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Abstract
Let f (z) = q+∑

n≥2 a(n)qn be aweight k normalized newformwith integer coefficients and
trivial residual mod 2 Galois representation. We extend the results of Amir and Hong in Amir
and Hong (On L-functions of modular elliptic curves and certain K3 surfaces, Ramanujan
J, 2021) for k = 2 by ruling out or locating all odd prime values |�| < 100 of their Fourier
coefficients a(n) when n satisfies some congruences. We also study the case of odd weights
k ≥ 1 newforms where the nebentypus is given by a quadratic Dirichlet character.

Résumé
Soit f (z) = q+∑

n≥2 a(n)qn une formedeHecke normalisée de poids k à coefficients entiers
possédant une représentation galoisienne modulo 2 triviale. On généralise les résultats de
Amir et Hong présentés dans Amir and Hong (On L-functions of modular elliptic curves and
certain K3 surfaces„ Ramanujan J, 2021) pour le poids k = 2 en éliminant ou en localisant
toutes les valeurs impaires |�| < 100 des coefficients de Fourier a(n) pour n respectant
certaines congruences. On étudie aussi le cas des poids impairs k ≥ 1 de formes de Hecke
dont le caractère est donné par un caractère quadratique de Dirichlet.

Keywords Lucas sequences · Lehmer’s conjecture · Modular forms · L-Functions · Elliptic
curves

1 Introduction and statement of the results

In an article entitled “On certain arithmetical functions” [17], Ramanujan introduced the
τ -function in 1916, known as the Fourier coefficients of the weight 12 modular form

�(z) = q
∞∏

n=1

(1 − qn)24:=
∞∑

n=1

τ(n)qn = q − 24q2 + 252q3 − 1472q4 + 4830q5 − ...
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where throughout q:=e2π i z . It was conjectured by Ramanujan that the τ -function is mul-
tiplicative and this offered a glimpse into a much more general theory known today as the
theory of Hecke operators. Despite its importance in the large web of mathematics and
physics, basic properties of τ(n) are still unknown. The most famous example is Lehmer’s
conjecture about the nonvanishing of τ(n). Lehmer proved that if τ(n) = 0, then n must be a
prime [12]. One may be interested in studying odd values taken by τ(n) or, more generally,
the coefficients of any newform. This is the question we consider as a variation of Lehmer’s
original speculation.

For an odd number α, Murty, Murty and Shorey [14] proved using linear forms in log-
arithms that τ(n) �= α for all n sufficiently large. However, the bounds that they obtained
are huge and computationally impractical. Recently, using the theory of Lucas sequences,
Balakrishnan, Craig, Ono and Tsai proved in [3] and [4], together with work of Dembner and
Jain in [10], that τ(n) = � has no solution for |�| < 100 an odd prime. In addition, Hanada
and Madhukara proved in [11] that τ(n) = α has no solution for |α| < 100 an odd integer.
Following these ideas, Amir and Hong investigated weight 2 and 3 newforms corresponding
to modular elliptic curves and a special family of K3 surfaces in [2].

In this paper, we extend slightly the results of [2] on inadmissible coefficients for L-
functions of modular elliptic curves and give a procedure to rule out odd prime values
�, positive or negative, as coefficients of any normalized newform of odd weight k ≥ 1
with integer coefficients having trivial residual mod 2 Galois representation and a quadratic
Dirichlet character. For the rest of this paper, whenever we say newform of weight k, we talk
about a newform with the aforementioned properties. In the case of weight 2 newforms, we
have the following results.

Theorem 1.1 Suppose f (z) = q+∑
n≥2 a(n)qn ∈ Snew

2 (�0(N ))∩Z[[q]] has trivial residual
mod 2 Galois representation, namely, E/Q is an elliptic curve of conductor N with a rational
2-torsion point. Then the following are true.
If E/Q has a rational 3-torsion point, then for n > 1 and gcd(n, 2 · 3 · N ) = 1, we have

1. If a(n) = 7, 13, 19, 31, 37, then n = p2 and p = 2 (mod 3).
2. If a(n) = 29 then n = pd−1 = 134 and a(p) = ±2.
3. If a(n) = 41 then n = pd−1 = 434 and a(p) = ±4.
4. If a(n) = −19 then n = pd−1 = 74 and a(p) = ±2.
5. If a(n) = −31 then n = pd−1 = 74 and a(p) = ±4.
6. If a(n) = −79 then n = pd−1 = 1674 and a(p) = ±8.

