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Abstract—We propose a simple model to study the tradeoff
between timeliness and distortion, where different pieces of data
have a different cost of not being sent. We pose the question of
finding the optimal tradeoff as a policy design problem amenable
to dynamic programming methods. We study the structural
properties of optimal transmission policies, give an algorithmic
procedure to find the optimal tradeoff, and numerically evaluate
some instances.

Index Terms—Age of Information, Distortion, Markov Decision
Process, Policy Iteration

I. INTRODUCTION

The timeliness of information is a crucial aspect of com-
munications. Stale data may have highly undesirable effects;
think, for example, of sensor output for self-driving vehicles,
position of an airplane, coolant temperature in a power plant,
etc. This aspect of data is nicely captured by the recent
studies on Age-of-Information (AoI), by shifting the focus
from delay to freshness. At the same time, not all data is
equally important. If, in an attempt to reduce staleness our
system drops important pieces of data, the remedy may be
worse than the disease. In this paper, we study a simple setup
where the freshness and importance aspects may be treated
together.

The loss, or misrepresentation of data and assigning higher
cost to more important data is well captured by the tools of rate
distortion theory. As said above, the question of freshness has
been an object of study in the AoI literature initiated by Kaul
et al. [1]. Since the introduction of AoI, there has been various
uses of this metric in many applications. For a comprehensive
survey of works in this area, see [2].

However, the combination of importance and freshness has
been comparatively less widely studied. Going beyond the AoI
metric, in [3] a problem of generating timely updates in a
remote estimation setting has been proposed. The authors have
investigated the MSE-optimal and AoI-optimal strategies for
the estimation of a Wiener process through a queue, and con-
cluded that they are different. In [4], the authors generalized
the settings to include Ornstein-Uhlenbeck process. Apart from
this approach, there also has been several works on integrating
the notion of different data importance and timeliness, e.g., by
introducing non-linear cost to stale data [5], [6], by considering
separate data streams with different priority [7], [8], or by
incorporating the notion of data value which decays with age
and selective encoding [9], [10].

In this work, we quantify the notion of importance by using
a distortion metric. We propose a simple model which allows
us to analyze the tradeoff between timeliness as measured by
AoI and the distortion of the data. The tradeoff can be studied
by casting it as a Markov Decision Process (MDP). We show

that the optimal policy for this MDP can be achieved by a
system with finite memory and we also provide an explicit
algorithm to compute this policy.

II. PROBLEM DEFINITION

Consider a model composed of the data to be sent, the
sender-receiver pair, and the channel in between.

We model the data as an independent and identically dis-
tributed (i.i.d.) sequence of random variables (Xt)t∈N. We
restrict X to be discrete, taking values in a finite set X . The
sender observes Xt at time t and keeps Xt in its buffer.

The channel is modeled as follows: The sender is allowed to
speak at times T1, T2, . . .. The process (Ti)i∈N is independent
of the process (Xt)t∈N. We further assume that the interspeak-
ing times Zi = Ti − Ti−1 are discrete, i.i.d., strictly positive,
and with E[Z2] < ∞, e.g., a Geometric random variable
with Pr(Zi = t) = p(1 − p)t−1 for t ≥ 1. The model is
inspired by MAC layer protocols giving each sender a turn to
speak. At each speaking time Ti, the sender chooses an index
Si ≤ Ti and sends XSi

in a packet whose header identifies the
timestamp Si. We require that Si < Si+1, i.e., once a particular
XSi

is sent, no data from further past can be conveyed at a
later time.

We assume noiseless and zero-delay transmissions between
the sender and the receiver. At time t, the receiver has observed
XSi

for every i such that Ti < t. Consequently at time t, it can
reconstruct the data as Yj(t) = Xj or Yj(t) = ? depending if
Xj is among the receiver’s observation up to time t or not.

Now we introduce distortion and timeliness to our model.
Given a distortion metric d : X × X ∪ {?} → R≥0, with

d(x, x) = 0 and d(x, ?) = v(x)
define

Dt :=
1

t

t∑
i=1

d(Xi, Yi(t)) and D := E

[
lim sup
t→∞

Dt

]
;

and with i(t) := sup{i ≥ 0 : Ti < t}, T0, S0 = 0; define for
all t,

∆t := t− Si(t)−1, and ∆ := E

[
lim sup
t→∞

1

t

t∑
i=1

∆t

]
. (1)

Observe that Yi(t) is equal to Xi or to ‘?’, so the distortion
metric defined as above, specifying only d(x, x) and d(x, ?) is
sufficient to evaluate D. At time t = Ti, the transmitter needs
to choose Si on the basis of Xt

1. Since the transmitter’s strat-
egy is evaluated by (∆, D), the transmitter may as well base
its choice on V t1 with Vt = v(Xt). Intuitively, Vi represents an
importance score for the packet i; high Vi means the content
has high importance and not sending it incurs a high penalty.



Observe that the structure of the problem stays the same it
all the elements in V are multiplied by a positive constant.
If V does not contain 0, then without loss of generality one
can assume that the minimum element in V is 1 and it is an
ordered set as 1 = v1 < v2 < . . . < v|V| := vmax < ∞. For
the rest of the work, we assume |V| = 2.

