigo Function

Lotfi Boudabsa 1 and Thomas Simon 2,*

����������
�������

Citation: Boudabsa, L.; Simon, T.

Some Properties of the Kilbas-Saigo

Function. Mathematics 2021, 9, 217.

https://doi.org/10.3390/

math9030217

Received: 11 December 2020

Accepted: 16 January 2021

Published: 22 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institut de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland;
lotfi.boudabsa@epfl.ch

2 Laboratoire Paul Painlevé, UMR 8524, Université de Lille, Cité Scientifique, F-59655 Villeneuve d’Ascq, France
* Correspondence: thomas.simon@univ-lille.fr

Abstract: We characterize the complete monotonicity of the Kilbas-Saigo function on the negative
half-line. We also provide the exact asymptotics at −∞, and uniform hyperbolic bounds are derived.
The same questions are addressed for the classical Le Roy function. The main ingredient for the proof
is a probabilistic representation of these functions in terms of the stable subordinator.
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1. Introduction

The Kilbas-Saigo function is a three-parameter entire function with the convergent
series representation

Eα,m,l(z) = 1 + ∑
n≥1

(
n

∏
k=1

Γ(1 + α((k− 1)m + l))
Γ(1 + α((k− 1)m + l + 1))

)
zn, z ∈ C,

where the parameters are such that α, m > 0 and l > −1/α. It can be viewed as a general-
ization of the one- or two-parameter Mittag–Leffler function since, with standard notations,

Eα,1,0(z) = ∑
n≥0

zn

Γ(1 + αn)
= Eα(z)

and
E

α,1, β−1
α
(z) = Γ(β) ∑

n≥0

zn

Γ(β + αn)
= Γ(β)Eα,β(z)

for every α, β > 0 and z ∈ C. This function was introduced in [1] as the solution to
some integro-differential equation with Abelian kernel on the half-line, and we refer to
Chapter 5.2 in [2] for a more recent account, including an extension to complex values of
the parameter l. In our previous paper [3], written in collaboration with P. Vallois, it was
shown that certain Kilbas-Saigo functions are moment generating functions of Riemannian
integrals of the stable subordinator. This observation made it possible to define rigorously
some Weibull and Fréchet distributions of fractional type via an independent exponential
random variable and the stable subordinator—see [3] for details. In the present paper, we
wish to take the other way round and use the probabilistic connection to deduce some
non-trivial analytical properties of the Kilbas-Saigo function.

In Section 2, we tackle the problem of the complete monotonicity on the negative
half-line. This problem dates to Pollard in 1948 for the one-parameter Mittag–Leffler
function—see e.g., Section 3.7.2 in [2] for details and references. It was shown in [3] that
for every m > 0 and α ∈ (0, 1] the function x 7→ Eα,m,m−1(−x) is completely monotone, ex-
tending Pollard’s result and solving an open problem stated in [4]. In Theorem 1 below, we
characterize the complete monotonicity of x 7→ Eα,m,l(−x) by α ∈ [0, 1] and l ≥ m− 1/α.
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We also give an explicit representation, albeit complicated in general, of the underlying pos-
itive random variable. Along the way, we study an interesting family of Mellin transforms
given as the quotient of four double Gamma functions.

In Section 3, we establish uniform hyperbolic bounds on the negative half-line for two
families of completely monotonic Kilbas-Saigo functions, extending the bounds obtained
in [5] for the classical Mittag–Leffler function. The argument in [5] relied on stochastic and
convex orderings and was rather lengthy. We use here the same kind of arguments, but the
proof is shorter and more transparent thanks to the connection with the stable subordinator;
which also enables us to derive some monotonicity properties on m 7→ Eα,m,l(x) for every
x ∈ R—see Proposition 1 below.

In Section 4, we address the question of the asymptotic behavior at −∞ in the com-
pletely monotonic case α ∈ (0, 1] and l ≥ m− 1/α. It is shown in Theorem 5.5 of [2] that in
the general case α, m > 0 and l > m− 1/α, the entire function Eα,m,l(z) has order ρ = 1/α
and type σ = 1/m. However, precise asymptotics along given directions of the complex
plane do not seem to have been investigated as yet, as is the case—see e.g., Proposition 3.6
in [2] for the classical Mittag–Leffler function. For the negative half-line and α ∈ (0, 1],
the asymptotics are different depending on whether l = m + 1/α or l > m + 1/α. In the
former case, the behavior is in cα,m x−(1+1/m) with a non-trivial constant cα,m obtained
from the connection with the fractional Fréchet distribution and given in terms of the
double Gamma function—see Proposition 7 and Remark 8 (c) below. In the latter case,
the behavior is in cα,m,l x−1 with a uniform speed and a simple constant cα,m,l given in
terms of the standard Gamma function—see Proposition 6 below. The method for the case
l > m + 1/α relies on the computation of the Mellin transform of the positive function
Eα,m,l(−x), which is obtained from the proof of its complete monotonicity, and is inter-
esting in its own right—see Remark 2 (c) below. Along the way, we provide the exact
asymptotics of the fractional Weibull and Fréchet densities at both ends of their support
and we give a series of probabilistic factorizations. The latter enhance the position of the
fractional Fréchet distribution, which is in one-to-one correspondence with the boundary
Kilbas-Saigo function Eα,m,m−1/α(x), as an irreducible factor—see Remark 8 (a) below.

In the last Section 5, we pay attention to the so-called Le Roy function with parameter
α > 0. This is a simple generalization of the exponential function defined by

Lα(z) = ∑
n≥0

zn

(n!)α
, z ∈ C.

Introduced in [6] in the context of analytic continuation, a couple of years before the
Mittag–Leffler function, the Le Roy function has been much less studied. It was shown
in [3] that this function encodes for α ∈ [0, 1] a Gumbel distribution of fractional type, as
the moment generating function of the perpetuity of the α−stable subordinator. This fact is
recalled in Proposition 9 below, together with a characterization of the moment generating
property. The exact asymptotic behavior at −∞ is also derived for α ∈ [0, 1], completing
the original result of Le Roy. Finally, the non-increasing character of α 7→ Lα(x) on [0, 1] for
every x ∈ R is established by convex ordering. It is worth mentioning that this property is
an open problem—see Conjecture 5 below-for the Mittag–Leffler function.

As in [3], an important role is played throughout the paper by Barnes’ double Gamma
function G(z; δ) which is the unique solution to the functional equation G(z + 1; δ) =
Γ(zδ−1)G(z; δ) with normalization G(1; δ) = 1, and its associated Pochhammer type symbol

[a; δ]s =
G(a + s; δ)

G(a; δ)
·

We have gathered in Appendix A all the needed facts and formulæ on this double
Gamma function, whose connection with the Kilbas-Saigo function has probably a broader
focus than the content of the present paper (we leave this topic open to further research).
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2. Complete Monotonicity on the Negative Half-Line

In this section, we wish to characterize the property that the function x 7→ Eα,m,l(−x)
is completely monotone (CM) on (0, ∞). We begin with the following result on the above
generalized Pochhammer symbols, which is reminiscent of Proposition 5.1 and Theorem 6.2
in [7] and has an independent interest.

Lemma 1. Let a, b, c, d and δ be positive parameters. There exists a positive random variable
Z = Z[a, c; b, d; δ] such that

E[Zs] =
[a; δ]s[c; δ]s
[b; δ]s[d; δ]s

(1)

for every s > 0, if and only if b + d ≤ a + c and inf{b, d} ≤ inf{a, c}. This random variable is
absolutely continuous on (0, ∞), except in the degenerate case a = b = c = d. Its support is [0, 1]
if b + d = a + c and [0, ∞) if b + d < a + c.

Proof of Lemma 1. We giscard the degenerate case a = b = c = d, which is obvious with
Z = 1. By (A2) and some rearrangements—see also (2.15) in [8], we first rewrite

log
(
[a; δ]s[c; δ]s
[b; δ]s[d; δ]s

)
= κ s +

∫ 0

−∞
(esx − 1− sx)

(
e−b|x| + e−d|x| − e−a|x| − e−c|x|

|x|(1− e−|x|)(1− e−δ|x|)

)
dx

for every s > 0, where κ is some real constant. By convexity, it is easy to see that if
b + d ≤ a + c and inf{b, d} ≤ inf{a, c}, then the function z 7→ zb + zd − za − zc is positive
on (0, 1). This implies that the function

x 7→ e−b|x| + e−d|x| − e−a|x| − e−c|x|

|x|(1− e−|x|)(1− e−δ|x|)

is positive on (−∞, 0) and that it can be viewed as the density of some Lévy measure
on (−∞, 0), since it integrates 1∧ x2. By the Lévy–Khintchine formula, there exists a real
infinitely divisible random variable Y such that

E[esY] =
[a; δ]s[c; δ]s
[b; δ]s[d; δ]s

for every s > 0, and the positive random variable Z = eY satisfies (1). Since we have
excluded the degenerate case, the Lévy measure of Y is clearly infinite and it follows from
Theorem 27.7 in [9] that Y has a density and the same is true for Z.

