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Résumé

Dans cette thèse, nous étudions l’équation de la chaleur stochastic (SHE)
sur des domaines bornés ou sur l’espace euclidien Rd. Nous confirmons l’in-
tuition que pour une suite de domaine croissant vers Rd, la suite de solutions
converge vers la solution sur Rd. Nous considérons à la fois les conditions aux
bords homogènes de Dirichlet et de Neumann.

Tout d’abord, nous étudions une version non linéaire de SHE en toute
dimension spatiale, avec un bruit corrélé et une condition initiale bornée.
Nous prouvons que les solutions de SHE sur une suite croissante de domaines
convergent exponentiellement vite vers la solution sur Rd. La convergence de
tous les p-moments est uniforme sur les ensembles compacts. Les bruits
admissibles sont les mêmes que ceux garantissant l’existence d’une solution
ponctuelle. Nous itérons une inégalité de Gronwall et utilisons des bornes
uniformes satisfaites par les solutions, qui seront étonnement valides pour
toute la suite croissante de domaines.

Puis, nous étudions SHE en dimension spatiale d ≥ 2, avec un bruit
blanc additif et une condition initiale bornée. Bien que les solutions doivent
être considérées au sens des distributions, nous montrons que leur difference
est régulière. L’ordre de régularité dépend uniquement de la régularité des
bords de la suite croissante de domaines. Nous prouvons que la transformée
de Fourier, au sens des distributions, de la solution de SHE sur Rd n’admet
aucune representation localement de carré intégrable. De ce fait, la con-
vergence est étudiée dans des versions locales des espaces de Sobolev. A
nouveau, une convergence exponentielle est obtenue.

Finalement, nous étudions le model de Anderson pour SHE avec un bruit
corrélé et une condition initiale donnée par une mesure. Nous obtenons une
expression spéciale pour le deuxième moment de la différence de la solution
sur Rd avec celle sur un domaine borné. La contribution de la donnée ini-
tiale est rendue explicite. Par exemple, la convergence exponentielle sur les
ensembles compacts est obtenue pour toute condition initiale de croissance
polynomiale. Plus intéressant encore, à partir d’une convergence désirée,
nous pouvons décider si la condition initiale est admissible.

Mots clés: equation de la chaleur stochastique non linéaire, erreurs de
localisation, convergence exponentielle, bruits corrélés, fonction de Green.
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Abstract

In this thesis, we study the stochastic heat equation (SHE) on bounded
domains and on the whole Euclidean space Rd.We confirm the intuition that
as the bounded domain increases to the whole space, both solutions become
arbitrarily close to one another. Both vanishing Dirichlet and Neumann
boundary conditions are considered.

We first study the nonlinear SHE in any space dimension with multiplica-
tive correlated noise and bounded initial data. We prove that the solutions
to SHE on an increasing sequence of domains converge exponentially fast
to the solution to SHE on Rd. Uniform convergence on compact set is ob-
tained for all p-moments. The conditions that need to be imposed on the
noise are the same as those required to ensure existence of a random field
solution. A Gronwall-type iteration argument is used together with uniform
bounds on the solutions, which are surprisingly valid for the entire sequence
of increasing domains.

We then study SHE in space dimension d ≥ 2 with additive white noise
and bounded initial data. Even though both solutions need to be considered
as distributions, their difference is proved to be smooth. If fact, the order of
smoothness depends only on the regularity of the boundary of the increasing
sequence of domains. We prove that the Fourier transform, in the sense of
distributions, of the solution to SHE on Rd do not have any locally mean-
square integrable representative. Therefore, convergence is studied in local
versions of Sobolev spaces. Again, exponential rate is obtained.

Finally, we study the Anderson model for SHE with correlated noise
and initial data given by a measure. We obtain a special expression for
the second moment of the difference of the solution on Rd with that on a
bounded domain. The contribution of the initial condition is made explicit.
For example, exponentially fast convergence on compact sets is obtained
for any initial condition with polynomial growth. More interestingly, from a
given convergence rate, we can decide whether some initial data is admissible.