Furthermore,

a(n) /∈ {−1, 1, 5,−7, 11,−13, 17, 23,−37,−43, 47, 53, 59,−61,−67, 71,−73, 83, 89,−97}.
If E/Q has a rational 5-torsion point, then for n > 1 and gcd(n, 2 · 5 · N ) = 1, we have

1. If � ≡ 1 (mod 5) and a(n) = �, then n = p2 and p ≡ 4 (mod 5).
2. If � ≡ 2 (mod 5), � �= −3 and a(n) = �, then n = p2 and p ≡ 2 (mod 5).
3. If � ≡ 3 (mod 5), � �= 3 and a(n) = �, then n = p2 and p ≡ 1, 3 (mod 5).

Furthermore,

a(n) /∈ {−1, 1,−11, 19, 29,−31,−41, 59,−61,−71, 79, 89,−691}.
Theorem 1.2 Let E/Q be an elliptic curve of conductor N with a 2 and 3-torsion point. Let
n > 1 and gcd(n, 2 · 3 · N ) = 1. If � ≡ 2 (mod 3), � �= 5 and the odd prime divisors d of
|�|(|�| − 1)(|�| + 1) are not congruent to 2 (mod 3), then a(n) �= �.
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Theorem 1.3 Let E/Q be an elliptic curve of conductor N with a 2 and 5-torsion point. Let
n > 1 and gcd(n, 2 · 5 · N ) = 1.

1. If � ≡ 1 (mod 5) and the odd prime divisors d of |�|(|�| − 1)(|�| + 1) are not congruent
to 1, 3 (mod 5), then a(n) �= �.

2. If � ≡ 2 (mod 5), � �= −3 and the odd prime divisors d of |�|(|�| − 1)(|�| + 1) are not
congruent to 2, 3 (mod 5), then a(n) �= �.

3. If � ≡ 3 (mod 5), � �= 3 and the odd prime divisors d of |�|(|�| − 1)(|�| + 1) are not
congruent to 2, 3 (mod 5), then a(n) �= �.

4. If � ≡ 4 (mod 5) and the odd prime divisors d of |�|(|�| − 1)(|�| + 1) are not congruent
to 2, 4 (mod 5), then a(n) �= �.

Theorem 1.4 Let E/Q be an elliptic curve with conductor N and f the corresponding
newform with Fourier coefficients a(n). For r = 3, 5, suppose that 2 · r divides |Etor(Q)|.
Then a(pd−1) �= rv unless d = r for some v ∈ N.

For odd weights k ≥ 3 newforms, we have the following result.

Theorem 1.5 Let gcd(n, 2 · N ) = 1. Then a(pd−1) �= ±1 and for n > 1, we also have
a(n) �= ±1. Furthermore, if a(n) = ±� for some prime �, then n = pd−1 where d|�(�2 − 1)
is odd. If ±� is not defective, then d is an odd prime.

In Sects. 3.2 and 4, we give results allowing us to state the above theorems independently
of the level.

2 Preliminaries

2.1 Lucas sequences and their primitive prime divisors

We recall the deep work of Bilu, Hanrot and Voutier [7] on Lucas sequences which is central
to this note.

A Lucas pair (α, β) is a pair of algebraic integers, roots of a monic quadratic polynomial
F(x) = (x −α)(x −β) ∈ Z[x]where α+β, αβ are coprime non-zero integers and such that
α/β is not a root of unity. To any Lucas pair (α, β) we can associate a sequence of integers
{un(α, β)} = {u1 = 1, u2 = α + β, . . . } called Lucas numbers defined by the following
formula

un(α, β):=αn − βn

α − β
. (2.1)

We call a prime � | un(α, β) a primitive prime divisor of un(α, β) if � � (α −
β)2u1(α, β) · · · un−1(α, β). We call a Lucas number un(α, β) with n > 2 defective1 if
un(α, β) does not have a primitive prime divisor. Bilu, Hanrot, and Voutier [7] proved the
following theorem for all Lucas sequences.

Theorem 2.1 Every Lucas number un(α, β), with n > 30, has a primitive prime divisor.