Assuming first b + d = a + c, a Taylor expansion at zero shows that the density of the
Lévy measure of Y integrates 1∧ |x| and we deduce from (A2) the simpler formula

logE[esY] = log
(
[a; δ]s[c; δ]s
[b; δ]s[d; δ]s

)
= −

∫ ∞

0
(1− e−sx)

(
e−bx + e−dx − e−ax − e−cx

x(1− e−x)(1− e−δx)

)
dx.

By the Lévy–Khintchine formula, this shows that the ID random variable Y is negative.
Moreover, its support is (−∞, 0] since its Lévy measure has full support and its drift
coefficient is zero—see Theorem 24.10 (iii) in [9], so that the support of Z is [0, 1].

Assuming second b + d < a + c, the same Taylor expansion as above shows that the
density of the Lévy measure of Y does not integrate 1 ∧ |x| and the real Lévy process
associated with Y is thus of type C using the terminology of [9]—see Definition 11.9 therein.
By Theorem 24.10 (i) in [9], this implies that Y has full support on R, and so does Z on R+.
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It remains to prove the only if part of the Lemma. Assuming a ≤ d and b ≤ c without
loss of generality, we first observe that if a < b then the function

s 7→ [a; δ]s[c; δ]s
[b; δ]s[d; δ]s

is real-analytic on (−b, ∞) and vanishes at s = −a > −b, an impossible property for
the Mellin transform of a positive random variable. The necessity of b + d ≤ a + c is
slightly more subtle and hinges again upon infinite divisibility. First, setting ϕ(z) =
zb + zd − za − zc and z∗ = inf{z > 0, ϕ(z) < 0}, it is easy to see by convexity and a
Taylor expansion at 1 that if b + d > a + c, then z∗ < 1 and ϕ(z) < 0 on (z∗, 1) with
ϕ(z) ∼ (b + d− a− c)(z− 1) as z → 1. Introducing next the ID random variable V with
Laplace exponent

logE[esV ] = −κ s +
∫ 0

log z∗
(esx − 1− sx)

(
e−a|x| + e−c|x| − e−b|x| − e−d|x|

|x|(1− e−|x|)(1− e−δ|x|)

)
dx,

we obtain the decomposition

log
(
[a;δ]s [c;δ]s
[b;δ]s [d;δ]s

)
+ logE[esV ] =

∫ log z∗
−∞ (esx − 1− sx)

(
e−b|x|+e−d|x|−e−a|x|−e−c|x|

|x|(1−e−|x|)(1−e−δ|x|)

)
dx,

whose right-hand side is the Laplace exponent of some ID random variable U with an
atom because its Lévy measure, whose support is bounded away from zero, is finite—see
Theorem 27.4 in [9]. On the other hand, the random variable V has an absolutely continuous
and infinite Lévy measure and hence it has also a density. If there existed Z such that (1)

holds, then the independent decomposition U d
= V + log Z would imply by convolution

that U has a density as well. This contradiction finishes the proof of the Lemma. �

Remark 1. (a) By the Mellin inversion formula, the density of Z[a, c; b, d; δ] is expressed as

f (x) =
1

2iπx

∫ s0+i∞

s0−i∞
x−s
(
[a; δ]s[c; δ]s
[b; δ]s[d; δ]s

)
ds

over (0, ∞) for any s0 > − inf{b, d}. From this expression, it is possible to prove that this density
is real-analytic over the interior of the support. We omit details. Let us also mention by Remark 28.8
in [9] that this density is positive over the interior of its support.

(b) With the standard notation for the Pochhammer symbol, the aforementioned Proposition 5.1
and Theorem 6.2 in [7] show that

s 7→ (a)s(c)s

(b)s(d)s

is the Mellin transform of a positive random variable if and only if b + d ≥ a + c and inf{b, d} ≥
inf{a, c}. This fact can be proved exactly as above, in writing

log
(
(a)s(c)s

(b)s(d)s

)
= −

∫ ∞

0
(1− e−sx)

(
e−ax + e−cx − e−bx − e−dx

x(1− e−x)

)
dx.

This expression also shows that the underlying random variable has support [0, 1] and that it
is absolutely continuous, save for a + c = b + d where it has an atom at zero. We refer to [7] for an
exact expression of the density on (0, 1) in terms of the classical hypergeometric function.

We can now characterize the CM property for Eα,m,l(−x) on (0, ∞).
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Theorem 1. Let α, m > 0 and l > −1/α. The Kilbas-Saigo function

x 7→ Eα,m,l(−x)

is CM on (0, ∞) if and only if α ≤ 1 and l ≥ m− 1/α. Its Bernstein representation is

Eα,m,l(−x) = E
[

exp−x
{

Xα,m,l ×
∫ ∞

0

(
1 + σ

(α)
t

)−α(m+1)
dt
}]

(2)

with δ = 1/αm and Xα,m,l = Z[1 + 1/m, (αl + 1)δ; 1, 1/m + (αl + 1)δ; δ].

Proof of Theorem 1. Assume first α ≤ 1 and l ≥ m− 1/α and let

Yα,m,l = Xα,m,l ×
∫ ∞

0

(
1 + σ

(α)
t

)−α(m+1)
dt.

By Proposition 2.4 in [8], and Lemma 1, its Mellin transform is

E[(Yα,m,l)
s] = δs [1 + δ; δ]s[(αl + 1)δ; δ]s

[1; δ]s[1/m + (αl + 1)δ; δ]s

= Γ(1 + s) × [(αl + 1)δ; δ]s
[1/m + (αl + 1)δ; δ]s

where in the second equality we have used (A9). By Fubini’s theorem, the moment
generating function of Yα,m,l reads

E[ezYα,m,l ] = ∑
n≥0

E[(Yα,m,l)
n]

zn

n!

= ∑
n≥0

(
[(αl + 1)δ; δ]n

[1/m + (αl + 1)δ; δ]n

)
zn

= ∑
n≥0

(
n−1

∏
j=0

Γ(α(jm + l) + 1)
Γ(α(jm + l + 1) + 1)

)
zn = Eα,m,l(z)

for every z ≥ 0, where in the third equality we have used (A1) repeatedly. The latter
identity is extended analytically to the whole complex plane and we get, in particular,

Eα,m,l(−x) = E[e−xYα,m,l ], x ≥ 0.

This shows that Eα,m,l(−x) is CM with the required Bernstein representation.

We now prove the only if part. If Eα,m,l(−x) is CM, then we see by analytic contin-
uation that Eα,m,l(z) is the moment generating function on C of the underlying random
variable X, whose positive integer moments read

E[Xn] = n! ×
(

n−1

∏
j=0

Γ(α(jm + l) + 1)
Γ(α(jm + l + 1) + 1)

)
, n ≥ 0.

If α > 1, Stirling’s formula implies E[Xn]
1
n → 0 as n→ ∞ so that X ≡ 0, a contradic-

tion because Eα,m,l is not a constant. If α = 1 and l + 1 < m, then

E[Xn] =
n!