Given the description of the model, the main question now
is: What are the achievable (∆, D) pairs? We attempt to
answer this question in the next section and conclude this
section with a few remarks.
(i) The model we propose resembles a remote estimation

problem of a discrete-time stochastic process through
a discrete-time queue. However, we require that the
sender sends a packet exactly at speaking times, which
is equivalent to force the sender to send as soon as the
queue is idle in a discrete-time queueing setting. In [11]
and [3], it is shown that the optimal policies need not be
of this type. This makes our problem different and allows
us to make the relaxation that Si need not to be stopping
times.

(ii) A more sophisticated receiver could try to reconstruct
the missing Xt’s from the XSi

it has observed. This may
be possible even when the process (Xt)t∈N is i.i.d., if
the transmitter chooses Si appropriately; e.g., by favoring
Si’s for which XSi

= XSi−1. The formulation we have
adopted does not take into account such receivers.

(iii) If 0 ∈ V , there are multiple interpretations. Vt = 0 can
be interpreted as either the data is totally trivial (need
not be reconstructed), or interpreted as the source having
not generated data at time t. The second interpretation
allows us to model a source which generates data at
intermittent times. Now there is the question of allowing
Xt to be sent or not. Our model allows sending of Xt,
i.e., in the second interpretation, informs the receiver that
there has not been any data generated by the source,
and ∆t decreases accordingly. The reduction of ∆t can
be avoided by appropriate reformulation, see Remark 1.
Thus for the rest of the paper, assume vmin is either 0 or
1.

III. MAIN RESULTS
A. Dynamic Programming Formulation

Note that at time Ti and given (Si, V
Ti
1 ), V Ti+1

1 is indepen-
dent of the past. This follows from the fact that the importance
values Vt’s and the interarrival times Zi are i.i.d. and also
independent of each other. Also observe that once Si is chosen,
no future packet can contain data with index less than Si.
Hence, the only relevant information at time Ti is

Bi := V Ti

Si−1+1.

In general, the initial buffer state might result in different
(∆, D) pairs even though the sequence of selected indices
(Sn)n∈N remains same. We assume that the buffer is empty
just after t = 0. The transmitter is completely specified by
the policy Bi 7→ Si, identifying the data to be transmitted. To
obtain the boundary of feasible (∆, D) pairs, we propose the
following cost function:

Ji(η)(S
Ti
1 ) := E

[ i∑
j=1

1

µ
D(Bj , Sj−1, Sj)+η(Tj−Sj)

]
, η > 0

with µ = E[Z] and

D(b, s, s′) :=

s′−1∑
k=s+1

bk.

We also define

J(η)(S) := lim sup
i→∞

1

i
Ji(η)(S

Ti
1 ).

where S := (Sn)n∈N. We seek to minimize J(η)(S) over
the policies of choosing S, formulated as the following
optimization problem:

J∗(η) := inf
S
J(η)(S) (2)

where the infimum is over all policies that map the buffer
content to the index of the transmitted data. We now formulate
(2) as a MDP optimization and relate ∆ and D to J∗(η).

We note that

lim sup
t→∞

1

t

t∑
t′=1

∆t′ = lim sup
i→∞

∑i
j=1Qj∑i
j=1 Zj

where

Qj := (Tj − Sj)Zj+1 +
Zj+1(Zj+1 + 1)

2
.

Since lim
i→∞

1
i

∑i
j=1

Zj+1(Zj+1+1)
2 = 1

2E[Z(Z + 1)] =: ν and

limi→∞
1
i

∑i
j=1 Zj = µ with probability 1 by Law of Large

Numbers, we obtain

∆ = E

[
1

µ
lim sup
i→∞

1

i

i∑
j=1

(Tj − Sj)Zj+1 +
ν

µ

]
.

Note that the ∆ cannot be smaller than ν/µ. We subtract
ν/µ to obtain the excess age, given by

∆e := E

[
1

µ
lim sup
i→∞

1

i

i∑
j=1

(Tj − Sj)Zj+1

]
and determine the feasible (∆e, D) pairs.

Remark 1. To cover the case that v = 0 is interpreted as
the source having not generated any data and ∆t should not
decrease upon the sending of v = 0; one can replace Zi
with Z̃i, which represents the first interspeaking time after the
source generates some data, and proceed similarly.

To be able to write simple expressions for ∆e, D and relate
those to one-step costs of a dynamic programming problem,
we make a technical assumption that supiE[(Ti−Si)2] <∞.
We give these simple expressions in the theorem below. The
proof is found in Appendix A.

Theorem 1. For policies with supiE[(Ti − Si)2] <∞,

∆e = E

[
lim sup
i→∞

1

i

i∑
j=1

(Tj − Sj)
]
,

D =
1

µ
E

[
lim sup
i→∞

1

i

i∑
j=1

D(Bj , Sj−1, Sj)

]
.



Furthermore, J(η)(S) ≤ D(S) + η∆
(S)
e and for stationary

policies the equality holds. Hence, solving the optimization
problem in (2) gives a lower bound in general.

Given the current buffer content Bj , the next state depends
only on Bj and Sj . Hence, the optimization problem (2) can
be formulated as dynamic programming where the states of
subject MDP are described by the buffer content Bj . More
precisely, our formulation is an infinite-horizon average-cost
dynamic programming problem with states b ∈ V∗ in MDP
terminology [12]. For analyzing this dynamic programming
problem, let us recall:

Definition 1 (Unichain policy, [12]). If a deterministic sta-
tionary policy s(b) induces a Markov Chain with a single
recurrent class and a possibly empty set of transient states, it
is called unichain.