This theorem is sharp in the sense that there are sequences for which u30(α, β) does not
have a primitive prime divisor. Their work, combined with a subsequent paper2 of Abouzaid

1 We do not consider the absence of a primitive prime divisor for u2(α, β) = α + β to be a defect.
2 This paper included a few cases which were omitted in [7].
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[1], gives the complete classification of defective Lucas numbers in two categories; a sporadic
family of examples and a set of infinite parametrized families, as can be seen from Tables 1–4
in Sect. 1 of [7] and Theorem 4.1 of [1]. The main arguments in our proofs will largely rely
on relative divisibility properties of Lucas numbers. We now recall some of these facts3.

Proposition 2.2 (Prop. 2.1 (ii) of [7]) If d | n, then ud(α, β)|un(α, β).

In order to keep track of the first occurrence of a prime divisor, we define m�(α, β) to
be the smallest n ≥ 2 for which � | un(α, β). We note that m�(α, β) = 2 if and only if
α + β ≡ 0 (mod �).

Proposition 2.3 (Cor. 2.24 of [7]) If � � αβ is an odd prime with m�(α, β) > 2, then the
following are true.

1. If � | (α − β)2, then m�(α, β) = �.

2. If � � (α − β)2, then m�(α, β) | (� − 1) or m�(α, β) | (� + 1).

Remark If �|αβ, then either �|un(α, β) for all n or � � un(α, β) for all n.

We now recall the following facts about newforms of weight k ∈ N and character χ that
we will denote by Snew

k (�0(N ), χ). We suggest that the reader take a look at the book of
Cohen and Strömberg [9] for a thorough introduction to the theory of modular forms and to
and the book of Ono [16] for a clear and concise exposition of more advanced topics.

Proposition 2.4 Suppose that f (z) = q + ∑
n≥2 a(n)qn ∈ Sk(�0(N ), χ) is a normalized

newform with nebentypus χ . Then the following are true.

1. If gcd(n1, n2) = 1, then a(n1n2) = a(n1)a(n2).

2. If p � N is prime and m ≥ 2, then

a(pm) = a(p)a(pm−1) − χ(p)pk−1a(pm−2).

3. If p � N is prime and αp and βp are roots of Fp(x):=x2 − a(p)x + χ(p)pk−1, then

a(pm) = um+1(αp, βp) = αm+1
p − βm+1

p

αp − βp
.

Moreover, we have the Deligne’s bound |a(p)| ≤ 2p
k−1
2 .

In this note, we consider Lucas sequences arising from the roots of the Frobenius poly-
nomial

Fp(x):=x2 − Ax + B:=x2 − a(p)x + χ(p)pk−1 = (x − αp)(x − βp), (2.2)

for a fixed prime p � N where

un(αp, βp):=a(pn−1) = αn
p − βn

p

αp − βp
,

and |a(p)| ≤ 2p
k−1
2 .

3 See Sect. 2 of [7].
4 This corollary is stated for Lehmer numbers. The conclusions hold for Lucas numbers because � � (α + β).
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Table 1 Sporadic family of
defective un(α, β) satisfying
equation 2.2 in even weight 2k
including 2k = 2 [4]

(A, B) Defective un(α, β)

(±1, 21) u5 = −1, u7 = 7, u8 = ∓3, u12 = ±45,

u13 = −1, u18 = ±85, u30 = ∓24475

(±1, 31) u5 = 1, u12 = ±160

(±1, 51) u7 = 1, u12 = ∓3024

(±2, 31) u3 = 1, u10 = ∓22

(±2, 71) u8 = ∓40

(±2, 111) u5 = 5

(±4, 51) u6 = ±44

(±5, 71) u10 = ∓3725

(±3, 23) u3 = 1

(±5, 23) u6 = ±85

Table 2 Sporadic family of
defective un(α, β) satisfying
Eq. 2.2 in odd weight k ≥ 1

(A, B) Defective un(α, β)

(±1, −1) u5 = 5, u12 = ±144

(±1, 21) u5 = −1, u7 = 7, u8 = ∓3, u12 = ±45,

u13 = −1, u18 = ±85, u30 = ∓24475

(±1, 22) u5 = 5,u12 = ∓231

(±1, 31) u5 = 1, u12 = ±160

(±1, 51) u7 = 1, u12 = ∓3024

(±2, 31) u10 = ∓22

(±2, 71) u8 = ∓40

(±2, 111) u5 = 5

(±5, 71) u10 = ∓3725

2.2 Modular forms and their Galois representation

Definition 2.5 We say that a newform f ∈ Snew
k (�0(N ), χ) has trivial residual mod 2 Galois

representation if a(p) is even for all p � 2 · N .

