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A B S T R A C T

A mixture model to take into account the flow of small carbon dioxide bubbles dissolved in a liquid is presented.
The model describes the evolution of the velocity fields (mixture and gas), the pressure and the volume fraction
of gas. The system of equations is derived from mass and momentum conservation of the mixture and gas.

Well-posedness is proved for a simplified problem when the volume fraction of gas is known and small. A
priori error estimates are proved for a stabilized finite element approximation.

An industrial application pertaining to aluminium electrolysis is presented. Numerical results indicated that
the effect of gas bubbles on the flow cannot be neglected.
. Introduction

According to [1], the carbon footprint of the aluminium production
ndustry is 1.7% of global emissions from all sources, therefore huge
fforts are done to enhance the process efficiency. In a Hall–Héroult
ell dedicated to aluminium electrolysis, multi-scale (from millime-
res to metres) and multi-physics (electromagnetic fields, immiscible
luids, gas bubbles of carbon dioxide, thermal gradients, alumina trans-
ort, chemical reactions) processes are involved in extreme conditions
high temperatures 950 ◦C, large currents 300 kA), so that numerical
odelling is unavoidable [2–5].

In this paper, we focus on modelling the mixture flow at the level
f the whole reduction cell. The effects of chemical reactions, thermal
radients, alumina transport are disregarded, the global effect of gas
ubbles on the fluid flow is studied. Since the typical size of a gas
ubble is a few millimetres whereas the size of a whole cell is several
etres, a statistical averaged model is advocated, namely a dilute
ispersion of gas bubbles in the liquid bath [6–8]. Unlike [4], effects
uch as nucleation or coalescence of bubbles are neglected, on the other
ide, our model can be easily incorporated in industrial simulations, for
nstance with the Alucell software [9–13].

The added value of this paper is twofold. First, well-posedness of a
implified model is proved. Assuming that the volume fraction of gas is
rescribed, we analyse a modified Stokes problem with two velocities
mixture and gas) and one pressure. Under a smallness assumption of
he volume fraction of gas, well-posedness can be proved, as well as
priori error estimates for a stabilized finite element approximation.

econd, numerical results corresponding to the complete model are
resented for an industrial simulation. The effect of gas bubbles on the
verage fluid flow for a whole reduction cell is discussed.

∗ Corresponding author.
E-mail addresses: emile.soutter@epfl.ch (E. Soutter), jacques.rappaz@epfl.ch (J. Rappaz), marco.picasso@epfl.ch (M. Picasso).

The outline is the following. In Section 2, the complete mathemat-
ical model for the velocities (gas, bath and mixture), volume fraction
of gas and pressure is presented. In Section 3, well-posedness of a sim-
plified stationary problem in which the volume fraction of gas is given
and the viscous terms dominate is proved. In Section 4, convergence
of a stabilized finite element approximation is performed. Section 5 is
dedicated to numerical experiments, first for an academic problem to
confirm the theoretical predictions for the simplified model, second for
an industrial application pertaining to aluminium electrolysis.

2. The model

Let 𝛺 ⊂ R𝑑 , 𝑑 = 2, 3, be the space domain occupied by the
electrolytic bath with constant density 𝜌𝑏 and the gas with constant
density 𝜌𝑔 < 𝜌𝑏. As already mentioned, gas is considered as a dispersed
phase into the bath, 𝛼𝑔 being the volume fraction of gas and 𝜇𝑔 its
viscosity, similarly (1 − 𝛼𝑔) is the volume fraction of electrolytic bath
and 𝜇𝑏 its viscosity.

Bath and gas are incompressible fluids with velocities 𝒖𝑏, 𝒖𝑔 and the
same pressure 𝑝 (the capillary pressure and surface tension forces are
neglected). As in [7] the bath–gas mixture has density 𝜌𝑚 and velocity
𝒖𝑚 such that:

𝜌𝑚 = 𝛼𝑔𝜌𝑔 + (1 − 𝛼𝑔)𝜌𝑏, (1)

𝜌𝑚𝒖𝑚 = 𝛼𝑔𝜌𝑔𝒖𝑔 + (1 − 𝛼𝑔)𝜌𝑏𝒖𝑏. (2)

Let 𝑭 denote the electromagnetic force field and 𝒈 the gravity acceler-
ation, then mass and momentum conservation of the bath–gas mixture
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yields:
𝜕
𝜕𝑡
(𝜌𝑚𝒖𝑚) + div(𝜌𝑚𝒖𝑚 ⊗ 𝒖𝑚) − div𝝈𝑚 = 𝜌𝑚𝒈 + 𝑭 , (3)

𝜕𝜌𝑚
𝜕𝑡

+ div(𝜌𝑚𝒖𝑚) = 0, (4)

where

𝝈𝑚 = 2𝜇𝑚𝜖(𝒖𝑚) −
2
𝑑
𝜇𝑚 div 𝒖𝑚𝑰 − 𝑝𝑰 , and 𝜖(𝒖𝑚) =

𝛁𝒖𝑚 + 𝛁𝒖𝑇𝑚
2

. (5)

ere, for any vector field 𝒖, 𝛁𝒖 denotes the tensor with components
𝛁𝒖)𝑖,𝑗 = 𝜕𝑢𝑖∕𝜕𝑥𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑑 and 𝑰 the identity tensor. Momentum
onservation of the gas yields:
𝜕
𝜕𝑡
(𝛼𝑔𝜌𝑔𝒖𝑔) + div(𝛼𝑔𝜌𝑔𝒖𝑔 ⊗ 𝒖𝑔) = div 𝝉𝑔 − 𝛼𝑔𝛁𝑝 + 𝛼𝑔𝜌𝑔𝒈 + 𝑭𝐷, (6)

where

𝝉𝑔 = 2𝜇𝑔𝜖(𝒖𝑔) −
2
𝑑
𝜇𝑔 div 𝒖𝑔𝑰 , (7)

ith the drag forces 𝑭𝐷 = 𝐷𝛼𝑔(1 − 𝛼𝑔)(𝒖𝑏 − 𝒖𝑔), where 𝐷 corresponds
o Stokes’ law, see Section 5.2 for details. Finally mass conservation of
as leads to:
𝜕𝛼𝑔
𝜕𝑡

+ div
(

𝛼𝑔𝒖𝑔
)

− div(𝑘𝛁𝛼𝑔) = �̇�𝑔 , (8)

where 𝑘 is a diffusion coefficient, �̇�𝑔 is the prescribed gas production
per unit time due to the chemical reactions: it corresponds to alumina
and carbon combining at the anodes which generates bubbles of carbon
dioxide and pure aluminium:

2Al2O3 + 3C => 3CO2 + 4Al. (9)

Eqs. (3) (4) (6) (8) can be combined to obtain a system of equations
where the unknowns are 𝒖𝑚, 𝑝, 𝒖𝑔 and 𝛼𝑔 .

Remark 1. The viscosities 𝜇𝑚 and 𝜇𝑔 are constant in this model. In
industrial applications [14], they follow a Smagorinski model, thus
depend on the modulus of 𝜖(𝒖𝑚).

3. Mathematical results on a simplified model

In the frame of the industrial process, the goal is to find a stationary
solution as rapidly as possible. Numerical investigations have shown
that an efficient strategy is to perform one time step of (8) in order to
obtain a new 𝛼𝑔 , then to solve the stationary equations corresponding
to (3) (4) to obtain 𝒖𝑚, 𝑝 and finally solve the stationary equation cor-
responding to (6) to obtain 𝒖𝑔 . We therefore study the well-posedness
of (3) (4) (6), 𝛼𝑔 being a known quantity, and put aside Eq. (8) in our
theoretical framework.

It is assumed that 𝛺 is an open bounded domain in R𝑑 , 𝑑 =
2, 3, with Lipschitz boundary 𝜕𝛺. The convective terms div(𝜌𝑚𝒖𝑚 ⊗
𝒖𝑚) and div(𝛼𝑔𝜌𝑔𝒖𝑔 ⊗ 𝒖𝑔) in (3) and (6) are disregarded as diffusive
terms dominate in the electrolysis application; they could be treated as
perturbations as in [15] or incorporated in the analysis by making them
part of the stress definition as in [16]. Eqs. (3) (4) (6) then simplify to:

−div(𝝈𝑚) = 𝜌𝑚𝒈 + 𝑭 , (10)
div(𝜌𝑚𝒖𝑚) = 0, (11)
−div(𝝉𝑔) = −𝛼𝑔𝛁𝑝 + 𝛼𝑔𝜌𝑔𝒈 +𝐷𝛼𝑔(1 − 𝛼𝑔)(𝒖𝑏 − 𝒖𝑔), (12)

where 𝝈𝑚 and 𝝉𝑔 are given by (5) and (7) respectively. For the sake
of simplicity we assume that 𝜇𝑔 and 𝜇𝑚 are positive constants and set
𝒖𝑔 = 𝒖𝑏 = 0 on 𝜕𝛺.