In an average-cost dynamic programming setting, we evalu-
ate a unichain policy s(b), b ∈ V∗ by solving the linear system
with unknowns h(b), b ∈ V∗ and λ; given by

h(b)+λ =
1

µ

s(b)−1∑
k=1

bk+η(l(b)−s(b))+E[h(b
l(b)
s(b)+1,V

Z)],

(3)
where l(b) is the length of b, i.e. the current buffer length, Z
is the next interspeaking time, V Z is a vector of i.i.d. V ’s of
length Z, h(b) is called the relative value of state b, and λ is
the average cost induced by this policy. Since (3) determines
h(b) only up to an additive constant, we take a reference state
(see [12, Chapter 4]) as one of the b ∈ V∗ and we set h(b) = 0.
We also note that for a unichain policy, the linear system given
by (3) has a unique solution [12].

B. Policy Iteration with a Truncated State Space

The MDP given in the previous subsection has a countably
infinite state space, hence optimal policies are very hard to
analyze. Furthermore, the existence of a stationary policy
achieving the infimum in (2) is not guaranteed in general.
This leads us to consider a finite state version of the problem
by limiting the buffer size to K. The number of states will
be then finite. Denote this state space by V≤K := ∪l≤KV l.
Surprisingly, as we shall see in III-C, the optimal policy of the
infinite state space problem will base its decisions only on a
bounded buffer. Thus, the restriction we make here is provided
that K is large enough.

Also observe that in this case the expectation on the RHS of
(3) involves terms h(b̃) with l(b̃) which might be more than
K. Such terms should be evaluated as h(b̃) =

∑l(b̃)−K
k=1 b̃k +

h(b̃
l(b̃)

l(b̃)−K+1).
Let pi := Pr(Z = i) and qi := Pr(Z > i). With a slight

modification of (3), we can now evaluate a unichain stationary
policy s(b), b ∈ V≤K by solving the linear system

h(b) + λ =
1

µ

s(b)−1∑
k=1

bk + η(l(b)− s(b))

+
1

µ

l∑
k=s(b)+1

bkqK+k−l−1 +
E[V ]

µ
E[(Z −K)+]

+

K−l+s(b)∑
k=1

pkE[h(bls(b)+1,V
k)]

+

K−1∑
k=K−l+s(b)+1

pkE[h(blk−(K−l)+1,V
k)]

+ qK−1E[h(V K)], (4)

with h(b) = 0 for b ∈ V if p1 > 0. Otherwise, one can choose
another reference state of greater length, e.g., (vmin, vmin). We
give a brief description of the policy iteration algorithm [12]:

Algorithm 1: Policy iteration

1 Start with stationary policy s(0)(b) = l(b).
2 Evaluate s(i)(b) according to (4) to find h(i)(b),

b ∈ V≤K and λ(i).
3 For all b ∈ V≤K set s(i+1)(b) = arg mins≤l(b) RHS of (4).
4 If s(i+1)(b) = s(i)(b) for all b ∈ V≤K , terminate. Else

go to step 2.

Remark 2. Intuitively, step 3 of the above algorithm modifies
s(i)(b) in the following way: Consider two processes starting
at b. The first one is iterated with respect to s(i), whereas
the second one is iterated with an s̃(b) at the first step and
the following steps will be based on s(i). Now consider the
expected accumulated costs of these two processes until they
reach the same state. If the second process has less expected
accumulated cost, change all s(i)(b) to s̃(b) = s(i+1)(b) to
obtain a better policy. If perturbing at the first step does not
improve the cost, then s(i+1)(b) = s(i)(b).

Although the number of states is now finite, it is not clear
that the policy iteration algorithm yields a unichain policy. We
shall prove this in the following lemma.

Lemma 1. If the buffer size is limited to K, the policy iteration
terminates with a unichain policy.

Proof: We use the fact that if s(i)(b) 6= l(b), then
vs(i)(b) 6= vmin for i ≥ 1, i.e., never take vmin if it is
not at the end. This is proven by observing that s(i)(b) can
never minimize the RHS of (4) otherwise. Now take any s(i),
i ≥ 1. Eventually, at some point the buffer content will consist
of only vmins and according to s(i), the sender sends the
most recently arrived data. At this moment, the buffer will be
renewed and this shows that there can only be one recurrent
class. Hence, any s(i) for i ≥ 1 is unichain and the policy
iteration terminates with a unichain policy.

Lemma 1 tells that the policy iteration terminates with a
unichain policy. Since the optimal policy cannot choose vmin

unless it is at the end, (see Property 1 (iv) below) this policy
will be optimal for the case with limited buffer size [12].

C. The Exact Buffer Size Needed for Optimal Solution
Truncating the state space restricts the actions that may

be taken. Therefore, in general, the infimum in (2) may not



be attained with a truncated buffer. As we have said in the
previous section, for our problem this is not the case and the
infimum is indeed attained with a finite buffer size. In this
section we quantify this buffer size.

First, consider the policy s(b) = l(b) for all b ∈ V≤K , i.e.,
always send the most recent element in the buffer. One can
observe that this policy induces a Markov Chain with only
|V| = 2 states regardless of K. We shall now show that this
policy is optimal for η above some threshold ηmax.

