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Abstract
This thesis focuses on designing spectral tools for graph clustering in sublinear time. With the

emergence of big data, many traditional polynomial time, and even linear time algorithms have

become prohibitively expensive. Processing modern datasets requires a new set of algorithms

for computing with extremely constrained resources, i.e., sublinear algorithms. Clustering

is one of the well-known techniques for solving large-scale optimization problems in a wide

variety of domains, including machine learning, data science, and graph analysis [ABM16,

RAK+16, GLMY11]. Efficient sublinear solutions for fundamental graph clustering problems

require going well beyond classic techniques.

In this thesis, we present an optimal sublinear-time algorithm for testing k-clusterability prob-

lem, i.e., quickly determining whether the graph can be partitioned into at most k expanders,

or is far from any such graph. This is a generalization of a well-studied problem of testing

graph expansion. The classic results on testing k-clusterability either consider the testing

expansion problem (i.e, k = 1 vs k ≥ 2) [KS11, NS10], or address the problem for larger values of

k under the assumption that the gap between conductances of accepted and rejected graphs is

at least logarithmic in the size of the graph [CPS15]. We overcome these barriers by developing

novel spectral techniques based on analyzing the spectrum of the Gram matrix of random

walk transition probabilities. We complement our algorithm with a matching lower bound

on the query complexity of testing k-clusterability, which improves upon the long-standing

previous lower bound for testing graph expansion.

Furthermore, we extend our previous result from the property testing framework to an efficient

clustering algorithm in the local computation algorithm (LCA) model. We focus on a popular

variant of graph clustering where the input graph can be partitioned into k expanders with

outer conductance bounded by ε. We construct a small space data structure that allows

quickly classifying vertices of G according to the cluster they belong to in sublinear time.

Our spectral clustering oracle provides O(ε logk) error per cluster for any ε¿ 1/logk. Our

main contribution is a sublinear time oracle that provides dot product access to the spectral

embedding of the graph. We estimate dot products with high precision using an appropriate

linear transformation of the Gram matrix of random walk transition probabilities. Finally,

using dot product access to the spectral embedding we design a spectral clustering oracle. At

a high level, our approach amounts to hyperplane partitioning in the spectral embedding of

the graph but crucially operates on a nested sequence of carefully defined subspaces in the

spectral embedding to achieve per cluster recovery guarantees.
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Zusammenfassung
Diese Arbeit konzentriert sich auf die Entwicklung von spektralen Werkzeugen für das Cluste-

ring von Graphen in sublinearer Zeit. Mit dem Aufkommen von Big Data sind viele traditionelle

Algorithmen mit polynomialer Zeit und sogar linearer Zeit unerschwinglich geworden. Die

Verarbeitung moderner Datensätze erfordert einen neuen Satz von Algorithmen für das Rech-

nen mit extrem eingeschränkten Ressourcen, d. h. sublineare Algorithmen. Clustering ist

eine der bekannten Techniken zur Lösung großer Optimierungsprobleme in einer Vielzahl

von Domänen, einschließlich maschinelles Lernen, Datenwissenschaft und Graphenanaly-

se [ABM16, RAK+16, GLMY11]. Effiziente sublineare Lösungen für fundamentale Graphen-

Clustering-Probleme erfordern es, weit über klassische Techniken hinauszugehen.

In dieser Arbeit stellen wir einen optimalen Algorithmus mit sublinearer Zeit für das k-

Clusterbarkeitsproblem vor, d. h. die schnelle Bestimmung, ob der Graph in höchstens k

Expander partitioniert werden kann oder weit von einem solchen Graphen entfernt ist. Dies ist

eine Verallgemeinerung eines gut untersuchten Problems der Prüfung der Graphenexpansion.

Die klassischen Ergebnisse zum Testen der k-Clusterbarkeit betrachten entweder das Problem

des Testens der Expansion (d.h. k = 1 vs. k ≥ 2) [KS11, NS10], oder behandeln das Problem

für größere Werte von k unter der Annahme, dass der Abstand zwischen den Leitwerten von

akzeptierten und verworfenen Graphen mindestens logarithmisch in der Größe des Graphen

ist [CPS15]. Wir überwinden diese Barrieren durch die Entwicklung neuartiger spektraler

Techniken, die auf der Analyse des Spektrums der Gram-Matrix von Übergangswahrschein-

lichkeiten des Random Walk. Wir ergänzen unseren Algorithmus mit einer passenden unteren

Schranke für die Abfragekomplexität des Testens von k-Clusterbarkeit, die die seit langem

bestehende untere Schranke für das Testen von Graphenexpansion verbessert.

Darüber hinaus erweitern wir unser vorheriges Ergebnis aus dem Eigenschaftstest-Rahmen auf

einen effizienten Clustering-Algorithmus im lokalen Berechnungsalgorithmus (LCA) Modell.

Wir konzentrieren uns auf eine populäre Variante des Graphenclustering, bei der der Einga-

begraph in k Expander partitioniert werden kann, deren äußerer Leitwert durch ε begrenzt

ist. Wir konstruieren eine kleinräumige Datenstruktur, die es erlaubt, Scheitelpunkte von G

schnell und in sublinearer Zeit nach dem Cluster zu klassifizieren, dem sie angehören. Unser

spektrales Clustering-Orakel liefert O(ε logk) Fehler pro Cluster für jedes ε¿ 1/logk. Unser

Hauptbeitrag ist ein Orakel mit sublinearer Zeit, das Punktprodukt-Zugriff auf die spektrale

Einbettung des Graphen bietet. Wir schätzen Punktprodukte mit hoher Genauigkeit, indem wir

eine geeignete lineare Transformation der Gram-Matrix der Übergangswahrscheinlichkeiten

des Random Walk verwenden. Schließlich entwerfen wir unter Verwendung des Punktpro-

v



Zusammenfassung

duktzugriffs auf die spektrale Einbettung ein spektrales Clustering-Orakel. Auf hohem Niveau

läuft unser Ansatz auf eine Hyperebenen-Partitionierung in der spektralen Einbettung des

Graphen hinaus, operiert aber auf einer verschachtelten Sequenz von sorgfältig definierten

Unterräumen in der spektralen Einbettung, um Wiederherstellungsgarantien pro Cluster zu

erreichen.

Schlüsselwörter: Sublineare Algorithmen, Graphen-Clustering, Spektrale Methoden, Pro-

perty Testing Framework, Lokale Berechnungsalgorithmen
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1 Introduction

The growth of modern datasets, coming from diverse sources such as social networks, sensor

networks, and video streams, prompt us to reconsider the efficiency of traditional algorithms.

In many modern scenarios, the input is so large that it does not fit on a single machine. It

is often challenging to partition the data (and process it in parallel) in a communication-

efficient manner. As a result, classic polynomial time/space algorithms are prohibitively

expensive, and often even linear algorithms are too slow. Hence, more efficient solutions, i.e.,

sublinear time/space algorithms are needed. Sublinear algorithms require resources that are

substantially smaller than the size of the input: Such algorithms often return a solution after

inspecting only a minuscule fraction of the data (sublinear-time algorithms), or scan the input

data stream while maintaining a small but accurate summary of the data, and compute the

answer based on that (sketching algorithms).

Sublinear algorithms for basic statistical estimation problems, such as finding the most fre-

quent items in data streams, are now routinely used in the practice of massive data analysis

(e.g., HYPERLOGLOG and COUNTSKETCH [HNH13]). However, modern data analysis needs

techniques for answering more complex queries on inputs that often come in the form of

large graphs or matrices: For example, given a large graph (e.g., a nearest-neighbor graph),

to quickly retrieve an approximate clustering of the graph, or to maintain a small summary

of a dynamically updated graph (e.g., the Twitter network) that enables retrieval of spectral

properties of the graph (e.g., random walks, or personalized PageRank needed for recommen-

dation engines). Efficient sublinear solutions to these fundamental questions require going

well beyond classic techniques.

Clustering is one of the well-known problems in discrete optimization and clustering tech-

niques are widely used for solving large-scale optimization problems in many areas, including

machine learning, data analysis, social sciences, and statistics. Clustering methods have vari-

ous applications: for example graph partitioning in Google Maps driving directions [ABM16],

finding treatment groups for experimental design [RAK+16], and community detection for

topic discovery on YouTube [GLMY11].
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Introduction

Clustering is the task of partitioning data points into several groups, called clusters, such that

the data points in the same group are similar to each other and dissimilar to the points in other

groups. One way of representing the data points is in the form of a similarity graph, where we

connect two data points (vertices) by an edge if they are similar. There are several constructions

of the similarity graph for modeling the local neighborhood relationships between the data

points (e.g., ε-neighborhood graph, k-nearest neighbor graph). The goal of graph clustering is

to partition the vertices of a graph (e.g., the similarity graph) into disjoint subgraphs based on

the well-connectivity of the vertices. One well-studied measure to evaluate the quality of a

cluster is conductance [KVV04a]. The conductance of a cluster assesses the well-connectivity

of the vertices inside a cluster and leads to a natural graph clustering objective, i.e., partitioning

the vertices of a graph into clusters with high internal conductance and sparse boundaries.

One of the most popular graph-clustering techniques is spectral clustering; it is broadly used

in practice due to its simple implementation by linear-algebra methods. Spectral clustering

algorithms significantly outperform traditional clustering algorithms such as k-means or

single linkage [VL07, Jai10]. These techniques make use of the few bottom eigenvectors of

graph Laplacian to define a feature vector for data points, and to perform dimensionality

reduction. Spectral clustering has various applications in a wide range of problems, for

example, image segmentation [SM00], speech separation [BJ06], and clustering of protein

sequences [PCS06]. Conductance is closely related to the spectral properties of the graph,

behaviour of random walks, and connectivity. The focus of this thesis is to understand the

power of spectral algorithms in discovering the cluster structure of graphs in sublinear time.

Following this, we summarize the contributions of this thesis and give a general outline of the

remaining chapters.

1.1 Overview of our contributions

In this section, we give an overview of our results and techniques. First, we define the notion

of conductance, and then we formulate our main contributions using Definition 1.1.

Definition 1.1 (Internal and external conductance). Let G = (V ,E ) be a graph. Let deg(x) be

the degree of vertex x. For a set S ⊆V , let vol(S) =∑
x∈S deg(x) denote the volume of set S. For

a set S ⊆C ⊆V , let E(S,C \ S) be the set of edges with one endpoint in S and the other in C \ S.

The conductance of a set S within C is φG
C (S) = |E(S,C \S)|

vol(S) . The external-conductance of set C is

defined to be φG
V (C ) = |E(C ,V \C )|

vol(C ) . The internal-conductance of set C ⊆V , denoted by φG (C ), is

minS⊆C ,0<vol(S)≤ vol(C )
2
φG

C (S) if |C | > 1 and one otherwise.

Intuitively, the inner conductance of a cluster measures the strength of connections across

any cut inside the cluster relative to the strength of connections inside the smaller of the cut.

Roughly speaking, vertices of a set with large inner conductance are well-connected, and a set

with small outer conductance has few connections to the outside. The conductance measure

leads to a natural graph clustering objective, which is to partition the vertices of a graph

2



1.1. Overview of our contributions

into clusters with large inner conductance and small outer conductance. Oveis Gharan and

Trevisan [GT14a] and Zhu et al. [ZLM13] proposed to combine both and inner conductance

and outer conductance for characterizing a cluster. Inspired by this, we consider a popular

version of the spectral clustering problem where one assumes the existence of a planted

solution, namely that the input graph can be partitioned into a disjoint union of k induced

expanders with outer conductance bounded by ε¿ 1 (Definition 1.2).

Definition 1.2 ((k,ϕ,ε)-clustering). Let G = (V ,E) be a graph. A (k,ϕ,ε)-clustering of G is

a partition of vertices V into disjoint subsets C1, . . . ,Ck such that for all i ∈ [k], φG (Ci ) ≥ ϕ,

φG
V (Ci ) ≤ ε. Graph G is called (k,ϕ,ε)-clusterable if there exists a (k,ϕ,ε)-clustering for G .

An average-case version of this problem where the clusters induce Erdos-Renyi graphs has

been studied in the literature on the stochastic block model (SBM) [Abb18]. We study the worst-

case version of the problem and the goal is to recover clusters with small misclassification

error. Towards this objective, many graph clustering algorithms have been developed [KVV04b,

NJW02, SM00, VL07]. Any algorithm that outputs such a partition necessarily requires Ω(n)

time even to output the solution, where n denote the number of vertices in the input graph.

However, on very large-scale graphs, even linear time algorithms might be too slow and

consequently, there has been considerable recent interest in learning the cluster structure of

graphs in sublinear time.

The most basic question towards understanding the cluster structure is quickly determining

the number of clusters in the graph (i.e., k). Formally, we would like to test whether the

input graph can be partitioned into at most k clusters with inner conductance at least ϕ (i.e.,

(k,ϕ)-clusterable), or is far from any such graph. First, in Chapter 2, we present a sublinear

algorithm for testing graph-clusterability in the property testing framework. For testing (k,ϕ)-

clusterable graphs, we do not require the outer conductance of clusters to be small. Next, in

Chapter 3, we extend the testing result to an efficient local computation algorithm that given a

(k,ϕ,ε)-clusterable graph, recovers the clusters up to a small error.

In the following subsection, we briefly outline the recent results on testing graph properties

and present our main contributions on testing graph clusterability.

1.1.1 Testing graph clusterability

Goldreich and Ron [GR02] initiated the framework of testing graph properties. In this frame-

work, the algorithm is given oracle access to the graph and has to decide whether the graph

has a certain property (YES case) or is far from having that property (NO case). Here the

notion of ε-far means that one needs to modify at least an ε-fraction of edges to convert

one graph into another. There has been an extensive line of work on testing various graph

properties in the framework of Goldreich and Ron. Several properties known to be testable

in this model such as bipartiteness [GR99], degree distribution moments [ERS17b], number

of triangles [ELRS17], and number of k-cliques [ERS17a]. Czumaj et al. designed algorithms

3
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for testing several properties including cycle-freeness [CGR+14]. Newman et al. develop

algorithms to test hyperfinite properties [NS13], whereas Eden et al. designed algorithms to

test arboricity [ELR18]. In our study, we use a standard graph exploration model for sublinear

algorithms which allows us to perform neighbor queries to the graph. Using this model one

can perform various graph exploration processes on the graph such as running random walks.

We study the problem of testing k-clusterability where the goal is to distinguish graphs that

are (k,ϕ)-clusterable from graphs that are ε-far from admitting such clustering. This is a

generalization of a well-studied problem of testing graph expansion, in which the task is to

distinguish an expander (k = 1), from a graph having a sparse cut (k ≥ 2). Goldreich and

Ron [GR02] showed thatΩ(
p

n) queries are necessary to differentiate between expanders and

graphs that are far from expanders. Then [KS11, NS10] developed algorithms to distinguish an

expander with inner conductance at least ϕ from a graph that is far from having expansion

γ ·ϕ2 in time n1/2+O(γ). The problem of testing k-clusterability for k > 1 has recently been

considered in the literature and a recent work of [CPS15] gave an ingenious sublinear time

algorithm for testing k-clusterability in time Õ(n1/2 ·kO(1)). Their algorithm implicitly embeds

a random sample of vertices into Euclidean space, and then partition the samples into clusters

based on Euclidean distances between the points. This yields a very efficient testing algorithm,

but only works if the cluster structure is very pronounced: it is necessary to assume that the

gap between conductances of graphs in YES case and NO case is at least logarithmic in the size

of the graph G . In particular, the algorithm requires that the accepted be (k,ϕ)-clusterable,

while the rejected graphs are ε-far from being (k,ϕ2/logn)-clusterable. Thus the quality of

clusters in the NO case has to be weakened by factor logn.

In Chapter 2, we develop an optimal sublinear-time algorithm for this problem that can differ-

ntiate (k,ϕ)-clusterable graphs from graphs that are far from from being (k,γ ·ϕ2)-clusterable

in time n1/2+O(γ). Our tester works even when the separation between the conductance of

accepted and rejected graphs i.e γ is a sufficiently large constant which is a considerable

improvement comparing to [CPS15] that requires γ¿ 1
poly(k,logn) . Our algorithm works based

on the singular value decomposition of a Gram matrix of the random walk transition proba-

bilities from a small sample of seed nodes. Instead of classifying vertices based on pairwise

Euclidean distances, our tester decides to accept or reject the graph by estimating the (k+1)-th

eigenvalue of the Gram matrix which turns out to be a more robust tester.

We complemented our algorithm with a matching lower-bound of n1/2+Ω(γ) on the query

complexity of testing k-clusterability, which improves upon the long-standing previous lower-

bound ofΩ(n1/2) for testing graph expansion (i.e., k = 1 vs k ≥ 2). Our lower bound is based on

a novel property testing problem, which we analyze using Fourier analytic tools. As a byproduct

of our techniques, we also achieve new lower bounds for the problem of approximating MAX-

CUT value in sublinear time.

4



1.1. Overview of our contributions

1.1.2 Sublinear time clustering oracles

In Chapter 3, we extend our previous result from the property testing framework to an efficient

clustering algorithm in the Local Computation Algorithms (LCA) model. Local computation

algorithms proposed by Ronitt et al. [RTVX11] are used to model sublinear algorithms. In

many modern scenarios, the input and the output solution are so large that even writing the

entire output is prohibitively expensive. However, at any point in time, only a small portion

of the output is required to be queried. In this model, the algorithm should answer all the

queries to the output solution consistently. In particular, a local computation algorithm for

graph clustering should provide consistent query access with respect to a certain partition of

the graph and to determine the cluster membership for the set of queried vertices.

We study a popular version of the problem where the input graph admits a (k,ϕ,ε)-clustering

(Definition 1.2) and the goal is to recover every cluster up to an O(ε) misclassification error. We

construct a small space data structure that allows quickly classifying vertices of G according

to the cluster they belong to in sublinear time. We refer to this data structure as a spectral

clustering oracle.

Spectral clustering techniques often first compute the spectral embedding of vertices and

then partition the vertices according to their embedding. Since computing the singular value

decomposition on very large graphs is computationally expensive, this approach seems to be

highly non-local. Our main contribution in this work is a sublinear time oracle that provides

query access to dot products in the spectral embedding of G . Our dot product oracle has

n1/2+O(ε) preprocessing time and query time. Using this data structure we develop a sublinear

time spectral clustering oracle with kO(1) ·n1/2+O(ε) query time and 2O(1/ε·k4·log2 k) ·n1/2+O(ε)

preprocessing time that guarantees O(ε logk) misclassification error per cluster for any ε¿
1

logk . We show that the query time can be reduced by increasing the preprocessing time as

long as the product is about n1+O(ε). This, in particular, gives a nearly linear time primitive for

spectral clustering.

Our dot product oracle works based on estimating distributions of random walks from few

sampled vertices in G . The distributions themselves provide a poor approximation to the

spectral embedding, but we use an appropriate linear transformation to achieve high precision

dot product access. We analyze this estimator by spectral perturbation bounds and novel tail

bounds on the spectral embedding of a k-clusterable graph. Our spectral clustering oracle

performs hyperplane partitioning in the spectral embedding of G , and it crucially operates on

a nested sequence of carefully defined subspaces in the spectral embedding to achieve per

cluster recovery guarantees.

Organization:The remaining chapters of the thesis contain the full results. We present our

results in separate self-contained chapters that can be read independently. Each chapter

has its own introduction that covers the prior work and a detailed discussion on the new

techniques we develop.
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2 Testing Graph Clusterability:
Algorithms and Lower Bounds

This chapter is based on a joint work with Ashish Chiplunkar, Michael Kapralov, Sanjeev

Khanna and Yuval Peres. It has been accepted to the 59th Annual IEEE Symposium on Foun-

dation of Computer (FOCS’18)[CKK+18].

2.1 Introduction

Graph clustering is the problem of partitioning vertices of a graph based on the connectivity

structure of the graph. It is a fundamental problem in many application domains where

one wishes to identify groups of closely related objects, for instance, communities in a social

network. The clustering problem is, thus, to partition a graph into vertex-disjoint subgraphs,

namely clusters, such that each cluster contains vertices that are more similar to each other

than the rest of the graph. There are many natural measures that have been proposed to

assess the quality of a cluster; one particularly well-studied and well-motivated measure for

graph clustering is conductance of a cluster [KVV04a]. Roughly speaking, conductance of a

graph measures the strength of connections across any partition of vertices relative to the

strength of connections inside the smaller of the two parts. The higher the conductance inside

a cluster, the harder it is to split it into non-trivial pieces. The conductance measure lends

itself to a natural graph clustering objective, namely, partition the vertices of a graph into a

small number of clusters such that each cluster has large conductance in the graph induced

by it (the inner conductance of the cluster). Towards this objective, many efficient graph

partitioning algorithms have been developed that partition vertices of a graph into a specified

number of clusters with approximately high conductance (when possible). Any algorithm

that outputs such a partition necessarily requiresΩ(n) time – simply to output the solution,

and usuallyΩ(m) time, where n and m respectively denote the number of vertices and edges

in the input graph. On very large-scale graphs, even linear-time algorithms may prove to be

computationally prohibitive, and consequently, there has been considerable recent interest in

understanding the cluster structure of a graph in sublinear time. Specifically, given a target

number of clusters, say k, and a measure φ of desired cluster quality, how much exploration

of the input graph is needed to distinguish between graphs that can be partitioned into at

7



Chapter 2. Testing Graph Clusterability:
Algorithms and Lower Bounds

most k clusters with inner conductance at least φ from graphs that are far from admitting

such clustering? The focus of this paper is to understand the power of sublinear algorithms in

discovering the cluster structure of a graph.

In our study, we use by now a standard model of graph exploration for sublinear algorithms,

where at any step, the algorithm can either sample a uniformly at random vertex, query the

degree d(u) of a vertex u, or specify a pair (u, i ) and recover the i th neighbor of u for any

i ∈ [1..d(u)]. For any positive ε> 0, we say a pair of graphs is ε-far if one needs to modify at

least an ε-fraction of edges to convert one graph into another.

The simplest form of the cluster structure problem is the case k = 1: how many queries to the

graph are needed to distinguish between graphs that are expanders (YES case) from graphs

that areΩ(1)-far from being expanders (NO case)? A formal study of this basic question was

initiated in the work of Goldreich and Ron [GR02] where they showed that even on bounded de-

gree graphs,Ω(
p

n) queries to the input graph are necessary to distinguish between expanders

and graphs that are far from expanders. On the positive side, it is known that a bounded

degree expander graph with conductance at least φ can be distinguished from a graph that is

Ω(1)-far from a graph with conductance γ×φ2 for some positive constant γ, using only n
1
2+O(γ)

queries [KS11, NS10]. Thus, even the simplest setting of the graph clustering problem is not

completely understood – the known algorithmic results require additional separation in the

conductance requirements of YES and NO instances. Furthermore, even with this separation

in conductance requirements, the best algorithmic result requires polynomially more queries

than suggested by the lower bound.

Lifting algorithmic results above for the case k = 1 to larger values of k turned out to be a

challenging task. A breakthrough was made by Czumaj, Peng, and Sohler [CPS15] who de-

signed an algorithm that differentiates between bounded degree graphs that can be clustered

into k clusters with good inner conductance (YES case) from graphs that are far from such

graphs (NO case), using only Õ(n
1
2 poly(k)) queries. This striking progress, however, required

an even stronger separation between YES and NO instances of the problem. In particular, the

algorithm requires that in the YES case, the graph can be partitioned into k clusters with inner

conductance at least φ, while in the NO case, the graph is ε-far from admitting k clusters with

conductance φ2/logn. Thus the cluster quality in the NO case needs to be weakened by a

factor that now depends on the size of the input graph.

The current state of the art raises several natural questions on both algorithmic and lower

bound fronts. On the algorithmic front, does sublinear testing of cluster structure of a graph

fundamentally require such strong separation between the cluster structures of YES and NO

cases? On the lower bound front, is there a stronger barrier than the currentΩ(
p

n) threshold

for differentiating between the YES and NO cases? Even for the case of distinguishing an

expander for a graph that is far from expander, the known algorithmic results require n
1
2+Ω(1)

queries when the conductance guarantees of YES and NO cases are separated by only a

constant factor.
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In this work, we make progress on both questions above. On the algorithmic side, we present

a new sublinear testing algorithm that considerably weakens the separation required between

the conductance of YES and NO instances. In particular, for any fixed k, our algorithm can

distinguish between instances that can be partitioned into k clusters with conductance at

leastφ from instances that areΩ(1)-far from admitting k clusters with conductance γφ2, using

n
1
2+O(γ) queries. This generalizes the results of [KS11, NS10] for k = 1 to any fixed k and

arbitrary graphs. Similar to [CPS15] our algorithm is based on sampling a small number of

vertices and gathering information about the transition probabilities of suitably long random

walks from the sampled points. However, instead of classifying points as pairwise similar or

dissimilar based on `2 similarity between the transition probability vectors, our approach is

based on analyzing the structure of the Gram matrix of these transition probability vectors,

which turns out to be a more robust mechanism for separating the YES and NO cases.

On the lower bound side, we show that arguably the simplest question in this setting, namely,

differentiating a bounded degree expander graph with conductanceΩ(1) from a graph that

is Ω(1)-far from a graph with conductance γ for some positive constant γ, already requires

n
1
2+Ω(γ) queries. This improves upon the long-standing previous lower bound ofΩ(n

1
2 ). Going

past the n
1
2 threshold requires us to introduce new ideas to handle non-trivial dependencies

that manifest due to unavoidable emergence of cycles once an ω(n
1
2 )-sized component is

uncovered in an expander. We use a Fourier analytic approach to handle emergence of cycles

and create a distribution where n
1
2+Ω(γ) queries are necessary to distinguish between YES and

NO cases. We believe our lower bound techniques are of independent interest and will quite

likely find applications to other problems. As one illustrative application, we show that our

approach yields an n
1
2+Ω(1) query complexity lower bound for the problem of approximating

the max-cut value in graph to within a factor better than 2, improving the previous best lower

bound ofΩ(n
1
2 ).

In what follows, we formally define our clustering problem, present our main results, and give

an overview of our techniques.

2.1.1 Problem statement

We start by introducing basic definitions, then proceed to define the problems that we design

algorithms for (namely PartitionTesting and testing clusterability) in Section 2.1.2, and

finally discuss the communication game that we use to derive query complexity lower bounds

(namely the NoisyParities game) and state our results on lower bounds in Section 2.1.3.

Definition 2.1 (Internal and external conductance). Let G = (VG ,EG ) be a graph. Let deg(v)

be the degree of vertex v . For a set S ⊆VG , let vol(S) =∑
v∈S deg(v) denote the volume of set

S. For a set S ⊆ C ⊆ VG , the conductance of S within C , denoted by φG
C (S), is the number of

edges with one endpoint in S and the other in C \ S divided by vol(S). Equivalently, φG
C (S) is

the probability that a uniformly random neighbor, of a vertex in S selected with probability

proportional to degree, is in C \S. The internal conductance of C , denoted by φG (C ), is defined
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to be minS⊆C ,0<vol(S)≤ vol(C )
2
φG

C (S) if |C | > 1 and one otherwise. The external conductance of C is

defined to be φG
VG

(C ).

Based on the conductance parameters, clusterability and unclusterability of graphs is defined

as follows.

Definition 2.2 (Graph clusterability). Graph G = (VG ,EG ) is defined to be (k,ϕ)-clusterable

if VG can be partitioned into C1, . . . ,Ch for some h ≤ k such that for all i = 1, . . . ,h, φG (Ci ) ≥ϕ.

Graph G is defined to be (k,ϕ,β)-unclusterable if VG contains k +1 pairwise disjoint subsets

C1, . . . ,Ck+1 such that for all i = 1, . . . ,k +1, vol(Ci ) ≥β · vol(VG )
k+1 , and φG

VG
(Ci ) ≤ϕ.

The following algorithmic problem was implicitly defined in [CPS15]:

Definition 2.3. PartitionTesting (k,ϕin,ϕout,β) is the problem of distinguishing between the

following two types of graphs.

1. The YES case: graphs which are (k,ϕin)-clusterable

2. The NO case: graphs which are (k,ϕout,β)-unclusterable

The ultimate problem that we would like to solve is the Clusterability problem, defined below:

Definition 2.4. Clusterability(k,ϕ,k ′,ϕ′,ε) is the problem of distinguishing between the fol-

lowing two types of graphs.

1. The YES case: graphs which are (k,ϕ)-clusterable

2. The NO case: graphs which are ε-far from (k ′,ϕ′)-clusterable.

Here, a graph G = (V ,E) is ε-far from (k ′,ϕ′)-clusterable if there does not exist a (k ′,ϕ′)-

clusterable graph G ′ = (V ,E ′) such that |E ⊕E ′| ≤ ε · |E | (⊕ denotes the symmetric difference,

or equivalently, the Hamming distance).

Note that in the clusterability problem considered by Czumaj et al. [CPS15], the YES instances

were required to have clusters with small outer conductance, whereas we have no such

requirement.

Queries and Complexity. We assume that the algorithm has access to graph G via the follow-

ing queries.

1. Vertex query: returns a uniformly random vertex v ∈VG

2. Degree query: outputs degree deg(v) of a given v ∈VG .

10
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3. Neighbor query: given a vertex v ∈ VG , and i ∈ [n], returns the i -th neighbor of v if

i ≤ deg(v), and returns fail otherwise.

The complexity of the algorithm is measured by number of access queries.

2.1.2 Algorithmic results

Theorem 2.1. Suppose ϕout ≤ 1
480ϕ

2
in. Then there exists a randomized algorithm for Partition-

Testing (k,ϕin,ϕout,β) which gives the correct answer with probability at least 2/3, and which

makes poly(1/ϕin) ·poly(k) ·poly(1/β) ·poly log(m) ·m1/2+O(ϕout/ϕ2
in) queries on graphs with m

edges.

Observe that even when the average degree of the vertices of the graph is constant, the

dependence of query complexity on n, the number of vertices, is Õ(n1/2+O(ϕout/ϕ2
in)). We also

note that our current analysis of the tester is probably somewhat loose: the tester likely

requires no more than Õ(n1/2+O(ϕout/ϕ2
in)) for graphs of arbitrary volume (specifically, the

variance bound provided by Lemma 2.19 can probably be improved).

Theorem 2.1 allows us to obtain the following result on testing clusterability, which removes

the logarithmic gap assumption required for the results in [CPS15] in the property testing

framework.

Theorem 2.2. Suppose ϕ′ ≤α4.5ε, (for the constant α4.5 =Θ(min(d−1,k−1)) from Lemma 4.5

of [CPS15], where d denotes the maximum degree), and ϕ′ ≤ c ′ε2ϕ2/k2 for some small constant

c ′. Then there exists a randomized algorithm for Clusterability(k,ϕ,k,ϕ′,ε) problem on degree

d-bounded graphs that gives the correct answer with probability at least 2/3, and which makes

poly(1/ϕ) ·poly(k) ·poly(1/ε) ·poly(d) ·poly log(n) ·n1/2+O(ε−2k2·ϕ′/ϕ2) queries on graphs with n

vertices.

The proof of the theorem follows by combining Theorem 2.1 and Lemma 4.5 of [CPS15]. The

details of the proof are provided in Section 2.5.

Furthermore, we strengthen Lemma 4.5 of [CPS15] to reduce the dependence of the gap

between inner and outer conductance to logarithmic in k, albeit at the expense of a bicriteria

approximation. This gives us the following theorem, whose proof is provided in Section 2.5.

Theorem 2.3. Let 0 ≤ ε≤ 1
2 . Suppose ϕ′ ≤ α, (for α= min{

cexp

150d ,
cexp·ε

1400log
(

16k
ε

) }, where d denotes

the maximum degree), and ϕ′ ≤ c ·ε2ϕ2/log( 32k
ε ) for some small constant c. Then there exists a

randomized algorithm for Clusterability(k,ϕ,2k,ϕ′,ε) problem on degree d-bounded graphs

that gives the correct answer with probability at least 2/3, and which makes poly(1/ϕ) ·poly(k) ·
poly(1/ε) ·poly(d) ·poly log(n) ·n1/2+O(ε−2 log( 32k

ε
)·ϕ′/ϕ2) queries on graphs with n vertices.
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2.1.3 Lower bound results

Our lower bounds are based on the following communication problem that we refer to as the

NoisyParities (d ,ε):

Definition 2.5. NoisyParities (d ,ε) is the problem with parameters d ≥ 3 and ε≤ 1/2 defined

as follows. An adversary samples a random d-regular graph G = (V ,E) from the distribution

induced by the configuration model of Bollobás [Bol80]. The adversary chooses to be in the

YES case or the NO case with probability 1/2, and generates a vector of binary edge labels

Y ∈ {0,1}E as follows:

YES case: The vector Y is chosen uniformly at random from {0,1}E , that is, the labels Y (e) for

all edges e ∈ E are independently 0 or 1 with probability 1/2;

NO case: A vector X ∈ {0,1}V is sampled uniformly at random. Independently, a “noise”

vector Z ∈ {0,1}E is sampled such that all the Z (e)’s are independent Bernoulli random

variables which are 1 with probability ε and 0 with probability 1−ε. The label of an edge

e = (u, v) ∈ E is given by Y (e) = X (u)+X (v)+Z (e).

The algorithm can query vertices q ∈ V in an adaptive manner deterministically. Upon

querying a vertex q ∈V , the algorithm gets the edges incident on q together with their labels

as a response to the query, and must ultimately determine whether the adversary was in the

YES or the NO case.

Our main result is a tight lower bound on the query complexity of NoisyParities . Before stating

our lower bound we note that it is easy to see that unless the set of edges that the algorithm has

discovered contains a cycle, the algorithm cannot get any advantage over random guessing.

Indeed, if the set of discovered edges were a path P = (e1, . . . ,eT ) where ei = (vi−1, vi ), the

label Y (ei ) = X (v1)+X (vi−1)+Z (ei ) of ei in the NO case is uniform and independent of the

labels of e1, . . . ,ei−1, because X (vi ) is uniform and independent of Y (e1) . . . ,Y (ei−1). A similar

argument holds when the set of discovered edges is a forest. Thus, the analysis must, at the

very least, prove that Ω(
p

n) queries are needed in our model for the algorithm to discover

a cycle in the underlying graph G . In the noisy case (i.e. when ε> 0) detecting a single cycle

does not suffice. Indeed, a natural test would be to add up the labels over the edges of a cycle

C , that is, consider
∑

e∈C Y (e). In the YES case, this is uniformly 0 or 1, whereas in the NO case,

it is equal to
∑

e∈C Z (e), which is 0 with probability (1/2) · (1+ (1−2ε)|C |) and 1 with probability

(1/2) · (1− (1−2ε)|C |). Thus, the deviation of the distribution of
∑

e∈C Y (e) from uniform is

n−Θ(ε), even in the NO case, if |C | =Θ(logn).

Theorem 2.4. Any deterministic algorithm that solves the NoisyParities problem correctly with

probability at least 2/3 must make at least n1/2+Ω(ε) queries on n-vertex graphs, for constant d.

We note that this lower bound is tight up to constant factors multiplying ε in the exponent.

For example, it suffices to find nΘ(ε) disjoint cycles. This can be done as follows. Sample nΘ(ε)
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vertices in G uniformly at random, and run ≈ p
n random walks from each of them. With

at least constant probability, for most of the seed nodes the walks will intersect. Then for

each cycle Ci , compute ζi = ∑
e∈Ci

Y (e). In the YES case, this is uniformly 0 and 1, whereas

in the NO case, it is n−Θ(ε)-far from uniform. Furthermore, since the cycles are disjoint,

ζi ’s are independent. The Chernoff bound implies that, with a constant probability, less

than (1/2) · (1+n−Θ(ε)/2) fraction of the ζi ’s will be zero in the YES case, and more than

(1/2) · (1+n−Θ(ε)/2) fraction of the ζi ’s will be zero in the NO case.

As a consequence of Theorem 2.4 and appropriate reductions, we derive the following lower

bounds.

Theorem 2.5. Any algorithm that distinguishes between a (1,ϕin)-clusterable graph (that is,

a ϕin-expander) and a (2,ϕout,1)-unclusterable graph on n vertices (in other words, solves

PartitionTesting(1,ϕin,ϕout,1)) correctly with probability at least 2/3 must make at least

n1/2+Ω(ϕout) queries, even when the input is restricted to regular graphs, for constant ϕin.

Theorem 2.6. Any algorithm that approximates the maxcut of n-vertex graphs within a factor

2−ε′ with probability at least 2/3 must make at least n1/2+Ω(ε′/log(1/ε′)) queries.

Remark 2.1. After posting our paper on arXiv, we learnt that the above result was already

known due to Yoshida (Theorem 1.2 of [Yos11]; the proof appears in the full version [Yos10]). We

note, however, that our proof is very different from Yoshida’s proof, and may be of independent

interest.

2.1.4 Our techniques

In this section we give an overview of the new techniques involved in our algorithm and lower

bounds.

Algorithms

We start by giving an outline the approach of [CPS15], outline the major challenges in design-

ing robust tester of graph cluster structure, and then describe our approach.

As [CPS15] show, the task of distinguishing between (k,ϕ)-clusterable graphs and graphs that

are ε-far from (k,ϕ′)-clusterable reduces to PartitionTesting (k,ϕin,ϕout,β), whereβ= poly(ε).

In this problem we are given query access to a graph G , and would like to distinguish between

two cases: either the graph can be partitioned into at most k clusters with inner conductance at

least ϕin (the YES case, or ‘clusterable’ graphs) or there exists at least k +1 subsets C1, . . . ,Ck+1

with outer conductance at mostϕout, and containing nontrivial (i.e. no smaller thanβn/(k+1))

number of nodes (the NO case, or ‘non-clusterable’ graphs). Here ϕin = ϕ, and ϕout is a

function of the conductance ϕ′, the number of nodes k, and the precision parameter ε.

A very natural approach to PartitionTesting (k,ϕin,ϕout,β) is to sample 10k nodes, say, run

random walks of appropriate length from the sampled nodes, and compare the resulting
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distributions: if a pair of nodes is in the same cluster, then the distributions of random walks

should be ‘close’, and if the nodes are in different clusters, the distributions of random walks

should be ‘far’. The work of [CPS15] shows that this high level approach can indeed be made to

work: if one compares distributions in `2 norm, then for an appropriate separation between

ϕin and ϕout random walks whose distributions are closer than a threshold θ in `2 sense will

indicate that the starting nodes are in the same cluster, and if the distributions are further

than 2θ apart in `2, say, then the starting points must have been in different clusters. Using an

ingenious analysis [CPS15] show that one can construct a graph on the sampled nodes where

‘close’ nodes are connected by an edge, and the original graph is clusterable if and only if the

graph on the sampled nodes is a union of at most k connected components. The question of

estimating `2 norm distance between distributions remains, but this can be done in aboutp
n time by estimating collision probabilities (by the birthday paradox), or by using existing

results in the literature. The right threshold θ turns out to be ≈ 1/
p

n.

The main challenge.While very beautiful, the above approach unfortunately does not work

unless the cluster structure in our instances is very pronounced. Specifically, the analysis

of [CPS15] is based on arguing that random walks of O(logn) length from sampled nodes that

come from the same cluster mostly don’t leave the cluster, and this is true only if the outer

conductance of the cluster is no larger than 1/logn. This makes the approach unsuitable for

handling gaps between conductances that are smaller than logn (it is not hard to see that the

walk length must be at least logarithmic in the size of the input graph, so shortening the walk

will not help).

One could think that this is a question of designing of a more refined analysis of the algorithm

of [CPS15], but the problem is deeper: it is, in general, not possible to choose a threshold θ that

will work even if the gap between conductances is constant, and even if we want to distinguish

between 2-clusterable and far from 2-clusterable graphs (such a choice is, in fact, possible for

k = 1). The following simple example illustrates the issue. First consider a d-regular graph G

composed of two Ω(1)-expanders A and B , each of size n
2 . Further, suppose that the outer

conductance of both A and B is upper bounded by 1
4d , i.e. at most one quarter of the nodes

in each of the clusters have connections to nodes on the other side. Let t = C logn for a

constant C > 0, and let pt
u denote the probability distribution of t-step random walk starting

from vertex u. Lemma C.1 of [CPS15] implies that for at least one of these two clusters (say

A), ||pt
u −pt

v ||2 =Ω(d−2n−1/2) for all u, v in some large subset Ã of A. Thus, any tester that

considers two sampled vertices close when their Euclidean distance is at most θ must use

θ > d−2n−1/2. On the other hand, consider the following 3-clusterable instance.

Fix ε ∈ (0,1), and let C be regular graph with degree 1
ε −3, inner conductanceΩ(1) and size n

3 .

Let G ′ = (V ,E ) be a 1/ε-regular graph composed of three copies of C (say C1,C2,C3), where for

each vertex u ∈C , its three copies in C1,C2,C3 are pairwise connected (i.e. form a triangle),

and each vertex has a self-loop. We say that an edge is bad if it is a triangle edge or self-loop,

otherwise we call it good. Notice that at any step the random walk takes a bad edge with
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probability 3ε, and takes an edge inside one of the copies with probability 1−3ε. We can think

that at any step, the random walk first decides to take a good edge or a bad edge, and then

takes a random edge accordingly. With probability (1−3ε)t the random walk never decides to

take a bad edge and mixes inside the starting copy. On the other hand, if the random walk does

decide to take a bad edge, it is thereafter equally likely to be in any of the three copies of any

vertex of C . Let t = c logn for a constant c > 0, and let pt
u denote the probability distribution

of t-step random walk starting from vertex u. We are interested in bounding ||pt
u −pt

v ||2 for a

pair of nodes u, v in different clusters (say u ∈C1 and v ∈C2). For u ∈C1 and a ∈V , let qt ′
u (a)

denote the probability that a t ′-step random walk in C1 starting from u ends up in the copy

of a in C1. Notice that since C1 is constant-expander, if t ′ =Θ(t), then for every a we have

qt ′
u (a) ' 1

n/3 . Consider a t-step random walk from u in G , and let t ′ denote the number good

edges taken. Notice that t ′ is binomially distributed with parameters (t ,3ε), so that t ′ ' t (1−3ε)

with high probability. Now, for a ∈C1, we have,

pt
u(a) = (1−3ε)t ·qt

u(a)+ 1

3
(1− (1−3ε)t )Et ′ [qt ′

u (a)|t ′ > 0] ' 3n−1−3cε+ (
1−n−3cε)n−1,

while for b ∉C1, we have pt
u(b) = 1

3 (1−(1−3ε)t )Et ′ [qt ′
u (b)|t ′ > 0] ' (

1−n−3cε
)

n−1. A symmetric

argument holds for v . Hence we have ||pt
u −pt

v ||22 ≤Θ(n−1−6cε). Therefore for a pair of nodes

u, v in different clusters one has ||p t
u − p t

v ||2 ≤ n−1/2−Ω(ε) ¿ d−2n−1/2 for constant d and ε.

Thus, in order to ensure that vertices in different clusters will be considered far, one must

take the threshold θ to be smaller than d−2n−1/2. Thus, no tester that uses a fixed threshold

can distinguish between the two cases correctly. To summarize, euclidean distance between

distributions is no longer a reliable metric if one would like to operate in a regime close to

theoretical optimum, and a new proxy for clusterability is needed.

Our main algorithmic ideas.Our main algorithmic contribution is a more geometric approach

to analyzing the proximity of the sampled points: instead of comparing `2 distances between

points, our tester considers the Gram matrix of the random walk transition probabilities of the

points, estimates this matrix entry-wise to a precision that depends on the gap between ϕin

and ϕout in the instance of PartitionTesting (k,ϕin,ϕout,β) that we would like to solve, and

computes the (k +1)-st largest eigenvalue of the matrix. This quantity turns out to be a more

robust metric, yielding a tester that operates close to the theoretical optimum, i.e. able to

solve PartitionTesting (k,ϕin,ϕout,β) as long as the gap ϕout/ϕ2
in is smaller than an absolute

constant.1 Specifically, our tester (see Algorithms 1 and 2 in Section 2.3.1 for the most basic

version) samples a multiset S of s ≈ poly(k) logn vertices of the graph G independently and

with probability proportional to the degree distribution (this can be achieved in ≈p
n time

per sample using the result of Eden and Rosenbaum [ER18]), and computes the matrix

A := (D− 1
2 M t S)T (D− 1

2 M t S), (2.1)

1Note that our runtime depends on ϕout/ϕ2
in as opposed to ϕout/ϕin due to a loss in parameters incurred

through Cheeger’s inequality. This loss is quite common for spectral algorithms.
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where M is the random walk transition matrix of the graph G , and D is the diagonal matrix

of degrees. Note that this is the Gram matrix of the t-step distributions of random walks

from the sampled nodes in G , for a logarithmic number of steps walk. Intuitively, the matrix

A captures pairwise collision probabilities of random walks from sampled nodes, weighted

by inverse degree. The algorithm accepts the graph if the (k +1)-st largest eigenvalue of the

matrix A is below a threshold, and rejects otherwise. Specifically, the algorithm accepts if

µk+1(A) . vol(VG )−1−Θ(ϕout/ϕ2
in) and rejects otherwise. Before outlining the proof of correct-

ness for the tester, we note that, of course, the tester above cannot be directly implemented

in sublinear time, as computing the matrix A exactly is expensive. The actual sublinear

time tester approximately computes the entries of the matrix A to additive precision about
1

poly(k) vol(VG )−1−Θ(ϕout/ϕ2
in) and uses the eigenvalues of the approximately computed matrix

to decide whether to accept or reject. Such an approximation can be computed in about

vol(VG )
1
2+Θ(ϕout/ϕ2

in) queries by rather standard techniques (see Section 2.3.2).

We now outline the proof of correctness of the tester above (the detailed proof is presented in

Section 2.3.1). It turns out to be not too hard to show that the tester accepts graphs that are

(k,ϕin)-clusterable. One first observes that Cheeger’s inequality together with the assumption

that each of the k clusters is a ϕin-expander implies that the (k + 1)-st eigenvalue of the

normalized Laplacian of G is at least ϕ2
in/2 (Lemma 2.10). It follows that the matrix M t of

t-step random walk transition probabilities, for our choice of t = (C /ϕ2
in) logn, is very close to

a matrix of rank at most k, and thus the (k +1)-st eigenvalue of the matrix A above (see (2.1))

is smaller than 1/n2, say. The challenging part is to show that the tester rejects graphs that

are (k,ϕout,β)-unclusterable, since in this case we do not have any assumptions on the inner

structure of the clusters C1, . . . ,Ck+1. The clusters C1, . . . ,Ck+1 could either be good expanders,

or, for instance, unions of small disconnected components. The random walks from nodes

in those clusters behave very differently in these two cases, but the analysis needs to handle

both. Our main idea is to consider a carefully defined k +1-dimensional subspace of the

eigenspace of the normalized Laplacian of G that corresponds to small (smaller than O(ϕout))

eigenvalues, and show that our random sample of points is likely to have a well-concentrated

projection onto this subspace. We then show that this fact implies that the matrix A in (2.1)

has a large (k+1)-st eigenvalue with high probability. The details of the argument are provided

in Section 2.3.1: the definition of matrix U and projection operator Ph at the beginning of

Section 2.3.1 yield the (k +1)-dimensional subspace in question (this subspace is the span

of the columns of U projected onto the first h eigenvectors of the normalized Laplacian of

G), and a central claims about the subspace in question are provided by Lemmas 2.13, 2.14

and 2.15. The assumption that vertices in S are sampled with probabilities proportional to

their degrees is crucial to making the proof work for general (sparse) graphs.

One consequence of the fact that our algorithm for PartitionTesting (k,ϕin,ϕout,β) estimates

the entries of the Gram matrix referred to above to additive precision ≈ n−1−Θ(ϕout/ϕ2
in) is

that the runtime ≈ n1/2+Θ(ϕout/ϕ2
in). If ϕout ¿ ϕ2

in/logn, then we recover the ≈ p
n runtime

of [CPS15], but for any constant gap between ϕout and ϕ2
in our runtime is polynomially larger

than
p

n. Our main contribution on the lower bound side is to show that this dependence is
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necessary. We outline our main ideas in that part of the paper now.

The lower bound

We show that the n1+Ω(ϕout/ϕ2
in) runtime is necessary for PartitionTesting (k,ϕin,ϕout,β) prob-

lem, thereby proving that our runtime is essentially best possible for constant k. More precisely,

we show that even distinguishing between an expander and a graph that contains a cut of

sparsity ε for ε ∈ (0,1/2) requires n1+Ω(ε) adaptive queries, giving a lower bound for the query

complexity (and hence runtime) of PartitionTesting (1,Ω(1),ε,1) that matches our algorithm’s

performance.

The NoisyParities problem.Our main tool in proving the lower bound is a new communica-

tion complexity problem (the NoisyParities problem) that we define and analyze: an adversary

chooses a regular graph G = (V ,E ) and a hidden binary string X ∈ {0,1}V , which can be thought

of as encoding a hidden bipartition of G . The algorithm can repeatedly (and adaptively) query

vertices of G . Upon querying a vertex v , the algorithm receives the edges incident on v and a bi-

nary label Y (e) on each edge e. In the NO case the labels Y (e) satisfy Y (e) = X (u)+X (v)+Z (e),

where Z (e) is an independent Bernoulli random variable with expectation ε (i.e. the algorithm

is told whether the edge crosses the hidden bipartition, but the answer is noisy). In the YES

case each label Y (e) is uniformly random in {0,1}. The task of the algorithm is to distinguish

between the two cases using the smallest possible number of queries to the graph G .

It is easy to see that if ε = 0, then the algorithm can get a constant advantage over random

guessing as long as it can query all edges along a cycle in G . If G is a random d-regular

graph unknown to the algorithm, one can show that this will take at least Ω(
p

n) queries,

recovering the lower bound for expansion testing due to Goldreich and Ron [GR02]. In the

noisy setting, however, detecting a single cycle is not enough, as cycles that the algorithm can

locate in a random regular graph using few queries are generally of logarithmic length, and the

noise added to each edge compounds over the length of the cycle, leading to only advantage

of about n−O(ε) over random guessing that one can obtain from a single cycle. Intuitively.

this suggests that the algorithm should find at least nΩ(ε) cycles in order to get a constant

advantage. Detecting a single cycle in an unknown sparse random graphs requires aboutp
n queries, which together leads to the n1/2+Ω(ε) lower bound. Turning this intuition into

a proof is challenging, however, as (a) the algorithm may base its decisions on labels that it

observes on its adaptively queried subgraph of G and (b) the algorithm does not have to base

its decision on observed parities over cycles. We circumvent these difficulties by analyzing

the distribution of labels on the edges of the subgraph that the algorithm queries in the NO

case and proving that this distribution is close to uniformly random in total variation distance,

with high probability over the queries of the algorithm. We analyze this distribution using a

Fourier analytic approach, which we outline now.

Suppose that we are in the NO case, i.e. the edge labels presented to the algorithm are an
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ε-noisy version of parities of the hidden boolean vector X ∈ {0,1}n , and suppose that the

algorithm has discovered a subset Equery ⊆ EG of edges of the graph G (recall that the graph

G , crucially, is not known to the algorithm) together with their labels. The central question

that our analysis needs to answer in this situation turns out to be the following: given the

observed labels on edges in Equery and an edge e = (a,b) ∈ EG what is the posterior distribution

of X (a)+X (b) given the information that the algorithm observed so far? For example, if Equery

does not contain any cycles (i.e. is a forest), then X (a)+X (b) is a uniformly random Bernoulli

variable with expectation 1/2 if the edge (a,b) does not close a cycle when added to Equery. If

it does close a cycle but Equery is still a forest, then one can show that if the distance in Equery

from a to b is large (at least Ω(logn)), then the posterior distribution of X (a)+ X (b) is still

n−Ω(ε) close, in total variation distance, to a Bernoulli random variable with expectation 1/2.

Our analysis needs to upper bound this distance to uniformity for a ‘typical’ subset Equery that

arises throughout the interaction process of the algorithm with the adversary, and contains

two main ideas. First, we show using Fourier analytic tools (see Theorem 2.12 in Section 2.4.3)

that for ‘typical’ subset of queried edges Equery and any setting of observed labels, one has that

the bias of X (a)+X (b), i.e. the absolute deviation of the expectation of this Bernoulli random

variable from 1/2, satisfies

bias(X (a)+X (b)).
∑

E ′⊆Equery s.t. E ′∪{a,b} is Eulerian
(1−2ε)|E

′|. (2.2)

Note that for the special case of Equery being a tree, the right hand side is exactly the (1−
2ε)dist(a,b), where dist(a,b) stands for the shortest path distance from a to b in T . Since

‘typical’ cycles that the algorithm will discover will be of Ω(logn) length due to the fact that

G is a constant degree random regular graph, this is n−Ω(ε), as required. Of course, the main

challenge in proving our lower bound is to analyze settings where the set of queried edges

Equery is quite far from being a tree, and generally contains many cycles, and control the sum

in (2.2). In other words, we need to bound the weight distribution of Eulerian subgraphs of

Equery. The main insight here is the following structural claim about ‘typical’ sets of queried

edges Equery: we show that for typical interaction scenarios between the algorithm and the

adversary one can decompose Equery as Equery = F ∪R, where F is a forest and R is a small

(about nO(ε) size) set of ‘off-forest’ edges that further satisfies the property that the endpoints

of edges in R areΩ(logn)-far from each other in the shortest path metric induced by F . This

analysis relies on basic properties of random graphs with constant degrees and is presented in

Section 2.4.3. Once such a decomposition of Equery = T ∪F is established, we get a convenient

basis for the cycle space of Equery, which lets us control the right hand side in (2.2) as required

(see Section 2.4.3). The details of the lower bound analysis are presented in Section 2.4.3.

Finally, our lower bound on the query complexity of NoisyParities yields a lower bound for

PartitionTesting (1,Ω(1),ε,1) (Theorem 2.5), as well as a lower bound for better than factor

2 approximation to MAX-CUT value in sublinear time (Theorem 2.6). Both reductions are

presented in Section 2.4.2. The reduction to MAX-CUT follows using rather standard tech-

niques (e.g. is very similar to [KKSV17]; see Section 2.4.2). The reduction to PartitionTesting
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(1,Ω(1),ε,1) is more delicate and novel: the difficulty is that we need to ensure that the in-

troduction of random noise Ze on the edge labels produces graphs that have the expansion

property (in contrast, the MAX-CUT reduction produces graphs with a linear fraction of

isolated nodes). This reduction is presented in Section 2.4.2.

2.1.5 Related work

Goldreich and Ron [GR02] initiated the framework of testing graph properties via neighbor-

hood queries. In this framework, the goal is to separate graphs having a certain property

from graphs which are “far” from having that property, in the sense that they need many edge

additions and deletions to satisfy the property. The line of work closest to this paper is the one

on testing expansion of graphs [GR00, NS10, CS10a, KS11] which proves that expansion testing

can be done in about Õ(
p

n) queries, andΩ(
p

n) queries are indeed necessary. Going beyond

expansion (that is, 1-clusterability), Kannan et al. [KVV04a] introduced (internal) conductance

as a measure of how well a set of vertices form a cluster. In order to measure the quality of a

clustering, that is, a partition of vertices into clusters, Zhu et al. [ALM13a] and Oveis Gharan

and Trevisan [GT14b] proposed bi-criteria measures which take into account the (minimum)

internal conductance and the (maximum) external conductance of the clusters. Considering

this measure, Czumaj et al. [CPS15] defined the notion of clusterable graphs parameterized

requirements on the minimum internal expansion and by the maximum external expansion,

and gave an algorithm for testing clusterability.

There has been an extensive work on testing many other graph properties in the framework of

Goldreich and Ron. For instance, Czumaj et al. [CGR+14] give algorithms for testing several

properties including cycle-freeness, whereas Eden et al. [ELR18] design algorithms to test

arboricity. Estimation of graph parameters such as degree distribution moments [ERS17b],

number of triangles [ELRS17], and more generally, number of k-cliques [ERS17a] has also

received attention recently.

A closely related model of property testing is the one where the graph arrives as a random

order stream and the property testing algorithm is required to use sublinear space. Although

this appears to be a less powerful model because the algorithm no longer has the ability to

execute whatever queries it wants, interestingly, Peng and Sohler [PS18] show that sublinear

property testing algorithms give rise to sublinear space algorithms for random order streams.

Other graph property testing models include extension to dense graphs [GR10, GR11a] where

the algorithm queries the entries of the adjacency matrix of the graph, and the non-deterministic

property testing model [LV13, GS13], where the algorithm queries the graph and a certificate,

and must decide whether the graph satisfies the property. We refer the reader to [CPS15] for a

more comprehensive survey of the related work.
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2.2 Preliminaries

Let G = (VG ,EG ) be a graph and let A be its adjacency matrix.

Definition 2.6. The normalized adjacency matrix A of G is D− 1
2 AD− 1

2 , where D is the diagonal

matrix of the degrees. The normalized Laplacian of G is L = I − A.

Definition 2.7. The random walk associated with G is defined to be the random walk with

transition matrix M = I+AD−1

2 . Equivalently, from any vertex v , this random walk takes every

edge of G incident on v with probability 1
2·deg(v) , and stays on v with probability 1

2 . We can

write the transition matrix as M = D
1
2 MD− 1

2 , where M = I − L
2 .

To see the equivalence of the two definitions of M above, observe that the transition matrix is

M = I+AD−1

2 = ( D+A
2 )D−1 and M = I − L

2 = I+A
2 = D− 1

2 ( D+A
2 )D− 1

2 . Hence, M = D
1
2 MD− 1

2 .

Our algorithm and analysis use spectral techniques, and therefore, we setup the following

notation.

• 0 ≤ λ1 ≤ . . . ≤ λn ≤ 2 are the eigenvalues of L, the normalized Laplacean of G . Λ is the

diagonal matrix of these eigenvalues in ascending order.

• (v1, . . . , vn) is an orthonormal basis of eigenvectors of L, with Lvi = λi vi for all i . V ∈
RVG×[n] is the matrix whose columns are the orthonormal eigenvectors of L arranged in

increasing order of eigenvalues. Thus, LV =VΛ.

• Observe that each vi is also an eigenvector of M , with eigenvalue 1− λi
2 . Σ is the diagonal

matrix of the eigenvalues of M in descending order. Then Σ= I −Λ/2 and MV =V Σ.

• For a vertex a ∈VG , 1a ∈RVG denotes the indicator of a, that is, the vector which is 1 at a

and 0 elsewhere. Fix some total order on VG . For a (multi) set S = {a1, . . . , as} of vertices

from VG where a1, . . . , as are sorted, we abuse notation and also denote by S the VG × s

matrix whose i th column is 1ai .

• For a symmetric matrix B , µh(B) (resp. µmax(B) µmin(B)) denotes the hth largest (resp.

maximum, minimum) eigenvalue of B .

Claim 2.1. Let V ∈RVG×[n] be the matrix whose columns are the orthonormal eigenvectors of M

arranged in descending order of eigenvalues. LetΣ denote the diagonal matrix of the eigenvalues

of M. Then

V T D− 1
2 M =ΣV T D− 1

2 and, M T D− 1
2 V = D− 1

2 V Σ.

Proof. Notice that for each vi , we can write vT
i D− 1

2 M as vT
i D− 1

2 (D
1
2 MD− 1

2 ) = vT
i MD− 1

2 =
(1− λi

2 )vT
i D− 1

2 . Hence, vT
i D− 1

2 is a left eigenvector of M with eigenvalue 1− λi
2 . Similarly,

D− 1
2 vi is a right eigenvector of M T with eigenvalue 1− λi

2 . Then we have V T D− 1
2 M =ΣV T D− 1

2

and M T D− 1
2 V = D− 1

2 V Σ.

20



2.3. Algorithm for partition testing

We will use the following standard results on matrix norms and eigenvalues.

Lemma 2.1. Frobenius norm ‖·‖F (resp. spectral norm µmax(·)) is submultiplicative on all (resp.

positive semidefinite) matrices. That is, for any two m ×m (positive semidefinite) matrices A

and B, ‖AB‖F ≤ ‖A‖ ·‖B‖ (resp. µmax(AB) ≤µmax(A) ·µmax(B)).

The following is a result from [HJ90] (Theorem 1.3.20 on page 53).

Lemma 2.2. For any m ×n matrix A and any n ×m matrix B, the multisets of nonzero eigen-

values of AB and B A are equal. In particular, if one of AB and B A is positive semidefinite, then

µh(AB) =µh(B A).

Lemma 2.3 (Weyl’s Inequality). Let A and E be symmetric m × m matrices. Then for all

i = 1, . . . ,m, µi (A)+µmin(E) ≤µi (A+E) ≤µi (A)+µmax(E).

The next linear algebraic lemma will be useful in our analysis. The (simple) proof is given in

Appendix A.1.

Lemma 2.4. Let A be an m×n matrix, V be a m×p matrix with orthonormal columns, and U

be a n ×q matrix with orthonormal columns. Then for all h = 1, . . . ,n,

1. µh(AT A) ≥µh(AT V V T A).

2. µh(AT A) ≥µh(U T AT AU ).

Lemma 2.5 (Courant-Fischer). Let A be a symmetric n ×n matrix with eigenvalues λ1 ≥λ2 ≥
. . . ≥λn If Vk denotes the set of subspaces of Rn of dimension k, then

λk = max
W ∈Vk

min
x∈W,w 6=0

xT Ax

xT x
.

Lemma 2.6 (Gershgorin Circle Theorem). Let Q be a n ×n matrix, with entries qi j . For i ∈ [n],

let Ri =∑
j 6=i |qi j | be the sum of the absolute values of the non-diagonal entries in the i -th row.

Let D(qi i ,Ri ) be the closed disc centered at qi i with radius Ri . Such a disc is called a Gershgorin

disc. Every eigenvalue of Q lies within at least one of the Gershgorin discs D(qi i ,Ri ).

2.3 Algorithm for partition testing

The goal of this section is to present an algorithm for the PartitionTesting problem, analyze it,

and hence, prove Theorem 2.1. We restate this theorem here for the reader’s convenience, and

its proof appears at the end of Section 2.3.2.

Theorem 2.1 (restated). Suppose ϕout ≤ 1
480ϕ

2
in. Then there exists a randomized algorithm

for PartitionTesting (k,ϕin,ϕout,β) which gives the correct answer with probability at least

2/3, and which makes poly(1/ϕin) ·poly(k) ·poly(1/β) ·polylog(m) ·m1/2+O(ϕout/ϕ2
in) queries on

graphs with m edges.
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Towards proving this theorem, we first make the following simplifying assumption. We assume

that we have the following oracle at our disposal: the oracle takes a vertex a as input, and

returns D− 1
2 M t1a , where D is the diagonal matrix of the vertex degrees, M is the transition

matrix of the lazy random walk associated with the input graph, and 1a is the indicator vector

of a. We first present and analyze, in Section 2.3.1, an algorithm for PartitionTesting which

makes use of this oracle. Following this, in Section 2.3.2, we show how the oracle can be

(approximately) simulated, and thereby, get an algorithm for PartitionTesting.

We remark that our algorithms use the value of vol(VG ), which is not available directly through

the access model described in Section 2.1.1. However, by the result of [Ses15], it is possible to

approximate the value of vol(VG ) with an arbitrarily small multiplicative error using Õ(
p|VG |)

queries.

2.3.1 The algorithm under an oracle assumption

Let G = (VG ,EG ) be a graph and let A be its adjacency matrix. Recall that in Definition 2.7 we

associated with such a graph the random walk given by the transition matrix M = I+AD−1

2 . That

is, from any vertex, the walk takes each edge incident on the vertex with probability 1
2·deg(v) ,

and stays at the same vertex with probability 1
2 . Fix t , the length of the random walk. For

this section, we assume that we have the following oracle at our disposal: the oracle takes a

vertex a ∈VG as input, and returns D− 1
2 M t1a . Our algorithm for PartitionTesting is given by

Algorithm 2 called PARTITIONTEST. The goal of this section is to prove guarantees about this

algorithm, as stated in the following theorem.

Theorem 2.7. Suppose ϕ2
in > 480ϕout. For every graph G, integer k ≥ 1, and β ∈ (0,1),

1. If G is (k,ϕin)-clusterable (YES case), then PARTITIONTEST(G ,k,ϕin,ϕout,β) accepts.

2. If G is (k,ϕout,β)-unclusterable (NO case), then PARTITIONTEST(G ,k,ϕin,ϕout,β) rejects

with probability at least 2
3 .

Algorithm 1 ESTIMATE(G ,k, s, t ,η)

1: Sample s vertices from VG independently and with probability proportional to the degree
of the vertices at random with replacement using sampler(G ,η) (See Lemma 2.7). Let S be
the multiset of sampled vertices.

2: Compute D− 1
2 M t S using the oracle.

3: Return µk+1((D− 1
2 M t S)T (D− 1

2 M t S)).

Algorithm PARTITIONTEST calls the procedure ESTIMATE given by Algorithm 1, compares the

value returned with a threshold, and then decides whether to accept or reject. Procedure

ESTIMATE needs to draw several samples of vertices, where each vertex of the input graph is

sampled with probability proportional to its degree. This, by itself, is not allowed in the query

model under consideration defined in Section 2.1.1. Therefore, procedure ESTIMATE makes
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Algorithm 2 PARTITIONTEST(G ,k,ϕin,ϕout,β) .Need: ϕ2
in > 480ϕout

1: η := 0.5.
2: s := 1600(k +1)2 · ln(12(k +1)) · ln(vol(VG ))/(β(1−η)).
3: c := 20

ϕ2
in

, t := c ln(vol(VG )) .Observe: c > 0.

4: µthres := 1
2 · 8(k+1)ln(12(k+1))

β·(1−η) ×vol(VG )−1−120cϕout .
5: if ESTIMATE(G ,k, s, t ,η) ≤µthres then
6: Accept G .
7: else
8: Reject G .

use of the following result by Eden and Rosenbaum to (approximately) sample vertices with

probabilities proportional to degree.

Lemma 2.7 (Corollary 1.5 of [ER18]). Let G = (VG ,EG ) be an arbitrary graph, and η > 0. Let

D denote the degree distribution of G (i.e., D(v) = deg(v)
vol(G) ). Then there exists an algorithm,

denoted by sampler(G ,η), that with probability at least 2
3 produces a vertex v sampled from a

distribution P over VG , and outputs “Fail” otherwise. The distribution P is such that for all

v ∈VG ,

|P (v)−D(v)| ≤ η ·D(v).

The algorithm uses Õ

(
|VG |p
η·vol(VG )

)
vertex, degree and neighbor queries.

The proof of Theorem 2.7 relies on the following guarantees about the behavior of the algorithm

in the YES case, and the NO case respectively, whose proofs are given in Section 2.3.1 and

Section 2.3.1 respectively.

Theorem 2.8. Let ϕin > 0 and integer k ≥ 1. Then for every (k,ϕin)-clusterable graph G =
(VG ,EG ) (see definition 2.2), with minv∈VG deg(v) ≥ 1 the following holds:

ESTIMATE(G ,k, s, t ,η) ≤ s ·
(

1− ϕ2
in

4

)2t

.

Theorem 2.9. Let ϕout > 0, β ∈ (0,1), and integer k ≥ 1. Let

s = 1600(k +1)2 · ln(12(k +1)) · ln(vol(VG ))/(β · (1−η)).

Then for every (k,ϕout,β)-unclusterable graph G = (VG ,EG ) (see definition 2.2), with minv∈VG deg(v) ≥
1, the following holds with probability at least 2

3 .

ESTIMATE(G ,k, s, t ,η) ≥ 8(k +1)ln(12(k +1))

β · (1−η) ·vol(VG )
× (1−30ϕout )2t .
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Proof of Theorem 2.7. Let t = c ln(vol(VG )) for c = 20
ϕ2

in
. We call the procedure ESTIMATE with

s = 1600(k +1)2 · ln(12(k +1)) · ln(vol(VG ))/(β · (1−η)),

and t = c ln(vol(VG )). In the YES case, by Theorem 2.8, ESTIMATE returns a value at most

s ·
(

1− ϕ2
in

4

)2t

≤ s ·exp

(
−ϕ

2
int

2

)
= s ·exp

(
−ϕ

2
inc ln(vol(VG ))

2

)

= 1600(k +1)2 · ln(12(k +1)) · ln(vol(VG ))

β · (1−η)
×vol(VG )−c

ϕ2
in
2

≤ 1

2
· 8(k +1)ln(12(k +1))

β · (1−η)
×vol(VG )2−c

ϕ2
in
2 .

In the last inequality we use the fact that k +1 ≤ vol(VG ), and |VG | is large enough to insure

that 200ln(vol(VG )) ≤ vol(VG ). In the NO case, by Theorem 2.9, with probability at least 2
3 ,

ESTIMATE returns a value at least

8(k +1)ln(12(k +1))

β · (1−η) ·vol(VG )
× (1−30ϕout )2t ≥ 8(k +1)ln(12(k +1))

β · (1−η) ·vol(VG )
×exp

(−120ϕoutc ln(vol(VG ))
)

≥ 1

2
· 8(k +1)ln(12(k +1))

β · (1−η)
×vol(VG )−1−120cϕout .

Since ϕ2
in > 480ϕout, the value of c = 20

ϕ2
in

, chosen in PARTITIONTEST is such that 2− c
ϕ2

in
2 <

−1−120cϕout. Therefore for |VG | large enough, the upper bound on the value returned by

ESTIMATE in the YES case is less than µthres = 1
2 · 8(k+1)ln(12(k+1))

β·(1−η) ×vol(VG )−1−120cϕout , which is

less than the lower bound on the value returned by ESTIMATE in the NO case.

Proof of Theorem 2.8 (the YES case)

The main result of this section is a proof of Theorem 2.8, restated below for convenience of the

reader:

Theorem 2.8 (restated) Let ϕin > 0 and integer k ≥ 1. Then for every (k,ϕin)-clusterable graph

G = (VG ,EG ) (see definition 2.2), with minv∈VG deg(v) ≥ 1 the following holds:

ESTIMATE(G ,k, s, t ,η) ≤ s ·
(

1− ϕ2
in

4

)2t

.

Consider the YES case, where the vertices of G can be partitioned into h subsets with C1, . . . ,Ch

for some h ≤ k, such that for each i ,φG (Ci ) ≥ϕin. We are interested in boundingµk+1((D− 1
2 M t S)T (D− 1

2 M t S))

from above.

Lemma 2.8. Let ϕin > 0, integer k ≥ 1, and G = (VG ,EG ) be a (k,ϕin)-clusterable graph (see
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definition 2.2), with minv∈VG deg(v) ≥ 1. Let L be its normalized Laplacian matrix, and M be

the transition matrix of the associated random walk. Let S be a (multi)set of s vertices of G.

Then

µk+1((D− 1
2 M t S)T (D− 1

2 M t S)) ≤ s ·
(
1− λk+1

2

)2t

,

where λk+1 is the (k +1)-st smallest eigenvalue of L.

Proof. Recall from Section 2.2 that M = D
1
2 MD− 1

2 , hence, M t = D
1
2 M

t
D− 1

2 . Thus we can write

µk+1((D− 1
2 M t S)T (D− 1

2 M t S)) =µk+1((D− 1
2 D

1
2 MD− 1

2 S)T (D− 1
2 D

1
2 MD− 1

2 S))

=µk+1(ST D− 1
2 M

2t
D− 1

2 S).

Recall from Section 2.2 that 1−λ1
2 ≥ ·· · ≥ 1−λn

2 are the eigenvalues of M ,Σ is the diagonal matrix

of these eigenvalues in descending order, and V is the matrix whose columns are orthonormal

eigenvectors arranged in descending order of their eigenvalues. We have M
2t =V Σ2t V T . Let

Σ1:k be n ×n diagonal matrix with first k entries 1− λ1
2 ≥ ·· · ≥ 1− λk

2 and the rest zero and let

Σk+1:n denote n ×n diagonal matrix with first k entries zero and rest 1− λk+1
2 ≥ ·· · ≥ 1− λn

2 . We

have Σ2t =Σ2t
1:k +Σ2t

k+1:n , thus we get

µk+1((D− 1
2 M t S)T (D− 1

2 M t S)) =µk+1(ST D− 1
2 M

2t
D− 1

2 S)

=µk+1(ST D− 1
2 (V Σ2t V T )D− 1

2 S)

=µk+1(ST D− 1
2 V (Σ2t

1:k +Σ2t
k+1:n)V T D− 1

2 S)

≤µk+1(ST D− 1
2 V Σ2t

1:kV T D− 1
2 S)+µmax(ST D− 1

2 V Σ2t
k+1:nV T D− 1

2 S)

The last inequality follows from Lemma 2.3. Here µk+1(ST D− 1
2 V Σ2t

1:kV T D− 1
2 S) = 0, because

the rank of Σ2t
1:k is k. We are left to bound µmax(ST D− 1

2 V Σ2t
k+1:nV T D− 1

2 S). By Lemmas 2.2 and

2.1, we have,

µmax(ST D− 1
2 V Σ2t

k+1:nV T D− 1
2 S)

=µmax(D− 1
2 V Σ2t

k+1:nV T D− 1
2 SST ) (By Lemma 2.2)

≤µmax(D− 1
2 V Σ2t

k+1:nV T D− 1
2 ) ·µmax(SST ) (By Lemma 2.1)

=µmax(V Σ2t
k+1:nV T D−1) ·µmax(SST ) (By Lemma 2.2)

≤µmax(V Σ2t
k+1:nV T ) ·µmax(SST ) ·µmax(D−1) (By Lemma 2.1)

=µmax(Σ2t
k+1:nV T V ) ·µmax(SST ) ·µmax(D−1) (By Lemma 2.2)

=µmax(Σ2t
k+1:n) ·µmax(SST ) ·µmax(D−1) (Since V T V = I )

Next, observe that SST ∈ N ×N is a diagonal matrix whose (a, a)th entry is the multiplicity of
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vertex a in S. Thus, µmax(SST ) is the maximum multiplicity over all vertices, which is at most s.