The notations for Sobolev spaces with their associated semi-norms
and norms are the following. Let 𝐾 ⊂ 𝛺 be an open subdomain of 𝛺
with Lipschitz boundary 𝜕𝐾. For a d-index 𝑠 = (𝑠1, 𝑠2) ∈ N2 if 𝑑 = 2
or 𝑠 = (𝑠1, 𝑠2, 𝑠3) ∈ N3 if 𝑑 = 3, and for a differentiable function
𝑔 ∶ R𝑑 → R, we denote by |𝑠| =

∑𝑑
𝑖=1 𝑠𝑖 et 𝐷𝑠𝑔 = 𝜕|𝑠|𝑔∕(𝛱𝑑

𝑖=1𝜕𝑥
𝑠𝑖
𝑖 ).

or 1 ≤ 𝑝 < ∞ and 0 ≤ 𝑚 ∶
𝑚,𝑝 𝑝 𝑠 𝑝
(𝐾) = {𝑔 ∈ 𝐿 (𝐾) ∶ 𝐷 𝑔 ∈ 𝐿 (𝐾), 1 ≤ |𝑠| ≤ 𝑚, },

56
nd in the case where 𝑚 = 0, 𝑊 0,𝑝(𝐾) = 𝐿𝑝(𝐾). We will also use

𝑔|𝑚,𝑝,𝐾 = (
∑

|𝑠|=𝑚
‖𝐷𝑠𝑔‖𝑝𝐿𝑝(𝐾))

1∕𝑝 and ‖𝑔‖𝑚,𝑝,𝐾 = (
∑

|𝑠|≤𝑚
‖𝐷𝑠𝑔‖𝑝𝐿𝑝(𝐾))

1∕𝑝.

hen 𝑝 = 2 we will use the notations 𝐻𝑚(𝐾) = 𝑊 𝑚,2(𝐾) and for 𝑔 ∈
𝑚(𝐾), the semi-norms |𝑔|𝑚,𝐾 = |𝑔|𝑚,2,𝐾 and norms ‖𝑔‖𝑚,𝐾 = ‖𝑔‖𝑚,2,𝐾 .
hen 𝐾 = 𝛺, 𝐻𝑚

0 (𝛺) will denote the closure of all 𝐶∞ functions with
ompact support 𝐷(𝛺) in 𝐻𝑚(𝛺). In this space, semi-norm |.|𝑚,𝛺 and
orm ‖.‖𝑚,𝛺 are equivalent. If 𝒖 ∈ 𝐻𝑚(𝛺)𝑑 , we will denote |𝒖|𝑚,𝛺 =
∑𝑑

𝑖=1
|

|

𝑢𝑖||
2
𝑚,𝛺)

1∕2 and ‖𝒖‖𝑚,𝛺 = (
∑𝑑

𝑖=1
‖

‖

𝑢𝑖‖‖
2
𝑚,𝛺)

1∕2. Finally, we will denote

=
{

𝑣 ∈ 𝐿2(𝛺) ∶ ∫𝛺
𝑣 𝑑𝑥 = 0

}

, and 𝑽 = 𝐻1
0 (𝛺)𝑑 .

hen 𝒖,𝒗 ∈ 𝑽 , the tensorial product 𝜖(𝒖)∶ 𝜖(𝒗) is given by

(𝒖)∶ 𝜖(𝒗) =
𝑑
∑

𝑖,𝑗=1
𝜖(𝒖)𝑖,𝑗𝜖(𝒗)𝑖,𝑗 ,

nd |𝜖(𝒖)| = (𝜖(𝒖)∶ 𝜖(𝒖))1∕2. The same notation is adopted for 𝛁𝒖.
The weak form of Eqs. (10) and (11) is given by:

𝛺
2𝜇𝑚

(

𝜖
(

𝒖𝑚
)

∶ 𝜖(𝒗) − 1
𝑑
div 𝒖𝑚 div 𝒗

)

𝑑𝑥 − ∫𝛺
𝑝 div 𝒗𝑑𝑥

= ∫𝛺

(

𝜌𝑚𝒈 + 𝑭
)

.𝒗𝑑𝑥, (13)

∫𝛺
div(𝜌𝑚𝒖𝑚)𝑞𝑑𝑥 = 0, ∀𝒗 ∈ 𝑽 , ∀𝑞 ∈ 𝐿. (14)

Remarking that 𝛼𝑔𝛁𝑝 = 𝛁(𝛼𝑔𝑝) − 𝑝𝛁𝛼𝑔 and 𝒖𝑏 = (𝜌𝑚𝒖𝑚 − 𝛼𝑔𝜌𝑔𝒖𝑔)∕(𝜌𝑚 −
𝑔𝜌𝑔) (see (2) and (1)), a weak form of (12) is

𝛺
2𝜇𝑔

(

𝜖(𝒖𝑔)∶ 𝜖(𝒗) − 1
𝑑
div 𝒖𝑔 div 𝒗

)

𝑑𝑥 + ∫𝛺
𝐷
𝛼𝑔𝜌𝑚
𝜌𝑏

𝒖𝑔 .𝒗𝑑𝑥

= ∫𝛺
𝑝𝛁𝛼𝑔 .𝒗𝑑𝑥 + ∫𝛺

𝛼𝑔𝑝 div 𝒗𝑑𝑥 + ∫𝛺
𝛼𝑔(𝜌𝑔 𝒈+𝐷

𝜌𝑚
𝜌𝑏
𝒖𝑚).𝒗𝑑𝑥,∀𝒗 ∈ 𝑽 . (15)

We are looking for 𝒖𝑚 ∈ 𝑽 , 𝑝 ∈ 𝐿, 𝒖𝑔 ∈ 𝑽 satisfying (13) to (15).
We assume that 𝒈 ∈ R𝑑 , 𝑭 ∈ 𝐿2(𝛺)𝑑 and 𝛼𝑔 ∈ 𝑊 1,3(𝛺) ∩ 𝐿∞ (𝛺)
is known and is such that 0 ≤ 𝛼𝑔 ≤ 1. Using (1), it is obvious that
𝜌𝑚 ∈ 𝑊 1,3(𝛺) ∩ 𝐿∞ (𝛺), 𝜌𝑔 ≤ 𝜌𝑚 ≤ 𝜌𝑏, and

𝜕𝜌𝑚
𝜕𝑥𝑖

=
𝜕𝛼𝑔
𝜕𝑥𝑖

(

𝜌𝑔 − 𝜌𝑏
)

.

It should be noted that equations similar to (13) (14) have been
analysed in [17,18] when the density of the mixture is known. In this
paper, (15) is added to (13) (14) and the volume fraction of gas 𝛼𝑔 is
rescribed rather than the density of the mixture.

emma 1. Assume 0 ≤ 𝛼𝑔 ≤ 1 and 𝛼𝑔 ∈ 𝑊 1,3(𝛺). The mapping
𝒖 ∈ 𝑽 → 𝜌𝑚𝒖 ∈ 𝑽 (with 𝜌𝑚 given by (1)) is an isomorphism. There exists
two positive constants 𝛾1, 𝛾2 such that for every 𝒖 ∈ 𝑽 ∶

|𝒖|1,𝛺 ≤ 𝛾1(1 +
|

|

|

𝛼𝑔
|

|

|1,3,𝛺
) |
|

𝜌𝑚𝒖||1,𝛺 , (16)

|

|

𝜌𝑚𝒖||1,𝛺 ≤ 𝛾2(1 +
|

|

|

𝛼𝑔
|

|

|1,3,𝛺
) |𝒖|1,𝛺 . (17)

Proof of Lemma 1. Let 𝒖 be in 𝑽 and let us compute the partial
derivatives of 𝒘 = 𝜌𝑚𝒖.

We verify that 𝛁𝒘 = 𝜌𝑚𝛁𝒖 + 𝒖⊗𝛁𝜌𝑚 with the notation (𝒂 ⊗ 𝒃)𝑖,𝑗 =
𝑎𝑖𝑏𝑗 .

By using (1) we have 𝜌𝑔 ≤ 𝜌𝑚 ≤ 𝜌𝑏 and 𝛁𝜌𝑚 =
(

𝜌𝑔 − 𝜌𝑏
)

𝛁𝛼𝑔 .
Hölder inequalities imply ‖𝛁𝒘‖0,𝛺 ≤ 𝜌𝑏 ‖𝛁𝒖‖0,𝛺 + 𝐶 ‖𝒖‖0,6,𝛺

‖

‖

‖

𝛁𝛼𝑔
‖

‖

‖0,3,𝛺
, where 𝐶 is a constant independent of derivatives of the 𝛼𝑔 .

Since 𝐻1
0 (𝛺) ↪ 𝐿6(𝛺) with continuous embedding, we easily obtain

(17).
In order to obtain (16), we use the same technique with

𝒖 = 1
𝜌𝑚
𝒘, 1

𝜌𝑏
≤ 1

𝜌𝑚
≤ 1

𝜌𝑔
and 𝛁 1

𝜌𝑚
= − 1

𝜌2𝑚

(

𝜌𝑔 − 𝜌𝑏
)

𝛁𝛼𝑔 . □
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Remark 2. The assumption 𝛼𝑔 ∈ 𝑊 1,3(𝛺) in Lemma 1 is sufficient
or both dimensions 𝑑 = 2, 3. When 𝑑 = 2, it can be improved: 𝛼𝑔 ∈

1,2+𝑘(𝛺), with 𝑘 > 0.

emma 2 (Korn Equality). We assume 𝒖 ∈ 𝑽 . Then

𝛺
|𝜖(𝒖)|2 𝑑𝑥 = 1

2 ∫𝛺
(|𝛁𝒖|2 + |div 𝒖|2)𝑑𝑥.