(c)nmn ∼
n1−c

mn as n→ ∞,
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with c = (l + 1)/m ∈ (0, 1). In particular, the Mellin transform s 7→ E[Xs] is analytic on
{<(s) ≥ 0}, bounded on {<(s) = 0}, and has at most exponential growth on {<(s) > 0}
because

|E[Xs]| ≤ E
[

X<(s)
]

=
(
E
[

X[<(s)]+1
]) <(s)

[<(s)]+1

by Hölder’s inequality. On the other hand, the Stirling type Formula (A4) implies, after
some simplifications,

δ−s [1 + δ; δ]s[c; δ]s
[1; δ]s[c + δ; δ]s

= δ−ss1−c(1 + o(1)) as |s| → ∞ with | arg s| < π

and this shows that the function on the left-hand side, which is analytic on {<(s) ≥ 0},
has at most linear growth on {<(s) = 0} and at most exponential growth on {<(s) > 0}.
Moreover, the above analysis clearly shows that

E[Xn] = δ−n [1 + δ; δ]n[c; δ]n
[1; δ]n[c + δ; δ]n

for all n ≥ 0 and by Carlson’s theorem—see e.g., Section 5.81 in [10], we must have

E[Xs] = δ−s [1 + δ; δ]s[c; δ]s
[1; δ]s[c + δ; δ]s

for every s > 0, a contradiction since Lemma 1 shows that the right-hand side cannot be the
Mellin transform of a positive random variable if c < 1. The case α < 1 and l + 1/α < m is
analogous. It consists of identifying the bounded sequence

1
n!
×
(

n−1

∏
j=0

Γ(α(jm + l + 1) + 1)
Γ(α(jm + l) + 1)

)

as the values at non-negative integer points of the function

δ−s× [1; δ]s[1/m + (αl + 1)δ; δ]s
[1 + δ; δ]s[(αl + 1)δ; δ]s

= δ−se−(1−α)s ln(s)+κs+O(1) as |s| → ∞ with | arg s| < π,

where the purposeless constant κ can be evaluated from (A4). On {<(s) ≥ 0}, we see that
this function has growth at most eπ(1−α)|s|/2 and we can again apply Carlson’s theorem.
We leave the details to the interested reader. �

Remark 2. (a) When m = 1, applying (A1) we see that the random variable Xα,1,l has Mellin transform

E[(Xα,1,l)
s] =

[2; δ]s[l + 1/α; δ]s
[1; δ]s[1 + l + 1/α; δ]s

=
(α)αs

(β)αs

with β = 1 + αl ≥ α. This shows Xα,1,l
d
= Bα

α,β−α where Ba,b denotes, here and throughout,
a standard Beta random variable with parameters a, b > 0. We hence recover the Bernstein
representation of the CM function Γ(β)Eα,β(−x) which was discussed in Remark 3.3 (c) in [3].
Notice also the very simple expression of the Mellin transform

E[(Yα,1,l)
s] =

Γ(1 + αl)Γ(1 + s)
Γ(1 + α(l + s))

·

(b) Another simplification occurs when l + 1/α = km for some integer k ≥ 1. One finds

E[(Xα,m,km−1/α)
s] =

[k; δ]s[1 + 1/m; δ]s
[1; δ]s[k + 1/m; δ]s

=
k−1

∏
j=1

(
(αjm)u

(α(jm + 1))u

)
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for u = αms ≥ 0, which implies

Xα,m,km−1/α
d
=
(

Bαm,α × · · · × Bαm(k−1),α

)αm
.

In general, the law of the absolutely continuous random variable Xα,m,l valued in [0, 1] seems
to have a complicated expression.

(c) As seen during the proof, the random variable Yα,m,l defined by the Bernstein representation

Eα,m,l(−x) = E[e−xYα,m,l ]

has Mellin transform

E[(Yα,m,l)
s] = Γ(1 + s) × [(αl + 1)δ; δ]s

[1/m + (αl + 1)δ; δ]s
(3)

with δ = 1/αm, for every s > −1. By Fubini’s theorem, this implies the following exact computa-
tion, which seems unnoticed in the literature on the Kilbas-Saigo function.∫ ∞

0
Eα,m,l(−x) xs−1 dx = Γ(s)E[Y−s

α,m,l ] = Γ(s)Γ(1− s) × [(αl + 1)δ; δ]−s

[1/m + (αl + 1)δ; δ]−s
(4)

for every s ∈ (0, 1). For m = 1, we recover from (A1) the formula∫ ∞

0
Eα,β(−x) xs−1 dx =

1
Γ(β)

∫ ∞

0
E

α,1, β−1
α
(−x) xs−1 dx =

Γ(s)Γ(1− s)
Γ(β− αs)

which is given in (4.10.3) of [2], as a consequence of the Mellin-Barnes representation of Eα,β(z).
Notice that there is no such Mellin-Barnes representation for Eα,m,l(z) in general.

3. Uniform Hyperbolic Bounds

In Theorem 4 of [5], the following uniform hyperbolic bounds are obtained for the
classical Mittag–Leffler function:

1
1 + Γ(1− α)x

≤ Eα(−x) ≤ 1
1 + 1

Γ(1+α)
x

(5)

for every α ∈ [0, 1] and x ≥ 0. The constants in these inequalities are optimal because of
the asymptotic behaviors

Eα(−x) ∼ 1
Γ(1− α)x

as x → ∞ and 1− Eα(−x) ∼ x
Γ(1 + α)

as x → 0.

See [11] and the references therein for some motivations on these hyperbolic bounds.
In this section, we shall obtain analogous bounds for Eα,m,m−1(−x) and Eα,m,m− 1

α
(−x) with

α ∈ [0, 1], m > 0. Those peculiar functions are associated with the fractional Weibull and
Fréchet distributions defined in [3]. Specifically, we will use the following representations
as a moment generating function, obtained respectively in (3.1) and (3.4) therein:

Eα,m,m−1(z) = E
[

exp
{

z
∫ ∞

0

(
1− σ

(α)
t

)α(m−1)

+
dt
}]

(6)

and

Eα,m,m− 1
α
(z) = E

[
exp

{
z
∫ ∞

0

(
1 + σ

(α)
t

)−α(m+1)
dt
}]

(7)
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for every z ∈ C, where {σ(α)
t t ≥ 0} is the α−stable subordinator normalized such that

E[e−λσ
(α)
t ] = e−tλα

, λ, t ≥ 0.

Observe that these two formulæ specify the general Bernstein representation (2)
in terms of the α−stable subordinator only. We begin with the following monotonicity
properties, of independent interest.

Proposition 1. Fix α ∈ (0, 1] and x ∈ R. The functions

m 7→ Eα,m,m−1(x) and m 7→ Eα,m,m− 1
α
(x)

are decreasing on (0, ∞) if x > 0 and increasing on (0, ∞) if x < 0.

Proof of Proposition 1. This follows from (6) resp. (7), and the fact that σ
(α)
t > 0 for every

t > 0. �

Remark 3. It would be interesting to know if the same property holds for m 7→ Eα,m,m−l(x) and
any l ≤ 1/α. In the case l 6∈ {1, 1/α}, this would require from (2) a monotonicity analysis of the
mapping m 7→ Xα,m,m−l , which does not seem easy at first sight.

As in [5], our analysis to obtain the uniform bounds will use some notions of stochastic
ordering. Recall that if X, Y are real random variables such that E[ϕ(X)] ≤ E[ϕ(Y)] for
every ϕ : R → R convex, then Y is said to dominate X for the convex order, a property
which we denote by X ≺cx Y. Another ingredient in the proof is the following infinite
independent product

T(a, b, c) = ∏
n≥0

(
a + nb + c

a + nb

)
Ba+nb,c.

We refer to Section 2.1 in [8] for more details on this infinite product, including the
fact that it is a.s. convergent for every a, b, c > 0. We also mention from Proposition 2 in [8]
that its Mellin transform is

E[T(a, b, c)s] =

(
Γ(ab−1)

Γ((a + c)b−1)

)s

× [a + c; b]s
[a; b]s

for every s > −a. The following simple result on convex orderings for the above infinite
independent products has an independent interest.

Lemma 2. For every a, b, c > 0 and d ≥ c, one has

T(a, b, c) ≺cx T(a, b, d).

Proof of Lemma 2. By the definition of T(a, b, c) and the stability of the convex order by
mixtures—see Corollary 3.A.22 in [12], it is enough to show

(a + b)Ba,b ≺cx (a + c)Ba,c

for every a, b > 0 and c ≥ b. Using again Corollary 3.A.22 in [12] and the standard identity

Ba,c
d
= Ba,b × Ba+b,c−b, we are reduced to show(

a + b
a + c

)
= E[Ba+b,c−b] ≺cx Ba+b,c−b

which is a consequence of Jensen’s inequality. �
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The following result is a generalization of the inequalities (5), which deal with the
case m = 1 only, to all Kilbas-Saigo functions Eα,m,m−1(−x). The argument is considerably
simpler than in the original proof of (5).