Also notice that µmax(D−1) = maxv∈VG
1

deg(v) ≤ 1, and µmax(Σ2t
k+1:n) = (1− λk+1

2 )2t . Thus we get,

µk+1((D− 1
2 M t S)T (D− 1

2 M t S)) ≤µmax(ST D− 1
2 V Σ2t

k+1:nV T D− 1
2 S) ≤ s ·

(
1− λk+1

2

)2t

.

Next, we bound λk+1 from below. For this, we prove a lemma that can be seen as a strengthen-

ing of Lemma 5.2 of [CPS15]. Let us first recall Cheeger’s inequality that we use later in the

proof of Lemma 2.10.

Lemma 2.9 (Cheeger’s inequality). For a general graph G, let L denote the normalized Lapla-

cian of G, and λ2 be the second smallest eigenvalue of L. Then

φ(G)2

2
≤λ2 ≤ 2φ(G).

Lemma 2.10. Let G be any graph which is (k,ϕin)-clusterable. Let L be its normalized Laplacian

matrix, and λk+1 be the (k +1)st smallest eigenvalue of L. Then λk+1 ≥ ϕ2
in

2 .

Proof. Let C1, . . . ,Ch be a partition of VG which achieves φG (Ci ) ≥ϕ for all i , and h ≤ k. Let

Gin be the graph consisting of edges of G with endpoints in the same cluster Ci for some

i . Let Gout be the graph consisting of edges of G with endpoints in different clusters. Let

D, Din, and Dout be the diagonal matrices of the degrees of the vertices in G , Gin, and Gout

respectively, so that D = Din +Dout. Let A, Ain, and Aout be the adjacency matrices of G , Gin,

and Gout respectively, so that A = Ain + Aout. Recall that λk+1 is the (k +1)st eigenvalue of the

the normalized Laplacian L. Observe that,

L = I − A = D− 1
2 (D − A)D− 1

2 = D− 1
2 (Din − Ain)D− 1

2 +D− 1
2 (Dout − Aout)D− 1

2

Let λin
k+1 be the (k +1)st smallest eigenvalue of D− 1

2 (Din − Ain)D− 1
2 and λout

1 be the minimum

eigenvalue of D− 1
2 (Dout − Aout)D− 1

2 . Then by Lemma 2.3, λk+1 ≥ λin
k+1 +λout

1 . Observe that

λout
1 ≥ 0, since D− 1

2 (Dout−Aout)D− 1
2 is positive semi-definite. Therefore, it is sufficient to lower

bound λin
k+1.

Let graph G ′
in is obtained from Gin by increasing the degree of every a ∈VG by D(aa)−Din(aa),

by adding self-loops. Let A′
in, and L′

in be the adjacency matrix and the normalized Laplacian

of Gin respectively. Observe that D− 1
2 (Din − Ain)D− 1

2 = D− 1
2 (D − A′

in)D− 1
2 = L′

in.

Consider the graph G ′
in. It is composed of h disconnected components, each of which has

internal expansion ϕin. Thus, by applying Cheeger’s inequality to each component, we get

that, the second smallest eigenvalue of the normalized Laplacian of each component is at
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least
ϕ2

in
2 . Now the set of eigenvalues of L′

in is the multi-union of the sets of eigenvalues of

the components. Thus, we have λin
1 = ·· · = λin

h = 0 and
ϕ2

in
2 ≤ λin

h+1 ≤ . . . ≤ λin
k+1. This implies

λk+1 ≥ ϕ2
in

2 , as required.

Proof of Theorem 2.8. Follows from Lemma 2.8 and Lemma 2.10.

Proof of Theorem 2.9 (the NO case)

The main result of this section is a proof of Theorem 2.9, restated below for convenience of the

reader:

Theorem 2.9 (restated) Let ϕout > 0, β ∈ (0,1), and integer k ≥ 1. Let

s = 1600(k +1)2 · ln(12(k +1)) · ln(vol(VG ))/(β · (1−η)).

Then for every (k,ϕout,β)-unclusterable graph G = (VG ,EG ) (see definition 2.2), with minv∈VG deg(v) ≥
1, the following holds with probability at least 2

3 .

ESTIMATE(G ,k, s, t ,η) ≥ 8(k +1)ln(12(k +1))

β · (1−η) ·vol(VG )
× (1−30ϕout )2t .

Consider the NO case, where the vertex set of G contains k+1 subsets C1, . . . ,Ck+1 of volume at

least β
k+1 vol(VG ) each, such that for each i , φG

VG
(Ci ) ≤ϕout. We are interested in bounding the

quantity µk+1((D− 1
2 M t S)T (D− 1

2 M t S)) from below. Let θ be a large enough absolute constant

(say θ = 60). Let h be the largest index such that λh < θϕout.

Recall that (v1, . . . , vn) is an orthonormal basis of eigenvectors of L. V ∈ RVG×[n] is the ma-

trix whose columns are the orthonormal eigenvectors of L arranged in increasing order of

eigenvalues. Let Ph = V1:hV T
1:h and P⊥

h = Vh+1:nV T
h+1:n , so that for any vector v ∈ RVG , Ph v

is the projection of v onto the span of {v1, . . . , vh}, and P⊥
h v is its projection on the span of

{vh+1, . . . , vn}, that is, the orthogonal complement of the span of {v1, . . . , vh}. Also, observe that

Ph +P⊥
h = I , P 2

h = Ph , and (P⊥
h )2 = P⊥

h . Let P = D− 1
2 Ph and P⊥ = D− 1

2 P⊥
h . Let U ∈RVG×[k+1] be

the matrix with orthonormal columns, where for a ∈VG , and 1 ≤ i ≤ k +1, the (a, i )-th entry of

U has
√

deg(a)
vol(Ci ) if a ∈Ci , and zero otherwise.

Lemma 2.11. Let G = (VG ,EG ) be a graph with minv∈VG deg(v) ≥ 1, and with normalized

Laplacian L (Definition 2.6), and M be the transition matrix of the random walk associated with

G (Definition 2.7). Let C1 . . . ,Ck+1 be pairwise disjoint subsets of vertices of G. Let U ∈RVG×[k+1]

be the matrix with orthonormal columns, where for a ∈VG , and 1 ≤ i ≤ k +1, the (a, i )-th entry

of U has
√

deg(a)
vol(Ci ) if a ∈Ci , and zero otherwise. For θ > 0 and ϕout ≥ 0, let h be the largest index

such that λh , the hth smallest eigenvalue of L, is less than θϕout. Let P = D− 1
2 Ph . Let S be any
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multiset of vertices. (Recall our abuse of notation from Section 2.2.) Then

µk+1((D− 1
2 M t S)T (D− 1

2 M t S)) ≥
(
1− θϕout

2

)2t

· min
z∈Rk+1, ‖z‖2=1

‖ST PUz‖2
2.

Proof. We can write µk+1((D− 1
2 M t S)T (D− 1

2 M t S)) as

µk+1((D− 1
2 M t S)T (D− 1

2 M t S)) =µk+1((M t S)T D−1(M t S))

≥µk+1((M t S)T D− 1
2 V1:hV T

1:hD− 1
2 (M t S)) By Lemma 2.4

=µk+1((M t S)T D− 1
2 V1:hV T

1:hV1:hV T
1:hD− 1

2 (M t S)) Since V T
1:hV1:h = I

=µk+1(ST M t T
PP T M t S).

Recall from Section 2.2 that vT
i D− 1

2 is a left eigenvector of M , and D− 1
2 vi is a right eigenvector

of M T with eigenvalue 1−λi
2 . Thus we can write V T

1:hD− 1
2 M t =Σt

1:hV T
1:hD− 1

2 and M t T D− 1
2 V1:h =

D− 1
2 V1:hΣ

t
1:h , where Σt

1:h is a h ×h diagonal matrix with entries (1− λ1
2 )t , . . . , (1− λh

2 )t . Observe

that

(M t )T P = (M t )T D− 1
2 V1:hV T

1:h = D− 1
2 V1:hΣ

t
1:hV T

1:h

Thus we have,

µk+1((D− 1
2 M t S)T (D− 1

2 M t S)) ≥µk+1(ST M t T
PP T M t S)

=µk+1(ST D− 1
2 V1:hΣ

t
1:hV T

1:hV1:hΣ
t
1:hV T

1:hD− 1
2 S)

= max
U

{ min
y

{‖V1:hΣ
t
1:hV T

1:hD− 1
2 Sy‖2

2 |y ∈U ,‖y‖2 = 1} |dim(U ) = k +1},

where the last equality follows from Courant-Fischer min-max principle (Lemma 2.5). Observe

that Σt
1:h is a h ×h diagonal matrix with entries (1− λ1

2 )t , . . . , (1− λh
2 )t , hence

‖V1:hΣ
t
1:hV T

1:hD− 1
2 Sy‖2

2 ≥
(
1− λh

2

)2t

· ‖V1:hV T
1:hD− 1

2 Sy‖2
2 =

(
1− λh

2

)2t

· ‖P T Sy‖2
2

Notice that by Courant-Fischer min-max principle (Lemma 2.5) we have

µk+1(ST PP T S) = max
U

{ min
y

{‖P T Sy‖2
2 |y ∈U ,‖y‖2 = 1} |dim(U ) = k +1}.

Let U∗ be the subspace with dim(U∗) = k +1 which maximizes

min
y

{‖P T Sy‖2
2 |y ∈U ,‖y‖2 = 1}
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Thus we get,

µk+1((D− 1
2 M t S)T (D− 1

2 M t S))

= max
U

{ min
y

{‖V1:hΣ
t
1:hV T

1:hD− 1
2 Sy‖2

2 |y ∈U ,‖y‖2 = 1} |dim(U ) = k +1}

≥ min
y

{‖V1:hΣ
t
1:hV T

1:hD− 1
2 Sy‖2

2 |y ∈U∗,‖y‖2 = 1}

≥ min
y

{(
1− λh

2

)2t

· ‖P T Sy‖2
2 |y ∈U∗,‖y‖2 = 1

}
=

(
1− λh

2

)2t

·min
y

{‖P T Sy‖2
2 |y ∈U∗,‖y‖2 = 1}

=
(
1− λh

2

)2t

·µk+1(ST PP T S).

Therefore we have

µk+1

(
(D− 1

2 M t S)T (D− 1
2 M t S)

)
≥

(
1− λh

2

)2t

·µk+1(ST PP T S)

≥
(
1− λh

2

)2t

·µk+1(ST PUU T P T S) By Lemma 2.4

=
(
1− λh

2

)2t

·µk+1(U T P T SST PU ) By Lemma 2.2

=
(
1− λh

2

)2t

·µmin(U T P T SST PU ) Since U T P T SST PU is k +1×k +1 matrix

≥
(
1− λh

2

)2t

· min
z∈Rk+1, ‖z‖2=1

‖ST PUz‖2
2

≥
(
1− θϕout

2

)2t

· min
z∈Rk+1, ‖z‖2=1

‖ST PUz‖2
2.

Our goal is to prove that by selecting a random (multi)set S of vertices of a “reasonable” size,

with at least a constant probability (say 2/3), for all z ∈Rk+1 with ‖z‖2 = 1, we have
∥∥ST PUz

∥∥2
2

is “large”.

Lemma 2.12. Let G = (VG ,EG ) be a graph with minv∈VG deg(v) ≥ 1, and with normalized

Laplacian L (Definition 2.6). Let C1 . . . ,Ck+1 be pairwise disjoint subsets of vertices of G such

that φG
VG

(Ci ) ≤ϕout for all i . Let U ∈RVG×[k+1] be the matrix with orthonormal columns, where

for a ∈VG , and 1 ≤ i ≤ k +1, the (a, i )-th entry of U has
√

deg(a)
vol(Ci ) if a ∈Ci , and zero otherwise.

Then for every z ∈Rk+1 with ‖z‖2
2 = 1,

zT U T LUz ≤ 2ϕout
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.

Proof. We have, zT U T LUz = zT U T Uz − zT U T AUz = 1− zT U T AUz, where A is the normal-

ized adjacency matrix of G , since U T U = I . We will prove that every eigenvalue of U T AU lies

in [1−2ϕout,1], and this implies the claim.

Let mi j denote the number of edges between Ci and C j , and m′
i denote the number of edges

between Ci and VG \
⋃k+1

j=1 C j . Then observe that

(U T AU )i j = uT
i Au j =

mi j√
vol(Ci ) ·vol(C j )

.

Thus, U T AU =W −1/2HW −1/2, where W = diag(vol(C1), . . . ,vol(Ck+1)), and H is given by Hi j =
mi j . By Lemma 2.2, the eigenvalues of W −1/2HW −1/2 are same as the eigenvalues of W −1H .

Therefore, it is sufficient to prove that the eigenvalues of W −1H lie in [1−2ϕout,1].

We know that for all i , φG
VG

(Ci ) ≤ ϕout, and thus, for all i , m′
i +

∑
j 6=i mi j ≤ ϕout ·vol(Ci ), and

mi i ≥ (1−ϕout)vol(Ci ). Therefore W −1H is the (k +1)× (k +1) matrix such that for all i ,

(W −1H)i i = mi i

vol(Ci )
≥ 1−ϕout

and ∑
j 6=i

(W −1H)i j = 1

vol(Ci )

∑
j 6=i

mi j ≤ϕout.

Thus, for every i ,

(W −1H)i i +
∑
j 6=i

(W −1H)i j = 1

vol(Ci )

k+1∑
j=1

mi j ≤ 1, (2.3)

and

(W −1H)i i −
∑
j 6=i

(W −1H)i j ≥ 1−2ϕout. (2.4)

From (2.3) and (2.4), and by using the Gershgorin circle theorem (Lemma 2.6), we conclude

that every eigenvalue of W −1H lies within [1−2ϕout,1], as required.

Lemma 2.13. Let G = (VG ,EG ) be a graph with minv∈VG deg(v) ≥ 1, and with normalized

Laplacian L (Definition 2.6). Let C1 . . . ,Ck+1 be pairwise disjoint subsets of vertices of G such

that φG
VG

(Ci ) ≤ϕout for all i . Let U ∈RVG×[k+1] be the matrix with orthonormal columns, where

for a ∈VG , and 1 ≤ i ≤ k +1, the (a, i )-th entry of U has
√

deg(a)
vol(Ci ) if a ∈Ci , and zero otherwise.

Let z ∈Rk+1 with ‖z‖2
2 = 1. For a constant θ > 0, let h be the largest index such that λh , the h-th

smallest eigenvalue of L, is less than θϕout. Then

∥∥P⊥
h Uz

∥∥2
2 ≤

2

θ
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.

Proof. Recall that 0 =λ1 ≤ ·· · ≤λn are the eigenvalues of L and v1, . . . , vn are the corresponding

orthonormal eigenvectors forming a basis of RVG . Write Uz ∈ RVG in the eignebasis as Uz =∑n
i=1αi vi . Then we have,

(Uz)T LUz =
(

n∑
i=1

αi vT
i

)
L

(
n∑

i=1
αi vi

)
=

n∑
i=1

λiα
2
i ≥

n∑
i=h+1

λiα
2
i ≥ θϕout

n∑
i=h+1

α2
i . (2.5)

On the other hand, by Lemma 2.12, we have

zT U T LUz ≤ 2ϕout. (2.6)

Putting (2.5) and (2.6) together, we get θϕout
∑n

i=h+1α
2
i ≤ 2ϕout, and thus

∑n
i=h+1α

2
i ≤ 2

θ . Recall

that P⊥
h =V T

h+1:nVh+1:n , and therefore,

∥∥P⊥
h Uz

∥∥2
2 =

∥∥∥∥∥ n∑
i=1

αi P⊥
h vi

∥∥∥∥∥
2

2

=
∥∥∥∥∥ n∑

i=h+1
αi vi

∥∥∥∥∥
2

2

=
n∑

i=h+1
α2

i ≤
2

θ
.

The next two lemmas concern random samples of vertices S′, and prove, for any fixed z, a

lower bound on
∥∥S′T PUz

∥∥
2 as a function of the size of S′.

Lemma 2.14. Let C1, . . . ,Ck+1 be subsets of some universe VG , such that for all j , vol(C j ) ≥
β

k+1 vol(VG ) for some β> 0. Let η ∈ (0,1), and

s′ = 200(k +1)ln(12(k +1))

β · (1−η)
.

Let S′ be a multiset of s′ independent random vertices in VG , sampled from distribution P over

VG such that for all v ∈ VG ,
∣∣∣P (v)− deg(v)

vol(G)

∣∣∣ ≤ η · deg(v)
vol(G) . Then with probability at least 11

12 , for

every 1 ≤ j ≤ k +1,

|S′∩C j | ≥ 9

10
· vol(C j )

vol(VG )
s′(1−η).

Proof. For v ∈VG , and 1 ≤ r ≤ s′, let X r
v be a random variable which is 1 if the r -th sampled

vertex is v , and 0 otherwise. Thus E[X r
v ] = P (v) ≥ (1−η) deg(v)

vol(VG ) . Observe that |S′∩C j | is a

random variable defined as
∑s′

r=1
∑

v∈C j
X r

v , where its expectation is given by

E[|S′∩C j |] =
s′∑

r=1

∑
v∈C j

E[X r
v ] ≥ s′(1−η)

vol(C j )

vol(VG )
≥ s′(1−η)

β

k +1
.

Notice that the random variables X r
v are negatively associated, since for each r ,

∑
v∈VG

X r
v = 1.
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Therefore, by Chernoff bound,

Pr

[
|S′∩C j | < 9s′(1−η)

10
· vol(C j )

vol(VG )

]
≤ exp

(
− s′(1−η)

200
· β

k +1

)
.

By union bound,

Pr

[
∃ j : |S′∩C j | < 9s′(1−η)

10
· vol(C j )

vol(VG )

]
≤ (k +1) ·exp

(
− s′(1−η)

200
· β

k +1

)
≤ 1

12
,

by our choice of s′.

Lemma 2.15. Let G = (VG ,EG ) be a graph with minv∈VG deg(v) ≥ 1, and with normalized

Laplacian L (Definition 2.6). Let C1 . . . ,Ck+1 be pairwise disjoint subsets of vertices of G of

volume at least β
k+1 vol(VG ) each, such that φG

VG
(Ci ) ≤ ϕout for all i . Let U ∈ RVG×[k+1] be the

matrix with orthonormal columns, where for a ∈VG , and 1 ≤ i ≤ k +1, the (a, i )-th entry of U

has
√

deg(a)
vol(Ci ) if a ∈Ci , and zero otherwise. Let z ∈ Rk+1 with ‖z‖2

2 = 1. For θ = 60, let h be the

largest index such that λh , the hth smallest eigenvalue of L, is less than θϕout. Let P = D− 1
2 Ph

and P⊥ = D− 1
2 P⊥

h . Let 0 < η≤ 1
2 , and

s′ = 200(k +1)ln(12(k +1))

β · (1−η)
.

Let S′ be a multiset of s′ independent random vertices in VG , sampled from distribution P

over VG such that for all v ∈VG ,
∣∣∣P (v)− deg(v)

vol(G)

∣∣∣≤ η · deg(v)
vol(G) . Then

∥∥S′T PUz
∥∥

2 ≥ 1
2

√
s′

vol(VG ) , with

probability at least 7
12 .

Proof. By triangle inequality
∥∥S′T PUz

∥∥
2 ≥

∥∥∥S′T D− 1
2 Uz

∥∥∥
2
−∥∥S′T P⊥Uz

∥∥
2. Observe that the

vector D− 1
2 Uz takes a uniform value µ j = z jp

vol(C j )
on each set C j . By Lemma 2.14, with

probability at least 11
12 , we have |S′∩C j | ≥ 9s′(1−η)

10 · vol(C j )
vol(VG ) , for all j . In this event, we have,

∥∥∥S′T D− 1
2 Uz

∥∥∥2

2
≥

k+1∑
j=1

9s′(1−η)

10
· vol(C j )

vol(VG )
·µ2

j

= 9

10
· s′(1−η)

vol(VG )

k+1∑
j=1

vol(C j ) ·
z2

j

vol(C j )

= 9

10
· s′(1−η)

vol(VG )
· ‖z‖2

2

= 9

10
· s′(1−η)

vol(VG )
, (2.7)

where the last equality follows because z is a unit vector.

Let y = P⊥
h Uz. By Lemma 2.13, we have

∥∥y
∥∥2

2 ≤ 2
θ . Note that P⊥Uz = D− 1

2 P⊥
h Uz = D− 1

2 y . Thus
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we have

ES′
[∥∥S′T P⊥Uz

∥∥2
2

]
= ES′

[∥∥∥S′T D− 1
2 P⊥

h Uz
∥∥∥2

2

]
= s′ · ∑

v∈VG

P (v) · y(v)2

deg(v)

≤ s′ · ∑
v∈VG

(1+η) · deg(v)

vol(VG )
· y(v)2

deg(v)

= s′(1+η)

vol(VG )

∥∥y
∥∥2

2

≤ 2

θ
· s′(1+η)

vol(VG )
.

Thus, by Markov’s inequality, with probability at least 2
3 ,

∥∥S′T P⊥Uz
∥∥2

2 ≤ 3 ·E[
∥∥S′T P⊥Uz

∥∥2
2] ≤ 6

θ
· s′

vol(VG )
= 1

10
· s′(1+η)

vol(VG )
, (2.8)

where we get the last equality by recalling that θ = 60. Putting (2.7) and (2.8) together, we get

with probability at least 1− 1
3 − 1

12 = 7
12 ,

∥∥S′T PUz
∥∥

2 ≥
∥∥∥S′T D− 1

2 Uz
∥∥∥

2
−∥∥S′T P⊥Uz

∥∥
2 ≥

√
9(1−η)

10
−

√
(1+η)

10

√
s′

vol(VG )
≥ 1

4

√
s′

vol(VG )
.

The above lemma gives a lower bound on
∥∥S′T PUz

∥∥
2 which holds with a constant probability.

We next show how we can trade off the lower bound to get a guarantee that holds with

probability arbitrarily close to one.

Lemma 2.16. Let G = (VG ,EG ) be a graph with minv∈VG deg(v) ≥ 1, and with normalized

Laplacian L (Definition 2.6). Let C1 . . . ,Ck+1 be pairwise disjoint subsets of vertices of G of

volume at least β
k+1 vol(VG ) each, such that φG

VG
(Ci ) ≤ ϕout for all i . Let U ∈ RVG×[k+1] be the

matrix with orthonormal columns, where for a ∈VG , and 1 ≤ i ≤ k +1, the (a, i )-th entry of U

has
√

deg(a)
vol(Ci ) if a ∈ Ci , and zero otherwise. Let z ∈ Rk+1 with ‖z‖2

2 = 1. For θ = 60, let h be the

largest index such that λh , the hth smallest eigenvalue of L, is less than θϕout. Let P = D− 1
2 Ph

and P⊥ = D− 1
2 P⊥

h . Let 0 < η≤ 1
2 , and

s = 1600(k +1)2 · ln(12(k +1)) · ln(vol(VG ))

β · (1−η)
.

Let S′ be a multiset of s′ independent random vertices in VG , sampled from distribution P over

VG such that for all v ∈VG ,
∣∣∣P (v)− deg(v)

vol(G)

∣∣∣≤ η · deg(v)
vol(G) . Then for τ= 8(k +1)lnvol(VG ), we have∥∥ST PUz

∥∥
2 ≥ 1

4

√
s

τ·vol(VG ) , with probability at least 1− ( 5
12

)τ
.
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Proof. We represent S as a multi-union S = S1 ∪S2 ∪ . . .Sτ of independently drawn sets con-

taining s′ = s
τ independent samples each, where

s′ = s

τ
= 200(k +1)ln(12(k +1))

β · (1−η)
.

Using Lemma 2.15, for any i , Pr
[∥∥ST

i PUz
∥∥

2
≥ 1

4

√
s

τ·vol(VG )

]
≥ 7

12 . Since the Si ’s are indepen-

dent sets of samples, Pr
[
∃i

∥∥ST
i PUz

∥∥
2
≥ 1

4

√
s

τ·vol(VG )

]
≥ 1− ( 5

12 )τ. Therefore with probability

at least 1− ( 5
12

)τ
, we have

∥∥ST PUz
∥∥2

2 =
∑

i

∥∥ST
i PUz

∥∥2
2 ≥

(
1

4

√
s

τ ·vol(VG )

)2

= s

16τvol(VG )

Thus, Pr
[∥∥ST PUz

∥∥
2 ≥ 1

4

√
s

τ·vol(VG )

]
≥ 1− ( 5

12 )τ.

In the next lemma, we switch the order of quantification and prove that with a constant proba-

bility, a random S achieves a large value for
∥∥ST PUz

∥∥
2 for all z of unit norm simultaneously,

with constant probability.

Lemma 2.17. Let G = (VG ,EG ) be a graph with minv∈VG deg(v) ≥ 1, and with normalized

Laplacian L (Definition 2.6). Let C1 . . . ,Ck+1 be pairwise disjoint subsets of vertices of G of

volume at least β
k+1 vol(VG ) each, such that φG

VG
(Ci ) ≤ ϕout for all i . Let U ∈ RVG×[k+1] be the

matrix with orthonormal columns, where for a ∈VG , and 1 ≤ i ≤ k +1, the (a, i )-th entry of U

has
√

deg(a)
vol(Ci ) if a ∈Ci , and zero otherwise. Let z ∈ Rk+1 with ‖z‖2

2 = 1. For θ = 60, let h be the

largest index such that λh , the hth smallest eigenvalue of L, is less than θϕout. Let P = D− 1
2 Ph

and P⊥ = D− 1
2 P⊥

h . Let 0 < η≤ 1
2 , and

s = 1600(k +1)2 · ln(12(k +1)) · ln(vol(VG ))

β · (1−η)
.

Let S′ be a multiset of s′ independent random vertices in VG , sampled from distribution P over

VG such that for all v ∈VG ,
∣∣∣P (v)− deg(v)

vol(G)

∣∣∣≤ η · deg(v)
vol(G) . Then with probability at least 2

3 , for all

z ∈Rk+1 with ‖z‖2
2 = 1, we have

∥∥ST PUz
∥∥

2 ≥ 1
5

√
s

τ·vol(VG ) , where τ= 8(k +1)lnvol(VG ).

Proof. Let N be a k +1 dimensional δ-net of size ( 4
δ )k+1 on the Euclidean sphere of radius

1, for some small enough δ. Let us first explain how to construct such δ-net. Pick y1 of unit

norm in Rk+1, and then for every t ≥ 2 pick yt of unit norm such that
∥∥yt − y j

∥∥
2 ≥ δ for all

j = 1, . . . , t − 1, until no such y can be picked. Note that balls of radius δ
2 centered at the

yt ’s are disjoint, and their union belongs to the ball of radius 1+ δ
2 centered at zero. Thus

|N | ≤ (1+ δ
2 )k+1

( δ2 )k+1 ≤ ( 4
δ )k+1.

For z ∈Rk+1 with ‖z‖2 = 1, let N (z), be the closest point to z from N . Using Lemma 2.16, by
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union bound over all points in N we have that with probability at least 1− ( 5
12 )τ( 4

δ )k+1, for all

y ∈N ,
∥∥ST PU y

∥∥
2 ≥ 1

4

√
s

τ·vol(VG ) . Therefore, with probability at least 1− ( 5
12 )τ( 4

δ )k+1, we have

for every z ∈Rk+1 with ‖z‖2 = 1,
∥∥ST PUN (z)

∥∥
2 ≥ 1

4

√
s

τ·vol(VG ) .

Observe that∥∥ST PU (z −N (z))
∥∥2

2 =
∥∥ST PU

∥∥2
2 · ‖(z −N (z))‖2

2

≤µmax(U T P T SST PU ) ·δ
≤µmax(UU T ) ·µmax(PP T ) ·µmax(SST ) ·δ (By Lemma 2.2, and Lemma 2.1)

≤µmax(PP T ) ·µmax(SST ) ·δ (Since UU T = I )

≤µmax(VhV T
h ) ·µmax(D−1) ·µmax(SST ) ·δ (Since PP T = D− 1

2 VhV T
h D− 1

2 )

Next, observe that SST ∈ N ×N is a diagonal matrix whose (a, a)th entry is the multiplicity of

vertex a in S. Thus, µmax(SST ) is the maximum multiplicity over all vertices, which is at most s.

Also notice that µmax(D−1) = maxv∈VG
1

deg(v) ≤ 1, and µmax(VhV T
h ) = 1, since Ph is a projection

matrix. Thus we get ∥∥ST PU (z −N (z))
∥∥2

2 ≤ s ·δ
Therefore, with probability at least 1− ( 5

12 )τ( 4
δ )k+1, for every z ∈Rh with ‖z‖2 = 1, we have

∥∥ST PUz
∥∥

2 ≥
∥∥ST PUN (z)

∥∥
2 −

∥∥ST PU (z −N (z))
∥∥

2 ≥
1

4

√
s

τ ·vol(VG )
− s ·δ.

By setting δ= 1
20s

√
s

τ·vol(VG ) , we get
∥∥ST PUz

∥∥
2 ≥ 1

5

√
s

τ·vol(VG ) with probability at least

1−
(

5

12

)τ (
4

δ

)k+1

= 1−
(

5

12

)τ (
80

√
s ·τ ·vol(VG )

)k+1
.

Observe that τ= 8(k +1)lnvol(VG ) is large enough to ensure that the above probability is at

least 2
3 .

Proof of Theorem 2.9. Follows from Lemma 2.11 and Lemma 2.17.

2.3.2 Lifting the oracle assumption

The goal of this section is to show how we can remove the oracle assumption that we made in

Section 2.3.1, and get an algorithm for the PartitionTesting problem that fits into the query

complexity model, defined in Section 2.1.1, that only allows (uniformly random) vertex, degree,

and neighbor queries. This will then establish Theorem 2.7. The algorithm is presented as

a main procedure PARTITIONTESTWITHOUTORACLE (Algorithm 4) that calls the subroutine

ESTIMATEWITHOUTORACLE (Algorithm 3). These two procedures can be seen as a analogs of

the procedures PARTITIONTEST (Algorithm 2) and ESTIMATE (Algorithm 1) respectively, from
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Section 2.3.1.

Algorithm 3 ESTIMATEWITHOUTORACLE(G ,k, s, t ,σ,R,η)

1: Sample s vertices from N independently and with probability proportional to the degree
of the vertices at random with replacement using sampler(G ,η). Let S be the multiset of
sampled vertices.

2: r = 192s
√

vol(VG ).
3: for Each sample a ∈ S do
4: if `2

2-norm tester(G , a,σ,r ) rejects then return ∞. .High collision probability

5: for Each sample a ∈ S do
6: Run 2R random walks of length t starting from a. Let qa and q′

a be the empirical
distribution of running R random walks started at a.

7: Let Q and Q ′ be matrices whose columns are {D− 1
2 qa : a ∈ S} and {D− 1

2 q′
a : a ∈ S} respec-

tively.
8: Let G := 1

2 ·
(
QT Q ′+Q ′T Q

)
9: Return µk+1 (G ).

Algorithm 4 PARTITIONTESTWITHOUTORACLE(G ,k,ϕin,ϕout,β) .Need: ϕ2
in > 480ϕout

1: η := 0.5
2: s := 1600(k +1)2 · ln(12(k +1)) · ln(vol(VG )/(β(1−η)).
3: c := 20

ϕ2
in

, t := c ln(vol(VG )) .Observe: c > 0.

4: σ := 192sk(1+η)
vol(VG ) .

5: µthres := 1
2 · 8(k+1)ln(12(k+1))

β·(1−η) ×vol(VG )−1−120cϕout .

6: µerr = 1
3 · 8(k+1)ln(12(k+1))

β·(1−η) ×vol(VG )−1−120cϕout

7: R := max
(

100s2σ1/2

µerr
, 200s4σ3/2

µ2
err

)
.

8: if ESTIMATEWITHOUTORACLE(G ,k, s, t ,σ,R,η) ≤µthres then
9: Accept G .

10: else
11: Reject G .

Recall from Definition 2.7 that with the graph G we associated a random walk, and let M

be the transition matrix of that random walk. For a vertex a of G , denote by pt
a = M t1a the

probability distribution of of a t step random walk starting from a. Recall that ESTIMATE

assumed the existence of an oracle that takes a vertex a of G as input, and returns D− 1
2 M t1a .

ESTIMATEWITHOUTORACLE simulates the behavior of the oracle by running several t-step

random walks from a. For any vertex b, the fraction of the random walks ending in b is

taken as an estimate of pt
a(b) =1T

b M t1a , the probability that the t-step random walk started

from a ends in b. However, for this estimate to have sufficiently small variance, the quantity

‖D− 1
2 pt

a‖2
2 needs to be small enough. To check this, ESTIMATEWITHOUTORACLE uses the

procedure `2
2-norm tester, whose guarantees are formally specified in the following lemma.

Lemma 2.18. Let G = (VG ,EG ). Let a ∈VG , σ> 0, 0 < δ< 1, and R ≥ 16
p

vol(G)
δ . Let t ≥ 1, and pt

a

be the probability distribution of the endpoints of a t-step random walk starting from a. There
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exists an algorithm, denoted by `2
2-norm tester(G , a,σ,R), that outputs accept if ‖D− 1

2 pt
a‖2

2 ≤ σ
4 ,

and outputs reject if ‖D− 1
2 pt

a‖2
2 > σ, with probability at least 1−δ. The running time of the

tester is O(R · t ).

Our `2
2-norm tester is a modification of `2

2-norm tester in [CPS15]. We defer the proof of

this lemma to Appendix A.2. The running time of `2
2-norm tester is independent of σ, since

‖D− 1
2 pt

a‖2
2 ≥ 1

vol(G) for all a ∈VG . We will use the following definition of a (σ, t )-good vertex for

the rest of the section.

Definition 2.8. We say that a vertex a ∈VG , is (σ, t )-good if ‖D− 1
2 pt

a‖2
2 ≤σ.

We first claim that for all multisets S containing only (σ, t )-good vertices, with a good probabil-

ity over the R random walks, the quantity G that Algorithm 3 returns is a good approximation

to (D− 1
2 M t S)T (D− 1

2 M t S) in Frobenius norm.

Lemma 2.19. Let G = (VG ,EG ) be a graph. Let 0 <σ≤ 1 t > 0, µerr > 0, k be an integer, and let S

be a multiset of s vertices, all whose elements are (σ, t )-good. Let

R = max

(
100s2σ1/2

µerr
,

200s4σ3/2

µ2
err

)
.

For each a ∈ S and each b ∈ VG , let qa(b) and q′
a(b) be random variables which denote the

fraction out of the R random walks starting from a, which end in b. Let Q and Q ′ be matrices

whose columns are (D− 1
2 qa)a∈S and (D− 1

2 q′
a)a∈S respectively. Let G = 1

2

(
QT Q ′+Q ′T Q

)
. Then

with probability at least 49/50, |µk+1(G )−µk+1((D− 1
2 M t S)T (D− 1

2 M t S))| ≤µerr.

The proof of the lemma is given in Appendix A.2. We now prove that Algorithm 4 indeed

outputs a YES with good probability on a YES instance. For this, we need the following lemma

which is a modification of Lemma 4.3 of [CPS15], and the proof of this lemma is deferred to

Appendix A.2.

Lemma 2.20. For all 0 < α < 1, and all G = (VG ,EG ) which is (k,ϕin)-clusterable, there ex-

ists V ′
G ⊆ VG with vol(V ′

G ) ≥ (1−α)vol(VG ) such that for any t ≥ 2ln(vol(VG ))
ϕ2

in
, every u ∈ V ′

G is(
2k

α·vol(VG ) , t
)
-good.

Theorem 2.10. Let ϕin > 0, and integer k ≥ 1. Then for every (k,ϕin)-clusterable graph G =
(VG ,EG ) (see definition 2.2), with minv∈VG deg(v) ≥ 1, Algorithm 4 accepts G with probability at

least 5
6 .

Proof. If Algorithm 4 outputs a NO one of the following events must happen.

• E1: Some vertex in S is not (σ4 , t )-good.

• E2: All vertices in S are (σ4 , t )-good, but `2
2-norm tester fails on some vertex.
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• E3: All vertices in S are (σ4 , t)-good, and `2
2-norm tester succeeds on all vertices, but

|µk+1(QT Q)−µk+1((D− 1
2 M t S)T (D− 1

2 M t S))| >µerr.

If none of the above happen then Algorithm 3 returns

µk+1(G ) ≤µk+1((D− 1
2 M t S)T (D− 1

2 M t S))+µerr ≤µyes +µerr <µthres,

and Algorithm 4 accepts.

Recall that we use sampler(G ,η) to sample vertices, where η = 1
2 . Apply Lemma 2.20 with

α = 1
24s(1+η) . Then by the union bound, with probability at least 1−α · (1+η) = 1− 1

24 all

the vertices in S are
(

48sk(1+η)
vol(VG ) , t

)
-good, that is, (σ4 , t)-good, where σ = 192sk

vol(VG ) , as chosen in

Algorithm 3. Thus, Pr[E1] ≤ 1
24 . Given that E1 doesn’t happen, by Lemma 2.8, on any sample,

`2
2-norm tester fails with probability at most

16
p

vol(VG )
r < 1

12s for r = 192s
√

vol(VG ), as chosen

in Algorithm 3. Thus, with probability at least 1− 1
12 , `2

2-norm tester succeeds on all the

sampled vertices, which implies Pr[E2] ≤ 1
12 . Given that both E1 and E2 don’t happen, by

Lemma 2.19, with probability at least 49
50 , Algorithm 3 returns a value that is at most µerr away

from µk+1((D− 1
2 M t S)T (D− 1

2 M t S)). Thus, Pr[E3] ≤ 1
50 . By the union bound, the probability

that Algorithm 4 rejects is at most 1
24 + 1

12 + 1
50 < 1

6 .

Next, we prove that Algorithm 4 indeed returns a NO with good probability on a NO instance.

Theorem 2.11. Letϕout > 0,β ∈ (0,1), and integer k ≥ 1. Then for every (k,ϕout,β)-unclusterable

graph G = (VG ,EG ) (see definition 2.2), with minv∈VG deg(v) ≥ 1, Algorithm 4 rejects G with prob-

ability at least 4
7 .

Proof. If the algorithm outputs a YES, then one of the following events must happen.

• E1: Some vertices in S are not (σ, t )-good, but `2
2-norm tester misses these and passes

all vertices.

• E2: All vertices in S are (σ, t )-good, but |µk+1(G )−µk+1((D− 1
2 M t S)T (D− 1

2 M t S))| >µerr.

• E3: µk+1((D− 1
2 M t S)T (D− 1

2 M t S)) <µno = 8(k+1)ln(12(k+1))
β·(1−η) ×vol(VG )−1−120cϕout .

If none of the above happen then Algorithm 3 returns

µk+1(G ) ≥µk+1((D− 1
2 M t S)T (D− 1

2 M t S))−µerr ≥µno −µerr >µthres,

and Algorithm 4 rejects.

By Lemma 2.8, the probability that `2
2-norm tester passes a bad vertex is at most

16
p

vol(VG )
r <

1
12s for r = 192s

√
vol(VG ), as chosen in Algorithm 3. Thus, Pr[E1] ≤ 1

12 . If all vertices in S are
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(σ, t)-good, by Lemma 2.19, with probability at least 49
50 , Algorithm 3 returns a value that is

at most µerr away from µk+1((D− 1
2 M t S)T (D− 1

2 M t S)). Thus, Pr[E2] ≤ 1
50 . Finally, by Theorem

2.9, Pr[E3] ≤ 1
3 . By the union bound, the probability that Algorithm 4 accepts is at most

1
12 + 1

50 + 1
3 < 3

7

Now we are set to prove Theorem 2.1.

Proof of Theorem 2.1. The correctness of the algorithm is guaranteed by Theorems 2.10 and

2.11. Since these theorems give correctness probability that is a constant larger than 1/2, it

can be boosted up to 2/3 using standard techniques (majority of the answers of a sufficiently

large constant number of independent runs). It remains to analyze the query complexity.

The running time of the sampler algorithm to sample each vertex is Õ( |VG |
vol(G) ). Hence in total

the query complexity of sampling is Õ(s ·pvol(G)). For each of the s sampled vertices, we

run `2
2-norm tester once, followed by R random walks of t steps each. Each call to the `2

2-

norm tester takes O(r t ) =O(st
√

vol(VG )) =O(st
p

m) queries, as guaranteed by Lemma 2.18.

The random walks from each vertex take O(Rt) time. Thus, the overall query complexity is

O(sr t + sRt + s
p

m). Substituting the values of s, r , R, and t as defined in Algorithm 4, and

noting that m = vol(VG )/2, we get the required bound.

2.4 Lower Bound for the noisy parities problem with applications

Recall the definition of NoisyParities from Section 2.1, and consider a deterministic algorithm

querying T out of n vertices in an instance. We wish to prove the following lower bound on

the number of queries T needed to get a nontrivial advantage over a random guess.

Theorem 2.4 (restated). Consider a deterministic algorithm ALG for the NoisyParities prob-

lem with parameters d and ε. Let b = 1/(8lnd). Suppose ALG makes at most n1/2+δ queries on

n vertex graphs, where δ< min(1/16,bε). Then ALG gives the correct answer with probability

at most 1/2+o(1).

We present the proof of this theorem in Section 2.4.3, but first we setup some preliminaries

here, and then use this theorem to establish query complexity lower bounds in Section 2.4.2.

2.4.1 Preliminaries and notation

Random d-regular Graphs and the Configuration Model

Recall that the NoisyParities problem (Definition 2.5) has a random d-regular graph generated

according to the configuration model as its underlying graph. The configuration model of

Bollobás generates a random d regular graph G = (V ,E) over a set V of n vertices (provided

dn is even) as follows. It first generates d half-edges on each vertex and identifies the set of

half-edges with V × [d ]. Then in each round, an arbitrary unpaired half-edge (u, i ) of some
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arbitrary vertex u is picked, and it is paired up with a uniformly random unpaired half-edge

(v, j ). This results in the addition of an edge (u, v) to E . This continues until all the half-edges

are paired up. (This might result in self-loops and parallel edges, so G is not necessarily

simple.) The following is known about the expansion of random d-regular graphs generated

by the configuration model [Bol88].

Fact 2.1. For d ≥ 3 let η(d) ∈ (0,1) be such that (1−η(d)) log2(1−η(d))+(1+η(d)) log2(1+η(d)) >
4/d. Then with probability 1−o(1), a random d-regular graph on n vertices generated from the

configuration model has expansion at least (1−η(d))/2.

Definition 2.9. Given a graph G = (V ,E ) and a vertex v ∈V , BG (v,r ) denotes the ball centered

at v with radius r , that is, the set of vertices which are at a distance at most r from v in G .

The following bound on the size of a ball follows from a simple calculation.

Proposition 2.1. If G is a (subgraph of a) d-regular graph for d ≥ 2, then for any vertex v,

|BG (v,0)| = 1, |BG (v,1)| ≤ d +1, |BG (v,2)| ≤ d 2 +1, and for r > 2, |BG (v,r )| ≤ d r .

Fourier Transform of Boolean Functions

Fix a finite set E with |E | = m, and identify each subset S of E with a boolean vector in {0,1}E

in the natural way. The set of functions f : {0,1}E −→R form a 2m dimensional vector space.

Define an inner product 〈·, ·〉 on this vector space as 〈 f , g 〉 = 2−m ∑
x∈{0,1}E f (x)g (x). For each

α ∈ {0,1}n , define its characteristic function χα : {0,1}E −→R as χα(x) = (−1)α·x . Then the set of

functions {χα :α ∈ {0,1}E } form an orthonormal basis with respect to the inner product 〈·, ·〉.
Thus, any function f : {0,1}E −→R can be resolved in this basis as f =∑

α∈{0,1}E f̂ (α)χα, where

f̂ (α) = 〈 f ,χα〉 = 2−m
∑

x∈{0,1}E

f (x)χα(x).

We will need the following properties of the Fourier transform, whose proofs can be found in

[O’D14].

Proposition 2.2. Let f : {0,1}E → R be given by f (z) = ε|z|(1−ε)|E |−|z|, where |z| denotes the

number of ones in the the vector z. Then f̂ is given by f̂ (α) = 2−|E |(1−2ε)|α| for all α ∈ {0,1}E .

Proposition 2.3 (Fourier transforms of affine subspaces). Let S be a subspace of {0,1}E of

dimension r , and b ∈ {0,1}E . Let f : {0,1}E →R be given by f (z) = 1 if γ·z = γ·b for all γ ∈ S, and

f (z) = 0 otherwise. Then f̂ is given by f̂ (α) = 2−(m−r )(−1)α·b if α ∈ S, and f̂ (α) = 0 otherwise.

Proposition 2.4 (Convolution Theorem). Let f , g : {0,1}E →R. Then f̂ g is given by

f̂ g (α) = ∑
β∈{0,1}n

f (β)g (α+β).
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Incidence Matrices, Eulerian Subgraphs, Spanning Forests

Given a graph G = (V ,E ), its incidence matrix is the binary V ×E matrix whose (v,e)-entry is 1

if v is an endpoint of e, and 0 otherwise. A graph is Eulerian if and only if each of its vertices

has even degree, or equivalently, the mod-2 nullspace of its incidence matrix contains the all

ones vector 1E . The set of subgraphs of G is in the natural one-to-one correspondence with

{0,1}E , where the set of Eulerian subgraphs of G corresponds to the nullspace of the incidence

matrix of G .

We define the rank of a graph to be the cardinality of its spanning forest, which is also equal to

the rank of its incidence matrix. Fix a spanning forest F of a graph G = (V ,E ). We use this forest

to construct a basis for {0,1}E , the vector space of subgraphs of G , as follows. For each e ∈ F , let

ve (e) = 1 and ve (e ′) = 0 for e ′ 6= e. For each e ∈ E \ F , define the vector ve ∈ {0,1}E as ve (e ′) = 1

if e ′ belongs to the unique cycle in F ∪ {e}, and ve (e ′) = 0 otherwise. Then the collection of

vectors {ve : e ∈ F }∪ {ve : e ∈ E \ F } forms a basis of {0,1}E . Here, the set {ve : e ∈ E \ F } spans the

subspace of Eulerian subgraphs of G , whereas {ve : e ∈ F } spans a complementary subspace:

the space of sub-forests of F . As a consequence, we have that every subgraph of G can be

written uniquely as a symmetric difference of an Eulerian subgraph of G and a sub-forest of F .

Lemma 2.21. Let F be a spanning forest of a graph G = (V ,E). Then the Eulerian subgraphs

of G are in one-to-one correspondence with subsets of E \ F , where the bijection is given by

E∗ ↔ E∗ \ F . In other words, for every S ⊆ E \ F , there exists a unique Eulerian subgraph E∗ of G

such that E∗ \ F = S.

Proof. For each e ∈ E \ F , let C (e) denote the unique cycle in F ∪ {e}. First we prove that

E∗ → E∗ \ F is surjective. Let S ⊆ E \ F . Then E∗ =⊕
e∈S C (e) is Eulerian and E∗ \ F = S. Next,

we prove that E∗ → E∗ \ F is injective. Let S ⊆ E \ F and let E∗ and E ′ be Eulerian subgraphs

of G such that E∗ \ F = E ′ \ F = S. Then (E∗⊕E ′) \ F =;, which means E∗⊕E ′ ⊆ F . But F is a

forest and E∗⊕E ′ is Eulerian. Therefore, E∗⊕E ′ =;, which means E∗ = E ′.

Lemma 2.22. Let F be a spanning forest of a graph G = (V ,E) such that the endpoints of the

edges in E \ F are pairwise distance ∆ apart in F . Let G∗ = (V ,E∗) be an Eulerian subgraph of G.

Then |E∗| ≥∆ · |E∗ \ F |.

Proof. Partition the edges of G∗ into cycles, and consider each cycle one by one. Between any

two occurrences of non-forest edges in the cycle, we have a path consisting of edges from F .

By the separation condition on the endpoints of edges not in F , each such path must have

length at least ∆. Thus, we have at least ∆ forest edges per non-forest edge in G∗.

Total Variation Distance

Definition 2.10. LetΩ be a finite set. The Total Variation Distance (TVD) between two proba-

bility distributions p and p ′ overΩ, denoted by TVD(p, p ′) (resp. two random variables X and
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X ′ taking values fromΩ, denoted by TVD(X , X ′)) is defined as (1/2) ·∑s∈Ω |p(s)−p ′(s)| (resp.

(1/2) ·∑s∈Ω |Pr[X = s]−Pr[X ′ = s]|).

Lemma 2.23. Let X1, X ′
1 be random variables taking values in Ω1, and let X2, X ′

2 be random

variables taking values inΩ2. Then

TVD((X1, X2), (X ′
1, X ′

2)) ≤ TVD(X1, X ′
1)+ ∑

s∈Ω1

Pr[X1 = s] ·TVD((X2|X1 = s), (X ′
2|X ′

1 = s)).

Proof. For s1 ∈Ω1, let p(s1) = Pr[X1 = s1], and p ′(s1) = Pr[X ′
1 = s1]. For s1 ∈Ω1 and s2 ∈Ω2,

let qs1 (s2) = Pr[X2 = s2|X1 = s1], and q ′
s1

(s2) = Pr[X ′
2 = s2|X ′

1 = s1]. Then we have, Pr[(X1, X2) =
(s1, s2)] = p(s1) ·qs1 (s2) and Pr[(X ′

1, X ′
2) = (s1, s2)] = p ′(s1) ·q ′

s1
(s2).

TVD((X1, X2), (X ′
1, X ′

2)) = 1

2

∑
(s1,s2)∈Ω1×Ω2

∣∣p(s1) ·qs1 (s2)−p ′(s1) ·q ′
s1

(s2)
∣∣

≤ 1

2

∑
(s1,s2)∈Ω1×Ω2

[∣∣p(s1) ·qs1 (s2)−p(s1) ·q ′
s1

(s2)
∣∣+ ∣∣p(s1) ·q ′

s1
(s2)−p ′(s1) ·q ′

s1
(s2)

∣∣] .

The first term above is

1

2

∑
(s1,s2)∈Ω1×Ω2

∣∣p(s1) ·qs1 (s2)−p(s1) ·q ′
s1

(s2)
∣∣ = ∑

s1∈Ω1

p(s1) · 1

2

∑
s2∈Ω2

∣∣qs1 (s2)−q ′
s1

(s2)
∣∣

= ∑
s∈Ω1

Pr[X1 = s] ·TVD((X2|X1 = s), (X ′
2|X ′

1 = x)),

while the second term is

1

2

∑
(s1,s2)∈Ω1×Ω2

∣∣p(s1) ·q ′
s1

(s2)−p ′(s1) ·q ′
s1

(s2)
∣∣= 1

2

∑
s1∈Ω1

∣∣p(s1)−p ′(s1)
∣∣· ∑

s2∈Ω2

q ′
s1

(s2) = TVD(X1, X ′
1),

since
∑

s2∈Ω2
q ′

s1
(s2) =∑

s2∈Ω2
Pr[X ′

2 = s2|X ′
1 = s1] = 1 for all s1 ∈Ω1.

Corollary 2.1. Let X1, X ′
1 be random variables taking values inΩ1, and let X2, X ′

2 be random

variables taking values inΩ2. Let E1 ⊆Ω1. Then

TVD((X1, X2), (X ′
1, X ′

2)) ≤ TVD(X1, X ′
1)+Pr[X1 ∉ E ]+∑

s∈E

Pr[X1 = s]·TVD((X2|X1 = s), (X ′
2|X ′

1 = s)).

Proof. Follows since for all s ∈Ω1 (and in particular, for s ∉ E ), TVD((X2|X1 = s), (X ′
2|X ′

1 = s)) ≤
1 by definition.

Corollary 2.2. For i = 1 to T , let Xi and X ′
i be random variables taking values inΩi . For i = 1

to T −1, let Ei ⊆Ω1 ×·· ·×Ωi , such that (s1, . . . , si ) ∈ Ei implies (s1, . . . , si−1) ∈ Ei−1. Then

TVD((X1, . . . , XT ), (X ′
1, . . . , X ′

T )) ≤ Pr[(X1, . . . , XT ) ∉ ET ]+

T∑
i=1

∑
(s1,...,si−1)∈Ei−1

Pr

[
i−1∧
j=1

X j = s j

]
·TVD

((
Xi |

i−1∧
j=1

X j = s j

)
,

(
X ′

i |
i−1∧
j=1

X ′
j = s j

))
.
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Proof. Follows by repeated application of Corollary 2.1.

2.4.2 Reductions to partition testing and MAX-CUT

Reduction to PartitionTesting

In this section, we show how the problem NoisyParities reduces to testing PartitionTesting(k,ϕin,ϕout,β),

even for k = 1 and any β ≤ 1. By this reduction, we establish a lower bound of n1/2+Ω(ϕout)

on the number of queries required to test whether a graph is (1,ϕin)-clusterable for some

constant ϕin (the YES case), or it is (2,ϕout,β)-unclusterable for any constant β≤ 1 (the NO

case).

Theorem 2.5 (restated). There exist positive constants ϕin and b such that for all ϕout ≤ 1, any

algorithm that distinguishes between a (1,ϕin)-clusterable graph (that is, a ϕin-expander) and

a (2,ϕout,1)-unclusterable graph on n vertices with success probability at least 2/3 must make

at least (n/2)1/2+bϕout/2 queries, even when the input is restricted to d-regular graphs for a

large enough constant d .

The reduction is given by Algorithm 5.

Algorithm 5 REDUCTIONTOPARTITIONTESTING (G = (V ,E), y : E −→ {0,1})

1: Input: G = (V ,E), labeling y : E −→ {0,1}
2: V ′ :=V × {0,1}. .We denote the vertex (v,b) ∈V × {0,1} by vb for readability.
3: E ′

0 :=⋃
e=(u,v)∈E : y(e)=0{(u0, v0), (u1, v1)}.

4: E ′
1 :=⋃

e=(u,v)∈E : y(e)=1{(u0, v1), (u1, v0)}.
5: E ′ = E ′

0 ∪E ′
1.

6: return G ′ = (V ′,E ′).

Observe that the reduction is “query complexity preserving” in the sense that any query from

a PartitionTesting algorithm asking the neighbors of a vertex vb ∈ V ′ can be answered by

making (at most) one query, asking the yet undisclosed edges incident on v in G and their

labels. To establish the correctness of the reduction, it is sufficient to prove:

1. The YES case: If the edges of G are labeled independently and uniformly at random,

then G ′ is an expander with high probability.

2. The NO case: If each edge e = (u, v) of G is labeled X (u)+X (v)+Z (u, v), where Z (u, v)

is 1 with probability ε, then with high probability G ′ contains a cut with n vertices on

each side whose expansion is O(ε).

Lemma 2.24. Let G = (V ,E) be a d-regular ϕ-expander with |V | = n. Suppose each edge

(u, v) ∈ E independently and uniformly given label Y (u, v) ∈ {0,1}. Suppose ReductionToPar-
titionTesting on input (G ,Y ) returns the graph G ′ = (V ′,E ′). Then G ′ is a min(ϕ/4,1/32)-

expander with probability at least 1−22n ·exp(−dn/256).
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Proof. We need to prove that every C ⊆V ′ with |C | ≤ |V ′|/2 = n expands well. Let C0 = {v ∈V :

v0 ∈C } and C1 = {v ∈V : v0 ∈C } be the “projections” of C on the two halves of V ′ =V × {0,1},

each half identified with V , so that |C | = |C0|+ |C1|. Then at least one of the following must

hold.

1. |C0 ∪C1| ≤ n/2.

2. |C0 ∩C1| ≥ n/4.

3. |C0 ⊕C1| ≥ n/4.

In the first case, consider the set of edges which cross the set C0 ∪C1 in G . Since G is a ϕ-

expander and |C0 ∪C1| ≤ n/2, the number of such edges is at least ϕd |C0 ∪C1|. For each such

edge, one of its two copies in G ′ must cross the set C . Therefore, the expansion of C is at least

ϕd |C0 ∪C1|
d |C | ≥ ϕ

2
.

In the second case, we cannot have |C0 ∩C1| > n/2, otherwise we contradict the assumption

that |C | ≤ n. Therefore, |C0 ∩C1| ≤ n/2. Consider the set of edges which cross |C0 ∩C1| in

G . Again, since G is a ϕ-expander and |C0 ∩C1| ≤ n/2, the number of such edges is at least

ϕd |C0 ∩C1|. As before, for each such edge e, at least one of its two copies in E ′ must cross the

set C . Therefore, the expansion of C is at least

ϕd |C0 ∩C1|
d |C | ≥ ϕn/4

n
= ϕ

4
.

Finally, consider the third case. Let m be the number of edges in G , both of whose endpoints

are in C0 ⊕C1. Therefore, the number of edges in G with exactly one endpoint in C0 ⊕C1

is d |C0 ⊕C1|−2m. We split into two sub-cases depending on whether m ≤ d |C0 ⊕C1|/4, or

m > d |C0 ⊕C1|/4.

In the first sub-case, consider the d |C0 ⊕C1| −2m edges of G with exactly one endpoint in

C0⊕C1. For each of such edge, (exactly) one of its copies in G ′ crosses the set C . Therefore, the

expansion of C is at least

d |C0 ⊕C1|−2m

d |C | ≥ d |C0 ⊕C1|−d |C0 ⊕C1|/2

d |C | = |C0 ⊕C1|/2

|C | ≥ n/8

n
= 1

8
.

In the second sub-case, consider each edge (u, v) ∈ E with u, v ∈C0 ⊕C1. Suppose both u and

v belong to the same Ci . If Y (u, v) = 0, none of the copies of the edge (u, v) in E ′ crosses the

set C , and if Y (u, v) = 1, then both copies cross. Similarly, suppose one of u and v belongs

to C0 and the other belongs to C1. If Y (u, v) = 1, none of the copies of the edge (u, v) in E ′

crosses the set C , and if Y (u, v) = 0, then both copies cross. Thus for each of the m edges
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(u, v) ∈ E with u, v ∈C0 ⊕C1, both of its copies cross C with probability 1/2, and none crosses

with probability 1/2. This happens independently for all the m edges. Therefore, by Chernoff

bound, the number of edges both of whose copies cross the set C is at least m/4 ≥ d |C0⊕C1|/16

with probability at least

1−exp(−m/16) ≥ 1−exp(−d |C0 ⊕C1|/64) ≥ 1−exp(−dn/256).

Assuming this happens, the expansion of C is at least

2×d |C0 ⊕C1|/16

d |C | = |C0 ⊕C1|/8

|C | ≥ n/32

n
= 1

32
.

This holds for each set C falling into this sub-case. Applying the union bound over all the

at most 22n sets falling into this sub-case, we have that with probability at least 1− 22n ·
exp(−dn/256), all sets falling into this sub-case have expansion at least 1/32.

Lemma 2.25. Let G = (V ,E) be a d-regular graph with |V | = n. For each v ∈V , let X (v) be an

independent uniformly random bit. For each edge (u, v) ∈ E, let Z (u, v) be an independent

random bit which is 1 with probability ε and 0 otherwise. Suppose each edge (u, v) ∈ E is labeled

Y (u, v) = X (u)+X (v)+Z (u, v). Suppose ReductionToPartitionTesting on input (G ,Y ) returns

the graph G ′ = (V ′,E ′). Then with probability at least 1−exp(−εnd/6), there exists a set V ∗ ⊆V ′

with |V ∗| = n = |V ′|/2 whose expansion is at most 2ε.

Proof. Define V ∗ as

V ∗ = {v0 : v ∈V , X (v) = 0}∪ {v1 : v ∈V , X (v) = 1},

so that |V ∗| = n. By a case-by-case consideration, it is easy to verify that if for e = (u, v) ∈ E we

have Z (e) = 1, then the two edges between u0, v0, u1, v1 cross the cut (V ∗,V ′\V ∗). Conversely,

if Z (e) = 0, then one of the edges between u0, v0, u1, v1 lies within V ∗ and the other lies outside

V ∗. Thus, the number of edges crossing the cut is twice the size of the set {e ∈ E : Z (e) = 1}.

The expectation of the size of this set is ε · |E | = εnd/2. Since {Z (e)}e∈E are independent and

identically distributed, application of the Chernoff bound gives us that the size of the set

{e ∈ E : Z (e) = 1} is at most εnd with probability at least 1−exp(−εnd/6). Thus, the number

of edges crossing the cut (V ∗,V ′ \V ∗) is at most 2εnd with high probability. Dividing by nd ,

the volume of V ∗, we have that the expansion of V ∗ is at most 2ε with probability at least

1−exp(−εnd/6).

Proof of Theorem 2.5. Let d = 512,ϕ= (1−η(d))/2 ≈ 0.45, andϕin = min(ϕ/4,1/32). As before,

let b = 1/(8lnd) (with d = 512 now). Given ϕout ≤ 1, let ε=ϕout/2 ≤ 1/2. Suppose there is an

algorithm for PartitionTesting which makes (n/2)1/2+δ queries on n vertex graphs and outputs

the correct answer with probability at least 2/3, for some δ < bϕout/2 = bε = min(1/16,bε)

(note that bε ≤ 1/(16ln512) ≤ 1/16). Then for any probability distribution D over n-vertex

PartitionTesting instances, there exists a deterministic algorithm ALG(D) making O(n1/2+δ)
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queries which outputs the correct answer with probability at least 2/3, on a random instance

of PartitionTesting drawn from the distribution.

Let (G , y) be a random instance of the NoisyParities problem with parameters d and ε, where

G = (V ,E) is a graph and y : E −→ {0,1} is an edge lebeling. Apply ReductionToPartitionTest-
ing to (G , y), and thus, get a random instance G ′ of PartitionTesting from the appropriate

probability distribution D. Run ALG(D) on this instance and return the answer. Note that to

answer one query of ALG(D), we make at most one query into G . Thus, this reduction gives an

algorithm ALG′ for NoisyParities making at most n1/2+δ queries.

The underlying graph G is a random d-regular graph on n vertices. By Fact 2.1, with high

probability, G is a ϕ-expander. Hence, by Lemma 2.24, if (G , y) is a YES instance, then with

high probability the reduced graph G ′ is a ϕin-expander for ϕin = min(ϕ/4,1/32) (we chose d

large enough so that the failure probability 22n ·exp(−dn/256) in Lemma 2.24 becomes o(1)).

On the other hand, if (G , y) is a NO instance, then by Lemma 2.25, the reduced graph G ′ is a

graph on 2n vertices containing with high probability a subset of n vertices whose expansion

is at most 2ε=ϕout. Thus, G ′ is (2,ϕout,1)-unclusterable. Hence, the reduction succeeds with

probability 1−o(1). Since ALG answers correctly with probability at least 2/3, ALG′ answers

correctly with probability at least 2/3−o(1).

However, by Theorem 2.4, since ALG′ makes at most n1/2+δ queries, ALG′ can be correct with

probability at most 1/2+o(1). This is a contradiction.

Reduction to approximating MAX-CUT value

In this section, we show how the problem NoisyParities reduces to estimating maxcut. By this

reduction, we establish the following theorem.

Theorem 2.6 (restated). There exists a constant β such that for any ε′ > 0 and any d ≥ 3, any

algorithm that distinguishes correctly with probability 2/3 between the following two types of

n-vertex d-degree bounded graphs must make at least n1/2+min(1/16,ε′/(24lnd)) queries.

• The YES instances: Graphs which have a cut of size at least (nd/4) · (1−ε′).

• The NO instances: Graphs which do not have a cut of size more than (1+βd−1/2)·(nd/8).

The reduction from NoisyParities to MAX-CUT works as follows.

1: procedure ReductionToMAXCUT(Graph G = (V ,E), Edge labeling y : E −→ {0,1})
2: E ′ = {e ∈ E : y(e) = 1}.
3: return G ′ = (V ,E ′).

We claim that a YES instance of NoisyParities is reduced with high probability to a NO instance

of MAX-CUT, and vice versa. To prove that the reduction correctly converts a YES instance of
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NoisyParities to a NO instance of MAX-CUT, we need the following fact which is implied by

Theorem 1.6 of [DMS15].

Fact 2.2. There exists an absolute constant α such that the following holds for all all d large

enough. Let G be a random d-regular n-vertex graph generated from the configuration model.

Then with probability 1−o(1), the maximum cut in G cuts at most 1/2+αd−1/2 fraction of the

edges.

Lemma 2.26. There exists a constantβ such that for all d the following holds. Let G = (V ,E ) be a

d-regular ϕ-expander with |V | = n. Suppose each edge (u, v) ∈ E independently and uniformly

given label Y (u, v) ∈ {0,1}. Suppose ReductionToMAXCUT on input (G ,Y ) returns the graph

G ′ = (V ,E ′). Then with probability 1−o(1), the maxcut in G ′ is at most (1+βd−1/2) ·nd/8.

Proof. By Fact 2.2, with probability 1−o(1) every cut in G has size at most (1/2+αd−1/2)·nd/2.

Given that every cut in G has size at most (1/2+αd−1/2)·nd/2, we have the following. Consider

an arbitrary cut in G ′. The expected number of edges in this cut with label 1 is at most

(1/2+αd−1/2) ·nd/4 = (1+2αd−1/2) ·nd/8. By Chernoff bound, the probability that more than

(1+ε′) · (1+2αd−1/2) ·nd/8 edges in G ′ lie in this cut is at most

exp

(
−ε

′2 · (1+2αd−1/2) ·nd

24

)
≤ exp

(
−ε

′2 ·nd

24

)
≤ exp(−n),

for ε′ = 24d−1/2. By union bound over all the 2n cuts in G ′, we have that the probability that

some cut value exceeds (1+24d−1/2) · (1+2αd−1/2) ·nd/8 ≤ (1+ (24+50α)d−1/2) ·nd/8 is at

most (2/e)n = o(1). Adding to this the o(1) probability that G itself has a large cut, and setting

β= 24+50α, we get the claim.

Next, we prove that the reduction correctly converts a NO instance of NoisyParities to a YES

instance of MAX-CUT, we need the following claim.

Lemma 2.27. Let G = (V ,E) be an arbitrary d-regular graph, and let {X (v) : v ∈ V } be a set

of independent binary random variables, each of which is 0 and 1 with probability 1/2. Let

V0 = {v ∈ V : X (v) = 0} V1 = {v ∈ V : X (v) = 1}. Let C be the random variable whose value is

the number of edges in the (V0,V1) cut. Then Var[C ] ≤ 2d ·E[C ].

Proof. For each e ∈ E , let C (e) be the indicator random variable that is 1 if e lies in the (V0,V1)

cut, and 0 otherwise. Since X (v)’s are independent, for any two edges e and e ′ which do not

share an endpoint, C (e) and C (e ′) are independent. C =∑
e∈E C (e), and therefore,

(E[C ])2 = ∑
e,e ′∈E

E[C (e)]E[C (e ′)] ≥ ∑
e,e ′∈E :e∩e ′=;

E[C (e)]E[C (e ′)] = ∑
e,e ′∈E :e∩e ′=;

E[C (e)C (e ′)].

Now, we have

E[C 2] = ∑
e,e ′∈E

E[C (e)C (e ′)] = ∑
e,e ′∈E :e∩e ′=;

E[C (e)C (e ′)]+ ∑
e,e ′∈E :e∩e ′ 6=;

E[C (e)C (e ′)].
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Using the lower bound on (E[C ])2, we have

E[C 2] ≤ (E[C ])2 + ∑
e,e ′∈E :e∩e ′ 6=;

E[C (e)C (e ′)],

which implies,

Var[C ] = E[C 2]− (E[C ])2 ≤ ∑
e,e ′∈E :e∩e ′ 6=;

E[C (e)C (e ′)] ≤ ∑
e∈E

E[C (e)] · |{e ′ ∈ E : e ∩e ′ 6= ;}|

where we used in the last inequality that C (e ′) ≤ 1 for any e ′. Using the fact that the graph is

d-regular, we have that |{e ′ ∈ E : e ∩e ′ 6= ;}| ≤ 2d for any e. Therefore,

Var[C ] ≤ 2d · ∑
e∈E

E[C (e)] = 2d ·E[C ],

as required.

Lemma 2.28. Let G = (V ,E) be a d-regular graph with |V | = n. For each v ∈V , let X (v) be an

independent uniformly random bit. For each edge (u, v) ∈ E, let Z (u, v) be an independent

random bit which is 1 with probability ε and 0 otherwise. Suppose each edge (u, v) ∈ E is labeled

Y (u, v) = X (u)+ X (v)+ Z (u, v). Suppose ReductionToMAXCUT on input (G ,Y ) returns the

graph G ′ = (V ,E ′). Then with probability at least 1−o(1), there exists a cut (V0,V1) in G ′ of value

at least (nd/4) · (1−2ε) · (1−o(1)).

Proof. Let V0 = {v ∈V : X (v) = 0} and V1 = {v ∈V : X (v) = 1}, as in the statement of Lemma

2.27, and let C be the random variable whose value is the number of edges of G in the (V0,V1)

cut. Then E[C ] = nd/4, since |E | = nd/2 and each edge is cut with probability 1/2. By Cheby-

shev’s inequality, we have,

Pr

[
|C −E[C ]| > E[C ]

n1/4

]
≤ Var[C ] ·n1/2

(E[C ])2 ≤ 2d ·E[C ] ·n1/2

(E[C ])2 = 8dn1/2

nd
= 8

n1/2
,

where the second inequality follows from Lemma 2.27. Therefore, with probability at least

1−8/n1/2, we have C ≥ E[C ](1−n−1/4) = (nd/4) · (1−n−1/4).

Now, let us condition on the values of X (v)’s which ensure C ≥ E[C ](1−n−1/4). Then the cut

(V0,V1) is fixed, and the labels on the edges become independent. Each edge (u, v) of G in

the (V0,V1) cut has label 0 with probability ε and 1 with probability 1−ε. By the Chernoff

bound, with probability 1−exp(−εC /3) ≥ 1−exp(−(εnd/4) · (1−n−1/2)), at most 2εC out of

the C edges of G in the (V0,V1) cut have label 0, and therefore, at least (1−2ε)C edges have

label 1. All these edges with label 1 appear in the (V0,V1) cut of G ′. Thus, with probability

at least 1− 8/n1/2 − exp(−(εnd/4) · (1−n−1/2)) = 1− o(1), G ′ contains a cut of size at least

(nd/4) · (1−n−1/4) · (1−2ε) = (nd/4) · (1−2ε) · (1−o(1)).

Proof of Theorem 2.6. Consider an algorithm that approximates maxcut within a factor 2−ε′
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with probability at least 2/3, and assume it makes n1/2+δ queries. Then for any distribution

over the instances, there exists a deterministic algorithm ALG making n1/2+δ queries and

having the same approximation guarantee on a random instance drawn from the distribution.

Let (G , y) be a random instance of the NoisyParities problem with parameters ε= ε′/24 and

d = (4β/ε′)2, where β is the constant from Lemma 2.26. Here, G = (V ,E) is a graph and

y : E −→ {0,1} is an edge lebeling. Apply ReductionToMAXCUT to (G , y), and thus, get a

random instance G ′ of MAX-CUT from the appropriate probability distribution. Run ALG

on this instance and obtain an estimate z of the maxcut. Return YES if z > (1+ ε′/4)nd/8,

otherwise return NO. Note that to answer one query of ALG, we make one query into G . Thus,

this reduction gives an algorithm ALG′ for NoisyParities making at most n1/2+δ queries.

If (G , y) is a YES instance of the NoisyParities problem, then by Lemma 2.26, with probability

1−o(1), G ′ has maxcut at most (1+βd−1/2) · (nd/8) = (1+ε/4) · (nd/8). Thus, the estimate of

maxcut given by ALG is at most (1+ε/4) · (nd/8) with probability at least 2/3, and we return

YES. On the other hand, if (G , y) is a NO instance of the NoisyParities problem, then by Lemma

2.28, with probability 1−o(1), G ′ has maxcut at least

nd

4
· (1−2ε) · (1−o(1)) ≥ (1−3ε) · nd

4
=

(
1− ε′

8

)
· nd

4
.