Remark The condition p �= 2 comes from the fact that the determinant of the representation
of the Galois group evaluated at the Frobenius element needs to be nonzero in order to be
invertible. Using Proposition 2.4-(2), this implies that we can derive a(pd) to be odd if and
only if d is even. Similarly, we get that a(pd) is even if and only if d is odd. It follows that
a(n) is odd if and only if n is an odd square. Furthermore, requiring f ∈ Snew

2 (�0(N )) to
have trivial residual mod 2 Galois representation is equivalent to asking that the associated
modular elliptic curve has a rational 2-torsion point.
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3 Newforms of weight k = 2

We begin by studying newforms of weight k = 2, level N and trivial character χ with
integer coefficients. These modular forms are interesting by themselves as they correspond
to modular elliptic curves. For completeness, we recall some facts from the weight 2 case
presented in [2].

Lemma 3.1 (Lemma 2.1 [2]) Assume a(p) is even for primes p � 2 · N. The only defective
odd values ud(αp, βp) are given in Table 1 by

(d, A, B, k) ∈ {(3, 2, 3, 2), (5, 2, 11, 2)},
and in rows 1 and 2 of Table 2.

Remark For u3(αp, βp) = ε3r , we have 3 � a(p) and so u3(α, β) is the first occurrence of
3 in the sequence. If 3|a(p) however, then ε3r is no longer a defective value.

We will make use of the two following fundamental results.

Theorem 3.1 (Modularity Theorem [8]) Let E/Q be an elliptic curve with conductor N and
a rational 2-torsion point. Denote the associated newform with trivial residual mod 2 Galois
representation by fE (z) = ∑

n≥1 a(n)qn ∈ SNew
2 (�0(N )) ∩ Z[[q]]. Then for all primes

p � 2 · N of good reduction, we have

a(p) = p + 1 − #E(Fp),

where #E(Fp) denotes the number of Fp-points of the elliptic curve reduced mod p.

The following theorem of Mazur classifies the possible torsion groups of ellitpic curves
of E/Q.

Theorem 3.2 (Mazur’s Theorem [15]) If E/Q is an elliptic curve, then

Etor(Q) ∈ {Z/NZ | 1 ≤ N ≤ 10 or N = 12} ∪ {Z/2Z × Z/NZ | N = 2, 4, 6, 8}.

Furthermore, recall that if E/Q has good reduction at p � m for some m ∈ N, then the
reduction map

π : E(Q) → E(Fp), (3.1)

is injective when restricted to m-torsion [19]. As a consequence, we get the following result.

Lemma 3.2 (Lemma 3.1 [2]) Suppose that E/Q is an elliptic curve and that r | #Etor(Q).
Then for all primes p � 2 · r · N, we have

a(pd) ≡ 1 + p + p2 + · · · + pd mod r .

Lemma 3.3 (Lemma 3.2 [2]) If E/Q has a rational 2 and r-torsion point where r = 3, 5,
then for all gcd(n, 2 · r · N ) = 1, we have |a(n)| �= 1.

123



A short note on inadmissible...

3.1 Integer points on Thue equations

We discuss the general approach to solve the equation a(n) = � for some prime �, positive
or negative, where a(n) is the Fourier coefficient of f ∈ Snew

k (�0(N ), χ) ∩ Z[[q]]. Assume
that |a(n)| �= 1 for some given values of n. Using Proposition 2.4 (1)-(2), we can see that
studying a(n) = � is equivalent to studying a(pd−1) = � for d

∣
∣|�|(|�| − 1)(|�| + 1). From

the two-term recurrence relation satisfied by a(pd−1), a(pd−1) = � reduces to the search of
integer points on special curves. We make this statement precise now.