Proof of Lemma 2. Let 𝒖, 𝒗 ∈ 𝐷(𝛺)𝑑 . Then

∫𝛺
𝜖(𝒖) ∶ 𝜖(𝒗)𝑑𝑥 = ∫𝛺

1
4

𝑑
∑

𝑖,𝑗=1

(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)(

𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗
𝜕𝑥𝑖

)

𝑑𝑥 =

∫𝛺
1
4

𝑑
∑

𝑖,𝑗=1

(

𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

𝜕𝑣𝑗
𝜕𝑥𝑖

+ 2
𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑣𝑗
𝜕𝑥𝑖

)

𝑑𝑥.

Integrating two times by part the last term, we obtain

∫𝛺
𝜕𝑢𝑖
𝜕𝑥𝑗

.
𝜕𝑣𝑗
𝜕𝑥𝑖

𝑑𝑥 = −∫𝛺

𝜕2𝑣𝑗
𝜕𝑥𝑖𝜕𝑥𝑗

𝑢𝑖𝑑𝑥 = ∫𝛺

𝜕𝑣𝑗
𝜕𝑥𝑗

.
𝜕𝑢𝑖
𝜕𝑥𝑖

𝑑𝑥

nd

𝛺
𝜖(𝒖) ∶ 𝜖(𝒗)𝑑𝑥 = 1

2 ∫𝛺
𝛁𝒖 ∶ 𝛁𝒗𝑑𝑥 + 1

2 ∫𝛺
div𝒖 div𝒗 𝑑𝑥. (18)

To complete the proof of this lemma, it is enough to remark that 𝐷(𝛺)𝑑

s dense in 𝑽 and taking 𝒗 = 𝒖. □

In order to solve Eqs. (13) and (14), we set 𝒘 = 𝜌𝑚𝒖𝑚 and we define
wo continuous bilinear forms 𝑎 ∶ 𝑽 × 𝑽 → R and 𝑏 ∶ 𝑽 × 𝐿 → R by:

(𝒘, 𝒗) = ∫𝛺
2𝜇𝑚

(

𝜖
(

𝒘
𝜌𝑚

)

∶ 𝜖 (𝒗) − 1
𝑑
div

(

𝒘
𝜌𝑚

)

div (𝒗)
)

𝑑𝑥, (19)

and 𝑏(𝒘, 𝑞) = ∫𝛺
div𝒘 𝑞𝑑𝑥 . (20)

emark that the bilinear form 𝑎 is not symmetric and depends on 𝛼𝑔 .
With the change of variables𝒘 = 𝜌𝑚𝒖𝑚, problem (13)–(14) is equivalent
to find 𝒘 ∈ 𝑽 and 𝑝 ∈ 𝐿 satisfying

𝑎(𝒘, 𝒗) − 𝑏(𝒗, 𝑝) = ∫𝛺
(𝜌𝑚𝒈 + 𝑭 ).𝒗𝑑𝑥, ∀𝒗 ∈ 𝑽 , (21)

𝑏(𝒘, 𝑞) = 0 ∀𝑞 ∈ 𝐿. (22)

Notice that 𝒘 belongs to the space:

𝑽 𝑑𝑖𝑣 = {𝒗 ∈ 𝑽 ∶ div(𝒗) = 0}. (23)

In order to analyse Eqs. (15), we define the continuous bilinear form
𝓁 ∶ 𝑽 × 𝑽 → R by:

𝓁(𝒖, 𝒗) = ∫𝛺
2𝜇𝑔

(

𝜖(𝒖)∶ 𝜖(𝒗) − 1
𝑑
div 𝒖 div 𝒗

)

𝑑𝑥 + ∫𝛺
𝐷
𝛼𝑔𝜌𝑚
𝜌𝑏

𝒖.𝒗𝑑𝑥. (24)

e prove

emma 3. There exists 𝜀 > 0 such that if 𝛼𝑔 ∈ 𝑊 1,3(𝛺), ||
|

𝛼𝑔
|

|

|1,3,𝛺
≤ 𝜀

nd 0 ≤ 𝛼𝑔 ≤ 1, then the bilinear form 𝑎(., .) is coercive on 𝑽 𝑑𝑖𝑣.

Proof of Lemma 3. Using Lemma 1, then 𝒘 = 𝜌𝑚𝒖𝑚 ∈ 𝑽 𝑑𝑖𝑣 and, if
|

|

|

𝛼𝑔
|

|

|1,3,𝛺
is bounded, there exist two positive constants 𝛽1 < 𝛽2 satisfying

𝛽1 ‖‖𝒖𝑚‖‖1,𝛺 ≤ ‖𝒘‖1,𝛺 ≤ 𝛽2 ‖‖𝒖𝑚‖‖1,𝛺 . (25)

It is easy to verify that

𝜖( 𝒘
𝜌𝑚

) = 1
𝜌𝑚

𝜖(𝒘) − 1
2𝜌2𝑚

(

𝛁𝜌𝑚 ⊗𝒘+𝒘⊗ 𝛁𝜌𝑚
)

,

when (𝒃⊗ 𝒄)𝑖,𝑗 = 𝑏𝑖𝑐𝑗 . It follows that for 𝒘∈𝑽 𝑑𝑖𝑣

𝑎(𝒘,𝒘) =
2𝜇𝑚

(

𝜖(𝒘)∶ 𝜖(𝒘) − 1 div𝒘 div𝒘
)

𝑑𝑥
∫𝛺 𝜌𝑚 𝑑
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− ∫𝛺
𝜇𝑚
𝜌2𝑚

(

(

𝛁𝜌𝑚 ⊗𝒘+𝒘⊗ 𝛁𝜌𝑚
)

∶ 𝜖(𝒘)
)

𝑑𝑥 (26)

+∫𝛺
2𝜇𝑚
𝑑𝜌2𝑚

(

𝒘.𝛁𝜌𝑚 div𝒘
)

𝑑𝑥.

By using Lemma 2 and the fact that div(𝒘) = 0, there exists a constant
𝐶 independent of 𝒘 and 𝛁𝛼𝑔 such that

𝑎(𝒘,𝒘) ≥
𝜇𝑚
𝜌𝑔

(

|𝒘|

2
1,𝛺 − 𝐶 ‖

‖

𝛁𝜌𝑚‖‖0,3,𝛺 ‖𝒘‖0,6,𝛺 |𝒘|1,𝛺

)

.

It is sufficient to remark that 𝐻1
0 (𝛺) ↪ 𝐿6 (𝛺) with continuous em-

bedding, that 𝛁𝜌𝑚 = (𝜌𝑔 − 𝜌𝑏)𝛁𝛼𝑔 , that |.|1,𝛺 is equivalent to ‖.‖1,𝛺
in 𝐻1

0 (𝛺), in order to prove that if |

|

|

𝛼𝑔
|

|

|1,3,𝛺
is small enough, then the

bilinear form 𝑎(., .) is uniformly coercive on 𝑽 𝑑𝑖𝑣. □

Proposition 1. There exists 𝜀 > 0 such that if 𝛼𝑔 ∈ 𝑊 1,3(𝛺), ||
|

𝛼𝑔
|

|

|1,3,𝛺
≤ 𝜀

and 0 ≤ 𝛼𝑔 ≤ 1, then Problem (13)–(14), in which 𝜌𝑚 is defined by (1),
possesses a unique solution

(

𝒖𝑚, 𝑝
)

∈ 𝑽 ×𝐿. Moreover there exists a constant
𝐶 such that ‖

‖

𝒖𝑚‖‖1,𝛺 + ‖𝑝‖0,𝛺 ≤ 𝐶.

Proof of Proposition 1. The usual inf–sup condition on 𝑏(., .), together
with the previous lemma implies (see [19] for instance) the existence
and uniqueness of (𝒘, 𝑝) ∈ 𝑽 × 𝐿 for Eqs. (21) and (22). By setting
𝒖𝑚 = 𝒘∕𝜌𝑚 and using (25), we can conclude. □

Proposition 2. There exists 𝜀 > 0 such that if 𝛼𝑔 ∈ 𝑊 1,3(𝛺), ||
|

𝛼𝑔
|

|

|1,3,𝛺
≤ 𝜀

and 0 ≤ 𝛼𝑔 ≤ 1, then Problem (15) possesses a unique solution 𝒖𝑔 ∈ 𝑽 .
Moreover there exists a constant 𝐶 (independent of 𝛼𝑔) such that ‖‖

‖

𝒖𝑔
‖

‖

‖1
≤

𝐶.

Proof of Proposition 2. Clearly, using Lemma 2 and the hypotheses
of this Proposition, we show that the bilinear form 𝓁 defined by (24)
is coercive and continuous on 𝑽 × 𝑽 .