Therefore, the estimate of maxcut given by ALG, with probability at least 2/3, is at least

1−ε′/8

2−ε′
nd

4
= 1−ε′/8

1−ε′/2

nd

8
>

(
1− ε′

8

)(
1+ ε′

2

)
· nd

8
>

(
1+ ε′

4

)
· nd

8
,

and we return NO. Thus, ALG’ is correct with probability at least 2/3−o(1). Therefore, by

Theorem 2.4, δ≥ min(1/16,bε), where b = 1/(8lnd). Thus, δ=Ω(ε′/log(1/ε′)).

2.4.3 Query lower bound for the noisy parities problem

Recall the NoisyParities problem (Definition 2.5). In this section, we prove Theorem 2.4,

which gives a lower bound on the query complexity of the NoisyParities problem. We start

out by formalizing the the execution of the algorithm’s query as a process which generates the

instance incrementally.

Interaction and Closure

Formally, the interaction that takes place between the algorithm and the adversary is given by

the procedure Interaction. Here NextQuery is the function which simulates the behavior of the

algorithm: it takes as input the uncovered edge-labeled graph and the set of vertices already

queried, and returns an unqueried vertex. It is helpful to make the following observations.

1. The random graph is generated according to the configuration model. As soon as a
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vertex q is queried, the unpaired half-edges on q are paired up one-by-one to random

unpaired half-edges incident on the yet unqueried vertices.

2. In the YES case, the label generated for any edge is uniformly random, as per the problem

definition in Section 2.1. In the NO case, although the label is generated without referring

to the parities X of the vertices in the problem specification, the parities are built-in

in an implicit manner, and the distribution of the labels is still consistent with the

problem specification. Also, this is the only place where the behavior of Interaction
differs depending on whether it is executing the YES case or the NO case.

1: procedure Interaction(ANSWER,V ,ε)
2: Q0 :=;, H0 :=;, F0 := 0, T = n1/2+δ.
3: for t = 1 to T do
4: . Invariant: All half-edges incident on vertices in Qt−1 are paired.
5: . Invariant: Ft−1 is a spanning forest of Ht−1.
6: . Invariant: If Answer = NO then for any cycle C ⊆ Ht−1,

∑
e∈C (Y (e)+Z (e)) = 0.

7: qt := NextQuery(Qt−1, Ht−1). . Assumption: qt ∉Qt−1.
8: Qt :=Qt−1 ∪ {qt }.
9: Ht := Ht−1, Ft := Ft−1.

10: while q has an unpaired half-edge (q, i ) do
11: Pair up (q, i ) with a random unpaired half-edge, say (v, j ). Call the resulting edge

between q and v as e. . v ∉Qt−1 unless v = q .
12: if Answer = YES then
13: if Ft ∪ {e} is acyclic then
14: Ft := Ft ∪ {e}.

15: Generate label Y (e) := 0 or 1 with probability 1/2 each.
16: else . Answer = NO.
17: Generate noise Z (e) := 1 with probability ε and 0 with probability 1−ε.
18: if Ft ∪ {e} is acyclic then
19: Ft := Ft ∪ {e}.
20: Generate label Y (e) := 0 or 1 with probability 1/2 each.
21: else . Ft ∪ {e} contains a single cycle.
22: Let P be the unique path from q to v in Ft .
23: Generate label Y (e) := Z (e)+∑

e ′∈P (Y (e ′)+Z (e ′)).

24: Ht := Ht ∪ {(e,Y (e))}.

Recall that our goal is to prove that the algorithm does not gain sufficient information with

n1/2+δ queries to distinguish between the YES case and the NO case. In order to facilitate our

analysis, we give the following additional information to the algorithm for free, and refer to this

modified version of Interaction as InteractionWithClosure, and then argue that the algorithm

fails nonetheless.

1. InteractionWithClosure ensures that the pairwise distance in F between vertices on

which a non-forest edge is incident is at least b lnn, where b = 1/(8lnd), as defined in
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Theorem 2.4. As soon as the algorithm manages to uncover a new edge resulting in

violation of this invariant, InteractionWithClosure throws an error and conservatively

assumes that the algorithm found the correct answer already. (In particular, this includes

the scenarios where self-loops and parallel edges are discovered.) We say that event Errt

happened if InteractionWithClosure throws an error in round t .

2. As soon as a new edge incident on the queried vertex qt that cannot be added to Ft−1 is

discovered, InteractionWithClosure generates the whole ball of radius b lnn around qt .

This might already result in the event Errt as defined above. If not, InteractionWithClo-
sure adds the BFS tree around q to Ft , labels its edges uniformly at random, samples

and records the noise for its edges, adds these labeled edges to Ht , and gives Ht back to

the algorithm.

Analysis of InteractionWithClosure

Definition 2.11. After any round t of InteractionWithClosure, we call a vertex v ∈V discovered

if it was queried (that is, v ∈ Qt ) or if one of its neighbors in G was queried (that is, it had

degree at least one in Ht ). We denote by D t the set of vertices discovered after round t .

We now define certain “good” events Et which are sufficient to ensure that our analysis works

and gets us the query lower bound. Moreover, we will also show that these events are extremely

likely to happen.

Definition 2.12. Define Rt = Ht \ Ft to be the set of non-forest edges seen by the end of round

t . Then Rt ⊇ Rt−1 for all t . For any round t , we say that event Et happened if the following

conditions hold.

1. InteractionWithClosure completes the t th round without throwing an error, that is, none

of the events Err j for j ≤ t happen.

2. |D j | ≤ dn1/2+δ lnn for all j ≤ t .

First, let us prove a bound on the probability that a non-forest edge is found in round t .

Lemma 2.29. If event Et−1 happens then the probability that InteractionWithClosure encoun-

ters an edge in round t which forms a cycle with edges in Ft−1 is at most (2d 2 lnn)/n1/2−δ.

Proof. The number of undiscovered vertices is at least n −|D t−1| ≥ n −dn1/2+δ lnn ≥ n/2+2,

and therefore, there are at least d(n/2+2) free half-edges incident on undiscovered vertices.

Therefore, the probability that at least one of the discovered (unqueried) vertices becomes a

neighbor of qt , when we pair up the at most d free half edges incident on qt , is at most

d · |D t−1 \Qt−1| ·d

d(n/2+2)−2d
≤ d · |D t−1|

n/2
≤ 2d 2n1/2+δ lnn

n
= 2d 2 lnn

n1/2−δ .
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Our next lemma and proves a bound on the probability that the algorithm will throw an error

in round t .

Lemma 2.30. If event Et−1 happens then the probability that InteractionWithClosure throws

an error in round t, that is, event Errt happens, is at most (16d 4 ln2 n)/n7/8−2δ.

Proof. Event Errt happens only in the following two cases.

1. InteractionWithClosure encounters an edge (qt , v) such that the distance between qt

and v in Ft−1 is at most b lnn.

2. InteractionWithClosure encounters an edge (qt , v) which forms a cycle with edges in

Ft−1, and while generating the ball of radius b lnn, it encounters another edge which

cannot be added to the forest.

Let us bound the probabilities of the above two events separately. The number of undiscovered

vertices is at least

n −|D t−1| ≥ n −dn1/2+δ lnn ≥ n

2
+2n1/8 +2 ≥ n

2
+2.

First, observe that |BHt−1 (qt ,b lnn)| ≤ d b lnn = nb lnd = n1/8, by Proposition 2.1. qt has at most

d free half-edges, the vertices BHt−1 (qt ,b lnn) \Qt−1 have at most dn1/8 free half-edges, and

we have at least dn/2 free half-edges every time we pair a half-edge incident on qt . Thus,

the probability of finding a new non-forest edge closing a short cycle, which is same as the

probability that at least one of the vertices BHt−1 (qt ,b lnn) \Qt−1 gets an edge incident on qt ,

is at most
2d 2n1/8

dn
= 2d

n7/8
.

Suppose that in round t we find a neighbor v of qt such that the edge (qt , v) cannot be added

to the forest. Let us construct the breadth-first search tree around qt of radius b lnn by taking

each vertex already added to the tree at a time, and pairing up its free half-edges. Consider

the processing of some such vertex u, and let W be the vertices already added to the BFS tree

at the time u is processed. Since W ⊆ BG (q,b lnn), |W | ≤ d b lnn = nb lnd = n1/8, and therefore,

the number of edges in the BFS tree is at most n1/8. Now, the probability that u gets a new

edge to some vertex in W ∪D t−1 is at most

d · |W ∪D t−1| ·d

d(n/2+2n1/8 +2)−2n1/8 −2d
≤ 2(n1/8 +dn1/2+δ lnn) ·d

n
. ≤ 4d 2n1/2+δ lnn

n
= 4d 2 lnn

n1/2−δ .

Note that this must happen for some u for InteractionWithClosure to find a non-forest

edge close to the edge (q, v) and throw the error. Since the number of such u’s is at most
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|BG (qt ,b lnn)| ≤ nb lnd = n1/8, the probability that InteractionWithClosure fails is bounded

from above by

n1/8 · 4d 2 lnn

n1/2−δ = 4d 2 lnn

n3/8−δ .

The above holds when conditioned on at least one of the vertices in D t−1 \ Qt−1 being a

neighbor of qt . Unconditioning and using Lemma 2.29, we get that the probability that

InteractionWithClosure fails due to the second reason above is bounded by

2d 2 lnn

n1/2−δ · 4d 2 lnn

n3/8−δ = 8d 4 ln2 n

n7/8−2δ
.

Adding to this the probability of failure due to the first reason specified above, we have that

the probability that event Errt happens is at most

2d

n7/8
+ 8d 4 ln2 n

n7/8−2δ
≤ 16d 4 ln2 n

n7/8−2δ
.

The next two lemmas essentially prove that if the event Et−1 happens, then it is very likely that

Et happens too. We then put together these claims and prove that the event ET happens with

high probability, where T = n1/2+δ is the number of queries.

Lemma 2.31. For every t the following holds: if Et−1 happens, then Pr
[|Rt | > (4d 2 lnn) · (1+ t/n1/2−δ)

]≤
n−2d 2/3.

Proof. For every j ≤ t , conditioned on E j−1, we have that |R j \ R j−1| is one with probability

at most (2d 2 lnn)/n1/2−δ, and zero otherwise, by Lemma 2.29. Let r1 . . . ,rt be independent

Bernoulli random variables, each taking value one with probability (2d 2 lnn)/n1/2−δ, and

zero otherwise. Then for each j , |R j \ R j−1| = |R j |− |R j−1| is stochastically dominated by r j .

Let us use the Chernoff bound to upper bound Pr[
∑t

j=1 r j > (4d 2 lnn) · (1+ t/n1/2−δ)], which

will also give an upper bound on Pr[|R j | > (4d 2 lnn) · (1+ t/n1/2−δ)]. For this, observe that

E[
∑t

j=1 r j ] = (2d 2t lnn)/n1/2−δ.

First, consider the case where t < n1/2−δ. Using Chernoff bound, we have,

Pr

[
t∑

j=1
r j > 4d 2 lnn

]
≤ Pr

[
t∑

j=1
r j >

(
1+ n1/2−δ

t

)
· 2d 2t lnn

n1/2−δ

]

≤ exp

(
−n1−2δ

3t 2 · 2d 2t lnn

n1/2−δ

)
= exp

(
− (2d 2 lnn) ·n1/2−δ

3t

)
.

Using the upper bound on t , we have

Pr

[
t∑

j=1
r j > (4d 2 lnn) ·

(
1+ t

n1/2−δ

)]
≤ Pr

[
t∑

j=1
r j > 4d 2 lnn

]
≤ n−2d 2/3. (2.9)
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Next, consider the case where t ≥ n1/2−δ. Using the Chernoff bound again, we get,

Pr

[
t∑

j=1
r j > 4d 2t lnn

n1/2−δ

]
≤ exp

(
−2d 2t lnn

3n1/2−δ

)
≤ n−2d 2/3.

Thus,

Pr

[
t∑

j=1
r j > (4d 2 lnn) ·

(
1+ t

n1/2−δ

)]
≤ Pr

[
t∑

j=1
r j > 4d 2t lnn

n1/2−δ

]
≤ n−2d 2/3. (2.10)

Equations (2.9) and (2.10) together imply that Pr
[|Rt | > (4d 2 lnn) · (1+ t/n1/2−δ)

] ≤ n−2d 2/3.

Lemma 2.32. For every t , if Et−1 happens and moreover, if |Rt | ≤ (4d 2 lnn) · (1+ t/n1/2−δ), then

|D t | ≤ dn1/2+δ lnn.

Proof. If Et−1 happens then every round j ≤ t which did not discover a non-forest edge (that

is, |R j | = |R j−1|) discovered at most d new vertices. On the other hand, every round j ≤ t which

discovered a new non-forest edge (that is, |R j | = |R j−1|+1) discovered at most nb lnd = n1/8

new vertices, as it discovered BG (q j ,b lnn), whose size is at most nb lnd , by Proposition 2.1.

Therefore,

|D t | ≤ d t +n1/8 · |Rt | ≤ d t +n1/8 · (4d 2 lnn) · (1+ t/n1/2−δ).

Since t ≤ n1/2+δ and δ< 1/16, we have,

|D t | ≤ dn1/2+δ+4d 2n1/8 ln2 n · (1+n2δ) ≤ dn1/2+δ lnn.

Lemma 2.33. The event ET happens with probability 1−o(1).

Proof. Let perr
t be the probability that event Errt happens. Then we prove by induction that

there is an absolute constant c such that for each t , event Et happens with probability at least

1− 32d 4 · ln2 n

n7/8−2δ
· t .

The claim is obvious for t = 0. For t > 0, let us upper bound the probability that Et does not

happen, given Et−1 happens. The reasons for Et not happening are the following.

1. Event Errt happens. This happens with probability perr
t .

2. |Rt | > (4d 2 lnn) · (1+ t/n1/2−δ). (If |Rt | ≤ (4d 2 lnn) · (1+ t/n1/2−δ) then dn1/2+δ lnn is

guaranteed by Lemma 2.32.)
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By Lemma 2.30, the probability that InteractionWithClosure throws an error in round t is at

most

perr
t ≤ 16d 4 · ln2 n

n7/8−2δ
.

By Lemma 2.31, the event |Rt | > (4d 2 lnn) · (1+ t/n1/2−δ) happens with probability at most

n−2d 2/3 < n−6, because we assumed d ≥ 3 in the definition of the NoisyParities problem. By

induction hypothesis, Et−1 itself happens with probability at least

1− 32d 4 · ln2 n

n7/8−2δ
· (t −1).

Thus, Et happens with probability at least

1− 32d 4 · ln2 n

n7/8−2δ
· (t −1)− 16d 4 · ln2 n

n7/8−2δ
−n−6 ≥ 1− 32d 4 · ln2 n

n7/8−2δ
· t ,

as required.

As a consequence, the event ET happens with probability at least

1− 32d 4 · ln2 n

n7/8−2δ
·T ≥ 1− 32d 4 · ln2 n

n7/8−2δ
·n1/2+δ ≥ 1− 32d 4 · ln2 n

n3/8−3δ
.

Using the fact δ< 1/16, we conclude that ET happens with probability 1−o(1).

Bounding TVD in each Round

Recall that our goal is to prove Theorem 2.4, which states that an algorithm which makes at

most n1/2+δ queries is unable to determine whether InteractionWithClosure is executing the

YES or the NO case, assuming δ is less than some constant times ε. For this, we crucially use

Corollary 2.2 as follows. The random variable X t consists of the t th query of the algorithm

and its result in a YES instance, whereas the random variable X ′
t consists of the t th query of

the algorithm and its result in a NO instance. Thus, the realization of the random variable

(X1, . . . , X t ) (resp. (X ′
1, . . . , X ′

t )) captures the snapshot of the run of InteractionWithClosure until

the t th query in the YES (resp. NO) case. The events Et are as defined in Definition 2.12, and

they satisfy the requirements of Corollary 2.2.

Our goal is to prove that if T ≤ n1/2+δ, then

TVD((X1, . . . , XT ), (X ′
1, . . . , X ′

T )) = o(1). (2.11)

Since the answer of the algorithm is a function of the realization of (X1, . . . , XT ) (resp. (X ′
1, . . . , X ′

T ))

in the YES (resp. NO) case, the above statement implies that the total variation distance be-

tween the algorithm’s answer in the YES case and the algorithm’s answer in the NO case is only

o(1). Therefore, the algorithm’s answer is correct with probability 1/2+o(1).
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In order to establish (2.11), by Corollary 2.2, it is sufficient to prove that

T∑
t=1

∑
(s1,...,st−1)∈Et−1

Pr

[
t−1∧
j=1

X j = s j

]
·TVD

((
X t |

t−1∧
j=1

X j = s j

)
,

(
X ′

t |
t−1∧
j=1

X ′
j = s j

))
+

Pr[(s1, . . . , sT ) ∉ ET ] = o(1).(2.12)

Here, we already proved in Lemma 2.33 that Pr[(s1, . . . , sT ) ∉ ET ] = o(1). Therefore, it is suffi-

cient to prove that

T∑
t=1

∑
(s1,...,st−1)∈Et−1

Pr

[
t−1∧
j=1

X j = s j

]
·TVD

((
X t |

t−1∧
j=1

X j = s j

)
,

(
X ′

t |
t−1∧
j=1

X ′
j = s j

))
= o(1). (2.13)

Informally, the above claim states the following. Suppose InteractionWithClosure executes on

a YES instance and a NO instance in parallel, and for the first t −1 rounds of these executions,

the queries and the responses to the queries match. Then the probability distributions of the

responses to the query in the t th round are o(1)-close in total variation distance.

Recall that the executions of InteractionWithClosure on YES and NO instances differ only in

the following situation: the current edge whose label is to be generated forms a cycle with

edges in F . Therefore, in such a situation, if the forced label in the NO case does not match the

uniformly random label in the YES case, then this is responsible for some TVD between X t

and X ′
t conditioned on the snapshot of the run of InteractionWithClosure until round t −1.

Apart from this step, the executions of InteractionWithClosure in the YES case and the NO case

are identical. Moreover, the event ET ensures that the number of rounds in which an edge

closing a cycle is encountered is at most O(d 2n2δ lnn). Therefore, it is sufficient to prove that

for all t ≤ T and for all (s1, . . . , st−1) ∈ Et−1, we have

TVD

((
X t |

t−1∧
j=1

X j = s j

)
,

(
X ′

t |
t−1∧
j=1

X ′
j = s j

))
= o(n−2bε), (2.14)

where b = 1/(8lnd), as defined earlier. From this, as long as δ< bε, (2.13) follows. We devote

the rest of this subsection to prove claim (2.14).

Let e be an edge such that when e arrives, the forest F maintained by InteractionWithClosure
already contains a path P between the endpoints of e. In the YES case, the label Y (e) of e is 0

or 1 uniformly at random, whereas in the NO case, the label is Z (e)+∑
e ′∈P (Y (e ′)+Z (e ′)). We

are, therefore, interested in bounding the TVD between the distribution of Z (e)+∑
e ′∈P (Y (e ′)+

Z (e ′)) conditioned on the labels of the previous edges, and the uniform distribution on {0,1}.

Since we are conditioning on the labels of all the previous edges, inclusive of edges e ′ ∈ P , this

distance is same as the TVD between the distribution of Z (e)+∑
e ′∈P Z (e ′) conditioned on the

labels, and the uniform distribution. Furthermore, observe that Ze itself is independent of the

labels of the previous edges, and is 1 with probability ε< 1/2 and 0 otherwise. Therefore, the

TVD between Z (e)+∑
e ′∈P Z (e ′) conditioned on the labels and the uniform distribution is at

most the TVD between
∑

e ′∈P Z (e ′) conditioned on the labels and the uniform distribution.
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In order to bound the TVD between
∑

e ′∈P Z (e ′) conditioned on the labels and the uniform

distribution, we need to determine the distribution of
∑

e ′∈P Z (e ′) conditioned on the labels

in the first place. We use the Fourier transform to achieve this. We use Bayes’ rule and write

the posterior distribution of Z , conditioned on the labels Y = y , as being proportional to the

product of the prior distribution of Z and the probability of labels Y being y conditioned on Z .

Then we use the convolution theorem to get the Fourier transform of the posterior distribution

of Z . An appropriate Fourier coefficient then gives us the bias of
∑

e ′∈P Z (e ′) conditioned on

the labels.

Definition 2.13. The bias of a binary random variable X is the TVD between its distribution

and the uniform distribution over {0,1}. Equivalently, the bias of X is equal to |Pr[X = 0]−1/2| =
|Pr[X = 1]−1/2|.

Let H = (V ,EH ) be the graph formed by the edges which arrived before e. Let FH be the forest

maintained by InteractionWithClosure when e arrives (so that FH is a spanning forest of H).

Let the random variable Y and Z , both taking values in {0,1}EH , denote the random labels

and the random noise of the edges in EH respectively. Fix y ∈ {0,1}EH . We are interested in the

distribution of Y (e), the label on edge e, conditioned on Y = y . We want to prove that if the

graph H and the spanning forest FH satisfy certain properties, then the distribution of Y (e)

conditioned on Y = y is close to uniform.

Theorem 2.12. Suppose the graph H and the spanning forest FH are such that the endpoints of

the edges in (EH ∪ {e}) \ F are pairwise at least a distance ∆ apart in FH . Then the bias of the

distribution of the NO-case label of the new edge e conditioned on the labels of the previous

edges is at most
(1−2ε)∆−1(1+ (1−2ε)∆)|EH \FH |

2− (1+ (1−2ε)∆)|EH \FH | .

Proof. Let P be the path in FH between the endpoints of e, and let C = P ∪ {e} be the cycle

in F ∪ {e}. Since Y (e) = Z (e)+∑
e ′∈P (Y (e ′)+ Z (e ′)), the distribution of Y (e) conditioned on

Y = y , has the same bias as the distribution of Z (e)+∑
e ′∈P Z (e ′) =∑

e ′∈C Z (e) conditioned on

Y = y . Here Z (e) is independent of the previous labels Y , and hence, the bias of
∑

e ′∈C Z (e ′)
conditioned on Y = y is at most the bias of

∑
e ′∈P Z (e ′) conditioned on Y = y . It is, therefore,

sufficient to bound from above the bias of
∑

e ′∈P Z (e ′) conditioned on Y = y .

The posterior distribution of the random noise Z given the labels Y = y is given by

Pr[Z = z | Y = y] = Pr[Y = y | Z = z] ·Pr[Z = z]

Pr[Y = y]
= f (z) · g y (z)∑

z ′∈{0,1}Et−1 f (z ′) · g y (z ′)
= hy (z)∑

z ′∈{0,1}Et−1 hy (z ′)
,

where the functions f , g y and hy are defined as f (z) = Pr[Z = z], g y (z) = Pr[Y = y | Z = z],

and hy = f · g y . The Fourier transforms of these functions are as follows. Since f (z) = ε|z|(1−
ε)|EH |−|z|, by Proposition 2.2, we have for all α ∈ {0,1}EH ,

f̂ (α) = 2−|EH |(1−2ε)|α|.
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Next let us consider the function g y . Let E∗ denote the nullspace of the incidence matrix of

Ht−1, that is, the set of indicator vectors of Eulerian subgraphs of Ht−1. We say that y and z

are compatible if for every cycle C in Ht−1 we have
∑

e∈C y(e) =∑
e∈C z(e), that is, γ · y = γ ·z for

all γ ∈ E∗. Since the dimension of E∗ is |EH |− |FH |, there are exactly 2|FH | compatible y ’s for

every z, one for each of the 2|FH | labelings of edges in F . Moreover, each of the 2|FH | labelings

are realized with equal probability, because the edges of F are labeled independently with a 0

or a 1 with probability 1/2 each. Therefore we have,

g y (z) =
2−|FH | if γ · y = γ · z for all γ ∈ E∗

0 otherwise.

Then by Proposition 2.3, the Fourier transform of g y is given by

ĝ y (α) =
2−|EH |(−1)α·y if α ∈ E∗

0 otherwise.

Using convolution theorem (Proposition 2.4), we have,

ĥy (α) = ∑
β∈{0,1}EH

ĝ y (β) f̂ (α+β) = 2−2|EH | ∑
β∈E∗

(−1)β·y (1−2ε)|α+β|.

Recall that our goal was to bound the bias of
∑

e ′∈P Z (e ′) conditioned on the labels y , where

e is the edge whose label is being generated, and P is the unique path in F between the

endpoints of e. Let π ∈ {0,1}EH be the indicator vector of P . Then the bias of
∑

e ′∈P Z (e ′) =π ·Z

conditioned on y is expressed as follows.

ĥy (π) = 2−|EH | ∑
z∈{0,1}Et−1

hy (z)(−1)π·z ,

ĥy (0) = 2−|EH | ∑
z∈{0,1}Et−1

hy (z).

Therefore,

|ĥy (π)|
ĥy (0)

= 1∑
z ′∈{0,1}Et−1 hy (z ′)

·
∣∣∣∣∣ ∑

z∈{0,1}Et−1 , π·z=0

hy (z)− ∑
z∈{0,1}Et−1 , π·z=0

hy (z)

∣∣∣∣∣
= |Pr

[
π ·Z = 0 | Y = y

]−Pr
[
π ·Z = 1 | Y = y

]|
= bias

(
π ·Z | Y = y

)
.

It is thus sufficient to upper bound |ĥy (π)|/ĥy (0). We now bound |ĥy (π)| and ĥy (0) separately.

We have

ĥy (π) = 2−2|EH | ∑
β∈E∗

(−1)β·y (1−2ε)β+π ≤ 2−2|EH | ∑
β∈E∗

(1−2ε)β+π.

For β ∈ E∗, the indicator vector of an Eulerian subgraph of H , consider the set P ′ of edges
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whose indicator vector is β+π. Then P ′∪ {e} is Eulerian. Conversely, if P ′∪ {e} is Eulerian

for some P ′ ⊆ EH , then its indicator vector is β+π for some β ∈ E∗. Since we assumed that

the endpoints of the edges in (EH ∪ {e}) \ FH are pairwise at least a distance ∆ apart in FH , by

Lemma 2.22, we have

|P ′∪ {e}| ≥∆|(P ′∪ {e}) \ FH | =∆(|P ′ \ FH |+1).

For any γ ∈ {0,1}EH , let γ denote the projection of β onto the span of the indicator vectors of

the edges not in F . Then the above statement can be rewritten as,

|β+π|+1 ≥∆(|β+π|+1) =∆(|β|+1),

where the last equality holds because π, being the indicator vector of a path in FH , has zero

projection onto the span of the indicator vectors of the edges not in F . Therefore,

ĥy (π) ≤ 2−2|EH | ∑
β∈E∗

(1−2ε)∆(|β|+1)−1 = 2−2|EH |(1−2ε)∆−1
∑
β∈E∗

(1−2ε)∆|β|.

By Lemma 2.21, as β varies over the indicator vectors of Eulerian subgraphs of H , its projection

β varies over {0,1}EH \FH . Therefore,

ĥy (π) ≤ 2−2|EH |(1−2ε)∆−1
∑

β∈{0,1}EH \FH

(1−2ε)∆|β| = 2−2|EH |(1−2ε)∆−1(1+ (1−2ε)∆)|EH \FH |.

We also have,

ĥy (0) = 2−2|EH | ∑
β∈E∗

(−1)β·y (1−2ε)|β| ≥ 2−2|EH |
(

2− ∑
β∈E∗

(1−2ε)|β|
)

.

Again, by Lemma 2.22 we have |β| ≥∆ · |β|. Therefore,

ĥy (0) ≥ 2−2|EH |
(

2− ∑
β∈E∗

(1−2ε)∆·|β|
)

.

As before, as β varies over the indicator vectors of Eulerian subgraphs of H , its projection β

varies over {0,1}EH \FH . Therefore,

ĥy (0) ≥ 2−2|EH |
2− ∑

β∈{0,1}EH \FH

(1−2ε)∆·|β|
= 2−2|EH | (2− (1+ (1−2ε)∆)|EH \FH |) .

The upper bound on |ĥy (P )| and the lower bound on ĥy (;) together imply

bias

( ∑
e ′∈P

Z (e ′) | Y = y

)
= |ĥy (P )|

ĥy (;)
≤ (1−2ε)∆−1(1+ (1−2ε)∆)|EH \FH |

2− (1+ (1−2ε)∆)|EH \FH | .
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Wrapping Up

Proof of Theorem 2.4. As a consequence of Lemma 2.33 and Lemma 2.31, at any point of time

during the execution of InteractionWithClosure, with probability 1−o(1) we have that the

endpoints of the edges in EH \ FH are pairwise separated in FH by a distance at least b lnn,

and moreover,

|EH \ FH | = |R| ≤ (4d 2 lnn) · (1+ t/n1/2−δ) =O(d 2n2δ lnn),

because t ≤ n1/2+2δ. At the time of labeling a new edge e which forms a cycle with edges in F ,

let us apply Theorem 2.12, with ∆= b lnn. This gives that the bias in the label of e in the NO

case is at most

(1−2ε)∆−1(1+ (1−2ε)∆)|EH \FH |

2− (1+ (1−2ε)∆)|EH \FH | = (1−2ε)b lnn−1(1+ (1−2ε)b lnn)|EH \FH |

2− (1+ (1−2ε)b lnn)|EH \FH | .

Since |EH \ FH | =O(d 2n2δ lnn), we have

(1+ (1−2ε)b lnn)|EH \FH | ≤ (1+n−2bε)|EH \FH | ≤ (1+n−2bε)O(d 2n2δ lnn) = 1+o(1),

because δ< bε. Therefore, the bias in the label of e in the NO case is at most

n−2bε

1−2ε
· (1+o(1)) =O(n−2bε).

This is the required bound on the TVD between the snapshots of the executions of Interaction-
WithClosure in the YES and the NO case, in a generic round, given that the snapshots until

the end of the previous round were the same. This proves claim (2.14), and hence, Theorem

2.4.

2.5 Clusterability in bounded degree graphs

In this section we solve the Clusterability problem for bounded degree graphs using our

PartitionTesting algorithm. We first start by stating the definitions. Notice that we change

our notion of conductance and ε-closeness to be same as [CPS15] to ensure that we can apply

lemmas from that paper. In particular, these definitions are different from the ones given in

Section 2.1.1, which our PartitionTesting primitive uses. However, given a graph G with vertex

degrees bounded by d , one can easily convert G implicitly into a graph G ′ such that volumes

and conductances in G ′ under our definition from Section 2.1.1 are identical to volumes and

conductances under the definition of [CPS15]. This transformation is simply the operation of

adding an appropriate number of self-loops to every node, and can hence be done implicitly,

allowing us to use our algorithm for PartitionTesting on G ′ to test clusterability in G . We now
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give the definitions.

We are given a degree d-bounded graph G = (VG ,EG ) on n vertices with m edges. For any

vertex v ∈ VG , we denote its degree in G by deg(v). For any vertex set V ′ ⊆ VG , we denote

by G[V ′] the subgraph of G induced by V ′. Given a pair of disjoint sets A,B ⊆VG , we define

EG (A,B) = EG ∩ (A ×B). The internal and external conductance parameters of (subsets of

vertices of) G are defined as follows.

Definition 2.14. For a set S ⊆ C ⊆ VG , the conductance of S within C , denoted by ΦG
C (S), is

EG [S,C \S]
d ·|S| .

Definition 2.15. The internal conductance of C ⊆ VG , denoted by ΦG (C ), is defined to be

minS⊆C ,0<|S|≤ |C |
2
ΦG

C (S) if |C | > 1 and one otherwise. The conductance of G is Φ(G) =ΦG (VG ).

We say that C has conductance at least ϕ, or equivalently that it is a ϕ-expander ifΦG (C ) ≥ϕ.

The external conductance of C is defined to beΦG
VG

(C ).

Based on the conductance parameters, clusterability and far from clusterability is defined as

follows.

Definition 2.16. [Bounded degree graph clusterability] For a degree d-bounded graph G =
(VG ,EG ) with n vertices, we say that G is (k,ϕ)-bounded-degree-clusterable if there exists a

partition of VG into 1 ≤ h ≤ k sets C1, · · · ,Ch such that for each i = 1, . . . ,h,ΦG (Ci ) ≥ϕ.

Definition 2.17. A degree d-bounded graph G = (VG ,EG ) with n vertices is ε-far from (k,ϕ′)-

bounded-degree-clusterable if we need to add or delete more than εdn edges to obtain any

(k,ϕ′)-bounded-degree-clusterable graph of maximum degree at most d . We say that G is

ε-close to (k,ϕ′)-bounded-degree-clusterable, if G is not ε-far from (k,ϕ′)-bounded-degree-

clusterable. We say that G is ε-far from ϕ′-expander if G is ε-far from (1,ϕ′)-bounded-degree-

clusterable.

The goal of this section is to establish Theorem 2.3, and Theorem 2.2, restated here for conve-

nience of the reader. Theorem 2.3 follows as a consequence of our Theorem 2.1, Lemma 5.9,

and Lemma 5.10 of [CPS15].

Theorem 2.3 (restated) Let 0 ≤ ε ≤ 1
2 . Suppose ϕ′ ≤ α, (for α = min{

cexp

150d ,
cexp·ε

1400log
(

16k
ε

) }, where

d denotes the maximum degree), and ϕ′ ≤ c ·ε2ϕ2/log( 32k
ε ) for some small constant c. Then

there exists a randomized algorithm for Clusterability(k,ϕ,2k,ϕ′,ε) problem on degree d-

bounded graphs that gives the correct answer with probability at least 2/3, and which makes

poly(1/ϕ)·poly(k)·poly(1/ε)·poly(d)·poly log(n)·n1/2+O(ε−2 log( 32k
ε

)·ϕ′/ϕ2) queries on graphs with

n vertices.

Theorem 2.3 follows as a consequence of our Theorem 2.1, and Lemma 4.5 of [CPS15].

Theorem 2.2 (restated) Suppose ϕ′ ≤ α4.5ε, (for the constant α4.5 = Θ(min(d−1,k−1)) from

Lemma 4.5 of [CPS15], where d denotes the maximum degree), and ϕ′ ≤ c ′ε2ϕ2/k2 for some
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small constant c ′. Then there exists a randomized algorithm for Clusterability(k,ϕ,k,ϕ′,ε)

problem on degree d-bounded graphs that gives the correct answer with probability at least 2/3,

and which makes poly(1/ϕ) ·poly(k) ·poly(1/ε) ·poly(d) ·poly log(n) ·n1/2+O(ε−2k2·ϕ′/ϕ2) queries

on graphs with n vertices.

We will need the following results from [CPS15] to show that the property of being far from

being clusterable implies a decomposition into many large sets with small outer conductance.

Lemma 2.34 (Lemma 5.9 of [CPS15]). Let 0 <ϕ≤ cexp

150d , and 0 < ε≤ 1
2 for some constant cexp. If

G = (V ,E ) is ε-far from any graph H withΦ(H ) ≥ϕ, then there is a subset of vertices A ⊆V with
ε

18 |V | ≤ |A| ≤ 1
2 |V | such thatΦG (A) ≤ 700

cexp
·ϕ. In particular, EG (A,V \ A) ≤ 700

cexp
·ϕ ·d · |A|.

Lemma 2.35 (Lemma 5.10 of [CPS15]). Let G = (V ,E) be ε-far from (k,ϕ)-bounded-degree-

clusterable, and ϕ≤ cexp

d for some constant cexp. If there is a partition of V into h sets C1, . . . ,Ch

with 1 ≤ h ≤ k, such that E [C1, . . . ,Ch] = 0, then there is an index i , 1 ≤ i ≤ h, with |Ci | ≥ ε
8 · |V |

k

such that G[Ci ] is ε
2 -far from any H on vertex set Ci with maximum degree d andΦ(H) ≥ϕ.

We first prove the following lemma and then use it in the proof of Theorem 2.3.

Lemma 2.36. Let 0 ≤ ε ≤ 1
2 , α = min{

cexp

150d ,
cexp·ε

1400log( 16k
ε

)
}, and ϕ ≤ α. If G = (V ,E) is ε-far from

(k,ϕ)-bounded-degree-clusterable, then there exist a partition of V into k+1 subsets C1, . . . ,Ck+1

such that E [C1, · · · ,Ck+1] ≤ 700
cexp

ϕ ·d · |V | log( 16k
ε ), and for each 1 ≤ i ≤ k +1, |Ci | ≥ ε2

1152 · |V |
k .

Proof. Let n = |V |. By induction we construct a sequence of partitions {C 1
1 }, {C 2

1 ,C 2
2 }, · · · ,

{C k+1
1 , · · ·C k+1

k+1 } of V such that each partition {C h
1 , · · · ,C h

h } satisfies the following properties:

1. |C h
i | ≥ ε2

1152 · |V |
k for every i , 1 ≤ i ≤ h,

2. E [C h
1 , · · · ,C h

h ] ≤ 700
cexp

ϕ ·d ·n · log( 16k
ε )

The first partition is {C 1
1 } = {V }, which satisfies properties (1) and (2). Given a partition

{C h
1 , · · · ,C h

h } which satisfies the properties, we construct the partition {C h+1
1 , · · · ,C h+1

h+1 } as fol-

lows.

Let G ′ be the graph obtained by removing all edges between different subsets C h
i and C h

j ,

1 ≤ i < j ≤ h, from G . Observe that ϕ≤ 1
2

ε
700

cexp
log

(
16k
ε

) , hence,

E [C h
1 , · · · ,C h

h ] ≤ 700

cexp
ϕ ·d ·n · log

(
16k

ε

)
≤ 1

2
ε ·d ·n.

Therefore G ′ is ε
2 -far from (k,ϕ)-bounded-degree-clusterable, and thus we can apply Lemma

2.35. Therefore, there is an index ih ,1 ≤ ih ≤ h, such that |C h
ih
| ≥

ε
2
8 · |V |

k and G ′[C h
ih

] is ε
4 -far from

any H on vertex set Cih with maximum degree d andΦ(H) ≥ϕ. Thus, by Lemma 2.34 there is
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a set Ah+1 ⊆C h
ih

with
ε
4

18 |C h
ih
| ≤ |Ah+1| ≤ 1

2 |C h
ih
| such that E [Ah+1,C h

ih
\ Ah+1] ≤ 700

cexp
·ϕ ·d · |Ah+1|.

Our new partition is {C h
1 , · · · , Ah+1,C h

ih
\ Ah+1, · · · ,C h

h }. Now we prove that the new partition

satisfies properties (1) and (2).

Recall that |C h
ih
| ≥ ε

16 · |V |
k . Thus, we have |Ah+1| ≥ ε

4×18 · |C h
ih
| ≥ ε2

1152 · |V |
k and |C h

ih
\ Ah+1| ≥

1
2 |C h

ih
| ≥ ε

32 · |V |
k . Therefore our new partition satisfies property (1).

In order to prove (2), imagine constructing a rooted decomposition tree T whose vertices

corresponds to subsets of vertices in V as follows. The root is the set of all vertices. Whenever

a set of vertices C is split into A and C \ A, we add A and C \ A as the left and right child of C

respectively. The construction ensures the following.

• (P1) The non-leaf nodes of the tree correspond to sets of vertices of size at least εn
16k .

• (P2) The size of the set corresponding to the left child is |A| = δ|C | and the size of the

right child is |C \ A| = (1−δ)|C | for some ε
72 ≤ δ≤ 1

2 .

Whenever a set of vertices C is split into A and C \ A, we will charge the edges cut in this

decomposition step to vertices in A by placing a charge of 700
cexp

ϕ ·d at each vertex v ∈ A. Clearly,

the total charge placed in the vertices in A is an upper bound on the number of edges cut

at this step. We now observe that the total number of times any vertex v gets charged in the

decomposition process is bounded by log( 16k
ε ). This follows from the fact that each time a

vertex gets charged, the size of its set decreases by at least a factor 2, and by (P1), the non-leaf

nodes has size at least εn
16k . Thus the total number of edges cut in the decomposition process

is bounded by 700
cexp

ϕ ·d ·n · log( 16k
ε ).

Now we are able to prove Theorem 2.3:

Proof of Theorem 2.3. Let G = (V ,E) be a degree d-bounded graph with n vertices. We prove

that there exists a randomized algorithm for Clusterability(k,ϕ,2k,ϕ′,ε) problem on degree

d-bounded graphs that gives the correct answer with probability at least 2
3 .

Let G ′ be a graph obtained from G = (V ,E) by increasing the degree of every v ∈ VG by d −
deg(v), by adding self-loops. Observe that for any set S ⊆ C ⊆ V , we have volG ′(S) = d · |S|.
Hence, volG ′(S) ≤ volG′ (V )

2 if and only if |S| ≤ n
2 . Moreover note that,

φG ′
C (S) = EG ′ [S,C \ S]

volG ′(S)
= EG [S,C \ S]

d · |S| =ΦG
C (S). (2.15)

Thus for any C ⊆V we have,

ΦG (C ) = min
S⊆C ,0<|S|≤ |C |

2

ΦG
C (S) = min

S⊆C ,0<vol(S)≤ vol(C )
2

φG ′
C (S) =φG ′

(C ). (2.16)
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Now we apply our PartitionTesting algorithm to G ′, and prove that it can distinguish between

graphs that are (k,ϕ)-bounded-degree-clusterable, and those are ε-far from (2k,ϕ′)-bounded-

degree-clusterable with high probability.

Let G be (k,ϕ)-bounded-degree-clusterable. then there exists a partition of V into sets

C1, · · · ,Ch , for h ≤ k such that for each i = 1, . . . ,h, ΦG (Ci ) ≥ ϕ. Thus by equation (2.16),

we have φG ′
(Ci ) ≥ϕ for all i = 1, . . . ,h. Therefore G ′ is (k,ϕ)-clusterable. Hence, by Theorem

2.1, PartitionTesting algorithm accepts G ′ with probability at least 2
3 .

Now suppose that G is ε-far from (2k,ϕ′)-bounded-degree-clusterable. Since ϕ′ < α, by

Lemma 2.36, there exists a partition of V into 2k+1 subsets C1, . . . ,C2k+1 such that E [C1, · · · ,C2k+1] ≤
700
cexp

ϕ ·d · |V | log( 32k
ε ), and for each 1 ≤ i ≤ 2k +1, |Ci | ≥ ε2

1152 · |V |
2k .

We say that cluster Ci is bad if E [Ci ,V \Ci ] ≥ 700
cexp

ϕ′ ·d · log( 32k
ε ) · |Ci |. Define set B as the set of

bad clusters i.e., B = {Ci : E [Ci ,V \Ci ] ≥ 4×1152
ε2 · 700

cexp
ϕ′ ·d · log( 32k

ε ) · |Ci |}. Thus we have,

700

cexp
ϕ ·d · log

(
32k

ε

)
· |V | ≥ E [C1, · · · ,C2k+1]

≥
2k+1∑
i=1

E [Ci ,V \Ci ]

≥ ∑
Ci∈B

E [Ci ,V \Ci ]

≥ ∑
Ci∈B

4×1152

ε2 · 700

cexp
ϕ′ ·d · log

(
32k

ε

)
· |Ci |

≥ |B | ·
(

4×1152

ε2 · 700

cexp
ϕ′ ·d · log

(
32k

ε

))
·
(
ε2

1152
· |V |

2k

)

Thus |B | ≤ k
2 . Hence there exist at least k + 1 disjoint sets of vertices C1,C2, . . . ,Ck+1, in G

such that for i ∈ [1..(k +1)], |Ci | ≥ ε2

1152 · |V |
2k , and |E (Ci ,V \Ci )| ≤ 4×1152

ε2 · 700
cexp

ϕ′ ·d · log
(

32k
ε

)
· |Ci |.

Thus by equation (2.15), for each i , 1 ≤ i ≤ k + 1 we have volG ′(Ci ) ≥ ε2

1152·k volG ′(V ), and

φG ′
V (C ) ≤ 4×1152

ε2 · 700
cexp

ϕ′ · log( 32k
ε ). Hence, by Definition 2.2, G ′ is (k,ϕout,β)-unclusterable for

β = ε2

1152 , and ϕout = 4×1152
ε2 · 700

cexp
ϕ′ · log( 32k

ε ). We set c = cexp

480×700×4×1152 . Since ϕ′ ≤ c · ε2ϕ2

log
(

32k
ε

) ,

we have ϕout < 1
480ϕ

2, and hence, we can apply Theorem 2.1. Therefore, PartitionTesting

algorithm rejects G ′ with probability at least 2
3 . The running time follows easily from the fact

that m ≤ d ·n.

For the proof of Theorem 2.2 we will need the following result from [CPS15] which establish

connection between the properties of far from being clusterable, and being unclusterable.

Lemma 2.37. (Lemma 4.5 of [CPS15]) Let α4.5 =Θ(min(d−1,k−1)) be a certain constant that

depends on d and k. If G = (V ,E) is ε-far from (k,ϕ′)-degree-bounded-clusterable with ϕ′ ≤
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α4.5ε, then there exist a partition of V into subsets C1, . . . ,Ck+1 such that for each i , 1 ≤ i ≤ k +1,

|Ci | ≥ ε2

1152·k |V |, andΦG
VG

(C ) ≤ ck2ϕ′

ε2 , for some constant c.

Now we are able to prove Theorem 2.2:

Proof of Theorem 2.2. We wish to prove that there exists a randomized algorithm for Clusterability(k,ϕ,k,ϕ′,ε)

problem on degree d-bounded graphs that gives the correct answer with probability at least 2
3 .

Let G = (V ,E) be a degree d-bounded graph with n vertices. Let G ′ be a graph obtained from

G = (V ,E ) by increasing the degree of every v ∈VG by d −deg(v), by adding self-loops. Now we

apply our PartitionTesting algorithm to G ′, and prove that it can distinguish between graphs

that are (k,ϕ)-bounded-degree-clusterable and those are ε-far from (k,ϕ′)-bounded-degree-

clusterable, with high probability.

Let G be (k,ϕ)-bounded-degree-clusterable. Then there exists a partition of V into sets

C1, · · · ,Ch , for h ≤ k such that for each i = 1, . . . ,h, ΦG (Ci ) ≥ ϕ. Thus by equation (2.16), we

have φG ′
(Ci ) ≥ϕ for all i = 1, . . . ,h. Therefore G ′ is (k,ϕ)-clusterable. Hence, by Theorem 2.1,

PartitionTesting algorithm accepts G ′ with probability at least 2
3 .

Now suppose that G is ε-far from (k,ϕ′)-bounded-degree-clusterable. Since ϕ′ ≤ α4.5ε,

by Lemma 2.37, there exist a partition of V into subsets C1, . . . ,Ck+1 such that for each i ,

1 ≤ i ≤ k +1, |Ci | ≥ ε2

1152·k |V |, andΦG
V (C ) ≤ ck2ϕ′

ε2 for some constant c. Thus by equation (2.15),

for each i , 1 ≤ i ≤ k +1 we have volG ′(Ci ) ≥ ε2

1152·k volG ′(V ), and φG ′
V (C ) ≤ ck2ϕ′

ε2 . Thus by Defini-

tion 2.2, G ′ is (k,ϕout,β)-unclusterable for β= ε2

1152 and ϕout = ck2ϕ′

ε2 . We set c ′ = 1
480·c . Since

ϕ′ ≤ c ′ε2ϕ2/k2, we have ϕout < 1
480ϕ

2, hence, we can apply Theorem 2.1. Therefore, Partition-

Testing algorithm rejects G ′ with probability at least 2
3 . The running time follows easily from

the fact that m ≤ d ·n.

65





3 Spectral Clustering Oracles
in Sublinear Time

This chapter is based on a joint work with Grzegorz Gluch, Michael Kapralov, Silvio Lattanzi

and Christian Sohler. It has been accepted to the ACM-SIAM Symposium on Discrete Algo-

rithms (SODA’21) [GKL+21].

3.1 Introduction

As a central problem in unsupervised learning, graph clustering has been extensively studied in

the past decades. Several formalizations of the problem have been considered in the literature.

In this paper, we focus on the following (informal) variant of graph clustering: Given a graph

G and an integer k, we are interested in finding k nonoverlapping sets C1,C2, . . . ,Ck that are

internally well-connected and that have a sparse cut to the outside. A popular approach to

this problem is spectral clustering [KVV04b, NJW02, SM00, VL07]: One embeds vertices of the

graph into k dimensional Euclidean space using the bottom k eigenvectors of the Laplacian,

and clusters the points in Euclidean space using the k-means algorithm (in practice), or

using a more careful space partitioning approach (in theory). Spectral clustering has been

applied in the context of a wide variety of problems, for example, image segmentation [SM00],

speech separation [BJ06], clustering of protein sequences [PCS06], and predicting landslides

in geophysics [BMD+15]. Spectral clustering usually requires to process the graph in two

steps. First one computes the spectral embedding and then one clusters the resulting point

set. This two stage approach seems to be highly non-local and it seems to be hard to obtain

faster methods, if one only has to determine the cluster membership for a small subset of the

vertices. However, such a sublinear time access is desirable in some applications. As a basic

step towards such a sublinear time clustering algorithm, we need a way to quickly access the

spectral embedding in some way. Therefore, we ask the following question, where we use

fx ∈Rk to denote the spectral embedding of vertex x:
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Is it possible to obtain dot product access to the spectral embedding of a graph in

sublinear time? In other words, given a pair of vertices x, y ∈V , can we quickly

approximate the dot product 〈 fx , fy 〉 in o(n) time?

If such access is possible, it appears plausible that one can design a sublinear spectral clustering

oracle, a small space data structure that provides fast query access to a good clustering of the

graph. Our main result in this paper is (a) a small space data structure that provides query

access to dot products in the spectral embedding, as above, and (b) a sublinear time spectral

clustering oracle that uses this data structure.

We study a popular version of the spectral clustering problem where one assumes the existence

of a planted solution, namely that the input graph can be partitioned into clusters C1, . . . ,Ck

whose internal connectivity is nontrivially higher than the external connectivity. The goal

is to recover the clusters approximately. An average case version of this problem, where the

clusters induce Erdős-Rényi graphs (or random regular graphs), and the edges across clusters

are similarly random, has been studied extensively in the literature on the stochastic block

model (SBM) [Abb18] for its close relationship to the community detection problem. In this

work we study a worst-case version of this problem:

Given a graph G = (V ,E ) that admits a partitioning into a disjoint union of k induced

expanders C1, . . . ,Ck with outer conductance bounded by ε¿ 1, output an

approximation to C1, . . . ,Ck that is correct up to a O(ε) error on every cluster.

We define a spectral clustering oracle with per cluster error δ ∈ (0,1) as a small space data

structure that implicitly defines disjoint subsets Ĉ1, . . . ,Ĉk of V such that for some permutation

π on k elements one has |Ci∆Ĉπ(i )| ≤ δ|Ci | for every i = 1, . . . ,k. The oracle must provide fast

query access to such a clustering. The focus of this paper is:

Design a sublinear time spectral clustering oracle with per cluster error ≈O(ε).

Our main result is a spectral clustering oracle as above, with a slight loss in error parameter.

Specifically, our spectral clustering oracle is correct up to O(ε logk) error on every cluster:

Theorem 3.1 (Informal). There exists a spectral clustering oracle that for every graph G = (V ,E )

that admits a partitioning into a disjoint union of k induced expanders C1, . . . ,Ck with outer

conductance bounded by ε¿ 1
logk achieves error O(ε logk) per cluster, query time ≈ n1/2+O(ε),

preprocessing time ≈ 2O( 1
ε

k4 log2(k))n1/2+O(ε) and space ≈ n1/2+O(ε).
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Query times can be made faster at the expense of increased space and prepropcessing time, as

long as the product of query time and preprocessing time is ≈ n1+O(ε), leading in particular to a

nearly linear time algorithm for spectral clustering.

As byproduct of our main result we also obtain new efficient clustering algorithms in the

Local Computation Algorithms (LCA) model (see [RTVX11] for introduction of the model and

[ARVX12] for LCA with limited randomness).

A very important feature of the problem above is the fact that our algorithms recovers a

1−O(ε logk) fraction of every cluster as opposed to just classifying a 1−O(ε logk) fraction of

vertices of the graph correctly (this latter question allows one to output fewer than k clusters,

and is much easier to solve). To put this in perspective, it is instructive to apply multiway

Cheeger inequalities (e.g., [LGT14], [CKCLL+13]) to our setting, noting that the k-th eigenvalue

λk of the normalized Laplacian of a graph that can be partitioned into k clusters as above is

bounded by O(ε). This means that multiway Cheeger inequalities can be used to recover k

clusters with outer conductance k2pε (see [LGT14]), which becomes trivial unless ε< 1/k4

(we note that our problem admits a much simpler solution when ε¿ 1/k). One may note

that multiway Cheeger inequalities can also recover 0.9k clusters with outer conductance

logO(1) k
p
ε in our setting (e.q. [LRTV12]), but, as mentioned above, recovering most clusters

is much easier that recovering each cluster to 1±O(ε) multiplicative error, and does not solve

our problem. The most relevant prior result is due to Sinop [Sin16], where the author achieves

error O(
p
ε) per cluster using spectral techniques. Sinop’s result improves up on previous work

of [AS12], which achieved per cluster error of O(εk) (or, rather, is somewhat incomparable

to [AS12] due to the worst dependence on ε, but a lack of dependence on k). As we argue

below, Sinop’s techniques are hard to extend to the sublinear time regime. At the same time,

one should note that our result improves on [AS12] under the assumption that cluster sizes

are comparable while using only sublinear time in the size of the input graph.

Main challenges and comparison to results on testing cluster structure.This problem is

related the well-studied expansion testing problem [KS08, NS10, GR11b, CS10b, KPS13], which

corresponds to the setting of one or two clusters, as well as to the problem of testing cluster

structure of graphs, where one essentially wants to determine k, the number of clusters in G .

The problem of testing cluster structure has recently been considered in the literature [CPS15]:

given access to a graph G as above, compute the value of k (in fact, both results [CPS15]

and [CKK+18] apply to the harder property testing problem of distinguishing between graphs

that are k-clusterable according to the definition above and graphs that are ε-far from k-

clusterable, but a procedure for computing k is the centerpiece of both results). It is interesting

to note that the work of [CPS15] also yields an algorithm for our problem, but only under

very strong assumptions on the outer conductance of the clusters (one needs ε¿ 1
poly(k) logn ).

The recent work of Peng [Pen20] considers a robust version of testing cluster structure, but

requires ε¿ 1
poly(k) logn , just like the work of [CPS15].
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The recent work of [CKK+18] on testing cluster structure yields an optimal tester, which works

for any ε smaller than a constant and achieves essentially optimal runtime, but unfortunately

their techniques do no extend to the ‘learning’ version of the problem. The reason is very

simple: the algorithm of [CKK+18] needs to distinguish between the graph G being a union of

k clusters and k +1 clusters, and their approach amounts to verifying whether a graph can

be partitioned into k clusters. To do so it suffices to check whether the spectral embedding

is effectively k-dimensional, i.e. whether it spans a nontrivial (k +1)-dimensional volume.

In order to certify this, however, it suffices to exhibit k + 1 vertices that span a nontrivial

(k +1)-dimensional volume. For that, one essentially only needs to locate at least one ‘typical’

point in every cluster, which is much easier than our task of correctly recovering almost

all, i.e. a 1−O(ε) fraction of vertices in every cluster. In other words, testing graph cluster

structure requires only a rather basic access to and control of the spectral embedding. The

main technical contribution of our paper is a set of tools for getting precise dot product

access to this embedding, together with several new structural claims about it that enable our

clustering algorithm.

Comparison to the work of Sinop [Sin16].The work of Sinop [Sin16] gives a nearly linear time

algorithm for recovering every cluster up to error of 1±O(
p
ε) using spectral techniques1, for

sufficiently small ε. The algorithm would be very hard to implement in sublinear time, since

one of its central tools (the ROUND procedure, which controls propagation of error i.e., Lemma

5.4 of [Sin16]) heavily relies on the ability to have explicit access to the eigendecomposition

of the Laplacian. Specifically, Sinop’s algorithm first finds a crude approximation S to a

cluster to be recovered, and then improves the approximation by explicitly constructing the

corresponding submatrix of the spectral embedding and performing an SVD. One could

plausibly envision implementing this using random walks, but that would be challenging,

since one would need to consider a random walk induced on a rather unstructured subset of

vertices of the graph.

Our contributions: sublinear time access to the spectral embedding.Let G = (V ,E) be a d-

regular graph with n = |V |. Without loss of generality we assume that V = {1, . . . ,n}. We assume

that n and d are given to the algorithm and that we have oracle access to G : We can specify a

vertex x ∈V and a number i ,1 ≤ i ≤ d , and we will be given in constant time the i -th neighbor

of x. This is also called the bounded degree graph model.

In this paper we will consider d-regular graphs that have a certain cluster structure. We

parameterize this cluster structure using the internal and external conductance parameters.

Definition 3.1 (Internal and external conductance). Let G = (V ,E) be a graph. For a set

S ⊆ C ⊆ V , let E(S,C \ S) be the set of edges with one endpoint in S and the other in C \ S.

The conductance of a set S within C is φG
C (S) = |E(S,C \S)|

d |S| . The external-conductance of set C is

1One must note that the work of [Sin16] does not require the bounded degree assumption, and can handle
clusters of significantly different size.
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defined to be φG
V (C ) = |E(C ,V \C )|

d |C | . The internal-conductance of set C ⊆V , denoted by φG (C ), is

min
S⊆C ,0<|S|≤ |C |

2

φG
C (S)

if |C | > 1 and one otherwise.

Remark 3.1. For simplicity we present all the proofs for d-regular graphs, even though all

the proofs also work for d-bounded graphs, with the same definition of conductance as in

Definition 3.1 (i.e., with normalization by d |S| as opposed to the volume of S; the two notions

of conductance can in the worst case differ by a factor of d). Note that this is equivalent to

converting a d-bounded degree graph G to a d-regular graph Greg by adding d −deg(v) self-

loops to each vertex v with degree deg(v). Let Lreg be the normalized Laplacian of Greg. Then

the random walk on graph G is exactly same as a lazy random walk on graph Greg and the

definition of conductance is consistent.

Based on the conductance, clusterability of graphs is defined as follows.

Definition 3.2 ((k,ϕ,ε)-clustering). Let G = (V ,E) be a d-regular graph. A (k,ϕ,ε)-clustering

of G is a partition of vertices V into disjoint subsets C1 ∪ . . .∪Ck such that for all i ∈ [k],

φG (Ci ) ≥ϕ, φG
V (Ci ) ≤ ε and for all i , j ∈ [k] one has |Ci |

|C j | ∈O(1). G is called (k,ϕ,ε)-clusterable if

there exists a (k,ϕ,ε)-clustering for G .

We also need for formally define spectral embedding.

Definition 3.3 (Spectral embedding). For a d-regular graph G = (V ,E) and integer 2 ≤ k ≤ n

we define the spectral embedding of G as follows. Let U ∈ Rk×n denote the matrix of the

bottom k eigenvectors of the normalized Laplacian of G (this choice is not unique; fix any

such matrix U ). Then for every x ∈V the spectral embedding fx ∈Rk of x is the x-th column

of the matrix U , which we write as U = ( fy )y∈V .

Remark 3.2. We note that the spectral embedding fx , x ∈V is not uniquely defined. However, in

this paper we are only interested in obtaining dot product access to this embedding, i.e. in fast

algorithms for computing 〈 fx , fy 〉 for x, y ∈V . Such dot products are in fact uniquely defined for

any G that is (k,ϕ,ε)-clusterable with ε/ϕ2 smaller than an absolute constant – see Remark 3.4

below.

Our first algorithmic result is a sublinear time spectral dot product oracle:

Theorem 3.2. [Spectral Dot Product Oracle] Let ε,ϕ ∈ (0,1) with ε≤ ϕ2

105 . Let G = (V ,E) be a d-

regular graph that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck . Let 1
n5 < ξ< 1. Then INITIALIZEORACLE(G ,1/2,ξ)

(Algorithm 4) computes in time ( k
ξ )O(1) ·n1/2+O(ε/ϕ2) ·(logn)3 · 1

ϕ2 a sublinear space data structure

D of size ( k
ξ )O(1) ·n1/2+O(ε/ϕ2) · (logn)3 such that with probability at least 1−n−100 the following

property is satisfied:
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For every pair of vertices x, y ∈V , SPECTRALDOTPRODUCT(G , x, y,1/2,ξ,D) (Algorithm 5) com-

putes an output value
〈

fx , fy
〉

apx
such that with probability at least 1−n−100

∣∣∣ 〈
fx , fy

〉
apx

−〈 fx , fy 〉
∣∣∣≤ ξ

n
.

The running time of SPECTRALDOTPRODUCT(G , x, y,1/2,ξ,D) is ( k
ξ )O(1) ·n1/2+O(ε/ϕ2) · (logn)2 ·

1
ϕ2 .

Furthermore, for any 0 ≤ δ≤ 1/2, one can obtain the following trade-offs between preprocess-

ing time and query time: Algorithm SPECTRALDOTPRODUCT(G , x, y,δ,ξ,D) requires ( k
ξ )O(1) ·

nδ+O(ε/ϕ2)·(logn)2· 1
ϕ2 per query when the prepressing time of Algorithm INITIALIZEORACLE(G ,δ,ξ)

is increased to ( k
ξ )O(1) ·n1−δ+O(ε/ϕ2) · (logn)3 · 1

ϕ2 .

Our results: a spectral clustering oracle.Our goal is to compute a data structure that provides

sublinear time access to a (k,ϕ,ε)-clustering of G . Such a data structure is called a (k,ϕ,ε)-

clustering oracle. We now formally define a spectral clustering oracle in the Local Computation

(LCA) model:

Definition 3.4 (Spectral clustering oracle). A randomized algorithm O is a (k,ϕ,ε)-clustering

oracle if, when given query access to a d-regular graph G = (V ,E) that admits a (k,ϕ,ε)-

clustering C1, . . . ,Ck , the algorithm O provides consistent query access to a partition P̂ =
(Ĉ1, . . . ,Ĉk ) of V . The partition P̂ is determined solely by G and the algorithm’s random seed.

Moreover, with probability at least 9/10 over the random bits of O the partition P̂ has the

following property: for some permutation π on k elements one has for every i ∈ [k]:

|Ci4Ĉπ(i )| ≤O

(
ε · log(k)

ϕ3

)
|Ci |.

Remark 3.3. Note that it is crucial that O provides consistent answers, i.e. classifies a given

x ∈V in the same way every time it is queried (for a fixing of its random seed).

We are interested in clustering oracles that perform few probes per query. Our main contribu-

tion is:

Theorem 3.3. For every integer k ≥ 2, every ϕ ∈ (0,1), every ε¿ ϕ3

logk , every δ ∈ (0,1/2] there

exists a (k,ϕ,ε)-clustering oracle that:

• has Õϕ

(
2

O
(
ϕ2

ε
k4 log2(k)

)
·n1−δ+O(ε/ϕ2)

)
preprocessing time,

• has Õϕ

((
k
ε

)O(1) ·nδ+O(ε/ϕ2)
)

query time,

• uses Õϕ

((
k
ε

)O(1) ·n1−δ+O(ε/ϕ2)
)

space,
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• uses Õϕ

((
k
ε

)O(1) ·nO(ε/ϕ2)
)

random bits,

where Oϕ suppresses dependence on ϕ and Õ hides all polylog(n) factors.

To the best of our knowledge, our algorithm is the first sublinear spectral clustering algorithm

in literature. We hope that our main technique for providing sublinear time access to the

spectral embedding will have further applications in sublinear time spectral graph theory. Our

simple algorithm for recovering clusters using hyperplane partitioning in a carefully defined

sequence of subspaces may also be of independent interest in spectral partitioning problems.

We provide a detailed overview of the analysis and the main ideas are involved in Section 3.3.

Other related work.Besides the work on property testing and the work on clustering with la-

belled, data another closely related area is local clustering. In local clustering one is interested

of finding the entire cluster around a node v in time proportional to the size of the cluster.

Several algorithms are known for this problem [ACL08, AGPT16, OA14, ST14, ALM13b] but

unfortunately they cannot be applied to solve our problem because when the clusters have

linear size they take linear time (in addition, the output clusters may overlap). In this paper

instead we focus on solving the problem using strictly sublinear time.

3.2 Preliminaries

In this paper we mostly use the matrix notation to represent graphs. For a vertex x ∈V , we say

that 1x ∈Rn is the indicator of x, that is, the vector which is 1 at index x and 0 elsewhere. For a

(multi) set IS = {x1, . . . , xs} of vertices from V we abuse notation and also denote by S the n × s

matrix whose i th column is 1xi . For i ∈N we use [i ] to denote the set {1,2, . . . , i }.

For a symmetric matrix A, we write νi (A) (resp. νmax(A),νmin(A)) to denote the i th largest

(resp. maximum, minimum) eigenvalue of A.

Let m ≤ n be integers. For any matrix A ∈ Rn×m with singular value decomposition (SVD)

A = Y ΓZ T we assume Y ∈Rn×n , Γ ∈Rn×n is a diagonal matrix of singular values and Z ∈Rm×n

(this is a slightly non-standard definition of the SVD, but having Γ be a square matrix will be

convenient). Y has orthonormal columns, the first m columns of Z are orthonormal, and the

rest of the columns of Z are zero. For any integer q ∈ [m] we denote Y[q] ∈Rn×q as the first q

columns of Y and Y−[q] to denote the matrix of the remaining columns of Y . We also denote

by Z[q] ∈ Rm×q as the first q columns of Z and Z−[q] to denote the matrix of the remaining

n −q columns of Z . Finally we denote by Γ[q] ∈Rq×q the submatrix of Γ corresponding to the

first q rows and columns of Γ and we use Γ−[q] to denote the submatrix corresponding to the

last n −q rows and n −q columns of Γ. So for any q ∈ [m] the span of Y−[q] is the orthogonal

complement of the span of Y[q] in Rn , also the span of the columns of Z−[q] is the orthogonal

complement of the span of Z[q] in Rm . Thus we can write A = Y[q]Γ[q]Z T
[q] +Y−[q]Γ−[q]Z T

−[q].
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We also denote with AG the adjacency matrix of G and with L the normalized Laplacian of G

where L = I − AG
d . For L we denote its eigenvalues with 0 ≤ λ1 ≤ . . . ≤ λn ≤ 2 and we write Λ

to refer to the diagonal matrix of these eigenvalues in ascending order. We also denote with

(u1, . . . ,un) an orthonormal basis of eigenvectors of L and with U ∈ Rn×n the matrix whose

columns are the orthonormal eigenvectors of L arranged in increasing order of eigenvalues.

Therefore the eigendecomposition of L is L = UΛU T . We write U[k] ∈ Rn×k for the matrix

whose columns are the first k columns of U and also define F =U T
[k]. For every vertex x we

denote the spectral embedding of vertex x on the bottom k eigenvectors of L with fx ∈Rk , i.e.

fx = F1x . For pairs of vertices x, y ∈V we use the notation

〈 fx , fy 〉 := f T
x fy

to denote the dot product in the embedded domain.

Remark 3.4. We note that if G is a (k,ϕ,ε)-clusterable graph with ε/ϕ2 smaller than a constant,

the space spanned by the bottom k eigenvectors of the normalized Laplacian of G is uniquely

defined, i.e. the choice of U[k] is unique up to multiplication by an orthonormal matrix R ∈Rk×k

on the right. Indeed, by Lemma 3.3 below one has λk ≤ 2ε and by Lemma 3.1 below one has

λk+1 ≥ϕ2/2. Thus, since we assume that ε/ϕ2 is smaller than an absolute constant, we have

2ε<ϕ2/2, and therefore the subspace spanned by the bottom k eigenvectors of the Laplacian, i.e.

the space of U[k], is uniquely defined, as required. We note that while the choice of fx for x ∈V

is not unique, but the dot product between the spectral embedding of x ∈V and y ∈V is well

defined, since for every orthonormal R ∈Rk×k one has 〈R fx ,R fy 〉 = (R fx )T (R fy ) = f T
x (RT R) fy =

f T
x fy .

In this paper we also consider the transition matrix of the random walk associated with G

M = 1
2 · (I + A

d

)
. From any vertex v , this random walk takes every edge incident to v with

probability 1
2d , and stays on v with the remaining probability which is at least 1

2 . Note that this

random walk is exactly same as a lazy random walk on G and that M = I− L
2 . Observe that ∀i ui

is also an eigenvector of M , with eigenvalue 1− λi
2 . We denote withΣ the diagonal matrix of the

eigenvalues of M in descending order. Therefore the eigendecomposition of M is M =UΣU T .

We write Σ[k] ∈ Rk×k for the matrix whose columns are the first k rows and columns of Σ.

Furthermore, for any t , M t is a transition matrix of random walks of length t . For any vertex x,

we denote the probability distribution of a t-step random walk starting from x by mx = M t1x .

For a (multi) set IS = {x1, . . . , xs} of vertices from V , let matrix M t S ∈ Rn×s is a matrix whose

columns are probability distributions of t-step random walks starting from vertices in IS .

More formally the i th column of M t S is mxi . For any vertex x ∈V let N (x) : {y ∈V : {x, y} ∈ E }

denote the set of vertices that are adjacent to the vertex x.

Definition 3.5 (Cluster Centers). Let G = (V ,E) be a d-regular graph. Let C1, . . . ,Ck be a

(k,ϕ,ε)-clustering of G . We define the spectral center of cluster Ci as

µi := 1

|Ci |
∑

x∈Ci

fx .
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For vertex x ∈V , we define µx as the cluster center of the cluster which x belongs to.

In our analysis we use the following standard results on eigenvalues and matrix norms. Recall

that for any m ×n matrix A, the multi-sets of nonzero eigenvalues of A AT and AT A are equal.

Lemma 3.1 ([CKK+18]). Let G be any graph which is composed of k components C1, . . .Ck such

that φG (Ci ) ≥ϕ for any i ∈ [k]. Let L be the normalized Laplacian matrix of G, and λk+1 be the

(k +1)st smallest eigenvalue of L. Then λk+1 ≥ ϕ2

2 .

For a d-regular graph G , let ρG (k) denote the minimum value of the maximum conductance

over any possible k disjoint nonempty subsets. That is

ρG (k) ≤ min
disjoint S1,...,Sk

max
i
φG (Si )

Lemma 3.2 ([LGT14]). For any d-regular graph G and any k ≥ 2, it holds that

λk ≤ 2ρG (k).

Lemma 3.3. Let G = (V ,E ) be a d regular graph that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck . Let

L be the normalized Laplacian matrix of G. Let λ1 ≤ . . . ≤λn be eigenvalues of L, then we have

λk+1 ≥ ϕ2

2 and λk ≤ 2ε.

Proof. Note that G is composed of k components C1, . . .Ck such that for all 1 ≤ i ≤ k we have

φG (Ci ) ≥ ϕ. Hence, by Lemma 3.1 we get λk+1 ≥ ϕ2

2 . Moreover for all 1 ≤ i ≤ k, we have

φG
V (Ci ) ≤ ε. Thus by Lemma 3.2 we have λk ≤ 2ε.

Since we assume that the maximum ratio of cluster sizes is bounded by a constant, we have

Proposition 3.1. Let G = (V ,E ) be a d regular graph that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck .

Then we have mini∈{1,...,k} |Ci | =Ω
(n

k

)
and maxi∈{1,...,k} |Ci | =O

(n
k

)
.

A symmetric n ×n matrix is positive semi-definite, if and only if all its eigenvalues are non-

negative. The spectral norm of matrix A ∈ Rn×n is defined as maxx∈Rn ,x 6=0
‖Ax‖2
‖x‖2

that equals

the square root of the largest eigenvalue of the matrix AT A. The Frobenius norm of a matrix

A is defined as
√∑

i , j (Ai , j )2. For matrices A, Ã ∈ Rn×n , we write A 4 Ã, if ∀x ∈ Rn we have

xT Ax ≤ xT Ãx.

3.3 Technical overview

In this section we give an overview of the analysis and the main technical contributions of the

paper. Recall that we denote the matrix of bottom k eigenvectors of the normalized Laplacian
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µ1

µ2

µ3

C1C2

C3

Figure 3.1 – Example of a spectral embedding where points are concentrated around means.

of G by U[k]. The spectral embedding of a vertex x ∈V , denoted by fx ∈Rk , is simply the x-th

column of U T
[k]. The main intuition behind spectral clustering is that the points fx ∈ Rk are

well-concentrated around cluster means µi ∈Rk , defined for every i = 1, . . . ,k by

µi = 1

|Ci |
∑

x∈Ci

fx . (3.1)

See Fig. 3.1 for an illustration.

The contributions of our paper are twofold. Our first contribution is a primitive that provides

dot product access to the spectral embedding of a graph in sublinear time: we show in

Theorem 3.2 how, given any pair of vertices x, y ∈V one can compute

〈 fx , fy 〉apx ≈ 〈 fx , fy 〉, (3.2)

in time ≈ n1/2+O(ε) per evaluation (see Algorithm 10 in Section 3.5 for the formal definition of

〈·, ·〉apx and its analysis).