Theorem 2. For every α ∈ [0, 1], m > 0 and x ≥ 0, one has

1
1 + Γ(1− α)x

≤ Eα,m,m−1(−x) ≤ 1

1 + Γ(1+α(m−1))
Γ(1+αm)

x
·

Proof of Theorem 2. The first inequality is a consequence of Proposition 1, which implies
in letting m→ 0

Eα,m,m−1(−x) ≥ E
[

exp
{
−x

∫ ∞

0

(
1− σ

(α)
t

)−α

+
dt
}]

= E
[
e−x Γ(1−α) L

]
=

1
1 + Γ(1− α)x

for x ≥ 0, where the first equality follows from Theorem 1.2 (b) (ii) in [8]. For the second
inequality, we come back to the infinite product representation∫ ∞

0

(
1− σ

(α)
t

)ρ−α

+
dt d

=
Γ(ρ + 1− α)

Γ(ρ + 1)
T(1, ρ−1, (1− α)ρ−1)

which follows from Theorem 1.2 (b) (i) in [8], exactly as in the proof of Theorem 1.1 in [3].
Lemma 2 implies then∫ ∞

0

(
1− σ

(α)
t

)ρ−α

+
dt ≺cx

Γ(ρ + 1− α)

Γ(ρ + 1)
T(1, ρ−1, ρ−1)

d
=

Γ(ρ + 1− α)

Γ(ρ + 1)
L

where the identity in law follows from (2.7) in [8]. Using (6) with ρ = αm and the convexity
of t 7→ e−xt, we obtain the required

Eα,m,m−1(−x) ≤ 1

1 + Γ(1+α(m−1))
Γ(1+αm)

x
·

�

Remark 4. (a) As for the classical case m = 1, these bounds are optimal because of the asymptotic
behaviors

1 − Eα,m,m−1(−x) ∼ Γ(1 + α(m− 1))
Γ(1 + αm)

x as x → 0

and
Eα,m,m−1(−x) ∼ 1

Γ(1− α)x
as x → ∞.

The behavior at zero is plain from the definition, whereas the behavior at infinity will be given
after Remark 6 below.

(b) It is easy to check that the above proof also yields the upper bound

Eα,m,m−1(x) ≤ 1
(1− Γ(1− α)x)+

for every α ∈ [0, 1], m > 0 and x ≥ 0, which seems unnoticed even in the classical case m = 1.



Mathematics 2021, 9, 217 10 of 24

Our next result is a uniform hyperbolic upper bound for the Kilbas-Saigo function
Eα,m,m− 1

α
(−x), with a power exponent which will be shown to be optimal in Remark 8 (c)

below, and also an optimal constant because

1 − Eα,m,m− 1
α
(−x) ∼

(
1 +

1
m

)
× Γ(1 + αm) x

Γ(1 + α(m + 1))
as x → 0.

Proposition 2. For every α ∈ (0, 1], m > 0 and x ≥ 0, one has

Eα,m,m− 1
α
(−x) ≤ 1(

1 + Γ(1+αm)
Γ(1+α(m+1)) x

)1+ 1
m
·

Proof of Proposition 2. The inequality is derived by convex ordering as in Theorem 2:
setting, here and throughout, Γa for a Gamma random variable with parameter a > 0,
one has∫ ∞

0

(
1 + σ

(α)
t

)−ρ−α

+
dt d

=
Γ(ρ)

Γ(ρ + α)
T(1 + αρ−1, ρ−1, (1− α)ρ−1)

≺cx
Γ(ρ)

Γ(ρ + α)
T(1 + αρ−1, ρ−1, ρ−1)

d
=

Γ(ρ + 1)
Γ(ρ + 1 + α)

Γ1+ α
ρ

where the first identity follows from Corollary 3 in [8] as in the proof of Theorem 1.1 in [3],
the convex ordering from Lemma 2 and the second identity from (2.7) in [8]. Then, using (7)
with ρ = αm, we get the required inequality. �

As in Theorem 2, we believe that there is also a uniform lower bound, with a more
complicated optimal constant which can be read off from the asymptotic behavior of the
density at zero obtained in Proposition 7 below:

Conjecture 3. For every α ∈ (0, 1], m > 0 and x ≥ 0, one has

Eα,m,m− 1
α
(−x) ≥ 1

(1 + (αm)−
α

m+1 (Γ(1 + α) G(1− α; αm) G(1 + α; αm))−
m

m+1 x)1+ 1
m
· (8)

Unfortunately, the proof of this general inequality still eludes us. The monotonicity
property observed in Proposition 1 does not help here, giving only the trivial lower bound
zero. The discrete factorizations which are used in [5] are also more difficult to handle in
this context, because the Mellin transform underlying Eα,m,m− 1

α
is expressed in terms of

generalized Pochhammer symbols. In the case m = 1, we could however get a proof of
(8). The argument relies on the following representation, observed in Remarks 3.1 (d) and
3.3 (c) of [3]:

Eα,1,1− 1
α
(z) = Γ(α)E′α,α(z) = Γ(1 + α)E′α(z) = Γ(1 + α)E

[
Tα ezTα

]
= E

[
ezT(1)

α

]
(9)

for every z ∈ C, where Tα = inf{t > 0, σ
(α)
t > 1} is the first-passage time above one of the

α−stable subordinator and T(1)
α its usual size-bias of order one.

Proposition 3. For every α ∈ (0, 1) and x ≥ 0, one has

Eα,1,1− 1
α
(−x) ≥ 1(

1 +
√

Γ(1−α)
Γ(1+α)

x
)2 ·
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Proof of Proposition 3. By (9) and since

E
[
e−x Γ2

]
=

1

(1 + x)2

for every x ≥ 0, it is enough to show, reasoning exactly as in the proof of Theorem 4 in [5], that

T(1)
α ≺st

√
Γ(1− α)

Γ(1 + α)
Γ2, (10)

where ≺st stands for the usual stochastic order between two real random variables. Recall
that X ≺st Y means P[X ≥ x] ≤ P[Y ≥ x] for every x ∈ R. Since T1/2

d
= 2

√
Γ1/2, the case

α = 1/2 is explicit and the stochastic ordering can be obtained directly. More precisely, the
densities of both random variables in (10) are respectively given by

x
2

e−x2/4 and
x
2

e−x/
√

2

on (0, ∞), where they cross only once at x = 2
√

2. It is a well-known and an easy result
that this single intersection property yields (10)—see Theorem 1.A.12 in [12].

The argument for the case α 6= 1/2 is somehow analogous, but the details are more
elaborate because the density of T(1)

α is not explicit anymore. We proceed as in Theorem C
of [5] and first consider the case where α is rational. Setting α = p/n with n > p positive
integers and Xα = T(1)

α we have, on the one hand,

E[(Xα)
ns] =

E[(Tα)1+ns]

E[Tα]

=
Γ(2 + ns)Γ(1 + pn−1)

Γ(1 + pn−1 + ps)

=
nns

pps × E
[(

B 2
n , 1

p−
1
n

)s]
× ∏n+1

i=3 (in
−1)s

∏
p
j=2(jp−1 + n−1)s

for every s > −2n−1, where we have used the well-known identity Tα
d
= (σ

(α)
1 )−α in the

second equality, whereas in the third equality we have used repeatedly the Legendre-Gauss
multiplication formula for the Gamma function—see e.g., Theorem 1.5.2 in [13]. The same
formula implies, on the other hand,

E

(√Γ(1− α)

Γ(1 + α)
Γ2

)ns  =
nns κs

α

pps × E
[(

Γ 2
n

)s]
×
(

n+1

∏
i=3

(in−1)s

)

=
nns

pps × E
[(

κα × Γ 2
n
×

p

∏
j=2

Γ j
p +

1
n

)s ]

× ∏n+1
i=3 (in

−1)s

∏
p
j=2(jp−1 + n−1)s

for every s > −2n−1, with the notation

κα =

(
p

∏
i=1

Γ(ip−1 − n−1)

Γ(ip−1 + n−1)

) n
2

.
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Since
∏n+1

i=3 (in
−1)s

∏
p
j=2(jp−1 + n−1)s

= E
[(

p

∏
i=2

B i+1
n , i

p−
i
n
×

n

∏
j=p+1

Γ j+1
n

)s ]

for every s > −3n−1, by factorization and Theorem 1.A.3 (d) in [5] we are finally reduced
to show