In order to finish the proof of this Proposition, it remains to prove
that the right-hand side of (15) is bounded for every 𝒗 ∈ 𝐻1

0 (𝛺),
‖𝒗‖1,𝛺 = 1.

By estimating the three integrals of the right-hand side of (15), using
Hölder inequalities and hypotheses of this Proposition, we successively
obtain:
|

|

|

|

∫𝛺
𝑝∇𝛼𝑔 .𝒗𝑑𝑥

|

|

|

|

≤ 𝜀 ‖𝑝‖0,𝛺 ‖𝒗‖0,6,𝛺 ;

|

|

|

|

∫𝛺
𝛼𝑔𝑝 div 𝒗𝑑𝑥

|

|

|

|

≤ ‖𝑝‖0,𝛺 ‖𝒗‖1,𝛺 ;

|

|

|

|

∫𝛺
(𝛼𝑔𝜌𝑔 𝒈+𝐷

𝛼𝑔𝜌𝑚
𝜌𝑏

𝒖𝑚).𝒗𝑑𝑥
|

|

|

|

≤ (𝜌𝑔 |𝒈| +𝐷 ‖

‖

𝒖𝑚‖‖0,𝛺) ‖𝒗‖0,𝛺 .

Using again the embedding 𝐻1
0 (𝛺) ↪ 𝐿6 (𝛺), we can conclude. □

In this section we have therefore proved that if 𝛼𝑔 ∶ 𝛺 → R is given
such that 0 ≤ 𝛼𝑔 ≤ 1, 𝛼𝑔 ∈ 𝑊 1,3(𝛺) with |

|

|

𝛼𝑔
|

|

|1,3,𝛺
small enough,1 then

Problem (13) to (15) has a unique solution.

4. Numerical approximation

Let us assume that 𝛺 is a polygonal (𝑑 = 2) or polyhedral domain
(𝑑 = 3). For any ℎ > 0, let ℎ be a conformal regular triangu-
lar/tetrahedral mesh of 𝛺 with triangles/tetrahedra 𝐾 ∈ ℎ with
diameter ℎ𝐾 ≤ ℎ.

𝑊ℎ = {𝑞 ∈ 𝐶0
(

𝛺
)

∶ 𝑞∕𝐾 ∈ P1(𝐾),∀𝐾 ∈ ℎ}, (27)

here P1(𝐾) denotes the set of polynomials of degree 1 on 𝐾. Let
1, 𝑃2,...𝑃𝑁ℎ

be the nodes of the triangular/tetrahedral mesh ℎ, and
let 𝜑1, 𝜑2,...𝜑𝑁ℎ

the finite element basis of 𝑊ℎ.

1 In 2𝐷 (𝑑 = 2), if 𝛼 ∈ 𝑊 1,𝑠(𝛺), 𝑠 > 2 with |𝛼 | small enough.
𝑔 𝑔 1,𝑠,𝛺
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𝛱

R
∀

‖

A
(

=

T

i
c

𝐶

P

‖

‖

If 𝑞 ∈ 𝐶0(𝛺) we denote by 𝜋ℎ𝑞 its Lagrange interpolation on 𝑊ℎ, i.e

𝜋ℎ𝑞 =
𝑁ℎ
∑

𝑗=1
𝑞(𝑃𝑗 )𝜑𝑗 .

Now we define

𝑽 ℎ = 𝑽 ∩𝑊 𝑑
ℎ , and 𝐿ℎ = 𝐿 ∩𝑊ℎ.

or a function 𝒗 ∈ 𝐶0(𝛺)𝑑 such that 𝒗 = 𝟎 on 𝜕𝛺, we denote by 𝛱ℎ𝒗
ts interpolation on 𝑽 ℎ, i.e.

ℎ𝒗 =
𝑁ℎ
∑

𝑗=1
𝒗(𝑃𝑗 )𝜑𝑗 .

ecall the properties of the Lagrange interpolation (for instance [20]):
𝑓 ∈ 𝐻2(𝛺), there is a constant 𝑐 such that:

𝑓 −𝛱ℎ𝑓‖1,𝛺 ≤ 𝑐ℎ|𝑓 |2,𝛺 , ∀ℎ > 0. (28)

n approximation of Problems (13) (14) and (15) will be: find
𝒖𝑚,ℎ, 𝑝ℎ, 𝒖𝑔,ℎ

)

∈ 𝑽 ℎ × 𝐿ℎ × 𝑽 ℎ such that for every 𝒗 ∈ 𝑽 ℎ, 𝑞 ∈ 𝐿ℎ
we have

∫𝛺
2𝜇𝑚

(

𝜖(𝒖𝑚,ℎ)∶ 𝜖(𝒗) − 1
𝑑
div 𝒖𝑚,ℎ div 𝒗

)

𝑑𝑥

− ∫𝛺
𝑝ℎ div 𝒗𝑑𝑥 = ∫𝛺

(𝜌𝑚𝒈 + 𝑭 ).𝒗𝑑𝑥, (29)

∫𝛺
div

(

𝛱ℎ
(

𝜌𝑚𝒖𝑚,ℎ
))

𝑞𝑑𝑥 + 𝛽ℎ2 ∫𝛺
𝛁𝑝ℎ.𝛁𝑞𝑑𝑥 = 0, (30)

∫𝛺
2𝜇𝑔

(

𝜖(𝒖𝑔,ℎ)∶ 𝜖(𝒗) − 1
𝑑
div 𝒖𝑔,ℎ div 𝒗

)

𝑑𝑥 + ∫𝛺
𝐷
𝛼𝑔𝜌𝑚
𝜌𝑏

𝒖𝑔,ℎ.𝒗𝑑𝑥 (31)

∫𝛺
𝑝ℎ𝛁𝛼𝑔 .𝒗𝑑𝑥 + ∫𝛺

𝛼𝑔𝑝ℎ div 𝒗𝑑𝑥 + ∫𝛺
(𝛼𝑔𝜌𝑔 𝒈+𝐷

𝛼𝑔𝜌𝑚
𝜌𝑏

𝒖𝑚,ℎ).𝒗𝑑𝑥.

he stabilization term 𝛽ℎ2 ∫𝛺 𝛁𝑝ℎ.𝛁𝑞 𝑑𝑥 in (30) is added for stability
purposes [21], in our simulations we have used 𝛽 = 𝜌𝑏∕𝜇𝑏. Note that
in (30), we have replaced 𝜌𝑚𝒖𝑚,ℎ by 𝛱ℎ(𝜌𝑚𝒖𝑚,ℎ) to take into account
quadrature formula.

In order to analyse Eqs. (29) (30), we proceed as in Lemma 1 by
introducing the variable

𝒘ℎ = 𝛱ℎ(𝜌𝑚𝒖𝑚,ℎ). (32)

Clearly we have

𝒖𝑚,ℎ = 𝛱ℎ(𝒘ℎ∕𝜌𝑚), (33)

so that setting

𝑎ℎ(𝒘ℎ, 𝒗) = ∫𝛺
2𝜇𝑚

(

𝜖(𝛱ℎ(𝒘ℎ∕𝜌𝑚))∶ 𝜖(𝒗) − 1
𝑑
div(𝛱ℎ(𝒘ℎ∕𝜌𝑚)) div 𝒗

)

𝑑𝑥,

problem (29) (30) is equivalent to find 𝒘ℎ ∈ 𝑽 ℎ and 𝑝ℎ ∈ 𝐿ℎ such that
for every 𝒗 ∈ 𝑽 ℎ and 𝑞 ∈ 𝐿ℎ we have

𝑎ℎ(𝒘ℎ, 𝒗) − 𝑏(𝒗, 𝑝ℎ) = ∫𝛺
(𝜌𝑚𝒈 + 𝑭 ).𝒗𝑑𝑥, (34)

𝑏(𝒘ℎ, 𝑞) + 𝛽ℎ2 ∫𝛺
𝛁𝑝ℎ.𝛁𝑞𝑑𝑥 = 0. (35)

In order to prove convergence of the solutions of (34) (35) towards that
of (21) (22), we establish three lemmas.

Lemma 4. Let 𝜌 ∈ 𝑊 2,3(𝛺) ∩𝑊 1,∞(𝛺). Then there exists a constant 𝐶
such that

‖

‖

𝜌𝑞 − 𝜋ℎ(𝜌𝑞)‖‖1,𝛺 ≤ 𝐶ℎ ‖𝑞‖1,𝛺 ∀𝑞 ∈ 𝑊ℎ. (36)

Proof of Lemma 4. Clearly, if 𝜌 ∈ 𝑊 2,3(𝛺)∩𝑊 1,∞ (𝛺) and 𝑞 ∈ 𝑊ℎ, then
𝜌𝑞 ∈ 𝐻1(𝛺) and 𝜌𝑞 ∈ 𝐻2 𝐾 , ∀𝐾 ∈ 𝛤 . It is well known (see [20])
∕𝐾 ( ) ℎ
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that the following estimate holds:

‖

‖

𝜌𝑞 − 𝜋ℎ(𝜌𝑞)‖‖
2
1,𝛺 ≤ 𝐶ℎ2

∑

𝐾∈𝛤ℎ

|𝜌𝑞|22,𝐾 . (37)

When 𝑞 ∈ 𝑊ℎ, then 𝜕2𝑞∕𝜕𝑥𝑖𝜕𝑥𝑗 = 0 on 𝐾 and

𝜕2(𝜌𝑞)
𝜕𝑥𝑖𝜕𝑥𝑗

=
𝜕2𝜌

𝜕𝑥𝑖𝜕𝑥𝑗
𝑞 +

𝜕𝜌
𝜕𝑥𝑖

𝜕𝑞
𝜕𝑥𝑗

+
𝜕𝜌
𝜕𝑥𝑗

𝜕𝑞
𝜕𝑥𝑖

.