Our second contribution is to show how dot product access as in (3.2) above allows one to

solve the cluster recovery problem. Both of these contributions are based on a new property

of the spectral embedding that we establish. This property allows us to quantify the intuitive

statement that vertices in the embedding concentrate around cluster means defined in (3.2)

above in a very strong formal sense.
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In the rest of this section we first present our sublinear time dot product oracle (in Section 3.3.1)

and then outline how access to such an oracle can be used to design a simple spectral clustering

algorithm (in Section 3.3.2). We assume that the inner conductance of the clustersϕ is constant

for the purposes of this overview to simplify notation.

3.3.1 Sublinear time dot product access to the spectral embedding

We start with a description of the main underlying ideas underlying the proof of Theorem 3.2.

Our starting point from earlier work is the observation that collision statistics of random walks

can be used to exhibit the structure of a (k,ϕ,ε)-clusterable graph. In particular, in (k,ϕ,ε)-

clusterable graphs, there is a gap between λk and λk+1, and the behavior of random walks is

essentially determined by the bottom k eigenvectors of the Laplacian and the corresponding

eigenvalues. This suggests that we can potentially use random walks to determine the spectral

embedding. The spectral embedding is of course not necessarily unique (for example, if not all

of the bottom k eigenvalues are unique). However, the dot product of the embedded vertices

is still well-defined as a function of the subspace spanned by the bottom k eigenvectors of

the Laplacian, as the subspace itself is uniquely defined because of the aforementioned gap

between λk and λk+1. See Remark 3.4 for more details. We now give an overview of our

approach.

Fix two vertices x, y ∈V . We would like to compute

〈 fx , fy 〉 = (F1x )T (F1y ) =1T
x U[k]U

T
[k]1y .

The direct approach to this would amount to computing an eigendecomposition of M to

obtain U[k], but that would take at least Ω(n) time and is too expensive for our purposes.

On the other hand, it is well-known that we are able to estimate, in about n1/2 time, the dot

product

(M t1x )T (M t1y ) =1T
x M 2t1y .

Note that 1T
x M 2t1y =1T

x UΣ2tU T1y . Thus to get U[k]U
T
[k] from 1T

x M 2t1y we need to remove

the matrix Σ2t from the middle. Specifically, we can estimate the quantity above as follows.

For some precision parameter ξ ∈ (0,1) we first run ≈ n1/2+O(ε/ϕ2)/ξ2 random walks from x,

letting m̂x ∈Rn denote a vector whose a’th component is the fraction of random walks from

x that end up at a. Similarly, we run ≈ n1/2+O(ε/ϕ2)/ξ2 random walks from y , letting m̂y ∈Rn

denote a vector whose a’th component is the fraction of random walks from y that end up at

a. One can show2 that with high (constant) probability we have

∣∣m̂T
x m̂y −1T

x M 2t1y
∣∣≤ ξ · 1

n
. (3.3)

2This calculation is mostly amounts to a rather standard collision counting calculation that relies on the birthday
paradox if one wants to establish the claim for most vertices x, y ∈V (this was done in [CPS15] and [CKK+18] for
example). Our new moment bounds for the spectral embedding (see Lemmas 3.4 and 3.5 in Section 3.4) allow us
to establish such a claim for all vertices x, y ∈V – see Lemma 3.22.
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While (3.3) is not directly useful, a primitive for constructing empirical distributions m̂x and

m̂y as above is a central part of our approach. We formalize it as Algorithm 6 (RUNRANDOMWALKS)

below:

Algorithm 6 RUNRANDOMWALKS(G ,R, t , x)

1: Run R random walks of length t starting from x

2: Let m̂x (y) be the fraction of random walks that ends at y . vector m̂x has support at most

R

3: return m̂x

Even if we cannot apply (3.3) directly, it lets us compute a seemingly related to quantity

1T
x M 2t1y quickly by invoking Algorithm 6 and computing one dot product. In order to get

from 1T
x M 2t1y to 1T

x U[k]U
T
[k]1y , we need to somehow apply a linear transformation on the

random walk distributions before computing the dot product between them, i.e. we need

a different dot product operation. It is easy to see that the correct linear transformation is

given by the matrix U[k]Σ
−2t
[k] U T

[k], where M t =UΣtU T is the eigendecomposition of M and

U[k] stands for the matrix of bottom k eigenvectors of the Laplacian3. Specifically, we have

(M t1x )T (U[k]Σ
−2t
[k] U T

[k])(M t1y ) =1T
x U[k]U

T
[k]1y = 〈 fx , fy 〉,

which is exactly the quantity we are interested in. Of course, there is a major problem with

this approach, since U[k]Σ
−2t
[k] U T

[k] is an n ×n matrix! To get around this issue, we approximate

U[k]Σ
−2t
[k] U T

[k] by a sparse low rank matrix, as we describe below. Specifically, we let IS be a

multiset of s ¿ n vertices selected uniformly at random. Let S be the n × s matrix whose j -th

column equals 1i j and let W̃ Σ̃2t W̃ T denote the eigendecomposition of n
s · (M t S)T (M t S)4. We

show that with an appropriate choice of the sampling parameter s ¿ n one has

U[k]Σ
−2t
[k] U T

[k] ≈ M t S · Ψ̃ ·ST M t , (3.4)

where

Ψ̃= n

s
·W̃[k]Σ̃

−4t
[k] W̃ T

[k] (3.5)

is an s × s matrix that can be computed explicitly. The corresponding primitive to compute

(M t S)T (M t S) is presented as Algorithm 7 (ESTIMATECOLLISIONPROBABILITIES) below. It

basically estimates the Gram matrix of random walk distributions out of IS (denoted by

G ) by counting collisions, and taking medians of estimates to reduce failure probability

appropriately. After computing the approximate Gram matrix, we derive from it the matrix

3Note that this matrix is not well defined in the presence of repeated eigenvectors, but any fixed choice of
this matrix suffices for our purposes. It is also interesting to note that while we use a canonical choice of the
eigendecomposition of M throughout the paper, all our bounds are oblivious to the choice of this basis, and hold
for the subspace of bottom k eigenvectors, which is well defined since there is a gap between the k-th and (k+1)-th
eigenvalues in k-clusterable graphs.

4We abuse notation somewhat by writing S to denote the n × s matrix whose (a, j )-th entry equals 1 if the j -th
sampled vertex equals a and 0 otherwise.
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Ψ= n
s ·Ŵ[k]Σ̂

−2
[k]Ŵ

T
[k], where G = Ŵ Σ̂Ŵ T is the eigendecomposition of G (see line (8) and line

(10) of Algorithm 9; note that G is a symmetric matrix, and hence an eigendecomposition

exists).

Algorithm 7 ESTIMATECOLLISIONPROBABILITIES(G , IS ,R, t )

1: for i = 1 to O(logn) do

2: Q̂i := ESTIMATETRANSITIONMATRIX(G , IS ,R, t )

3: P̂i := ESTIMATETRANSITIONMATRIX(G , IS ,R, t )

4: Gi := 1
2

(
P̂ T

i Q̂i +Q̂T
i P̂i

)
. Gi is symmetric

5: Let G be a matrix obtained by taking the entrywise median of Gi ’s . G is symmetric

6: return G . G ∈Rs×s

Algorithm 7 uses an auxiliary primitive presented as

Algorithm 8 ESTIMATETRANSITIONMATRIX(G , IS ,R, t )

1: for each sample x ∈ IS do

2: m̂x := RUNRANDOMWALKS(G ,R, t , x)

3: Let Q̂ be the matrix whose columns are m̂x for x ∈ IS

4: return Q̂ . Q̂ has at most Rs non-zeros

The proof of (3.4) relies on matrix perturbation bounds (the Davis-Kahan sinθ theorem) as well

as spectral concentration inequalities, crucially coupled with our tail bounds on the spectral

embedding (see Lemma 3.4 and Lemma 3.5). In particular Lemma 3.4 and it’s consequence -

Lemma 3.5 can be used to bound the leverage scores of U[k] (i.e. || fx ||22 for x ∈V ). This part of

the analysis is presented in Section 3.5.2.

Lemma 3.4. [Tail-bound] Let ϕ ∈ (0,1) and ε ≤ ϕ2

100 , and let G = (V ,E) be a d-regular graph

that admits (k,ϕ,ε)-clustering C1, . . . ,Ck . Let L be the normalized Laplacian of G. Let u be a

normalized eigenvector of L with ||u||2 = 1 and with eigenvalue at most 2ε. Then for any β> 1

we have
1

n
·
∣∣∣∣
{

x ∈V : |u(x)| ≥β ·
√

10

mini∈[k] |Ci |

}∣∣∣∣≤ (
β

2

)−ϕ2/20·ε
.

Lemma 3.5. Let ϕ ∈ (0,1) and ε ≤ ϕ2

100 , and let G = (V ,E) be a d-regular graph that admits

(k,ϕ,ε)-clustering C1, . . . ,Ck . Let u be a normalized eigenvector of L with ||u||2 = 1 and with

eigenvalue at most 2ε. Then we have

||u||∞ ≤ n20·ε/ϕ2 ·
√

160

mini∈k |Ci |
.

We note that the number of samples s is chosen as s ≈ kO(1)nO(ε/ϕ2) (see Algorithm 9) , where
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the second factor is due to our upper bound on the `∞ norm of the bottom k eigenvectors of

the Laplacian of a (k,ϕ,ε)-clusterable graph proved in Section 3.4.

Once we establish (3.4) in Section 3.5.3 (see Lemma 3.19), we get for every x, y ∈V

(M t1x )T M t S · Ψ̃ ·ST M t (M t1y ) ≈1T
x U[k]U

T
[k]1y , (3.6)

which is what we would like to compute. One issue remains at this point, which is that

we cannot compute M t1x or M t1y explicitly, and neither can we store and compute our

approximation M t S ·Ψ ·ST M t , since it is a dense, albeit low rank, matrix. We resolve this

problem by running an appropriate number of random walks out of the sampled nodes IS , as

well as the queried nodes x, y ∈V . Specifically, we run ≈ n1/2+O(ε) random walks from every

sampled node in IS , defining an n × s matrix Q whose (a,b)-th entry is the fraction of walks

from a that ended at b and using the matrix Q as a proxy for M t S (note that the expectation

of Q is exactly M t S). Such a matrix Q is computed as per line (2) and line (3) of Algorithm 7

(ESTIMATECOLLISIONPROBABILITIES). We note that Algorithm 9 (INITIALIZEORACLE) performs

O(logn) independent estimates that we ultimately use to boost confidence (by the median

trick). The entire preprocessing is summarized in Algorithm 9 (INITIALIZEORACLE) below:

Algorithm 9 INITIALIZEORACLE(G ,δ,ξ) .Need: ε/ϕ2 ≤ 1
105

1: t := 20·logn
ϕ2

2: Rinit :=O(n1−δ+980·ε/ϕ2 ·k17/ξ2)

3: s :=O(n480·ε/ϕ2 · logn ·k8/ξ2)

4: Let IS be the multiset of s indices chosen independently and uniformly at random from

{1, . . . ,n}

5: for i = 1 to O(logn) do

6: Q̂i := ESTIMATETRANSITIONMATRIX(G , IS ,Rinit, t ) . Q̂i has at most Rinit · s non-zeros

7: G :=ESTIMATECOLLISIONPROBABILITIES(G , IS ,Rinit, t )

8: Let n
s ·G := Ŵ Σ̂Ŵ T be the eigendecomposition of n

s ·G . G ∈Rs×s

9: if Σ̂−1 exists then

10: Ψ := n
s ·Ŵ[k]Σ̂

−2
[k]Ŵ

T
[k] .Ψ ∈Rs×s

11: return D := {Ψ,Q̂1, . . . ,Q̂O(logn)}

Equipped with the primitives presented above, we can now state our final dot product estimate:

m̂T
x QΨQT m̂y ≈1T

x U[k]U
T
[k]1y = 〈 fx , fy 〉, (3.7)

where m̂x and m̂y are empirical distributions of ≈ n1/2+O(ε/φ2) out of x and y respectively, Q is

an n×s matrix with ≈ n1/2+O(ε/φ2) nonzeros per column, andΨ is a possibly dense s×s matrix,

where the number of sampled vertices s is ultimately chosen to be kO(1)nO(ε/φ2). The analysis

of the error incurred in replacing (3.4) with (3.7) is presented in Section 3.5.4. It relies on a

birthday paradox style variance computation similar to previous sublinear time algorithms for
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testing graph cluster structure. The actual query procedure that implements (3.7) is given by

Algorithm 10 below.

Algorithm 10 SPECTRALDOTPRODUCTORACLE(G , x, y,δ,ξ,D) .Need: ε/ϕ2 ≤ 1
105

.D := {Ψ,Q̂1, . . . ,Q̂O(logn)}

1: Rquery :=O(nδ+500·ε/ϕ2 ·k9/ξ2)

2: for i = 1 to O(logn) do

3: m̂i
x := RUNRANDOMWALKS(G ,Rquery, t , x)

4: m̂i
y := RUNRANDOMWALKS(G ,Rquery, t , y)

5: Let αx be a vector obtained by taking the entrywise median of (Q̂i )T (m̂i
x ) over all runs

6: Let αy be a vector obtained by taking the entrywise median of (Q̂i )T (m̂i
y ) over all runs

7: return
〈

fx , fy
〉

apx
:=αT

x Ψαy

Trading off preprocessing time for query time.Finally, we note that one can reduce query

time (i.e., runtime of SPECTRALDOTPRODUCTORACLE) at the expense of increased prepro-

cessing time and size of data structure. Specifically, one can run ≈ nδ+O(ε/φ2) random walks

from nodes x, y whose dot product is being estimated by SPECTRALDOTPRODUCTORACLE

at the expense of increasing the number of random walks run to generate the matrix Q in

INITIALIZEORACLE to ≈ n1−δ+O(ε/φ2), for any δ≤ 1/2. This in particular leads to a nearly linear

time spectral clustering algorithm.

3.3.2 Geometry of the spectral embedding

We now describe our spectral clustering algorithm. Since we only have dot product access to

the spectral embedding, the algorithm must be very simple. Indeed, our algorithm amounts

to performing hyperplane partitioning in a sequence of carefully crafted subspaces of the

embedding space, using (a good approximation to) cluster means µi .

We first present a simple hyperplane partitioning, then we give an example embedding to

show why it might be hard to prove that this scheme works. After that we design a modification

of the hyperplane partitioning scheme that, through the course of carving, carefully projects

out some directions of the embedding. This modification is an idealized version of our final

algorithm for which we can prove per cluster recovery guarantees.

First we assume that the cluster means (3.1) are known. In that case we define, for every

i = 1, . . . ,k, the sets

C̃i := {x ∈V : 〈 fx ,µi 〉 ≥ 0.9||µi ||2}

of points that are nontrivially correlated with the i -th cluster mean µi . Note that C̃i =Cµi ,0.9 in

terms of Definition 3.8, but since µi ’s are fixed in this overview, we use the simpler notation.

81



Chapter 3. Spectral Clustering Oracles
in Sublinear Time

We next define, for every i = 1, . . . ,k,

Ĉi := C̃i \
i−1⋃
j=1

C̃ j . (3.8)

In other words, this is a natural ‘hyperplane-carving’ approach: points that belong to the first

hyperplane C̃1 are taken as the first cluster, points in the second hyperplane C̃2 that were

not captured by the first hyperplane are taken as the second cluster, etc. This is a natural

high dimensional analog of the Cheeger cut that has been used in many results on spectral

partitioning. The hope here would be to show that there exists a permutation π on [k] such

that

|Ĉi∆Cπ(i )| ≤O(ε) · |Cπ(i )|, (3.9)

for every i = 1, . . . ,k, where we assume that the inner conductance φ of the clusters is constant.

Here ∆ stands for the symmetric difference operation.

One natural approach to establishing (3.9) would be to prove that for every i = 1, . . . ,k vertices

x ∈Ci concentrate well around cluster means µi (see Fig. 3.1). This would seem to suggest that

C̃i ’s are close to the Ci ’s, and so are the Ĉi ’s. This property of the spectral embedding is quite

natural to expect, and versions of this property have been used in the literature. For example,

one can show that for every α ∈Rk , ||α||2 = 1,

k∑
i=1

∑
x∈Ci

〈 fx −µi ,α〉2 ≤O(ε). (3.10)

The bound in (3.10) follows using rather standard techniques – see Section 3.4.1 for this and

related claims. One can check that (3.10) suffices to show that C̃i ’s are very close to Ci ’s, namely

that for every i = 1, . . . ,k there exists j ∈ [k] such that

|C̃i∆C j | =O(ε) · |C j |. (3.11)

The formal proof is given in Section 3.6.2. The result in (3.11) is encouraging and suggests that

the clusters Ĉi defined by the simple hyperplane partitioning process approximate the Ci ’s,

but this is not the case! The problem lies in the fact that while C̃i ’s approximate the Ci ’s well as

per (3.11), the bound in (3.11) does not preclude nontrivial overlaps in the C̃i ’s – we give an

example in below.

Hard instance for natural hyperplane partitioning

We now give an example configuration of vertices in Euclidean space such that (a) the configu-

ration does not contradict (3.10) and (b) the natural hyperplane partitioning algorithm (3.8)

fails for this configuration. This shows why we develop a different algorithm that can deal with

configurations like the one presented in this subsection.
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µ1
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µ3

C1C2
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Figure 3.2 – Example of a spectral embedding that is consistent with (3.10) and (3.11) but for
which the natural hyperplane partitioning would not work.

Consider the following configuration of Ci ’s and µi ’s. Suppose that all cluster sizes are equal n
k ,

and let k = 1
ε . Let µi ’s form an orthogonal system and for each i ∈ [k] let ||µi ||2 =

√
k
n . For all

i < k = 1/ε for all x ∈Ci we set fx =µi , that is points from all clusters except for 1/ε’th one are

tightly concentrated around cluster means – see Fig. 3.2 for an illustration with k = 3. Then for

cluster C1/ε we distribute points as follows. For every i = 1, . . . ,1/ε−1 we move ε/2 fraction

of its points to µ1/ε+µi , and another ε/2 fraction of the points to µ1/ε−µi . The remaining ε

fraction of C1/ε stays at µ1/ε. Now observe that all cluster means are where they should be,

since we applied symmetric perturbations. Secondly notice that (3.10) is satisfied for every

directionα. Intuitively it is the case because we moved 1/ε−1 disjoint subsets of C1/ε of size εn
k

in 1/ε−1 orthogonal directions. Lastly observe what happens to C̃i ’s. For all i = 1, . . . ,1/ε−1

set C̃i contains Ci and ε/2 fraction of C1/ε that was moved in direction µi . One can verify that

this is perfectly consistent with (3.10), and in particular with (3.11). The problem is that many

clusters have large overlap with one particular cluster, namely C1/ε. Indeed notice that the

ball carving process returns Ĉ1/ε such that |Ĉ1/ε∩C1/ε| = ( 1+ε
2 ) n

k . That means that constant

(almost 1/2) fraction of cluster C1/ε is not recovered!

Our hyperplane partitioning scheme

The example in Section 3.3.2 suggests that we need to develop a diffferent algorithm. Our

main contribution here is an algorithm that more carefully deals with the overlaps of C̃i ’s. The
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high level idea for the algorithm is to recover clusters in stages and after every stage project

out the directions corresponding to recovered clusters.

First we observe the following property of (k,ϕ,ε)-clusterable graphs (see Lemma 3.16). Any

collection of pairwise disjoint sets with small outer-conductance matches the original clusters

well. More precisely for every collection {Ĉ1, . . . ,Ĉk } of pairwise disjoint sets satisfying for every

i ∈ [k] φ(Ĉi ) ≤O(ε log(k)) there exists a permutation π on [k] such that

|Ĉi∆Cπ(i )| ≤O(ε log(k)) · |Cπ(i )|, (3.12)

In the algorithm we will test many candidate clusters and the property above allows us to test

if a particular candidate Ĉ is good by only computing its outer-conductance.

Now we describe our algorithm more formally. The algorithm proceeds in O(log(k)) stages. In

the first stage it considers k candidate clusters Ĉi , where x ∈ Ĉi if it has big correlation with µi

but small correlation with all other µ j ’s. More formally

Ĉi := C̃i \
⋃
j 6=i

C̃ j , (3.13)

which is equivalent to:〈
fx ,µi

〉≥ 0.9||µi ||2 and for all j 6= i
〈

fx ,µ j
〉< 0.9||µ j ||2.

Note that by definition all these clusters are disjoint. At this point we return all candidate

clusters Ĉi for which φ(Ĉi ) ≤O(ε), remove the corresponding vertices from the graph, remove

the corresponding µ’s from the set {µ1, . . . ,µk } of centers and proceed to the next stage.

In the next stage we restrict our attention to a lower dimensional subspace Π of Rk . Intu-

itively we want to project out all the directions corresponding to the removed cluster centers.

Formally we defineΠ to be the subspace orthogonal to allµ’s removed up to this point (we over-

load notation by also usingΠ for the orthogonal projection onto this subspace). We will see that

µ’s are close to being orthogonal (see Lemma 3.7). This fact means thatΠ≈ span({µ1, . . . ,µb}),

where {µ1, . . . ,µb} is the set of µ’s that were not removed in the first step. Now the algorithm

considers b candidate clusters where the condition for x being in a cluster i changes to:〈
fx ,Πµi

〉≥ 0.9||Πµi ||2 and for all j ∈ [b], j 6= i
〈

fx ,Πµ j
〉< 0.9||Πµ j ||2.

Now we return all candidate clusters that satisfyφ(Ĉi ) ≤O(ε) but this time the constant hidden

in the O notation is bigger than in the first stage. In general at any stage t we change the test

to O(ε · t). At the end of the stage we proceed in a similar fashion by returning the clusters,

removing the corresponding vertices and µ’s and considering a lower dimensional subspace

ofΠ in the next stage.

The algorithm continues in such a fashion for O(log(k)) stages. Thus for all returned clusters
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Ĉi it is true that there exists j such that5:

|Ĉi4C j | ≤O
(
ε log(k)

) · |C j |.

Let’s analyze how this algorithm works for the configuration presented in Section 3.3.2. In

the first stage we have that, for all i 6= 1
ε , Ĉi = Ci and moreover |Ĉ1/ε∩C1/ε| = ( 1+ε

2 ) n
k . So all

candidate cluster Ĉi for i 6= 1/ε are returned but crucially this time (in contrast with the natural

hyperplane partitioning) cluster C1/ε is left untouched. Then directions {µ1, . . . ,µ1/ε−1} are

projected out. In the second stage the algorithm considers only vertices from C1/ε projected

onto one dimensional subspace span(µ1/ε) and recovers this cluster up to O(ε) error.

Because of the robustness property (3.12), to show that this algorithm works we only need to

argue that at the end of O(log(k)) stages k sets are returned. We do that by showing that in

every stage at least half of the remaining clusters is recovered. It is done in Lemma 3.37 and

crucially relies on the following fact. When the algorithm considers a subspace Π then the

number of points in the union of sets:

{x ∈V :
〈

fx ,Πµi
〉≥ 0.9||Πµi ||2}∩ {x ∈V :

〈
fx ,Πµ j

〉≥ 0.9||Πµ j ||2},

for all i , j ∈ [b], i 6= j is bounded by O(ε ·b · n
k ) (see Lemma 3.36 and Remark 3.7). To prove that

we observe that every point x in this intersections has big projection onto some two µi ,µ j

from {µ1, . . . ,µb}. Then using the fact that µ’s are close to being orthogonal we deduce that

Π≈ span({µ1, . . . ,µb}) this in particular means that Πµi ≈ µi , Πµ j ≈ µ j . Because of that fx is

abnormally far (further by a factor of 1/ε with respect to the average) from it’s center µx . Now

applying (3.10) for an orthonormal basis ofΠ and summing the inequalities we get that that

the number of points in the intersections is bounded by O(ε ·b · n
k ). Having this bound we can

argue that at least half of the remaining clusters is recovered as on average only O(ε · n
k ) points

from each cluster belong to the intersections. The formal argument is given in Section 3.6.3.

The use of subspaces is crucial for our approach. If we relied solely on the bounds on norms

(i.e. bounds on || fx ||) we could only claim a recovery guarantee of O(εk) per cluster. One of

the reasons is that there can be Θ(εn) vertices of abnormally big norm and all of them can

belong to one cluster (as it happens in the example from Section 3.3.2). The use of carefully

crafted sequence of subspaces solves this issue as it allows to derive better bounds for the

number of abnormal vertices in each stage. It is possible as we can show that the "variance of

the distribution" of fx ’s cannot concentrate on subspaces. This leads to an O(ε log(k)) error

guarantee per cluster.

What remains is to remove the assumption that the cluster means µi are known to the

algorithm. We show, using our tail bounds from Lemma 3.4, that a random sample of

5Note that this algorithm may not return a partition of the graph but only a collection of disjoint clusters. Later,
in Section 3.6.6 in Proposition 3.3, we present a simple reduction that shows that an algorithm that guarantees
(3.12) is enough to construct a clustering oracle that, as required by Definition 3.4, returns a partition. The high
level idea is to assign the remaining vertices to clusters randomly.
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O(1/ε ·k3 logk) points in every cluster is likely to concentrate around the mean. This allows

us to take a O(1/ε ·k4 logk) size sample of points, guess in exponential (in 1/ε ·k4 log2 k) time

which points belong to which cluster, and ultimately find surrogates µ̂i that are sufficiently

close to the actual µi ’s for the analysis to go through. This part of the analysis is presented in

Section 3.6.4. We also need a mechanism for testing if a set of approximate µ̂’s induces (via

our partitioning algorithm) a good clustering. We accomplish this goal by designing a simple

sampling based tester that determines whether or not the clusters induced by a particular

collection of candidate cluster means have the right size and outer conductance properties.

See Section 3.6.5 for this part of the analysis.

To design our spectral clustering algorithm we need to perform tests like
〈

fx ,Πµ
〉 ?≥ 0.9||Πµ||22

for a given vertex x, a candidate cluster mean µ, and the projection matrixΠ. Hence, we need

tools to approximate
〈

fx ,Πµ
〉

and ||Πµ||22. As explained above, instead of exact cluster means

i.e. µ we will perform the test for approximate cluster means i.e, µ̂= 1
|S|

∑
y∈S fy , where S is a

small subset S of sampled nodes. First observe that for any vertex x one can estimate
〈

fx , µ̂
〉

apx

as follows: 〈
fx , µ̂

〉
apx

= 1

|S|
∑
y∈S

〈
fx , fy

〉
apx

where
〈

fx , fy
〉

apx
can be computed using (SPECTRALDOTPRODUCTORACLE) Algorithm 10. Next

we will explain how to compute
〈

fx ,Π̂ fy
〉

apx
for x, y ∈V . Recall that Π̂ is the subspace orthogo-

nal to all µ̂’s removed so far. Let {µ̂1, . . . , µ̂r } denote the set of removed cluster means, and let

X ∈Rk×r denote a matrix whose columns are µ̂i ’s. Therefore the projection matrix onto the

span of {µ̂1, . . . , µ̂r } is given by X (X T X )−1X . Hence, we have Π̂= I −X (X T X )−1X and we can

compute
〈

fx ,Π̂ fy
〉

apx
as follows:

〈
fx ,Π̂ fy

〉
apx

= 〈
fx , fy

〉
apx

− ( f T
x X )(X T X )−1(X fy ).

Note that the i -th column of matrix X is µ̂i , thus f T
x X ∈Rr is a vector whose i -th entry can be

computed by
〈

fx , µ̂i
〉

apx
. Moreover notice that X T X ∈Rr×r is matrix such that its (i , j )-th entry

can be computed by
〈
µ̂i , µ̂ j

〉
apx

. Therefore ( f T
x X ), (X fy ) and (X T X )−1 all can be computed

explicitly which let us compute
〈

fx ,Π̂ fy
〉

apx
. Given the primitive to compute

〈
fx ,Π̂ fy

〉
apx

we

are able to estimate
〈

fx ,Π(µ)
〉

and ||Π(µ)||22 as follows:

〈
fx ,Π̂µ̂

〉
apx

:= 1

|B | ·
∑
y∈B

〈
fx ,Π̂ fy

〉
apx

,

∥∥Π̂µ̂∥∥2
apx

:= 1

|B | ·
∑
x∈B

〈
fx ,Π̂µ̂

〉
apx

.

This part of the analysis is presented in Section 3.5.6.
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3.4 Properties of the spectral embedding of (k,ϕ,ε)-clusterable graphs

In this section we study the spectral embedding of (k,ϕ,ε)-clusterable graphs. Recall that the

spectral embedding maps every vertex x ∈V to a k-dimensional vector fx . We are interested

in understanding the geometric properties of this embedding. We start by recalling some

standard properties of the embedding: We show that the cluster means

µi = 1

|Ci |
∑

x∈Ci

fx

are almost orthogonal and of length roughly 1/
p|Ci | (Lemma 3.7 below). Then we give a bound

on the directional variance, by which we mean the sum of squared distances of points fx to

their corresponding cluster centers when projected on direction α. We show in Lemma 3.6

below that the directional variance is bounded by O(ε/ϕ2) for every direction α ∈Rk ,‖α‖ = 1.

This in particular implies (see Lemma 3.9 below) that ‘rounding’ the spectral embedding by

mapping each vertex to its corresponding cluster center results in a matrix U that spectrally

approximates the matrix of bottom k eigenvectors of the Laplacian. These bounds are rather

standard, and their proofs are provided for completeness. The main shortcoming of the stan-

dard bounds is that they can only allow us to apply averaging arguments, and are thus unable

to rule out that some of the embedded points are quite far away from their corresponding

cluster center. For example, they do not rule out the possibility of an Ω(1/k) fraction of the

points being ≈ p
k further away from their corresponding centers. Since we would like to

recover every cluster to up an O(ε) error, such bounds are not sufficient on their own.

For this reason we consider the distribution of the projection of the embedded points on

the direction of any of the first k eigenvectors and we give stronger tail bounds for these

distributions (in Lemma 3.4) than what follows from variance calculations only. Basically,

we give a strong bound on the O(ϕ2/ε)-th moment of the spectral embedding as opposed

to just on the second moment, as above. These higher moment bounds are then crucially

used to achieve sublinear time access to dot products in the embedded space in Section 3.5

(we need them to establish spectral concentration of a small number of random samples in

Section 3.5.2) as well as to argue that a small sample of vertices contains a good approximation

to the true cluster means µi , i = 1, . . . ,k in its span in Section 3.6.4.

3.4.1 Standard bounds on cluster means and directional variance

The lemma below bounds the variance of the spectral embedding in any direction.

Lemma 3.6. (Variance bounds) Let k ≥ 2 be an integer, ϕ ∈ (0,1), and ε ∈ (0,1). Let G = (V ,E ) be

a d-regular graph that admits (k,ϕ,ε)-clustering C1, . . . ,Ck . Then for all α ∈Rk , with ‖α‖ = 1

we have
k∑

i=1

∑
x∈Ci

〈
fx −µi ,α

〉2 ≤ 4ε

ϕ2 .
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Proof. For each i ∈ [k], and any vertex x ∈ Ci , let di (x) denote the degree of vertex x in the

subgraph Ci . Let Hi be a graph obtained by adding d −di (x) self-loops to each vertex x ∈Ci .

Let L denote the normalized Laplacian of graph G . For each i ∈ [k] and let Li denote the

normalized Laplacian of Hi , and let λ2(Hi ) be the second smallest eigenvalue of Li .

Let z =U[k]α. Note that ||z||2 = 1. By Lemma 3.3 we have λ1 ≤ . . . ≤λk ≤ 2ε, where λi is the i th

smallest eigenvalue of of L. Therefore we have

〈z,Lz〉 ≤λk ≤ 2ε (3.14)

Fix some i ∈ [k], let z ′ ∈Rn be a vector such that z ′(x) := z(x)−〈µi ,α〉. For any S ⊆V , we define

z ′
S ∈Rn to be a vector such that for all x ∈V z ′

S(x) = z ′(x) if x ∈ S and z ′
S(x) = 0 otherwise. Note

that z(x) = 〈
fx ,α

〉
, thus we have∑

x∈V
z ′

Ci
(x) = ∑

x∈Ci

z ′(x) = ∑
x∈Ci

z(x)−〈
µi ,α

〉= ∑
x∈Ci

〈
fx −µi ,α

〉= 0

Thus we have z ′
Ci

⊥1, so by properties of Rayleigh quotient we get

〈z ′
Ci

,Li z ′
Ci
〉

〈z ′
Ci

, z ′
Ci
〉 = 1

d

∑
x,y∈Ci ,(x,y)∈E (z ′(x)− z ′(y))2∑

x∈Ci
(z ′(x))2 = 1

d

∑
x,y∈Ci ,(x,y)∈E (z(x)− z(y))2∑

x∈Ci
(z(x)−〈µi ,α〉)2 ≥λ2(Hi )

(3.15)

Furthermore, by Cheeger’s inequality for any i ∈ [k] we have λ2(Hi ) ≥ ϕ2

2 . Hence, for any i ∈ [k]

we have ∑
x,y∈Ci ,(x,y)∈E (z(x)− z(y))2

d
∑

x∈Ci
(z(x)−〈µi ,α〉)2 ≥λ2(Hi ) ≥ ϕ2

2

Now observe the following:

2ε≥ 〈z,Lz〉 By (3.14)

= 1

d
· ∑

(x,y)∈E
(z(x)− z(y))2

≥ 1

d
·

k∑
i=1

∑
x,y∈Ci ,(x,y)∈E

(z(x)− z(y))2

≥ ϕ2

2
·

k∑
i=1

∑
x∈Ci

(z(x)−〈µi ,α〉)2 By (3.15)

Recall that for all x ∈V , z(x) = 〈
fx ,α

〉
. Therefore for for any α ∈Rk with ‖α‖ = 1 we have

k∑
i=1

∑
x∈Ci

〈 fx −µi ,α〉2 ≤ 4ε

ϕ2

The following lemma shows that the length of the cluster mean of cluster Ci is roughly 1/
p|Ci |
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and that cluster means are almost orthogonal.

Lemma 3.7. (Cluster means) Let k ≥ 2 be an integer, ϕ ∈ (0,1), and ε ∈ (0,1). Let G = (V ,E) be a

d-regular graph that admits (k,ϕ,ε)-clustering C1, . . . ,Ck . Then we have

1. for all i ∈ [k],
∣∣∣||µi ||22 − 1

|Ci |
∣∣∣≤ 4

p
ε

ϕ
1

|Ci |

2. for all i 6= j ∈ [k],
∣∣〈µi ,µ j 〉

∣∣≤ 8
p
ε

ϕ
1p|Ci ‖C j |

To prove Lemma 3.7 we need Lemma 3.9 in which we will use the following result from [HJ90]

(Theorem 1.3.20 on page 53).

Lemma 3.8 ([HJ90]). Let h,m,n be integers such that 1 ≤ h ≤ m ≤ n. For any matrix A ∈
Rm×n and matrix B ∈Rn×m , the multisets of nonzero eigenvalues of AB and B A are equal. In

particular, if one of AB and B A is positive semidefinite, then νh(AB) = νh(B A).

Lemma 3.9. Let k ≥ 2 be an integer, ϕ ∈ (0,1), and ε ∈ (0,1). Let G = (V ,E ) be a d-regular graph

that admits (k,ϕ,ε)-clustering C1, . . . ,Ck . Let H ∈Rk×k be a matrix whose i -th column is µi . Let

W ∈Rk×k be a diagonal matrix such that W (i , i ) =p|Ci |. Then for any α ∈Rk , ‖α‖ = 1, we have

1. |αT
(
(HW )(HW )T − I

)
α| ≤ 4

p
ε

ϕ

2. |αT
(
(HW )T (HW )− I

)
α| ≤ 4

p
ε

ϕ

Proof. Proof of item (1): Let Y ∈Rk×n denote a matrix whose x-th column is µx for any x ∈V .

Note that

Y Y T =
k∑

i=1
|Ci |µiµ

T
i = (HW )(HW )T .

We define z̃ := Y Tα, and z :=U[k]α. Note that U T
[k]U[k] = I . Therefore we have

|αT (
(HW )(HW )T − I

)
α| = |αT (Y Y T −U T

[k]U[k])α|

=
∣∣∣∣∣ ∑

x∈V
z̃(x)2 − z(x)2

∣∣∣∣∣ From definition of z(x) and z̃(x)

=
∣∣∣∣∣ ∑

x∈V
(z(x)− z̃(x)) (z(x)+ z̃(x))

∣∣∣∣∣
≤

√ ∑
x∈V

(z(x)− z̃(x))2
∑

x∈V
(z̃(x)+ z(x))2 By Cauchy-Schwarz inequality

(3.16)

Note that for any x ∈V , we have z(x) = 〈
fx ,α

〉
and z̃(x) = 〈

µx ,α
〉

. Therefore by Lemma 3.6 we

have √ ∑
x∈V

(z(x)− z̃(x))2 =
√ ∑

x∈V

〈
fx −µx ,α

〉2 ≤ 2
p
ε

ϕ
(3.17)
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To complete the proof it suffices to show that
∑

x∈V (z̃(x)+ z(x))2 ≤ 4. Note that∑
x∈V

z̃(x)2 = ∑
x∈V

〈
α,µx

〉2

=∑
i
|Ci |

〈
α,

∑
x∈Ci

fx

|Ci |
〉2

=∑
i
|Ci |

(∑
x∈Ci

〈
α, fx

〉
|Ci |

)2

≤∑
i

∑
x∈Ci

〈
α, fx

〉2 By Jensen’s inequality

= ∑
x∈V

z(x)2

Thus we have ∑
x∈V

(z̃(x)+ z(x))2 ≤ ∑
x∈V

2(z̃(x)2 + z(x)2) ≤ 2+2
∑

x∈V
z̃(x)2 ≤ 4 (3.18)

In the first inequality we used the fact that (z̃(x)− z(x))2 ≥ 0 and for the second inequality we

used the fact that ||z||22 = ||U[k]α||22 = 1. Putting (3.18), (3.17), and (3.16) together we get

|αT (
(HW )(HW )T − I

)
α| ≤ 4

p
ε

ϕ
.

Proof of item (2): Note that by item (2) for any vector α with ||α||2 = 1 we have

1− 4
p
ε

ϕ
≤αT (

(HW )(HW )T )
α≤ 1+ 4

p
ε

ϕ

Thus by Lemma 3.8 we have that the set of eigenvalues of (HW )(HW )T and (HW )T (HW ) are

the same, and all of the eigenvalues lie in the interval [1− 4
p
ε

ϕ ,1+ 4
p
ε

ϕ ]. Thus for any vector α

with ||α||2 = 1 we have

1− 4
p
ε

ϕ
≤αT (

(HW )T (HW )
)
α≤ 1+ 4

p
ε

ϕ
.

Now we are able to prove Lemma 3.7.

Lemma 3.7. (Cluster means) Let k ≥ 2 be an integer, ϕ ∈ (0,1), and ε ∈ (0,1). Let G = (V ,E) be a

d-regular graph that admits (k,ϕ,ε)-clustering C1, . . . ,Ck . Then we have

1. for all i ∈ [k],
∣∣∣||µi ||22 − 1

|Ci |
∣∣∣≤ 4

p
ε

ϕ
1

|Ci |

2. for all i 6= j ∈ [k],
∣∣〈µi ,µ j 〉

∣∣≤ 8
p
ε

ϕ
1p|Ci ‖C j |
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Proof. Proof of item (1): Let H ∈Rk×k be a matrix whose i -th column is µi . Let W ∈Rk×k be a

diagonal matrix whose such that W (i , i ) =p|Ci |. Thus by Lemma 3.9 item (2) for any α ∈Rk

with ‖α‖ = 1, we have

|αT (
(HW )T (HW )− I

)
α| ≤ 4

p
ε

ϕ

Let α=1i . Thus we have

|((HW )T (HW ))(i , i )−1| ≤ 4
p
ε

ϕ
(3.19)

Note that ((HW )T (HW ))(i , i ) = (W H T HW )(i , i ) = ||µi ||22|Ci |.Therefore we get∣∣∣∣||µi ||22 −
1

|Ci |
∣∣∣∣≤ 4

p
ε

ϕ
· 1

|Ci |

Proof of item (2): Let α = 1p
2

(1i +1 j ). Note that ||α||2 = 1. Thus by Lemma 3.9 item (2) we

have

|αT (
(HW )T (HW )− I

)
α| ≤ 4

p
ε

ϕ

Note that

∣∣αT (
(HW )T (HW )− I

)
α

∣∣= ∣∣∣∣1

2

(
||µi ||22|Ci |+ ||µ j ||22|C j |+2

〈
µi ,µ j

〉√
|Ci ||C j |−2

)∣∣∣∣
Therefore we get

∣∣∣||µi ||22|Ci |+ ||µ j ||22|C j |+2
〈
µi ,µ j

〉√
|Ci ||C j |−2

∣∣∣≤ 8
p
ε

ϕ

Thus ∣∣∣〈µi ,µ j
〉√

|Ci ||C j |
∣∣∣≤ ∣∣∣∣1

2

(
1−||µi ||22|Ci |

)+ 1

2

(
1−||µ j ||22|C j |

)∣∣∣∣+ 4
p
ε

ϕ

≤ 1

2
· 4

p
ε

ϕ
+ 1

2
· 4

p
ε

ϕ
+ 4

p
ε

ϕ
By item (1)

≤ 8
p
ε

ϕ

Therefore we get ∣∣〈µi ,µ j
〉∣∣≤ 8

p
ε

ϕ
· 1√|Ci ||C j |

.

3.4.2 Strong Tail Bounds on the Spectral Embedding

The main results of this section are the following two lemmas. The first lemma gives an upper

bound on the length of the projection of any point fx on an arbitrary direction α ∈ Rk . The
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second lemma considers the distribution of the lengths of projected fx and we get tail bounds

that show that the fraction of points whose projected length exceeds the ‘expectation’ (which

is about 1/
p|Ci | for the smallest cluster Ci ) by a factor of β is bounded by β−ϕ2/10ε. In other

words, we bound the O(ϕ2/ε)-th moment as opposed to the second moment, which gives us

tight control over the embedding when ε/ϕ2 ¿ 1/logk.

Lemma 3.5. Let ϕ ∈ (0,1) and ε ≤ ϕ2

100 , and let G = (V ,E) be a d-regular graph that admits

(k,ϕ,ε)-clustering C1, . . . ,Ck . Let u be a normalized eigenvector of L with ||u||2 = 1 and with

eigenvalue at most 2ε. Then we have

||u||∞ ≤ n20·ε/ϕ2 ·
√

160

mini∈k |Ci |
.

Lemma 3.4. [Tail-bound] Let ϕ ∈ (0,1) and ε ≤ ϕ2

100 , and let G = (V ,E) be a d-regular graph

that admits (k,ϕ,ε)-clustering C1, . . . ,Ck . Let L be the normalized Laplacian of G. Let u be a

normalized eigenvector of L with ||u||2 = 1 and with eigenvalue at most 2ε. Then for any β> 1

we have
1

n
·
∣∣∣∣
{

x ∈V : |u(x)| ≥β ·
√

10

mini∈[k] |Ci |

}∣∣∣∣≤ (
β

2

)−ϕ2/20·ε
.

We are interested in deriving moment bounds for the distribution of the entries of the first

k eigenvectors u of L (i.e., eigenvectors with eigenvalue smaller than 2ε), and specifically in

the distribution of the absolute values of the entries of u. In order to be able to analyze this

distribution, we define the sets of all entries in u that are bigger than a threshold θ:

Definition 3.6 (Threshold sets). Let G = (V ,E) be a graph with normalized Laplacian L. Let u

be a normalized eigenvector of L with ||u||2 = 1. Then for the vector u and a threshold θ ∈R+

we define the threshold set S(θ) with respect to the eigenvector u and threshold θ as

S(θ) := {x ∈V : u(x) ≥ θ}.

Our arguments will use that for every vertex x, we have u(x) ≈ 1
d

∑
{x,y}∈E u(y). So nodes

neighboring other nodes with large u(·) values are likely to have large u(·) values as well. This

motivates the following definition of the potential of a threshold set.

Definition 3.7 (Potential of a threshold set). Let G = (V ,E) be a graph with normalized Lapla-

cian L. Let u be a normalized eigenvector of L with ||u||2 = 1. Then for vector u and a threshold

θ ∈R+ we define the potential of a threshold set S(θ) as

p(θ) = ∑
x∈S(θ)

u(x).

We start by proving a core bound on the threshold sets (Lemma 3.10 below) that forms the

basis of our approach: the main technical results of this section (Lemma 3.5 and Lemma 3.4)
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essentially follow by repeated application of Lemma 3.10. Specifically, we now argue that if a

threshold set S(θ) expands in the graph G and the relative potential of the set (i.e., p(θ)/|S(θ)|)
is at most 2θ, then we can slightly decrease θ to obtain a new θ′ such that the corresponding

threshold set is a constant factor larger that S(θ) and the relative potential is bounded by 2θ′.

Lemma 3.10 (Threshold shift for expanding threshold sets). Let G = (V ,E) be a d-regular

graph with normalized Laplacian L. Let u be a normalized eigenvector of L with ||u||2 = 1 and

with eigenvalue λ≤ 2ε. Let θ ∈ R+ be a threshold. Suppose that S(θ) is the threshold set with

respect to u and θ such that S(θ) is non-empty, φG (S(θ)) ≥ϕ and p(θ)
|S(θ)| ≤ 2θ. Then the following

holds for θ′ = θ
(
1− 8ε

ϕ

)
:

1. |S(θ′)| ≥ (1+ϕ/2)|S(θ)|, and

2. p(θ′)
|S(θ′)| ≤ 2θ′.

Proof. Proof of item (1): Note that λu = Lu = (I − A
d )u. Thus for any x ∈V we have (Lu) (x) =

u(x)− 1
d

∑
{x,y}∈E u(y). Thus we have,

u(x)− 1

d

∑
{x,y}∈E

u(y) =λ ·u(x).

We write the above as ∑
y∈N (x)

(u(x)−u(y)) = d ·λ ·u(x), (3.20)

where N (x) = {y ∈V : ∃{x, y} ∈ E }. Summing (3.20) over all x ∈ S(θ) we get∑
x∈S(θ)

∑
y∈N (x)

(u(x)−u(y)) = ∑
x∈S(θ)

λ ·d ·u(x) =λ ·d ·p(θ), (3.21)

and note that ∑
x∈S(θ)

∑
y∈N (x)

(u(x)−u(y)) = ∑
{x,y}∈E

x∈S(θ),y 6∈S(θ)

(u(x)−u(y)). (3.22)

For any edge e = {x, y} ∈ E , we define ∆(e) = |u(x)−u(y)|. Note that for any e = {x, y} such that

x ∈ S(θ) and y 6∈ S(θ) we have u(x) ≥ θ > u(y), hence ∆(e) = u(x)−u(y). Therefore, putting

(3.22) and (3.21) together we get ∑
e∈E(S(θ),V \S(θ))

∆(e) =λ ·d ·p(θ).

By an averaging argument there exists a set EL ⊆ E(Sθ,V \ Sθ) such that |EL | ≥ |E(S(θ),V \S(θ))|
2

and all edges e ∈ EL satisfy ∆(e) ≤ 2·λ·d ·p(θ)
|E(S(θ),V \S(θ))| . We define VL as a subset of vertices of V \ S(θ)

that are connected to vertices of S(θ) by edges in EL , i.e.

VL = {y ∈V \ S(θ) : ∃ {x, y} ∈ EL , x ∈ S(θ)}.
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Note that

|VL | ≥ |EL |
d

≥ |E(S(θ),V \ S(θ))|
2d

. (3.23)

Using the assumption of the lemma that φG (S(θ)) ≥ϕ we obtain

|E(S(θ),V \ S(θ))| ≥ϕ ·d · |S(θ)|. (3.24)

Putting (3.24) and (3.23) together we get

|VL | ≥ ϕ|S(θ)|
2

. (3.25)

Recall that for all e ∈ EL we have ∆(e) ≤ 2·λ·d ·p(θ)
|E(S(θ),V \S(θ))| . We have λ≤ 2ε, therefore for all e ∈ EL

we have ∆(e) ≤ 4·ε·d ·p(θ)
|E(S(θ),V \S(θ))| . Thus for all y ∈VL we get

u(y) ≥ θ− 4 ·ε ·d ·p(θ)

|E(S(θ),V \ S(θ))| . (3.26)

By the assumption of the lemma we have p(θ)
|S(θ)| ≤ 2θ, hence, by inequality (3.24) we get

θ− 4 ·ε ·d ·p(θ)

|E(S(θ),V \ S(θ))| ≥ θ−
4 ·ε ·d ·p(θ)

ϕ ·d · |S(θ)| = θ− 4ε

ϕ
· p(θ)

|S(θ)| ≥ θ
(
1− 8ε

ϕ

)
. (3.27)

Putting (3.27) and (3.26) together we get for all y ∈VL , u(y) ≥ θ
(
1− 8ε

ϕ

)
. Let θ′ := θ(1− 8ε

ϕ ). Thus

S(θ)∪VL ⊆ S(θ′).

By definition of VL we have VL ∩S(θ) =;. Therefore, |S(θ′)| ≥ |S(θ)|+ |VL |. Thus by inequal-

ity (3.25) we get

|S(θ′)| ≥ |S(θ)|
(
1+ ϕ

2

)
. (3.28)

This concludes the proof of the first part of the lemma.

Proof of item (2): Now using that for all x 6∈ S(θ) we have u(x) < θ and that p(θ) ≤ 2θ|S(θ)| by

assumption of the lemma we obtain

p(θ′) = ∑
u∈S(θ′)

u(x)

= ∑
x∈S(θ)

u(x)+ ∑
x∈S(θ′)\S(θ)

u(x)

≤ p(θ)+θ|S(θ′) \ S(θ)|
≤ 2θ|S(θ)|+θ|S(θ′) \ S(θ)|. Since p(θ) ≤ 2θ|S(θ)|
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By (3.28) we have |S(θ′) \ S(θ)| ≥ ϕ
2 |S(θ)|. Therefore, using ε≤ ϕ2

100 we get

p(θ′)
|S(θ′)| ≤ 2θ|S(θ)|+θ|S(θ′) \ S(θ)|

|S(θ)|+ |S(θ′) \ S(θ)| = θ ·
2+ |S(θ′)\S(θ)|

|S(θ)|
1+ |S(θ′)\S(θ)|

|S(θ)|
≤ θ · 2+ ϕ

2

1+ ϕ
2

≤ θ ·2

(
1− 8ε

ϕ

)
≤ 2θ′

We would like to apply Lemma 3.10 iteratively, but there is one hurdle: while the first condition

on the threshold set S(θ) naturally follows as long as S(θ) is not too large (by Proposition

3.2), the second condition needs to be established at the beginning of the iterative process.

Lemma 3.11 accomplishes exactly that: we prove that for any value θ1 with threshold set S(θ1)

not empty or not too large, there exists a close value θ that meets the conditions of previous

lemma.

Proposition 3.2. Let G = (V ,E ) be a d-regular graph that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck .

For any set S ⊆V with size |S| ≤ 1
2 ·mini∈k |Ci | we have φG (S) ≥ϕ.

Proof. For any 1 ≤ i ≤ k we define Si = S ∩Ci . Note that

|Si | ≤ |S| ≤ 1

2
·min

i∈k
|Ci | ≤ |Ci |

2
.

Therefore since φG (Ci ) ≥ϕ we have E(Si ,Ci \ Si ) ≥ϕd |Si |. Thus we get

E(S,V \ S) ≥
k∑

i=1
E(Si ,Ci \ Si ) ≥ϕd

k∑
i=1

|Si | =ϕd |S|.

Hence, φG (S) ≥ϕ.

Lemma 3.11. Let ϕ ∈ (0,1) and ε ≤ ϕ2

100 , and let G = (V ,E) be a d-regular graph that admits

(k,ϕ,ε)-clustering C1, . . . ,Ck . Let L denote the normalized Laplacian of G. Let u be a normalized

eigenvector of L with ||u||2 = 1 and with eigenvalue λ≤ 2ε. Let θ1 ∈R+ be a threshold. Let S(θ1)

be the threshold set with respect to u and θ1. Suppose that 1 ≤ |S(θ1)| ≤ 1
2 ·mini∈{1,...,k} |Ci |. Then

there exists a threshold θ2 such that the following holds:

1. θ1

(
1− 8ε

ϕ

)
≤ θ2 ≤ θ1, and

2. p(θ2)
|S(θ2)| ≤ 2θ2

Proof. Let

θ∗ := min

{
θ ≥ θ1

∣∣∣∣ S(θ) 6= ; and
p(θ)

|S(θ)| ≤ 2θ

}
.
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We can conclude that θ∗ exists, as by the assumption of the lemma we have |S(θ1)| ≥ 1 and

for θmax = maxx∈V u(x) we have p(θmax)
|S(θmax)| = θmax. We also have |S(θ∗)| ≤ mini∈{1,...,k} |Ci |/2 as

θ∗ ≥ θ1 and by the assumption of the lemma. So Proposition 3.2 implies

φG (S(θ∗)) ≥ϕ. (3.29)

Now Lemma 3.10 implies
p(θ∗(1− 8ε

ϕ ))

|S(θ∗(1− 8ε
ϕ ))| ≤ 2θ∗

(
1− 8ε

ϕ

)
and by minimality of θ∗ we have that:

θ1

(
1− 8ε

ϕ

)
≤ θ∗

(
1− 8ε

ϕ

)
≤ θ1.

So we can set θ2 := θ∗
(
1− 8ε

ϕ

)
.

We are now ready to prove our tail bound. The main idea behind the proof is to use Lemma 3.10

and Lemma 3.11 to show that if a vertex has a large entry along one of the bottom k eigen-

vectors this implies that many other vertices also have a relatively large value along the same

eigenvector. Thus, not too many fx can have such a large value.

Lemma 3.4. [Tail-bound] Let ϕ ∈ (0,1) and ε ≤ ϕ2

100 , and let G = (V ,E) be a d-regular graph

that admits (k,ϕ,ε)-clustering C1, . . . ,Ck . Let L be the normalized Laplacian of G. Let u be a

normalized eigenvector of L with ||u||2 = 1 and with eigenvalue at most 2ε. Then for any β> 1

we have
1

n
·
∣∣∣∣
{

x ∈V : |u(x)| ≥β ·
√

10

mini∈[k] |Ci |

}∣∣∣∣≤ (
β

2

)−ϕ2/20·ε
.

Proof. Let smin = mini∈{1,...,k} |Ci |. We define

S+ =
{

x ∈V : u(x) ≥β ·
√

10

smin

}
,

and

S− =
{

x ∈V : −u(x) ≥β ·
√

10

smin

}
Note that −u is also an eigenvector of L with the same eigenvalue as u, hence, without loss of

generality suppose that |S+| ≥ |S−|. Let T =
{

x ∈V : u(x)2 ≥ 10
smin

}
. Since, 1 = ‖u‖2

2 =
∑

x∈V u(x)2,

an averaging argument implies |T | ≤ smin
10 . Let

T + =
{

x ∈V : u(x) ≥
√

10

smin

}
.
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Note that β> 1, hence, S+ ⊆ T + ⊆ T , and so we have |S+| ≤ |T +| ≤ |T | ≤ smin
10 . We may assume

that S+ is non-empty as otherwise the lemma follows immediately. Let θ0 = β ·
√

10
smin

. Note

that S+ = S(θ0). Hence, 1 ≤ |S(θ0)| ≤ smin
10 . Therefore by Lemma 3.11 there exists a threshold θ1

such that (
1− 8ε

ϕ

)
β ·

√
10

smin
≤ θ1 ≤β ·

√
10

smin
, and (3.30)

p(θ1)

|S(θ1)| ≤ 2θ1.

For any t ≥ 1 we define θt+1 = θt (1− 8ε
ϕ ). For some t ′ ≥ 0 we must have θt ′+1 ≤

√
10

smin
≤ θt ′ .

Thus by (3.30) we have

θt ′ =
(
1− 8ε

ϕ

)t ′−1

θ1 ≥
(
1− 8ε

ϕ

)t ′

·β ·
√

10

smin
, (3.31)

and

θt ′ ≤ θt ′+1(
1− 8ε

ϕ

) ≤
√

10
smin(

1− 8ε
ϕ

) (3.32)

Putting (3.31) and (3.32) together we get

β≤
(
1− 8ε

ϕ

)−t ′−1

(3.33)

Recall that for all t ≥ 1 we have θt+1 = θt (1− 8ε
ϕ ), thus

S+ = S(θ0) ⊆ S(θ1) ⊆ S(θ2) ⊆ . . . ⊆ S(θt ′) ⊆ T +.

Therefore for all 0 ≤ t ≤ t ′ we have

|S+| ≤ |S(θt )| ≤ |T +| ≤ smin

10
. (3.34)

Since |S(θt )| ≤ mini∈{1,...,k} |Ci |
10 = smin

10 , by Lemma 3.10 for all 1 ≤ t ≤ t ′ we have

|S(θt+1)| ≥ |S(θt )|
(
1+ ϕ

2

)
. (3.35)

Therefore

t ′ ≤ log1+ ϕ

2

( |T +|
|S+|

)
By (3.35)

≤ log1+ ϕ

2

(
smin

10 · |S+|
)

By (3.34)

≤ log1+ ϕ

2

(
smin

5 · |S+∪S−|
)

By the assumption |S+| ≥ |S−| (3.36)
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Putting (3.33) and (3.36) together we get

β≤
(
1− 8ε

ϕ

)−t ′−1

By (3.33)

≤
(
1− 8ε

ϕ

)−1−log
1+ ϕ

2

(
smin

5·|S+∪S−|
)

By (3.36)

≤ 2 ·
(

smin

5 · |S+∪S−|
)− log

1+ ϕ
2

(
1− 8ε

ϕ

)
Since

ε

ϕ2 ≤ 1

100
(3.37)

Note that for any x ∈ R we have 1+ x ≤ ex , and for any x < 0.01 we have 1− x ≥ e−1.2x , thus

given ε
ϕ < 0.01 we have

log1+ ϕ

2

(
1− 8ε

ϕ

)
=

ln
(
1− 8ε

ϕ

)
ln

(
1+ ϕ

2

) ≥
−10ε

ϕ

ϕ
2

≥−20 ·ε
ϕ2 (3.38)

Putting (3.37) and (3.38) together we get

β

2
≤

(
smin

5 · |S+∪S−|
)(20·ε/ϕ2)

Therefore we have

|S+∪S−| ≤ smin ·
(
β

2

)−(ϕ2/20·ε)
≤ n ·

(
β

2

)−(ϕ2/20·ε)
.

As a consequence of our tail bound we can prove a bound on `∞-norm on any unit vector in

the eigenspace spanned by the bottom k eigenvectors of L, i.e. U[k].

Lemma 3.5. Let ϕ ∈ (0,1) and ε ≤ ϕ2

100 , and let G = (V ,E) be a d-regular graph that admits

(k,ϕ,ε)-clustering C1, . . . ,Ck . Let u be a normalized eigenvector of L with ||u||2 = 1 and with

eigenvalue at most 2ε. Then we have

||u||∞ ≤ n20·ε/ϕ2 ·
√

160

mini∈k |Ci |
.

Proof. We define

S =
{

x ∈V : |u(x)| ≥ n20ε/ϕ2 ·
√

160

mini∈k |Ci |

}
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Let β= 4 ·n20ε/ϕ2
. By Lemma 3.4 we have

|S| ≤ n ·
(
β

2

)−ϕ2/20·ε
≤ n ·

(
2 ·n20ε/ϕ2

)−ϕ2/20·ε < 1

Therefore S =;, hence

‖u‖∞ ≤ n20ε/ϕ2 ·
√

160

mini∈k |Ci |
.

3.4.3 Centers are strongly orthogonal

The main result of this section is Lemma 3.12 which generalizes Lemma 3.7 to the orthogonal

projection of cluster centers into the subspace spanned by some of the centers. To prove

Lemma 3.12 we first need to prove Lemma 3.13, Lemma 3.14 and Lemma 3.15.

Lemma 3.12. Let k ≥ 2, ϕ ∈ (0,1) and ε
ϕ2 be smaller than an absolute positive constant. Let

G = (V ,E) be a d-regular graph that admits (k,ϕ,ε)-clustering C1, . . . ,Ck . Let S ⊂ {µ1, . . . ,µk }

denote a subset of cluster means. Let Π ∈ Rk×k denote the orthogonal projection matrix onto

span(S)⊥. Then the following holds:

1. For all µi ∈ {µ1, . . . ,µk } \ S we have
∣∣‖Πµi‖2

2 −||µi ||22
∣∣≤ 16

p
ε

ϕ · ||µi ||22.

2. For all µi 6=µ j ∈ {µ1, . . . ,µk } \ S we have |〈Πµi ,Πµ j 〉| ≤ 40
p
ε

ϕ · 1p|Ci |·|C j |
.

Matrix A ∈ Rn is poitive definite if xT Ax > 0 for all x 6= 0, and it is positive semidefinite if

xT Ax ≥ 0 for all x ∈ Rn . We write A Â 0 to indicate that A is positive definite, and A < 0 to

indicate that it is positive semidefinite. We use the semidefinite ordering on matrices, writing

A <B if and only if A−B < 0.

Theorem 3.4 ([Tod11]). Let A,B ∈ Rn×n be invertible, positive definite matrices. Then A <
B =⇒ B−1 < A−1.

Proof. By symmetry, we only need to show A <B =⇒ B−1 < A−1. Since B Â 0 for any x, y ∈Rn

we obtain

0 ≤ 〈
y −B−1x,B(y −B−1x)

〉
= 〈

y,B y
〉−〈

y, x
〉−〈

B−1x,B y
〉+〈

x,B−1x
〉

= 〈
y,B y

〉−2
〈

x, y
〉+〈

x,B−1x
〉

so

2
〈

x, y
〉−〈

y,B y
〉≤ 〈

x,B−1x
〉

(3.39)
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Since A <B it follows from (3.39) that

2
〈

x, y
〉−〈

y, Ay
〉≤ 2

〈
x, y

〉−〈
y, Ay

〉≤ 〈
x,B−1x

〉
(3.40)

Letting y = A−1x in the leftmost expression of (3.40) we obtain〈
x, A−1x

〉≤ 〈
x,B−1x

〉
Since x ∈Rn is is arbitrary, we get B−1 < A−1.

Lemma 3.13. Let H , H̃ ∈Rn×n be invertible, positive definite matrices. Let δ< 1. Suppose that

for any vector x ∈Rn with ‖x‖2 = 1 we have (1−δ)xT H x ≤ xT H̃ x ≤ (1+δ)xT H x. Then for any

vector y ∈Rn with ‖y‖2 = 1 we have 1
1+δ yT H−1 y ≤ yT H̃−1 y ≤ 1

1−δ yT H−1 y.

Proof. Note that we have (1−δ)H ¹ H̃ ¹ (1+δ)H therefore, by Theorem 3.4 we have

1

(1−δ)
·H−1 < H̃−1 <

1

(1+δ)
·H−1

Lemma 3.14. Let k ≥ 2, ϕ ∈ (0,1) and ε
ϕ2 be smaller than an absolute positive constant. Let G =

(V ,E) be a d-regular graph that admits (k,ϕ,ε)-clustering C1, . . . ,Ck . Let S = {µ1, . . . ,µk } \ {µi }.

Let H = [µ1,µ2, . . . ,µi−1,µi+1, . . . ,µk ] denote a matrix such that its columns are the vectors in S.

Let W ∈R(k−1)×(k−1) denote a diagonal matrix such that for all j < i we have W ( j , j ) =√|C j |
and for all j ≥ i we have W ( j , j ) =√|C j+1|. Let Z = HW . Then Z T Z is invertible, and for any

vector x ∈Rk−1 with ||x||2 = 1 we have

|xT ((Z T Z )−1 − I )x| ≤ 5
p
ε

ϕ
.

Proof. Let Y ∈Rk×k be a matrix, whose i -th column is equal to
p

Ci ·µi . By Lemma 3.9 item

(2) for any vector z ∈Rk with ||α||2 = 1 we have

|αT (Y T Y − I )α| ≤ 4
p
ε

ϕ

Let x ∈Rk−1 be a vector with ||x||2 = 1, and let α ∈Rk be a vector defined as follows:

α j =


x j j < i

0 j = i

x j+1 j > i
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Thus we have ||α||2 = ||x||2 = 1 and Y α= Z x. Hence, we get

|xT (Z T Z − I )x| = |αT (Y T Y − I )α| ≤ 4
p
ε

ϕ

Thus for any vector x ∈Rk−1 with ||x||2 = 1 we have

1− 4
p
ε

ϕ
≤ xT (Z T Z )x ≤ 1+ 4

p
ε

ϕ

Note that Z T Z is symmetric and positive semidefinit. Also note that Z T Z is spectrally close to

I , hence, Z T Z is invertible. Thus by Lemma 3.13 for any vector x ∈Rk−1 we have

1− 5
p
ε

ϕ
≤ xT (Z T Z )−1x ≤ 1+ 5

p
ε

ϕ

Therefore we get

|xT ((Z T Z )−1 − I )x| ≤ 5
p
ε

ϕ
.

Lemma 3.15. Let k ≥ 2 be an integer,ϕ ∈ (0,1), and ε ∈ (0,1). Let G = (V ,E ) be a d-regular graph

that admits (k,ϕ,ε)-clustering C1, . . . ,Ck . Let S = {µ1, . . . ,µk }\{µi }. Let H = [µ1,µ2, . . . ,µi−1,µi+1, . . . ,µk ]

denote a matrix such that its columns are the vectors in S. Let W ∈ R(k−1)×(k−1) denote a

diagonal matrix such that for all j < i we have W ( j , j ) = √|C j | and for all j ≥ i we have

W ( j , j ) =√|C j+1|. Let Z = HW . Then we have

µT
i Z Z Tµi ≤ 8

p
ε

ϕ
· ||µi ||22.

Proof. Note that Z Z T = (
∑k

j=1 |C j |µ jµ
T
j )−|Ci |µiµ

T
i . Thus we have

µT
i Z Z Tµi =µT

i

(
k∑

j=1
|C j |µ jµ

T
j

)
µi −|Ci | · ||µi ||42. (3.41)

By Lemma 3.9 item (1) for any vector x with ||x||2 = 1 we have

xT

(
k∑

j=1
|C j |µ jµ

T
j − I

)
x ≤ 4

p
ε

ϕ

Hence we can write

µT
i

(
k∑

j=1
|C j |µ jµ

T
j

)
µi =µT

i

(
k∑

j=1
|C j |µ jµ

T
j − I

)
µi +µT

i µi ≤
(
1+ 4

p
ε

ϕ

)
||µi ||22
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Therefore by (3.41) we get

µT
i Z Z Tµi =µT

i

(
k∑

j=1
|C j |µ jµ

T
j

)
µi −|Ci | · ||µi ||42

≤
(
1+ 4

p
ε

ϕ
−|Ci | · ||µi ||22

)
||µi ||22

By Lemma 3.7 we have |Ci | · ||µi ||22 ≥
(
1− 4

p
ε

ϕ

)
. Thus we get

µT
i Z Z Tµi ≤

(
1+ 4

p
ε

ϕ
−|Ci | · ||µi ||22

)
||µi ||22

≤
(
1+ 4

p
ε

ϕ
−1+ 4

p
ε

ϕ

)
||µi ||22

≤ 8
p
ε

ϕ
· ||µi ||22

Now we prove the main result of the subsection (Lemma 3.12).

Lemma 3.12. Let k ≥ 2, ϕ ∈ (0,1) and ε
ϕ2 be smaller than an absolute positive constant. Let

G = (V ,E) be a d-regular graph that admits (k,ϕ,ε)-clustering C1, . . . ,Ck . Let S ⊂ {µ1, . . . ,µk }

denote a subset of cluster means. Let Π ∈ Rk×k denote the orthogonal projection matrix onto

span(S)⊥. Then the following holds:

1. For all µi ∈ {µ1, . . . ,µk } \ S we have
∣∣‖Πµi‖2

2 −||µi ||22
∣∣≤ 16

p
ε

ϕ · ||µi ||22.

2. For all µi 6=µ j ∈ {µ1, . . . ,µk } \ S we have |〈Πµi ,Πµ j 〉| ≤ 40
p
ε

ϕ · 1p|Ci |·|C j |
.

Proof. Proof of item (1): SinceΠ is a orthogonal projection matrix we have ||Π||2 = 1. Hence,

we have ||Πµi ||22 ≤ ||µi ||22 ≤
(
1+ 16

p
ε

ϕ

)
||µi ||22. Thus it’s left to prove ||Πµi ||22 ≥

(
1− 16

p
ε

ϕ

)
||µi ||22.

Note that by Pythagoras’ theorem ||Πµi ||22 = ||µi ||22−||(I −Π)µi ||22. We will prove ||(I −Π)µi ||22 ≤
16

p
ε

ϕ ||µi ||22 which implies

||Πµi ||22 ≥
(
1−16

p
ε

ϕ

)
||µi ||22.

Let S′ = {µ1, . . . ,µk }\{µi }. LetΠ′ denote the orthogonal projection matrix onto span(S′)⊥. Note

that S ⊆ S′, hence span(S) is a subspace of span(S′), therefore we have ||(I −Π)µi ||22 ≤ ||(I −
Π′)µi ||22. Thus it suffices to prove ||(I−Π′)µi ||22 ≤ 16

p
ε

ϕ ||µi ||22. Let H = [µ1,µ2, . . . ,µi−1,µi+1, . . . ,µk ]

denote a matrix such that its columns are the vectors in S′. Let W ∈ R(k−1)×(k−1) denote a

diagonal matrix such that for all j < i we have W ( j , j ) = √|C j | and for all j ≥ i we have

W ( j , j ) = √|C j+1|. Let Z = HW . The orthogonal projection matrix onto the span of S′ is
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defined as (I −Π′) = Z (Z T Z )−1Z T , and using Lemma 3.14 we get

||(I −Π′)µi ||22 =µT
i Z (Z T Z )−1Z Tµi

=µT
i Z ((Z T Z )−1 − I )Z Tµi +µT

i Z Z Tµi

By Lemma 3.14 (Z T Z )−1 is spectrally close to I , therefore we have

∣∣µT
i Z

(
(Z T Z )−1 − I

)
Z Tµi

∣∣≤ 5
p
ε

ϕ
||Z Tµi ||22

Thus we get

||(I −Π′)µi ||22 ≤
(

5
p
ε

ϕ
+1

)
||Z Tµi ||22 ≤ 2||Z Tµi ||22

By Lemma 3.15 we have

||Z Tµi ||22 =µT
i Z Z Tµi ≤ 8

p
ε

ϕ
· ||µi ||22

Therefore we get

||(I −Π)µi ||22 ≤ ||(I −Π′)µi ||22 ≤ 2||Z Tµi ||22 ≤
16

p
ε

ϕ
||µi ||22 (3.42)

Hence,

||Πµi ||22 ≥
(
1−16

p
ε

ϕ

)
||µi ||22.

Proof of item (2): Note that

〈µi ,µ j 〉 = 〈(I −Π)µi +Πµi , (I −Π)µ j +Πµ j 〉 = 〈(I −Π)µi , (I −Π)µ j 〉+〈Πµi ,Πµ j 〉

Thus by triangle inequality we have

|〈Πµi ,Πµ j 〉| ≤ |〈µi ,µ j 〉|+ |〈(I −Π)µi , (I −Π)µ j 〉| (3.43)

By Cauchy Schwarz we have

|〈(I −Π)µi , (I −Π)µ j 〉| ≤ ||(I −Π)µi ||2||(I −Π)µi ||2

≤ 16
p
ε

ϕ
· ||µi ||2||µ j ||2 By (3.42)

≤ 32
p
ε

ϕ
· 1√|Ci ||C j |

By Lemma 3.7 for small enough
ε

ϕ2

(3.44)

Also by Lemma 3.7 we have

|〈µi ,µ j 〉| ≤ 8
p
ε

ϕ
· 1√|Ci ||C j |

(3.45)
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Therefore by (3.43), (3.44) and (3.45) we get

|〈Πµi ,Πµ j 〉| ≤ |〈µi ,µ j 〉|+ |〈(I −Π)µi , (I −Π)µ j 〉| ≤ 40
p
ε

ϕ
· 1√|Ci ||C j |

.

3.4.4 Robustness property of (k,ϕ,ε)-clusterable graphs

In this subsection we show a Lemma that establishes a robustness property of (k,ϕ,ε)-

clusterable graphs. That is we show that any collection {S1,S2, . . . ,Sk } of pairwise disjoint

subsets of vertices must match clusters {C1, . . . ,Ck } well.

Lemma 3.16. Let G = (V ,E) be a d-regular graph that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck .

Let k ≥ 2, ϕ ∈ (0,1) and ε
ϕ3 be smaller than an absolute positive constant. If S1,S2, . . . ,Sk ⊆ V

are k disjoint sets such that for all i ∈ [k]

φ(Si ) ≤O

(
ε

ϕ2 · log(k)

)
then there exists a permutation π on k elements so that for all i ∈ [k]:

|Cπ(i )4Si | ≤O

(
ε

ϕ3 · log(k)

)
|Cπ(i )|

Proof. Fix i ∈ [k] and let Ji = { j : |Si ∩C j | ≤ |C j |/2}. Then observe that because the inner

conductance of every Ci is at least ϕ we get:

ϕ
∑
j∈Ji

|Si ∩C j | ≤O

(
ε

ϕ2 · log(k)

)
|Si | (3.46)

Using (3.46) and the assumption ε
ϕ3 is sufficiently small we get that

∑
j∈Ji

|Si ∩C j | ≤O

(
ε

ϕ3 · log(k)

)
|Si | < |Si | (3.47)

(3.47) and
∑

j∈[k] |Si ∩C j | = |Si | gives us that

For all i ∈ [k], Ji 6= [k] (3.48)

We will show that for each i : |[k] \ Ji | = 1 and that a function i 7→π(i ) ∈ [k] \ Ji (that is π(i ) is

the only element of [k] \ Ji ) is a permutation and that it satisfies the claim of the Lemma.

Assume that there exist i1 6= i2 ∈ [k] and j ∈ ([k]\ Ji1 )∩([k]\ Ji2 ). By definition of Ji ’s we get that

|Si1 ∩C j |, |Si2 ∩C j | > |C j |/2 but Si ’s are disjoint so it’s impossible that two of them intersect

more than half of the same C j . That means that sets ([k] \ Ji ) are pairwise disjoint for all i ’s.

But we also know from (3.48) that for all i ([k] \ Ji ) 6= ;. So we have k nonempty, pairwise
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disjoint subsets of [k], which means that every set contains one element and all elements are

different. That in turn means that we can define π as a function i 7→π(i ) ∈ [k] \ Ji and π is a

permutation.

Now we show that π satisfies the claim of the Lemma. Observe that because for all i ∈ [k] the

set [k] \ Ji contains only one element we get for all i ∈ [k].∑
j∈Ji

|Si ∩C j | = |Si \Cπ(i )| (3.49)

Note that because of (3.46) and (3.49) for all i ∈ [k]:

|Si \Cπ(i )| ≤O

(
ε

ϕ3 · logk

)
|Si |. (3.50)

Moreover because inner conductance of every Ci is at least ϕ and |Cπ(i ) \ Si | < |Cπ(i )|/2 we get

that for all i ∈ [k]

ϕ · |Cπ(i ) \ Si | ≤O

(
ε

ϕ2 · log(k)

)
|Si | (3.51)

Finally combining (3.50) and (3.51) we get that:

|Cπ(i )4Si | ≤O

(
ε

ϕ3 · log(k)

)
|Cπ(i )|
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3.5 A spectral dot product oracle

Our goal in this section is to develop what we call a spectral dot product oracle. The oracle

is a sublinear time and space data structure that has oracle access to a (k,ϕ,ε)-clusterable

graph G and after a preprocessing step can answer dot products queries for the spectral

embedding. Specifically, if L =UΛU T is the normalized Laplacian of G and the x-th column

of F =U T
[k] is called fx for x ∈V then our oracle gets as input two vertices x, y and returns an

approximation of 〈 fx , fy 〉. Both the preprocessing time and the time to evaluate an oracle

query are kO(1) ·n1/2+O(ε/ϕ2) · (logn)O(1), that is, sublinear in n for ε¿ ϕ2. We now state the

main theorem that we prove in this section. The algorithms mentioned in Theorem 3.2 can be

found later in this section.

Theorem 3.2. [Spectral Dot Product Oracle] Let ε,ϕ ∈ (0,1) with ε≤ ϕ2

105 . Let G = (V ,E) be a d-

regular graph that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck . Let 1
n5 < ξ< 1. Then INITIALIZEORACLE(G ,1/2,ξ)

(Algorithm 4) computes in time ( k
ξ )O(1) ·n1/2+O(ε/ϕ2) ·(logn)3 · 1

ϕ2 a sublinear space data structure

D of size ( k
ξ )O(1) ·n1/2+O(ε/ϕ2) · (logn)3 such that with probability at least 1−n−100 the following

property is satisfied:

For every pair of vertices x, y ∈V , SPECTRALDOTPRODUCT(G , x, y,1/2,ξ,D) (Algorithm 5) com-

putes an output value
〈

fx , fy
〉

apx
such that with probability at least 1−n−100

∣∣∣ 〈
fx , fy

〉
apx

−〈 fx , fy 〉
∣∣∣≤ ξ

n
.

The running time of SPECTRALDOTPRODUCT(G , x, y,1/2,ξ,D) is ( k
ξ )O(1) ·n1/2+O(ε/ϕ2) · (logn)2 ·

1
ϕ2 .

Furthermore, for any 0 ≤ δ≤ 1/2, one can obtain the following trade-offs between preprocess-

ing time and query time: Algorithm SPECTRALDOTPRODUCT(G , x, y,δ,ξ,D) requires ( k
ξ )O(1) ·

nδ+O(ε/ϕ2)·(logn)2· 1
ϕ2 per query when the prepressing time of Algorithm INITIALIZEORACLE(G ,δ,ξ)

is increased to ( k
ξ )O(1) ·n1−δ+O(ε/ϕ2) · (logn)3 · 1

ϕ2 .

3.5.1 The spectral dot product oracle - overview

In the following sections we provide the proof of the spectral dot product oracle. Recall

from the technical overview that we are using the following algorithms (we restate them for

convenience of the reader). Our main tool for accessing the spectral embedding of the graph

is a primitive that runs a few short (logarithmic length) random walks from a given vertex.
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Algorithm 1 RUNRANDOMWALKS(G ,R, t , x)

1: Run R random walks of length t starting from x

2: Let m̂x (y) be the fraction of random walks that ends at y . vector m̂x has support at most

R

3: return m̂x

Another key primitive uses collision statistics to estimate the Gram matrix of random walk

distributions started at vertices in a set S.

Algorithm 2 ESTIMATECOLLISIONPROBABILITIES(G , IS ,R, t )

1: for i = 1 to O(logn) do

2: Q̂i := ESTIMATETRANSITIONMATRIX(G , IS ,R, t )

3: P̂i := ESTIMATETRANSITIONMATRIX(G , IS ,R, t )

4: Gi := 1
2

(
P̂ T

i Q̂i +Q̂T
i P̂i

)
. Gi is symmetric

5: Let G be a matrix obtained by taking the entrywise median of Gi ’s . G is symmetric

6: return G

We also need the following procedure.

Algorithm 3 ESTIMATETRANSITIONMATRIX(G , IS ,R, t )

1: for each sample x ∈ IS do

2: m̂x := RUNRANDOMWALKS(G ,R, t , x)

3: Let Q̂ be the matrix whose columns are m̂x for x ∈ IS

4: return Q̂ . Q̂ has at most Rs non-zeros

Then we can initialize the dot product oracle.
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Algorithm 4 INITIALIZEORACLE(G ,δ,ξ) .Need: ε/ϕ2 ≤ 1
105

1: t := 20·logn
ϕ2

2: Rinit :=O(n1−δ+980·ε/ϕ2 ·k17/ξ2)

3: s :=O(n480·ε/ϕ2 · logn ·k8/ξ2)

4: Let IS be the multiset of s indices chosen independently and uniformly at random from

{1, . . . ,n}

5: for i = 1 to O(logn) do

6: Q̂i := ESTIMATETRANSITIONMATRIX(G , IS ,Rinit, t ) . Q̂i has at most Rinit · s non-zeros

7: G :=ESTIMATECOLLISIONPROBABILITIES(G , IS ,Rinit, t )

8: Let n
s ·G := Ŵ Σ̂Ŵ T be the eigendecomposition of n

s ·G . G ∈Rs×s

9: if Σ̂−1 exists then

10: Ψ := n
s ·Ŵ[k]Σ̂

−2
[k]Ŵ

T
[k] .Ψ ∈Rs×s

11: return D := {Ψ,Q̂1, . . . ,Q̂O(logn)}

Finally, we have the query algorithm.

Algorithm 5 SPECTRALDOTPRODUCTORACLE(G , x, y,δ,ξ,D) .Need: ε/ϕ2 ≤ 1
105

.D := {Ψ,Q̂1, . . . ,Q̂O(logn)}

1: Rquery :=O(nδ+500·ε/ϕ2 ·k9/ξ2)

2: for i = 1 to O(logn) do

3: m̂i
x := RUNRANDOMWALKS(G ,Rquery, t , x)

4: m̂i
y := RUNRANDOMWALKS(G ,Rquery, t , y)

5: Let αx be a vector obtained by taking the entrywise median of (Q̂i )T (m̂i
x ) over all runs

6: Let αy be a vector obtained by taking the entrywise median of (Q̂i )T (m̂i
y ) over all runs

7: return
〈

fx , fy
〉

apx
:=αT

x Ψαy

Let IS = {i1, . . . , is} be a multiset of s indices chosen independently and uniformly at random

from {1, . . . ,n}. Let S be the n × s matrix whose j -th column equals 1i j . As already explained

in detail in the technical overview, we first prove stability bounds for the pseudoinverse.

Then we show that that M t is approximated by M t S and finally we show that algorithm

RUNRANDOMWALKS approximates the M t1x sufficiently well. We conclude with the proof of

Theorem 3.2.

3.5.2 Stability bounds for the low rank approximation

The main result of this section is a bound on the stability of the pseudoinverse of the rank-k

approximation of two symmetric, positive semi-definite matrices A, Ã ∈Rn×n that are spec-

trally close and that have an eigenvalue gap between the k-th and (k +1)-st eigenvalue. In

order to prove this result, we use Weyl’s inequality, which gives bounds on the eigenvalues
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of the sum of a matrix A and a perturbation matrix P . Recall that for a symmetric matrix A,

we write νi (A) (resp. νmax(A),νmin(A)) to denote the i th largest (resp. maximum, minimum)

eigenvalue of A.

Lemma 3.17 (Weyl’s Inequality). Let A,P ∈Rn×n be two symmetric matrices. Then we have for

all i ∈ {1, . . . ,n}:

νi (A)+νmin(P ) ≤ νi (A+P ) ≤ νi (A)+νmax(P ),

where for a symmetric matrix H ∈ Rn×n νi (H) denotes its i th largest eigenvalue and νmin(H)

and νmax(H) refer to the smallest and largest eigenvalues of H.

We will use the Davis-Kahan sin(θ) Theorem [DK70] (the version given in the note [DK]).

Theorem 3.5 (Davis-Kahan si n(θ)-Theorem [DK70]). . Let H = E0 A0E T
0 +E1 A1E T

1 and H̃ =
F0Λ0F T

0 +F1Λ1F T
1 be symmetric real-valued matrices with E0,E1 and F0,F1 orthogonal. If the

eigenvalues of A0 are contained in an interval (a,b), and the eigenvalues of Λ1are excluded

from the interval (a −η,b +η)for some η> 0, then for any unitarily invariant norm ‖.‖

‖F T
1 E0‖ ≤

‖F T
1 (H̃ −H)E0‖

η
.

Let m ≤ n be integers. For any matrix A ∈ Rn×m with singular value decomposition (SVD)

A = Y ΓZ T we assume Y ∈Rn×n , Γ ∈Rn×n is a diagonal matrix of singular values and Z ∈Rm×n

(this is a slightly non-standard definition of the SVD, but having Γ be a square matrix will be

convenient). Y has orthonormal columns, the first m columns of Z are orthonormal, and the

rest of the columns of Z are zero. For any integer q ∈ [m] we denote Y[q] ∈Rn×q as the first q

columns of Y and Y−[q] to denote the matrix of the remaining columns of Y . We also denote

by Z[q] ∈ Rm×q as the first q columns of Z and Z−[q] to denote the matrix of the remaining

n −q columns of Z . Finally we denote by Γ[q] ∈Rq×q the submatrix of Γ corresponding to the

first q rows and columns of Γ and we use Γ−[q] to denote the submatrix corresponding to the

last n −q rows and n −q columns of Γ. So for any q ∈ [m] the span of Y−[q] is the orthogonal

complement of the span of Y[q] in Rn , also the span of the columns of Z−[q] is the orthogonal

complement of the span of Z[q] in Rm . Thus we can write A = Y[q]Γ[q]Z T
[q] +Y−[q]Γ−[q]Z T

−[q].

Claim 3.1. For every symmetric matrix E and every pair of orthogonal projection matrices P, P̃

one has

||P ·E ·P − P̃ ·E · P̃ ||2 ≤ 2‖E‖2 · (‖P · (I − P̃ )‖2 +‖P̃ · (I −P )‖2).

Proof. Since P̃ + (I − P̃ ) = I we can write

P ·E ·P = (P̃ + (I − P̃ ))P ·E ·P · (P̃ + (I − P̃ ))

= P ·E ·P · (I − P̃ )+ P̃ ·P ·E ·P · P̃ + (I − P̃ ) ·P ·E ·P · P̃ (3.52)
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Since P + (I −P ) = I we have

P̃ ·E · P̃ = P̃ (P + (I −P )) ·E · (P + (I −P )) P̃ ||2
= P̃ ·E · (I −P )P̃ + P̃ ·P ·E ·P · P̃ + P̃ · (I −P ) ·E ·P · P̃ (3.53)

Putting (3.52) and (3.53) together and by triangle inequality we get

||P ·E ·P − P̃ ·E · P̃ ||2
≤ ‖P ·E ·P · (I − P̃ )‖2 +‖(I − P̃ ) ·P ·E ·P · P̃‖2 +‖P̃ ·E · (I −P )P̃‖2 +‖P̃ · (I −P ) ·E ·P · P̃‖2

Thus by submultiplicativity of the operator norm we get

||P ·E ·P − P̃ ·E · P̃ ||2
≤ ‖P‖2‖E‖2‖P · (I − P̃ )‖2 +‖(I − P̃ ) ·P‖2‖E‖2‖P‖2‖P̃‖2 +‖P̃‖2‖E‖2‖(I −P )P̃‖2 +‖P̃‖2‖E‖2‖(I −P )P̃‖2

≤ ‖E‖2
(‖P · (I − P̃ )‖2 +‖(I − P̃ ) ·P‖2 +‖(I −P )P̃‖2 +‖P̃ (I −P )‖2

)
Since ||P || = ||P̃ ||2 = 1

= 2 · ‖E‖2 · (‖P · (I − P̃ )‖2 +‖P̃ · (I −P )‖2),

where the last equality holds since ‖P · (I − P̃ )‖2 = ‖(I − P̃ )T ·P T ‖2 = ‖(I − P̃ ) ·P‖2 and similarly

since ‖P̃ · (I −P )‖2 = ‖(I −P )T · P̃ T ‖2 = ‖(I −P ) · P̃‖2.

Recall that for matrices A, Ã ∈Rn×n , we write A 4 Ã, if ∀x ∈Rn we have xT Ax ≤ xT Ãx and we

write A ≺ Ã, if ∀x ∈Rn we have xT Ax < xT Ãx. Now we can state the main technical result of

this section (Lemma 3.18), whose proof relies on matrix perturbation bounds Davis-Kahan

sinθ theorem (Theorem 3.5).

We will need the following claim, whose proof is inspired by the proof of the operator mono-

tonicity of negative matrix inverse [Tod11]:

Claim 3.2. Let A,B ∈Rn×n be symmetric positive semidefinite matrices. LetΠB denote orthogo-

nal projection operator onto the range space of B. Then if A º B, we have for every orthogonal

projectionΠA satisfyingΠA A+ = A+ΠA that

(ΠA AΠA)+ ¹ B++2‖ΠA A+‖2‖ΠA(I −ΠB )‖2 · I .

Proof. For every x ∈ Rn , and every y ∈ Rn (to be chosen as y = A+x later) since B is positive

semidefinite we have

(y −B+x)T B(y −B+x) ≥ 0,

which in particular implies that

yT B y −2xT B+B y +xT B+x ≥ 0,
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and since A º B by assumption,

yT Ay −2xT B+B y +xT B+x ≥ 0.

We now chose y =ΠA A+x and rearrange, getting

2xT B+BΠA A+x −xTΠA A+ΠA x ≤ xT B+x. (3.54)

Noting that B+B =ΠB andΠAΠA A+ =ΠA A+ΠA , we write the lhs of (3.54) as

2xTΠBΠA A+x −xTΠA A+ΠA x = 2xTΠA A+ΠA x +2xT (ΠBΠA −ΠA)ΠA A+x −xTΠA A+ΠA x

= xTΠA A+ΠA x +2xT ((ΠB − I )ΠA)ΠA A+x.

Substituting the above into (3.54), and noting that

|xT (ΠBΠA −ΠA)ΠA A+x| ≤ ‖ΠA A+‖2 · ‖(ΠB − I )ΠA‖2 · xT x,

we get

xTΠA A+ΠA x ≤ xT B+x +2‖ΠA A+‖2 · ‖(ΠB − I )ΠA‖2 · xT x.

The above holds for all x ∈Rn . Also, ‖(ΠB−I )ΠA‖2 = ‖ΠA(I−ΠB )‖2, sinceΠA ,ΠB are projection

matrices. Therefore, for all x ∈Rn we have

ΠA A+ΠA ¹ B++2‖ΠA A+‖2 · ‖ΠA(I −ΠB )‖2 · I ,

as required.

Lemma 3.18. Let A, Ã ∈Rn×n be symmetric matrices with eigendecompositions A = Y ΓY T and

Ã = Ỹ Γ̃Ỹ T . Let the eigenvalues of A be 1 ≥ γ1 ≥ ·· · ≥ γn ≥ 0. Suppose that ‖A− Ã‖2 ≤ γk

100 and

γk+1 < γk /4. Then we have

‖Y[k]Γ
−1
[k]Y

T
[k] − Ỹ[k]Γ̃

−1
[k]Ỹ

T
[k]‖2 ≤ 16‖A− Ã‖2 +4γk+1

γ2
k

.

Proof. We define P = Y[k]Y
T

[k] and P̃ = Ỹ[k]Ỹ
T

[k], and let M = PAP = Y[k]Γ[k]Y
T

[k] and M̃ = P̃ ÃP̃ =
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Ỹ[k]Γ̃[k]Ỹ
T

[k]. First note that

M̃ = P̃ ÃP̃

¹ P̃ (Ã+‖A− Ã‖2 · I )P̃

¹ P̃ (Ã+‖A− Ã‖2 · I )P̃ + (I − P̃ )(Ã+‖A− Ã‖2 · I )(I − P̃ )

= Ã+‖A− Ã‖2 · I

¹ A+2‖A− Ã‖2 · I

= P (A+2‖A− Ã‖2 · I )P + (I −P )(A+2‖A− Ã‖2 · I )(I −P )

¹ M + (2‖A− Ã‖2 +γk+1)I

= M +η · I , (3.55)

where we let η= 2‖A − Ã‖2 +γk+1. The transition from line 2 to line 3 is due to the fact that

Ã+‖A− Ã‖2 · I º A º 0, and therefore (I − P̃ )(Ã+‖A− Ã‖2 · I )(I − P̃ ) º 0. The transition from

line 4 to line 5 is due to Ã ¹ A+‖A− Ã‖2 · I . The transition from line 6 to line 7 is due to the

fact that (I −P )A(I −P ) ¹ γk+1I .

Similarly,

M = PAP

¹ PAP + (I −P )A(I −P )

= A

¹ Ã+‖A− Ã‖2 · I

= P̃ (Ã+‖A− Ã‖2 · I )P̃ + (I − P̃ )(Ã+‖A− Ã‖2 · I )(I − P̃ )

¹ M̃ + (2‖A− Ã‖2 +γk+1)I .

(3.56)

The transition from line 1 to line 2 is due to the fact that A º 0, and therefore (I−P )A(I−P )T º 0.

The transition from line 3 to line 4 is due to A ¹ Ã+‖A− Ã‖2 · I . The transition from line 5 to

line 6 is due to the fact that

(I − P̃ )Ã(I − P̃ ) ¹ νk+1(Ã) · I ¹ (‖A− Ã‖2 +γk+1)I .

We now apply Claim 3.2 with A = M + (2‖A− Ã‖2 +γk+1)I , ΠA = P , B = M̃ and ΠB = P̃ . Note

that A is symmetric and positive semidefinite. Also, B is symmetric and positive semidefinite

because νmin(B) = νk (Ã) ≥ νk (A)−||A− Ã||2 ≥ 99·γk

100 ≥ 0 by Weyl’s inequality and the fact that
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||A− Ã||2 ≤ γk

100 . Note thatΠA A+ = A+ΠA , as required, and A º B by (3.55). We get

M̃+ º (P (M +ηI )P )+−2‖P (M +ηI )+P‖2 · ‖P (I − P̃ )‖2 · I

º Y[k](Γ[k] +ηIk )−1Y T
[k] +

2

γk
· ‖P (I − P̃ )‖2 · I (since ‖P (M +ηI )+P‖2 ≤ 1/γk )

º M+−
(
η

γ2
k

+ 2

γk
· ‖P (I − P̃ )‖2

)
· I

º M+−
(
η

γ2
k

+ 8‖A− Ã‖2

γ2
k

)
· I . (3.57)

The transition from line 2 to line 3 used the fact that

‖Y[k](Γ[k] +ηIk )−1Y T
[k] −M+‖ ≤ η

γ2
k

. (3.58)

The transition from line 3 to line 4 used

‖P (I − P̃ )‖2 ≤ ‖A− Ã‖2

γk /4
. (3.59)

We verify both (3.58) and (3.59) below.

Similarly, to upper bound M̃+ in terms of M+ we apply Claim 3.2 with A = M̃ + (2‖A− Ã‖2 +
γk+1)I , ΠA = P̃ , B = M and ΠB = P . Note that ΠA A = AΠA , as required, A and B are both

symmetric and positive semidefinite, and A º B by (3.56). We get

M+ º (P̃ (M̃ +η · I )P̃ )++2‖P̃ (M̃ +η · I )+‖2 · ‖P̃ (I −P )‖2 · I

º Ỹ[k](Γ̃[k] + Ik )−1Ỹ T
[k] +

2

γk
· ‖P̃ (I −P )‖2 · I

º M̃+−
(

4η

γ2
k

+ 2

γk
· ‖P̃ (I −P )‖2

)
· I

º M̃+−
(

4η

γ2
k

+ 8‖A− Ã‖2

γ2
k

)
· I . (3.60)

The transition from line 1 to line 2 uses the fact that by Weil’s inequality

‖P̃ (M̃ +η · I )+‖2 = 1

νk (Ã+η · I )
≤ 1

νk (A)−‖A− Ã‖2 +η
= 1

νk (A)+‖A− Ã‖2 +γk+1
≤ 1

γk
,

since η= 2‖A− Ã‖2 +γk+1. The transition from line 2 to line 3 used the fact that

‖Ỹ[k](Γ̃[k] +ηIk )−1Y T
[k] − M̃+‖ ≤ 4η

γk
. (3.61)
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The transition from line 3 to line 4 used

‖P̃ (I −P )‖2 ≤ ‖A− Ã‖2

γk /4
. (3.62)

We verify both (3.61) and (3.62) below.

Putting (3.57) and (3.60) together, we get

‖M+− M̃+‖2 ≤ 4η

γ2
k

+ 8‖A− Ã‖2

γ2
k

≤ 16‖A− Ã‖2 +4γk+1

γ2
k

as required.

We now verify (3.58), (3.59), (3.61) and (3.62). First, one has

‖Y[k](Γ
−1
[k] − (Γ[k] +η · Ik )−1)Y T

[k]‖2 ≤ max
ξ≥γk

(
1

ξ
− 1

ξ+η
)

= max
ξ≥γk

η

ξ(ξ+η)

≤ η

γ2
k

and similarly, since νk (Ã) ≥ νk (A)−‖A− Ã‖2 by Weyl’s inequality (Lemma 3.17),

‖Ỹ[k](Γ̃
−1
[k] − (Γ̃[k] +η · Ik )−1)Ỹ T

[k]‖2 ≤ max
ξ≥γk−‖A−Ã‖2

(
1

ξ
− 1

ξ+η
)

= max
ξ≥γk−‖A−Ã‖2

η

ξ(ξ+η)

≤ 4η

γ2
k

Since ‖A− Ã‖2 ≤ γk /2 by assumption

This verifies (3.58) and (3.61).

It remains to verify (3.59) and (3.62). In order to bound ‖P · (I − P̃ )‖2 and ‖P̃ · (I −P )‖2, we first

note that by Weyl’s inequality

νk+1(Ã) ≤ νk+1(A)+||A− Ã||2 ≤ γk /4+γk /100 < (3/4)γk

and νk (A) = γk by assumption of the lemma. Hence we can apply Theorem 3.5 by choice of

H = A, E0 = Y[k], E1 = Y−[k], A0 = Γ[k], A1 = Γ−[k], and H̃ = Ã, F0 = Ỹ[k], F1 = Ỹ−[k], Λ0 = Γ̃[k],

Λ1 = Γ̃−[k]. Let η= γk

4 . Note that the eigenvalues of A0 = Γ[k] are at least γk and the eigenvalues

ofΛ1 = Γ̃−[k] are at most (3/4)γk = γk −η. Therefore, by Theorem 3.5 we have

‖Ỹ T
−[k]Y[k]‖2 = ‖F T

1 E0‖2 ≤
‖F T

1 (Ã− A)E0‖2

η
≤ ‖A− Ã‖2

γk /4
.
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Thus we have ‖Y T
[k]Ỹ−[k]‖2 ≤ ‖A−Ã‖2

γk /4 . Similarly, we have

νk+1(A) ≤ γk /4

and νk (Ã) ≥ νk (A)−‖A − Ã‖2 ≥ γk −γk /100. Hence we can apply Theorem 3.5 by choice of

H = A, E0 = Y−[k], E1 = Y[k], A0 = Γ−[k], A1 = Γ[k], and H̃ = Ã, F0 = Ỹ−[k], F1 = Ỹ[k], Λ0 = Γ̃−[k],

Λ1 = Γ̃[k]. Let η = γk

4 . Note that the eigenvalues of A0 = Γ−[k] are at most γk+1 and the

eigenvalues ofΛ1 = Γ̃[k] are at least γk −γk /100 ≥ γk −η. Therefore, by Theorem 3.5 we have

‖Ỹ T
[k]Y−[k]‖2 = ‖F T

1 E0‖ ≤
‖F T

1 (Ã− A)E0‖
η

≤ ‖A− Ã‖
γk /4

.

Thus, we have ‖Ỹ T
[k]Y−[k]‖2 ≤ ‖A−Ã‖2

γk /4 . Putting these two bounds together, we get

‖P (I − P̃ )‖2 = ‖Y[k]Y
T

[k]Ỹ−[k]Ỹ
T
−[k]‖2 = ‖Y T

[k]Ỹ−[k]‖2 ≤ ‖A− Ã‖2

γk /4
,

and similarly

‖P̃ (I −P )‖2 ≤ ‖A− Ã‖2

γk /4
.

3.5.3 Stability bounds under sampling of vertices

The main result of this section is Lemma 3.19, in which we give bounds for the stability of

the pseudoinverse of the rank-k-approximation when we are sampling columns of the k-step

random walk matrix of a (k,ϕ,ε)-clusterable graph.

Lemma 3.19. Let k ≥ 2 be an integer, ϕ ∈ (0,1) and ε ∈ (0,1). Let G = (V ,E) be a d-regular and

(k,ϕ,ε)-clusterable graph. Let M be the random walk transition matrix of G. Let 1/n6 < ξ< 1,

t ≥ 20logn
ϕ2 . Let c > 1 be a large enough constant and let s ≥ c ·n(480·ε/ϕ2) · logn · k8/ξ2. Let

IS = {i1, . . . , is} be a multiset of s indices chosen independently and uniformly at random from

{1, . . . ,n}. Let S be the n × s matrix whose j -th column equals 1i j . Let M t = UΣtU T be an

eigendecomposition of M t . Let
√

n
s ·M t S = Ũ Σ̃W̃ T be an SVD of

√
n
s ·M t S where Ũ ∈Rn×n , Σ̃ ∈

Rn×n ,W̃ ∈ Rs×n . If ε
ϕ2 ≤ 1

105 then with probability at least 1−n−100 matrix Σ̃−4
[k] exists and we

have ∣∣∣1T
x U[k]U

T
[k]1y − (M t1x )T (M t S)

(n

s
·W̃[k]Σ̃

−4
[k]W̃

T
[k]

)
(M t S)T (M t1y )

∣∣∣≤ ξ

n
.

To prove Lemma 3.19 we require the following matrix concentration bound, which is a gener-

alization of Bernstein’s inequality to matrices.

Lemma 3.20 (Matrix Bernstein [Tro12]). Consider a finite sequence Xi of independent, random

matrices with dimensions d1 ×d2. Assume that each random matrix satisfies E[Xi ] = 0 and
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‖Xi‖2 ≤ b almost surely. Define σ2 = max{‖∑
i E[Xi X T

i ]‖2,‖∑
i E[X T

i Xi ]‖2}. Then for all t ≥ 0,

P

[
‖∑

i
Xi‖2 ≥ t

]
≤ (d1 +d2) ·exp

( −t 2/2

σ2 +bt/3

)
.

Equiped with the Matrix Bernstein bound, we can show that under certain spectral conditions

we can approximate a matrix A AT by (AS)(AS)T , i.e. by sampling rows of M . The idea is to

write A AT =∑n
i=1(A1i )(A1i )T as a sum over the outer products of its columns and make the

sample size depend on the spectral norm of the summands.

Lemma 3.21. Let A ∈Rn×n be a matrix. Let B = max`∈{1,...,n} ‖(A1`)(A1`)T ‖2. Let 1 > ξ> 0. Let

s ≥ 40n2B 2 logn
ξ2 . Let IS = {i1, . . . , is} be a multiset of s indices chosen independently and uniformly

at random from {1, . . . ,n}. Let S be the n× s matrix whose j -th column equals 1i j . Then we have

P

[∥∥∥A AT − n

s
(AS)(AS)T

∥∥∥
2
≥ ξ

]
≤ n−100.

Proof. Observe that

A AT = ∑
`∈{1,...,n}

(A1`)(A1`)T . (3.63)

and
n

s
(AS)(AS)T = n

s
· ∑

i j∈IS

(A1i j )(A1i j )T . (3.64)

For every j = 1,2, . . . , s let X j = n
s · (A1i j )(A1i j )T . Thus we have

E[X j ] = n

s
·E[(A1i j )(A1i j )T ] = n

s
· 1

n

∑
`∈{1,...,n}

(A1`)(A1`)T = 1

s
· A AT (3.65)

By equality (3.64) we have n
s (AS)(AS)T =∑s

j=1 X j . Thus by equality (3.65) we get

∥∥∥n

s
(AS)(AS)T − A AT

∥∥∥
2
=

∥∥∥∥∥ s∑
j=1

(X j −E[X j ])

∥∥∥∥∥
2

. (3.66)

Let Z j = X j − E[X j ]. We then have ‖Z j‖2 = ‖X j − E[X j ]‖2 ≤ ‖X j‖2 +‖E[X j ]‖2 Now let B =
max`∈{1,...,n} ‖(A1`)(A1`)T ‖2. Furthermore, by our assumption we have

‖X j‖2 =
∥∥∥n

s
· (A1 j )(A1 j )T

∥∥∥
2
≤ n

s
·B (3.67)

By subadditivity of the spectral norm and (3.65) we get

‖E[X j ]‖2 ≤ n

s
·B (3.68)
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Putting (3.67) and (3.68) together we get

‖Z j‖2 = ‖X j −E[X j ]‖2 ≤ ‖X j‖2 +‖E[X j ]‖2 ≤ 2 · n

s
·B (3.69)

We now bound for the variance. Since Z j is symmetric, we have Z T
j Z j = Z j Z T

j = Z 2
j .∥∥∥∥∥ s∑

j=1
E[Z 2

j ]

∥∥∥∥∥
2

= s · ‖E[Z 2
j ]‖2 = s · ‖E[X 2

j ]−E[X j ]2‖2 ≤ s · ‖E[X 2
j ]‖2 + s · ‖E[X j ]2‖2

By submultiplicativity of the spectral norm we get

‖E[X 2
j ]‖2 =

∥∥∥∥∥ 1

n
· n2

s2

∑
`∈{1,...,n}

((A1`)(A1`)T )2

∥∥∥∥∥
2

≤ n2

s2 ·B 2 (3.70)

Moreover by submultiplicativity of spectral norm we have ‖E[X j ]2‖2 ≤ ‖E[X j ]‖2
2 ≤ n2

s2 ·B 2.

Putting things together we obtain

‖
s∑

j=1
E[Z 2

j ]‖2 ≤ 2n2B 2

s

Now we can apply Lemma 3.20 and we get with b = 2 n
s B and σ2 ≤ 2n2B 2

s using s ≥ 40n2B 2 logn
ξ2

P

[
‖

s∑
j=1

Z j‖2 > ξ
]
≤ 2n ·exp

 −ξ2

2

σ2 + bξ
3

≤ n−100 (3.71)

The following lemma upper bounds the collision probability from every vertex in a (k,ϕ,ε)-

clusterable graph using our `∞ norm bounds on the bottom k eigenvectors of the Laplacian

of such graphs6:

Lemma 3.22. Let k ≥ 2 be an integer, ϕ ∈ (0,1) and ε ∈ (0,1). Let G = (V ,E) be a d-regular and

that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck . Let M be the random walk transition matrix of G.

For any t ≥ 20logn
ϕ2 and any x ∈V we have

‖M t1x‖2 ≤O(k ·n−1/2+(20ε/ϕ2)).

Proof. Let L be the normalized Laplacian of G . Recall that (u1, . . . ,un) are an orthonormal

basis of eigenvectors of L with corresponding eigenvalues 0 =λ1 ≤ . . . ≤λn . Observe that each

6It is interesting to note that a weaker average case version of this lemma was used in two prior works on testing
graph cluster structure [CPS15] and [CKK+18]. The stronger version of the lemma presented here is important for
spectral concentration bounds that we present, which are in turn crucial for sublinear time dot product access to
the spectral embedding.
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ui is also an eigenvector of M , with eigenvalue 1− λi
2 . We write 1x in the eigenbasis of L as

1x =∑n
j=1β j u j and note that the β j correspond to the row of x in the matrix U . We have

M t1x = M t

(
n∑

j=1
β j u j

)
=

n∑
j=1

β j M t u j =
n∑

j=1
β j

(
1− λ j

2

)t

u j .

Thus we get

‖M t1x‖2
2 =

n∑
j=1

β2
j

(
1− λ j

2

)2t

≤
k∑

j=1
β2

j +
(
1− λk+1

2

)2t

·
n∑

j=k+1
β2

j . (3.72)

Note that G is (k,ϕ,ε)-clusterable, therefore by Lemma 3.3 we have λk+1 ≥ ϕ2

2 . Note that

t ≥ 20logn
ϕ2 . Hence, we have (

1− λk+1

2

)2t

≤ n−10. (3.73)

Moreover since G is (k,ϕ,ε)-clusterable and mini |Ci | ≥Ω( n
k ) by Lemma 3.5 for all j ∈ [k] we

have

β j ≤ ‖u j‖∞ ≤O(
p

k ·n−1/2+(20ε/ϕ2)). (3.74)

Thus by (3.72), (3.73) and (3.74) we get

‖M t1x‖2
2 ≤O(k ·k · 1

n
·n40ε/ϕ2

)+n ·n−10.

Therefore we have

‖M t1x‖2 ≤O(k ·n−1/2+(20ε/ϕ2)).

Combining the previous lemmas and Lemma 3.18 we obtain Lemma 3.23. We show that for

(k,ϕ,ε)-clusterable graphs, the outer products of the columns of the t-step random walk tran-

sition matrix have small spectral norm. This is because the matrix power is mostly determined

by the first k eigenvectors and by the fact that these eigenvectors have bounded infinity norm.

Lemma 3.23. Let k ≥ 2 be an integer, ϕ ∈ (0,1) and ε ∈ (0,1). Let G = (V ,E) be a d-regular and

(k,ϕ,ε)-clusterable graph. Let M be the random walk transition matrix of G. Let 1 > ξ> 1/n8,

t ≥ 20logn
ϕ2 . Let c > 1 be a large enough constant and let s ≥ c · k4 · n(400·ε/ϕ2) logn/ξ2. Let

IS = {i1, . . . , is} be a multiset of s indices chosen independently and uniformly at random from

{1, . . . ,n}. Let S be the n × s matrix whose j -th column equals 1i j . Let M t = UΣtU T be an

eigendecomposition of M t . Let
√

n
s ·M t S = Ũ Σ̃W̃ T be an SVD of

√
n
s ·M t S where Ũ ∈Rn×n , Σ̃ ∈

Rn×n ,W̃ ∈ Rs×n . If ε
ϕ2 ≤ 1

105 then with probability at least 1−n−100 matrix Σ̃−2
[k] exists and we

have ∣∣∣∣∣∣U[k]Σ
−2t
[k] U T

[k] −Ũ[k]Σ̃
−2
[k]Ũ

T
[k]

∣∣∣∣∣∣
2
< ξ
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Proof. Let

A = (M t )(M t )T =UΣ2tU T ,

and

Ã = n

s

(
M t S

)(
M t S

)T = Ũ Σ̃2Ũ T .

Let γk and γk+1 denote the k-th and (k +1)-th largest eigenvalues of A. Let U be an orthonor-

mal basis of eigenvectors of L with corresponding eigenvalues λ1 ≤ . . . ≤ λn . Observe that

each ui is also an eigenvector of M , with eigenvalue 1− λi
2 . Note that G is (k,ϕ,ε)-clusterable,

therefore by Lemma 3.3 we have λk ≤ 2ε and λk+1 ≥ ϕ2

2 . Note that t ≥ 20logn
ϕ2 . Hence, we have

γk+1 =
(
1− λk+1

2

)2t

≤ n−10 (3.75)

and

γk =
(
1− λk

2

)2t

≥ n(−80ε/ϕ2). (3.76)

In order to apply Lemma 3.21 we need to derive an upper bound on the spectral norm of

(M t1x )(M t1x )T for any column of A corresponding to vertex x. By Lemma 3.22 we have

B = ‖(M t1x )(M t1x )T ‖2 = ‖M t1x‖2
2 ≤O(k2 ·n−1+(40ε/ϕ2)).

Thus, with 1 ≥ ξ> 1/n8 and for large enough c we have s ≥ c·k4n(400·ε/ϕ2) logn/ξ2 ≥ 40n2B 2 logn
1/322·ξ2n−320ε/ϕ .

Thus by Lemma 3.21 we obtain that with probability at least 1−n−100 that

‖A− Ã‖2 ≤ 1

32
·ξ ·n−160ε/ϕ2

. (3.77)

We observe that equation 3.77 together with our bound on γk (3.76) and the positive semi-

definiteness of Ã imply that the k largest eigenvalues of Ã are non-zero and so Σ̃−2
[k] is exists

with high probability.

Now observe that A is positive semi-definite, we have γk /4 > γk+1 and ‖A− Ã‖ ≤ γk /100, so

the preconditions of Lemma 3.18 are met and we have with probability 1−n−100

∣∣∣∣∣∣U[k]Σ
−2t
[k] U T

[k] −Ũ[k]Σ̃
−2
[k]Ũ

T
[k]

∣∣∣∣∣∣
2
≤ 16‖A− Ã‖2 +4γk+1

γ2
k

≤ 16 · 1
32 ·ξ ·n(−160·ε/ϕ2) +4 ·n−10

n(−160·ε/ϕ2)
≤ ξ

2
+ ξ

2
= ξ.

Now we are ready to prove Lemma 3.19.

Lemma 3.19. Let k ≥ 2 be an integer, ϕ ∈ (0,1) and ε ∈ (0,1). Let G = (V ,E) be a d-regular and

(k,ϕ,ε)-clusterable graph. Let M be the random walk transition matrix of G. Let 1/n6 < ξ< 1,

t ≥ 20logn
ϕ2 . Let c > 1 be a large enough constant and let s ≥ c ·n(480·ε/ϕ2) · logn · k8/ξ2. Let

IS = {i1, . . . , is} be a multiset of s indices chosen independently and uniformly at random from
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{1, . . . ,n}. Let S be the n × s matrix whose j -th column equals 1i j . Let M t = UΣtU T be an

eigendecomposition of M t . Let
√

n
s ·M t S = Ũ Σ̃W̃ T be an SVD of

√
n
s ·M t S where Ũ ∈Rn×n , Σ̃ ∈

Rn×n ,W̃ ∈ Rs×n . If ε
ϕ2 ≤ 1

105 then with probability at least 1−n−100 matrix Σ̃−4
[k] exists and we

have ∣∣∣1T
x U[k]U

T
[k]1y − (M t1x )T (M t S)

(n

s
·W̃[k]Σ̃

−4
[k]W̃

T
[k]

)
(M t S)T (M t1y )

∣∣∣≤ ξ

n
.

Proof. Let mx = M t1x and my = M t1y . We first prove mT
x (U[k]Σ

−2t
[k] U T

[k])my = 1T
x U[k]U

T
[k]1y

and mT
x (M t S)(W̃[k]Σ̃

−4
[k]W̃

T
[k])(M t S)T my = mT

x Ũ[k]Σ̃
−2
[k]Ũ

T
[k]my . Then we upper bound∣∣∣mT

x U[k]Σ
−2t
[k] U T

[k]my −mT
x Ũ[k]Σ̃

−2
[k]Ũ

T
[k]my

∣∣∣ .

Step 1:Note that M t =UΣtU T . Therefore we get M t1x =UΣtU T1x , and M t1y =UΣtU T1y .

Thus we have

mT
x U[k]Σ

−2t
[k] U T

[k]my =1T
x

((
UΣtU T )(

U[k]Σ
−2t
[k] U T

[k]

)(
UΣtU T ))

1y (3.78)

Note that U T U[k] is an n ×k matrix such that the top k ×k matrix is Ik×k and the rest is zero.

Also U T
[k]U is a k ×n matrix such that the left k ×k matrix is Ik×k and the rest is zero. Therefore

we have

UΣt (
U T U[k]

)
Σ−2t

[k]

(
U T

[k]U
)
ΣtU T =U HU T ,

where H is an n×n matrix such that the top left k×k matrix is Ik×k and the rest is zero. Hence,

we have

U HU T =U[k]U
T
[k].

Thus we have

mT
x (U[k]Σ

−2t
[k] U T

[k])my =1T
x U[k]U

T
[k]1y (3.79)

Step 2:We have
√

n
s ·M t S = Ũ Σ̃W̃ T where Ũ ∈Rn×n , Σ̃ ∈Rn×n and W̃ ∈Rs×n . Therefore,

(mx )T (M t S)
(n

s
·W̃[k]Σ̃

−4
[k]W̃

T
[k]

)
(M t S)T (my )

= mT
x

(√
s

n
·Ũ Σ̃W̃ T

)(n

s
·W̃[k]Σ̃

−4
[k]W̃

T
[k]

)(√
s

n
·W̃ Σ̃Ũ T

)
my

= mT
x

(
Ũ Σ̃W̃ T )(

W̃[k]Σ̃
−4
[k]W̃

T
[k]

)(
W̃ Σ̃Ũ T )

my (3.80)

Note that W̃ T W̃[k] is an n ×k matrix such that the top k ×k matrix is Ik×k and the rest is zero.

Also W̃ T
[k]W̃ is a k×n matrix such that the left k×k matrix is Ik×k and the rest is zero. Therefore

we have

Σ̃
(
W̃ T W̃[k]

)
Σ̃−4

[k]

(
W̃ T

[k]W̃
)
Σ̃= H̃ ,
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where H̃ is an n×n matrix such that the top left k ×k matrix is Σ̃−2
[k] and the rest is zero. Hence,

we have

(Ũ Σ̃W̃ T )
(n

s
·W̃[k]Σ̃

−4
[k]W̃

T
[k]

)
(W̃ Σ̃Ũ T ) = Ũ H̃Ũ T = Ũ[k]Σ̃

−2
[k]Ũ

T
[k] (3.81)

Putting (3.81) and (3.80) together we get

mT
x (M t S)(W̃[k]Σ̃

−4
[k]W̃

T
[k])(M t S)T my = mT

x Ũ[k]Σ̃
−2
[k]Ũ

T
[k]my (3.82)

Put together:Let c ′ > 1 be a large enough constant we will set later. Let ξ′ = ξ

c ′·k2·n40ε/ϕ2 . Let c1

be a constant in front of s in Lemma 3.23. Thus for large enough c we have s ≥ c ·n(480·ε/ϕ2) ·
logn ·k8/ξ2 ≥ c1 ·k4 ·n(400·ε/ϕ2) logn/ξ′2, hence, by Lemma 3.23 applied with ξ′, with probability

at least 1−n−100 we have ∣∣∣∣∣∣U[k]Σ
−2t
[k] U T

[k] −Ũ[k]Σ̃
−2
[k]Ũ

T
[k]

∣∣∣∣∣∣
2
≤ ξ′

Therefore by submultiplicativity of norm we have∣∣∣mT
x U[k]Σ

−2t
[k] U T

[k]my −mT
x Ũ[k]Σ̃

−2
[k]Ũ

T
[k]my

∣∣∣≤ ∣∣∣∣∣∣U[k]Σ
−2t
[k] U T

[k] −Ũ[k]Σ̃
−2
[k]Ũ

T
[k]

∣∣∣∣∣∣
2
‖mx‖2‖my‖2

≤ ξ′‖mx‖2‖my‖2 (3.83)

Therefore we have∣∣∣mT
x (M t S)

(n

s
·W̃[k]Σ̃

−4
[k]W̃

T
[k]

)
(M t S)T my −1T

x U[k]U
T
[k]1y

∣∣∣
=

∣∣∣mT
x Ũ[k]Σ̃

−2
[k]Ũ

T
[k]my −mT

x U[k]Σ
−2t
[k] U T

[k]my

∣∣∣ By (3.79) and (3.82)

≤ ξ′ · ‖mx‖2‖my‖2 By (3.83) (3.84)

By Lemma 3.22 for any vertex x ∈V we have

‖mx‖2
2 = ‖M t1x‖2

2 ≤O(k2 ·n−1+(40ε/ϕ2)). (3.85)

Therefore by choice of c ′ as a large enough constant and choosing ξ′ = ξ

c ′·k2·n40ε/ϕ2 we have

∣∣∣mT
x (M t S)

(n

s
·W̃[k]Σ̃

−4
[k]W̃

T
[k]

)
(M t S)T my −1T

x U[k]U
T
[k]1y

∣∣∣≤O
(
ξ′ ·k2 ·n−1+(40ε/ϕ2)

)
≤ ξ

n
.

(3.86)

3.5.4 Stability bounds under approximations of columns by random walks

The main result of this section is Lemma 3.24, which shows that if a graph is (k,ϕ,ε)-clusterable,

then the pseudoinverseve of the low rank approximation of a random walk matrix are stable

when it is empirically approximated by running random walks from sample vertices.
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Lemma 3.24. Let k ≥ 2 be an integer, ϕ ∈ (0,1) and ε ∈ (0,1). Let G = (V ,E) be a d-regular

and (k,ϕ,ε)-clusterable graph. Let 1/n8 < ξ < 1 and t ≥ 20logn
ϕ2 . Let c1 > 1 and c2 > 1 be

a large enough constants. Let s ≥ c1 · n240ε/ϕ2 · logn · k4 and R ≥ c2·k9·n(1/2+820·ε/ϕ2)

ξ2 . Let IS =
{i1, . . . , is} be a multiset of s indices chosen independently and uniformly at random from

{1, . . . ,n}. Let S be the n × s matrix whose j -th column equals 1i j . Let G ∈ Rs×s be the output

of ESTIMATECOLLISIONPROBABILITIES(G , IS ,R, t )(Algorithm 2). Let M be the random walk

transition matrix of G. Let
√

n
s ·M t S = Ũ Σ̃W̃ T be an SVD of

√
n
s ·M t S where Ũ ∈ Rn×n , Σ̃ ∈

Rn×n ,W̃ ∈ Rs×n . Let n
s ·G = Ŵ Σ̂Ŵ T be an eigendecomposition of n

s ·G . If ε
ϕ2 ≤ 1

105 then with

probability at least 1−2 ·n−100 matrices Σ̂−2
[k] and Σ̃−4

[k] exist and we have∣∣∣∣∣∣Ŵ[k]Σ̂
−2
[k]Ŵ

T
[k] −W̃[k]Σ̃

−4
[k]W̃

T
[k]

∣∣∣∣∣∣
2
< ξ

To prove Lemma 3.24 we need the following lemma.

Lemma 3.25. Let k ≥ 2 be an integer, ϕ ∈ (0,1) and ε ∈ (0,1). Let G = (V ,E) be a d-regular and

(k,ϕ,ε)-clusterable graph. Let L and M be the normalized Laplacian and transition matrix of G

respectively. For any t ≥ 10logn
ϕ2 and any r and any x ∈V we have

‖M t1x‖r ≤O
(
k2 ·n−1+1/r+(40ε/ϕ2)

)
.

Proof. Let L be the normalized Laplacian of G with eigenvectors u1, . . . ,un and corresponding

eigenvalues λ1 ≤ . . . ≤λn . Observe that each ui is also an eigenvector of M , with eigenvalue

1− λi
2 . Note that G is (k,ϕ,ε)-clusterable. Therefore by Lemma 3.3 we have

λk+1 ≥
ϕ2

2
. (3.87)

We write 1x in the eigenbasis of L as 1x =∑n
j=1β j u j where β j = u j ·1x = u j (x). Thus for any

vertex u we have

M t1x = M t

(
n∑

j=1
β j u j

)
=

n∑
j=1

β j M t u j =
n∑

j=1
β j

(
1− λ j

2

)t

u j .

Let mx = M t1x . Therefore for any vertex y ∈V we have

mx (y) =
n∑

j=1
β j

(
1− λ j

2

)t

u j (y)

=
k∑

j=1
β j

(
1− λ j

2

)t

u j (y)+
n∑

j=k+1
β j

(
1− λ j

2

)t

u j (y)

122



3.5. A spectral dot product oracle

Therefore,

|mx (y)| ≤
(
1− λ1

2

)t k∑
j=1

|β j | · |u j (y)|+
(
1− λk+1

2

)t n∑
j=k+1

|β j | · |u j (y)| (3.88)

By (3.87) we have λk+1 ≥ ϕ2

2 , and t ≥ 8logn
ϕ2 . Thus we have

(
1− λk+1

2

)t

≤ n−2

Note that for any j ∈ [n]

|β j | ≤
√√√√ n∑

j=1
β2

j = ‖1x‖2 = 1. (3.89)

Morover for any j ∈ [n] and any y ∈V

|u j (y)| ≤ ‖u j‖2 = 1 (3.90)

Putting (3.89), (3.90) and (3.88) together we get

|mx (y)| ≤
k∑

j=1
|β j | · |u j (y)|+

(
1− λk+1

2

)t n∑
j=k+1

|β j | · |u j (y)|

≤
k∑

j=1
|β j | · |u j (y)|+n−2 ·n (3.91)

Note that G is (k,ϕ,ε)-clusterable and mini |Ci | ≥Ω( n
k ). Therefore by Lemma 3.5 for all j ≤ k

we have

β j = u j (x) ≤ ‖u j‖∞ ≤O
(p

k ·n−1/2+(20ε/ϕ2)
)

.

Moreover

u j (y) ≤ ‖u j‖∞ ≤O
(p

k ·n−1/2+(20ε/ϕ2)
)

Thus, we get
k∑

j=1
|β j | · |u j (y)| ≤O

(
k ·k ·n−1+(40ε/ϕ2)

)
. (3.92)

Therefore by (3.91) and (3.92) we get

|mx (y)| ≤O
(
k2 ·n−1+(40ε/ϕ2)

)
+n−1

≤O
(
k2 ·n−1+(40ε/ϕ2)

)
. (3.93)

Therefore we have

‖mx‖r ≤
(
n ·O

(
k2 ·n−1+(40ε/ϕ2)

)r )1/r
=O

(
k2 ·n−1+1/r+(40ε/ϕ2)

)
.
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Lemma 3.26. Let k ≥ 2 be an integer, ϕ ∈ (0,1) and ε ∈ (0,1). Let G = (V ,E) be a d-regular and

(k,ϕ,ε)-clusterable graph. Let M be the random walk transition matrix of G. Let σerr > 0. Let

t , R1 and R2 be integers. Let a,b ∈V . Suppose that we run R1 random walks of length t from

vertex a and R2 random walks of length t from vertex b. For any x ∈V , let m̂a(x) (resp. m̂b(x))

be a random variable which denotes the fraction out of the R1 (resp. R2) random walks starting

from a (resp. b), which end in x. Let c > 1 be a large enough constant. If

min(R1,R2) ≥ c ·k5 ·n−2+(100ε/ϕ2)

σ2
err

, and R1R2 ≥ c ·k2 ·n−1+(40ε/ϕ2)

σ2
err

then with probability at least 0.99 we have

|m̂T
a m̂b − (M t1a)T (M t1b)| ≤σerr.

Remark 3.5. The success probability of Lemma 3.26 can be boosted up to 1−n−100 using

standard techniques (taking the median of O(logn) independent runs).

Proof. Let ma = M t1a and mb = M t1b . Let X i
a,r be a random variable which is 1 if the r th

random walk starting from a, ends at vertex i , and 0 otherwise. Let Y i
b,r be a random variable

which is 1 if the r th random walk starting from b, ends at vertex i , and 0 otherwise. Thus,

E[X i
a,r ] = ma(i ) and E[Y i

b,r ] = mb(i ). For any two vertices a,b ∈ S, let Za,b = m̂T
a m̂b be a

random variable given by

Za,b = 1

R1R2

∑
i∈V

(
R1∑

r1=1
X i

a,r1
)(

R2∑
r2=1

Y i
b,r2

).

Thus,

E[Za,b] = 1

R1R2

∑
i∈V

(
R1∑

r1=1
E[X i

a,r1
])(

R2∑
r2=1

E[Y i
b,r2

])

= 1

R1R2

∑
i∈V

(R1 ·ma(i )) (R2 ·mb(i ))

= ∑
i∈V

ma(i ) ·mb(i ) = (ma)T (mb). (3.94)

We know that Var(Za,b) = E[Z 2
a,b]−E[Za,b]2. Let us first compute E[Z 2

a,b].

E[Z 2
a,b] = E

[
1

(R1R2)2

∑
i∈V

∑
j∈V

R1∑
r1=1

R2∑
r2=1

R1∑
r ′

1=1

R2∑
r ′

2=1

X i
a,r1

Y i
b,r2

X j
a,r ′

1
Y j

b,r ′
2

]

= 1

(R1R2)2

∑
i∈V

∑
j∈V

R1∑
r1=1

R2∑
r2=1

R1∑
r ′

1=1

R2∑
r ′

2=1

E[X i
a,r1

Y i
b,r2

X j
a,r ′

1
Y j

b,r ′
2
]
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To compute E[X i
a,r1

Y i
b,r2

X j
a,r ′

1
Y j

b,r ′
2
], we need to consider the following cases.

1. i 6= j : E[X i
a,r1

Y i
b,r2

X j
a,r ′

1
Y j

b,r ′
2
] ≤ ma(i ) ·mb(i ) ·ma( j ) ·mb( j ). (This is an equality if r1 6= r ′

1

and r2 6= r ′
2. Otherwise, the expectation is zero.)

2. i = j , r1 = r ′
1, r2 = r ′

2: E[X i
a,r1

Y i
b,r2

X j
a,r ′

1
Y j

b,r ′
2
] = ma(i ) ·mb(i ).

3. i = j , r1 = r ′
1, r2 6= r ′

2: E[X i
a,r1

Y i
b,r2

X j
a,r ′

1
Y j

b,r ′
2
] = ma(i ) ·mb(i ) · ·mb(i ).

4. i = j , r1 6= r ′
1, r2 = r ′

2: E[X i
a,r1

Y i
b,r2

X j
a,r ′

1
Y j

b,r ′
2
] = ma(i ) ·mb(i ) ·ma(i ).

5. i = j , r1 6= r ′
1, r2 6= r ′

2: E[X i
a,r1

Y i
b,r2

X j
a,r ′

1
Y j

b,r ′
2
] = ma(i ) ·mb(i ) ·ma(i ) ·mb(i ).

Thus we have,

E[Z 2
a,b] = 1

(R1R2)2

∑
i∈V

∑
j∈V

R1∑
r1=1

R2∑
r2=1

R1∑
r ′

1=1

R2∑
r ′

2=1

E[X i
a,r1

Y i
b,r2

X j
a,r ′

1
Y j

b,r ′
2
]

≤ ∑
i∈V

∑
j∈V \{i }

ma(i ) ·ma( j ) ·mb(i ) ·mb( j )+ ∑
i∈V

ma(i )2 ·mb(i )2

+ 1

R1R2

∑
i∈V

ma(i ) ·mb(i )+ 1

R1

∑
i∈V

ma(i ) ·mb(i )2 + 1

R2

∑
i∈V

ma(i )2 ·mb(i )

= ∑
i , j∈V

ma(i ) ·ma( j ) ·mb(i ) ·mb( j )+ 1

R1R2

∑
i∈V

ma(i ) ·mb(i )

+ 1

R1

∑
i∈V

ma(i ) ·mb(i )2 + 1

R2

∑
i∈V

ma(i )2 ·mb(i ).

Therefore we get,

Var(Za,b) = E[Z 2
a,b]−E[Za,b]2

≤ ∑
i , j∈V

ma(i ) ·ma( j ) ·mb(i ) ·mb( j )+ 1

R1R2

∑
i∈V

ma(i ) ·mb(i ) (3.95)

+ 1

R1

∑
i∈V

ma(i ) ·mb(i )2 + 1

R2

∑
i∈V

ma(i )2 ·mb(i )−
(∑

i∈V
ma(i ) ·mb(i )

)2

= 1

R1R2

∑
i∈V

ma(i ) ·mb(i )+ 1

R1

∑
i∈V

ma(i ) ·mb(i )2 + 1

R2

∑
i∈V

ma(i )2 ·mb(i )

≤ 1

R1R2
‖ma‖2‖mb‖2 + 1

R1
‖ma‖2‖mb‖2

4 +
1

R2
‖ma‖2

4‖mb‖2 By Cauchy-Schwarz

Since G = (V ,E) is (k,ϕ,ε) clusterable by Lemma 3.25 we have

‖ma‖4 ≤O
(
k2 ·n−3/4+(40ε/ϕ2)

)
.
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and by Lemma 3.22 we have

‖ma‖2 ≤O(k ·n−1/2+(20ε/ϕ2)).

Thus we get

Var(Za,b) ≤O

(
k2 ·n−1+(40ε/ϕ2)

R1R2
+

(
1

R1
+ 1

R2

)
·k5 ·n−2+(100ε/ϕ2)

)
(3.96)

Then by Chebyshev’s inequality, we get,

Pr
[|Za,b −E[Za,b]| >σerr

]≤ Var[Za,b]

σerr
2

≤O

(
1

σerr
2 ·

(
k2 ·n−1+(40ε/ϕ2)

R1R2
+

(
1

R1
+ 1

R2

)
·k5 ·n−2+(100ε/ϕ2)

))
(3.97)

≤ 1

100
.

The last inequality holds by our choice of R1 and R2 as follows where c is a large enough

constant that cancels the constant hidden in O (·) in (3.97).

min(R1,R2) ≥ c ·k5 ·n−2+(100ε/ϕ2)

σ2
err

and

R1R2 ≥ c ·k2 ·n−1+(40ε/ϕ2)

σ2
err

Lemma 3.27. Let k ≥ 2 be an integer, ϕ ∈ (0,1) and ε ∈ (0,1). Let G = (V ,E) be a d-regular and

(k,ϕ,ε)-clusterable graph. Let σerr > 0 and let s > 0, R > 0, t > 0 be integers. Let IS = {i1, . . . , is}

be a multiset of s indices chosen from {1, . . . ,n}. Let S be the n × s matrix whose j -th column

equals 1i j . Let c > 1 be a large enough constant. Let R ≥ max
{

c·k5·n−2+100ε/ϕ2

σ2
err

, c·k·n−1/2+20ε/ϕ2

σerr

}
Let

G ∈Rs×s be the output of Algorithm ESTIMATECOLLISIONPROBABILITIES(G , IS ,R, t ) (Algorithm

2). Let M be the random walk transition matrix of G. then with probability at least 1−n−100 we

have

‖G − (M t S)T (M t S)‖2 ≤ s ·σerr.

Proof. Note that as per line (2) and (3) of Algorithm 2 we first construct matrices P̂i ∈ Rn×s

and Q̂i ∈Rn×s using Algorithm 3. as per line (3) of Algorithm 3 matrix P̂i (or Q̂i ) has s columns

each corresponds to a vertex x ∈ S. The column corresponding to vertex x is m̂x . as per line 2

of Algorithm 3, m̂x is defined as the empirical probability distribution of running R random
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walks of length t starting from vertex x. Thus for any x, y ∈ S we have the entry corresponding

to the xth row and y th column of Q̂T
i P̂i (or P̂ T

i Q̂i ) is 〈m̂x ,m̂y 〉. Since

R ≥ max

{
c ·k5 ·n−2+100ε/ϕ2

σ2
err

,
c ·k ·n−1/2+20ε/ϕ2

σerr

}

then by Lemma 3.26 with probability at least 0.99 we have

|m̂T
x m̂y − (M t1x )T (M t1y )| ≤σerr.

Note that as per line 4 of Algorithm 2 we define Gi := 1
2

(
P̂ T

i Q̂i +Q̂T
i P̂i

)
. Thus for any x, y ∈ IS

we have the entry corresponding to the xth row and y th column of Gi (i.e., Gi (x, y)) with

probability 0.99 satisfies the following:

|Gi (x, y)− (M t1x )T (M t1y )| ≤σerr.

Note that as Line 5 of Algorithm 2 we define G as a matrix obtained by taking the entrywises

median of Gi ’s over O(logn) runs. Thus with probability at least 1−n−100 we have for all

x, y ∈ IS

|G (x, y)− (M t1x )T (M t1y )| ≤σerr.

which implies

‖G − (M t S)T (M t S)T ‖F ≤ s ·σerr.

Since the Frobenius norm of a matrix bounds its maximum eigenvalue from above we get

‖G − (M t S)T (M t S)T ‖2 ≤ s ·σerr.

Recall that for a symmetric matrix A, we write νi (A) (resp. νmax(A),νmin(A)) to denote the i th

largest (resp. maximum, minimum) eigenvalue of A.

Lemma 3.28. Let k ≥ 2 be an integer, ϕ ∈ (0,1) and ε ∈ (0,1). Let G = (V ,E) be a d-regular

and (k,ϕ,ε)-clusterable graph. Let t ≥ 20logn
ϕ2 . Let c > 1 be a large enough constant and s ≥

c ·n240·ε/ϕ2 · logn ·k4. Let IS = {i1, . . . , is} be a multiset of s indices chosen independently and

uniformly at random from {1, . . . ,n}. Let S be the n × s matrix whose j -th column equals 1i j .

Let M be the random walk transition matrix of G. If ε
ϕ2 ≤ 1

105 then with probability at least

1−n−100 we have

1. νk
(n

s · (M t S)(M t S)T
)≥ n−80ε/ϕ2

2

2. νk+1
(n

s · (M t S)(M t S)T
)≤ n−9.

Proof. Let (u1, . . . ,un) be an orthonormal basis of eigenvectors of L with corresponding eigen-
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values 0 ≤λ1 ≤ . . . ≤λn . Observe that each ui is also an eigenvector of M , with eigenvalue 1− λi
2 .

Note that G is (k,ϕ,ε)-clusterable, therefore by Lemma 3.3 we have λk ≤ 2ε and λk+1 ≥ ϕ2

2 . We

have

νk+1(M 2t ) =
(
1− λk+1

2

)2t

≤ n−10, and (3.98)

νk (M 2t ) =
(
1− λk

2

)2t

≥ n−80ε/ϕ2
(3.99)

Proof of item (1): Let A = (M t )
(
M t

)T , and Ã = n
s · (M t S)

(
M t S

)T . By Lemma 3.22 we have

B = ‖(M t1x )(M t1x )T ‖2 ≤ ‖M t1x‖2
2 ≤O

(
k2 ·n−1+40ε/ϕ2)

)
.

Let ξ= n−80ε/ϕ2
/2. Therefore for large enough constant c and by choice of s = c ·k4n240ε/ϕ2

logn

we have s ≥ 40n2B 2 logn
(ξ)2 . Thus Lemma 3.21 yields that with probability at least 1− 1

n100 we have

‖A− Ã‖2 ≤ n−80ε/ϕ2

2
. (3.100)

Hence, by Weyl’s Inequality (see Lemma 3.17) we have

νk (Ã) ≥ νk (A)+νmin(Ã− A) = νk (A)−νmax(A− Ã) = νk (A)−‖A− Ã‖2

By (3.99) we have νk (A) = νk (M 2t ) ≥ n−10ε/ϕ2
and so

νk (Ã) ≥ νk (A)−‖Ã− A‖2 ≥ n−80ε/ϕ2 − n−80ε/ϕ2

2
≥ n−80ε/ϕ2

2
.

Proof of item (2): By Lemma 3.8 we have

νk+1(Ã) = n

s
·νk+1((M t S)(M t S)T ) = n

s
·νk+1((M t S)T (M t S)) = n

s
·νk+1(ST M 2t S).

Recall that 1− λ1
2 ≥ ·· · ≥ 1− λn

2 are the eigenvalues of M , and Σ is the diagonal matrix of

these eigenvalues in descending order, and U is the matrix whose columns are orthonormal

eigenvectors of M arranged in descending order of their eigenvalues. We have M 2t =UΣ2tU T .

Recall that Σ[k] is k ×k diagonal matrix with entries 1− λ1
2 ≥ ·· · ≥ 1− λk

2 , and Σ−[k] is a (n−k)×
(n−k) diagonal matrix with entries 1− λk+1

2 ≥ ·· · ≥ 1− λn
2 . We can write UΣ2tU =U[k]Σ

2t
[k]U

T
[k]+
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U−[k]Σ
2t
−[k]U

T
−[k], thus we get

νk+1(Ã) = n

s
·νk+1

(
ST M 2t S

)
= n

s
·νk+1

(
ST (UΣ2tU T )S

)
= n

s
·νk+1

(
ST

(
U[k]Σ

2t
[k]U

T
[k] +U−[k]Σ

2t
−[k]U

T
−[k]

)
S
)

≤ n

s
·νk+1

(
ST U[k]Σ

2t
[k]U

T
[k]S

)
+ n

s
·νmax

(
ST U−[k]Σ

2t
−[k]U

T
−[k]S

)
By Weyl’s inequality (Lemma 3.17)

Hereνk+1(ST U[k]Σ
2t
[k]U

T
[k]S) = 0, because the rank ofΣ2t

[k] is k. We then need to boundνmax(ST U−[k]Σ
2t
−[k]U

T
−[k]S).

We have,

νmax

(
ST U−[k]Σ

2t
−[k]U

T
−[k]S

)
= νmax

(
U−[k]Σ

2t
−[k]U

T
−[k]SST

)
By Lemma 3.8

≤ νmax

(
U−[k]Σ

2t
−[k]U

T
−[k]

)
·νmax

(
SST )

By submultiplicativity of norm

= νmax

(
Σ2t
−[k]U

T
−[k]U−[k]

)
·νmax

(
SST )

By Lemma 3.8

= νmax

(
Σ2t
−[k]

)
·νmax

(
SST )

Since U T
−[k]U−[k] = I

Next, observe that SST ∈ Rn×n is a diagonal matrix whose (a, a)th entry is the multiplicity of

vertex a is sampled in S. Thus, νmax(SST ) is the maximum multiplicity over all vertices, which

is at most s. Also note that νmax(Σ2t
−[k]) =

(
1− λk+1

2

)2t
. Thus by (3.98) we get,

νk+1(Ã) ≤ n

s
·νmax

(
ST U−[k]Σ

2t
−[k]U

T
−[k]S

)
≤ n

s
· s ·

(
1− λk+1

2

)2t

≤ n ·n−10 = n−9.

Now we are ready to prove the main result of this section (Lemma 3.24).

Lemma 3.24. Let k ≥ 2 be an integer, ϕ ∈ (0,1) and ε ∈ (0,1). Let G = (V ,E) be a d-regular

and (k,ϕ,ε)-clusterable graph. Let 1/n8 < ξ < 1 and t ≥ 20logn
ϕ2 . Let c1 > 1 and c2 > 1 be

a large enough constants. Let s ≥ c1 · n240ε/ϕ2 · logn · k4 and R ≥ c2·k9·n(1/2+820·ε/ϕ2)

ξ2 . Let IS =
{i1, . . . , is} be a multiset of s indices chosen independently and uniformly at random from

{1, . . . ,n}. Let S be the n × s matrix whose j -th column equals 1i j . Let G ∈ Rs×s be the output

of ESTIMATECOLLISIONPROBABILITIES(G , IS ,R, t )(Algorithm 2). Let M be the random walk

transition matrix of G. Let
√

n
s ·M t S = Ũ Σ̃W̃ T be an SVD of

√
n
s ·M t S where Ũ ∈ Rn×n , Σ̃ ∈

Rn×n ,W̃ ∈ Rs×n . Let n
s ·G = Ŵ Σ̂Ŵ T be an eigendecomposition of n

s ·G . If ε
ϕ2 ≤ 1

105 then with

probability at least 1−2 ·n−100 matrices Σ̂−2
[k] and Σ̃−4

[k] exist and we have∣∣∣∣∣∣Ŵ[k]Σ̂
−2
[k]Ŵ

T
[k] −W̃[k]Σ̃

−4
[k]W̃

T
[k]

∣∣∣∣∣∣
2
< ξ
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Proof. Let Ã = n
s · (M t S)T

(
M t S

)= W̃ Σ̃2W̃ T and Â = n
s ·G . Thus we have

Ã2 =
(n

s
· (M t S)T (

M t S
))2

= W̃ Σ̃4W̃ T

and

Â2 =
(n

s
·G

)2
= Ŵ Σ̂2Ŵ T .

Recall that for a symmetric matrix A, we write νi (A) to denote the i th largest eigenvalue of A.

We want to apply Lemma 3.18 to get

∣∣∣∣∣∣W̃[k]Σ̃
−4
[k]W̃

T
[k] −Ŵ[k]Σ̂

−2
[k]Ŵ

T
[k]

∣∣∣∣∣∣
2
≤ 16 · ‖Ã2 − Â2‖2 +4 ·νk+1(Ã2)

νk (Ã2)2

Hence, we first need to verify the prerequisites of Lemma 3.18. Let c3 > 1 be a large enough

constant that we will define soon, and let σerr = ξ·n(−1−360·ε/ϕ2)

c3·k2 . Let c be a constant from Lemma

3.27. By the assumption of the lemma for large enough constant c2 > 1 we have

R ≥ c2 ·k9 ·n1/2+820·ε/ϕ2

ξ2 ≥ max

{
c ·k5 ·n−2+100ε/ϕ2

σ2
err

,
c ·k ·n−1/2+20ε/ϕ2

σerr

}
.