Lemma 2. For η ≥ ηmax := 1
µ (vmax − vmin) and for any

M ≥ 1, the optimal policy among V≤M is s(b) = l(b); which
can be implemented with a buffer size of 1.

Proof: We show that the policy s(b) = l(b) will be
unchanged by the policy iteration. Start the policy itera-
tion with s(0)(b) = l(b). Recalling Remark 2, we observe
that perturbing the policy at initial step cannot decrease the
expected accumulated cost until the original and perturbed
processes coincide. More precisely, the two processes will
coincide immediately at the next step and the difference of
the accumulated costs will be kη − 1

µ (bl(b)−k − bl(b)) ≥
η− 1

µ (vmax−vmin) ≥ 0. Hence the policy remains unchanged.

Now considering the state space V≤K , we give some
properties of optimal policies whose derivations are given in
Appendix B.

Property 1. For an optimal stationary policy s∗(b), and
optimal relative values h∗(b),
(i) For any state (b, b′), s∗(b, b′) = l(b) + s∗(b′) or

s∗(b, b′) ≤ l(b)
(ii) h∗(b′) ≤ h∗(b) for b′, b ∈ V l if b′i ≤ bi for all i ≤ l

(iii) h∗(b′) ≤ h∗(b, b′) ≤ 1
µ (b1 + . . .+ bl(b)) + h∗(b′) for b,

b′ ∈ V≤K such that l(b) + l(b′) ≤ K
(iv) If s∗(b) 6= l(b), then vs∗(b) 6= vmin

Corollary 1. For the state b = (vmax, v
L−1
min );

s∗(b) =

{
1, η ≤ 1

µ
(vmax−vmin)

L−1
L, η > 1

µ
(vmax−vmin)

L−1
. (5)

Proof: We know that any policy given at step i ≥ 1 of the
policy iteration algorithm should not choose vmin if it is not
at the end. Therefore, the two possible strategies are: choose
vmax in the head or vmin in the tail. Referring to Remark 2,
suppose s(i)(b) = l(b) and s̃(b) = 1. Observe that the original
and perturbed processes will coincide immediately after the
first iteration and the difference of costs will be η(L − 1) +
1
µ (vmin−vmax). Then, s(i+1)(b) = 1 if η(L−1) ≤ 1

µ (vmax−
vmin); otherwise s(i+1)(b) = l(b). Note that the difference
does not depend on i and hence the statement for s(i+1) is
also true for s∗.

The above corollary therefore gives a necessary buffer size
for optimality as it tells that at η = 1

µ
(vmax−vmin)

L−1 , the first
packet in the state b = (vmax, v

L−1
min ) is chosen by the optimal

policy. Hence, attaining the optimal policy requires a buffer
size of at least d 1µ

(vmax−vmin)
η e. However, this does not imply

that the optimal policy is reached within a finite buffer size.

Theorem 2. For M ≥ K(η) := d 1µ
(vmax−vmin)

η e, the optimal
policy among V≤M is attained by a policy with buffer size K.

Proof Sketch: We use a proof strategy as in Lemma 2. We
claim that the policy iteration maps policies with buffer size
at most K(η) to again policies with buffer size at most K(η)
(See appendix C for the full proof). Since the policy iteration
algorithm converges to a unique solution, we conclude this
solution must have a buffer size of at most K(η). The
assumption that |V| = 2 is essential for our proof.

Corollary 2. The optimal policy among untruncated state
space policies is attained with a buffer size K(η).

Proof Sketch: We note that when the policy iteration
terminates the policy it produces not only solves the Bellman
equation for the state space V≤M , for every M ≥ K(η), but
it also solves the Bellman Equation for the state space V∗.
Since our problem fulfils the conditions 10.1-10.4’ in [13],
we conclude that this policy attains the infimum in (2).

D. An Algorithm to Find the (∆e, D) Boundary Curve
It is time to combine the results from the previous sections

to provide an extension of policy iteration algorithm to find
the tangent lines to the feasible (∆e, D) region.

Algorithm 2: Extended Policy Iteration Algorithm
1 Choose ηmin, ε > 0. Start with the state space S = V ,

η = ηmax and the policy s(0)(b) = l(b)
2 while η > ηmin do
3 Find λ(i), h(i)(b), b ∈ S by solving (4)
4 foreach b ∈ S do
5 s(i+1)(b)← arg mins≤l(b) RHS of (4)

6 if s(i+1)(b) = 1 then
7 foreach v ∈ V do
8 S ← S ∪ (b1, v, b

l(b)
2 )

9 if s(i+1)(b) = s(i)(b) for all b ∈ S then
10 J∗(η)← λ(i)

11 η ← η − ε.

12 return all (η, J∗(η)) pairs

One could also define the state space as V≤K in the
beginning of Algorithm 2. Although the complexity stays
asymptotically same in that case, starting with a smaller state
space and gradually expanding is pratically more efficient in
terms of time and memory.

Theorem 3. The algorithm finds the optimal curve

D(∆e) = sup
η>0

J∗(η)− η∆e. (6)

Proof: Since at most 2K+1 states are added the policy
iteration converges in a finite time, and the algorithm yields
an approximation to J∗(η). Since the state space is bounded,
the condition supj E[(Tj − Sj)

2] < ∞ from Theorem 1 is
satisfied. Furthermore, we obtain a stationary policy, implying
that J∗(η) = D+η∆e. Finally, one takes the convex conjugate
D(∆e) = supη>0 J

∗(η)− η∆e to obtain the boundary curve



for the feasible (∆e, D) pairs. By choosing ηmin and ε small
enough, the curve can be approximated arbitrarily closely.