B 2
n , 1

p−
1
n
≺st

(
p

∏
i=1

Γ(ip−1 − n−1)

Γ(ip−1 + n−1)

) n
2

× Γ 2
n
×

p

∏
j=2

Γ j
p +

1
n

for every n > p positive integers. The above inequality is equivalent to

(B 2
n , 1

p−
1
n
)

2
n ≺st

(
p

∏
i=2

Γ(ip−1 − n−1)

Γ(ip−1 + n−1)

)
×
(

Γ 2
n
×

p

∏
j=2

Γ j
p +

1
n

) 2
n

and this is proved via the single intersection property exactly as for (5.1) in [5]: the random
variable on the left-hand side has an increasing density on (0, 1), whereas the random
variable on the right-hand side has a decreasing density on (0, ∞), both densities having
the same positive finite value at zero. We omit details. This completes the proof of (10)
when α is rational. The case when α is irrational follows then by a density argument. �

Remark 5. It is easy to check from (A5) and (A6) that

Γ(1 + α)

Γ(1− α)
= αα Γ(1 + α) G(1− α; α) G(1 + α; α),

so that Proposition 3 leads to (8) for m = 1, in accordance with the estimate (13). In general, the
absence of a tractable complement formula for the product G(1− α; δ) G(1 + α; δ) makes however
the constant in (8) more difficult to handle.

Our last result in this section gives optimal uniform hyperbolic bounds for the gener-
alized Mittag–Leffler functions Eα,β(−x) whenever they are completely monotone, that is
for β ≥ α—see the above Remark 2 (a). This can be viewed as another generalization of (5).

Proposition 4. For every α ∈ (0, 1], β > α and x ≥ 0, one has

1(
1 +

√
Γ(1−α)
Γ(1+α)

x
)2 ≤ Γ(α) Eα,α(−x) ≤ 1(

1 + Γ(1+α)
Γ(1+2α)

x
)2

and
1

1 + Γ(β−α)
Γ(β)

x
≤ Γ(β) Eα,β(−x) ≤ 1

1 + Γ(β)
Γ(β+α)

x
·

Proof of Proposition 4. The bounds for Eα,α(−x) are a direct consequence of (9), Proposi-
tion 2 and Proposition 3. Notice that letting α → 1 leads to the trivial bound 0 ≤ e−x ≤
(2/(2 + x))2. To handle the bounds for β > α, we first recall from Remark 2 (a) that

Γ(β) Eα,β(−x) = Γ(β) E
α,1, β−1

α
(−x) = E

[
e−x Yα,1,l

]
with l = (β− 1)/α > 1− 1/α and Yα,1,l

d
= Bα

α,β−α × T(1)
α . Moreover, one has

E[(Yα,1,l)
s] =

Γ(1 + s)Γ(β)

Γ(β + αs)
(11)
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for every s > −1, which implies the factorization L d
= Yα,1,l × (Γβ)

α. Since, by Jensen’s inequality,

Γ(β + α)

Γ(β)
= E

[
(Γβ)

α
]
≺cx (Γβ)

α,

we deduce from Corollary 3.A.22 in [12] the convex ordering

Yα,1,l ≺cx
Γ(β)

Γ(β + α)
L

which, as above, implies

Γ(β) Eα,β(−x) ≤ 1

1 + Γ(β)
Γ(β+α)

x

for every x ≥ 0.
The argument for the other inequality is analogous to that of Proposition 3. By density,

we only need to consider the case α = p/n and β = (p + q)/n with p < n and q positive
integers. By (11) and the Legendre-Gauss multiplication formula, we obtain

E[(Yα,1,l)
ns] =

nns

pps × E
[(

B 1
n , q

np

)s]
× ∏n

i=2(in
−1)s

∏
p−1
j=1 (jp−1 + (p + q)(np)−1)s

for every s > −n−1. On the other hand, one has

E
[(

Γ(β−α)
Γ(β)

L
)ns ]

= nns

pps E
[(

κα,β × Γ 1
n
× ∏

p−1
j=1 Γ j

p +
p+q
np

)s ]
× ∏n

i=2(in
−1)s

∏
p−1
j=1 (jp−1+(p+q)(np)−1)s

with

κα,β = pp
(

Γ(qn−1)

Γ((p + q)n−1)

)n

.

Comparing these two formulæ we are reduced to show

(B 1
n , q

np
)

1
n ≺st p

p
n

(
Γ(qn−1)

Γ((p + q)n−1)

)
×
(

Γ 1
n
×

p−1

∏
j=1

Γ j
p +

p+q
np

) 1
n

for every p < n and q positive integers. This is obtained in the same way as above via the
single intersection property. We leave the details to the reader. �

4. Asymptotic Behavior of Fractional Extreme Densities

In this section, which is a complement to [3], we study the behavior of the density
functions of the fractional Weibull and Fréchet distributions at both ends of their support.
To this end, we also evaluate their Mellin transforms in terms of Barnes’ double Gamma
function. Along the way, we give the exact asymptotics of x 7→ Eα,m,l(x) on the negative
half-line, in the completely monotonic case α ∈ [0, 1] and l ≥ m− 1/α.

4.1. The Fractional Weibull Case

In [3], a fractional Weibull distribution function with parameters α ∈ [0, 1] and λ, ρ > 0
is defined as the unique distribution function FW

α,λ,ρ on (0, ∞) solving the fractional differ-
ential equation

Dα
0+F(x) = λ xρ−α F̄(x)
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where F̄ = 1− F denotes the associated survival function and Dα
0+ a progressive Liou-

ville fractional derivative on (0, ∞). The case α = 1 corresponds to the standard Weibull
distribution. In [3], it is shown that this distribution function exists and is given by

FW
α,λ,ρ(x) = 1 − Eα, ρ

α , ρ
α−1(−λxρ)

for every x ≥ 0—see the formula following (3.1) in [3]. In particular, the density f W
α,λ,ρ is

real-analytic on (0, ∞) and has the following asymptotic behavior at zero:

f W
α,λ,ρ(x) ∼

(
λ Γ(ρ + 1− α)

Γ(ρ)

)
xρ−1 as x → 0.

The behavior of f W
α,λ,ρ at infinity is however less immediate, and to this aim we will

need an exact expression for the Mellin transform of the random variable Wα,λ,ρ with
distribution function FW

α,λ,ρ, which has an interest in itself.

Proposition 5. The Mellin transform of Wα,λ,ρ is

E
[
Ws

α,λ,ρ

]
=

(
ρα

λ

) s
ρ

Γ(1 + sρ−1) × [ρ + (1− α); ρ]−s

[ρ; ρ]−s

for every s ∈ (−ρ, ρ). Consequently, one has

f W
α,λ,ρ(x) ∼

(
ρ

λΓ(1− α)

)
x−ρ−1 as x→ ∞.

Proof of Proposition 5. We start with a more concise expression of (3) for l = m− 1, which
is a direct consequence of (A9):

E[(Yα, ρ
α , ρ

α−1)
s] = ρ−s × [1 + (1− α)ρ−1; ρ−1]s

[1; ρ−1]s
·

By Theorem 1.1 in [3] and using the notations therein, we deduce

E
[
Ws

α,λ,ρ

]
= E

( L
λYα, ρ

α , ρ
α−1

) s
ρ


=

( ρ

λ

) s
ρ Γ(1 + sρ−1) ×

[1 + (1− α)ρ−1; ρ−1]−sρ−1

[1; ρ−1]−sρ−1

=

(
ρα

λ

) s
ρ

Γ(1 + sρ−1) × [ρ + (1− α); ρ]−s

[ρ; ρ]−s

for every s ∈ (−ρ, ρ) as required, where the third equality comes from (A8). The asymptotic
behavior of the density at infinity is then a standard consequence of Mellin inversion. First,
we observe from the above formula and (A10) that the first positive pole of s 7→ E

[
Ws

α,λ,ρ

]
is simple and isolated in the complex plane at s = ρ, with

E
[
Ws

α,λ,ρ

]
∼

(
ρα

λ

)
×

[ρ + (1− α); ρ]−ρ

[ρ; ρ]−s

∼
(

ρρ+α

λ

)
×

[ρ + (1− α); ρ]−ρ

[2ρ; ρ]−ρ
× (ρ)−s =

ρ Γ(ρ− s)
λΓ(1− α)