Thus we can apply Lemma 3.27. Hence, with probability at least 1−n−100 we have

‖G − (M t S)T (M t S)‖2 ≤ s ·σerr. (3.101)

Therefore we have

‖G 2 − (
(M t S)T (M t S)

)2 ‖2 = ‖G (
G − (M t S)T (M t S)

)+ (
G − (M t S)T (M t S)

)
(M t S)T (M t S)‖2

≤ ‖G − (M t S)T (M t S)‖2
(‖G‖2 +‖(M t S)T (M t S)‖2

)
≤ s ·σerr

(
(s ·σerr +‖(M t S)T (M t S)‖2)+‖(M t S)T (M t S)‖2

)
= (s ·σerr)2 +2 · s ·σerr‖(M t S)T (M t S)‖2 (3.102)

Note that

‖(M t S)T (M t S)‖2 ≤ ‖(M t S)T (M t S)‖F

=
√ ∑

x,y∈S

(
(M t1x )T (M t1y )

)2

≤
√ ∑

x,y∈S
‖M t1x‖2

2‖M t1y‖2
2 By Cauchy Schwarz

≤O

(√
s2 · (k2 ·n−1+(40ε/ϕ2)

)2
)

By Lemma 3.22

=O
(
s ·k2 ·n−1+(40ε/ϕ2)

)
. (3.103)
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Puuting (3.103) and (3.102) and by choice of σerr = ξ·n(−1−360·ε/ϕ2)

c3·k2 we get

‖Ã2−Â2‖2 =
(n

s

)2
‖G 2−(

(M t S)T (M t S)
)2 ‖2 ≤O

(
ξ2 ·n−720·ε/ϕ2

(c3)2 ·k4 + ξ ·n−320ε/ϕ2

c3

)
=O

(
ξ ·n−320ε/ϕ2

c3

)
(3.104)

By Lemma 3.8 for any i ∈ [s] we have

νi (Ã) = νi

(n

s
· (M t S)

(
M t S

)T
)
= νi

(n

s
· (M t S)T (

M t S
))

Let c1 be the constant from Lemma 3.28. Since s ≥ c1 ·n240ε/ϕ2 · logn ·k4 therefore by Lemma

3.28 with probability at least 1−n−100 we have

νk
(

Ã2)= νk

((n

s
· (M t S)T (

M t S
))2

)
≥

(
n−80ε/ϕ2

2

)2

≥ n−160ε/ϕ2

4
(3.105)

and

νk+1
(

Ã2)= νk+1

((n

s
· (M t S)T (

M t S
))2

)
≤ n−18 (3.106)

By the bound on the νk (Ã2) and the inequality on ‖Ã2 − Â2‖2, we know that νk (Â2) is non-

zero and so Σ̂−2
[k] exist. Recall that Ã = W̃ Σ̃2W̃ T . Observing that Ã is positive semi-definite,

νk+1(Ã2) < νk (Ã2)/4, and ‖Ã2 − Â2‖2 ≤ 1
100 ·νk (Ã2) we can apply Lemma 3.18 and we get

∣∣∣∣∣∣W̃[k]Σ̃
−4
[k]W̃

T
[k] −Ŵ[k]Σ̂

−2
[k]Ŵ

T
[k]

∣∣∣∣∣∣
2
≤ 16 · ‖Ã2 − Â2‖2 +4 ·νk+1(Ã2)

νk (Ã2)2

≤
O

(
ξ·n(−320ε/ϕ2)

c3

)
+4 ·n−18

1
16 ·n(−320ε/ϕ2)

By (3.104) and (3.105)

≤O

(
ξ

c3

)
+64 ·n−17

≤ ξ

The last inequality holds since ξ≥ n−8 and by setting c3 to a large enough constant to cancel

the constant hidden in O
(
ξ
c3

)
.

3.5.5 Proof of Theorem 3.2

Theorem 3.2. [Spectral Dot Product Oracle] Let ε,ϕ ∈ (0,1) with ε≤ ϕ2

105 . Let G = (V ,E) be a d-

regular graph that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck . Let 1
n5 < ξ< 1. Then INITIALIZEORACLE(G ,1/2,ξ)

(Algorithm 4) computes in time ( k
ξ )O(1) ·n1/2+O(ε/ϕ2) ·(logn)3 · 1

ϕ2 a sublinear space data structure

D of size ( k
ξ )O(1) ·n1/2+O(ε/ϕ2) · (logn)3 such that with probability at least 1−n−100 the following

property is satisfied:

For every pair of vertices x, y ∈V , SPECTRALDOTPRODUCT(G , x, y,1/2,ξ,D) (Algorithm 5) com-
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putes an output value
〈

fx , fy
〉

apx
such that with probability at least 1−n−100

∣∣∣ 〈
fx , fy

〉
apx

−〈 fx , fy 〉
∣∣∣≤ ξ

n
.

The running time of SPECTRALDOTPRODUCT(G , x, y,1/2,ξ,D) is ( k
ξ )O(1) ·n1/2+O(ε/ϕ2) · (logn)2 ·

1
ϕ2 .

Furthermore, for any 0 ≤ δ≤ 1/2, one can obtain the following trade-offs between preprocess-

ing time and query time: Algorithm SPECTRALDOTPRODUCT(G , x, y,δ,ξ,D) requires ( k
ξ )O(1) ·

nδ+O(ε/ϕ2)·(logn)2· 1
ϕ2 per query when the prepressing time of Algorithm INITIALIZEORACLE(G ,δ,ξ)

is increased to ( k
ξ )O(1) ·n1−δ+O(ε/ϕ2) · (logn)3 · 1

ϕ2 .

To prove Theorem 3.2 we need to combine Lemma 3.19 from Section 3.5.3 with the following

lemma.

Lemma 3.29. Let G = (V ,E) be a d-regular and (k,ϕ,ε)-clusterable graph. Let 0 < δ< 1/2, and

1/n6 < ξ< 1. Let D denote the data structure constructed by Algorithm INITIALIZEORACLE(G ,δ,ξ)

(Algorithm 4). Let x, y ∈V . Let
〈

fx , fy
〉

apx
∈Rdenote the value returned by SPECTRALDOTPRODUCTORACLE(G , x, y,δ,ξ,D)

(Algorithm 5). Let t ≥ 20logn
ϕ2 . Let c > 1 be a large enough constant and let s ≥ c ·n240·ε/ϕ2 ·logn·k4.

Let IS = {i1, . . . , is} be a multiset of s indices chosen independently and uniformly at random

from {1, . . . ,n}. Let S be the n × s matrix whose j -th column equals 1i j . Let M be the ran-

dom walk transition matrix of G. Let
√

n
s · M t S = Ũ Σ̃W̃ T be an SVD of

√
n
s · M t S where

Ũ ∈Rn×n , Σ̃ ∈Rn×n ,W̃ ∈Rs×n . If ε
ϕ2 ≤ 1

105 , and Algorithm 4 succeeds, then with probability at

least 1−n−100 matrix Σ̃−4
[k] exists and we have

∣∣∣〈 fx , fy
〉

apx
− (M t1x )T (M t S)

(n

s
·W̃[k]Σ̃

−4
[k]W̃

T
[k]

)
(M t S)T (M t1y )

∣∣∣< ξ

n
.

Proof. Note that as per line 7 of Algorithm 5
〈

fx , fy
〉

apx
is defined as

〈
fx , fy

〉
apx

=αT
x Ψαy .

where as per line 3 of Algorithm 4 we define matrixΨ ∈Rs×s as

Ψ= n

s
·Ŵ[k]Σ̂

−2
[k]Ŵ

T
[k],

and αx ,αy ∈ Rs are vectors obtained by taking entrywise median over all (Q̂i )T (m̂i
x ) and

(Q̂i )T (m̂i
y ). (See line 5 and 6 of Algorithm 5). For any vertex a ∈ V recall that ma denote

ma = M t1a . We then define

ax = mT
x (M t S), A = n

s
·W̃[k]Σ̃

−4
[k]W̃

T
[k], ay = (M t S)T my , and

ex =αT
x −ax , E =Ψ− A, ey =αy −ay
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Thus by triangle inequality we have∣∣∣∣∣∣αT
x Ψαy −mT

x (M t S)
(n

s
·W̃[k]Σ̃

−4
[k]W̃

T
[k]

)
(M t S)T my

∣∣∣∣∣∣
2

= ‖ (ax +ex ) (A+E)
(
ay +ey

)−ax Aay‖2

≤ ‖ex‖2‖A‖2‖ay‖2 +‖ax‖2‖E‖2‖ay‖2 +‖ax‖2‖A‖2‖ey‖2

+‖ex‖2‖E‖2‖ay‖2 +‖ax‖2‖E‖2‖ey‖2 +‖ex‖2‖A‖2‖ey‖2 +‖ex‖2‖E‖2‖ey‖2

Therefore we need to bound ‖ex‖2, ‖ey‖2, ‖E‖2, ‖ax‖2, ‖ay‖2 and ‖A‖2. Let c ′ > 1 be a constant

we will define soon, and let ξ′ = ξ

c ′·k4·n80ε/ϕ2 . Let c1 be a constant in front of s and let c2 be a

constant in front of R in Lemma 3.24. Thus for large enough c we have s ≥ c1 ·n240ε/ϕ2 ·logn ·k4

and Rinit = Θ(n1−δ+980·ε/ϕ2 ·k17/ξ2) ≥ c2·k9·n1/2+820·ε/ϕ2

ξ′2 as per line 2 of Algorithm 4, hence, by

Lemma 3.24 applied with ξ′ we have with probability at least 1−n−100, Ŵ T
[k]− and Σ̃−4

[k] exist

and we have

‖E‖2 = n

s
·
∣∣∣∣∣∣Ŵ[k]Σ̂

−2
[k]Ŵ

T
[k] −W̃[k]Σ̃

−4
[k]W̃

T
[k]

∣∣∣∣∣∣
2
≤ n

s
·ξ′ = ξ ·n

c ′ ·k4 ·n80ε/ϕ2 · s
. (3.107)

Recall that for a symmetric matrix A, we write νi (A) (resp. νmax(A),νmin(A)) to denote the i th

largest (resp. maximum, minimum) eigenvalue of A. We have

‖A‖2 = n

s
· ‖W̃[k]Σ̃

−4
[k]W̃

T
[k]‖2 = n

s
·νmax

(
W̃[k]Σ̃

−4
[k]W̃

T
[k]

)
= n

s
· 1

νk

(
W̃[k]Σ̃

4
[k]W̃

T
[k]

)
Note that n

s · (M t S)T (M t S) = W̃ Σ̃2W̃ T . Thus by Lemma 3.28 item (1) we have

νk

(
W̃[k]Σ̃

4
[k]W̃

T
[k]

)
= νk

(
W̃ Σ̃4W̃ T )= νk

((n

s
· (M t S)T (M t S)

)2
)
≥ n−160ε/ϕ2

4
.

Therefore we have

‖A‖2 ≤ 4 · n

s
·n160ε/ϕ2 = 4 ·n1+160ε/ϕ2

s
. (3.108)

Since G is (k,ϕ,ε)-clusterable by Lemma 3.22 for any vertex x ∈V we have

‖mx‖2
2 ≤O

(
k2 ·n−1+(40ε/ϕ2)

)
. (3.109)
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Then we get

‖ax‖2 = ‖(mx )T (M t S)‖2

=
√ ∑

a∈IS

(
(mx )T (ma)

)2

≤
√ ∑

a∈IS

‖mx‖2
2‖ma‖2

2 By Cauchy Schwarz

≤O

(√
s · (k2 ·n−1+(40ε/ϕ2)

)2
)

By (3.109)

=O
(p

s ·k2 ·n−1+(40ε/ϕ2)
)

(3.110)

By the same analysis we get

‖ay‖2 ≤O
(p

s ·k2 ·n−1+(40ε/ϕ2)
)

(3.111)

Now we left to bound ‖ex‖2 and ‖ey‖2. Recall that ex =αx − (M t1x )T (M t S) where αx ,αy ∈Rs

are vectors obtained by taking entrywises median over all (Q̂i )T (m̂i
x ) and (Q̂i )T (m̂i

y ). (See line

5 and 6 of Algorithm 5). Also note that as per line 3 and line 4 of Algorithm 5, m̂i
x and m̂i

y are

defined as the empirical probability distribution of running Rquery random walks of length

t starting from vertex x and y . Also note that Q̂i s are generated by Algorithm 3 which runs

Rinit random walks from vertices in IS . For any z ∈ IS any i ∈ {1, . . . ,O(logn)} let qi
z denote the

column corresponding to vertex z in Q̂i .

Let c3 be a constant in front of R1 and R2 in Lemma 3.26. Let σerr = ξ

c ′·k2·n(1+200ε/ϕ2)
. Thus by

choice of Rinit =Θ(n1−δ+980·ε/ϕ2 ·k17/ξ2) as per line 2 of Algorithm 4 and Rquery =Θ(nδ+500·ε/ϕ2 ·k9/ξ2)

as per line 1 of Algorithm 5, the prerequisites of Lemma 3.26 are satisfied:

min(Rinit,Rquery) ≥ c3 ·k5 ·n−2+(100ε/ϕ2)

σ2
err

, and, Rinit ·Rquery ≥ c3 ·k2 ·n−1+(40ε/ϕ2)

σ2
err

Thus we can apply Lemma 3.26. Hence, for any z ∈ IS with probability at least 0.99 we have

|(m̂i
x )

T
qi

z − (mx )T (mz )| ≤σerr

Note that as per line 5 and line 6 of Algorithm 5 we take entrywise median over all (Q̂i )T (m̂i
x )

and (Q̂i )T (m̂i
y ). Since we are running O(logn) copies of the same algorithm with success

probability at least 0.99, thus by simple Chernoff bound with probability at least 1−n−100 for

all z ∈ IS we have

|αx (z)− (mx )T (mz )| ≤σerr

Therefore by choice of σerr = ξ

c ′·k2·n1+200·ε/ϕ2 we get

‖ex‖2 = ‖αx − (mx )T (M t S)‖2 ≤
p

s ·σerr =
p

s ·ξ
c ′ ·k2 ·n(1+200ε/ϕ2)

. (3.112)
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By the same analysis we get

‖ey‖2 ≤
p

s ·ξ
c ′ ·k2 ·n(1+200ε/ϕ2)

. (3.113)

Putting (3.107), (3.108), (3.109), (3.110), (3.111), (3.112), and (3.113) and for large enough n

we get:

∣∣∣∣∣∣〈 fx , fy
〉

apx
−·mT

x (M t S)
(n

s
·W̃[k]Σ̃

−4
[k]W̃

T
[k]

)
(M t S)T my

∣∣∣∣∣∣≤
‖ex‖2‖A‖2‖ay‖2 +‖ax‖2‖E‖2‖ay‖2 +‖ax‖2‖A‖2‖ey‖2+
‖ex‖2‖E‖2‖ay‖2 +‖ax‖2‖E‖2‖ey‖2 +‖ex‖2‖A‖2‖ey‖2 +‖ex‖2‖E‖2‖ey‖2

≤ 2 ·
( p

s ·ξ
c ′ ·k2 ·n(1+200ε/ϕ2)

)(
4 ·n1+160ε/ϕ2

s

)
·O

(p
s ·k2 ·n−1+(40ε/ϕ2)

)
+2 ·

(p
s ·n(80ε/ϕ2)k2

n

)(
ξ ·n

c ′ ·k4 ·n80ε/ϕ2 · s

)(
ξ

c ′ ·ps ·n(1+20ε/ϕ2)

)

+
( p

s ·ξ
c ′ ·k2 ·n(1+200ε/ϕ2)

)2
(

4 ·n1+160ε/ϕ2

s

)

+O
(p

s ·k2 ·n−1+(40ε/ϕ2)
)2

(
ξ ·n

c ′ ·k4 ·n80ε/ϕ2 · s

)
+

( p
s ·ξ

c ′ ·k2 ·n(1+200ε/ϕ2)

)2 (
ξ ·n

c ′ ·k4 ·n80ε/ϕ2 · s

)
≤O

(
ξ

c ′ ·n

)
≤ ξ

n
.

The last inequality holds by setting c ′ to a large enough constant to cancel the hidden constant

of O
(

ξ
c ′·n

)
.

Now we are able to complete the proof of Theorem 3.2.

Theorem 3.2. [Spectral Dot Product Oracle] Let ε,ϕ ∈ (0,1) with ε≤ ϕ2

105 . Let G = (V ,E) be a d-

regular graph that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck . Let 1
n5 < ξ< 1. Then INITIALIZEORACLE(G ,1/2,ξ)

(Algorithm 4) computes in time ( k
ξ )O(1) ·n1/2+O(ε/ϕ2) ·(logn)3 · 1

ϕ2 a sublinear space data structure

D of size ( k
ξ )O(1) ·n1/2+O(ε/ϕ2) · (logn)3 such that with probability at least 1−n−100 the following

property is satisfied:

For every pair of vertices x, y ∈V , SPECTRALDOTPRODUCT(G , x, y,1/2,ξ,D) (Algorithm 5) com-

putes an output value
〈

fx , fy
〉

apx
such that with probability at least 1−n−100

∣∣∣ 〈
fx , fy

〉
apx

−〈 fx , fy 〉
∣∣∣≤ ξ

n
.
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The running time of SPECTRALDOTPRODUCT(G , x, y,1/2,ξ,D) is ( k
ξ )O(1) ·n1/2+O(ε/ϕ2) · (logn)2 ·

1
ϕ2 .

Furthermore, for any 0 ≤ δ≤ 1/2, one can obtain the following trade-offs between preprocess-

ing time and query time: Algorithm SPECTRALDOTPRODUCT(G , x, y,δ,ξ,D) requires ( k
ξ )O(1) ·

nδ+O(ε/ϕ2)·(logn)2· 1
ϕ2 per query when the prepressing time of Algorithm INITIALIZEORACLE(G ,δ,ξ)

is increased to ( k
ξ )O(1) ·n1−δ+O(ε/ϕ2) · (logn)3 · 1

ϕ2 .

Proof of Theorem 3.2. Correctness: Note that as per line 3 of Algorithm 4 we set s =Θ(n480·ε/ϕ2 · logn ·k8/ξ2).

Recall that IS = {i1, . . . , is} is the multiset of s vertices each sampled uniformly at random (see

line 4 of Algorithm 4). Let S be the n × s matrix whose j -th column equals 1i j . Recall that M is

the random walk transition matrix of G . Let
√

n
s ·M t S = Ũ Σ̃W̃ T be the eigendecomposition of√

n
s ·M t S. We define

e1 =
∣∣∣(M t1x )T (M t S)

(n

s
·W̃[k]Σ̃

−4
[k]W̃

T
[k]

)
(M t S)T (M t1y )−1T

x U[k]U
T
[k]1y

∣∣∣
and

e2 =
∣∣∣〈 fx , fy

〉
apx

− (M t1x )T (M t S)
(n

s
·W̃[k]Σ̃

−4
[k]W̃

T
[k]

)
(M t S)T (M t1y )

∣∣∣
By triangle inequality we have∣∣∣〈 fx , fy

〉
apx

−〈 fx , fy 〉
∣∣∣= ∣∣∣〈 fx , fy

〉
apx

−1T
x U[k]U

T
[k]1y

∣∣∣≤ e1 +e2.

Let ξ′ = ξ/2. Let c be a constant in front of s in Lemma 3.19 and c ′ be a constant in front of s in

Lemma 3.29. Note that as per line 3 of Algorithm 4 we set s =Θ(n480·ε/ϕ2 · logn ·k8/ξ2). Since
ε
ϕ2 ≤ 1

105 and s ≥ c ·n480ε/ϕ2 · logn ·k8/ξ′2 by Lemma 3.19 with probability at least 1−n−100

we have e1 ≤ ξ′
n = ξ

2·n . Since s ≥ c ′ ·n240ε/ϕ2 · logn ·k4, by Lemma 3.29 with probability at least

1−2 ·n−100 we have e2 ≤ ξ
2·n . Thus with probability at least 1−3 ·n−100 we have

∣∣∣〈 fx , fy
〉

apx
−〈 fx , fy 〉

∣∣∣≤ e1 +e2 ≤ ξ

2 ·n
+ ξ

2 ·n
≤ ξ

n
.

Space and runtime of INITIALIZEORACLE: Algorithm INITIALIZEORACLE(G ,δ,ξ) (Algorithm 4)

samples a set IS . Then as per line 6 of Algorithm 4 it estimates the empirical probability distri-

bution of random walks starting from any vertex x ∈ IS for O(logn) times. To that end as per

line 2 of Algorithm 3 it runs Rinit random walks of length t from each vertex x ∈ IS . So it takes

O(logn ·s ·Rinit · t ) time and requires O(logn ·s ·Rinit) space to store endpoints of random walks.

Then as per line 7 of Algorithm 4 it estimates matrix G such that the entry corresponding to

the xth row and y th column of G is an estimation of pairwise collision probability of random

walks starting from x, y ∈ IS . To compute G we call Algorithm ESTIMATECOLLISIONPROBABIL-

ITIES(G , IS ,Rinit, t) (Algorithm 2) for O(logn) times. Algorithm 2 runs Rinit random walks of

length t from each vertex x ∈ IS , hence, It takes O(s·Rinit·t ·logn) time and it requires O(s2·logn)
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space to store matrix G . Then as per line 8 of Algorithm 4 we compute the SVD of matrix G in

time O(s3). Thus overall Algorithm 4 runs in time O
(
logn · s ·Rinit · t + s3

)
. Thus, by choice of

t =Θ
(

logn
ϕ2

)
, Rinit =Θ(n1−δ+980·ε/ϕ2 ·k17/ξ2) and s =Θ(n480·ε/ϕ2 · logn ·k8/ξ2) as in Algorithm 4

we get that Algorithm 4 runs in time O
(
logn · s ·Rinit · t + s3

)= ( k
ξ )O(1) ·n1−δ+O(ε/ϕ2) · log3 n · 1

ϕ2

and returns a data structure of size O
(
s2 + logn · s ·Rinit

)= ( k
ξ )O(1) ·n1−δ+O(ε/ϕ2) · log2 n.

Space and runtime of SPECTRALDOTPRODUCTORACLE: Algorithm SPECTRALDOTPRODUC-

TORACLE(G , x, y,δ,ξ,D)(Algorithm 5) repeats O(logn) copies of the following procedure: it

runs Rquery random walks of lenght t from vertex x and vertex y , then it computes m̂x · Q̂i

and m̂y · Q̂i . Since Q̂i ∈ Rn×s has s columns and since m̂x has at most Rquery non-zero

entries, thus one can compute m̂x · Q̂i in time Rquery · s. Finally Algorithm 5 take entry-

wises median of computed vectors (see line 5 and line 6 of Algorithm 5), and returns value

αxΨαy (see line 7 of Algorithm 5). Since αx ,αy ∈ Rs and Ψ ∈ Rs×s one can compute αxΨαy

in time O(s2). Thus overall Algorithm 5 takes O
(
t ·Rquery · logn + s ·Rquery · logn + s2

)
time

and O
(
Rquery · logn + s ·Rquery · logn + s2

)
space. Thus, by choice of t = Θ

(
logn
ϕ2

)
, Rquery =

Θ(nδ+500·ε/ϕ2 ·k9/ξ2) and s =Θ(n480·ε/ϕ2 · logn ·k8/ξ2) as in Algorithm 4 and Algorithm 5 we

get that the Algorithm 5 runs in time ( k
ξ )O(1) ·nδ+O(ε/ϕ2) · log2 n

ϕ2 and returns a data structure of

size ( k
ξ )O(1) ·nδ+O(ε/ϕ2) · log2 n.

3.5.6 Computing approximate norms and spectral dot products (Proof of Theo-
rem 3.6)

To design the clustering algorithm in Section 3.6, since we cannot evaluate the dot-product of

the spectral embedding exactly in sublinear time, we prove that it is enough to have access

to approximate dot-product of the spectral embedding. In Algorithm 7, Algorithm 9 and

throughout the analysis of in Section 3.6 we will use 〈·, ·〉apx to denote approximate spectral dot

products and ‖·‖apx to denote the approximate norm of a vector. Let r ∈ [k] and B ,B1, . . . ,Br ⊆
V . Let µ̂, µ̂1, . . . , µ̂r ∈ Rk where µ̂ =

∑
z∈B fz

|B | and µ̂i =
∑

z∈Bi
fz

|Bi | . All dot products we will try to

approximate in Section 3.6 will be of the form
〈

fx ,Π̂(µ̂)
〉

and all the norms that we approximate

are of the form
∥∥Π̂(µ̂)

∥∥
apx

, where x ∈ V and Π̂ is defined as a orthogonal projection onto

span({µ̂1, . . . , µ̂r })⊥. To compute such dot products we call Algorithm 6 in the following way

(see Corollary 3.1): 〈
fx ,Π̂µ̂

〉
apx

:= 1

|B | ·
∑
y∈B

〈
fx ,Π̂ fy

〉
apx

, (3.114)

∥∥Π̂µ̂∥∥2
apx

:= 1

|B | ·
∑
x∈B

〈
fx ,Π̂µ̂

〉
apx

. (3.115)
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Algorithm 6 DOTPRODUCTORACLEONSUBSPACE(G , x, y,δ,ξ,D,B1, . . . ,Br ) .Need: ε/ϕ2 ≤ 1
105

.D := {Ψ,Q̂1, . . . ,Q̂O(logn)}

1: Let X ∈Rr×r ,hx ∈Rr ,hy ∈Rr .

2: Let ξ′ :=Θ(ξ ·n(−80ε/ϕ2) ·k−6)

3: for i , j in [r ] do

4: X (i , j ) := 1
|Bi ||B j | ·

∑
zi∈Bi

∑
z j∈B j

SPECTRALDOTPRODUCT(G , zi , z j ,δ,ξ′,D)

5: . X (i , j ) = 〈
µ̂i , µ̂ j

〉
apx

6: for i in [r ] do

7: hx (i ) := 1
|Bi | ·

∑
zi∈Bi

SPECTRALDOTPRODUCT(G , zi , x,δ,ξ′,D) . hx (i ) = 〈
µ̂i , fx

〉
apx

8: hy (i ) := 1
|Bi | ·

∑
zi∈Bi

SPECTRALDOTPRODUCT(G , zi , y,δ,ξ′,D) . hy (i ) = 〈
µ̂i , fy

〉
apx

9: return
〈

fx ,Π̂ fy
〉

apx
:= SPECTRALDOTPRODUCT(G , x, y,δ,ξ′,D)−hT

x X −1hy

The following Lemma is a generalization of Lemma 3.14 to the approximation of the cluster

means (i.e, µ̂1, . . . , µ̂k ), where µ̂i ∈Rk is a vector that approximates the center of cluster Ci (i.e.,

µi ) such that ||µ̂i −µi ||2 is small.

Lemma 3.30. Let k ≥ 2 be an integer,ϕ ∈ (0,1), and ε ∈ (0,1). Let G = (V ,E ) be a d-regular graph

that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck . Let µ1, . . . ,µk denote the cluster means of C1, . . . ,Ck .

Let 0 < ζ<
p
ε

20·k·ϕ . Let µ̂1, . . . , µ̂k ∈Rk denote an approximation of the cluster means such that for

each i ∈ [k], ||µi − µ̂i ||2 ≤ ζ||µi ||2. Let S ⊆ {µ̂1, . . . , µ̂k }. Let |S| = r and Ĥ ∈Rk×r denote a matrix

whose columns are the vectors in S. Let σ : [r ] → [k] denote a mapping from the the columns of

H to the corresponding cluster. Let Ŵ ∈Rr×r be a diagonal matrix such that Ŵ (i , i ) =√|Cσ(i )|.
Let Ẑ = ĤŴ .Then for any vector x ∈Rr with ||x||2 = 1 we have

1. |xT (Ẑ T Ẑ − I )x| ≤ 5
p
ε

ϕ

2. |xT ((Ẑ T Ẑ )−1 − I )x| ≤ 5
p
ε

ϕ .

Proof. Proof of item (1) Let Y ∈Rk×k be a matrix, whose i -th column is equal to
p

Ci ·µi . By

Lemma 3.9 item (2) for any vector α ∈Rk with ||α||2 = 1 we have

|αT (Y T Y − I )α| ≤ 4
p
ε

ϕ
(3.116)

Let Ŷ ∈Rk×k be a matrix, whose i -th column is equal to
p

Ci · µ̂i . Note that for any i , j ∈ [k] we

have (Y T Y )(i , j ) = √|Ci ||C j |
〈
µi ,µ j

〉
and (Ŷ T Ŷ )(i , j ) = √|Ci ||C j |

〈
µ̂i , µ̂ j

〉
. Therefore for any
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i ∈ [k] we have∣∣(Y T Y )(i , i )− (Ŷ T Ŷ )(i , i )
∣∣= |Ci |

∣∣||µi ||22 −||µ̂i ||22
∣∣

≤ |Ci | · |(||µi ||2 −||µ̂i ||2)(||µi ||2 +||µ̂i ||2)|
≤ |Ci | ·

∣∣(ζ||µi ||2)(||µi ||2 + (1+ζ)||µi ||2)
∣∣ Since ||µ̂i ||2 ≤ (1+ζ)||µi ||2

≤ 3 ·ζ|Ci | · ||µi ||22 Since ζ< 1

≤ 6 ·ζ By Lemma 3.7 ||µi ||22 ≤
2

|Ci |
Also for any i 6= j ∈ [k] we have∣∣(Y T Y )(i , j )− (Ŷ T Ŷ )(i , j )

∣∣ (3.117)

=
√

|Ci ||C j | ·
∣∣〈µ̂i , µ̂ j

〉−〈
µi ,µ j

〉∣∣
=

√
|Ci ||C j | ·

∣∣〈µi + (µ̂i −µi ),µ j + (µ̂ j −µ j )
〉−〈

µi ,µ j
〉∣∣

≤
√
|Ci ||C j | ·

(|〈µ̂i −µi , µ̂ j −µ j
〉 |+ |〈µ̂i −µi ,µ j

〉 |+ |〈µ̂ j −µ j ,µi
〉 |) By triangle inequality

≤
√
|Ci ||C j | ·

(||µ̂i −µi ||2||µ̂ j −µ j ||2 +||µ̂i −µi ||2||µ j ||2 +||µ̂ j −µ j ||2||µi ||2
)

By Cauchy-Schwarz

≤
√

|Ci ||C j | · (ζ2 +2ζ)
(||µi ||2||µ j ||2

)
Since ||µ̂i −µi ||2 ≤ ζ||µi ||2 for all i

≤
√
|Ci ||C j | ·6 ·ζ · 1√|Ci ||C j |

By Lemma 3.7 ||µi ||22 ≤
2

|Ci |
for all i

≤ 6 ·ζ (3.118)

Therefore we have

||(Y T Y )− (Ŷ T Ŷ )||2 ≤ ||(Y T Y )− (Ŷ T Ŷ )||F

≤
√√√√ k∑

i=1

k∑
j=1

(
(Y T Y )(i , j )− (Ŷ T Ŷ )(i , j )

)2

≤ 6 ·k ·ζ

≤
p
ε

2ϕ
Since ζ≤

p
ε

20 ·k ·ϕ

Thus for any α ∈Rk with ||α||2 = 1 we have

∣∣αT (
(Y T Y )− (Ŷ T Ŷ )

)
α

∣∣≤ p
ε

2ϕ
(3.119)

Putting (3.119) and (3.116) together we get

∣∣αT (
Ŷ T Ŷ − I

)
α

∣∣≤ 4.5

p
ε

ϕ
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Let x ∈ Rr be a vector with ||x||2 = 1, and let α ∈ Rk be a vector that is x j = α j if µ̂ j ∈ S and

otherwise x j = 0. Thus we have ||α||2 = ||x||2 = 1 and Ŷ z = Ẑ x. Hence, we get

|xT (Ẑ T Ẑ − I )x| = |αT (Ŷ T Ŷ − I )α| ≤ 4.5
p
ε

ϕ

Proof of item (2) For any vector x ∈Rr with ||x||2 = 1 we have

1− 4.5
p
ε

ϕ
≤ xT (Ẑ T Ẑ )x ≤ 1+ 4.5

p
ε

ϕ
(3.120)

Note that Ẑ T Ẑ is symmetric and positive semidefinit. Also note that Ẑ T Ẑ is spectrally close to

I , hence, Ẑ T Ẑ is invertible. Thus by (3.120) and Lemma 3.13 for any vector x ∈Rr we have

1− 5
p
ε

ϕ
≤ xT (Ẑ T Ẑ )−1x ≤ 1+ 5

p
ε

ϕ

Therefore we get

|xT ((Ẑ T Ẑ )−1 − I )x| ≤ 5
p
ε

ϕ
.

Theorem 3.6. Let G = (V ,E) be a d-regular graph that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck .

Let k ≥ 2 be an integer, ϕ ∈ (0,1), 1
n5 < ξ< 1, and ε

ϕ2 be smaller than a positive absolute constant.

Then there exists an event E such that E happens with probability 1−n−48 and conditioned on

E the following holds.

Let r ∈ [k]. Let δ ∈ (0,1). Let B1, . . . ,Br denote multisets of points. Let b = maxi∈r |Bi |. Let

σ : [r ] → [k] denote a mapping from the set B to the cluster C = σ(B). Suppose that for all

i ∈ [r ], Bi ⊆σ(Bi ) and for all i 6= j ∈ [r ], σ(Bi ) 6=σ(B j ). Let µ̂i = 1
|Bi | ·

∑
z∈Bi

fz . Suppose that for

each i ∈ [r ], ||µ̂i −µσ(i )||2 ≤
p
ε

20·k·ϕ ||µi ||2. Let Π̂ is defined as a orthogonal projection onto then

span({µ̂1, . . . , µ̂r })⊥. Then for all x, y ∈V we have∣∣∣〈 fx ,Π̂ fy
〉

apx
−〈

fx ,Π̂ fy
〉∣∣∣≤ ξ

n
,

where
〈

fx ,Π̂ fy
〉

apx
:= DOTPRODUCTORACLEONSUBSPACE(G , x, y,δ,ξ,D,B1, . . . ,Br ). Algorithm

6 runs in time b2 · ( k
ξ )O(1) ·nδ+O(ε/ϕ2) · (logn)2

ϕ2 .

Proof. Runtime: Note that Algorithm 6, first computes matrix X ∈Rr×r , and vectors hx ,hy ∈
Rk . To compute X (i , j ) for any i , j ∈ [r ], as per line 4 of Algorithm 6, we run SPECTRALDOTPRODUCT(G , zi , z j ,δ,ξ′,D)

for all zi ∈ Bi and z j ∈ B j , where |Bi | ≤ b and |B j | ≤ b.

Note that by Theorem 3.2, Algorithm SPECTRALDOTPRODUCT(G , zi , z j ,δ,ξ′,D) runs in time

( k
ξ′ )

O(1) · nδ+O(ε/ϕ2) · (logn)2

ϕ2 . Thus one can compute the matrix X −1 in time O(k3 + k2 · b2 ·
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( k
ξ′ )

O(1)nδ+O(ε/ϕ2) · (logn)2

ϕ2 ). Also, to compute hx (i ) (respectively, hy (i )) for any i ∈ [r ], as per

line 7 and line 8 of Algorithm 6, we run SPECTRALDOTPRODUCT(G , x, z,δ,ξ′,D) for all z ∈ Bi

(respectively, z ∈ B j ). Thus one can compute hx and hy in time k ·b · ( k
ξ′ )

O(1) ·nδ+O(ε/ϕ2) · (logn)2

ϕ2 .

As per line (2) of Algorithm 6 we set ξ′ :=Θ(ξ ·n(−80ε/ϕ2) ·k−6). Therefore the runtime of the

algoritm is b2 · ( k
ξ )O(1) ·nδ+O(ε/ϕ2) · (logn)2

ϕ2 .

Correctness: Let x, y ∈ V . Let H ∈ Rk×r be a matrix whose columns are µ̂1, . . . , µ̂r . Then we

have H
(
H T H

)−1
H T is the orthogonal projection matrix onto span({µ̂1, . . . , µ̂r }). Let W ∈Rr×r

denote a matrix such that for any i ∈ [r ], W (i , i ) =√|Cσ(i )|. Note that

(HW )
(
(HW )T (HW )

)−1
(HW )T = HW

(
W −1 (

H T H
)−1

W −1
)

W H T = H
(
H T H

)−1
H T

Thus we have (HW )
(
(HW )T (HW )

)−1
(HW )T is the orthogonal projection matrix onto span({µ̂1, . . . , µ̂r })

and we get

Π̂= I −HW
(
W H T HW

)−1
W H T

Therefore, we have 〈
fx ,Π̂ fy

〉= 〈
fx , fy

〉− f T
x HW

(
W H T HW

)−1
W H T fy (3.121)

Let
〈

fx , fy
〉

apx
:= SPECTRALDOTPRODUCT(G , x, y,δ,ξ′,D). Then as per line 9 of Algorithm 6 we

have 〈
fx ,Π̂ fy

〉
apx

:= 〈
fx , fy

〉
apx

−hT
x X −1hy , (3.122)

where as per line (4) of Algorithm 6 for any i , j ∈ [r ] we have X (i , j ) = 〈
µ̂i , µ̂ j

〉
apx

, and as per line

(7) and line (8) of Algorithm 6 for any i ∈ [r ] we have hx (i ) = 〈
µ̂i , fx

〉
apx

and hy (i ) = 〈
µ̂i , fy

〉
apx

.

Note that

hT
x X −1hy = hT

x W W −1X −1W −1W hy = hT
x W (W X W )−1W hy

Therefore by (3.122), (3.121) and triangle inequality we have∣∣∣〈 fx ,Π̂ fy
〉

apx
−〈

fx ,Π̂ fy
〉∣∣∣≤ |〈 fx , fy

〉
apx

−〈
fx , fy

〉 |+ ∣∣∣hT
x W (W X W )−1W hy − f T

x HW
(
W H T HW

)−1
W H T fy

∣∣∣
Note that by Theorem 3.2 and by union bound over all pair of vertices with probability at least

1−n−100 ·n2 for all a,b ∈V we have

|〈 fa , fb
〉

apx
−〈

fa , fb
〉 | ≤ ξ′

n
(3.123)

We define

ax = f T
x HW, A = (W H T HW )−1, ay =W H T fy , and

ex = hT
x W −ax , E = (W X W )−1 − A, ey =W hy −ay
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Thus by triangle inequality we have∣∣hT
x W (W X W )−1W hy − f T

x HW (W H T HW )−1W H T fy
∣∣=

‖ (ax +ex ) (A+E)
(
ay +ey

)−ax Aay‖2 ≤
‖ex‖2‖A‖2‖ay‖2 +‖ax‖2‖E‖2‖ay‖2 +‖ax‖2‖A‖2‖ey‖2+
‖ex‖2‖E‖2‖ay‖2 +‖ax‖2‖E‖2‖ey‖2 +‖ex‖2‖A‖2‖ey‖2 +‖ex‖2‖E‖2‖ey‖2 (3.124)

Thus we need to bound ||ax ||2, ||ay ||2, ||ex ||2, ||ey ||2, ||A||2, ||E ||2. Note that ||ax ||2 = || f T
x HW ||2,

Thus we have ||ax ||2 ≤ || f T
x H ||2||W ||2. Note that

||W ||2 ≤ max
i

W (i , i ) = max
i

√
|Ci | ≤

p
n (3.125)

Then we bound || f T
x H ||2. Note that || f T

x H ||2 =
√∑r

i=1

〈
fx , µ̂i

〉2. We first bound
〈

fx , µ̂i
〉

.

〈
fx , µ̂i

〉= 1

|Bi |
· ∑

z∈Bi

〈
fx , fz

〉
≤ 1

|Bi |
∑

z∈Bi

|| fx ||2|| fz ||2

≤ 1

|Bi |
· ∑

z∈Bi

√
k2 · || fx ||2∞|| fz ||2∞

≤ 1

|Bi |
· |Bi | ·k ·O

(
k ·n40ε/ϕ2

n

)
By Lemma 3.5 and since min

i∈k
|Ci | ≥Ω

(n

k

)
≤O(k2 ·n−1+40ε/ϕ2

)

Since, r < k, we get

|| f T
x H ||2 =

√
r∑

i=1

〈
fx , µ̂i

〉2 ≤
p

k ·O(k2 ·n−1+40ε/ϕ2
) ≤O(k2.5 ·n−1+40ε/ϕ2

) (3.126)

Thus we get

||ax ||2 = || f T
x HW ||2 ≤ || f T

x H ||2||W ||2 ≤O
(
k2.5 ·n−1/2+40ε/ϕ2

)
(3.127)

By the same computation we also have

||ay ||2 ≤O
(
k2.5 ·n−1/2+40ε/ϕ2

)
(3.128)

Next we bound ||ex ||2. We have ex = hT
x W − f T

x HW . Thus we get ||ex ||2 ≤ ||hT
x − f T

x H ||2||W ||2.

By (3.125) we have a bound on ||W ||2. Note that for any i ∈ r , we have hx (i ) = 1
|Bi |

∑
z∈Bi

〈
fx , fz

〉
apx
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and ( f T
x H)(i ) = 1

|Bi |
∑

z∈Bi

〈
fx , fz

〉
. Therefore with probability at least 1−n−98 we have

|hx (i )− ( f T
x H)(i )| =

∣∣∣∣∣ 1

b

∑
z∈Bi

(
〈

fx , fz
〉

apx
−〈

fx , fz
〉

)

∣∣∣∣∣
≤ 1

|Bi |
∑

z∈Bi

|〈 fx , fz
〉

apx
−〈

fx , fz
〉 | By triangle inequality

≤ 1

|Bi |
· |Bi | · ξ

′

n
By (3.123)

Since r ≤ k, we have

||hT
x − f T

x H ||2 =
√

r∑
i=1

(hx (i )−ax (i ))2 ≤
p

k · ξ
′

n

Therefore by (3.125) we have

||ex ||2 ≤ ||hT
x − f T

x H ||2||W ||2 ≤ ξ′
p

kp
n

(3.129)

By the same computation we also have

||ey ||2 ≤ ξ′
p

kp
n

(3.130)

Next we bound ||A||2. Note that A = ((HW )T (HW ))−1. By Lemma 3.30 item (2) for any vector

x ∈Rr with ||x||2 = 1 we have∣∣∣xT
((

(HW )T (HW )
)−1 − I

)
x
∣∣∣≤ 5

p
ε

ϕ

Therefore

||A||2 = ||((HW )T (HW ))−1||2 ≤ 1+ 5
p
ε

ϕ
≤ 2 (3.131)

Now we bound ||E ||2 = ||(W X W )−1 − (W H T HW )−1||2. For any i , j ∈ [r ] we have

(W X W )(i , j ) =
√

|Cσ(Bi )||Cσ(B j )| · 1

|Bi | · |B j |
· ∑

zi∈Bi ,z j∈B j

〈
fzi , fz j

〉
apx

and

(W H T HW )(i , j ) =
√

|Cσ(Bi )||Cσ(B j )| · 1

|Bi | · |B j |
· ∑

zi∈Bi ,z j∈B j

〈
fzi , fz j

〉
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Therefore with probability at least 1−n−98 we have

|(W X W )(i , j )− (W H T HW )(i , j )|

=
∣∣∣∣∣√|Cσ(Bi )||Cσ(B j )| · 1

|Bi | · |B j |
∑

zi∈Bi ,z j∈B j

( f̂zi z j −
〈

fzi , fz j

〉
)

∣∣∣∣∣
≤

√
|Cσ(Bi )||Cσ(B j )| · 1

|Bi | · |B j |
∑

zi∈Bi ,z j∈B j

| f̂zi z j −
〈

fzi , fz j

〉 | By triangle inequality

≤ n · 1

|Bi | · |B j |
· |Bi | · |B j | · ξ

′

n
By (3.123) and since |C | ≤ n

(3.132)

Since r ≤ k and by (3.132) we get∣∣||W X W −W H T HW ||2
∣∣≤ ||W X W −W H T HW ||F

≤
√√√√ r∑

i=1

r∑
j=1

(
(W X W )(i , j )− (W H T HW )(i , j )

)2

≤ k ·ξ′

Thus for any vector x ∈Rr with ||x||2 = 1 we have

xT (W H T HW )x −k ·ξ′ ≤ xT (W X W )x ≤ xT (W H T HW )x +k ·ξ′ (3.133)

By Lemma 3.30 item (1) for any vector x ∈Rr with ||x||2 = 1 we have

|xT (
(HW )T (HW )− I

)
x| ≤ 5

p
ε

ϕ

Hence we have

xT (HW )T (HW )x ≥ 1− 5
p
ε

ϕ
≥ 1

2
(3.134)

Therfore by (3.133) and (3.134) we get for any vector x ∈Rr with ||x||2 = 1 we have

(1−2 ·k ·ξ′) · xT (W H T HW )x ≤ xT (W X W )x ≤ (1+2 ·k ·ξ′) · xT (W H T HW )x (3.135)

Note that W H T HW is a symmetric matrix. Also note that by definition of X in line 4 of

Algorithm 6, X is a symmetric matrix, hence, W X W is symmetric and positive semidefinit.

Also note that W X W is spectrally close to W H T HW and I , hence, W X W is invertible. Thus

by (3.135) and Lemma 3.13 we have

(1−4 ·k ·ξ′) · xT (W H T HW )−1x ≤ xT (W X W )−1x ≤ (1+4 ·k ·ξ′) · xT (W H T HW )−1x
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Therefore by (3.131) we have

||E ||2 = ||(W H T HW )−1 − (W X W )−1||2 ≤ 4 ·k ·ξ′ · ||(W H T HW )−1||2 = 8 ·k ·ξ′ (3.136)

Putting (3.136), (3.131), (3.129), (3.130), (3.127), (3.128) and(3.124) together, with probability

at least 1−n−50 we have∣∣hT
x W (W X W )−1W hy − f T

x HW (W H T HW )−1W H T fy
∣∣=

‖ (ax +ex ) (A+E)
(
ay +ey

)−ax Aay‖2 ≤
‖ex‖2‖A‖2‖ay‖2 +‖ax‖2‖E‖2‖ay‖2 +‖ax‖2‖A‖2‖ey‖2+
‖ex‖2‖E‖2‖ay‖2 +‖ax‖2‖E‖2‖ey‖2 +‖ex‖2‖A‖2‖ey‖2 +‖ex‖2‖E‖2‖ey‖2

≤O

(
ξ′ ·

p
kp
n
·k2.5 ·n−1/2+40ε/ϕ2

)
+O

(
k ·ξ′ ·k5 ·n−1+80ε/ϕ2

)
+O

(
ξ′ ·

p
kp
n
·k ·ξ′ ·k2.5 ·n−1/2+40ε/ϕ2

)
+O

(
ξ′2 · k

n

)
+O

(
ξ′2 · k

n
·k ·ξ′

)

≤O

(
ξ′ ·k6 ·n80ε/ϕ2

n

)

≤ 1

2
· ξ

n
(3.137)

The last inequality holds by setting ξ′ = ξ·n(−80ε/ϕ2)·k−6

c as per line of Algorithm 6 where c is a

large enough constant to cancel the constant hidden in O

(
ξ′·k6·n80ε/ϕ2

n

)
.

Therefore with probability at least 1−n−98 ≥ 1−n−50 we have∣∣∣〈 fx ,Π̂ fy
〉

apx
−〈

fx ,Π̂ fy
〉∣∣∣

≤ | f̂x y −
〈

fx , fy
〉 |+ ∣∣∣hT

x W (W X W )−1W hy − f T
x HW

(
W H T HW

)−1
W H T fy

∣∣∣
≤ ξ′

n
+ 1

2
· ξ

n

≤ ξ

n
By (3.123), (3.137), and since ξ′ < ξ/2

(3.138)

Now let E be the event that for all x, y ∈ V we have |〈 fx ,Π̂ fy
〉

apx
− 〈

fx ,Π̂ fy
〉 | ≤ ξ

n . Then by

(3.138) and the union bound we get that E happens with probability at least 1−n−48 and it is

the claimed high probability event from the statement.

Corollary 3.1. Let G = (V ,E) be a d-regular graph that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck .

Let k ≥ 2 be an integer, ϕ ∈ (0,1), δ ∈ (0,1), 1
n5 < ξ < 1, ε

ϕ2 be smaller than a positive absolute
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constant. Let E be the event that happens with probability 1−n−48 that is guaranteed by

Theorem 3.6. Then conditioned on E the following conditions hold.

Let r ∈ [k]. Let B1, . . . ,Br ,B ′ denote multisets of points. Let b = max{|B1|, . . . , |Br |, |B ′|}. Let

σ : [r ] → [k] denote a mapping from the set B to the cluster C =σ(B). Suppose that for all i ∈ [r ],

Bi ⊆ σ(Bi ) and for all i 6= j ∈ [r ], σ(Bi ) 6= σ(B j ). Let µ̂i = 1
|Bi | ·

∑
z∈B fz for all i ∈ [r ], and let

µ̂= 1
|B ′| ·

∑
z∈Bi

fz . Suppose that for each i ∈ [r ], ||µ̂i −µσ(i )||2 ≤
p
ε

20·k·ϕ ||µi ||2. Let Π̂ is defined as a

orthogonal projection onto then span({µ̂1, . . . , µ̂r })⊥. Then the following hold:

1. There exits an algorithm that runs in time b3 ·( k
ξ )O(1) ·nδ+O(ε/ϕ2) · (logn)2

ϕ2 and for any x ∈V

returns a value
〈

fx ,Π̂µ̂
〉

apx
such that

∣∣∣〈 fx ,Π̂µ̂
〉

apx
−〈

fx ,Π̂µ̂
〉∣∣∣≤ ξ

n
.

2. There exits an algorithm that runs in time b4 · ( k
ξ )O(1) ·nδ+O(ε/ϕ2) · (logn)2

ϕ2 and returns a

value
∥∥Π̂µ̂∥∥2

apx
such that

∣∣∣∥∥Π̂µ̂∥∥2
apx

−||Π̂µ̂||22
∣∣∣≤ ξ

n .

Proof. Proof of 1: To compute
〈

fx ,Π̂µ̂
〉

apx
we call Algorithm 6, b times in the following way:

〈
fx ,Π̂µ̂

〉
apx

:= 1

|B | ·
∑
y∈B

DOTPRODUCTORACLEONSUBSPACE(G , x, y,δ,D,ξ,B1, . . . ,Br ) (3.139)

The runtime of Algorithm 6 is b2 · ( k
ξ )O(1) ·nδ+O(ε/ϕ2) · (logn)2 · 1

ϕ2 , thus the runtime of compu-

tation of
〈

fx ,Π̂µ̂
〉

apx
is b3 · ( k

ξ )O(1) ·nδ+O(ε/ϕ2) · (logn)2 · 1
ϕ2 . Moreover by Theorem 3.6 and the

assumption that E holds we have

∣∣∣〈 fx ,Π̂µ̂
〉

apx
−〈

fx ,Π̂µ̂
〉∣∣∣= ∣∣∣∣∣ 1

|B ′|
∑

y∈B ′

〈
fx ,Π̂y

〉
apx

−〈
fx ,Π̂µ̂

〉∣∣∣∣∣
≤ 1

|B ′|
∑

y∈B ′

∣∣∣〈 fx ,Π̂y
〉

apx
−〈

fx ,Π̂µ̂
〉∣∣∣ By triangle inequality

≤ 1

|B ′| · |B
′| · ξ

n
By Theorem 3.6

≤ ξ

n

Proof of 2: To compute
∥∥Π̂µ̂∥∥2

apx
we call the procedure from item (1) b times in the following

way: ∥∥Π̂µ̂∥∥2
apx

:= 1

|B | ·
∑
x∈B

〈
fx ,Π̂µ̂

〉
apx

. (3.140)

The runtime of the procedure from item (1) is b3 · ( k
ξ )O(1) ·nδ+O(ε/ϕ2) · (logn)2 · 1

ϕ2 , thus the
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runtime of computation of
〈

fx ,Π̂µ̂
〉

apx
is b4 · ( k

ξ )O(1) ·nδ+O(ε/ϕ2) · (logn)2 · 1
ϕ2 . Moreover by item

(1) we have∣∣∣∥∥Π̂µ̂∥∥2
apx

−||Π̂µ̂||22
∣∣∣= ∣∣∣〈µ̂,Π̂µ̂

〉
apx

−〈
µ̂,Π̂µ̂

〉∣∣∣
=

∣∣∣∣∣ 1

|B ′| ·
∑

x∈B ′

〈
fx ,Π̂µ̂

〉
apx

− 1

|B ′| ·
∑

x∈B ′

〈
fx ,Π̂µ̂

〉∣∣∣∣∣
≤ 1

|B ′| ·
∑

x∈B ′

∣∣∣∣∣〈 fx ,Π̂µ̂
〉

apx
− ∑

x∈B ′

〈
fx ,Π̂µ̂

〉∣∣∣∣∣ By triangle inequality

≤ 1

|B ′| · |B
′| · ξ

n
By item (1)

≤ ξ

n
.
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3.6 The main algorithm and its analysis

In this section we show that, by having access to approximate spectral dot-products for a

(k,ϕ,ε)-clusterable graph G , we can assign each vertex in G to a cluster in sublinear time so

that the resulting collection of clusters is, with high probability, a good approximation of a

(k,ϕ,ε)-clustering of G . In particular, we can show that the fraction of wrong assignments per

cluster is at most C · ε
ϕ3 · log(k), for some constant C > 0. In the next subsection we describe

our algorithm then in the remaining part of the section we present its analysis.

3.6.1 The Algorithm (Partitioning Scheme, Algorithm 7)

We first present an idealized version of the sublinear clustering scheme defined by Algorithm 7

and Algorithm 10. In this section to simplify presentation we assume ϕ to be constant.

The algorithm can be thought of as consisting of 3 parts. The first part, described in paragraph

Idealized Clustering Algorithm, is a procedure that explicitly, in iterative fashion, produces

a k-clustering of G . More precisely it recovers clusters in O(log(k)) stages, where for every i

after the i -th stage at most k/2i clusters are left unrecovered. The algorithm can be thought

of as a version of carving of halfspaces in Rk and it relies on the knowledge of cluster means

µ1, . . . ,µk (recall that µi = 1
|Ci |

∑
x∈Ci

fx ). That is why in paragraph Finding approximate cen-

ters we show how to compute approximations of µi ’s. To find good approximation to µi ’s we

need to test many candidate sets {µ̂1, . . . , µ̂k }, which also means considering many candidate

clusterings. This is a problem as we want our procedure to run in sublinear time but the

idealized partitioning algorithm constructs clusterings explicitly! To solve this we explain in

paragraph Verifying a clustering how to emulate the partitioning algorithm to test that, for a

set of {µ̂1, . . . , µ̂k }, it indeed induces a good clustering.

Idealized Clustering Algorithm.Assume that the we have access to cluster means {µ1, . . . ,µk }

and dot product evaluations. The algorithm proceeds in O(log(k)) stages, in the first stage

it considers k candidate sets Ĉi , where x ∈ Ĉi iff fx has big correlation with µi but small

correlation with all other µ j ’s. More precisely x ∈ Ĉi iff:〈
fx ,µi

〉≥ 0.93||µi ||2 and for all j 6= i
〈

fx ,µ j
〉< 0.93||µ j ||2.

Note that by definition all these clusters are disjoint. Moreover we are able to show (see

Lemma 3.37) that at least k/2 out of Ĉi ’s are good approximate clusters, that is for each one of

them there exists j such that |Ĉi4C j | ≤O(ε) · |C j | . At this point we return these good clusters,

remove the corresponding vertices from the graph, remove the corresponding µ’s from the set

{µ1, . . . ,µk } of still alive centers and proceed to the next stage.

In the next stage we restrict our attention to a lower dimensional subspaceΠ of Rk . Intuitively

we want to project out all the directions corresponding to the removed cluster centers. Recall

that µi ’s are close to being orthogonal (see Lemma 3.12 and 3.7) so projecting the returned
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directions out is almost equivalent to considering the subspaceΠ := span({µ1, . . . ,µb}), where

{µ1, . . . ,µb} is the set of still alive µ’s. Now the algorithm considers b candidate clusters where

the condition for x being in a cluster i changes to:〈
fx ,Πµi

〉≥ 0.93||Πµi ||2 and for all j ∈ [b], j 6= i
〈

fx ,Πµ j
〉< 0.93||Πµ j ||2.

We are still able to show (also Lemma 3.37) that at least b/2 out of them are good approximate

clusters. That is for each i there exists j such that |Ĉi4C j | ≤ O(ε) · |C j | but this time the

constant hidden in the O notation is bigger than in the first stage. In general at any stage t the

bound degrades to O(ε · t ). At the end of the stage we proceed in a similar fashion by returning

the clusters, removing the corresponding vertices and µ’s and considering a lower dimensional

subspace ofΠ in the next stage.

The algorithm continues in such a fashion for O(log(k)) steps, as we guarantee that in each

stage at least half of the remaining cluster means is removed. Thus the final guarantee is: there

exists a permutation π on k elements such that for every i :

|Ĉπ(i )4Ci | ≤O
(
ε log(k)

) · |Ci |.

The decreasing (in the inclusion sense) sequence of subspaces (Π1, . . . ,Πlog(k)) corresponds to

the subspaces constructed in Algorithm 7, while this offline algorithm as a whole corresponds

to the sublinear Algorithm 10 that implicitly tries to construct a sequence of subspaces that

(with respect to Algorithm 7) defines a good clustering.

Finding approximate centers.Note that cluster means are defined by the clustering, so it may

seem that finding approximate means is a difficult operation. However, there is a relatively

simple solution to this. In Algorithm 10 we find approximate cluster means by sampling

O(ϕ
2

ε k4 log(k)) points, guessing cluster memberships and considering the means of the sam-

ples as cluster centers. We use that the mean of a random sample of a cluster is typically close

to the true mean of its cluster and so our sample means will provide a good estimation of the

true means. We also remark that sampling a single vertex from each cluster does not seem to

provide a sufficiently good estimate, i.e. we require to take the mean of a sample set.

Verifying a clustering.We also need a procedure that given an implicit sequence of subspaces

(Π1, . . . ,Πlog(k)) checks whether they indeed define (via Algorithm 7) a good clustering. In fact,

for every guess of cluster centers and the corresponding (as implicitly created by Algorithm 10)

sequence of Π’s we need to be able to check efficiently if the resulting clustering is a good

approximation of a (k,ϕ,ε)-clustering. Since we would like to do this in sublinear time as

well, we need to do this verification by random sampling. Then we design a procedure that

consists of two steps. In a first step, we check if the cluster sizes are not too small. This is

only a technical step, which is needed to make sure that the later steps work. The main step

is to test whether every cluster has small outer conductance (Algorithm 11). In order to do
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so, we sample vertices uniformly at random and check whether they are contained in the

cluster that is currently checked. If this is the case, we sample a random edge incident to

the sample vertex. This way, we obtain a random edge incident to a random vertex from the

current cluster (this follows since the conditional distribution is uniform over the cluster). We

use standard concentration bounds to prove that we get a good approximation.

In the partitioning scheme and in the analysis a useful definition are subsets of vertices

called threshold sets. A threshold set of a point y is the set of vertices with dot products (or

approximate dot product) with y being above a specific threshold, more formally:

Definition 3.8 (Threshold sets). Let G = (V ,E) be a (k,ϕ,ε)-clusterable graph (as in Defini-

tion 3.2). Recall that fx = F1x . For y ∈Rk ,θ ∈R+ we define:

Cy,θ := {x ∈V :
〈

fx , y
〉≥ θ||y ||2}

Definition 3.9 (Approximate threshold sets). Let G = (V ,E) be a (k,ϕ,ε)-clusterable graph

(as in Definition 3.2). Recall that fx = F1x . For θ ∈R+ and y ∈Rk such that y = Π̂(µ̂), where Π̂

is the orthogonal projection onto span({µ̂1, . . . , µ̂b})⊥ and each µ̂, µ̂1, . . . , µ̂b is an average of a

set of embedded vertices:

C apx

y,θ := {x ∈V :
〈

fx , y
〉

apx
≥ θ∥∥y

∥∥2
apx

}. (3.141)

Recall that a discussion of how 〈·, ·〉apx and ‖ ·‖apx are computed is presented in Section 3.5.6.

Algorithm 7 HYPERPLANEPARTITIONING(x, (T1,T2, . . . ,Tb))
. Ti ’s are sets of µ̂ j where µ̂ j ’s are given as sets of points
. see Section 3.5.6 for the reason of such representation

1: for i = 1 to b do
2: LetΠ be the projection onto the span(

⋃
j<i T j )⊥.

3: Let Si =⋃
j≥i T j

4: for µ̂ ∈ Ti do
5: if x ∈C apx

Πµ̂,0.93 \
⋃
µ̂′∈Si \{µ̂} C apx

Πµ̂′,0.93 then . see (3.141) for definition of C apx

y,θ
6: return µ̂

HYPERPLANEPARTITIONING is the algorithm that, after preprocessing, is used to assign vertices

to clusters. In the preprocessing step (see COMPUTEORDEREDPARTITION in Section 3.6.3) an

ordered partition (T1, . . . ,Tb) of approximate cluster means {µ̂1, . . . , µ̂k } is computed. HYPER-

PLANEPARTITIONING invoked with this ordered partition as a parameter induces a collection

of clusters as follows:

Definition 3.10 (Implicit clustering). For an ordered partition (T1, . . . ,Tb) of approximate

cluster means {µ̂1, . . . , µ̂k } we say that (T1, . . . ,Tb) induces a collection of clusters {Ĉµ̂1 , . . . ,Ĉµ̂k }

if for all i ∈ [k]:

Ĉµ̂i =
{

x ∈V : HYPERPLANEPARTITIONING(x, (T1, . . . ,Tb)) = µ̂i
}

.
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Remark 3.6. Ordered partition (T1, . . . ,Tb), precomputed in the preprocessing step (assuming

access to {µ1, . . . ,µk }), will correspond to the Idealized Clustering Algorithm in the following

sense. Number of sets in the partition (i.e. b) corresponds to the number of stages of Idealized

Clustering Algorithm and for every i ∈ [b] Ti contains exactly the µ’s returned in stage i .

In the rest of this section we explain how to compute an ordered partition (T1, . . . ,Tb) of a set

of approximate centers (µ̂1, µ̂2, . . . , µ̂k ) such that the induced clustering {Ĉµ̂1 , . . . ,Ĉµ̂k } satisfies

that there exists a permutation π on k elements such that for all i ∈ [k]:

∣∣Ĉµ̂i 4Cπ(i )
∣∣≤O

(
ε

ϕ3 · log(k)

)
|Cπ(i )|.

We start, in Subsection 3.6.2, by studying geometric properties of our clustering instance.

Recall, that we denote with µi the center of cluster Ci in the spectral embedding. We show

that, for specific choices of θ, the threshold sets of µi have large intersection with the cluster

Ci and small intersections with all other cluster C j . This fact intuitively suggests that our

partitioning algorithm works. Unfortunately, as discussed in the technical overview, this is

not enough to prove a per cluster guarantee. For this reason in Subsection 3.6.3 we analyze

the overlap structure of {Cµ1,θ, . . . ,Cµk ,θ} more carefully and we give an algorithm (see COM-

PUTEORDEREDPARTITION) that given real centers {µ1, . . . ,µk } and access to exact dot product

evaluations computes an ordered partition of {µ1, . . . ,µk } that induces a valid clustering. In

Subsection 3.6.4 we present an algorithm that guesses the cluster memberships for a set of

randomly selected nodes and, using those guesses, approximates cluster centers. Interestingly,

we can show, in Subsection 3.6.4, that for the set of correct guesses the algorithm returns

a good approximation of the cluster centers. Finally in Subsection 3.6.5 we show that we

can find an ordered partition that induces a good clustering even if we have access only to

approximate quantities. That is we show that even if we have access only to approximate

means {µ̂1, . . . , µ̂k } and the dot product evaluations are only approximately correct then we

can find an ordered partition (T1, . . . ,Tb) that induces a good collection of clusters. The last

ingredient is to show that we are able to check if the clustering induced by a specific ordered

partition is good. To solve this problem, we design an efficient and simple sampling algorithm

which is also analyzed in Subsection 3.6.5.

3.6.2 Bounding intersections of Cµi ,θ with true clusters Ci

In this subsection we show that, for specific choices of θ, the threshold sets of µi (recall that

µi ’s are cluster means in the spectral embedding) have large intersection with Ci and small

intersections with other clusters. The main idea behind the proof is to use the bounds on

dot product of cluster centers presented in Lemma 3.7. In particular, we use Lemma 3.6 to

relate ε
ϕ2 with the directional variance of the spectral embedding in the direction of µi (i.e.∑

x∈Ci
〈 fx −µi ,α〉2). Then we use the definition of threshold set to upper and lower bound

〈 fx , µi

‖µi ‖ 〉 and Lemma 3.7 to upper and lower bound the dot product between cluster centers.

By combining the bounds we obtain the following result:
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Lemma 3.31. Let k ≥ 2, ϕ ∈ (0,1) and ε
ϕ2 be smaller than a sufficiently small constant. Let G =

(V ,E ) be a d-regular graph that admits a (k,ϕ,ε)-clustering {C1, . . . ,Ck }. If µi ’s are cluster means

then the following conditions hold. Let S ⊂ {µ1, . . . ,µk }. Let Π denote the orthogonal projection

matrix on to the span(S)⊥. Let µ ∈ {µ1, . . . ,µk } \ S. Let C denote the cluster corresponding to the

center µ. Let

Ĉ := {x ∈V :
〈
Π fx ,Πµ

〉≥ 0.96‖Πµ‖2
2}

then we have: ∣∣C \ Ĉ
∣∣≤ 104ε

ϕ2 |C |.

Proof. Let x ∈C \ Ĉ . Then:∣∣∣∣〈µ− fx ,
Πµ

‖Πµ‖2

〉∣∣∣∣= ∣∣∣∣〈Π(µ− fx ),
Πµ

‖Πµ‖2

〉∣∣∣∣
≥ 0.04 · ‖Πµ‖2 Since

〈
Π fx ,Πµ

〉< 0.96‖Πµ‖2
2

≥ 0.04 ·
(
1−24

p
ε

ϕ

)
||µ||2 By Lemma 3.12

≥ 0.04 ·
(
1−40

p
ε

ϕ

)√
1

|C | By Lemma 3.7

≥ 0.02 ·
√

1

|C | Since
ε

ϕ2 is sufficiently small

Then by Lemma 3.6 applied to direction α= Πµ
‖Πµ‖2

we have
∑k

i=1

∑
x∈Ci

〈
fx −µi ,α

〉2 ≤ 4ε
ϕ2 . On

the other hand

4ε

ϕ2 ≥
k∑

i=1

∑
x∈Ci

〈
fx −µi ,α

〉2 ≥ ∑
x∈C \Ĉ

〈
fx −µ,

Πµ

‖Πµ‖2

〉2

≥ 0.0004 · |C \ Ĉ |
|C | .

Using the above we conclude with |C \ Ĉ | ≤ 104 ε
ϕ2 |C |.

Remark 3.7. Notice that the constants in Lemma 3.32 are different, they are equal 0.96 and 0.9.

The reason is that the real tests for membership in Algorithm 7 are performed with constant 0.93

and the slacks are needed as we have access only to approximate dot products. See (3.214) for

the formal reason.

Lemma 3.32. Let k ≥ 2, ϕ ∈ (0,1) and ε
ϕ2 be smaller than a sufficiently small constant. Let

G = (V ,E) be a d-regular graph that admits a (k,ϕ,ε)-clustering {C1, . . . ,Ck }. If µi ’s are cluster

means then the following conditions hold. Let S ⊂ {µ1, . . . ,µk }. Let Π denote the projection

matrix on to span(S)⊥. Let µ ∈ {µ1, . . . ,µk } \ S. Let C denote the cluster corresponding to the

center µ. Let

Ĉ := {x ∈V :
〈
Π fx ,Πµ

〉≥ 0.9‖Πµ‖2
2}
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then we have: ∣∣Ĉ ∩ (V \C )
∣∣≤ 100

ε

ϕ2 |C |.

Proof. Let x ∈ Ĉ ∩(V \C ). Then there exists cluster C ′ 6=C such that x ∈C ′. Let µ′ be the cluster

mean of C ′. Then:∣∣∣∣〈 fx −µ′,
Πµ

‖Πµ‖2

〉∣∣∣∣≥ ∣∣∣∣〈Π fx ,
Πµ

‖Πµ‖2

〉∣∣∣∣− ∣∣∣∣〈Πµ′,
Πµ

‖Πµ‖2

〉∣∣∣∣ By triangle inequality

≥ 0.9‖Πµ‖2 −
∣∣∣∣〈Πµ′,

Πµ

‖Πµ‖2

〉∣∣∣∣ As x ∈ Ĉ

Note that either µ′ ∈ S and then Πµ′ = 0 and in turn |〈Πµ′,Πµ
〉 | = 0 or µ′ 6∈ S and then

|〈Πµ′,Πµ
〉 | ≤ 60

p
ε

ϕ2
1p|C |·|C ′| by Lemma 3.12. Thus we have

∣∣∣∣〈 fx −µ′,
Πµ

‖Πµ‖2

〉∣∣∣∣≥ 0.9‖Πµ‖2 − 60
p
ε

ϕ2

1√
|C | · |C ′|

1

‖Πµ‖2

≥ 0.8
1p|C | −

120
p
ε

ϕ2

1√
|C | · |C ′|

·
√

|C | by Lemma 3.12 and Lemma 3.7, ‖Πµ‖2 ≥ 1

2 ·p|C |

≥ 0.2

√
1

|C | Since
ε

ϕ2 sufficiently small and
|C |
|C ′| constant

(3.142)

Then by Lemma 3.6 applied to direction α= Πµ
‖Πµ‖2

we have
∑k

i=1

∑
x∈Ci

〈
fx −µi ,α

〉2 ≤ 4ε
ϕ2 . On

the other hand using (3.142) we get

4ε

ϕ2 ≥
k∑

i=1

∑
x∈Ci

〈
fx −µi ,α

〉2 ≥ ∑
x∈Ĉ∩(V \C )

〈
fx −µx ,

Πµx

‖Πµx‖2

〉2

≥ 0.04 · |Ĉ ∩ (V \C )|
|C | .

Therefore we have
∣∣Ĉ ∩ (V \C )

∣∣≤ 100 ε
ϕ2 |C |.

3.6.3 Partitioning scheme works with exact cluster means & dot products

The goal of this section is to present the main ideas behind the algorithms and the analysis. In

this section we make a couple of simplifying assumptions. We assume that:

• We have access to real centers {µ1, . . . ,µk },

• Dot products computed by the algorithm are exact,

• A test, that relies on computing outer-conductance of candidate sets, for assessing the

quality of clusters is perfect.

Whenever we use one (or more) of these assumptions we state them explicitly in the Lemmas.
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Later in Section 3.6.5 we show that we can get rid of all of these assumptions.

In the previous section we showed geometric properties of the threshold sets. Recall that

threshold sets are defined as follows:

Cy,θ := {x ∈V :
〈

fx , y
〉≥ θ||y ||2}.

In this section, using these properties of threshold sets, we show an algorithm that given exact

centers, access to real dot products and a perfect primitive for computing outer-conductance

computes an ordered partition (T1, . . . ,Tb) of {µ1, . . . ,µk } such that (T1, . . . ,Tb) induces a good

collection of clusters.

Algorithm 8 COMPUTEORDEREDPARTITION(G , µ̂1, µ̂2, . . . , µ̂k , s1, s2) . µ̂i ’s given as sets of
points

. s1 is # sampled points for size estimation
. s2 is # of sampled points for conductance estimation

1: S := {µ̂1, . . . , µ̂k }

2: for i = 1 to dlog(k)e do

3: Ti :=;
4: for µ̂ ∈ S do

5: ψ := OUTERCONDUCTANCE
(
G , µ̂, (T1,T2, . . . ,Ti−1),S, s1, s2

)
. Algorithm 11

6: if ψ≤O( ε
ϕ2 · log(k)) then

7: Ti := Ti ∪ {µ̂}

8: S := S \ Ti

9: if S =; then

10: return (TRUE, (T1, . . . ,Ti ))

11: return (FALSE,⊥)

To explain and analyze COMPUTEORDEREDPARTITION we first need to introduce another

algorithm and some definitions.

Definition 3.11. For a set {a1, . . . , ai } we say a sequence (S1, . . . ,Sp ) is an ordered partial parti-

tion of {a1, . . . , ai } if:

•
⋃

j∈[p] S j ⊆ {a1, . . . , ai },

• Si ’s are pairwise disjoint.

Intuitively Algorithm ISINSIDE emulates CLASSIFYBYHYPERPLANEPARTITIONING on ordered

partial partition (T1, . . . ,Tb). This intuition is made formal, after introducing Definition 3.12,

in Remark 3.8. For this we need additional notation for clusters that are implicitly created by

ISINSIDE. We define:
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Algorithm 9 ISINSIDE(x, µ̂, (T1,T2, . . . ,Tb),S)
. Ti ’s are sets of µ̂ j where µ̂ j ’s are given as sets of points
. see Section 3.5.6 for the reason of such representation

. S = set of not yet processed centers, µ̂ ∈ S

1: for i = 1 to b do
2: LetΠ be the projection onto the span(

⋃
j<i T j )⊥.

3: Let Si =
(⋃

j≥i T j
)∪S

4: for µ̂i ∈ Ti do
5: if x ∈C apx

Πµ̂i ,0.93 \
⋃
µ̂′∈Si \{µ̂i } C apx

Πµ̂′,0.93 then . see (3.141) for definition of C apx

y,θ
6: return FALSE

7: LetΠ be the projection onto the span(
⋃

j≤b T j )⊥.
8: if x ∈C apx

Πµ̂,0.93 \
⋃
µ̂′∈S\{µ̂} C apx

Πµ̂′,0.93 then . see (3.141) for definition of C apx

y,θ
9: return TRUE

10: return FALSE

Definition 3.12 (Candidate cluster). For an ordered partial partition P = (T1, . . . ,Tp ) of ap-

proximate cluster means {µ̂1, . . . , µ̂k } and µ̂ ∈ {µ̂1, . . . , µ̂k }\
⋃

i∈[p] Ti we say that Ĉ P
µ̂

is a candidate

cluster corresponding to µ̂with respect to P if:

Ĉ P
µ̂ =

{
x ∈V : ISINSIDE

(
x, µ̂,P, {µ̂1, . . . , µ̂k } \

⋃
i∈[p]

Ti

)
= TRUE

}
.