However, the necessary buffer size scales with 1
η and the

algorithm may not be efficient. This suggests that even though
the algorithm gives the almost exact curve, it is impractical
to do so. To overcome this difficulty, one may rely on
approximate dynamic programming algorithms; or resort to
Monte Carlo estimations for the policy evaluation [12].

We have made some computations with Algorithm 2, and
we have not observed any simple structure for optimal policies.
We also evaluated simple policies given below and compared
their performance with the curve generated by Algorithm 2,
referred as (DP) in figures below. These simple policies are:

(S1) Send oldest important data with a maximum buffer size
K.

(S2) Send the newest important data with a maximum buffer
size K.

(S3) Send the newest important data that has arrived more than
K slots ago.

To compare these strategies, we also give a simple converse
bound and observe their approach towards this bound for large
∆e.

Lemma 3. Suppose V = vmax with probability α. Then for
any ∆e, D > Dmin =

(
1 − α + min

{
α − 1

µ , 0
})
vmin +

max
{
α− 1

µ , 0
}
vmax.

Proof Sketch: The sender can send at most 1
µ fraction of

the data. We then optimize over its selection of data to obtain
the result.

Note that another converse bound is produced by Algorithm
2 for any ηmin bounded away from zero as the boundary curve
is given by (6), and the supremum is taken over η > ηmin.
Hence we can choose ηmin such that for a maximum buffer
size of d vmax−vmin

µηmin
e, the algorithm terminates in a timely

manner. This straight line converse bound will be referred as
(DP Converse) in figures below.

Fig. 1. Comparison of the strategies for V = {1, 20} and Pr(V = 1) = 0.7.
Z is taken as a Geometric random variable with success probability 0.2. (S2
is almost entirely hidden by DP)

Fig. 2. Comparison of the strategies for V = {1, 20} and Pr(V = 1) = 0.8.
Z is taken as a Geometric random variable with success probability 0.3.

IV. DISCUSSION

In the absence of a distortion measure, it is clear that the
optimal strategy is to send the freshest data in the buffer at each
speaking time Ti as this will minimize the age. However, if
this freshest data is an unimportant packet, it may be beneficial
to send an important packet instead, sacrificing freshness
for lowering distortion. Naively, this would argue that if the
freshest data is not to be sent, one should send the freshest
important packet. Some thought reveals that this is not optimal:
such a strategy lowers the chance of finding an important data
in the future buffer. Having observed this, we tried to prove the
optimality of several easy-to-describe policies. These attempts
were not successful, and indeed, the optimal policies found by
policy iteration methods do not seem easy-to-describe. Despite
this, it was not a priori clear to us that the optimal policies
would turn out to be of bounded buffer size, it was a surprise
that this was the case for |V| = 2. However, computations
support the claim that a bounded buffer suffices for |V| > 2
as well, i.e., Algorithm 2 terminates.

Note that the optimal policy may differ with different inters-
peaking time distributions. One could study which distribution
is best (or worst) among those with a given mean.

Further note that as η (the weight of freshness) gets small,
the required buffer size increases and the search space for
policies becomes too large to find the optimal policy. The
absence of a good converse bound makes it hard to know how
far from the optimal a given policy is. The converse bounds
shown on the plots are not strong enough for such a purpose.

The method described in Section III, with minor modifi-
cations, allows finding optimal policies for Markov (Xt)t∈N.
However, appropriateness of the distortion metric we have
adopted is doubtful, as our remark (ii) at the end of Section
II applies even more strongly in this scenario.

One can change the transmission model to go beyond
sending packets that contain a single Xi. E.g., at each speaking
time we are allowed to send L bits; this should convey not
only data but also information that identifies the time index (or
indices) the data pertains to. This kind of ‘coded’ transmission
in which we can arbitrarily map the past Xi’s to the current
transmission would give another degree of freedom to improve
performance. Whether the improvement justifies the additional
complexity is something that seems worth studying.
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Classics. Birkhäuser Boston, 2003. [Online]. Available:
https://books.google.ch/books?id=T9-PMDSVDNsC

APPENDIX

A. Proof of Theorem 1

Define Wj := Tj − Sj for the rest of the proof. First, we
use Lemmas 4,5,6 to derive the simple expressions. Then, we
prove the inequality J(η)(S) ≤ D(S) + η∆

(S)
e . We denote

‘almost surely’ by a.s. The proof is also valid for |V| > 2.

Lemma 4. 1
i

∑i
j=1Wj(Zj+1 − µ) → 0 a.s. if

∑
j

E[W 2
j ]

j2 <
∞.

Proof: We will follow similar steps to those in the
proof of Strong Law of Large Numbers given in Williams’
book [14]. We use the result that if

∑
bi/i converges,

then 1
i

∑
j≤i bj → 0. Therefore, it is sufficient to check

if
∑
iWi(Zi+1 − µ)/i converges a.s. We now show that

Mn :=
∑n
i=2Wi−1(Zi−µ)/(i− 1), M1 := 0 is a martingale

with respect to the filtration Fn := σ(Z1, . . . , Zn,X
Tn
1 ).

