Files

Abstract

alpha-Synuclein aggregation at the synapse is an early event in Parkinson's disease and is associated with impaired striatal synaptic function and dopaminergic neuronal death. The cysteine string protein (CSP alpha) and alpha-synuclein have partially overlapping roles in maintaining synaptic function and mutations in each cause neurodegenerative diseases. CSP alpha is a member of the DNAJ/HSP40 family of co-chaperones and like alpha-synuclein, chaperones the SNARE complex assembly and controls neurotransmitter release. alpha-Synuclein can rescue neurodegeneration in CSP alpha KO mice. However, whether alpha-synuclein aggregation alters CSP alpha expression and function is unknown. Here we show that alpha-synuclein aggregation at the synapse is associated with a decrease in synaptic CSP alpha and a reduction in the complexes that CSP alpha forms with HSC70 and STG alpha. We further show that viral delivery of CSP alpha rescues in uitro the impaired vesicle recycling in PC12 cells with alpha-synuclein aggregates and in uiuo reduces synaptic alpha-synuclein aggregates increasing monomeric alpha-synuclein and restoring normal dopamine release in 1-120h alpha Syn mice. These novel findings reveal a mechanism by which alpha-synuclein aggregation alters CSP alpha at the synapse, and show that CSP alpha rescues alpha-synuclein aggregation-related phenotype in 1-120h alpha Syn mice similar to the effect of alpha-synuclein in CSP alpha KO mice. These results implicate CSP alpha as a potential therapeutic target for the treatment of earlystage Parkinson's disease.

Details

PDF