Let D be a non-zero integer. A polynomial equation of the form F(X , Y ) = D, where
F(X , Y ) ∈ Z[X , Y ] is a homogeneous polynomial, is called a Thue equation. We will
consider those equations arising from the series expansion of

1

1 − √
Y T + X T 2

=
∞∑

m=0

Fm(X , Y ) · T m = 1 + √
Y · T + (Y − X) · T 2 + . . .

(3.2)

Lemma 3.4 If a(n) satisfies Proposition 2.4, and p � N is a prime, then

F2m

(
χ(p)pk−1, a(p)2

)
= a(p2m).

Hence, solving a(p2m) = q boils down to computing integer solutions to the equation

F2m(X , Y ) = �.

Methods for solving Thue equations are implemented in Sage [5], Magma, and are best
suited for m ≥ 3. For m = 1, 2, these equations often have infinitely many solutions as they
do not represent curves with positive genus when the weight is k = 1, 2, hence we require
extra information to infer their finiteness. In the case of weight 2 newforms, the idea is to
introduce a 3 and 5-torsion point to get additional congruences to avoid having to deal with
infinitely many solutions for the equations a(p2) = �, a(p4) = �. Indeed, note that

d
∣
∣|�|(|�| − 1)(|�| + 1) ≡ 0 (mod 3),

for all � and hence d = 3 will always have to be checked.

3.2 Some congruences

We now list congruences obtained using Lemma 3.2.

Lemma 3.5 Let E/Q be an elliptic curve with conductor N having a rational 2 and 3-torsion
point. Consider primes p for which gcd(p, 2 · 3 · N ) = 1.

1. If a(pd−1) = � = ±3, then

(p, d) ∈ {(1, 0), (2, 0), (2, 2) (mod 3)}.
2. If a(pd−1) = � ≡ 1 (mod 3), then

(p, d) ∈ {(1, 1), (2, odd) (mod 3)}.
3. If a(pd−1) = � ≡ 2[3], then

(p, d) = (1, 2) (mod 3).
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Remark In point 2, the last pair is problematic as d is always odd. Hence, it is not possible
to provide a general result in this case.

Let E/Q be an elliptic curve with conductor N having a rational 2 and 5-torsion point.
Consider primes p for which gcd(p, 2 · 5 · N ) = 1.

1. If a(pd−1) = ±5, then

(p, d) ∈ {(1, 0), (3, 0), (3, 4), (4, 0), (4, 4), (4, 2) (mod 5)}.
2. If a(pd−1) = � ≡ 1 (mod 5), then

(p, d) ∈ {(1, 1), (2, 1), (3, 1), (4, 1), (4, 3) (mod 5)}.
3. If a(pd−1) = � ≡ 2 (mod 5), then

(p, d) ∈ {(1, 2), (2, 3) (mod 5)}.
4. If a(pd−1) = � ≡ 3 (mod 5), then

(p, d) ∈ {(1, 3), (3, 3), (2, 2) (mod 5)}.
5. If a(pd−1) = � ≡ 4 (mod 5), then

(p, d) ∈ {(1, 4), (3, 2) (mod 5)}.
Using the above congruences extensively as well as the relative divisibility property of

Lucas numbers, we get the following result.

Theorem 3.3 Suppose f (z) = q+∑
n≥2 a(n)qn ∈ Snew

2 (�0(N ))∩Z[[q]] has trivial residual
mod 2 Galois representation, namely, E/Q is an elliptic curve of conductor N with a rational
2-torsion point. Then the following are true.
If E/Q has a rational 3-torsion point, then for n > 1 and gcd(n, 2 · 3 · N ) = 1, we have

1. If a(n) = 7, 13, 19, 31, 37, then n = p2 with p = 2 (mod 3).
2. If a(n) = 29 then n = pd−1 = 134 and a(p) = ±2.
3. If a(n) = 41 then n = pd−1 = 434 and a(p) = ±4.
4. If a(n) = −19 then n = pd−1 = 74 and a(p) = ±2.
5. If a(n) = −31 then n = pd−1 = 74 and a(p) = ±4.
6. If a(n) = −79 then n = pd−1 = 1674 and a(p) = ±8.