Observe that E[Mn|Fn−1] = Mn−1 + E[Wn−1(Zn −
µ)|Fn−1]/(n − 1) = Mn−1 as Wn−1 is Fn−1-measurable
and Zn is independent of Fn−1 with E[Zn] = µ. Since Mn

consists of uncorrelated increments, one can write

E[M2
n] =

n∑
i=2

E[W 2
i−1]Var(Z)

(i− 1)2
.

Note that we assumed E[Z2] < ∞, hence Var(Z) < ∞.
Moreover, if

∑
i
E[W 2

i ]
i2 < ∞, then supE[M2

n] < ∞, and by
Martingale Convergence Theorem, Mn converges a.s.

Lemma 5. For policies satisfying supj E[W 2
j ] <∞,

lim sup
t→∞

1

t

t∑
t′=1

∆t′ = lim sup
i→∞

1

i

i∑
j=1

Wj .

Proof: Since supj E[W 2
j ] < ∞, 1

i

∑i
j=1WjZj+1 →

1
i

∑i
j=1Wjµ a.s. by Lemma 4. Hence,

lim sup
i→∞

1

i

∑
j≤i

WjZj+1 = µ lim sup
i→∞

1

i

∑
j≤i

Wj

and the proof is done.
Similar to the derivation of ∆, for policies satisfying

supj E[W 2
j ] < ∞ we show that D can also be written in

a simple form.

Lemma 6. For policies satisfying supj E[W 2
j ] <∞,

lim sup
t→∞

Dt =
1

µ
lim sup

i

1

i

i∑
j=1

D(Bj , Sj , Sj−1) (7)

Proof: Define i = i(t) := sup{i ≥ 0 : Ti ≤ t} and write
Dt as

Dt =
1

t

∑
j≤Si

d(Xj , Yj) +
1

t

t∑
j=Si+1

d(Xj , Yj(t))

as all the estimates until Si are finalized. Upper bound Dt as

Dt ≤
1

t

∑
j≤Si

d(Xj , Yj) +
1

t
(Ti+1 − Si − 1)vmax

≤ 1

Ti

∑
j≤Si

d(Xj , Yj) +
1

t
(Zi+1 +Wi − 1)vmax.

Since supj E[W 2
j ] <∞, Wi is a.s. finite for all j and hence

Zj+1 + Wj is a.s. finite. Thus 1
t (Zj+1 + Wj − 1)vmax → 0

a.s. Then, we obtain

lim supDt ≤ lim sup
i

1

Ti

∑
j≤Si

d(Xj , Yj).

Now, lower bound Dt as

Dt ≥
1

t

∑
j≤Si

d(Xj , Yj) ≥
1

Ti+1

∑
j≤Si

d(Xj , Yj)

=
1

Ti + Zi+1

∑
j≤Si

d(Xj , Yj)

and obtain

lim supDt ≥ lim sup
i

1

Ti + Zi+1

∑
j≤Si

d(Xj , Yj).

Finally, observe that Ti

i → µ and Zi+1

i → 0 a.s. Hence,



lim supDt =
1

µ
lim sup

i

1

i

∑
j≤Si

d(Xj , Yj)

=
1

µ
lim sup

i

1

i

i∑
j=1

D(Bj , Sj , Sj−1)

The final assertion of Theorem 1 is proven by
noting that since supj E[W 2

j ] < ∞, it follows
that supiE[( 1

i

∑i
j=1Wj)

2] < ∞. Thus, the family
( 1
i

∑i
j=1Wj)i∈N is uniformly integrable [14, Chapter

13]. One can then use Reverse Fatou’s Lemma for uniformly
integrable families [15] to obtain

∆e = E

[
lim sup
i→∞

1

i

i∑
j=1

Wj

]
≥ lim sup

i→∞
E

[
1

i

i∑
j=1

Wj

]
.

A similar reasoning for D follows from the fact that each
D(BTj , Sj , Sj−1) is smaller than vmax(Wj−1 + Zj) and one
proceeds in a similar way to obtain

D ≥ lim sup
i→∞

1

µ
E

[
1

i

i∑
j=1

D(Bj , Sj , Sj−1)

]
.

As lim supn an+lim supn bn ≥ lim supn(an+bn) in general,
the inequality

J(η)(S) ≤ D(S) + η∆(S)
e

holds in general. If the policy S is stationary, the lim sup’s
can be changed with lim’s by Renewal theory and the equality
holds.

B. Proof of Property 1
In the following proofs, g(b, s) refers to the one step

costs and Eb,s[h(B′)] refers to the expected relative value
of the next state, i.e., g(b, s) =

∑s−1
k=1 bk + η(l(b) − s) and

Eb,s[h(B′)] = E[h(b
l(b)
s+1,V

Z)]

(i) Define q := (b, b′). Suppose s∗(q) 6= l(b) + s∗(b′) and
s∗(q) > l(b). Then s∗(q) = arg mins≤l(q) g(q, s) +
Eq,s[h(B′)] = l(b) + arg mins≤l(b′) g(b′, s) +
Eb′,s[h(B′)] = l(b) + s∗(b′). Hence there is a
contradiction.