Consequently

‖

‖

‖

‖

‖

𝜕2(𝜌𝑞)
𝜕𝑥𝑖𝜕𝑥𝑗

‖

‖

‖

‖

‖

2

0,𝐾
≤

‖

‖

‖

‖

‖

𝜕2𝜌
𝜕𝑥𝑖𝜕𝑥𝑗

‖

‖

‖

‖

‖

2

0,3,𝐾
‖𝑞‖20,6,𝐾 +

‖

‖

‖

‖

𝜕𝜌
𝜕𝑥𝑖

‖

‖

‖

‖

2

0,∞,𝐾

‖

‖

‖

‖

‖

𝜕𝑞
𝜕𝑥𝑗

‖

‖

‖

‖

‖

2

0,𝐾

+
‖

‖

‖

‖

‖

𝜕𝜌
𝜕𝑥𝑗

‖

‖

‖

‖

‖

2

0,∞,𝐾

‖

‖

‖

‖

𝜕𝑞
𝜕𝑥𝑖

‖

‖

‖

‖

2

0,𝐾

≤ 𝐶
(

|𝜌|22,3,𝐾 ‖𝑞‖20,6,𝐾 + |𝜌|21,∞,𝐾 |𝑞|21,𝐾
)

.

Since ‖𝑞‖0,6,𝐾 ≤ 𝐶 ‖𝑞‖1,𝐾 , then (37) allows to conclude. □

The equivalent discrete proposition of Lemma 1 can be stated.

Lemma 5. Assume 0 ≤ 𝛼𝑔 ≤ 1 and 𝛼𝑔 ∈ 𝑊 2,3(𝛺) ∩𝑊 1,∞(𝛺). When 𝜌𝑚
is given by (1), the application 𝑇ℎ ∶ 𝑽 ℎ → 𝑽 ℎ defined by

𝑇ℎ(𝝎) = 𝛱ℎ(𝜌𝑚𝝎), ∀𝝎 ∈ 𝑽 ℎ (38)

s an isomorphism of 𝑽 ℎ uniformly in ℎ, i.e, there exist two positive
onstants 𝐶1 and 𝐶2 such that

1 ‖𝝎‖1,𝛺 ≤ ‖

‖

𝑇ℎ(𝝎)‖‖1,𝛺 ≤ 𝐶2 ‖𝝎‖1,𝛺 ∀𝝎 ∈ 𝑽 ℎ. (39)

Thus we have 𝑇 −1
ℎ (𝒖) = 𝛱ℎ(𝜌−1𝑚 𝒖), ∀𝒖 ∈ 𝑽 ℎ.

roof of Lemma 5. We have, using Lemma 4:

𝛱ℎ(𝜌𝑚𝝎)‖‖1,𝛺 ≤ ‖

‖

𝛱ℎ(𝜌𝑚𝝎) − 𝜌𝑚𝝎‖‖1,𝛺 + ‖

‖

𝜌𝑚𝝎‖‖1,𝛺
≤ 𝐶ℎ ‖𝝎‖1,𝛺 + ‖

‖

𝜌𝑚‖‖1,∞,𝛺 ‖𝝎‖1,𝛺 .

The same applies to 𝜌−1𝑚 instead of 𝜌𝑚. □

Lemma 6. Under the assumptions of Lemma 5, there exists a constant
𝐶 > 0 such that

|𝑎(𝝋,𝝍) − 𝑎ℎ(𝝋,𝝍)| ≤ 𝐶ℎ ‖𝝋‖1,𝛺 ‖𝝍‖1,𝛺 ∀𝝋,𝝍 ∈ 𝑽 ℎ.

Proof of Lemma 6. By bilinearity of 𝑎 and 𝑎ℎ we get ∀𝝋,𝝍 ∈ 𝑽 ℎ ∶

|

|

𝑎(𝝋,𝝍) − 𝑎ℎ(𝝋,𝝍)|| =

|

|

|

|

2𝜇𝑚 ∫𝛺

(

𝜖
(

𝝋
𝜌𝑚

−𝛱ℎ

(

𝝋
𝜌𝑚

))

∶ 𝜖 (𝝍) − 1
𝑑
div

(

𝝋
𝜌𝑚

−𝛱ℎ

(

𝝋
𝜌𝑚

))

div 𝝍

)

𝑑𝑥
|

|

|

|

.

Using Lemma 4, there exists two constants 𝐶1, 𝐶2 such that

|

|

𝑎(𝝋,𝝍) − 𝑎ℎ(𝝋,𝝍)|| ≤ 𝐶1
‖

‖

‖

‖

𝝋
𝜌𝑚

−𝛱ℎ(
𝝋
𝜌𝑚

)
‖

‖

‖

‖1,𝛺
‖𝝍‖1,𝛺

≤ 𝐶2ℎ ‖𝝋‖1,𝛺 ‖𝝍‖1,𝛺 . □

Corollary 1. Assume 0 ≤ 𝛼𝑔 ≤ 1 and 𝛼𝑔 ∈ 𝑊 2,3(𝛺) ∩ 𝑊 1,∞(𝛺),
and let 𝜀 > 0 be such as in Lemma 3. Then there exists ℎ0 > 0 such
that if ℎ ≤ ℎ0, Problem (34) (35) possesses a unique solution (𝒘ℎ, 𝑝ℎ) ∈
𝑽 ℎ × 𝐿ℎ. Moreover there exists a constant 𝐶 (independent of ℎ) such that
‖

‖

𝒘ℎ
‖

‖1,𝛺 + ℎ ‖
‖

𝛁𝑝ℎ‖‖0,𝛺 ≤ 𝐶.

Proof of Corollary 1. Under these assumptions, Lemmas 6 and 3 imply
that the bilinear form 𝑎ℎ(., .) is uniformly coercive on 𝑽 ℎ when ℎ ≤ ℎ0
is small enough, i.e there exists 𝜅 > 0 such that if ℎ ≤ ℎ0

𝑎 (𝝋,𝝋) ≥ 𝜅 𝝋 2 , ∀𝝋 ∈ 𝑽 . (40)
ℎ ‖ ‖1,𝛺 ℎ
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Setting 𝐴((𝒘, 𝑝); (𝒗, 𝑞)) = 𝑎ℎ(𝒘, 𝒗) − 𝑏(𝒗, 𝑝) + 𝑏(𝒘, 𝑞) + 𝛽ℎ2 ∫𝛺 𝛁𝑝.𝛁𝑞𝑑𝑥, it
follows that 𝐴 ∶

(

𝑽 ℎ × 𝐿ℎ
)

×
(

𝑽 ℎ × 𝐿ℎ
)

→ R is coercive on 𝑽 ℎ × 𝐿ℎ
provided with the norm ‖𝒘‖1,𝛺 + ℎ ‖𝛁𝑝‖0,𝛺, i.e:

𝐴((𝒘, 𝑝); (𝒘, 𝑝)) ≥ 𝜅 ‖𝒘‖

2
1,𝛺 + 𝛽ℎ2 ‖𝛁𝑝‖20,𝛺 , ∀(𝒘, 𝑝) ∈ 𝑽 ℎ × 𝐿ℎ.

The proof of this corollary is a consequence of the equivalence of
Problem (34) (35) with 𝐴((𝒘ℎ, 𝑝ℎ); (𝒗, 𝑞)) = ∫𝛺(𝜌𝑚𝒈 + 𝑭 ).𝒗𝑑𝑥 for every
(𝒗, 𝑞) ∈ 𝑽 ℎ × 𝐿ℎ. □

We now derive error estimates between (𝒘, 𝑝) and (𝒘ℎ, 𝑝ℎ) and,
consequently, between 𝒖𝑚 and 𝒖𝑚,ℎ. To do this we assume that the
solution of Problem (13) (14) satisfies

(𝒖𝑚, 𝑝) ∈ 𝐻2(𝛺)𝑑 ×𝐻1(𝛺). (41)

Let us remark that if assumption (41) is true and if 𝛼𝑔 ∈ 𝑊 2,3(𝛺) ∩
𝑊 1,∞(𝛺), then (𝒘, 𝑝) ∈ 𝐻2(𝛺)𝑑 ×𝐻1(𝛺) when 𝒘 = 𝜌𝑚𝒖𝑚.