Furthermore we define: V P :=V \
⋃

j<p
⋃
µ̂∈T j

Ĉ
(T1,...,T j−1)
µ̂

.

Algorithm ISINSIDE receives a vertex x, the centre of a cluster µ̂, and an ordered partial

partition, then it tests if vertex x is not recovered by any of the previous stages (see line (5)

of Algorithm 9) and can be recovered at the current stage using µ̂. More formally, it can be

recovered at the current stage if it only belongs to the candidate cluster corresponding to the

center µ̂ (see line (8) of Algorithm 9).

Remark 3.8. Note that Definitions 3.10 and 3.12 are compatible in the following sense. For an

ordered partition (T1, . . . ,Tb) of approximate cluster means {µ̂1, . . . , µ̂k } that induces a collection

of clusters {Ĉµ̂1 , . . . ,Ĉµ̂k } it is true that:

{Ĉµ̂1 , . . . ,Ĉµ̂k } = ⋃
i∈[b]

⋃
µ̂∈Ti

{Ĉ (T1,...,Ti−1)
µ̂

},

Equipped with Definition 3.12 we are ready to explain Algorithm COMPUTEORDEREDPARTI-

TION. The Algorithm proceeds in O(log(k)) stages. It maintains a set S of approximate cluster

means, that initially is equal to {µ̂1, . . . , µ̂k }, from which µ̂’s are removed after every stage. At

every stage i a collection of sets

Ci := ⋃
µ̂∈S

{Ĉ (T1,...,Ti−1)
µ̂

},
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is implicitly considered. In fact sets in this collection are, by definition, pairwise disjoint

(see Defnition 3.12 and line: 8 of ISINSIDE). Ĉ (T1,...,Ti−1)
µ̂

’s are defined as threshold sets (see

Definition 3.8) that are made disjoint by removing intersections. The main idea behind

the Algorithm is to use properties from Section 3.6.2 so that we can show that Ĉ (T1,...,Ti−1)
µ̂

’s

match some C j ’s well. Unfortunately after removing the intersections the above property

might not hold for every cluster in Ci . In the rest of this section we show however that it is

true for a constant fraction of sets from Ci . The Algorithm COMPUTEORDEREDPARTITION

proceeds by discarding, from set S, the µ̂’s for which Ĉ (T1,...,Ti−1)
µ̂

matches some C j ’s well and

implicitly removes the vertices of Ĉ (T1,...,Ti−1)
µ̂

from consideration. Moreover it projects out the

directions corresponding to the removed µ̂’s and restricts its attention to a lower dimensional

subspace Π of Rk (see Idealized Clustering Algorithm from Section 3.6.1 for comparison).

The Algorithm doesn’t know which sets from Ci are good as it runs in sublinear time. That is

why we develop a simple sampling procedure that computes outer-conductance of candidate

clusters (see Algorithm 11). Then the Algorithm removes the µ̂’s for which the corresponding

Ĉ (T1,...,Ti−1)
µ̂

have small outer-conductance. We conclude using the robustness property of

(k,ϕ,ε)-clusterable graphs (Lemma 3.16) that these tests are enough.

The rest of this subsection is devoted to showing that if COMPUTEORDEREDPARTITION is

called with (µ̂1, . . . , µ̂k ) equal to (µ1, . . . ,µk ) and the algorithm has access to real dot products

then COMPUTEORDEREDPARTITION returns TRUE and an ordered partition (T1, . . . ,Tb) (of

{µ1, . . . ,µk }) that induces a collection of pairwise disjoint clusters {Ĉµ1 , . . . ,Ĉµk } such that for

every i :

φ
(
Ĉµi

)≤O

(
ε

ϕ2 · log(k)

)
. (3.143)

Then using Lemma 3.16 we get that there exists a permutation π such that for all i ∈ [k]:

∣∣Ĉµi 4Cπ(i )
∣∣≤O

(
ε

ϕ3 · log(k)

)
|Cπ(i )|. (3.144)

The core of the argument is an averaging argument that, for every linear subspace of Rk ,

bounds the average distance of embedded points to their centers in this subspace. What is

important is that the bound depends linearly on the dimensionality of the subspace.

Lemma 3.33. Let k ≥ 2, ϕ ∈ (0,1) and ε
ϕ2 be smaller than a sufficiently small constant. Let

G = (V ,E ) be a d-regular graph that admits a (k,ϕ,ε)-clustering {C1, . . . ,Ck }. Then for all L ⊆Rk

- a linear subspace of Rk ,Π the orthogonal projection onto L we have:

∑
x∈V

‖Π fx −Πµx‖2
2 ≤O

(
dim(L) · ε

ϕ2

)

Proof. Let b := di m(L) and {w1, . . . , wb} be any orthonormal basis of L and recall that for x ∈V
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µx is the cluster mean of the cluster which x belongs to. Then

∑
x∈V

‖Π fx −Πµx‖2
2 =

∑
x∈V

b∑
i=1

〈
fx −µx , wi

〉2

=
b∑

i=1

∑
x∈V

〈
fx −µx , wi

〉2

≤ b · 4ε

ϕ2 By Lemma 3.6

In order to show (3.143) we need to show that a constant fraction of candidate sets Ĉ (T1,...,Ti−1)
µ ’s

match some C j ’s well. To do that we argue that that sets of the form CΠµ̂,0.9 (where Π is the

orthogonal projection onto the span(
⋃

j<i T j )⊥) don’t overlap too much. We do this in two

steps. First in Lemma 3.34 and Lemma 3.35 we show that points from the intersections are far

from their centers. Then in Lemma 3.36 below we show that having too many such vertices

would contradict Lemma 3.33.

Lemma 3.34. Let k ≥ 2, ϕ ∈ (0,1) and ε
ϕ2 be smaller than a sufficiently small constant. Let

G = (V ,E ) be a d-regular graph that admits a (k,ϕ,ε)-clustering {C1, . . . ,Ck }. Let {v1, . . . , vk } ∈Rk

be a set of vectors satisfying:

• |〈vi , v j
〉 | ≤O

(p
ε
ϕ

)
1p|Ci ||C j |

•
∣∣∣||vi ||2 − 1

|Ci |
∣∣∣≤O

(p
ε
ϕ

)
1

|Ci |

Then for every pair i 6= j ∈ [k] for every θ ∈ (0,1) if α :=
vi

‖v j ‖
‖vi ‖+v j

‖vi ‖
‖v j ‖p‖vi ‖2+‖v j ‖2

and I :=Cvi ,θ∩Cv j ,θ = {x ∈
V : 〈 fx , vi 〉 ≥ θ‖vi‖2 ∧〈 fx , v j 〉 ≥ θ‖v j‖2} then the following conditions hold:

1. Correlation of vector vp with the direction α is as follows:

• for all p ∈ [k] \ {i , j },
〈

α
‖α‖ , vp

〉
≤O

(p
ε
ϕ

)
· ‖vi ‖·‖v j ‖p‖vi ‖2+‖v j ‖2

, for all i 6= j ∈ [k]

• for all p ∈ {i , j },
〈

α
‖α‖ , vp

〉
≤

(
1+O

(p
ε
ϕ

))
· ‖vi ‖·‖v j ‖p‖vi ‖2+‖v j ‖2

for all i ∈ [k]

2. Spectral embeddings of vertices from set I have big correlation with direction α.

min
x∈I

〈
α

‖α‖ , fx

〉
≥

(
2θ−O

(p
ε

ϕ

))
· ‖vi‖ ·‖v j‖√

‖vi‖2 +‖v j‖2

Proof. For all p ∈ [k] let ṽp := vp /||vp ||. Let γ := ||v j ||p||vi ||2+||v j ||2
, α := γṽi +

√
1−γ2ṽ j , and

α̃ :=α/||α||. Fix i 6= j ∈ [1, . . . ,k]. First we show that since vi ’s are close to orthogonal we have
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||α||2 ≈ 1. More precisely we will upper bound |||α||2 −1|
∣∣||α||2 −1

∣∣= ∣∣∣∣γ2||ṽi ||2 + (1−γ2)||ṽ j ||2 +2γ
√

1−γ2
〈

ṽi , ṽ j
〉−1

∣∣∣∣
= 2

〈
vi , v j

〉
||vi ||2 +||v j ||2

as ||ṽi || = ||ṽ j || = 1

≤
2 ·O

(p
ε
ϕ

)
1p|Ci ||C j |(

1−O
(p

ε
ϕ

))
( 1
|Ci | +

1
|C j | )

By assumptions

≤O

(p
ε

ϕ

) √|Ci ||C j |
|Ci |+ |C j |

≤O

(p
ε

ϕ

)
as

√|Ci ||C j |
max(|Ci |, |C j |)

≤ 1

(3.145)

Observe the following fact: √
1−γ2 · ||v j || = γ · ||vi || (3.146)

Next notice the following:

〈α, vi 〉 = γ||vi ||+〈ṽi , ṽ j 〉 ·
√

1−γ2||vi || (3.147)

〈α, v j 〉 = 〈ṽi , ṽ j 〉 ·γ||v j ||+
√

1−γ2||v j || (3.148)

For all p ∈ {1,2, . . . ,k} \ {i , j }

〈α, vp〉 = 〈ṽi , ṽp〉 ·γ||vp ||+
〈

ṽ j , ṽp
〉√

1−γ2||vp || (3.149)

Moreover for all p 6= q ∈ [1, . . . ,k] we have∣∣∣∣ 1

||vp ||2
·〈vq , vp

〉∣∣∣∣≤O

(p
ε

ϕ

)
1√|Cq ||Cp |

|Cp | 1(
1−O

(p
ε
ϕ

)) By assumptions

≤O

(p
ε

ϕ

)√
|Cp |
|Cq |

for small enough
ε

ϕ2

≤O

(p
ε

ϕ

)
as

|Cp |
|Cq |

=O(1) (3.150)
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Using the above we can prove:∣∣∣∣〈ṽi , ṽ j 〉 ·
√

1−γ2||vi ||
∣∣∣∣= ∣∣∣∣√1−γ2 · ||v j || · 1

||v j ||2
·〈vi , v j

〉∣∣∣∣
≤

√
1−γ2 · ||v j || ·O

(p
ε

ϕ

)
By (3.150)

=O

(p
ε

ϕ

)
·γ · ||vi || By (3.146) (3.151)

And similarly we show:

∣∣〈ṽi , ṽ j 〉 ·γ||v j ||
∣∣= ∣∣∣∣γ · ||vi || · 1

||vi ||2
·〈vi , v j

〉∣∣∣∣
≤O

(p
ε

ϕ

)
·γ · ||vi || By (3.150) (3.152)

For all p ∈ {1,2, . . . ,k} \ {i , j } we get

∣∣〈α, vp
〉∣∣≤ ∣∣∣〈ṽi , ṽp〉 ·γ||vp ||

∣∣∣+ ∣∣∣∣〈ṽ j , ṽp
〉√

1−γ2||vp ||
∣∣∣∣ By (3.149)

=
∣∣∣∣〈vi , vp〉 · 1

||vi ||2
||vi ||γ

∣∣∣∣+ ∣∣∣∣〈v j , vp
〉 1

||v j ||2
||v j ||

√
1−γ2

∣∣∣∣
≤O

(p
ε

ϕ

)
·γ · ||vi || By (3.150) and (3.146)

(3.153)

Combining (3.147), (3.148), (3.151), (3.152) and (3.153) we get that for all p ∈ {i , j } we have

〈
α, vp

〉≤ (
1+O

(p
ε

ϕ

))
·γ · ||vi || (3.154)

and for all p ∈ {1, . . . ,k} \ {i , j } 〈
α, vp

〉≤O

(p
ε

ϕ

)
·γ · ||vi || (3.155)

Now using (3.145) we get that for all p ∈ {i , j }

〈
α̃, vp

〉≤ 1√
1−O

(p
ε
ϕ

) (
1+O

(p
ε

ϕ

))
·γ · ||vi || ≤

(
1+O

(p
ε

ϕ

))
· ||vi ||||v j ||√

||vi ||2 +||v j ||2

and for all p ∈ {1, . . . ,k} \ {i , j }

〈
α̃, vp

〉≤ 1√
1−O

(p
ε
ϕ

)O

(p
ε

ϕ

)
·γ · ||vi || ≤O

(p
ε

ϕ

)
· ||vi ||||v j ||√

||vi ||2 +||v j ||2

These two inequalities establish the first statement of the Claim.
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Recall that

I = {x ∈V : 〈 fx , vi 〉 ≥ θ||vi ||2 ∧〈 fx , v j 〉 ≥ θ||v j ||2}

Now let x ∈ I . Then observe

〈
α, fx

〉= 〈
γ · ṽi , fx

〉+〈√
1−γ2 · ṽ j , fx

〉
≥ γ ·θ · ||vi ||+

√
1−γ2 ·θ · ||v j || because x ∈ I

= 2θ ·γ · ||vi || by (3.146)

Hence 〈
α̃, fx

〉≥ 1√
1+O

(p
ε
ϕ

)2θ ·γ · ||vi || By (3.145)

≥
(
2θ−O

(p
ε

ϕ

))
·γ · ||vi ||

Now we use technical Lemma 3.34 to show that vertices from the intersections of CΠµ,0.9’s are

far from their centers.

Lemma 3.35. Let k ≥ 2, ϕ ∈ (0,1) and ε
ϕ2 be smaller than a sufficiently small constant. Let

G = (V ,E) be a d-regular graph that admits a (k,ϕ,ε)-clustering {C1, . . . ,Ck }. If µi ’s are cluster

means then the following conditions hold. For all S ⊂ {µ1, . . . ,µk } if L := span(S)⊥ andΠ is the

projection on L then if x ∈V is such that〈
Π fx ,Πµi

〉≥ 0.9‖Πµi‖2
2 ∧

〈
Π fx ,Πµ j

〉≥ 0.9‖Πµ j‖2
2

for some µi ,µ j ∈ {µ1, . . . ,µk } \ S,µi 6=µ j . Then:

‖Π fx −Πµx‖ ≥ 0.3

√
1

maxp∈[k] |Cp |

Proof. Let x ∈ V be such that
〈
Π fx ,Πµi

〉 ≥ 0.9‖Πµi‖2
2 and

〈
Π fx ,Πµ j

〉 ≥ 0.9‖Πµ j‖2
2. Note

that by Lemma 3.12 set {Πµ1, . . . ,Πµk } satisfies assumptions of Lemma 3.34. So applying

Lemma 3.34 for θ = 0.9 we get that there exists α ∈ span{Πµi ,Πµ j }, ||α|| = 1 such that:

•
〈
α, fx

〉= 〈
α,Π fx

〉≥ (1.8−O(
p
ε
ϕ )) · ‖Πµi ‖·‖Πµ j ‖p‖Πµi ‖2+‖Πµ j ‖2

•
〈
α,Πµp

〉≤ (1+O(
p
ε
ϕ )) · ‖Πµi ‖·‖Πµ j ‖p‖Πµi ‖2+‖Πµ j ‖2

, for all p ∈ [k]
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Thus we get

||Π fx −Πµx || ≥ |〈α,Π fx
〉−〈

α,Πµx
〉 |

≥
(
0.8−O

(p
ε

ϕ

))
· ‖Πµi‖ ·‖Πµ j‖√

‖Πµi‖2 +‖Πµ j‖2

≥ 0.75 · ‖Πµi‖ ·‖Πµ j‖√
‖Πµi‖2 +‖Πµ j‖2

By assumption that
ε

ϕ2 small (3.156)

without loss of generality we can assume ||Πµi || ≥ ||Πµ j ||. Then we get:

‖Πµi‖ ·‖Πµ j‖√
‖Πµi‖2 +‖Πµ j‖2

= ‖Πµ j‖√
1+‖Πµ j‖2/||Πµi ||2

≥ 1p
2
||Πµ j ||

≥ 1

2
√

maxp∈[k] |Cp |
Lemma 3.12, assumption that

ε

ϕ2 small

(3.157)

Combining (3.156) and (3.157) we get:

||Π fx −Πµx || ≥ 0.3 · 1√
maxp∈[k] |Cp |

Combining Lemma 3.33 and Lemma 3.35 we show that sets CΠµ,0.9’s don’t overlap much.

Lemma 3.36. Let k ≥ 2, ϕ ∈ (0,1) and ε
ϕ2 be smaller than a sufficiently small constant. Let

G = (V ,E) be a d-regular graph that admits a (k,ϕ,ε)-clustering {C1, . . . ,Ck }. If µi ’s are cluster

means then the following conditions hold. For all S ⊂ {µ1, . . . ,µk } if L := span(S)⊥, di m(L) = b

andΠ is projection on L then:∣∣∣∣∣∣∣∣
⋃

µ,µ′∈{µ1,...,µk }\S
µ6=µ′

CΠµ,0.9 ∩CΠµ′,0.9

∣∣∣∣∣∣∣∣≤O

(
b · ε
ϕ2

)
· n

k
.

Proof. Let x ∈ V be such that
〈
Π fx ,Πµ

〉 ≥ 0.9‖Πµ‖2
2 and

〈
Π fx ,Πµ′〉 ≥ 0.9‖Πµ′‖2

2 for some
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µ,µ′ ∈ {µ1, . . . ,µk } \ S. Then by Lemma 3.35 we get that

‖Π fx −Πµx‖ ≥ 0.3

√
1

maxp∈[k] |Cp |
. (3.158)

On the other hand Lemma 3.33 guarantees:

∑
x∈V

‖Π fx −Πµx‖2
2 ≤O

(
di m(L) · ε

ϕ2

)
(3.159)

Combining (3.158), (3.159) and the fact that
maxp∈[k] |Cp |
minp∈[k] |Cp | =O(1) we get

∣∣∣∣∣ ⋃
µ,µ′∈{µ1,...,µk }\S

CΠµ,0.93 ∩CΠµ′,0.93

∣∣∣∣∣≤O

(
b · ε
ϕ2

)
· n

k

Our bounds above enable the following analysis. At every stage of the for loop from line 4 of

Algorithm 8 at least half of the candidate clusters:

Ci := ⋃
µ̂∈S

{Ĉ (T1,...,Ti−1)
µ̂

},

passes the test from line 6 of Algorithm 8, which means that they have small outer-conductance

and satisfy condition (3.143).

Lemma 3.37. Let k ≥ 2, ϕ ∈ (0,1) and ε
ϕ2 · log(k) be smaller than a sufficiently small constant.

Let G = (V ,E) be a d-regular graph that admits a (k,ϕ,ε)-clustering {C1, . . . ,Ck }.

If COMPUTEORDEREDPARTITION(G , µ̂1, µ̂2, . . . , µ̂k , s1, s2) is invoked with (µ̂1, . . . , µ̂k ) = (µ1, . . . ,µk )

and we assume that all tests Algorithm 8 performs

(
i.e.

〈
fx ,Π̂µ̂

〉
apx

?≥ 0.93
∥∥Π̂µ̂∥∥2

apx

)
are exact

and OUTERCONDUCTANCE computes outer-conductance precisely then there exists an absolute

constantΥ such that the following conditions hold.

For any i ∈ [0.. log(k)] assume that at the beginning of the i -th iteration of the for loop from line 4

of Algorithm 8 |S| = b and, up to renaming of µ’s, S = {µ1, . . . ,µb}, the corresponding clusters

are C = {C1, . . . ,Cb} respectively and the ordered partial partition of µ’s is equal to (T1, . . . ,Ti−1).

Then if for every C ∈C we have that |V (T1,...,Ti−1) ∩C | ≥
(
1−Υ · i · ε

ϕ2

)
|C | then at the beginning

of (i +1)-th iteration:

1. |S| ≤ b/2 (that is at least half of the remaining cluster means were removed in i -th

iteration),

2. for every µ ∈ S the corresponding cluster C satisfies |V (T1,...,Ti )∩C | ≥
(
1−Υ · (i +1) · ε

ϕ2

)
|C |,

where (T1, . . . ,Ti ) is the ordered partial partition of µ’s created in the first i iterations.
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Proof. Let i ∈ [0.. log(k)], without loss of generality we can assume that S = {µ1, . . . ,µb} (if not

we can rename the µ’s) at the beginning of the i -th iteration and the corresponding clusters

be C = {C1, . . . ,Cb} respectively. Assume that for every C ∈C we have that |V (T1,...,Ti−1) ∩C | ≥(
1−Υ · i · ε

ϕ2

)
|C |. We start by showing the first part of the Lemma.

At least half of the cluster means is removed from S:

Let µ ∈ S,Πi be the orthogonal projection onto the span(
⋃

j<i T j )⊥, where (T1, . . . ,Ti−1) is the

ordered partial partition of {µ1, . . . ,µk } created before iteration i by COMPUTEORDEREDPARTI-

TION. For brevity we will refer to (T1, . . . ,Ti−1) as P in this proof. Let

I := ⋃
µ′,µ′′∈{µ1,...,µb }

CΠiµ′,0.93 ∩CΠiµ′′,0.93.

By Lemma 3.36 we have that

|I | ≤O

(
b · ε
ϕ2

)
· n

k

So by Markov inequality we get that there exists a subset of clusters R ⊆C such that |R| ≥ b/2

and for every C ∈R we have that

|C ∩ I | ≤ 2 ·O
(
ε

ϕ2

)
· n

k
(3.160)

We will argue that for any order of the for loop from line 4 of Algorithm 8 it is true that for every

C ∈R with corresponding mean µ the candidate cluster Ĉ P
µ satisfies the if statement from line

6.

First note that behavior of the algorithm is independent of the order of the for loop from

line 4 of Algorithm 8 as by definition Ĉ P
µ ’s for µ ∈ S are pairwise disjoint. Now let C ∈ R, µ

be the corresponding mean to C and Ĉ P
µ be the candidate cluster corresponding to µ with

respect to P = (T1, . . . ,Ti−1). By inductive assumption |V P ∩C | ≥
(
1−Υ · i · ε

ϕ2

)
|C | so by (3.160),

Lemma 3.31 and the fact that
maxp∈[k] |Cp |
minp∈[k] |Cp | =O(1) we get that:

|Ĉ P
µ ∩C | ≥

(
1−Υ · i · ε

ϕ2

)
|C |−O

(
ε

ϕ2

)
n

k
−O

(
ε

ϕ2

)
|C |

≥
(
1−O

(
ε

ϕ2 · log(k)

))
|C | (3.161)

To prove that Ĉ P
µ passes the outer-conductance test we also need to show that Ĉ P

µ doesn’t

contain a lot of points from V P \C . By Lemma 3.32 we get that:

|Ĉ P
µ ∩ (V P \C )| ≤ |Ĉ P

µ ∩ (V \C )| ≤O

(
ε

ϕ2

)
|C |. (3.162)
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Combining (3.162) and (3.161) we get that:

|Ĉ P
µ4C | ≤O

(
ε

ϕ2 · log(k)

)
|C | (3.163)

Now we want to argue that Ĉ P
µ passes the outerconductance test from line 6 of Algorithm 8.

From the definition of outer conductance:

φ(Ĉ P
µ ) ≤

E(C ,V \C )+d |Ĉ P
µ4C |

d(|C |− |Ĉ P
µ4C |)

≤
E(C ,V \C )+d ·O

(
ε
ϕ2 · log(k)

)
|C |

d(|C |−O
(
ε
ϕ2 · log(k)

)
|C |)

from (3.163)

≤
O

(
ε
ϕ2

)
+O

(
ε
ϕ2 · log(k)

)
1−O

(
ε
ϕ2 · log(k)

) because
E(C ,V \C )

d |C | ≤O

(
ε

ϕ2

)

≤O

(
ε

ϕ2 · log(k)

)
for sufficiently small

ε

ϕ2 · log(k)

and it follows that

φ(Ĉ P
µ ) ≤O

(
ε

ϕ2 · log(k)

)
,

which means that Ĉ P
µ passes the test as we assumed that OUTERCONDUCTANCE computes

outer-conductance precisely.

Clusters corresponding to unremoved µ’s satisfy condition 2:

Now we prove that for every µ that was not removed from set S only small fraction of its

corresponding cluster is removed.

Letµ ∈ S be such that it is not removed in the i -th step. LetΠi be the orthogonal projection onto

the span(
⋃

j<i T j )⊥. Let C ∈C be the cluster corresponding to µ. By assumption |V P ∩C | ≥(
1−Υ · i · ε

ϕ2

)
|C |. Now let x ∈ V (T1,...,Ti−1) \ V (T1,...,Ti ), where (T1, . . . ,Ti ) is the partial partition

of µ’s created in the first i -th steps of the for loop. We get that there exists µ′ ∈ {µ1, . . . ,µb}

such that x ∈ Ĉ P
µ′ (recall that Ĉ P

µ′ is the candidate cluster corresponding to µ′ with respect to

P = (T1, . . . ,Ti−1)). Recall (Definition 3.12) that Ĉ P
µ′ is defined as:

Ĉ P
µ′ =

{
x ∈V : ISINSIDE

(
x,µ′,P, {µ1, . . . ,µk } \

⋃
j∈[i−1]

T j

)
= TRUE

}
.

This in particular means (see line 8: of Algorithm ISINSIDE) that:

Ĉ P
µ′ ⊆CΠiµ′,0.93 \

⋃
µ′′∈S\{µ′}

CΠiµ′′,0.93,
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which, as µ ∈ S \ {µ′}, gives us that:

Ĉ P
µ′ ∩CΠiµ,0.93 =;,

and finally, using Definition 3.8, we have:〈
fx ,Πiµ

〉< 0.93||Πiµ||2. (3.164)

But by Lemma 3.31:

|{x ∈C :
〈
Πi fx ,Πiµ

〉< 0.93‖Πiµ‖2
2}| ≤O

(
ε

ϕ2

)
· |C | (3.165)

Combining (3.164) and (3.165) we get that:

|C ∩ (V (T1,...,Ti−1) \V (T1,...,Ti ))| ≤O

(
ε

ϕ2

)
|C |. (3.166)

By assumption that |V (T1,...,Ti−1) ∩C | ≥
(
1−Υ · i · ε

ϕ2

)
|C | and (3.166) we get that:

|V (T1,...,Ti ) ∩C | ≥
(
1−Υ · (i +1) · ε

ϕ2

)
|C |,

provided that Υ is bigger than the constant from O notation in (3.166), which is the same

constant as the one in the statement of Lemma 3.31.

Remark 3.9. Note that in this section we assume that the Algorithm has access to real centers

{µ1, . . . ,µk }. If it was the case in the final algorithm we could in fact prove a stronger guarantee,

i.e. "Algorithm 8 returns TRUE and an ordered partition (T1, . . . ,Tb) (of {µ1, . . . ,µk }) that induces

a collection of pairwise disjoint clusters {Ĉµ1 , . . . ,Ĉµk } such that there exists a permutation π

such that for all i ∈ [k]: ∣∣Ĉµi 4Cπ(i )
∣∣≤O

(
ε

ϕ2 · log(k)

)
|Cπ(i )|".

Compare the above statement with with (3.144) and the main theorem of this section, Theo-

rem 3.7. The reason we present it this way is the following.

The final algorithm doesn’t have access to µ’s but instead tests many candidate sets {µ̂1, . . . , µ̂k }.

Moreover Algorithm 8 returns an ordered partition (T1, . . . ,Tb) that induces a collection of

clusters {Ĉ1, . . . ,Ĉk } whenever every set from this collection passes the test from line 6 of COM-

PUTEORDEREDPARTITION, that is when for every Ĉ ∈ {Ĉ1, . . . ,Ĉk }:

φ
(
Ĉ

)≤O

(
ε

ϕ2 · log(k)

)
.
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This in particular means that Algorithm 8 may return TRUE even for a set {µ̂1, . . . , µ̂k } that is not

a good approximation to {µ1, . . . ,µk }.

Because of that, once we know that COMPUTEORDEREDPARTITION invoked with {µ1, . . . ,µk }

returns an ordered partition (T1, . . . ,Tb) that induces a collection of clusters {Ĉ1, . . . ,Ĉk }, when

proving the final result of this section (Theorem 3.7) the only thing we assume about Ĉ ’s is that

they passed the outer-conductance test. And that is why we use Lemma 3.16 and we "loose" a

factor 1
ϕ in the final guarantee.

Moreover structuring the argument in this way helps the presentation as later, in Section 3.6.5,

the proof will follow a similar structure.

The following Theorem concludes this subsection by showing (3.144). It does so by induction

using Lemma 3.37 as an inductive step. At the end it uses Lemma 3.16 to go from the guarantees

for outer-conductance to guarantees for recovery.

Theorem 3.7. Let k ≥ 2, ϕ ∈ (0,1) and ε
ϕ2 log(k) be smaller than a sufficiently small constant.

Let G = (V ,E) be a d-regular graph that admits a (k,ϕ,ε)-clustering {C1, . . . ,Ck }.

If COMPUTEORDEREDPARTITION(G , µ̂1, µ̂2, . . . , µ̂k , s1, s2) is invoked with (µ̂1, . . . , µ̂k ) = (µ1, . . . ,µk )

and we assume that all tests Algorithm 8 performs

(
i.e.

〈
fx ,Π̂µ̂

〉
apx

?≥ 0.93
∥∥Π̂µ̂∥∥2

apx

)
are exact

and OUTERCONDUCTANCE computes outer-conductance precisely then the following conditions

hold.

COMPUTEORDEREDPARTITION returns (TRUE, (T1, . . . ,Tb)) such that (T1, . . . ,Tb) induces a col-

lection of clusters {Ĉµ1 , . . . ,Ĉµk } such that there exists a permutation π on k elements such that

for all i ∈ [k]: ∣∣Ĉµi 4Cπ(i )
∣∣≤O

(
ε

ϕ3 · log(k)

)
|Cπ(i )|

and

φ(Ĉµi ) ≤O

(
ε

ϕ2 · log(k)

)
.

Proof. Note that for i = 0 in the for loop in line 2 of COMPUTEORDEREDPARTITION S and

clusters {C1, . . . ,Ck } trivially satisfy assumptions of Lemma 3.37. So using Lemma 3.37 and

induction we get that for every i ∈ [0..dlog(k)e] at the beginning of the i -th iteration:

• |S| ≤ k/2i ,

• for everyµ ∈ S and the corresponding cluster C we have |V (T1,...,Ti−1)∩C | ≥
(
1−Υ · i · ε

ϕ2

)
|C |

(whereΥ is the constant from the statement of Lemma 3.37).

In particular this means that after at most dlog(k)e iterations set S becomes empty. This

also means that COMPUTEORDEREDPARTITION returns in line 10, so it returns TRUE and the

ordered partial partition (T1, . . . ,Tb) is in fact an ordered partition of {µ1, . . . ,µk }.
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Note that by definition (see Definition 3.10) all the approximate clusters {Ĉµ1 , . . . ,Ĉµk } are

pairwise disjoint and moreover for every constructed cluster Ĉ ∈ {Ĉµ1 , . . . ,Ĉµk } we have:

φ(Ĉ ) ≤O

(
ε

ϕ2 · log(k)

)
,

as it passed the test in line 6 of COMPUTEORDEREDPARTITION. So by Lemma 3.16 it means

that there exists a permutation π on k elements such that for all i ∈ [k]:

∣∣Ĉµi 4Cπ(i )
∣∣≤O

(
ε

ϕ3 · log(k)

)
|Cπ(i )|.

3.6.4 Finding the cluster means

In the previous subsection we showed that COMPUTEORDEREDPARTITION succeeds if we have

access to real cluster centers (i.e. µi ’s). In this section we present a search procedure for

finding the centers.

The main idea behind our algorithm is to guess the clustering assignment of few random

nodes and use this assignment to compute the approximate cluster means. More precisely,

the first step of our algorithm is to learn the spectral embedding as described in Section 3.5.

Then we sample s =Ω(ϕ
2

ε ·k4 log(k)) random nodes and we consider all the possible clustering

assignments for them. For each assignment, we implicitly define the cluster center for a

specific cluster as µ̂i := 1
|Pi |

∑
x∈Pi

fx .

Remark 3.10. We note that in FINDCENTERS we don’t necessarily find µ1, . . . ,µk exactly but

we are able to show (see Section 3.6.4) that it finds a good approximation to µi ’s. Then in

Section 3.6.5 we show that such approximation is sufficient for the partitioning scheme to work.

Algorithm 10 FINDCENTERS(G ,η,δ)

1: INITIALIZEORACLE(G ,δ)
2: for t ∈ [1 . . . log(2/η)] do

3: S := Random sample of vertices of V of size s =Θ(ϕ
2

ε k4 log(k))
4: for (P1,P2, . . . ,Pk ) ∈ PARTITIONS(S) do
5: for i = 1 to k do
6: µ̂i := 1

|Pi |
∑

x∈Pi
fx .Note that we compute the centers only implicitly.

7: (r,C ) :=
8: COMPUTEORDEREDPARTITION

(
G , (µ̂1, µ̂2, . . . , µ̂k ),Θ

(
ϕ2

ε k5 log2(k) log(1/η)
)

,Θ
(
ϕ4

ε2 k5 log2(k) log(1/η)
))

9: if r = TRUE then
10: return C
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Quality of cluster means approximation

In the previous Section 3.6.3 we showed that the partitioning scheme works if we can find

µ1, . . . ,µk exactly. In this section we show that it is possible to estimate the cluster means with

a small error factor (i.e µi ≈ µ̂i ). Later in Section 3.6.5 we show that such an approximation to

µi ’s is enough for the partitioning scheme to work.

In the rest of this section we show that if PARTITIONS(S) (see Algorithm 10) computes a correct

guess of cluster assignments then the cluster means computed in line (6) are close to the real

cluster means with constant probability. Then we repeat the procedure O(log(1/η)) times to

achieve success probability of at least 1−η.

In particular, in Lemma 3.39 we show using Matrix Bernstein that if we have enough samples

in a cluster i then ‖µi − µ̂i‖2 ≤ ζ · ‖µi‖2 . Then we prove that if we sample enough random

nodes we have enough samples in every cluster.

Before proving Lemma 3.39 we show a tail bound for the spectral projection of a node that will

be useful to apply Matrix Bernstein.

Lemma 3.38. Let k ≥ 2, ϕ ∈ (0,1) and ε
ϕ2 log(k) be smaller than a sufficiently small constant.

Let G = (V ,E) be a d-regular and a (k,ϕ,ε)-clusterable graph. Let β> 1 .Let

T =
{

x ∈V : || fx ||∞ ≥β ·
√

10

mini∈[k] |Ci |

}
.

Then we have |T | ≤ k ·
(
β
2

)−ϕ2/20·ε · (mini∈[k] |Ci |).

Proof. Recall that fx =U T
[k]1x , and ui denote the i th column of U[k]. Thus we have ‖ fx‖∞ =

maxi∈[k]{ui (x)}. Let smin = mini∈k |Ci |. We define

Ti =
{

x ∈V : |ui (x)| ≥β ·
√

10

smin

}

Therefore, by Lemma 3.4 we have |Ti | ≤
(
β
2

)−ϕ2/20·ε · smin. Note that T =⋃k
i=1 Ti . Therefore we

have

|T | ≤ k ·
(
β

2

)−ϕ2/20·ε
· smin

Now we are ready to derive a bound on the difference between µi and µ̂i .

Lemma 3.39. Let ζ,δ ∈ (0,1), k ≥ 2, ϕ ∈ (0,1), ε logk
ϕ2 be smaller than a positive sufficiently small

constant. Let G = (V ,E ) be a d-regular graph that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck . Let s ≥
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c ·
(
k · log

(
k
δ

)
· ( 1
δ

)(80·ε/ϕ2) ·
(

1
ζ

)2
)1/(1−(80·ε/ϕ2))

for large enough constant c. Let S = {x1, x2, . . . , xs}

be the multiset with s vertices sampled uniformly at random from cluster C . Let µ= 1
|C |

∑
x∈C fx

denote the cluster mean, and let µ̂= 1
s

∑s
i=1 fx denote the empirical cluster mean. Then with

probability at least 1−δ we have

‖µ− µ̂‖2 ≤ ζ · ‖µ‖2

Proof. Let smin := mini∈[k] |Ci |. We define

C ′ =
{

x ∈C : || fx ||∞ ≤ 2 ·
(

s ·k

δ

)(40·ε/ϕ2)

·
√

10

smin

}

Note that by Lemma 3.38 and by choice of β= 2 ·
(

s·k
δ

)(40·ε/ϕ2)
we have

|C \C ′| ≤ k ·
(
β

2

)−ϕ2/(20·ε)

· smin ≤ k ·
(

s ·k

δ

)−2

· |C | = (k−1 · s−2 ·δ2) · |C |

Thus we have

|C ′| ≥ (
1− (k−1 · s−2 ·δ2)

) |C | (3.167)

Let µ′ = 1
|C ′|

∑
x∈C ′ fx . By triangle inequality we have

||µ̂−µ||2 ≤ ||µ̂−µ′||2 +||µ′−µ||2 (3.168)

In the rest of the proof we will upper bound both of these terms by ζ
2 · ||µ||2.

Step 1: We first prove ||µ̂−µ′||2 ≤ ζ
2 · ||µ||2. By the assumption of the lemma for sufficiently

small ε logk
ϕ2 we have k(40·ε/ϕ2) ≤ 2. Thus for any x ∈ C ′ we have || fx ||∞ ≤ ( s

δ

)(40·ε/ϕ2) ·
√

160
smin

.

Therefore by triangle inequality we have

||µ′||2 =
∣∣∣∣∣
∣∣∣∣∣ 1

|C ′| ·
∑

x∈C ′
fx

∣∣∣∣∣
∣∣∣∣∣≤ 1

|C ′| ·
∑

x∈C ′
|| fx ||2 ≤

p
k

|C ′| ·
∑

x∈C ′
|| fx ||∞ ≤

( s

δ

)(40·ε/ϕ2)
·
√

160 ·k

smin
. (3.169)

By (3.167) and by union bound over all samples in S with probability at least 1−s·(k−1·s−2·δ2) =
1− s−1 ·k−1 ·δ2 ≥ 1− δ

2 for all xi ∈ S we have xi ∈C ′, hence, || fx ||∞ ≤ ( s
δ

)(40·ε/ϕ2) ·
√

160
smin

. Thus

with probability at least 1− δ
2 , S is chosen uniformly at random from C ′ so for all xi ∈ S we

have

| fx ||∞ ≤
( s

δ

)(40·ε/ϕ2)
·
√

160

smin
(3.170)

In the rest of the proof of step 1 we assume S ⊆C ′ which holds with probability at least 1− δ
2 .

169



Chapter 3. Spectral Clustering Oracles
in Sublinear Time

Therefore conditioned on S ⊆C ′ we have E[ fxi ] =µ′.

‖µ̂−µ′‖2 =
∣∣∣∣∣
∣∣∣∣∣ s∑
i=1

(
fxi

s
−µ′

)∣∣∣∣∣
∣∣∣∣∣
2

.

We define zi = fxi
s − µ′

s , so ‖µ̂−µ′‖2 = ‖∑s
i=1 zi‖2. Observe that E [zi ] = E

[
fxi
s

]
− µ′

s = 0, thus we

can apply Lemma 3.20. Therefore we get

P
[∣∣∣∣µ̂−µ′∣∣∣∣

2 > q
]=P[

‖
s∑

i=1
zi‖2 > q

]
≤ (k +1) ·exp

 −q2

2

σ2 + bq
3

 , (3.171)

where σ2 = max{‖∑s
i=1E[zi zT

i ]‖2,‖∑s
i=1E[zT

i zi ]‖2} and b is an upper bound on ‖zi‖2 for all

random variables zi . Therefore we need to upperbound ‖zi‖2 and σ2. Note that

‖zi‖2 =
∣∣∣∣∣∣∣∣ fxi

s
− µ′

s

∣∣∣∣∣∣∣∣
2
≤

∣∣∣∣∣∣∣∣ fxi

s

∣∣∣∣∣∣∣∣
2
+

∣∣∣∣∣∣∣∣µ′

s

∣∣∣∣∣∣∣∣
2
≤

p
k

s
· ‖ fxi ‖∞+ 1

s
· ||µ′||2 (3.172)

Therefore by (3.169), (3.170) and (3.172) we have

‖zi‖2 ≤
p

k

s
· ‖ fxi ‖∞+ 1

s
· ||µ′||2 ≤ 2

s
·
( s

δ

)(40·ε/ϕ2)
·
√

160 ·k

smin
, (3.173)

Thus b ≤ 2
s ·

( s
δ

)(40·ε/ϕ2) ·
√

160·k
smin

. We also need to upper bound σ2. By (3.173) we get

σ2 = max{‖
s∑

i=1
E[zi zT

i ]‖2,‖
s∑

i=1
E[zT

i zi ]‖2} = s ·E[‖zi‖2
2

]≤ s · 4

s2 ·
( s

δ

)(80·ε/ϕ2)
· 160 ·k

smin
. (3.174)

We set q = ζ
2 · ||µ||2. Having upper bound for σ2 by (3.174) and on b by (3.173) we can apply

Lemma 3.20 and we get

P

[∣∣∣∣µ̂−µ′∣∣∣∣
2 >

ζ

2
· ||µ||2

]
≤ (k +1) ·exp

 −q2

2

σ2 + bq
3



≤ (k +1) ·exp

 −ζ2·||µ||22
8

640·k·( s
δ

)(80·ε/ϕ2)

s·smin
+ ζ

2 · ||µ||2 ·
2·( s

δ

)(40·ε/ϕ2)

3·s
√

160·k
smin

 (3.175)

By Lemma 3.7 for small enough ε
ϕ2 we have ‖µ‖2

2 ≥ 1
2·|C | and since mini , j

|Ci |
|C j | ≥Ω(1). Thus for a

small enough constant c ′ we have

smin · ||µ||22 ≥
smin

2 · |C | ≥ c ′, (3.176)

Thus by (3.176) and by choice of s(1−80·ε/ϕ2) ≥ 106

c ′ ·k·log
(

k
δ

)
·( 1
δ

)(80·ε/ϕ2)·
(

1
ζ

)2 ≥ 106·k·log
(

k
δ

)·( 1
δ

)(80·ε/ϕ2)·
(

1
ζ

)2

smin·||µ||22
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we get

ζ2 · ||µ||22
8

≥ 400 · log

(
k

δ

)
·
640 ·k · ( s

δ

)(80·ε/ϕ2)

s · smin

 (3.177)

and
ζ2 · ||µ||22

8
≥ 400 · log

(
k

δ

)ζ
2
· ||µ||2 ·

2 · ( s
δ

)(80·ε/ϕ2)

3 · s

√
160 ·k

smin

 (3.178)

Therefore since s ≥ c ·
(
k · log

(
k
δ

)
· ( 1
δ

)(80·ε/ϕ2) ·
(

1
ζ

)2
)1/(1−(80·ε/ϕ2))

for large enough constant c,

and putting (3.175), (3.177) and (3.178) together we get

P

[∣∣∣∣µ̂−µ′∣∣∣∣
2 >

ζ

2
· ||µ||2

]
≤ (k +1) ·e−200·log

(
k
δ

)
≤

(
δ

k

)100

Thus with probability at least 1− δ
2 −

(
δ
k

)100 ≥ 1−δ we have

‖µ̂−µ′‖2 ≤ ζ

2
· ‖µ‖2. (3.179)

Step 2: Next we want to bound ‖µ−µ′‖2. We have

‖µ′−µ‖2 =
∣∣∣∣∣
∣∣∣∣∣ 1

|C ′|
∑

x∈C ′
fx − 1

|C |
∑
x∈C

fx

∣∣∣∣∣
∣∣∣∣∣
2

≤
∣∣∣∣∣
∣∣∣∣∣ 1

|C ′|
∑
x∈C

fx − 1

|C |
∑
x∈C

fx

∣∣∣∣∣
∣∣∣∣∣
2

+
∣∣∣∣∣
∣∣∣∣∣ 1

|C ′|
∑

x∈C \C ′
fx

∣∣∣∣∣
∣∣∣∣∣
2

By triangle inequality

≤
(

1

1− (k−1 · s−2 ·δ2)
−1

)∣∣∣∣µ∣∣∣∣
2 +

∣∣∣∣∣
∣∣∣∣∣ 1

|C ′|
∑

x∈C \C ′
fx

∣∣∣∣∣
∣∣∣∣∣
2

Since |C ′| ≥ (
1− (k−1 · s−2 ·δ2)

) |C | by (3.167)

≤ 2 · (k−1 · s−2 ·δ2) · ‖µ‖2 +
∣∣∣∣∣
∣∣∣∣∣ 1

|C ′|
∑

x∈C \C ′
fx

∣∣∣∣∣
∣∣∣∣∣
2

(3.180)

It thus remains to upper bound the second term. We now note that∣∣∣∣∣
∣∣∣∣∣ 1

|C ′|
∑

x∈C \C ′
fx

∣∣∣∣∣
∣∣∣∣∣
2

≤ 1

|C ′|
∑

x∈C \C ′
|| fx ||2 ≤

p
k

|C ′|
∑

x∈C \C ′
‖ fx‖∞ (3.181)

For any y ≥ 1 we define

T (y) =
{

x ∈V : || fx ||∞ ≥ 2 · y ·
(

s ·k

δ

)(40·ε/ϕ2)

·
√

10

smin

}
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Therefore, by Lemma 3.38 we have

|T (y)| ≤ k ·

2 · y ·
(

s·k
δ

)(40·ε/ϕ2)

2


−ϕ2/(20·ε)

· smin =
(

s ·k

δ

)−2

· y−ϕ2/(20·ε) · smin. (3.182)

Using the bound on |T (y)| above, we now get∑
x∈C \C ′

‖ fx‖∞ (3.183)

≤
∫ ∞

1

(
y ·

(
s ·k

δ

)(40·ε/ϕ2)

·
√

40

smin

)
· |T (y)| ·d y By definition of T (y) and C ′

≤
√

160

smin
·
( s

δ

)(40·ε/ϕ2)
·
∫ ∞

1
y · |T (y)| ·d y Since k(40·ε/ϕ2) ≤ 2 for small enough

ε · logk

ϕ2

≤
√

160

smin
·
( s

δ

)(40·ε/ϕ2)
·
∫ ∞

1

(
s ·k

δ

)−2

· y(1−ϕ2/(20·ε)) · smin ·d y By (3.182)

≤
√

160

smin
· smin ·

( s

δ

)(40·ε/ϕ2)
·
(

s ·k

δ

)−2 1

ϕ2/(20 ·ε)−2
Since for any c < 0,

∫ ∞

1
yc d y = −1

c +1

≤ k−2 · s−1 ·psmin For small enough
ε

ϕ2 (3.184)

Therefore we get∣∣∣∣∣
∣∣∣∣∣ 1

|C ′|
∑

x∈C \C ′
fx

∣∣∣∣∣
∣∣∣∣∣
2

≤
p

k

|C ′|
∑

x∈C \C ′
‖ fx‖∞ By (3.181)

≤
p

k ·k−2 · s−1 ·psmin

|C ′| By (3.184)

≤ 2 ·k−1 · s−1

p|C | ·
p

sminp|C | By (3.167)

≤ k−1 · s−1

p|C | Since |C | ≥ smin

≤ 2 ·k−1 · s−1 · ||µ||2 By Lemma 3.7 ||µ||2 ≥ 1

2 ·p|C |
Therefore by (3.180) we have

‖µ′−µ‖2 ≤ 2·(k−1 ·s−2 ·δ2)‖µ‖2+
∣∣∣∣∣
∣∣∣∣∣ 1

|C ′|
∑

x∈C \C ′
fx

∣∣∣∣∣
∣∣∣∣∣
2

≤ 2
(
k−1 · s−2 ·δ2 +·k−1 · s−1) ||µ||2 ≤ ζ

2
·||µ||2

(3.185)

The last inequality holds since s ≥ 8 ·
(

1
ζ

)2
, hence, 2

(
k−1 · s−2 ·δ2 +·k−1 · s−1

) ≤ ζ
2 . Putting

(3.168), (3.179) and (3.185) together with probability at least 1−δ we get

||µ̂−µ||2 ≤ ||µ̂−µ′||2 +||µ′−µ||2 ≤ ζ

2
· ||µ||2 + ζ

2
· ||µ||2 ≤ ζ · ||µ||2

172



3.6. The main algorithm and its analysis

To conclude our argument we show that if we sample enough nodes, we have a large number

of samples in each cluster.

Lemma 3.40. Let k ≥ 2, ϕ ∈ (0,1), ε logk
ϕ2 be smaller than a positive sufficiently small constant.

Let G = (V ,E) be a d-regular graph that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck . Let S be the

multiset of s ∈Ω(k logk) vertices each sampled independently at random from V . Then with

probability at least 9
10 , for every i ∈ [k],

|S ∩Ci | ≥ 0.9 · s

k
· min

p,q∈[k]

|Cp |
|Cq |

.

Proof. For i ∈ [k], and 1 ≤ r ≤ s, let X r
i be a random variable which is 1 if the r -th sampled

vertex is in Ci , and 0 otherwise. Thus E[X r
i ] = |Ci |

n . Observe that |S ∩Ci | is a random variable

defined as
∑s

r=1 X r
i , where its expectation is given by

E[|S ∩Ci |] =
s∑

r=1
E[X r

i ] = s · |Ci |
n

≥ s · smin

k · smax
.

Notice that random variables X r
i are independent, Therefore, by Chernoff bound,

Pr

[
|S ∩Ci | < 9s

10
· |Ci |

n

]
≤ exp

(
− 1

200
· s · smin

k · smax

)
.

By union bound and since s = 500 ·k · logk · smax
smin

we have

Pr

[
∃i : |S ∩Ci | < 9s

10
· |Ci |

n

]
≤ k ·exp

(
− 1

200
· s · smin

k · smax

)
≤ 1

10
.

Therefore with probability at least 9
10 for all i ∈ [k] we have

|S ∩Ci | ≥ 9 · s

10
· |Ci |

n
≥ 0.9 · s

k
· smin

smax

Approximate Centers are strongly orthogonal

The main result of this section is Lemma 3.41 that generalizes Lemma 3.12 to the approximate

of cluster means.

Lemma 3.41. Let k ≥ 2 be an integer,ϕ ∈ (0,1), and ε ∈ (0,1). Let G = (V ,E ) be a d-regular graph

that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck . Let 0 < ζ<
p
ε

20·k·ϕ . Let µ1, . . . ,µk denote the cluster

means of C1, . . . ,Ck . Let µ̂1, . . . , µ̂k ∈Rk denote an approximation of the cluster means such that
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for each i ∈ [k], ||µi − µ̂i ||2 ≤ ζ||µi ||2. Let S ⊂ {µ̂1, . . . , µ̂k } denote a subset of cluster means. Let

Π̂ ∈Rk×k denote the orthogonal projection matrix into the span(S)⊥. Then the following holds:

1. For all µ̂i ∈ {µ̂1, . . . , µ̂k } \ S we have
∣∣‖Π̂µ̂i‖2

2 −||µ̂i ||22
∣∣≤ 20

p
ε

ϕ · ||µ̂i ||22.

2. For all µ̂i 6= µ̂ j ∈ {µ̂1, . . . , µ̂k } \ S we have |〈Π̂µ̂i ,Π̂µ̂ j 〉| ≤ 50
p
ε

ϕ · 1p|Ci |·|C j |
.

To prove Lemma 3.41 we use Lemma 3.30 from Section 3.4 and we prove Lemma 3.42.

Lemma 3.42. Let k ≥ 2 be an integer, ϕ ∈ (0,1), and ε ∈ (0,1). Let G = (V ,E) be a d-regular

graph that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck . Let 0 < ζ<
p
ε

20·k·ϕ . Let µ̂1, . . . , µ̂k ∈Rk denote

an approximation of the cluster means such that for each i ∈ [k], ||µi − µ̂i ||2 ≤ ζ||µi ||2. Let

S = {µ̂1, . . . , µ̂k }\{µ̂i }. Let Ĥ = [µ̂1, µ̂2, . . . , µ̂i−1, µ̂i+1, . . . , µ̂k ] denote a matrix such that its columns

are the vectors in S. Let Ŵ ∈ R(k−1)×(k−1) denote a diagonal matrix such that for all j < i we

have Ŵ ( j , j ) =√|C j | and for all j ≥ i we have Ŵ ( j , j ) =√|C j+1|. Let Ẑ = ĤŴ . Then we have

µ̂T
i Ẑ Ẑ T µ̂i ≤ 10

p
ε

ϕ
· ||µ̂i ||22.

Proof. Note that Ẑ Ẑ T = (
∑k

j=1 |C j |µ̂ j µ̂
T
j )−|Ci |µ̂i µ̂

T
i . Thus we have

µ̂T
i Ẑ Ẑ T µ̂i = µ̂T

i

(
k∑

j=1
|C j |µ̂ j µ̂

T
j

)
µ̂i −|Ci | · ||µ̂i ||42. (3.186)

By Lemma 3.9 for any vector x with ||x||2 = 1 we have

xT

(
k∑

j=1
|C j |µ jµ

T
j − I

)
x ≤ 4

p
ε

ϕ
(3.187)
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Note that

||
k∑

j=1
|C j |µ̂ j µ̂

T
j −

k∑
j=1

|C j |µ jµ
T
j ||2

≤
k∑

j=1
|C j | · ||µ̂ j µ̂

T
j −µ jµ

T
j ||2 By triangle inequality

=
k∑

j=1
|C j |

(
||(µ j + (µ̂ j −µ j )

)(
µ j + (µ̂ j −µ j )

)T −µ jµ
T
j ||2

)
≤

k∑
j=1

|C j |
(
||(µ̂ j −µ j

)(
µ̂ j −µ j

)T ||2 +||µ j
(
µ̂ j −µ j

)T ||2 +||(µ̂ j −µ j
)
µT

j ||2
)

By triangle inequality

≤
k∑

j=1
|C j | · (ζ2 +2ζ) · ||µ j ||22 Since ||µ̂ j −µ j ||2 ≤ ζ||µ j ||2

≤
k∑

j=1
|C j | ·6 ·ζ · 1

|C j |
By Lemma 3.7 ||µ j ||22 ≤

2

|Ci |
≤ 6 ·ζ ·k

≤
p
ε

2ϕ
Since ζ≤

p
ε

20 ·k ·ϕ

Thus for any vector x with ||x||2 = 1 we have

xT

(
k∑

j=1
|C j |µ̂ j µ̂

T
j −

k∑
j=1

|C j |µ jµ
T
j

)
x ≤

p
ε

2ϕ
(3.188)

Putting (3.188) and (3.187) for any vector any vector x with ||x||2 = 1 we have that

xT

(
k∑

j=1
|C j |µ̂ j µ̂

T
j − I

)
x ≤ 5

p
ε

ϕ

Hence we can write

µ̂T
i

(
k∑

j=1
|C j |µ̂ j µ̂

T
j

)
µ̂i = µ̂T

i

(
k∑

j=1
|C j |µ̂ j µ̂

T
j − I

)
µ̂i + µ̂T

i µ̂i ≤
(
1+ 5

p
ε

ϕ

)
||µ̂i ||22

Therefore by (3.186) we get

µ̂T
i Ẑ Ẑ T µ̂i = µ̂T

i

(
k∑

j=1
|C j |µ̂ j µ̂

T
j

)
µ̂i −|Ci | · ||µ̂i ||42 ≤

(
1+ 5

p
ε

ϕ
−|Ci | · ||µ̂i ||22

)
||µ̂i ||22

By Lemma 3.7, and since ||µ̂i || ≥ (1−ζ)||µi ||2 and ζ≤
p
ε

20·k·ϕ we have that

|Ci | · ||µ̂i ||22 ≥
(
1− 4

p
ε

ϕ

)
(1−ζ)2 ≥ 1− 5

p
ε

ϕ
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Thus we get

µ̂T
i Ẑ Ẑ T µ̂i ≤

(
1+ 5

p
ε

ϕ
−|Ci | · ||µ̂i ||22

)
||µ̂i ||22 ≤

(
1+ 5

p
ε

ϕ
−1+ 5

p
ε

ϕ

)
||µ̂i ||22 ≤

10
p
ε

ϕ
· ||µ̂i ||22

We now prove the main result of this section (Lemma 3.41).

Lemma 3.41. Let k ≥ 2 be an integer,ϕ ∈ (0,1), and ε ∈ (0,1). Let G = (V ,E ) be a d-regular graph

that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck . Let 0 < ζ<
p
ε

20·k·ϕ . Let µ1, . . . ,µk denote the cluster

means of C1, . . . ,Ck . Let µ̂1, . . . , µ̂k ∈Rk denote an approximation of the cluster means such that

for each i ∈ [k], ||µi − µ̂i ||2 ≤ ζ||µi ||2. Let S ⊂ {µ̂1, . . . , µ̂k } denote a subset of cluster means. Let

Π̂ ∈Rk×k denote the orthogonal projection matrix into the span(S)⊥. Then the following holds:

1. For all µ̂i ∈ {µ̂1, . . . , µ̂k } \ S we have
∣∣‖Π̂µ̂i‖2

2 −||µ̂i ||22
∣∣≤ 20

p
ε

ϕ · ||µ̂i ||22.

2. For all µ̂i 6= µ̂ j ∈ {µ̂1, . . . , µ̂k } \ S we have |〈Π̂µ̂i ,Π̂µ̂ j 〉| ≤ 50
p
ε

ϕ · 1p|Ci |·|C j |
.

Proof. Proof of item (1): Since Π̂ is a orthogonal projection matrix we have ||Π̂||2 = 1. Hence,

we have

||Π̂µ̂i ||22 ≤ ||µ̂i ||22 ≤
(
1+ 20

p
ε

ϕ

)
||µ̂i ||22.

Thus it’s left to prove ||Π̂µ̂i ||22 ≥
(
1− 20

p
ε

ϕ

)
||µ̂i ||22. Note that by Pythagoras ||Π̂µ̂i ||22 = ||µ̂i ||22 −

||(I − Π̂)µ̂i ||22. We will prove ||(I − Π̂)µ̂i ||22 ≤ 20
p
ε

ϕ ||µ̂i ||22 which implies

||Π̂µ̂i ||22 ≥
(
1−20

p
ε

ϕ

)
||µ̂i ||22.

Thus in order to complete the proof we need to show ||(I − Π̂)µ̂i ||22 ≤ 20
p
ε

ϕ ||µ̂i ||22. Let S′ =
{µ̂1, . . . , µ̂k } \ {µ̂i }. Let Π̂′ denote the orthogonal projection matrix into span(S′)⊥. Note that

S ⊆ S′, hence span(S) is a subspace of span(S′), therefore we have ||(I−Π̂)µ̂i ||22 ≤ ||(I−Π̂′)µ̂i ||22.

Thus it suffices to prove ||(I−Π̂′)µ̂i ||22 ≤ 20
p
ε

ϕ ||µ̂i ||22. Let Ĥ = [µ̂1, µ̂2, . . . , µ̂i−1, µ̂i+1, . . . , µ̂k ] denote

a matrix such that its columns are the vectors in S′. Let Ŵ ∈ R(k−1)×(k−1) denote a diagonal

matrix such that for all j < i we have Ŵ ( j , j ) = √|C j | and for all j ≥ i we have Ŵ ( j , j ) =√|C j+1|. Let Ẑ = ĤŴ . Then the orthogonal projection matrix onto the span of S′ is defined

as (I − Π̂′) = Ẑ (Ẑ T Ẑ )−1 Ẑ T . By Lemma 3.30 item (2), (Ẑ T Ẑ )−1 is spectrally close to I , hence,

(Ẑ T Ẑ )−1 exists. Therefore we have

||(I − Π̂′)µ̂i ||22 = µ̂T
i Ẑ (Ẑ T Ẑ )−1 Ẑ T µ̂i

= µ̂T
i Ẑ ((Ẑ T Ẑ )−1 − I )Ẑ T µ̂i + µ̂T

i Ẑ Ẑ T µ̂i (3.189)
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By Lemma 3.30 item (2) we have

∣∣µ̂T
i Ẑ

(
(Ẑ T Ẑ )−1 − I

)
Ẑ T µ̂i

∣∣≤ 5
p
ε

ϕ
||Ẑ T µ̂i ||22 (3.190)

Thus we get

||(I − Π̂′)µ̂i ||22 ≤ µ̂T
i Ẑ ((Ẑ T Ẑ )−1 − I )Ẑ T µ̂i + µ̂T

i Ẑ Ẑ T µ̂i By (3.189)

≤
(

5
p
ε

ϕ
+1

)
||Ẑ T µ̂i ||22 By (3.190)

≤ 2 · ||Ẑ T µ̂i ||22 For small enough
ε

ϕ2

By Lemma 3.42 we have

||Ẑ T µ̂i ||22 = µ̂T
i Ẑ Ẑ T µ̂i ≤ 10

p
ε

ϕ
· ||µ̂i ||22

Therefore we get

||(I − Π̂)µ̂i ||22 ≤ ||(I − Π̂′)µ̂i ||22 ≤ 2||Ẑ T µ̂i ||22 ≤
20

p
ε

ϕ
||µ̂i ||22 (3.191)

Hence,

||Π̂µ̂i ||22 ≥
(
1−20

p
ε

ϕ
||µ̂i ||22

)
.

Proof of item (2): Note that

〈µ̂i , µ̂ j 〉 = 〈(I − Π̂)µ̂i + Π̂µ̂i , (I − Π̂)µ̂ j + Π̂µ̂ j 〉 = 〈(I − Π̂)µ̂i , (I − Π̂)µ̂ j 〉+〈Π̂µ̂i ,Π̂µ̂ j 〉

Thus by triangle inequality we have

|〈Π̂µ̂i ,Π̂µ̂ j 〉| ≤ |〈µ̂i , µ̂ j 〉|+ |〈(I − Π̂)µ̂i , (I − Π̂)µ̂ j 〉|

By Cauchy-Schwarz we have

|〈(I − Π̂)µ̂i , (I − Π̂)µ̂ j 〉| ≤ ||(I − Π̂)µ̂i ||2||(I − Π̂)µ̂i ||2

≤ 20
p
ε

ϕ
||µ̂i ||2||µ̂ j ||2 By (3.191)

≤ 40
p
ε

ϕ
· 1√|Ci ||C j |

By Lemma 3.7 and ||µ̂i −µi ||2 ≤ ζ||µi ||2
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Also for any i , j ∈ [k] we have∣∣〈µ̂i , µ̂ j
〉−〈

µi ,µ j
〉∣∣

= ∣∣〈µi + (µ̂i −µi ),µ j + (µ̂ j −µ j )
〉−〈

µi ,µ j
〉∣∣

≤ |〈µ̂i −µi , µ̂ j −µ j
〉 |+ |〈µ̂i −µi ,µ j

〉 |+ |〈µ̂ j −µ j ,µi
〉 | By triangle inequality

≤ ||µ̂i −µi ||2||µ̂ j −µ j ||2 +||µ̂i −µi ||2||µ j ||2 +||µ̂ j −µ j ||2||µi ||2 By Cauchy-Schwarz

≤ (ζ2 +2ζ)
(||µi ||2||µ j ||2

)
Since ||µ̂i −µi ||2 ≤ ζ||µi ||2 for all i

≤ 6 ·ζ · 1√|Ci ||C j |
By Lemma 3.7 ||µi ||22 ≤

2

|Ci |
for all i

(3.192)

Note that

|〈µ̂i , µ̂ j
〉 | ≤ |〈µi ,µ j

〉 |+ |〈µi ,µ j
〉−〈

µ̂i , µ̂ j
〉 | By triangle inequality

≤ 8
p
ε

ϕ
· 1√|Ci ||C j |

+6ζ · 1√|Ci ||C j |
By Lemma 3.7 and (3.192)

≤ 10
p
ε

ϕ

1√|Ci ||C j |
Since ζ≤

p
ε

20 ·k ·ϕ

Therefore we get

|〈Π̂µ̂i ,Π̂µ̂ j 〉| ≤ |〈µ̂i , µ̂ j 〉|+ |〈(I − Π̂)µ̂i , (I − Π̂)µ̂ j 〉| ≤ 50
p
ε

ϕ
· 1√|Ci ||C j |

.
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3.6.5 Partitioning scheme works with approximate cluster means & dot products

In Section 3.6.3 we showed that the partitioning scheme works if we have access to real centers

(i.e. µ1, . . . ,µk ), to exact dot product evaluations (i.e 〈·, ·〉) and OUTERCONDUCTANCE is precise.

In this section we show that approximations to all above is enough for the partitioning scheme

to work. More precisely we show that if we have access only to 〈·, ·〉apx ≈ 〈·, ·〉, the search

procedure finds µ̂i ’s that are only approximately equal to µi ’s and OUTERCONDUCTANCE is

only approximately correct then FINDCENTERS still succeeds with high probability.

In order to prove such a statement we first show a technical Lemma (Lemma 3.43), that relates

the approximate dot product with approximate centers to the dot product with the actual

cluster centers.

Note that the following Lemma 3.43 works for any S ⊂ {µ1, . . . ,µk } and the corresponding Ŝ.

This is useful for application in Lemma 3.45 because it allows to reason about candidate sets

Ĉ (T1, . . . ,Tb)µ̂, after we associate
⋃

i∈[b] Ti with Ŝ.

Lemma 3.43. Let k ≥ 2,ϕ ∈ (0,1), ε
ϕ2 be smaller than a sufficiently small constant. Let G = (V ,E )

be a d-regular graph that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck . Then conditioned on the

success of the spectral dot product oracle the following conditions hold.

Let µ̂1, µ̂2, . . . , µ̂k be such that for all i ∈ [k] ‖µ̂i −µi‖2 ≤ 10−12 · ε
ϕ2·k2 ‖µi‖2. Let i ∈ [k] and

S ⊆ {µ1, . . . ,µk } \ {µi } and Ŝ ⊆ {µ̂1, . . . , µ̂k } \ {µ̂i } be the corresponding subset to S. Let Π be the

orthogonal projection onto span(S)⊥ and Π̂ be the orthogonal projection onto span(Ŝ)⊥.

Let also πi : Rk −→ Rk be the projection onto the subspace spanned by Πµi and Π̂µ̂i . Then if

‖Πi fx‖2 ≤ 104

minp∈[k] |Cp | then:

∣∣∣∣∣∣ 〈 fx ,Πµi 〉
‖Πµi‖2 −

〈
fx ,Π̂µ̂i

〉
apx∥∥Π̂µ̂i

∥∥2
apx

∣∣∣∣∣∣≤ 0.02

Furthermore if µ̂i ’s are averages of s points, then
〈 fx ,Π̂µ̂i〉apx

‖Π̂µ̂i‖2
apx

can be computed in Õϕ

(
s4 ·

(
k
ε

)O(1) ·n1/2+O(ε/ϕ2)
)

time with preprocessing time of Õϕ

((
k
ε

)O(1) ·n1/2+O(ε/ϕ2)
)

and space Õϕ

((
k
ε

)O(1) ·n1/2+O(ε/ϕ2)
)

Proof. First we prove the runtime guarantee and then we show correctness.

Runtime.We first bound the running time. If we set the precision parameter of Algorithm 6 to

ξ= 10−6 ·
p
ε
ϕ then by Theorem 3.2 the preprocessing time takes Õϕ

((
k
ε

)O(1) ·n1/2+O(ε/ϕ2)
)

time,

Õϕ

((
k
ε

)O(1) ·n1/2+O(ε/ϕ2)
)

space, and by Corollary 3.1 computing
〈 fx ,Π̂µ̂i〉apx

‖Π̂µ̂i‖2
apx

takes Õϕ

(
s4 ·

(
k
ε

)O(1) ·n1/2+O(ε/ϕ2)
)

time.
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Correctness.Now we show that we also obtain a good approximation. We will show it in two

steps:

1.
∣∣∣ 〈 fx ,Πµi 〉
‖Πµi ‖2 − 〈 fx ,Π̂µ̂i〉

||Π̂µ̂i ||2
∣∣∣≤ 0.01

2.

∣∣∣∣ 〈 fx ,Π̂µ̂i 〉
‖Π̂µ̂i ‖2 − 〈 fx ,Π̂µ̂i〉apx

‖Π̂µ̂i‖2
apx

∣∣∣∣≤ 0.01

If we are able to prove 1 and 2 then the claim of the Lemma follows from triangle inequality.

Before we present the two proofs we show a useful fact:

||Π̂µ̂i −Πµi || ≤ ||Π̂µ̂i − µ̂i ||+ ||Πµi −µi ||+ ||µ̂i −µi || By triangle inequality

≤ 20ε1/4

p
ϕ

||µ̂i ||+ 16ε1/4

p
ϕ

||µi ||+10−6 ·
p
ε

ϕ ·k
‖µi‖ By Lemma 3.41, 3.12 and the bound on ‖µ̂i −µi‖2

≤ 40ε1/4

p
ϕ

||µi || As ‖µ̂i −µi‖2 ≤ 10−12 · ε

ϕ2 ·k2 ‖µi‖2

(3.193)

Proof of 1: Notice that∣∣∣∣ 〈 fx ,Πµi 〉
||Πµi ||2

− 〈 fx ,Π̂µ̂i 〉
||Π̂µ̂i ||2

∣∣∣∣= ∣∣∣∣〈 fx ,
Πµi

||Πµi ||2
− Π̂µ̂i

||Π̂µ̂i ||2
〉∣∣∣∣

=
∣∣∣∣〈Πi fx ,

Πµi

||Πµi ||2
− Π̂µ̂i

||Π̂µ̂i ||2
〉∣∣∣∣ By definition of πi

≤ ||Πi fx ||
∣∣∣∣∣∣∣∣ Πµi

||Πµi ||2
− Π̂µ̂i

||Π̂µ̂i ||2
∣∣∣∣∣∣∣∣ By Cauchy-Schwarz (3.194)

First we will upper bound
∣∣∣∣∣∣ Πµi

||Πµi ||2 −
Π̂µ̂i

||Π̂µ̂i ||2
∣∣∣∣∣∣. We split it into two cases:

Case 1. If Πµi

||Πµi ||2 ≥
Π̂µ̂i

||Π̂µ̂i ||2 then we have:

∣∣∣∣∣∣∣∣ Πµi

||Πµi ||2
− Π̂µ̂i

||Π̂µ̂i ||2
∣∣∣∣∣∣∣∣≤

∣∣∣∣∣∣
∣∣∣∣∣∣ Πµi

(1− 16
p
ε

ϕ )||µi ||2
− Π̂µ̂i

||Π̂µ̂i ||2

∣∣∣∣∣∣
∣∣∣∣∣∣ By Lemma 3.12

≤
∣∣∣∣∣∣
∣∣∣∣∣∣ Πµi

(1− 16
p
ε

ϕ )||µi ||2
− Π̂µ̂i

(1+ 20
p
ε

ϕ )(1+10−12 · ε
ϕ2·k2 )||µi ||2

∣∣∣∣∣∣
∣∣∣∣∣∣ Lemma 3.41, assumptions

≤ 2

||µi ||2
∣∣∣∣∣∣∣∣Πµi −

(
1− 1600

p
ε

ϕ

)
Π̂µ̂i

∣∣∣∣∣∣∣∣
≤ 2

||µi ||2
(∣∣∣∣∣∣∣∣1600

p
ε

ϕ
Πµi

∣∣∣∣∣∣∣∣+(
1− 1600

p
ε

ϕ

)
||Π̂µ̂i −Πµi ||

)
By triangle inequality

≤ 12800
p
ε

ϕ

1

||µi ||
By (3.193) and Lemma 3.12
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Case 2. If Πµi

||Πµi ||2 <
Π̂µ̂i

||Π̂µ̂i ||2 then we have:

∣∣∣∣∣∣∣∣ Πµi

||Πµi ||2
− Π̂µ̂i

||Π̂µ̂i ||2
∣∣∣∣∣∣∣∣≤

∣∣∣∣∣∣
∣∣∣∣∣∣ Πµi

(1+ 16
p
ε

ϕ )||µi ||2
− Π̂µ̂i

||Π̂µ̂i ||2

∣∣∣∣∣∣
∣∣∣∣∣∣ By Lemma 3.12

≤
∣∣∣∣∣∣
∣∣∣∣∣∣ Πµi

(1+ 16
p
ε

ϕ )||µi ||2
− Π̂µ̂i

(1− 20
p
ε

ϕ )(1−10−12 · ε
ϕ2·k2 )||µi ||2

∣∣∣∣∣∣
∣∣∣∣∣∣ Lemma 3.41, assumptions

≤ 2

||µi ||2
∣∣∣∣∣∣∣∣Πµi −

(
1+ 1600

p
ε

ϕ

)
Π̂µ̂i

∣∣∣∣∣∣∣∣
≤ 2

||µi ||2
(∣∣∣∣∣∣∣∣1600

p
ε

ϕ
Πµi

∣∣∣∣∣∣∣∣+(
1+ 1600

p
ε

ϕ

)
||Π̂µ̂i −Πµi ||

)
By triangle inequality

≤ 12800
p
ε

ϕ

1

||µi ||
By (3.193) and Lemma 3.12

Combining the two cases we get:∣∣∣∣∣∣∣∣ Πµi

||Πµi ||2
− Π̂µ̂i

||Π̂µ̂i ||2
∣∣∣∣∣∣∣∣≤ 12800

p
ε

ϕ

1

||µi ||
.