(ii) During the proof, we use u instead of b′ for notational
convenience. We want to obtain a lower bound for
h∗(u)− h∗(b) = g(u, s∗(u))− g(b, s∗(b))

+ Eu,s∗(u)[h
∗(U ′)]− Eb,s∗(b)[h

∗(B′)]

To lower bound Eu,s∗(u)[h
∗(U ′)] − Eb,s∗(b)[h

∗(B′)],
consider two MDPs in parallel: One starting from u and
the other from b. For the process starting from u, apply
optimal policies and for the process starting from b, apply
the optimal policies of the first process. Assume they have
the same future arrivals for the consequent buffer states.
Then they will follow the paths

u = u(0) s
∗(u(0))→ u(1) s

∗(u(1))→ u(2) → . . .→ u(τ)

b = b(0)
s∗(u(0))→ b(1)

s∗(u(1))→ b(2) → . . .→ b(τ)
(8)

and eventually end in the same state u(τ) = b(τ) after a
random time τ . This is because the applied policies are
same for both processes and eventually the buffers will
be occupied by the same arrivals. Observe that

h∗(u)− h∗(b) = g(u, s∗(u))− g(b, s∗(b))

+ Eu,s∗(u)[h
∗(U ′)]− Eb,s∗(b)[h(B′)]

≥ g(u, s∗(u))− g(b, s∗(u))

+ Eu,s∗(u)[h
∗(U ′)]− Eb,s∗(u)[h(B′)]

= g(u, s∗(u))− g(b, s∗(u))

+ E[h∗(uls∗(u)+1,V
Z)− h(bls∗(u)+1,V

Z)]

= E

[ τ∑
i=0

g(u(i), s∗(u(i)))− g(b(i), s∗(u(i)))

]
.

(9)

Since g(u(i), s∗(u(i))) − g(b(i), s∗(u(i))) ≥ 0 for all i,
h∗(u)− h∗(b) ≥ 0.

(iii) Once more we use u instead of b′ for notational conve-
nience. The upper bound is easy to show as the policy
is restricted to s > l(b). To prove h∗(u) ≤ h∗(b,u), we
follow a similar proof to that in (ii). The only difference
is; the process starting at q := (b,u) will be iterated with
its respective optimal policy while the one starting at u
will be iterated as follows: If s∗(q(i))− l(b) < s∗(u(i))
then take the first one, else take the optimal one. The
two processes will again coincide in a finite time τ . Now
write down the difference as in proof of (ii):

h∗(q)− h∗(u) ≥ E
[ τ−1∑
i=0

g(q(i), s∗(q(i)))− g(u(i), 1)

]
.

(10)

From (i), it follows that u(i) is a suffix of q(i) for all i,
i.e., q(i) = (u(i), b(i)) for some u(i) with probability
1 and g(q(i), s∗(q(i))) ≥ g(u(i), 1). Hence, h∗(q) −
h∗(u) ≥ 0.

(iv) Suppose s∗(b) 6= l(b) with vs∗(b) = vmin and let s̃(b) >
s∗(b) be the first index with vs̃(b) > vmin. If there is no
such index, take s̃(b) = l(b). Again, iterate two processes
starting from b with the first one choosing s∗(b) and the
second one choosing s̃(b) at the first step. Then iterate the
two processes as in the proof of (iii) until they coincide
at a finite random time τ .

b = b(0)
s∗(b)→ b(1) → b(2) → . . .→ b(τ)

b = u(0) s̃(b)→ u(1) → u(2) → . . .→ u(τ) = b(τ)
(11)

By the optimality condition we need

g(b, s̃(b))− g(b, s∗(b))

+ E[h(b
l(b)
s̃(b)+1,V

Z)− h(b
l(b)
s∗(b)+1,V

Z)] ≥ 0
(12)

and hence

g(b, s̃(b))− g(b, s∗(b))

+ E

[ τ∑
i=1

g(u(i), 1)− g(b(i), s∗(b(i)))

]
≥ 0.

(13)



The expression above can be written as

η(s∗(b)− s̃(b)) +
1

µ
(vmin − vs̃(b))

+ E

[
1

µ

τ∑
i=1

(b
(i)

s∗(b(i))
− u

(i)
1 )

+ η

τ∑
i=1

(l(u(i))− 1− l(b(i)) + s∗(b(i)))

]
.

(14)

Property 1, (i) implies l(u(i))−1−(l(b(i))−s∗(b(i))) ≤ 0

for all i ≤ τ and we also have
∑τ
i=1(b

(i)

s∗(b(i))
−u(i)

1 ) ≤ 0.
Since vmin − vs̃(b) < 0 and s∗(b) − s̃(b) < 0, the
above expectation is negative. Hence we obtained a
contradiction with (12) and the statement is proved.

C. Proof of Theorem 2
For simplicity assume vmin = 1. Let v := vmax. Take any

state space V≤K′ with K ′ > K = K(η) and start the policy
iteration algorithm with an initial policy s(0) such that l(b)−
s(0)(b) < K and s(0)(b) never takes 1 if s(0)(b) 6= l(b) for
all b ∈ V≤K′ . We will show that the policy iteration cannot
violate the condition l(b) − s(i)(b) < K for any i. Verbally,
this means the updated policy will not send any data generated
more than K slots ago. This concludes that a buffer size of
K is sufficient for the optimal policy. Note that it is enough
to show that this condition holds for i = 1.