Proposition 3. Under the assumptions of Corollary 1 and (41), there exists
a constant 𝐶 independent of ℎ such that

‖

‖

𝒖𝑚 − 𝒖𝑚,ℎ‖‖1,𝛺 + ℎ ‖‖
‖

𝛁
(

𝑝 − 𝑝ℎ
)

‖

‖

‖0,𝛺
≤ 𝐶ℎ. (42)

Proof of Proposition 3. By subtraction of (34) to (21), we obtain for
every 𝒗 ∈ 𝑽 ℎ ∶

𝑎(𝒘 −𝒘ℎ, 𝒗) − 𝑏(𝒗, 𝑝 − 𝑝ℎ) = 𝑎ℎ(𝒘ℎ, 𝒗) − 𝑎(𝒘ℎ, 𝒗), (43)

and consequently:

𝑎(𝒘 −𝒘ℎ,𝒘 −𝒘ℎ) − 𝑏(𝒘 −𝒘ℎ, 𝑝 − 𝑝ℎ) (44)
= 𝑎(𝒘 −𝒘ℎ,𝒘 − 𝒗) − 𝑏(𝒘 − 𝒗, 𝑝 − 𝑝ℎ) + 𝑎ℎ(𝒘ℎ, 𝒗 −𝒘ℎ) − 𝑎(𝒘ℎ, 𝒗 −𝒘ℎ).

By subtraction of (35) to (22), we obtain for every 𝑞 ∈ 𝐿ℎ∶

𝑏(𝒘 −𝒘ℎ, 𝑞) − 𝛽ℎ2
(

𝛁𝑝ℎ,𝛁𝑞
)

0,𝛺 = 0, (45)

where
(

𝛁𝑝ℎ,𝛁𝑞
)

0,𝛺 = ∫𝛺 𝛁𝑝ℎ𝛁𝑞𝑑𝑥 denotes the scalar product in 𝐿2

(𝛺)𝑑 . Consequently:

𝑏(𝒘 −𝒘ℎ, 𝑝 − 𝑝ℎ) + 𝛽ℎ2 ‖‖
‖

𝛁
(

𝑝 − 𝑝ℎ
)

‖

‖

‖

2
0,𝛺 (46)

= 𝑏(𝒘 −𝒘ℎ, 𝑝 − 𝑞) + 𝛽ℎ2
(

𝛁𝑝,𝛁(𝑝 − 𝑝ℎ)
)

0,𝛺 − 𝛽ℎ2
(

𝛁𝑝ℎ,𝛁(𝑝 − 𝑞)
)

0,𝛺

By adding (44), (46), and by taking into account Lemmas 3, 6 and
using:

|𝑏(𝒘 − 𝒗, 𝑝 − 𝑝ℎ)| ≤ ‖𝒘 − 𝒗‖0,𝛺 ‖

‖

𝛁(𝑝 − 𝑝ℎ)‖‖0,𝛺 ,
‖

‖

𝛁(𝑝ℎ)‖‖0,𝛺 ≤ ‖

‖

𝛁(𝑝 − 𝑝ℎ)‖‖0,𝛺 + ‖𝛁𝑝‖0,𝛺 ,

we obtain the following estimate:

‖

‖

𝒘 −𝒘ℎ
‖

‖

2
1,𝛺 + ℎ2 ‖‖

‖

𝛁
(

𝑝 − 𝑝ℎ
)

‖

‖

‖

2

0,𝛺

≤ 𝐶

(

‖𝒘 − 𝒗‖1,𝛺 ‖

‖

𝒘 −𝒘ℎ
‖

‖1,𝛺 + ‖𝒘 − 𝒗‖0,𝛺
‖

‖

‖

𝛁
(

𝑝 − 𝑝ℎ
)

‖

‖

‖0,𝛺

+ℎ ‖
‖

𝒘ℎ
‖

‖1,𝛺
‖

‖

𝒗 −𝒘ℎ
‖

‖1,𝛺 + ‖

‖

𝒘 −𝒘ℎ
‖

‖1,𝛺 ‖𝑝 − 𝑞‖0,𝛺

+ℎ2
(

‖

‖

𝛁(𝑝 − 𝑝ℎ)‖‖0,𝛺
(

1 + ‖𝛁(𝑝 − 𝑞)‖0,𝛺
)

+ ‖𝛁(𝑝 − 𝑞)‖0,𝛺

)

)

,

for every (𝒗, 𝑞) ∈ 𝑽 ℎ × 𝐿ℎ.
Setting 𝒗 = 𝛱ℎ𝒘, using (28) and 𝑞 = 𝑟ℎ(𝑝) (here 𝑟ℎ ∶ 𝐻1 (𝛺) → 𝐿ℎ

is a Clement’s interpolation type; see for instance [22], ‖
‖

𝑝 − 𝑟ℎ(𝑝)‖‖𝑠,𝛺 ≤
𝐶ℎ1−𝑠, 𝑠 = 0, 1) in this inequality and using the result of corollary 1,
we obtain.

‖

‖

𝒘 −𝒘ℎ
‖

‖

2
1,𝛺 + ℎ2 ‖‖

‖

𝛁
(

𝑝 − 𝑝ℎ
)

‖

‖

‖

2

0,𝛺

≤ 𝐶ℎ
(

‖

‖

𝒘 −𝒘ℎ
‖

‖1,𝛺 + ℎ ‖‖
‖

𝛁
(

𝑝 − 𝑝ℎ
)

‖

‖

‖0,𝛺
+ ℎ

)

.

This inequality proves (42) when we set 𝒖𝑚 = 𝒘∕𝝆𝑚 and 𝒖𝑚,ℎ =

𝛱ℎ(𝒘ℎ∕𝝆𝑚). □

59
In order to obtain an error estimate of ‖

‖

𝑝 − 𝑝ℎ‖‖0,𝛺, we proceed by
duality like in [21].

Proposition 4. Under the assumptions of Corollary 1 and (41), there
exists a constant 𝐶 such that

‖𝑝 − 𝑝ℎ‖0,𝛺 ≤ 𝐶ℎ. (47)

Proof of Proposition 4. We introduce the dual problem: find (𝑾 , 𝑄) ∈
𝑽 × 𝐿 satisfying

𝑎(𝒗,𝑾 ) − 𝑏(𝒗, 𝑄) = 0 ∀𝒗 ∈ 𝑽 , (48)
𝑏(𝑾 , 𝑞) =

(

𝑝 − 𝑝ℎ, 𝑞
)

0,𝛺 ∀𝑞 ∈ 𝐿. (49)

Of course we have

‖𝑾 ‖1,𝛺 + ‖𝑄‖0,𝛺 ≤ 𝐶 ‖

‖

𝑝 − 𝑝ℎ‖‖0,𝛺 . (50)

By taking 𝑞 = 𝑝 − 𝑝ℎ in (49) we obtain

‖

‖

𝑝 − 𝑝ℎ‖‖
2
0,𝛺 = 𝑏(𝑾 , 𝑝 − 𝑝ℎ) = 𝑏(𝑾 −𝑅ℎ𝑾 , 𝑝 − 𝑝ℎ) + 𝑏(𝑅ℎ𝑾 , 𝑝 − 𝑝ℎ),

where 𝑅ℎ𝑾 is a Clement’s interpolation of 𝑾 on 𝑽 ℎ (‖
‖

𝑾 −𝑅ℎ𝑾 ‖

‖𝑠,𝛺 ≤
𝐶ℎ1−𝑠 ‖𝑾 ‖1,𝛺 , 𝑠 = 0, 1). So we have with an integration by part:

‖

‖

𝑝 − 𝑝ℎ‖‖
2
0,𝛺 ≤ 𝐶ℎ ‖‖

‖

𝛁
(

𝑝 − 𝑝ℎ
)

‖

‖

‖0,𝛺
‖𝑾 ‖1,𝛺 + |

|

𝑏(𝑅ℎ𝑾 , 𝑝 − 𝑝ℎ)||

and by (50) and Proposition 3

‖

‖

𝑝 − 𝑝ℎ‖‖
2
0,𝛺 ≤ 𝐶ℎ ‖

‖

𝑝 − 𝑝ℎ‖‖0,𝛺 + |

|

𝑏(𝑅ℎ𝑾 , 𝑝 − 𝑝ℎ)|| . (51)

It remains to estimate |

|

𝑏(𝑅ℎ𝑾 , 𝑝 − 𝑝ℎ)||.
Relation (43) with Lemma 6 implies

|

|

𝑏(𝑅ℎ𝑾 , 𝑝 − 𝑝ℎ)|| ≤ |

|

𝑎(𝒘 −𝒘ℎ, 𝑅ℎ𝑾 )|
|

+ |

|

|

𝑎ℎ
(

𝒘ℎ, 𝑅ℎ𝑾
)

− 𝑎
(

𝒘ℎ, 𝑅ℎ𝑾
)

|

|

|

≤ 𝐶 ‖

‖

𝒘 −𝒘ℎ
‖

‖1,𝛺
‖

‖

𝑅ℎ𝑾 ‖

‖1,𝛺 + 𝐶ℎ ‖
‖

𝒘ℎ
‖

‖1,𝛺
‖

‖

𝑅ℎ𝑾 ‖

‖1,𝛺

≤ 𝐶ℎ ‖𝑾 ‖1,𝛺 .