∼ ρ

λΓ(1− α) (ρ− s)
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as s ↑ ρ, where the second asymptotics comes from (A9) and the equality from (A5).
Therefore, applying Theorem 4 (ii) in [14] beware the correction (log x)k → (log x)k−1 to
be made in the expansion of f (x) therein, we obtain

f W
α,λ,ρ(x) ∼

(
ρ

λΓ(1− α)

)
x−ρ−1 as x → ∞

as required. �

Remark 6. (a) Another proof of the asymptotic behavior at infinity can be obtained from that of the
so-called generalized stable densities. More precisely, using the identity in law on top of p.12 in [3]
and the notation therein, we see by multiplicative convolution, having set f Gα,ρ for the density of the
generalized stable random variable G(ρ + 1− α, 1− α), that

f W
α,λ,ρ(x) = λ xρ−1

∫ ∞

0
f Gα,ρ(y) y−ρ e−

λ
ρ (

x
y )

ρ

dy

=

(
λ

ρ

) 1
ρ
∫ ∞

0
f Gα,ρ

(
x(ρλ−1t)−

1
ρ

)
t−

1
ρ e−t dt

∼
(

ρ

λΓ(1− α)

∫ ∞

0
t e−t dt

)
x−ρ−1 =

(
ρ

λΓ(1− α)

)
x−ρ−1

as x → ∞, where for the asymptotics we have used the Proposition in [15] and a direct integration.
This argument does not make use of Mellin inversion and is overall simpler than the above. However,
it does not convey to the fractional Fréchet case.

(b) The Mellin transform simplifies for α = 0 and α = 1 : using (A1) and (A6) we recover

E[Ws
0,λ,ρ] = λ

− s
ρ Γ(1 + sρ−1)Γ(1− sρ−1) and E[Ws

1,λ,ρ] =
( ρ

λ

) s
ρ Γ(1 + sρ−1)

in accordance with the scaling property Wα,λ,ρ
d
= λ−1/ρWα,1,ρ and the identities given at the

bottom of p.3 in [3]. The Mellin transform takes a simpler form in two other situations.

• For ρ = α, we obtain from (3), (A1) and (A5)

E[(Yα,1,0)
s] =

Γ(1 + s)
Γ(1 + αs)

= E[Z−αs
α ],

in accordance with Remark 3.1 (d) in [3]. This yields

Wα,λ,α
d
=

(
L

λYα,1,0

) 1
α d

= λ−
1
α Zα × L

1
α ,

an identity which was already discussed for λ = 1 in the introduction of [3] as the solution to
(1.3) therein. The Mellin transform reads

E[Ws
α,λ,α] = λ−

s
α

Γ(1 + sα−1)Γ(1− sα−1)

Γ(1− s)
·

• For ρ = 1− α, where we obtain from (A5)

E[Ws
1−ρ,λ,ρ] =

( ρ

λ

) s
ρ Γ(1 + sρ−1)Γ(ρ− s)

Γ(ρ)
and W1−ρ,λ,ρ

d
=
( ρ

λ

) 1
ρ L

1
ρ × Γ−1

ρ .

(c) The two cases ρ = α and ρ = 1− α have a Mellin transform expressed as the quotient of a
finite number of Gamma functions. This makes it possible to use a Mellin-Barnes representation of
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the density to get its full asymptotic expansion at infinity. Using the standard notation of Definition
C.1.1 in [13], one obtains

f W
α,λ,α(x) ∼ ∑n≥1

nα x−1−nα

λnΓ(1−nα)
and f W

1−α,λ,α(x) ∼ αx−α−1

λΓ(α) ∑n≥0 (−1)n Γ
(

n
ρ +2

)
n!

(
λ
ρ

)− n
ρx−n

which are everywhere divergent. The first expansion can also be obtained from (1.8.28) in [16] using

f W
α,λ,α(x) = λ xα−1 Eα,α(−λxα).

Unfortunately, the Mellin transform of Wα,λ,ρ might have poles of variable order and it seems
difficult to obtain a general formula for the full asymptotic expansion at infinity of f W

α,λ,ρ(x).

Writing

Eα, ρ
α , ρ

α−1(−λxρ) = P[Wα,λ,ρ > x] =
∫ ∞

x
f W
α,λ,ρ(y) dy,

we obtain by integration the following asymptotic behavior at infinity, which is valid for
any α ∈ (0, 1] and m > 0:

Eα,m,m−1(−x) ∼ 1
Γ(1− α) x

as x → ∞.

This behavior, which turns out to be the same as that of the classical Mittag–Leffler
function Eα(−x)—see e.g., (3.4.15) in [2], gives the reason the constant in the lower bound
of Theorem 2 is optimal—see the above Remark 4 (a). It is actually possible to get the exact
behavior of Eα,m,l(−x) at infinity for any α ∈ (0, 1], m > 0 and l > m− 1/α. We include
this result here since it seems unnoticed in the literature on Kilbas-Saigo functions.

Proposition 6. For any α ∈ [0, 1], m > 0 and l > m− 1/α, one has

Eα,m,l(−x) ∼ Γ(1 + α(l + 1−m))

Γ(1 + α(l −m)) x
as x→ ∞.

Proof of Proposition 6. The case α = 0 is obvious since E0,m,l(x) = 1/(1− x). For α ∈
(0, 1], setting δ = 1/αm, recall from (4) that for every s ∈ (0, 1) one has∫ ∞

0
Eα,m,l(−x) xs−1 dx = Γ(s)Γ(1− s) × [(αl + 1)δ; δ]−s

[1/m + (αl + 1)δ; δ]−s

∼ [(αl + 1)δ; δ]−1

[1/m + (αl + 1)δ; δ]−1 (1− s)
=

Γ(1 + α(l + 1−m))

Γ(1 + α(l −m)) (1− s)

as s ↑ 1, where in the equality we have used the concatenation formula (A1). The asymptotic
behavior follows then by Mellin inversion as in the proof of Proposition 5. �

Remark 7. In the boundary case l = m− 1/α, the behavior of Eα,m,m−1/α(−x) at infinity, which
has different speed and a more complicated constant, will be obtained with the help of the fractional
Fréchet distribution—see Remark 8 (c) below.

We end this paragraph with the following conjecture which is natural in view of
Proposition 6. We know by Theorem 2 resp. Proposition 4 that this conjecture is true for
the cases l = m− 1 and m = 1.

Conjecture 4. For every α ∈ (0, 1], m > 0, l > m− 1/α and x ≥ 0, one has

1

1 + Γ(1 + α(l−m))
Γ(1+α(l−m+ 1)) x

≤ Eα,m,l(−x) ≤ 1

1 + Γ(1 + αl)
Γ(1 + α(1 + l)) x

·
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4.2. The Fréchet Case

In [3], a fractional Fréchet distribution function with parameters α ∈ [0, 1] and λ,
ρ > 0 is defined as the unique distribution function FF

α,λ,ρ on (0, ∞) solving the fractional
differential equation

Dα
− F̄(x) = λ x−ρ−αF(x)

where Dα
− denotes a regressive Liouville fractional derivative on (0, ∞). The case α = 1

corresponds to the standard Fréchet distribution. In [3], it is shown that this distribution
function exists and is given by

FF
α,λ,ρ(x) = E

α, ρ
α , ρ−1

α
(−λx−ρ)

for every x ≥ 0—see the formula following (3.4) in [3]. In particular, the density f F
α,λ,ρ is

real-analytic on (0, ∞) and has the following asymptotic behavior at infinity:

f F
α,λ,ρ(x) ∼

(
λ Γ(ρ + 1)
Γ(ρ + α)

)
x−ρ−1 as x → ∞.

The behavior of the density at zero is less immediate and we will need, as in the above
paragraph, the exact expression of the Mellin transform of the random variable Fα,λ,ρ with
distribution function FF

α,λ,ρ, whose strip of analyticity is larger than that of Wα,λ,ρ.

Proposition 7. The Mellin transform of Fα,λ,ρ is

E
[
Fs

α,λ,ρ

]
=

(
ρα

λ

)− s
ρ

Γ(1− sρ−1) × [ρ + 1; ρ]s
[ρ + α; ρ]s

for every s ∈ (−ρ− α, ρ). Consequently, one has

f F
α,λ,ρ(x) ∼

ρ
α2
ρ (ρ + α)

λ
1+ α

ρ
Γ(1 + α) G(1− α; ρ) G(1 + α; ρ)

xρ+α−1 as x → 0.