Furthermore,

a(n) /∈ {−1, 1, 5,−7, 11,−13, 17, 23,−37,−43, 47, 53, 59,−61,−67, 71,−73, 83, 89,−97}.
If E/Q has a rational 5-torsion point, then for n > 1 and gcd(n, 2 · 5 · N ) = 1, we have

1. If � ≡ 1 (mod 5) and a(n) = �, then n = p2 and p ≡ 4 (mod 5).
2. If � ≡ 2 (mod 5), � �= −3 and a(n) = �, then n = p2 and p ≡ 2 (mod 5).
3. If � ≡ 3 (mod 5), � �= 3 and a(n) = �, then n = p2 and p ≡ 1, 3 (mod 5).

Furthermore,

a(n) /∈ {−1, 1,−11, 19, 29,−31,−41, 59,−61,−71, 79, 89,−691}.
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Remark In the first part of the theorem, we have omitted the primes 43, 61, 67, 73, 79, 97,
which are of the form � ≡ 1 (mod 3), and the primes−� ≡ 1 (mod 3) due to the large number
of curves involved. However, following themethods outlined in this text, the interested reader
will have no difficulty investigating these cases. In the second part, note that the primes of
the form � ≡ 4 (mod 5) are those of the outlined list. We’ve also ruled out −691 simply
because it is a pretty number and a nice example of application of Theorem 3.5.

Theorem 3.4 Let E/Q be an elliptic curve of conductor N with a 2 and 3-torsion point. Let
n > 1 and gcd(n, 2 · 3 · N ) = 1. If � ≡ 2 (mod 3), � �= 5 and the odd prime divisors d of
|�|(|�| − 1)(|�| + 1) are not congruent to 2 (mod 3), then a(n) �= �.

Theorem 3.5 Let E/Q be an elliptic curve of conductor N with a 2 and 5-torsion point. Let
n > 1 and gcd(n, 2 · 5 · N ) = 1.

1. If � ≡ 1 (mod 5) and the odd prime divisors d of |�|(|�| − 1)(|�| + 1) are not congruent
to 1, 3 (mod 5), then a(n) �= �.

2. If � ≡ 2 (mod 5), � �= −3 and the odd prime divisors d of |�|(|�| − 1)(|�| + 1) are not
congruent to 2, 3 (mod 5), then a(n) �= �.

3. If � ≡ 3 (mod 5), � �= 3 and the odd prime divisors d of |�|(|�| − 1)(|�| + 1) are not
congruent to 2, 3 (mod 5), then a(n) �= �.

4. If � ≡ 4 (mod 5) and the odd prime divisors d of |�|(|�| − 1)(|�| + 1) are not congruent
to 2, 4 (mod 5), then a(n) �= �.

The above theorems can be made independent of the level using the following lemma.

Lemma 3.6 Let p|N be a prime and N the level of the newform f (z). Then

a f (pm) = a(p)a(pm−1) =
{

(±1)m if ordp(N ) = 1,

0 if ordp(N ) ≥ 2.

Theorem 3.6 Let E/Q be an elliptic curve with conductor N and f (z) the corresponding
newform with Fourier coefficients a(n). For r = 3, 5, suppose that 2 · r divides |Etor(Q)|.
Then a(pd−1) �= rv unless d = r for some v ∈ N.

Proof Let r = 3. Then by Lemma 3.5, 3
∣
∣|a(pd−1)| if and only if 3|d . Indeed, if p ≡

0, 2 (mod 3), then a(pd−1) ≡ 1 (mod 3) and so p ≡ 1 (mod 3) implies that 3|d . Suppose
that a(pd−1) = 3v and d > 3, then a(pd−4) is also a multiple of 3, which contradicts that
3v is not defective. Thus d = 3 is the only solution.

Let r = 5. Then by Lemma 3.5, 5
∣
∣|a(pd−1)| if and only if p ≡ 1[5] and 5|d . For d > 5,

we have a(pd−6) is also a multiple of 5, violating that a(pd−1) is not defective. Hence d = 5.
�

4 Newforms of odd weight k ≥ 3

In this section, we explain the basic framework to rule out odd prime values ±� as Fourier
coefficients of odd weight k ≥ 3 normalized newforms with integer coefficients of level N
and nebentypus χ given by a quadratic Dirichlet character and trivial residual mod 2 Galois
representation.