Substituting into (3.194) we get:

∣∣∣∣ 〈 fx ,Πµi 〉
||Πµi ||2

− 〈 fx ,Π̂µ̂i 〉
||Π̂µ̂i ||2

∣∣∣∣≤ ||Πi fx || · 12800
p
ε

ϕ

1

||µi ||

≤ 100√
minp∈[k] |Cp |

· 12800
p
ε

ϕ

1

||µi ||
By assumption of the Lemma

≤ 0.005
1√

maxp∈[k] |Cp | · ||µi ||
As

ε

ϕ2 is sufficiently small and
maxp∈[k] |Cp |
minp∈[k] |Cp |

=O(1)

≤ 0.01 By Lemma 3.7
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Proof of 2:

∥∥Π̂µ̂i
∥∥2

apx
≥ ||Π̂µ̂i ||2 −10−6 ·

p
ε

ϕ
·n−1 By Corollary 3.1, setting of ξ and assumptions

≥
(
1− 20

p
ε

ϕ

)
· ||µ̂i ||2 −0.01 ·n−1 By Lemma 3.41 and

ε

ϕ2 small

≥
(
1−10−12 ε

ϕ2 ·k

)
·0.99 · ||µi ||2 −0.01 ·n−1 By ||µ̂i −µi ||2 ≤ 10−12 ε

ϕ2 ·k
||µi ||2 and

ε

ϕ2 small

≥
(
1− 4

p
ε

ϕ

)
·0.98 ·n−1 −0.01 ·n−1 By Lemma 3.7, |Ci | ≤ n,

ε

ϕ2 small

≥ 0.5 ·n−1 As
ε

ϕ2 small (3.195)

Next notice that:

∣∣∣∣∣∣ 〈 fx ,Π̂µ̂i 〉
‖Π̂µ̂i‖2

−
〈

fx ,Π̂µ̂i
〉

apx∥∥Π̂µ̂i
∥∥2

apx

∣∣∣∣∣∣≤
∣∣∣∣∣∣ 〈 fx ,Π̂µ̂i 〉
‖Π̂µ̂i‖2

−
〈

fx ,Π̂µ̂i
〉∥∥Π̂µ̂i

∥∥2
apx

∣∣∣∣∣∣+
∣∣∣∣∣∣

10−6 ·
p
ε
ϕ ·n−1∥∥Π̂µ̂i
∥∥2

apx

∣∣∣∣∣∣ By Corollary 3.1

≤
∣∣∣∣∣∣〈 fx ,Π̂µ̂i

〉 1

‖Π̂µ̂i‖2
− 1∥∥Π̂µ̂i

∥∥2
apx

∣∣∣∣∣∣+
∣∣∣∣10−6 ·n−1

0.5 ·n−1

∣∣∣∣ By (3.195) and
ε

ϕ2 small

≤ ∣∣〈 fx ,Π̂µ̂i
〉∣∣ ∣∣∣∣∣∣ 1

‖Π̂µ̂i‖2
− 1∥∥Π̂µ̂i

∥∥2
apx

∣∣∣∣∣∣+10−5 (3.196)

Now we will separately bound
∣∣〈 fx ,Π̂µ̂i

〉∣∣ and

∣∣∣∣ 1
‖Π̂µ̂i ‖2 − 1

‖Π̂µ̂i‖2
apx

∣∣∣∣ from (3.196). As | 〈a,b〉 | ≤
||a|| · ||b|| we get: ∣∣〈 fx ,Π̂µ̂i

〉∣∣≤ ||Πi fx || · ||Π̂µ̂i || (3.197)
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Now we bound the second term from (3.196):∣∣∣∣∣∣ 1

‖Π̂µ̂i‖2
− 1∥∥Π̂µ̂i

∥∥2
apx

∣∣∣∣∣∣=
∣∣∣∣∣∣
∥∥Π̂µ̂i

∥∥2
apx

−||Π̂µ̂i ||2

||Π̂µ̂i ||2
∥∥Π̂µ̂i

∥∥2
apx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
10−6 ·

p
ε
ϕ ·n−1

||Π̂µ̂i ||2
∥∥Π̂µ̂i

∥∥2
apx

∣∣∣∣∣∣ Corollary 3.1, setting of ξ and assumptions

≤ 10−5 ·
p
ε

ϕ
·
∣∣∣∣ 0.5 ·n−1

||Π̂µ̂i ||2 ·0.5 ·n−1

∣∣∣∣ By (3.195)

≤ 10−5 ·
p
ε

ϕ
·
∣∣∣∣∣∣ 1

||Π̂µ̂i || · (||Πµi ||− 40ε1/4p
ϕ ||µi ||)

∣∣∣∣∣∣ By (3.193)

≤ 10−4 ·
p
ε

ϕ
· 1

||Π̂µ̂i || · ||µi ||
By Lemma 3.12 and

ε

ϕ2 small

(3.198)

Substituting (3.197) and (3.198) in (3.196) we get:

∣∣∣∣∣∣ 〈 fx ,Π̂µ̂i 〉
‖Π̂µ̂i‖2

−
〈

fx ,Π̂µ̂i
〉

apx∥∥Π̂µ̂i
∥∥2

apx

∣∣∣∣∣∣≤ 10−5 +10−4 ·
p
ε

ϕ
· ||Πi fx ||

||µi ||

≤ 10−5 +10−4 ·
p
ε

ϕ
· 100√

minp∈[k] |Cp |
· 1

||µi ||
By assumption

≤ 10−5 +10−3 1√
maxp∈[k] |Cp | · ||µi ||

As
ε

ϕ2 small,
maxp∈[k] |Cp |
minp∈[k] |Cp |

=O(1)

≤ 0.01 By Lemma 3.7

Now we are ready to show that there exist an algorithm (Algorithm 11) that can estimate

accurately the size of candidate clusters of the form Ĉ (T1,...,Tb )
µ̂

and then, if the size is not too

small, estimate outer-conductance of all candidate clusters. The proof of correctness of the

algorithm is based on applications of standard concentration bounds.

Lemma 3.44. Let k ≥ 2, ϕ,ε,γ ∈ (0,1). Let G = (V ,E) be a d-regular graph that admits a

(k,ϕ,ε)-clustering C1, . . . ,Ck .

For a set of approximate centers {µ̂1, . . . , µ̂k }, where each µ̂i is represented as an average of at

most s embedded vertices (i.e fx ’s), an ordered partial partition (T1, . . . ,Tb) of {µ̂1, . . . , µ̂k } and

µ̂ ∈ {µ̂1, . . . , µ̂k } \
⋃

j∈[b] Ti the following conditions hold.
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Algorithm 11 OUTERCONDUCTANCE(G , µ̂, (T1,T2, . . . ,Tb),S, s1, s2)
. Ti ’s are sets of µ̂ j where µ̂ j ’s are given as sets of points
. see Section 3.5.6 for the reason of such representation

. s1 is # sampled points for size estimation
. s2 is # sampled points for outer-conductance estimation

1: cnt := 0
2: for t = 1 to s1 do
3: x ∼ UNIFORM{1..n} . Sample a random vertex and test if it belongs to the cluster
4: if ISINSIDE(x, µ̂, (T1,T2, . . . ,Tb),S) then
5: cnt := cnt+1
6: if n

s1
·cnt < minp∈[k] |Cp |/2 then

7: return ∞ . If the estimated size is too small return ∞
8: e := 0, a := 0
9: for t = 1 to s2 do

10: x ∼ UNIFORM{1..n}
11: y ∼ UNIFORM{w ∈N (u)} .N (u) = neighbors of u in G
12: if ISINSIDE(x, µ̂, (T1,T2, . . . ,Tb),S) then
13: a := a +1
14: if ¬ISINSIDE(y, µ̂, (T1,T2, . . . ,Tb),S) then
15: e = e +1
16: return e

a

If Algorithm 11 is invoked with (G , µ̂, (T1, . . . ,Tb), {µ̂1, . . . , µ̂k } \
⋃

j∈[b] Ti , s1, s2) then it runs in

Õϕ

(
(s1 + s2) · s4 ·

(
k
ε

)O(1) ·n1/2+O(ε/ϕ2)
)

time and if s1 =Θ(k log( 1
η )) and s2 =Θ(ϕ

2·k
ε log( 1

η )) then

with probability 1−η it returns a value q with the following properties.

• If |Ĉ (T1,...,Tb )
µ̂

| ≥ 3
4 minp∈[k] |Cp | then q ∈

[
1
2φ

(
Ĉ (T1,...,Tb )
µ̂

)
−ε/ϕ2, 3

2φ
(
Ĉ (T1,...,Tb )
µ̂

)
+ε/ϕ2

]
,

• If |Ĉ (T1,...,Tb )
µ̂

| < 3
4 minp∈[k] |Cp | then q ≥ 1

2φ
(
Ĉ (T1,...,Tb )
µ̂

)
−ε/ϕ2.

Proof. We start with the runtime analysis then follows the correctness analysis.

Runtime.Algorithm 11 has two phases: one from line 1 to line 7 and second from line 8 to line

16.

During the first phase Algorithm 11 calls Algorithm 9 s1 times and Algorithm 9 runs in Õϕ(s4 ·(
k
ε

)O(1) ·n1/2+O(ε/ϕ2)) time as it computes kO(1) values of the form
〈 fx ,µ̂i 〉apx

||µ̂i ||2apx
which are computed

in time Õϕ(s4 ·
(

k
ε

)O(1) ·n1/2+O(ε/ϕ2)) by Lemma 3.43, so in total the runtime of this phase is

Õϕ(s1 · s4 ·
(

k
ε

)O(1) ·n1/2+O(ε/ϕ2)).

During the second phase Algorithm 11 calls Algorithm 9 2s2 times so the runtime of this phase
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is Õϕ(s2 · s4 ·
(

k
ε

)O(1) ·n1/2+O(ε/ϕ2)) in total.

So in total the runtime is Õϕ((s1 + s2) · s4 ·
(

k
ε

)O(1) ·n1/2+O(ε/ϕ2)).

Correctness.For simplicity we denote Ĉ (T1,...,Tb )
µ̂

by Ĉ and minp∈[k] |Cp | by rmin in this proof.

Notice that the Algorithm 11 in the first phase computes cnt =∑s
i=1 Xi , where Xi ’s are inde-

pendent Bernoulli trials with success probability p = |Ĉ |
n . Let z := n

s1

∑s1
i=1 Xi . We introduce

notation x ≈δ,α y to denote x ∈ [(1−δ)y −α, (1+δ)y +α]. By Chernoff-Hoeffding bounds we

get that there exists a universal constant Γ such that for all 0 < δ≤ 1/2,α> 0

z ≈δ,α·n |Ĉ | with probability 1−2−Γs1αδ.

Setting δ= 1/2,α= rmin
8n we get that z ≈1/2,rmin/8 |Ĉ | with probability

1−2−Γs1
rmin
32n ≥ 1−2−Ω(s1/k),

as
maxp∈[k] |Cp |
minp∈[k] |Cp | =O(1). So if s1 =Θ(k log(1/η)) then with probability 1−η/2 we have

z ≈1/2,rmin/8 |Ĉ |. (3.199)

Observe that if Ĉ < rmin/4 then by (3.199) we have that z ≤ (1+1/2)|Ĉ |+rmin/8 < rmin/2, which

means that Algorithm 11 returns ∞. Note that it is consistent with the conclusion of the

Lemma.

For the analysis of the second stage we assume that |Ĉ | ≥ rmin/4. We will analyze what value

is returned in the second stage. First we will bound the probability that a ≤ s2·rmin
8·n . For

i ∈ [1 . . . s2] let Xi be a binary random variable which is equal 1 iff in i − th iteration of the for

loop we increase the a counter. We have that, for every i , P [Xi = 1] = |Ĉ |/n and the Xi ’s are

independent. Notice that a =∑s2
i=1 Xi . From Chernoff bound we have that for δ< 1:

P

[∣∣∣∣∣ s2∑
i=1

Xi −E
[

s2∑
i=1

Xi

]∣∣∣∣∣> δ ·E
[

s2∑
i=1

Xi

]]
≤ 2e−

δ2

3 E
[∑s2

i=1 Xi
]
, (3.200)

Noticing that E
[∑s2

i=1 Xi
]= s2

|Ĉ |
n if we set δ= 1/2 we get that

P

[∣∣∣∣∣ s2∑
i=1

Xi − s2
|Ĉ |
n

∣∣∣∣∣> s2
|Ĉ |
2n

]
≤ 2e−s2

|Ĉ |
12n ≤ 2e−

s2 ·rmin
48·n , (3.201)

So with probability at least 1−2e−
s2 ·rmin

48·n ≥ 1−2e−Ω(s2/k) (as
maxp∈[k] |Cp |
minp∈[k] |Cp | =O(1)) we have that

a =
s∑

i=1
Xi ≥ 1

2
· s2 · |Ĉ |

n
≥ s2 · rmin

8 ·n
≥Ω(s2/k). (3.202)
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Now observe that line 14 of OUTERCONDUCTANCE is invoked exactly a times. Let Y j be the

indicator random variable that is 1 iff e is increased in the j -th call of line 14. Notice that

P [Yi = 1] =φ(Ĉ ) (3.203)

That is because if Ui is a random variable denoting a vertex u sampled in i -th step then Ui

is uniform on set Ĉ conditioned on Xi = 1 and the graph is regular. Now by the Chernoff-

Hoeffging bounds we get that for all 0 < δ≤ 1/2,α> 0 we have:

1

a

a∑
i=1

Yi ≈δ,α φ(Ĉ ) with probability 1−2e−Γaαδ.

Setting δ= 1/2,α= ε
ϕ2 we get that 1

a

∑a
i=1 Yi ≈1/2,ε/ϕ2 φ(Ĉ ) with probability:

1−2e−Γaε/(4ϕ2) ≥ 1−2e−Ω(aε/ϕ2) (3.204)

Now taking the union bound over (3.202) and (3.204) we get that if we set s2 =Θ(ϕ
2·k
ε log(1/η))

then 1
a

∑a
i=1 Yi ≈1/2,ε/ϕ2 φ(Ĉ ) with probability:

1−2e−Ω(s2/k) −2e−Ω(aε/ϕ2) ≥ 1−2e−Ω(s2/k) −2e
−Ω(

ε·s2
ϕ2 ·k )

By (3.202)

≥ 1−η/2

To conclude the proof we observe the following.

• If |Ĉ | < rmin
4 then with probability 1−η/2 the Algorithm returns ∞,

• If |Ĉ | ∈ [ rmin
4 , 3·rmin

4 ) then either the Algorithm returns ∞ in the first stage or it reaches the

second stage and with probability 1−η it returns a value ψ such that ψ≈1/2,ε/φ2 ϕ(Ĉ ),

• If |Ĉ | ≥ rmin
4 then by the union bound over the two stages with probability 1−η it reaches

the second stage and returns a value ψ such that ψ≈1/2,ε/ϕ2 φ(Ĉ ).

The above covers all the cases and is consistent with the conclusions of the Lemma.

Before we give the statement of the next Lemma we introduce some definitions. In Lemma 3.44

we proved that for every call to OUTERCONDUCTANCE the value returned by the Algorithm 11

is, in a sense given by the conclusions of Lemma 3.44, a good approximation to outer-

conductance of Ĉ (T1,...,Tb )
µ̂

(where µ̂, (T1, . . . ,Tb) are the parameters of the call) with high proba-

bility. What follows is a definition of an event that the values returned by OUTERCONDUCTANCE

throughout the run of the final algorithm always satisfy one conclusion of Lemma 3.44. Later

we use Definition 3.13 in Lemma 3.45 and then in the proof of Theorem 3.8 we will lower

bound the probability of Econductance.
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Definition 3.13 (Event Econductance). Let k ≥ 2, ϕ,ε,γ ∈ (0,1). Let G = (V ,E) be a d-regular

graph that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck .

We define Econductance as an event:

For every call to Algorithm 11 (i.e. OUTERCONDUCTANCE) that is made throughout the run of

FINDCENTERS the following is true. If Algorithm 11 is invoked with (G , µ̂, (T1, . . . ,Tb), {µ̂1, . . . , µ̂k }\⋃
j∈[b] Ti , s1, s2) then it returns a value q with the following property.

• If |Ĉ (T1,...,Tb )
µ̂

| ≥ 3
4 minp∈[k] |Cp | then q ∈

[
1
2φ

(
Ĉ (T1,...,Tb )
µ̂

)
−ε/ϕ2, 3

2φ
(
Ĉ (T1,...,Tb )
µ̂

)
+ε/ϕ2

]
.

The following Lemma is the key part of the corresponding proof of correctness of Algorithm 8

(see Theorem 3.8 below). It is a generalization of Lemma 3.37. We show that if µ̂’s are close

to real centers and E and Econductance hold then at every stage of the for loop from line 4 of

Algorithm 8 at least half of the candidate clusters:

Ci := ⋃
µ̂∈S

{Ĉ (T1,...,Ti−1)
µ̂

},

pass the test from line 6 of Algorithm 8, which means that they have small outer-conductance

and satisfy condition (3.143).

Lemma 3.45. Let k ≥ 2,ϕ ∈ (0,1), ε
ϕ2 be smaller than a sufficiently small constant. Let G = (V ,E )

be a d-regular graph that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck . Then conditioned on the

success of the spectral dot product oracle there exists an absolute constant Υ such that the

following conditions hold.

If COMPUTEORDEREDPARTITION(G , µ̂1, µ̂2, . . . , µ̂k , s1, s2) is called with (µ̂1, . . . , µ̂k ) such that for

every i ∈ [k] we have ‖µ̂i −µi‖2 ≤ 10−12 · ε
ϕ2·k2 ‖µi‖2 then the following holds. Assume that at

the beginning of the i -th iteration of the for loop from line 4 of Algorithm 8 |S| = b and, up to

renaming of µ̂’s, S = {µ̂1, . . . , µ̂b}, the corresponding clusters are C = {C1, . . . ,Cb} respectively and

the ordered partial partition of µ’s is equal to (T1, . . . ,Ti−1). Then if for every C ∈C we have that

|V (T1,...,Ti−1) ∩C | ≥
(
1−Υ · i · ε

ϕ2

)
|C | then at the beginning of (i +1)-th iteration:

1. |S| ≤ b/2 (that is at least half of the remaining cluster means were removed in i -th

iteration),

2. for every µ ∈ S the corresponding cluster C satisfies |V (T1,...,Ti )∩C | ≥
(
1−Υ · (i +1) · ε

ϕ2

)
|C |,

where (T1, . . . ,Ti ) is the ordered partial partition of µ’s created in the first i iterations.

Proof. Outline of the proof. We start but defining a subset of vertices called outliers and then

we show that the number of them is small. Next we prove that for vertices that are not outliers

the evaluations of
〈 fx ,Π̂µ̂i〉apx

‖Π̂µ̂i‖2
apx

are approximately correct (as in Lemma 3.43). Next we mimic the
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structure, and on the high level the logic, of the proof of Lemma 3.37: we first show the first

conclusion of the Lemma and then the second one.

For simplicity we will denote minp∈[k] |Cp | by rmin in this proof. Without loss of generality we

can assume S = {µ̂1, . . . , µ̂b} at the beginning of the i -th iteration of the for loop from line 4 of

Algorithm 8 and the corresponding clusters be C1, . . . ,Cb respectively. Assume that for every

C ∈C we have that |V (T1,...,Ti−1) ∩C | ≥
(
1−Υ · i · ε

ϕ2

)
|C |.

Let Π̂ be the projection onto the span(
⋃

j<i T j )⊥. Recall that each T j is a subset of {µ̂1, . . . , µ̂k }.

For every j < i let

T ′
j := ⋃

µ̂∈T j

{µ}.

That is T ′
j ’s are T j ’s with µ̂’s replaced by the corresponding µ’s. Now let Π be the projection

onto the span(
⋃

j<i T ′
j )⊥.

Outliers.First we define a set of outliers, i.e. X , as the set of points with abnormally long

projection onto the subspace spanned by {Πµ1, . . . ,Πµb ,Π̂µ̂1, . . . ,Π̂µ̂b}. Then we show that the

number of outliers is small.

Let Q be the orthogonal projection onto the span({Πµ1, . . . ,Πµb ,Π̂µ̂1, . . . ,Π̂µ̂b}) and let:

X :=
{

x ∈V : ||Q fx ||2 > 104

rmin

}
By Lemma 3.33 we get that

∑
x∈V

||Q fx −Qµx ||2 ≤O

(
b · ε
ϕ2

)
. (3.205)

Moreover for every x ∈ X :

||Q fx −Qµx || ≥ ||Q fx ||− ||Qµx || By triangle inequality

≥ ||Q fx ||− ||µx || As projection can only decrease the norm

> 102

p
rmin

−
(
1+O

(p
ε

ϕ

))
1p

rmin
By Lemma 3.7 and Definition of X

≥ 90p
rmin

For
ε

ϕ2 small enough (3.206)

Combining (3.205) and (3.206) we get:

|X | ≤O

(
b · ε
ϕ2

)
· rmin ≤O

(
b · ε
ϕ2

)
· n

k
(3.207)
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Tests performed for non-outliers are approximately correct.Observe that by the fact that

spectral dot product succeeds we have by Lemma 3.43 that for all x ∈V \ X and for all i ∈ [k]:∣∣∣∣∣∣ 〈 fx ,Πµi 〉
‖Πµi‖2 −

〈
fx ,Π̂µ̂i

〉
apx∥∥Π̂µ̂i

∥∥2
apx

∣∣∣∣∣∣≤ 0.02, (3.208)

as ||Q fx ||2 ≤ 104

rmin
and the norm in any subspace can only be smaller and thus the assumption

of Lemma 3.43 is satisfied.

1. At least half of the cluster means is removed from S.Now we proceed with proving that

most of the candidate clusters Ĉ (T1,...,Ti−1)
µ̂

have small outer-conductance and thus the corre-

sponding µ̂’s are removed from set S (see line 6 of COMPUTEORDEREDPARTITION). For brevity

we will refer to (T1, . . . ,Ti−1) as P in this proof.

Let µ ∈ S. Let

I := ⋃
µ′,µ′′∈{µ1,...,µd }

CΠµ′,0.9 ∩CΠµ′′,0.9.

By Lemma 3.36 we have that

|I | ≤O

(
b · ε
ϕ2

)
· n

k
. (3.209)

So by (3.207) and (3.209) and Markov inequality we get that there exists a subset of clusters

R ⊆C such that |R| ≥ b/2 and for every C ∈R we have that:

|C ∩ (I ∪X )| ≤O

(
ε

ϕ2

)
· n

k
(3.210)

We will argue that for any order of the for loop from line 4 of Algorithm 8 it is true that for every

C ∈R with corresponding means µ, µ̂ the candidate cluster Ĉ P
µ̂

satisfies the if statement from

line 6 of Algorithm 8. Recall that as per Definition 3.12:

Ĉ P
µ̂ =

{
x ∈V : ISINSIDE

(
x, µ̂,P, {µ̂1, . . . , µ̂k } \

⋃
j∈[i−1]

T j

)
= TRUE

}
.

First note that behavior of the algorithm is independent of the order of the for loop from line 4

of Algorithm 8 as by definition Ĉ P
µ̂

’s for µ̂ ∈ S are pairwise disjoint. Now let C ∈R, µ, µ̂ be the

means corresponding to C and Ĉ P
µ̂

be the candidate cluster corresponding to µ̂ with respect to

P = (T1, . . . ,Ti−1).

Now the goal is to show:

|Ĉ P
µ̂4C | ≤O

(
ε

ϕ2 · log(k)

)
· |C |,

from which we will later conclude that the outer-conductance of the candidate set Ĉ P
µ̂

is small.
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Intuitively we would like to argue that

CΠµ,0.96
∼⊆C apx

Π̂µ̂,0.93

∼⊆CΠµ,0.9, (3.211)

and then use Lemmas from Section 3.6.2. The equation (3.211) is true up to the outliers as

Lemma 3.43 guarantees a bound of 0.02 for the test computations for vertices of small norm.

Now we give a formal proof, which is split into 2 parts:

Showing |Ĉ P
µ̂
∩C | ≥

(
1−O

(
ε
ϕ2 · log(k)

))
|C |.First we note that by (3.208) CΠµ,0.96 is mostly con-

tained in C apx

Π̂µ̂,0.93
. Recall that (see Definition 3.9 and Definition 3.8) we have:

C apx

Π̂µ̂,0.93
=

{
x ∈V :

〈
fx ,Π̂µ̂

〉
apx

≥ 0.93
∥∥Π̂µ̂∥∥2

apx

}
,

CΠµ,0.96 =
{

x ∈V :
〈

fx ,Πµ
〉≥ 0.96||Πµ||2} .

And (3.208) gives us that the errors for non-outliers are bounded by 0.02, so formally we get:

CΠµ,0.96 \C apx

Π̂µ̂,0.93
⊆ X (3.212)

Similarly, also by (3.208) we get that the intersections of candidate clusters C apx

Π̂µ̂,0.93
lie mostly

in I . Formally:

C apx

Π̂µ̂,0.93
∩ ⋃
µ̂′ 6=µ̂

C apx

Π̂µ̂′,0.93
⊆ I ∪X (3.213)

By Lemma 3.31 we get that

|C ∩CΠµ,0.96| ≥
(
1−O

(
ε

ϕ2

))
|C | (3.214)

Note that having two thresholds (0.9 and 0.96) is very important here (see Remark 3.7). Intu-

itively we need some slack to show CΠµ,0.96
∼⊆C apx

Π̂µ̂,0.93

∼⊆CΠµ,0.9 as there is always some error in

computation of
〈 fx ,Π̂µ̂i〉apx

‖Π̂µ̂i‖2
apx

.

Now combining inductive assumption |V P ∩C | ≥
(
1−Υ · i · ε

ϕ2

)
|C |, (3.210), (3.212), (3.213) and

(3.214) we get that:

|Ĉ P
µ̂ ∩C | ≥

(
1−Υ · i · ε

ϕ2

)
|C |−O

(
ε

ϕ2

)
· n

k
−O

(
ε

ϕ2

)
· |C |

≥
(
1−O

(
ε

ϕ2 · log(k)

))
|C | (3.215)
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Showing |Ĉ P
µ̂
∩ (V P \C )| ≤O

(
ε
ϕ2

)
|C |.Recall that as per Definition 3.12 we have:

V P =V \
⋃
j<i

⋃
µ̂∈T j

Ĉ
(T1,...,T j−1)
µ̂

By Lemma 3.32 we get that:

|CΠµ,0.9 ∩ (V P \C )| ≤ |CΠµ,0.9 ∩ (V \C )| ≤O

(
ε

ϕ2

)
|C | (3.216)

By (3.208) we get:

C apx

Π̂µ̂,0.93
\CΠµ,0.9 ⊆ X (3.217)

Let π′ be the projection onto the span of {Πµ,Π̂µ̂}. Moreover let:

X ′ :=
{

x ∈V : ‖π′ fx‖2 > 104

rmin

}
.

Note that by Lemma 3.33 we have:

∑
x∈V

||π′ fx −π′µx ||2 ≤O

(
ε

ϕ2

)
(3.218)

Moreover for every x ∈ X ′ we have:

||π′ fx −π′µx || ≥ ||π′ fx ||− ||π′µx || By 4 inequality

≥ 102

p
rmin

− 2p
rmin

By Lemma 3.7

≥ 90p
rmin

(3.219)

Combining (3.218) and (3.219) we get that:

|X ′| ≤O

(
ε

ϕ2

)
· rmin ≤O

(
ε

ϕ2

)
· n

k
(3.220)

Then similarly to the analysis of (3.208) by Lemma 3.43 and the fact that spectral dot product

succeeds we have that for every x ∈V \ X ′:∣∣∣∣∣∣ 〈 fx ,Πµ〉
‖Πµ‖2 −

〈
fx ,Π̂µ̂

〉
apx∥∥Π̂µ̂∥∥2

apx

∣∣∣∣∣∣≤ 0.02

Thus we get:

C apx

Π̂µ̂,0.93
\CΠµ,0.9 ⊆ X ′, (3.221)

as for points not belonging to X ′ the error in the tests performed by the Algorithm is upper
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bounded by 0.02. Combining (3.216) and (3.221) we have:

|Ĉ P
µ̂ ∩ (V P \C )| ≤O

(
ε

ϕ2

)
|C | (3.222)

And finally putting (3.215) and (3.222) together we have:

|Ĉ P
µ̂4C | ≤O

(
ε

ϕ2 · log(k)

)
· |C | (3.223)

Outer-conductance of Ĉ P
µ̂

is small.Now we want to argue that Ĉ P
µ̂

passes the outer-conductance

test from line 6 in Algorithm 8. From the definition of outer-conductance:

φ(Ĉ P
µ̂ ) ≤

E(C ,V \C )+d |Ĉ P
µ̂
4C |

d(|C |− |Ĉ P
µ̂
4C |)

≤
E(C ,V \C )+d ·O

(
ε
ϕ2 · log(k)

)
|C |

d(|C |−O
(
ε
ϕ2 · log(k)

)
|C |)

from (3.223)

≤
O

(
ε
ϕ2

)
+O

(
ε
ϕ2 · log(k)

)
1−O

(
ε
ϕ2 · log(k)

) because
E(C ,V \C )

d |C | ≤O

(
ε

ϕ2

)

≤O

(
ε

ϕ2 · log(k)

)
for sufficiently small

ε

ϕ2 · log(k)

and it follows that

φ(Ĉ P
µ̂ ) ≤O

(
ε

ϕ2 · log(k)

)
,

To conclude we notice that by (3.223) we have |Ĉ P
µ̂
| > 3·rmin

4 , so as Econductance is true we get

that the candidate cluster Ĉ P
µ̂

passes the test.

2. Clusters corresponding to unremoved µ̂’s satisfy condition 2.Now we prove that for every

µ̂ that was not removed from set S only small fraction of its corresponding cluster is removed.

Let µ̂ ∈ S be such that it is not removed in the i -th step and let µ be the corresponding real

center. Let C ∈C be the cluster corresponding to µ. By assumption |V P ∩C | ≥
(
1−Υ · i · ε

ϕ2

)
|C |,

where recall that P = (T1, . . . ,Ti−1).

Now the goal is to show:

|C ∩ (V (T1,...,Ti−1) \V (T1,...,Ti ))| ≤O

(
ε

ϕ2

)
|C |+O

(
ε

ϕ2

)
· n

k
≤O

(
ε

ϕ2

)
|C |,

that is, that there is only a small number of vertices that were removed in the i -th stage and
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belong to C at the same time. Intuitively we want to show that:

(V (T1,...,Ti−1) \V (T1,...,Ti ))∩CΠµ,0.96 ≈;,

and then use Lemmas from Section 3.6.2. The equation above is true up to the outliers as

Lemma 3.43 guarantees a bound of 0.02 for the test computations for vertices of small norm.

Now we give a formal proof. Let x ∈ V (T1,...,Ti−1) \ V (T1,...,Ti ) = V P \ V (T1,...,Ti ), where (T1, . . . ,Ti )

is the partial partition of µ̂’s created in the first i steps of the for loop of COMPUTEORDERED-

PARTITION. Then there exists µ̂′ ∈ {µ̂1, . . . , µ̂b} such that x ∈ Ĉ P
µ̂′ (recall that Ĉ P

µ̂′ is the candidate

cluster corresponding to µ̂′ with respect to P = (T1, . . . ,Ti−1)). Recall (Definition 3.12) that Ĉ P
µ̂′

is defined as:

Ĉ P
µ̂′ =

{
x ∈V : ISINSIDE

(
x, µ̂′,P, {µ̂1, . . . , µ̂k } \

⋃
j∈[i−1]

T j

)
= TRUE

}
.

This in particular means (see line 8 of Algorithm ISINSIDE) that:

Ĉ P
µ̂′ ⊆C apx

Π̂µ̂′,0.93
\

⋃
µ̂′′∈S\{µ̂′}

C apx

Π̂µ̂′′,0.93
,

which, as µ̂ ∈ S \ {µ̂′}, gives us that:

Ĉ P
µ̂′ ∩C apx

Π̂µ̂,0.93
=;,

which using Definition 3.8 gives that:〈
fx ,Π̂µ̂

〉
apx

< 0.93
∥∥Π̂µ̂∥∥2

apx
. (3.224)

We define X ′ similarly as in point 1. Let π′ be the projection onto the span of {Πµ,Π̂µ̂}.

Moreover let:

X ′ :=
{

x ∈V : ‖π′ fx‖2 > 104

rmin

}
.

Similarly to the proof of (3.220) we get

|X ′| ≤O

(
ε

ϕ2

)
· rmin ≤O

(
ε

ϕ2

)
· n

k
(3.225)

Again similarly to the analysis of (3.208) we note that by Lemma 3.43 and the fact that spectral

dot product succeeds:

for every y ∈V \ X ′ we have

∣∣∣∣∣∣ 〈 fy ,Πµ〉
‖Πµ‖2 −

〈
fy ,Π̂µ̂

〉
apx∥∥Π̂µ̂∥∥2

apx

∣∣∣∣∣∣≤ 0.02 (3.226)
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Combining (3.226) and (3.224) we get that if x ∈V \ X ′ then

〈 fx ,Πµ〉
‖Πµ‖2 ≤

〈
fy ,Π̂µ̂

〉
apx∥∥Π̂µ̂∥∥2

apx

+0.02

< 0.93+0.02

< 0.96

which also means that x 6∈CΠµ,0.96. This means that:

(V (T1,...,Ti−1) \V (T1,...,Ti ))∩CΠµ,0.96 ⊆ X ′ (3.227)

But by Lemma 3.31:

|{x ∈C :
〈
Π fx ,Πµ

〉< 0.96‖Πµ‖2
2}| ≤O

(
ε

ϕ2

)
· |C | (3.228)

Combining (3.227), (3.225) and (3.228) we get that:

|C ∩ (V (T1,...,Ti−1) \V (T1,...,Ti ))| ≤O

(
ε

ϕ2

)
|C |+O

(
ε

ϕ2

)
· n

k
≤O

(
ε

ϕ2

)
|C |. (3.229)

By assumption that |V (T1,...,Ti−1) ∩C | ≥
(
1−Υ · i · ε

ϕ2

)
|C | and (3.229) we get that:

|V (T1,...,Ti ) ∩C | ≥
(
1−Υ · (i +1) · ε

ϕ2

)
|C |,

provided thatΥ is bigger than the constant hidden under O notation in (3.229).

The following Lemma is a generalization of Theorem 3.7 that uses Lemma 3.45 as an in-

ductive step to show that if COMPUTEORDEREDPARTITION is called with µ̂’s that are good

approximations to µ’s then it returns an ordered partition that induces a good collection of

clusters.

Lemma 3.46. Let k ≥ 2, ϕ ∈ (0,1) and ε
ϕ2 · log(k) be smaller than a sufficiently small constant.

Let G = (V ,E ) be a d-regular graph that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck . Then conditioned

on the success of the spectral dot product oracle the following conditions hold.

If COMPUTEORDEREDPARTITION(G , µ̂1, µ̂2, . . . , µ̂k , s1, s2) is called with (µ̂1, . . . , µ̂k ) such that for

every i ∈ [k] we have ‖µ̂i −µi‖2 ≤ 10−12 · ε
ϕ2·k2 ‖µi‖2 then COMPUTEORDEREDPARTITION returns

(TRUE, (T1, . . . ,Tb)) such that (T1, . . . ,Tb) induces a collection of clusters {Ĉµ̂1 , . . . ,Ĉµ̂k } such that
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there exists a permutation π on k elements such that for all i ∈ [k]:

∣∣Ĉµ̂i 4Cπ(i )
∣∣≤O

(
ε

ϕ3 · log(k)

)
|Cπ(i )|

and

φ(Ĉµ̂i ) ≤O

(
ε

ϕ2 · log(k)

)
.

Proof. Note that for i = 0 in the for loop in line 2 of COMPUTEORDEREDPARTITION S and

clusters {C1, . . . ,Ck } trivially satisfy assumptions of Lemma 3.45. So using Lemma 3.45 and

induction we get that for every i ∈ [0..dlog(k)e] at the beginning of the i -th iteration:

• |S| ≤ k/2i ,

• for every µ̂ ∈ S with corresponding µ and corresponding cluster C we have |V (T1,...,Ti−1) ∩
C | ≥

(
1−Υ · i · ε

ϕ2

)
|C | (whereΥ is the constant from the statement of Lemma 3.45).

In particular this means that after O(log(k)) iterations set S becomes empty. This also means

that COMPUTEORDEREDPARTITION returns in line 10, so it returns TRUE and the ordered

partial partition (T1, . . . ,Tb) is in fact an ordered partition of {µ̂1, . . . , µ̂k }.

Note that by definition (see Definition 3.10) all the approximate clusters {Ĉµ̂1 , . . . ,Ĉµ̂k } are

pairwise disjoint and moreover for every constructed cluster Ĉ ∈ {Ĉµ̂1 , . . . ,Ĉµ̂k } we have:

φ(Ĉ ) ≤O

(
ε

ϕ2 · log(k)

)
,

as it passed the test in line 6 of COMPUTEORDEREDPARTITION. So by Lemma 3.16 it means

that there exists a permutation π on k elements such that for all i ∈ [k]:

∣∣Ĉµ̂i 4Cπ(i )
∣∣≤O

(
ε

ϕ3 · log(k)

)
|Cπ(i )|.

Recall Remark 3.9 for why the proof follows this framework of first arguing about outer-

conductance and only after that, using Lemma 3.16, reasoning about symmetric difference.

Now we present the final Theorem of this section which shows that FINDCENTERS with high

probability returns an ordered partition that induces a good collection of clusters. The proof

is a careful union bound of error probabilities.

Theorem 3.8. Let k ≥ 2, ϕ ∈ (0,1), ε log(k)
ϕ3 be smaller than a sufficiently small constant. Let

G = (V ,E) be a d-regular graph that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck . Then Algorithm 10

with probability 1−η returns an ordered partition (T1, . . . ,Tb) such that (T1, . . . ,Tb) induces a
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collection of clusters {Ĉµ̂1 , . . . ,Ĉµ̂k } such that there exists a permutation π on k elements such

that for all i ∈ [k]: ∣∣Ĉµ̂i 4Cπ(i )
∣∣≤O

(
ε

ϕ3 · log(k)

)
|Cπ(i )|

and

φ(Ĉµ̂i ) ≤O

(
ε

ϕ2 · log(k)

)
.

Moreover

• Algorithm 10 ( FINDCENTERS) runs in time

Õϕ

(
log2(1/η) ·2O( ϕ

2

ε
·k4 log2(k)) ·n1/2+O(ε/ϕ2)

)
,

and uses Õϕ

((
k
ε

)O(1) ·n1/2+O(ε/ϕ2)
)

space,

• Algorithm 7 ( HYPERPLANEPARTITIONING) called with (T1, . . . ,Tb) as a parameter runs in

time Õϕ

((
k
ε

)O(1) ·n1/2+O(ε/ϕ2)
)

per one evaluation.

Proof. We first prove the runtime guarantee and then we show correctness.

Runtime.The first step of FINDCENTERS (Algorithm 10) is to call INITIALIZEORACLE(G ,1/2) (Al-

gorithm 4) which by Lemma 3.43 runs in time Õϕ

((
k
ε

)O(1) ·n1/2+O(ε/ϕ2)
)

and uses Õϕ

((
k
ε

)O(1) ·n1/2+O(ε/ϕ2)
)

space (It’s the preprocessing time in the statement of Lemma 3.43). Then Algorithm 10 repeats

the following procedure O(log(1/η)) times.

It tests all partitions of a set of sampled vertices of size s =O(ϕ
2

ε ·k4 log(k)) into k sets. There is

at most k s = 2O( ϕ
2

ε
·k4 log2(k)) of them. Notice that for each partition each µ̂i is defined as

µ̂i := 1

|Pi |
∑

x∈Pi

fx ,

so as the number of sampled points is O(ϕ
2

ε ·k4 log(k)) then each µ̂i is an average of at most

O(ϕ
2

ε ·k4 log(k)) points. To analyze the runtime notice that:

• For each partition Algorithm 10 runs Algorithm 8,

• Algorithm 8 invokes Algorithm 11 (OUTERCONDUCTANCE) kO(1) times,

• OUTERCONDUCTANCE takes, by Lemma 3.44, (s1+s2)· 1
ϕ2 ·s4·

(
ϕ2

ε k
)O(1)·n1/2+O(ε/ϕ2) log2(n)

time,

• s1 =Θ(ϕ
2

ε k5 log2(k) log(1/η)) and s2 =Θ(ϕ
4

ε2 k5 log2(k) log(1/η)).
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So in total the runtime of FINDCENTERS is

1

ϕ2

(
ϕ2

ε
k

)O(1)

n1/2+O(ε/ϕ2) log3(n)+log(1/η)2O( ϕ
2

ε
·k4 log2(k))kO(1)(s1+s2)

s4

ϕ2

(
ϕ2

ε
k

)O(1)

n1/2+O(ε/ϕ2) log2(n)

Substituting for s, s1, s2 it simplifies to:

1

ϕ2 log2(1/η) ·2O( ϕ
2

ε
·k4 log2(k)) ·n1/2+O(ε/ϕ2) log3(n)

Runtime of Algorithm 7: Each µ̂i is an average of at most s points, where s ≤O(ϕ
2

ε ·k4 log(k)),

Algorithm 7 performs kO(1) tests
〈

fx ,Π̂(µ̂)
〉

apx
≥ 0.93||Π̂(µ̂)||2 and by Lemma 3.43 each test

takes Õϕ

(
s4 ·

(
k
ε

)O(1) ·n1/2+O(ε/ϕ2)
)

time. So in total the runtime of one invokation of CLASSIFY-

BYHYPERPLANEPARTIONING(·, (T1, . . . ,Tb)) is in:

Õϕ

((
k

ε

)O(1)

·n1/2+O(ε/ϕ2)

)

Error of OUTERCONDUCTANCE algorithm.Now we analyze the error probabilities of OUTER-

CONDUCTANCE across all the iterations of our algorithm. Note that we run the test for each

cluster for each partition and for each of the log
(
2/η

)
iterations of the algorithm. So in total

we run OUTERCONDUCTANCE test 2O( ϕ
2

ε
·k4 log(k)2)k log

(
2
η

)
times. By setting s1 in

O

(
k

(
log(4/η)+ log(k log(1/η))+ ϕ2

ε
·k4 log2(k)

))
≤O

(
ϕ2

ε
·k5 · log2(k) · log(1/η)

)
,

and s2 in:

O

(
ϕ2 ·k

ε

(
log(4/η)+ log(k log(1/η))+ ϕ2

ε
·k4 log2(k)

))
≤O

(
ϕ4

ε2 ·k5 · log2(k) · log(1/η)

)
,

we get by Lemma 3.44 that the probability that the conclusion of Lemma 3.44 is not satisfied

in a single run is bounded by

η

100 ·2
Ω

(
ϕ2

ε
·k4 log2(k)

)
k log

(
1
η

)
So by union bound over the clusters, the partitions and the iterations we conclude that with

probability 1− η
50 the algorithm for every invokation returns a value satisfying the statement

of Lemma 3.44. Moreover observe that this also means that Econductance is true as conclusions

of Lemma 3.44 are stronger than the property required for event Econductance to be true.
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W.h.p. every returned ordered partition defines a good clustering.By the lower bound on

the error probability of OUTERCONDUCTANCE algorithm above we get that with probability

1− η
50 every cluster Ĉ that passes the test from line 6 of Algorithm 8 has to satisfy:

φ(Ĉ ) ≤O

(
ε

ϕ2 · log(k)

)
,

as for Ĉ to pass the test the value q returned by OUTERCONDUCTANCE has to satisfy q ≤
O

(
ε
ϕ2 · log(k)

)
but by Lemma 3.44 we have q ≥ 1

2φ
(
Ĉ (T1,...,Tb )
µ̂

)
−ε/ϕ2. Now by Lemma 3.16 this

implies that if Algorithm 10 returns an ordered partition, then with probability 1− η
50 the

collection of clusters it defines satisfies the statement of the Theorem.

Each iteration succeeds with constant probability.In the remaining part of the proof we will

show that a clustering is accepted with probability 1− η
2 . First note that from the paragraph

Error of OUTERCONDUCTANCE algorithm we know that Econductance holds with probability

1− η
50 . Next we show that in each iteration of the outermost for loop of Algorithm 10 it succeeds

with probability 1/2 (conditioned on Econductance). By amplification this will imply our result.

Now consider one iteration. Let S be the set of sampled vertices. Observe that there exists a

partition of S = P1∪P2∪·· ·∪Pk such that for all i ∈ [k], Pi = S∩Ci . We set s = 1015 · ϕ2

ε ·k4 log(k).

Therefore by Lemma 3.40 with probability at least 9
10 we have for all i ∈ [k]

|S ∩Ci | ≥ 0.9 · s

k
· min

p,q∈[k]

|Cp |
|Cq |

≥ 9 ·1014 · ϕ
2

ε
·k3 log(k).

Let δ= k−50 and ζ= 10−6pε
ϕ·k . Therefore, we have

|S ∩Ci | ≥ 9 ·1014 · ϕ
2

ε
·k3 log(k) ≥ c ·

(
k · log

(
k

δ

)
·
(

1

δ

)(80·ε/ϕ2)

·
(

1

ζ

)2
)1/(1−(80·ε/ϕ2))

where c is the constant from Lemma 3.39. The last inequality holds since ε
ϕ2 log(k) is smaller

than a sufficiently small constant, hence,
(
ϕ2

ε

)(ε/ϕ2) ∈ O(1), and k(ε/ϕ2) ∈ O(1). Therefore by

Lemma 3.39 for all i ∈ [k] with probability at least 1−k−50 we have:

‖µ̂i −µi‖2 ≤ ζ · ‖µi‖2 = 10−6pε
ϕ ·k

‖µi‖2.

Hence, by union bound over all sets Pi , with probability at least 9
10 − k · k−50 ≥ 7

8 we get

‖µ̂i −µi‖2 ≤ 10−6pε
ϕ·k ‖µi‖2 for all i ∈ [k] simultaneously.

Now by Theorem 3.2 and the union bound we get that spectral dot product oracle succeeds

with probability 1−n−48. So by Lemma 3.46 and the union bound FINDCENTERS with probabil-

ity 7
8 −n−48 ≥ 1

2 returns an ordered partition (T1, . . . ,Tb) which induces a collection of clusters
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{Ĉµ̂1 , . . . ,Ĉµ̂k } such that there exists a permutation π on k elements such that for all i ∈ [k]:

∣∣Ĉµ̂i 4Cπ(i )
∣∣≤O

(
ε

ϕ3 · log(k)

)
|Cπ(i )|

and

φ(Ĉµ̂i ) ≤O

(
ε

ϕ2 · log(k)

)
.

3.6.6 LCA

Now we prove the main result of the paper. Recall that a clustering oracle (Definition 3.4) is

a randomized algorithm that when given query access to a d-regular graph G = (V ,E) that

admits (k,ϕ,ε)-clustering C1, . . . ,Ck it provides consistent access to a partition Ĉ1, . . . ,Ĉk such

that there exists a permutation π on k elements such that for all i ∈ [k]:

∣∣Ĉµ̂i 4Cπ(i )
∣∣≤O

(
ε

ϕ3 · log(k)

)
|Cπ(i )|. (3.230)

Consistency means that a vertex x ∈V is classified in the same way every time it is queried.

First we will show a Proposition (Proposition 3.3) that shows that it is enough to design

an algorithm that returns a collection of disjoint clusters (not necessarily a partition) that

satisfies (3.230) to get a clustering oracle. Using this Proposition as a reduction we then show

Theorem 3.3, which is the main Theorem of the paper.

Proposition 3.3. If there exists a randomized algorithm O that when given query access to a

d-regular graph G = (V ,E ) that admits a (k,ϕ,ε)-clustering C1, . . . ,Ck , the algorithm O provides

consistent query access to a collection of disjoint clusters C = (Ĉ1, . . . ,Ĉk ) of V . The collection

C is determined solely by G and the algorithm’s random seed. Moreover, with probability at

least 9/10 over the random bits of O the collection C has the following property: for some

permutation π on k elements one has for every i ∈ [k]:

|Ci4Ĉπ(i )| ≤O

(
ε

ϕ3

)
|Ci |.

Then if clusters have equal sizes and ε·n
ϕ3·k log(k) is bigger than a constant then there exists an

algorithm O ′ that is a (k,ϕ,ε)-clustering oracle with the same running time and space up to

constant factors.

Proof. The idea is to assign the points outside
⋃

i∈[k] Ĉi randomly. That is to assign vertex

x ∈V , O ′ works exactly the same like O but if O left x unassigned then O ′ assigns x to a value

chosen from [k] uniformly at random.

Let R = V \
⋃

i∈[k] Ĉi and for every i ∈ [k] let Si ⊆ R be the set of vertices that were randomly
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assigned to Ĉi . By the fact that for every i ∈ [k] |Ci4Ĉπ(i )| ≤O
(
ε
ϕ3

)
|Ci | we get that there exists

a constant C such that:

|R| ≤C · ε
ϕ3 ·n. (3.231)

Now let i ∈ [k]. By the Chernoff bound we have that for every δ≥ 1:

P

[∣∣∣∣|Si |− |R|
k

∣∣∣∣≥ δ |R|
k

]
≤ e−δ

|R|
3·k (3.232)

Setting δ= C ·ε·n
ϕ3·|R| we get:

P

[∣∣∣∣|Si |− |R|
k

∣∣∣∣≥C · ε
ϕ3 · n

k

]
≤ e

− C ·ε·n
3·ϕ3 ·k (3.233)

Combining (3.231) and (3.233) and the assumption that ε·n
ϕ3·k log(k) is bigger than a constant we

get that

P

[
|Si | ≥ 2C · ε

ϕ3 · n

k

]
≤ 1

100 ·k

Using the union bound we get that with probability 9/10−k · 1
100·k ≥ 8/10 we have that for

every i ∈ [k] |Si | ≤ 2C · ε
ϕ3 · n

k . So finally with probability 8/10 for every i ∈ [k]:

|Ci4(Ĉπ(i ) ∪Sπ(i ))| ≤ |Ci4Ĉπ(i )|+ |Sπ(i )|

≤O

(
ε

ϕ3

)
· |Ci |+O

(
ε

ϕ3

)
· n

k
By definition of O

≤O

(
ε

ϕ3

)
· |Ci | As

maxp∈[k] |Cp |
minp∈[k] |Cp |

=O(1),

which means that O ′ is a (k,ϕ,ε)-clustering oracle.

Theorem 3.3. For every integer k ≥ 2, every ϕ ∈ (0,1), every ε¿ ϕ3

logk , every δ ∈ (0,1/2] there

exists a (k,ϕ,ε)-clustering oracle that:

• has Õϕ

(
2

O
(
ϕ2

ε
k4 log2(k)

)
·n1−δ+O(ε/ϕ2)

)
preprocessing time,

• has Õϕ

((
k
ε

)O(1) ·nδ+O(ε/ϕ2)
)

query time,

• uses Õϕ

((
k
ε

)O(1) ·n1−δ+O(ε/ϕ2)
)

space,

• uses Õϕ

((
k
ε

)O(1) ·nO(ε/ϕ2)
)

random bits,

where Oϕ suppresses dependence on ϕ and Õ hides all polylog(n) factors.
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Proof. By Theorem 3.8 we get that there exists an algorithm that runs in Õϕ

(
2O( ϕ

2

ε
·k4 log2(k)) ·n1/2+O(ε/ϕ2)

)
time and that with probability 9/10 returns an ordered partition (T1, . . . ,Tb) of {µ̂1, . . . , µ̂k } such

that the induced collection of clusters {Ĉµ̂1 , . . . ,Ĉµ̂k } satisfies the following. There exists a

permutation π on k elements such that for every i ∈ [1, . . . ,k]:

|Cπ(i )4Ĉµ̂i | ≤O

(
ε

ϕ3 · log(k)

)
|Cπ(i )|

That algorithm is the preprocessing step of oracle O . Then for each query xi ∈ V we run

Algorithm 7 which outputs µ̂ j such that xi ∈ Ĉµ̂ j (Note that xi might not belong to any of

Ĉµ̂i , see Proposition 3.3 for how to deal with that). Algorithm 7 by Theorem 3.8 runs in

Õϕ

((
k
ε

)O(1) ·n1/2+O(ε/ϕ2)
)

time.

Runtime tradeoff.Notice however that by Theorem 3.2 we can achieve a tradeoff in the prepro-

cessing/query runtime and achieve Õϕ

(
2O( ϕ

2

ε
·k4 log2(k)) ·n1−δ+O(ε/ϕ2)

)
for preprocessing time

and Õϕ(
(

k
ε

)O(1) ·n1−δ+O(ε/ϕ2)) space and Õϕ

((
k
ε

)O(1) ·nδ+O(ε/ϕ2)
)

for query time.

Random bits.The only thing left to prove is to show that we can implement these two algo-

rithms in LCA model using few random bits. There are couple of places in our Algorithms

where we use randomness.

First in INITIALIZEORACLE (Algorithm 4) we sample Θ̃(nO(ε/ϕ2) ·kO(1)) random points. For that

we need Θ̃(nO(ε/ϕ2) ·kO(1)) random bits.

For generating random walks in Algorithm 4 and Algorithm 5 we need the following number of

random bits. Notice that in all the proofs (see Lemma 3.26) we only need 4-wise independence

of random walks. That means that we can implement generating these random walks using

a hash function h(x) that for vertex x ∈ V generates O(log(d) · 1
ϕ2 · log(n)) bit string that can

be interpreted as encoding a random walk of length O( 1
ϕ2 · log(n)) (remember that graphs we

consider are d-regular so log(d) bits is enough to encode a neighbour). It’s enough for the hash

function to be 4-wise independent so it can be implemented using O( 1
ϕ2 ·log(d)·log(n)) = Õϕ(1)

random bits.

The partitioning scheme (see Algorithm 7) works in O(log(k)) adaptive stages. The stages are

adaptive, that is why we use fresh randomness in every stage. For a single stage we observe

that in the proof of Lemma 3.44 we only use Chernoff type bounds. So by [SSS93] we don’t

need fully independent random variables. In our case it’s enough to have O(log(n))-wise

independent random variables which can be implemented as hash functions using O(log2(n))

random bits. This means that in total we need O(log(k) log2(n)) = Õ(1) random bits for this.

For sampling set S in Algorithm 10 we can use O(ϕ
2

ε ·k4 log(k) · log(n)) = Õϕ( 1
ε ·kO(1)) fresh
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random bits.

So finally the total number of random bits we need is in:

Õϕ

(
nO(ε/ϕ2) ·kO(1) +1+1+ 1

ε
·kO(1)

)
≤ Õϕ

(
1

ε
·nO(ε/ϕ2) ·kO(1)

)

Remark 3.11. Note that threshold sets Cy,θ (recall Definition 3.8) are well defined in LCA

model because for all x, y ∈V whenever we compute
〈

fx , fy
〉

apx
the result is the same as we use

consistent randomness (see Definition 3.4).
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4 Conclusion

In this thesis, we have introduced new spectral techniques for understanding the cluster

structure of graphs in sublinear time. In Chapter 2, we have developed an optimal sublinear

algorithm for testing k-clusterability in the property testing framework. Next, in Chapter 3,

we have extended our testing result to an efficient clustering algorithm in the LCA model that

misclassifies a small fraction of vertices in every cluster. These results have resolved important

graph clustering problems while, at the same time, opening several directions for further

progress.

An interesting open problem would be to go beyond flat-clustering regime by generalizing

the spectral clustering techniques and applying them to the hierarchical clustering problems.

Hierarchical clustering is the task of partitioning vertices of a graph into nested clusters. Das-

gupta introduced an objective function for formulating hierarchical clustering and initiated

a line of work developing algorithms that optimize the cost of the hierarchical tree solution

[Das16]. This leads to a natural open problem: Given a k-clusterable graph, can we design a

local computation algorithm that recovers a hierarchical structure of the graph in sublinear

time?

Another research direction is to generalize the spectral clustering results to more robust set-

tings in which the input graph might contain noisy structures such as noisy clusters [Pen20], or

the graph might be obtained by semi-random models [MMV12]. The existence of noisy struc-

tures is closer to real-world applications and modern data analysis require new techniques to

quickly detect clusters in the noisy datasets.

Designing robust clustering algorithms, prompt us to address clustering problems in dynamic

settings. In most applications, the graph is changing over time and the communities evolve

dynamically (for example in social networks, or web graph). We would like to maintain a

reasonable clustering solution of the graph at all times. The goal is to design a framework that

maintains a good clustering of the graph with fast update time and query time. In Chapter 3,

we have designed a sublinear algorithm for graph clustering when the external conductance

of clusters i.e., ε is bounded by O(1/logk). This result leads to a fully dynamic algorithm for
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graph clustering with n1/2+O(ε) update and recovery time. Can we decrease the update and

recovery time to no(1) while respecting the external conductance assumption?

Finally, another open problem is to develop differentially-private sublinear algorithms for

spectral clustering in which the goal is clustering the vertices of a graph while preserving the

privacy of individuals in the dataset.
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A Supplementary Materials for Chapter
1

A.1 Proof Lemma 2.4

Proof of Lemma 2.4. For the first part, let V ⊥ matrix whose columns complete the columns

of V to an orthonormal basis. Then V V T projects a vector onto the column space of V , and

(V ⊥)(V ⊥)T projects onto the columns space of V ⊥, which is also the orthogonal complement

of the column space of V . Therefore, V V T + (V ⊥)(V ⊥)T = Im×m . Thus,

µh(AT A) ≥µh(AT V V T A)+µmin(AT V ⊥(V ⊥)T A) ≥µh(AT V V T A)

where the first inequality follows from Weyl’s inequality, and the second one holds because

AT V ⊥(V ⊥)T A is positive semidefinite.

The second part follows from the first part by observing that µh(U T AT AU ) = µh(AUU T AT )

and µh(AT A) =µh(A AT ).

A.2 Proof of Lemmas from Section 2.3.2

Lemma 2.19 (restated). Let G = (VG ,EG ) be a graph. Let 0 < σ ≤ 1 t > 0, µerr > 0, k be an

integer, and let S be a multiset of s vertices, all whose elements are (σ, t )-good. Let

R = max

(
100s2σ1/2

µerr
,

200s4σ3/2

µ2
err

)
.

For each a ∈ S and each b ∈ VG , let qa(b) and q′
a(b) be random variables which denote the

fraction out of the R random walks starting from a, which end in b. Let Q and Q ′ be matrices

whose columns are (D− 1
2 qa)a∈S and (D− 1

2 q′
a)a∈S respectively. Let G = 1

2

(
QT Q ′+Q ′T Q

)
. Then

with probability at least 49/50, |µk+1(G )−µk+1((D− 1
2 M t S)T (D− 1

2 M t S))| ≤µerr.

Proof. Let X i
a,r be a random variable which is 1p

deg(i )
if the r th random walk starting from a,
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ends at vertex i , and 0 otherwise. Thus, E[X i
a,r ] = pt

a (i )p
deg(i )

. For any two vertices a,b ∈ S, observe

that the entry Ga,b is a random variable given by

Ga,b = 1

R2

∑
i∈VG

(
R∑

r1=1
X i

a,r1
)(

R∑
r2=1

X i
b,r2

).

Thus,

E[Ga,b] = 1

R2

∑
i∈VG

(
R∑

r1=1
E[X i

a,r1
])(

R∑
r2=1

E[X i
b,r2

])

= ∑
i∈VG

pt
a(i )√

deg(i )
· pt

b(i )√
deg(i )

= (D− 1
2 M t1a)T (D− 1

2 M t1b). (A.1)

We know that Var(Ga,b) = E[G 2
a,b]−E[Ga,b]2. Let us first compute E[G 2

a,b].

E[G 2
a,b] = E

[
1

R4

∑
i∈VG

∑
j∈VG

R∑
r1=1

R∑
r2=1

R∑
r ′

1=1

R∑
r ′

2=1

X i
a,r1

X i
b,r2

X j
a,r ′

1
X j

b,r ′
2

]

= 1

R4

∑
i∈VG

∑
j∈VG

R∑
r1=1

R∑
r2=1

R∑
r ′

1=1

R∑
r ′

2=1

E[X i
a,r1

X i
b,r2

X j
a,r ′

1
X j

b,r ′
2
]

To compute E[X i
a,r1

X i
b,r2

X j
a,r ′

1
X j

b,r ′
2
], we need to consider the following cases.

1. i 6= j : E[X i
a,r1

X i
b,r2

X j
a,r ′

1
X j

b,r ′
2
] ≤ pt

a (i )p
deg(i )

· pt
b (i )p

deg(i )
· pt

a ( j )p
deg( j )

· pt
b ( j )p

deg( j )
. (This is an equality if

r1 6= r ′
1 and r2 6= r ′

2. Otherwise, the expectation is zero.)

2. i = j , r1 = r ′
1, r2 = r ′

2: E[X i
a,r1

X i
b,r2

X j
a,r ′

1
X j

b,r ′
2
] = pt

a (i )p
deg(i )

· pt
b (i )p

deg(i )
· 1p

deg(i )
· 1p

deg(i )
.

3. i = j , r1 = r ′
1, r2 6= r ′

2: E[X i
a,r1

X i
b,r2

X j
a,r ′

1
X j

b,r ′
2
] = pt

a (i )p
deg(i )

· pt
b (i )p

deg(i )
· 1p

deg(i )
· pt

b (i )p
deg(i )

.

4. i = j , r1 6= r ′
1, r2 = r ′

2: E[X i
a,r1

X i
b,r2

X j
a,r ′

1
X j

b,r ′
2
] = pt

a (i )p
deg(i )

· pt
b (i )p

deg(i )
· pt

a (i )p
deg(i )

· 1p
deg(i )

.

5. i = j , r1 6= r ′
1, r2 6= r ′

2: E[X i
a,r1

X i
b,r2

X j
a,r ′

1
X j

b,r ′
2
] = pt

a (i )p
deg(i )

· pt
b (i )p

deg(i )
· pt

a (i )p
deg(i )

· pt
b (i )p

deg(i )
.
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Thus we have,

E[Z 2
a,b] = 1

R4

∑
i∈VG

∑
j∈VG

R∑
r1=1

R∑
r2=1

R∑
r ′

1=1

R∑
r ′

2=1

E[X i
a,r1

X i
b,r2

X j
a,r ′

1
X j

b,r ′
2
]

≤ ∑
i∈VG

∑
j∈VG \{i }

pt
a(i ) ·pt

a( j ) ·pt
b(i ) ·pt

b( j )

deg(i ) ·deg( j )
+ ∑

i∈VG

pt
a(i )2 ·pt

b(i )2

deg(i )2

+ 1

R2

∑
i∈VG

pt
a(i ) ·pt

b(i )

deg(i )2 + 1

R

∑
i∈VG

pt
a(i ) ·pt

b(i )2

deg(i )2 + 1

R

∑
i∈VG

pt
a(i )2 ·pt

b(i )

deg(i )2

= ∑
i , j∈VG

pt
a(i ) ·pt

a( j ) ·pt
b(i ) ·pt

b( j )

deg(i ) ·deg( j )
+ 1

R2

∑
i∈VG

pt
a(i ) ·pt

b(i )

deg(i )2

+ 1

R

∑
i∈VG

pt
a(i ) ·pt

b(i ) · (pt
a(i )+pt

b(i ))

deg(i )2 .

Therefore we get,

Var(Ga,b) = E[G 2
a,b]−E[Ga,b]2

≤ ∑
i , j∈VG

pt
a(i ) ·pt

a( j ) ·pt
b(i ) ·pt

b( j )

deg(i ) ·deg( j )
+ 1

R2

∑
i∈VG

pt
a(i ) ·pt

b(i )

deg(i )2

+ 1

R

∑
i∈VG

pt
a(i ) ·pt

b(i ) · (pt
a(i )+pt

b(i ))

deg(i )2 −
( ∑

i∈VG

pt
a(i ) ·pt

b(i )

deg(i )

)2

= 1

R2

∑
i∈VG

pt
a(i ) ·pt

b(i )

deg(i )2 + 1

R

∑
i∈VG

pt
a(i )2 ·pt

b(i )

deg(i )2 + 1

R

∑
i∈VG

pt
a(i ) ·pt

b(i )2

deg(i )2

≤ 1

R2

∑
i∈VG

pt
a(i )√

deg(i )
· pt

b(i )√
deg(i )

+ 1

R

∑
i∈VG

(
pt

a(i )√
deg(i )

)2

· pt
b(i )√

deg(i )
+ 1

R

∑
i∈VG

pt
a(i )√

deg(i )
·
(

pt
b(i )√

deg(i )

)2

≤ 1

R2 ||D− 1
2 pt

a ||2 · ||D− 1
2 pt

b ||2 +
1

R
||D− 1

2 pt
a ||24 · ||D− 1

2 pt
b ||2 +

1

R
||D− 1

2 pt
a ||2 · ||D− 1

2 pt
b ||24

≤ 1

R2 ||D− 1
2 pt

a ||2 · ||D− 1
2 pt

b ||2 +
1

R
||D− 1

2 pt
a ||22 · ||D− 1

2 pt
b ||2 +

1

R
||D− 1

2 pt
a ||2 · ||D− 1

2 pt
b ||22
(A.2)

Notice that all vertices in S are (σ, t )-good, therefore we get,

Var(Ga,b) ≤ σ

R2 + 2σ3/2

R
.
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Then by Chebyshev’s inequality, we get,

Pr
[
|Ga,b −E[Ga,b]| > µerr

s

]
< Var[Ga,b]

(µerr

s )2
≤ s2

µ2
err

(
σ

R2 + 2σ3/2

R

)
≤ 1

50s2 ,

where the last inequality follows by our choice of R. By the union bound, with probability at

least 49/50, we have for all a,b ∈ S,

|Ga,b − ((D− 1
2 M t )T (D− 1

2 M t ))a,b | = |Za,b −E[Za,b]| ≤ µerr

s
,

which implies ‖G − (D− 1
2 M t S)T (D− 1

2 M t S)‖F ≤µerr. This, in turn, implies

|µk+1(G )−µk+1((D− 1
2 M t S)T (D− 1

2 M t S))| ≤µerr,

due to Weyl’s inequality and the fact that the Frobenius norm of a matrix bounds its maximum

eigenvalue from above.

Lemma 2.20 (restated). For all 0 < α < 1, and all G = (VG ,EG ) which is (k,ϕin)-clusterable,

there exists V ′
G ⊆VG with vol(V ′

G ) ≥ (1−α)vol(VG ) such that for any t ≥ 2ln(vol(VG ))
ϕ2

in
, every u ∈V ′

G

is
(

2k
α·vol(VG ) , t

)
-good.

Proof. Recall that we say that vertex u is (σ, t )-good if ‖D− 1
2 pt

u‖2
2 ≤σ. We can write D− 1

2 pt
u as

D− 1
2 pt

u = D− 1
2 M t1u = D− 1

2 (D
1
2 M

t
D− 1

2 )1u = M
t
D− 1

21u

Recall from section 3.2 that 1− λ1
2 ≥ ·· · ≥ 1− λn

2 , are eigenvalues of M , and v1, . . . , vn are

the corresponding orthonormal eigenvectors. We write D− 1
21u in the eigenbasis of M as

D− 1
21u =∑n

i=1αi (u) · vi where αi (u) = (D− 1
21u)T vi = vi (u)p

deg(u)
. Therefore we get,

||D− 1
2 pt

u ||22 = ||M t
D− 1

21u ||22
=

n∑
i=1

αi (u)2
(
1− λi

2

)2t

=
k∑

i=1
αi (u)2

(
1− λi

2

)2t

+
n∑

i=k+1
αi (u)2

(
1− λi

2

)2t

≤
k∑

i=1
αi (u)2 +

(
1− λk+1

2

)2t n∑
i=k+1

αi (u)2

≤
k∑

i=1
αi (u)2 +

(
1− ϕ2

in

4

)2t

.

The last inequality follows from Lemma 3.1, and the fact that
∑n

i=k+1αi (u)2 ≤ ||vi ||22 ≤ 1. We

now bound h(u) :=∑k
i=1αi (u)2. Let D denote the degree distribution of G (i.e., D(v) = deg(v)

vol(G) ).
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Observe that

ED [h(u)] =
∑

u∈VG

deg(u)

vol(VG )
·
(

k∑
i=1

αi (u)2

)
= ∑

u∈VG

deg(u)

vol(VG )
·
(

k∑
i=1

vi (u)2

deg(u)

)

= 1

vol(VG )

k∑
i=1

∑
u∈VG

vi (u)2 = 1

vol(VG )

k∑
i=1

||vi ||22 =
k

vol(VG )

Thus by Markov’s inequality there exists a set V ′
G ⊆VG with vol(V ′

G ) ≥ (1−α)vol(VG ) such that

for any u ∈V ′
G ,

h(u) ≤ 1

α
· k

vol(VG )
.

Thus if t ≥ 2ln(vol(VG ))
ϕ2

in
for any u ∈V ′

G we have

||D− 1
2 pt

u ||22 ≤
k

α ·vol(VG )
+

(
1− ϕ2

in

4

)2t

≤ 2k

α ·vol(VG )
,

therefore every u ∈V ′
G is

(
2k

α·vol(VG ) , t
)
-good.

Lemma 2.18 (restated). Let G = (VG ,EG ). Let a ∈ VG , σ > 0, 0 < δ < 1, and R ≥ 16
p

vol(G)
δ . Let

t ≥ 1, and pt
a be the probability distribution of the endpoints of a t-step random walk starting

from a. There exists an algorithm, denoted by `2
2-norm tester(G , a,σ,R), that outputs accept if

‖D− 1
2 pt

a‖2
2 ≤ σ

4 , and outputs reject if ‖D− 1
2 pt

a‖2
2 >σ, with probability at least 1−δ. The running

time of the tester is O(R · t ).

Proof. The description of the algorithm `2
2-norm tester(G , a,σ,r ) is simple:

1. Run 2R random walks of length t starting from a.

2. Let X i
a,r be a random variable which is 1p

deg(i )
if the r th random walk starting from a,

ends at vertex i , and 0 otherwise.

3. Let Z be a random variable given by Z = 1
R2

∑
i∈VG

(
∑R

r1=1 X i
a,r1

)(
∑2R

r2=R+1 X i
a,r2

).

4. Reject if and only if ‖D− 1
2 pt

a‖2
2 > σ

2 .

By equation A.1, and inequality A.2, in the proof of Lemma 2.19, we have E[Z ] =
‖D− 1

2 pt
a‖2

2, and

Var(Z ) ≤ 1

R2 ||D− 1
2 pt

a ||2 · ||D− 1
2 pt

a ||2 +
1

R
||D− 1

2 pt
a ||22 · ||D− 1

2 pt
a ||2 +

1

R
||D− 1

2 pt
a ||2 · ||D− 1

2 pt
a ||22

≤ 1

R2 ||D− 1
2 pt

a ||22 +
2

R
||D− 1

2 pt
a ||32

= 1

R2 E[Z ]+ 2

R
E[Z ]

3
2 .
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Then by Chebyshev’s inequality, we get,

Pr

[
|Z −E[Z ]| > E[Z ]

2

]
< Var[Z ]

(E[Z ]
2 )2

≤
4

R2 E[Z ]+ 8
R E[Z ]

3
2

E[Z ]2 = 4

R2 ·E[Z ]
+ 8

R ·E[Z ]
1
2

.

Now Observe that E[Z ] =∑n
i=1

(pt
a (i ))2

deg(i ) , is a convex funtion which is minimized when for

all 1 ≤ i 6= j ≤ n,
pt

a (i )
deg(i ) =

pt
a ( j )

deg(i ) = 1
vol(VG ) . Thus we have

E[Z ] ≥
n∑

i=1

(
pt

a(i )
)2

deg(i )
≥

n∑
i=1

(
deg(i )

vol(VG )

)2

deg(i )
= 1

vol(VG )
.

Hence, we get,

Pr

[
|Z −E[Z ]| > E[Z ]

2

]
≤ 4 ·vol(VG )

R2 + 8 ·vol(VG )
1
2

R
≤ δ.

The last inequality holds since R ≥ 16
p

vol(G)
δ .

Thus if ‖D− 1
2 pt

a‖2
2 ≤ σ

4 , then E[Z ] ≤ σ
4 , and hence, with probability at least 1−δ, we

have Z ≤ σ
4 + σ

8 < σ
2 . And if ‖D− 1

2 pt
a‖2

2 ≥σ, then with probability at least 1−δ, we have

Z ≥ E[Z ]
2 ≥ σ

2 . Therefore, the tester outputs the correct anwer with probability at least

1−δ.
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