Proof of Proposition 7. The evaluation of the Mellin transform is done as for the fractional
Weibull distribution, starting from the expression

E[(Y
α, ρ

α , ρ−1
α
)s] = ρ−s × [1 + ρ−1; ρ−1]s

[1 + αρ−1; ρ−1]s

which is a consequence of (3) and (A5). By Theorem 1.2 in [3] and (A8), we obtain the
required formula

E
[
Fs

α,λ,ρ

]
= E


 L

λY
α, ρ

α , ρ−1
α

− s
ρ

 =

(
ρα

λ

)− s
ρ

Γ(1− sρ−1) × [ρ + 1; ρ]s
[ρ + α; ρ]s

·

Then the asymptotic behavior of f F
α,λ,ρ(x) at zero follows as that of f W

α,λ,ρ(x) at infinity,
in considering the residue at the first negative pole s = −(ρ + α) which is simple and
isolated in the complex plane, applying Theorem 4 (i) in [14] with the same correction as
above, and making various simplifications. We omit details. �

Remark 8. (a) Comparing the Mellin transforms, Propositions 5 and 7 imply the factorization

W−1
α,λ,ρ

d
= Fα,λ,ρ × Z(ρ + 1− α, ρ + α; ρ, ρ + 1; ρ). (12)
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In general, it follows from Theorem 1 that for every α ∈ (0, 1], m, λ > 0 and l > m− 1/α,
there exists a positive random variable with distribution function Eα,m,l(−λx−αm), and which is
given by (3), (2) and Theorem 1.2 in [3] as the independent product

Fα,λ,αm × (Xα,m,l)
1

αm
d
= Fα,λ,αm × Z(αl + 1, α(m + 1); αm, α(l + 1) + 1; αm),

where the identity in law follows from (A8). In this respect, the fractional Fréchet distributions can
be viewed as the “ground state” distributions associated with the Kilbas-Saigo functions Eα,m,l , in
the boundary case l = m− 1/α.

(b) As above, the Mellin transform simplifies for α = 0, 1 : we get

E[Fs
0,λ,ρ] = λ

s
ρ Γ(1 + sρ−1)Γ(1− sρ−1) and E[Fs

1,λ,ρ] =

(
λ

ρ

) s
ρ

Γ(1− sρ−1),

in accordance with the scaling property Fα,λ,ρ
d
= λ1/ρFα,1,ρ and the identities given after the

statement of Theorem 1.2 in [3]. The Mellin transform also takes a simpler form in the same other
situations as above.

• For ρ = α, with

E[Fs
α,λ,α] = λ

s
α

Γ(α)Γ(1 + sα−1)Γ(1− sα−1)

Γ(α + s)
·

This yields the identity Fα,λ,α
d
= λ

1
α (Z−1

α )(α) × L−
1
α , which was discussed for λ = 1 in the

introduction of [3] as the solution to (1.4) therein. This is also in accordance with Remark 3.3
(c) in [3], since

(T(1)
α )

1
α

d
= ((Z−α

α )(1))
1
α

d
= (Z−1

α )(α).

Notice that the constant appearing in the asymptotic behavior of the density at zero is also
simpler: one finds

f F
α,λ,α(x) ∼

(
2α Γ(1 + α)

λ2 Γ(1− α)

)
x2α−1 as x → 0. (13)

• For ρ = 1− α, with

E[Fs
1−ρ,λ,ρ] =

(
λ

ρ

) s
ρ

Γ(1− sρ−1)Γ(1 + s) and F1−ρ,λ,ρ
d
=

(
λ

ρ

) 1
ρ

L−
1
ρ × L.

Here, the density converges at zero to a simple constant: one finds

f F
1−ρ,λ,ρ(x) →

( ρ

λ

) 1
ρ Γ(1 + ρ−1) as x→ 0.

(c) Integrating the density and using P[Fα,λ,ρ ≤ x] = E
α, ρ

α , ρ−1
α
(−λx−ρ), we obtain the

following asymptotic behavior at infinity for any α ∈ (0, 1] and m > 0, which is more involved
than that of Proposition 6:

Eα,m,m− 1
α
(−x) ∼ (αm)

α
m Γ(1 + α) G(1− α; αm) G(1 + α; αm) x−1− 1

m as x → ∞.

For m = 1, this behavior matches the first term in the full asymptotic expansion

Eα,1,1− 1
α
(−x) = Γ(α)Eα,α(−x) ∼ Γ(α) ∑

n≥1

(−1)n

Γ(−αn) xn+1 ·
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As for Eα,m,m−1(−x), a full asymptotic expansion of Eα,m,m− 1
α
(−x) at infinity seems difficult

to obtain for all values of m.

5. Some Complements on the Le Roy Function

In this section, we show some miscellaneous results on the Le Roy function

Lα(x) = ∑
n≥0

xn

(n!)α
, α > 0, x ∈ R.

In [3], this function played a role in the construction of a fractional Gumbel distribution
—see Theorem 1.3 therein. The Le Roy function, which has been much less studied than
the classical Mittag–Leffler function, can be viewed as an alternative generalization of the
exponential function. See also the recent paper [17] for a further generalization related to
the Mittag–Leffler function. Throughout, we giscard the explicit case L1(x) = E1(x) = ex.

We begin with the asymptotic behavior at infinity. Le Roy’s original result—see [6]
p. 263-reads

Lα(x) ∼ (2π)
1−α

2
√

α
x

1−α
2 eαx

1
α as x → ∞,

and is obtained by a variation of Laplace’s method. An extension of this asymptotic
behavior has been given in [18] for the so-called Mittag–Leffler functions of Le Roy type.
Laplace’s method can also be used to solve Exercise 8.8.4 in [19], which states

Lα(−x) =
2(2π)

1−α
2

√
α

x
1−α
2α eα cos(π/α)x

1
α
(

sin
(

π/2α + α sin(π/α)x
1
α

)
+ O(x−

1
α )
)

(14)

for α ≥ 2 and

Lα(−x) ∼ 1
αα Γ(1− α) x (log x)α

(15)

for α ∈ (1, 2), as x → ∞. The following estimate, which seems to have passed unnoticed in
the literature, completes the picture.

Proposition 8. For every α ∈ (0, 1), one has

Lα(−x) ∼ 1
Γ(1− α) x (log x)α

as x → ∞.

Proof of Proposition 8. In the proof of Theorem 1.3 in [3] it is shown that

Lα(−x) = P[L > xLα] =
∫ ∞

0
e−xt fα(t) dt

where
Lα

d
=
∫ ∞

0
e−σ

(α)
t dt

has density fα on (0, ∞) and Mellin transform

E[Ls
α] = Γ(1 + s)1−α, s > −1.

In particular, using the notation in [20], we have fα = e1−α, and Theorem 2.4 therein implies

fα(x) ∼ 1
Γ(1− α) (− log x)α

as x → 0. (16)

Plugging this estimate into the above expression of Lα(−x), we conclude the proof by
a direct integration. �
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Remark 9. (a) The estimate (16) also gives the asymptotic behavior, at the right end of the support,
of the density of the fractional Gumbel random variable Gα,λ which is defined in Theorem 1.3 of [3].
Indeed, by the definition and multiplicative convolution the density of eλGα,λ on (0, ∞) writes∫ ∞

0
e−xy y fα(y) dy ∼ 1

Γ(1− α) x2 (log x)α
as x → ∞,

where the estimate follows from (16) as in the proof of Proposition 8. A change of variable implies then

f G
α,λ(x) ∼

(
λ1−α

Γ(1− α)

)
x−α e−λx as x → ∞.

Notice that at the left end of the support, there is a convergent series representation which is
given by Corollary 3.6 in [3].

(b) In the case α = 2, one has L2(x) = I0(2
√

x) and L2(−x) = J0(2
√

x) for all x ≥ 0,
where I0 and J0 are the classical Bessel functions with index 0. In particular, a full asymptotic
expansion for L2 at both ends of the support is available, to be deduced e.g., from (4.8.5) and (4.12.7)
in [13]. These expansions also exist when α is an integer since Lα is then a generalized Wright
function—see Chapter F.2.3 in [2] and the original articles by Wright quoted therein. The case when
α is not an integer does not seem to have been investigated, and might be technical in the absence of
a true Mellin-Barnes representation.