Theorem 4.1 Let gcd(n, 2 · N ) = 1. Then a(pd−1) �= ±1 and for n > 1 we have a(n) �= ±1.
It follows that if a(n) = ±� for some prime �, then n = pd−1 where d|�(�2 − 1) is odd. If
±� is not defective, then d is an odd prime.
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Proof Note that ±1 is a defective value which must be located in the first 2 rows of Table 4.
In fact, the table of sporadic values does not have to be considered. In row 1 of Table 4, we
have that if a(pd−1) = −1, then it must be at u3 = a(p2) = −1, where the constraints imply
that we must satisfy χ(p)pk−1 = a(p)2 + 1. Since k − 1 is even, let’s write k − 1 = 2m.
Then we’re left with the equation χ(p)x2m = y2 + 1 and clearly there are no solutions for
χ(p) = 0,−1. If χ(p) = 1 then we obtain (xm)2 − y2 = 1 and this gives us the integer
solutions x = ±1, y = 0 which aren’t allowed. Hence a(pd−1) �= −1 for gcd(p, 2 · N ) = 1.
Now for row 2, if a(pd−1) = 1 then it must happen for u3 = a(p2) = 1 with constraints
given by χ(p)pk−1 = a(p)2 − 1,a(p) > 1. There are no solutions to this equation for
χ(p) = 0,−1, 1. Hence a(pd−1) �= ±1. �

Lemma 4.1 The curve a(p2) = ±� has no solutions if χ(p) = 0. If χ(p) = 1 then the curve
has the form (y − xm)(y + xm) = ±� which has a unique solution depending on � only. For
χ(p) = −1 the curve has the form y2 + (xm)2 = ±� which has no solutions for −� and has
finitely many solutions for +� as it is a sum of squares.

Hence, to rule out or locate any odd prime value � as a Fourier coefficient of f (z), it
suffices to follow the following steps. Let gcd(n, 2 · N ) = 1 and � be an odd prime.

1. By multiplicativity of the Fourier coefficients, we have that

a(n) = ±� if and only if
∏

i

a(pdi −1
i ) = ±�.

2. Use Theorem 1.5.
3. Use the Sage Thue solver [5] to solve a(pd−1) = ±� and analyze the solutions.

Lemma 4.2 (Proposition 13.3.14 [9]) Let p|N and assume that χ can be defined modulo
N/p and let f = ∑

a(n)qn ∈ Snew
k (�0(N ), χ) be a normalized eigenform. Then

1. If p2|N, then a(p) = 0.
2. If p2 � N, then a(p)2 = χ1(p)pk−2 where χ1 is the character modulo N/p equivalent

to χ .

Using this lemma, we easily obtain the following.

Corollary 4.2 Suppose that χ can be reduced modulo N/p and call it χ1. Then a(pm) = 0
for all m ≥ 1 and a(n) = 0 for all (n, N ) ≥ p.

Proof Recall that a(pm) = a(p)a(pm−1) and if p2|N the result follows immediately. For
p2 � N we have a(p)2 = χ1(p)pk−2. Since k is odd, k − 2 is odd and if χ1(p) �= 0 then
a(p) cannot be an integer which is what we require for our newforms. Hence a(p) = 0 is
the only possibility. �

Lemma 4.3 (Corollary 13.3.17 [9]) Let p|N and assume that χ cannot be defined modulo

N/p. If f ∈ Snew
k (�0(N ), χ) is a normalized eigenform, then |a(p)| = p

k−1
2 .
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Corollary 4.3 Let p|N and assume that χ cannot be defined modulo N/p. Then a(pm) =
(±1)m(p

k−1
2 )m.

5 Newforms of weight k = 1

In this section, we discuss briefly the problems arising in the case of weight k = 1 newforms.
Recall that Proposition 2.2 is the main tool to determine if d is prime or not. However, we
may have that n|d and un = −1. From the first row of the defective table, we know that this
may happen only if n = 3, namely if u3 = a(p2) = −1. Thus, we would like to avoid 3|d
but that is not possible as �(� − 1)(� + 1) is always divisible by 3. This implies that we only
have the information that d|�(� − 1)(� + 1) is odd and no longer an odd prime. First, this
leads us to a large amount of equations to verify in order to rule out an odd prime as a Fourier
coefficient. Secondly, when d = 3, the equation that we obtain is

y2 = ±� + χ(p)

and is incredibly difficult to solve as it is still an open problem to determine if there are
infinitely many primes of the form � = y2 + 1.
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