Now start the algorithm with such s(0) described above,
which gives a relative value vector h(0) = h. Assume h
satisfies Property 1 (i) and (ii) as there is an s(0) satisfying
these and the conditions above, e.g., s(0) = l(b). Also
note that Property 1 (i) and (ii) hold after the first policy
iteration. Denote s(1) = s̃. Take any state b 6= 1l(b) with
respective policies s(0)(b), s̃(b) and l(b) > K. We omit the
argument b in the above expressions for simplicity. Define
s := min{j > l − K : bj = v}, i.e., index of the first
occurrence of v in the most recent K time slots.

Observe that if l− s̃ ≥ K, the following must hold (by step
3 of Algorithm 1):

η(s− s̃) +E[h(bls̃+1,V
Z)− h(bls+1,V

Z)] ≤ 1

µ

s−1∑
j=s̃

bj (15)

Since l(b) − s(0)(b) < K for all b ∈ V≤K′ , the current
policy cannot choose any content generated in further past
from K time units. Hence, h(bls̃+1,V

Z) = 1
µ

∑l−K
j=s̃+1 bj +

h(bll−K+1,V
Z). Moreover, from the definition of s, we know

that bj = 1 for l−K + 1 ≤ j ≤ s− 1. The LHS of the above
condition is thus equivalent to

η(s− s̃) + E[h(bll−K+1,V
Z)− h(bls+1,V

Z)]

= η(s− s̃) + E[h(1s+K−l−1bls,V
Z)− h(bls+1,V

Z)]

= η(s− s̃) +
1

µ
(s+K − l − 1)

+ E[h(bls,V
Z)− h(bls+1,V

Z)],

and the RHS is equivalent to
1

µ
(bs̃ + s+K − l − 1).

Hence, (15) is equivalent to

η(s− s̃) + E[h(bls,V
Z)− h(bls+1,V

Z)] ≤ 1

µ
bs̃

and using s̃ ≤ l−K and bs̃ ≤ v, we obtain a weaker condition

η(s+K − l) + E[h(bls,V
Z)− h(bls+1,V

Z)] ≤ 1

µ
v (16)

which is the same as checking if the following expectation is
negative or not.

E

[
η(s+K − l) + h(bls,V

Z)− h(bls+1,V
Z)− 1

µ
v

]
Define R := h(bls,V

Z) − h(bls+1,V
Z) = h(v, bls+1,V

Z) −
h(bls+1,V

Z) and R′ := η(s + K − l) + R − 1
µv. We want

to lower bound E[R′]. Consider the conditional expectation
E[R|V Z = vz] = E[h(v, bls+1,v

z)−h(bls+1,v
z)|V Z = vz].

Similar to the previous proofs, consider two coupled processes
{(u(i), q(i))} starting from (v, bls+1,v

z) and (bls+1,v
z) re-

spectively and both iterated according to s(0).
Define τ as the stopping time defined with the following

stopping condition: (A1) the two processes coincide, i.e,
l(u(τ))−s(0)(u(τ)) = l(q(τ))−s(0)(q(τ)), or (A2) the second
process q chooses the data at tail, i.e., s(0)(q(τ)) = l(q(τ)),
and they do not coincide. Denote the events in condition
(A1) and (A2) as A1 and A2. We note that A1 ∩ A2 = ∅.
Furthermore, τ is finite with probability 1. This can be seen
as q will consist only of 1s eventually and sends the one at
the tail. We observe that for 0 ≤ i ≤ τ , q(i) is a suffix of u(i)

from Property 1, (i).
Now observe that A1 only occurs if the prefix of u(τ) before

q(τ) contains a v. If it does not contain any v, it means that
q(τ−1) consists only of 1s and thus sends the data at the
tail; which implies that the iterations must have been stopped
before. If A1 occurs, this means that the first process must
have missed a v, as it is in the prefix and not taken, and hence
R ≥ 1

µv.
If A2 occurs, then (conditioned on V Z = vz)

R =

τ∑
i=0

g(u(i), s(0)(u(i)))− g(q(i), s(0)(q(i)))

+ E[h(u(τ+1))− h(q(τ+1))].

As the two processes have not coincided yet, q(τ+1) is still
a suffix of u(τ+1) and therefore E[h(u(τ+1))− h(q(τ+1))] ≥
E[h(1, q(τ+1))− h(q(τ+1))] ≥ 1

µ . This is seen by combining
Property (ii) and (iv). Further note that

τ∑
i=0

g(u(i), s(0)(u(i)))− g(q(i), s(0)(q(i))) ≥ η(l − s)

as q(i) remains a suffix of u(i) until τ and age penalty in the
above expression is minimized when u, at (i+ 1)th iteration,
chooses the same data that q chooses at ith iteration. Hence,
R ≥ 1

µ + η(l − s).



Finally, we write

E[R′|V Z = vz] = E[R′;A1|V Z = vz] + E[R′;A2|V Z = vz]

≥ Pr(A1)

(
1

µ
− 1

µ

)
+ Pr(A2)

(
ηK − 1

µ
(v − 1)

)
≥ Pr(A2)

(
ηK − 1

µ
(v − 1)

)
≥ 0

as the choice of K is such that ηK ≥ 1
µ (v − 1). Hence,

E[R′] ≥ 0. The weaker condition (16) does not hold and thus
(15) can never hold. This concludes that s̃ = s(1)(b) can never
be smaller than l(b)−K for b 6= 1l(b).

The case for b = 1L, K ′ ≥ L > K is straightforward. For
s(1)(b) < K ′ − L, one needs η(K + 1) ≤ η(L − s(1)(b)) ≤
v−1
µ , which is not true.