Our next result characterizes the connection between the entire function Lα(z) and
random variables. Recall that a function f : C→ C which is holomorphic in a neighbor-
hood Ω of the origin is a moment generating function (MGF) if there exists a real random
variable X such that

f (z) = E
[
ezX
]
, z ∈ Ω.

In particular, it is clear that L0 is the MGF of the exponential law L and L1 that of the
constant variable 1. The following provides a characterization.

Proposition 9. The function Lα(z) is the MGF of a real random variable if and only if α ≤ 1. In
this case, one has

Lα(z) = E
[
ezLα

]
, z ∈ C.

Proof of Proposition 9. The if part is a direct consequence of the proof of Proposition 8.
On the other hand, the estimates (14) and (15) show that Lα(z) takes negative values on
R−, so that it cannot be the moment generating function of a real random variable, when
α > 1. This completes the proof. �

Observe that since Lα is non-negative, the above result also shows Lα(−x) is CM
on (0, ∞) if and only if α ≤ 1, echoing Pollard’s aforementioned classical result for the
Mittag–Leffler Eα(−x). One can ask whether there are further complete monotonicity
properties for Lα, as in [21] for Eα. Our last result for the Le Roy function is a monotonicity
property which is akin to Proposition 1.

Proposition 10. The mapping α 7→ Lα(x) is non-increasing on [0, 1] for every x ∈ R.

Proof of Proposition 10. The fact that α 7→ Lα(x) decreases on R+ is obvious for x ≥ 0, by
the definition of Lα. To show the property on [0, 1] for x < 0, we will use a convex ordering
argument. More precisely, the Malmsten Formula (A3) and the Lévy–Khintchine formula
show that for every t ∈ [0, 1], the random variable G1−t = log L1−t is the marginal at time
t of a real Lévy process, since E[eizG1−t ] = Γ(1 + iz)t = etψ(z) for every z ∈ R, with

ψ(z) = −γiz +
∫ 0

−∞
(eizx − 1− izx)

dx
|x|(e|x| − 1)

·
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This is actually well known—see Example E in [22]. By independence and stationarity
of the increments of a Lévy process, we deduce that there exists a multiplicative martingale

{Mt, t ∈ [0, 1]} such that Mt
d
= L1−t for every t ∈ [0, 1]. Jensen’s inequality implies

Lβ ≺cx Lα

for every 0 ≤ α ≤ β ≤ 1. Applying the definition of convex ordering to the function
ϕ(x) = ex, we get Lβ(x) ≤ Lα(x) for every x < 0 and 0 ≤ α ≤ β ≤ 1, as required. �

Remark 10. (a) In the terminology of [23], the family {L1−α, α ∈ [0, 1]} is a peacock, whose
associated multiplicative martingale is completely explicit. We refer to [23] for numerous examples
of explicit peacocks related to exponential functionals of Lévy processes. Observe from Lemma 2 that
the family {T(a, b, t), t > 0} is also a peacock.

(b) Letting α→ 0 and α→ 1 in Proposition 10 leads to the bounds

ex ≤ Lβ(x) ≤ Lα(x) ≤ 1
(1− x)+

for every x ∈ R and 0 < α < β < 1. The hyperbolic upper bound is optimal as in Theorem 2 and
Proposition 2, because Lα(x)− 1 ∼ x as x → 0. The exponential lower bound is thinner than the
order given in Proposition 8. On the other hand, it does not seem that stochastic ordering arguments
can help for a uniform estimate involving a logarithmic term.

It is natural to ask if the statement of Proposition 10 is also true for the classical
Mittag–Leffler function, and this problem seems still open.

Conjecture 5. The mapping α 7→ Eα(x) is non-increasing on [0, 1] for every x ∈ R.

Numerical simulations suggest a positive answer. It is clear by the definition that
α 7→ Eα(x) is non-increasing for every x ≥ 0 on [α0, ∞), where 1 + α0 = 1.46163... is
the location of the minimum of the Gamma function on (0, ∞). A direct consequence of
Theorem B in [5] is also that

α 7→ Eα(Γ(1 + α)x)

is non-increasing on [1/2, 1] for every x ∈ R. The constant Γ(1 + α) appears above because
of the convex ordering argument used in [5]. It seems that other kinds of arguments are
necessary to study the monotonicity of α 7→ Eα(x) on [0, 1].

We would like to finish this paper with the following related monotonicity result,
which relies on a stochastic ordering argument, for the generalized Mittag–Leffler function.

Proposition 11. For every α ∈ [0, 1] and x ∈ R, the mapping

β 7→ Γ(β)Eα,β(x)

is non-increasing on (α, ∞) if x > 0 and non-decreasing on (α, ∞) if x < 0.

Proof of Proposition 11. By Remark 3.3 (c) in [3], we have the probabilistic representation

Γ(β)Eα,β(x) = E
[

ex Bα
α,β−α× T(1)

α

]
for every α ∈ [0, 1], β > α and x ∈ R. Reasoning as in Proposition 3, we see by factorization
that it suffices to show that

β 7→ Bα
α,β−α
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is non-increasing on (α, ∞) for the usual stochastic order. On the other hand, the density
function of the random variable Bα

α,β−α is

Γ(β)

Γ(α + 1)Γ(β− α)

(
1− x

1
α

)β−α−1

on [0, 1) and its value at zero is by the log-convexity of the Gamma function an increasing
function of β. Moreover, the density functions of Bα

α,β−α and Bα
α,β′−α cross only once for

β 6= β′, at (
1 −

(
Γ(β)Γ(β′ − α)

Γ(β′)Γ(β− α)

) 1
β′−β

)α

∈ (0, 1).

The single intersection property finishes then the argument, as for Proposition 3. �
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Appendix A

In this Appendix we recall some properties of Barnes’ double Gamma function G(z; δ),
which are used throughout the paper. For every δ > 0, this function is defined as the
unique solution to the functional equation

G(z + 1; δ) = Γ(zδ−1)G(z; δ) (A1)

with normalization G(1; δ) = 1. The function is holomorphic on C and admits the following
Malmsten type representation

G(z; δ) = exp
∫ ∞

0

(
1−e−zx

(1−e−x)(1−e−δx)
− ze−δx

1−e−δx + (z− 1)( z
2δ − 1)e−δx − 1

)
dx
x (A2)

which is valid for <(z) > 0—see (5.1) in [24]. Putting (A1) and (A2) together and making
some simplifications, we recover the standard Malmsten formula for the Gamma function

Γ(1 + z) = exp
{
−γz +

∫ 0

−∞
(ezx − 1− zx)

dx
|x|(e|x| − 1)

}
(A3)

for every z > −1, where γ is Euler’s constant. The following Stirling type asymptotic behavior

log G(z; δ) − 1
2δ

(
z2 log z − ( 3

2 + log δ) z2 − (1 + δ) z log z
)
− A z − B log z → C (A4)

is valid for |z| → ∞ with | arg(z)| < π, for some real constants A, B and C which are given
in (4.5) of [24]. There is a second concatenation formula

G(z + δ; δ) = (2π)(δ−1)/2δ1/2−zΓ(z)G(z; δ) (A5)

which is valid for all z ∈ C, the right-hand side being understood as an analytic extension
when z is a non-positive integer—see (4.6) in [25] and the references therein. Observe that
(A1) and (A5) lead readily to the closed formula

G(δ; δ) = G(1 + δ; δ) = (2π)(δ−1)/2δ−1/2. (A6)

In this paper, we make an extensive use of the following Pochhammer type symbol
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[a; δ]s =
G(a + s; δ)

G(a; δ)
(A7)

which is well-defined for every a, δ > 0 and s > −a. The following formula

[aδ−1; δ−1]sδ−1 = (2π)s(1/δ−1)/2 δs2/2δ−s(1+(1−2a)/δ)/2 [a; δ]s (A8)

can be deduced from (4.10) in [25] beware the different normalization for G(1; δ) therein
which becomes irrelevant when considering the Pochhammer type symbol. Notice also
that (A5) yields

δs [a + δ; δ]s = (a)s [a; δ]s (A9)

with the standard notation

(a)s =
Γ(a + s)

Γ(a)

for the usual Pochhammer symbol. Finally, we observe from the double product represen-
tation of G(z, δ)—see e.g., (4.4) in [25] that for every a, δ > 0 one has

inf{s > 0, [a; δ]−s = 0} = a (A10)

and that this zero is simple and isolated on the complex plane.
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