This last estimate with (50) and (51) leads to the conclusion. □

Remark 3. By the same procedure of duality, one can obtain an
estimate for ‖

‖

𝒖𝑚 − 𝒖𝑚,ℎ‖‖0,𝛺. However, this requires the uniqueness and
sufficient regularity on the solutions of a dual problem.

Proposition 5. Under the hypothesis of Proposition 4, and if 𝒖𝑔 ∈
𝐻2 (𝛺)𝑑 , there exists a constant 𝐶 independent of ℎ ≤ ℎ0 such that
‖

‖

‖

𝒖𝑔 − 𝒖𝑔,ℎ
‖

‖

‖1,𝛺
≤ 𝐶ℎ. (52)

Proof. Setting:

𝑓 (𝒗) = ∫𝛺
𝑝∇𝛼𝑔 .𝒗𝑑𝑥 + ∫𝛺

𝛼𝑔𝑝 div(𝒗)𝑑𝑥 + ∫𝛺
(𝛼𝑔𝜌𝑔 𝒈+𝐷

𝛼𝑔𝜌
𝜌𝑙
𝒖).𝒗𝑑𝑥,

and

𝑓ℎ (𝒗) = ∫𝛺
𝑝ℎ∇𝛼𝑔 .𝒗𝑑𝑥 + ∫𝛺

𝛼𝑔𝑝ℎ div(𝒗)𝑑𝑥 + ∫𝛺
(𝛼𝑔𝜌𝑔 𝒈+𝐷

𝛼𝑔𝜌
𝜌𝑙
𝒖ℎ).𝒗𝑑𝑥,

e have

𝑓 (𝒗) − 𝑓ℎ (𝒗)|| ≤ 𝐶{‖
‖

𝑝 − 𝑝ℎ‖‖0,𝛺
‖

‖

‖

𝛼𝑔
‖

‖

‖1,3,𝛺
‖𝒗‖0,6,𝛺

+ ‖

‖

𝑝 − 𝑝ℎ‖‖0,𝛺 ‖𝒗‖1,𝛺 + ‖

‖

𝒖 − 𝒖ℎ‖‖0,𝛺 ‖𝒗‖0,𝛺} (53)

nd a consequence of Propositions 3 and 4 is that

𝑓 (𝒗) − 𝑓ℎ (𝒗)|| ≤ 𝐶ℎ ‖𝒗‖1,𝛺 ∀𝒗 ∈ 𝑽 . (54)

Thanks to the continuous and bilinear form 𝑙(., .)(24), we can write
Problems (15) and (31), as

𝑙(𝒖 , 𝒗) = 𝑓 (𝒗) ∀𝒗 ∈ 𝑽 , (55)
𝑔
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𝑙(𝒖𝑔,ℎ, 𝒗) = 𝑓ℎ(𝒗) ∀𝒗 ∈ 𝑽 ℎ. (56)

f course we have 𝑙(𝒖𝑔 − 𝒖𝑔,ℎ, 𝒗) = 𝑓 (𝒗) − 𝑓ℎ (𝒗), ∀𝒗 ∈ 𝑽 ℎ, and if
𝑔 ∈ 𝐻2 (𝛺)3:

𝑙(𝒖𝑔 − 𝒖𝑔,ℎ, 𝒖𝑔 − 𝒖𝑔,ℎ)
|

|

|

= |

|

|

𝑙(𝒖𝑔 − 𝒖𝑔,ℎ, 𝒖𝑔 − 𝒗) + 𝑙(𝒖𝑔 − 𝒖𝑔,ℎ, 𝒗 − 𝒖𝑔,ℎ)
|

|

|

|

|

|

𝑙(𝒖𝑔 − 𝒖𝑔,ℎ, 𝒖𝑔 − 𝒗)
|

|

|

+ |

|

|

𝑓 (𝒗 − 𝒖𝑔,ℎ) − 𝑓ℎ
(

𝒗 − 𝒖𝑔,ℎ
)

|

|

|

. (57)

aking 𝒗 = 𝛱ℎ(𝒖𝑔) and using (54), we finally have

(𝒖𝑔 − 𝒖𝑔,ℎ, 𝒖𝑔 − 𝒖𝑔,ℎ) ≤ 𝐶ℎ
(

‖

‖

‖

𝒖𝑔 − 𝒖𝑔,ℎ
‖

‖

‖1,𝛺
+ ‖

‖

‖

𝛱ℎ𝒖𝑔 − 𝒖𝑔,ℎ
‖

‖

‖1,𝛺

)

.

ith the coercivity of 𝑙(., .) on 𝑽 × 𝑽 we obtain the conclusion. □

. Numerical experiments

In this section, we present two numerical experiments, the first
ne is to check convergence of the finite element method (29) (30)
orresponding to the simplified problem in the unit cube, the density 𝜌𝑚
eing prescribed. Second, we show an example of industrial application
ertaining to aluminium electrolysis, the complete model (3) (4) (6) (8)
eing considered.

.1. Convergence for the simplified problem

Eqs. (10) (11) are solved with the finite element scheme (29) (30)
nd implemented with Fenics [23]. The unit cube 𝛺 = (0, 1)3 is cut in
etrahedrons with 𝑁 × 𝑁 × 𝑁 vertices. The volume fraction of gas is
iven by

𝑔(𝑥1, 𝑥2, 𝑥3) =
1
2

(

1 + tanh
(

𝛾
(

𝑥3 −
1
2

)))

.

e set 𝜌𝑏 = 1, thus when 𝜌𝑔 = 1 then the mixture density 𝜌𝑚 defined
by (1) is constant and when 𝜌𝑔 = 0.5, then the mixture density varies
in 𝛺. The mixture velocity is given by:

𝒖𝑚(𝑥1, 𝑥2, 𝑥3) =
1

𝜌𝑚(𝑥1, 𝑥2, 𝑥3)
(4(2𝑥2𝑥3 − 𝑥2 − 𝑥3 + 1))(𝑥2 − 1)𝑥2(𝑥1 − 1)2(−𝑥3 + 𝑥2)(𝑥3 − 1)𝑥21𝑥3
−4(𝑥2 − 1)2(−𝑥3 + 𝑥1)𝑥22(𝑥1 − 1)(2𝑥1𝑥3 − 𝑥1 − 𝑥3 + 1)(𝑥3 − 1)𝑥1𝑥3
(4(𝑥2 − 1))𝑥2(−𝑥2 + 𝑥1)(𝑥1 − 1)(2𝑥1𝑥2 − 𝑥1 − 𝑥2 + 1)(𝑥3 − 1)2𝑥1𝑥23

⎞

⎟

⎟

⎠

,

t

60
Table 1
Convergence rates for the simplified model with constant density (𝜌𝑔 = 1).

𝑁 𝑒0(𝑝) 𝑟0(𝑝) 𝑒1(𝑢𝑚) 𝑟1(𝑢𝑚) 𝑁𝑖𝑡𝑒𝑟

10 2.1659e−03 – 1.4218e−03 – 16
20 8.6205e−04 1.33 7.6989e−04 0.89 33
40 4.8304e−04 0.841 4.2899e−04 0.84 74
80 2.0911e−04 1.21 2.0311e−04 1.08 185
160 7.4389e−05 1.49 8.9891e−05 1.18 497

Table 2
Convergence rates for the simplified model with variable density (𝜌𝑔 = 0.5).

𝑁 𝑒0(𝑝) 𝑟0(𝑝) 𝑒1(𝑢𝑚) 𝑟1(𝑢𝑚) 𝑁𝑖𝑡𝑒𝑟

10 2.4480e−03 – 2.1377e−03 – 15
20 1.3048e−03 0.91 1.2394e−03 0.79 32
40 8.0283e−04 0.70 7.1062e−04 0.80 72
80 3.5774e−04 1.17 3.3891e−04 1.07 185
160 1.2689e−04 1.50 1.4733e−04 1.20 521

so that div(𝜌𝑚𝒖𝑚) = 0 and 𝒖𝑚 = 0 on 𝜕𝛺, the zero mean pressure is
defined by:

𝑝(𝑥1, 𝑥2, 𝑥3) = 1
(

𝑥1𝑥2𝑥3 −
1
8

)

, (58)

and we replace the right hand side of (10) by the appropriate force
term.

Convergence is checked by computing the errors and convergence
rates defined by:

𝑒𝑖(𝑚) = ‖

‖

𝑚 − 𝑚ℎ
‖

‖𝑖,𝛺 , 𝑟𝑖(𝑚) =
log

(

𝑒𝑖(𝑚)∕𝑒𝑖(𝑚)
)

log(ℎ∕ℎ̂)
,

here 𝑚 is either the velocity or pressure, 𝑖 ∈ {0, 1}, 𝑒 and 𝑒 denote
he errors computed on two consecutive meshes of size ℎ and ℎ̂. The
umber of iterations required to solve the linear system with GMRES
s denoted as 𝑁𝑖𝑡𝑒𝑟. The results are reported in Tables 1 and 2 when
= 10. The convergence rates seem to be slightly better than those

roved in Section 4, namely one. As expected, the number of GMRES
terations is doubled when ℎ is halved (𝑁 is doubled).

.2. Industrial application to an electrolysis cell

Our purpose is now to simulate the stationary mixture velocity in
n electrolysis cell. The unknowns are the velocity of the mixture 𝒖𝑚,
he pressure 𝑝, the velocity of the gas 𝒖𝑔 and the gas distribution 𝛼𝑔 ,
he equations are (3) (4) (6) (8). Numerical investigations have shown
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M

Fig. 2. Top: industrial cell (courtesy of Rio Tinto Aluminium2) and bottom the corresponding mesh. The grey structure allows the electric current to reach the anodic blocks
(green) then the fluid domain 𝛺 (in red). The dimensions of 𝛺 are about 14 [m] × 4 [m] × 35 [cm].
Fig. 3. Vertical cut at x = 0.5 [m]: the computational domain of the fluid is composed of the electrolytic bath 𝛺𝑒𝑙 (in blue), corresponding to a thin layer under the anodes, as
well as the volume in the different channels surrounding the anodic blocks, and the liquid aluminium 𝛺𝑎𝑙 (in red) beneath.
that an efficient strategy is to perform one time step of (8) in order to
obtain a new 𝛼𝑔 , then to solve the stationary equations corresponding
to (3) (4) (6) to obtain 𝒖𝑚, 𝑝 and 𝒖𝑔 , which is a well posed problem
provided 𝛼𝑔 is small enough. In practice, we solve (8) from time 0 to
100[𝑠] with a Euler scheme and timestep 0.1[𝑠], starting from 𝛼𝑔 = 0. A

2 In ‘‘Cinquante ans de recherches sur la production d’aluminium au LRF’’,
auve Carbonell, Ivan Grinberg and Maurice Laparra, 2012
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Smagorinski law [14,24] is used to model turbulence in the viscosities
𝜇𝑚, 𝜇𝑔 , and in the diffusivity coefficient 𝑘. Given the new 𝛼𝑔 , a few
Newton iterations then suffice to solve the nonlinearities in (3) (4) (6).
The coefficient modelling the drag force 𝐷 corresponds to Stokes’ law,
i.e 𝐷 = 18𝜇𝑚∕𝑑2, with 𝑑 = 4 [mm] the average diameter of the gas
bubbles [25]. The generation of gas in the bath is modelled by the
source term �̇�𝑔 in (8), which is computed from the total production
of CO2 getting out of the cell. In standard conditions, �̇�𝑔 = 𝑆0, where
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Fig. 4. Distribution of gas 𝛼𝑔 and velocity field 𝒖𝑚 when �̇�𝑔 = 𝑆0.
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𝑆0 corresponds to the production of CO2 due to Faraday’s law on the
whole cell:

∫𝛺
𝑆0𝑑𝑥 = ∫𝜕𝛺

𝒋 ⋅ 𝒏𝑀𝐶𝑂2

4𝜌𝑔
𝑑𝑠, (59)

being the current density [A/m2], 𝑀CO2
= 44.01 [g/mol] is carbon

ioxide molar mass and  is Faraday’s constant. In our simulations we
ave considered that 𝑆0 is proportional to div 𝒋, where 𝒋 is computed
sing the Alucell software [9,14]. Simulations are shown when �̇�𝑔 =
, 𝑆0∕2, 𝑆0, 2𝑆0. According to the existence and convergence theory of
ections 3 and 4, if 𝛼𝑔 is small enough and if it remains in the [0, 1]
nterval, then we expect that the velocities converge with respect to
he mesh size. However, since we are using finite elements, there is
o maximum principle for 𝛼𝑔 , moreover, we do not know what ‘‘small
nough’’ means in this industrial context. In this simulation, we have
ot been able to obtain stationary solutions when the source term �̇�𝑔 is
arger than 2𝑆 .
0
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During aluminium electrolysis, a two fluids interface problem is
nvolved [3,9,26], the aluminium domain 𝛺𝑎𝑙 and the so-called elec-
rolytic bath domain 𝛺𝑒𝑙, see Fig. 1 for notations. The chemical reaction
etween alumina and carbon

Al2O3 + 3C => 3CO2 + 4Al

ccurs in the electrolytic bath only, it produces bubbles of carbon diox-
de. Here, the two fluids interface problem is disregarded, the interface
etween 𝛺𝑎𝑙 and 𝛺𝑒𝑙 is assumed to be flat. Strong electromagnetic
orces apply to these two domains, the force term 𝑭 in (3). These forces
re again computed using the Alucell software [9,14].

The industrial cell and the corresponding mesh are shown in Fig. 2.
he domains 𝛺𝑎𝑙 and 𝛺𝑒𝑙 are shown in Fig. 3. The electrolytic bath in

blue consists of a thin layer of only 3.2 [cm] between the interface to the
anodes, while the liquid aluminium in red represents a thicker layer of
20 [cm] beneath. The top of the electrolytic bath corresponds to 𝜕𝛺𝑜𝑢𝑡 in
Fig. 1 and is located 18 [cm] above the interface. The blocks correspond
to the anodes that are immersed in the bath.
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Fig. 5. Volume fraction of gas 𝛼𝑔 in the middle of the bath (plane 𝑧 = 0.216 [m]) with �̇�𝑔 = 0.0, 𝑆0∕2, 𝑆0 , 2𝑆0.
The mixture velocity 𝒖𝑚 and the pressure 𝑝 are solved in the whole
luid domain 𝛺𝑎𝑙∪𝛺𝑒𝑙, while the gas velocity 𝒖𝑔 and gas fraction 𝛼𝑔 are
ssumed to be zero in the aluminium domain and are only solved in the
lectrolytic bath 𝛺𝑒𝑙. The boundary condition for the volume fraction
f gas is:
𝜕𝛼𝑔
𝜕𝑛

= 0 on 𝜕𝛺𝑒𝑙 ,

those for the mixture velocity are slip boundary conditions:

𝒖𝑚 ⋅ 𝒏 = 0 and
(

𝝈𝑚 ⋅ 𝒏
)

⋅ 𝑡𝑖 = 0, 𝑖 = {1, 2} on 𝜕(𝛺𝑎𝑙 ∪𝛺𝑒𝑙),

those for the gas velocity 𝒖𝑔 are slip boundary condition, except zero
force on the top:

𝒖𝑔 ⋅ 𝒏 = 0 and
(

𝝉𝑔 − 𝑝𝛼𝑔𝑰
)

⋅ 𝒏 ⋅ 𝑡𝑖 = 0, 𝑖 = {1, 2} on 𝜕𝛺𝑒𝑙 ⧵ 𝜕𝛺𝑜𝑢𝑡,
(

𝝉𝑔 − 𝑝𝛼𝑔𝑰
)

⋅ 𝒏 = 0 on 𝜕𝛺𝑜𝑢𝑡.

Fig. 4 shows the volume fraction of gas 𝛼𝑔 and the velocity field 𝒖𝑚
corresponding a simulation with �̇�𝑔 = 𝑆0. The gas clearly accumulates
under the anodes. Fig. 5 shows the volume fraction of gas 𝛼𝑔 in the
middle of the bath when �̇�𝑔 = 0.0, 𝑆0∕2, 𝑆0 and 2𝑆0. The corresponding
velocity fields are shown in Fig. 6. The discrepancy of the mixture
velocity is computed when �̇�𝑔 = 0 and �̇�𝑔 = 𝑆0. It is 14% in the
aluminium domain, 46% in the electrolytic bath below the anodes
and 95% in the channels between the anodes. We therefore conclude
that the bubbles of gas have a tremendous influence on the fluid
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flow in the channels between the anodes. This will certainly have
strong influences on alumina transport [27,28], therefore on the overall
process efficiency.

6. Conclusion

A model to take into account the influence of gas bubbles in alu-
minium electrolysis is presented. Since the gas bubbles (carbon dioxide)
are small (millimetres) and the electrolysis cell is large (metres), gas is
assumed to be a dilute dispersion in the liquid (the electrolytic bath).
The model has four unknowns, the mixture velocity, the gas velocity,
the pressure and the volume fraction of gas. The equations are derived
from mass and momentum conservation of the mixture and of the gas.

A simplified model is considered when the volume fraction of gas
is known. It is proved that, in the stationary case, when the convective
terms are disregarded and provided the volume fraction of gas is small
enough, the remaining set of equations is well posed. Convergence of
a finite element scheme is also proved.

Numerical results are reported for the simplified model and for the
complete model. Industrial simulations indicate that the effect of gas
on the mixture flow cannot be disregarded.

From the theoretical point of view, well-posedness of the complete
model should be investigated, so as well-posedness of the simplified
problem when the volume fraction is large. Adaptive methods should
also be investigated, since refinement in specific regions of the cell
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Fig. 6. Amplitude of the velocity field 𝒖𝑚 obtained in the middle of the bath (plane 𝑧 = 0.216 [m]) with �̇�𝑔 = 0.0, 𝑆0∕2, 𝑆0 , 2𝑆0.
seems to be unavoidable. From the industrial point of view, the cou-
pling of the presented model with electromagnetic and thermal effects
should be investigated.
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