Keywords: nonlinear stochastic heat equation, localization errors, expo-
nential rate of convergence, correlated noises, Green function, Anderson
model.
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Chapter 1

Introduction

Les équations différentielles de la propagation de la chaleur expri-
ment les conditions les plus générales, et ramènent les questions
physiques à des problèmes d’analyse pure.

Joseph Fourier, 1822

Two centuries ago, the French mathematician/physicist Joseph Fourier
introduced the heat diffusion equation (1.1) in his book “Théorie analytique
de la chaleur" (The Analytic Theory of Heat). That equation is a math-
ematical model of heat diffusion in any medium (solid, liquid or gas). It
enables to predict the temperature at any point of the medium at any fu-
ture time. To derive this equation, it requires to identify and balance all
the thermal energy transfers happening in the medium and apply a conser-
vation principle, i.e. Fourier’s law and conservation of energy. An explicit
derivation is presented in [1, Chapter 2]. Some of the tools used to solve
that equation are nowadays part of a branch of mathematics called Fourier
analysis. Among many applications, it is essential to process digital music
and medical imaging.

Equation (1.1) has been derived later in many other fields of physics. In
molecular diffusion, from Fick’s law and conservation of mass, it enables to
predict the concentration of salt in water. In electricity, from Ohm’s law
and conservation of charge, it enables to predict the electric potential in a
conductor. In hydrogeology, from Darcy’s law and conservation of mass, it
enables to predict the hydraulic head when studying the flow of water in
porous material. For a thorough treatment of influences and connections
with Fourier’s work, see [42].

In the 20th century, major contributions were made on the formaliza-
tion of random behaviours in the macroscopic scale. For example, Brownian
motion can model the position of a small particle (e.g. pollen) moving ran-
domly in an (a priori static) fluid. The movement of the particle is due
to unpredictable shocks with the ambiant molecules of the fluid. The first
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2 Chapter 1. Introduction

mathematical descriptions of Brownian motion were independently made by
Louis Bachelier in 1900 and Albert Einstein in 1905.

In 1944, the Japanese mathematician Kyoshi Itô introduced the theory of
stochastic integration, with respect to Brownian motion. It is a tool of choice
to model dynamical systems that are subject to random perturbations. For
example, it is used in finance to model the evolution in time of stock prices.
For a short survey describing the main achievements in probability in the
20th century, in relation with the work of Itô, see [47]. Stochastic partial
differential equations (SPDE) are among them.

Combining these ideas of diffusion and random perturbations naturally
leads to the study of the so-called stochastic heat equation:

∂u

∂t
(t, x) = ν

∂2u

∂x2
(t, x) + Ẇ (t, x). (1.1)

The function u(t, x) represents temperature at any time t ≥ 0 and at any
position x ∈ R. The above equation links together the following four things:

• The variation in time of the temperature through its first derivative,
i.e. the rate of change of the temperature, ∂u∂t (t, x);

• The variation in space of the temperature through its second derivative,
i.e. the curvature of the temperature profile, ∂

2u
∂x2

(t, x);

• The thermal diffusivity coefficient ν of the medium. The larger the
coefficient is, the faster heat propagates inside the medium.

• The (random) amount of thermal energy added to the system, i.e. the
internal heat source. More precisely, Ẇ (t, x) represents the (random)
rate per volume at which energy is generated in the medium, also
known as the power density.

Randomness is expressed through a space-time white noise Ẇ (t, x). Loosely
speaking, it has the following three properties: 1) On average, the thermal
energy added to the system is zero. 2) The thermal energy added to the
system has a gaussian law. 3) The thermal energy added within two disjoint
regions are independent. More precisely, the random thermal energy added
within any time-space region E =]t1, t2]×]x1, x2] follows a gaussian law with
mean zero and variance (t2 − t1)(x2 − x1), and it is independent of the
thermal energy added to any other time-space region F =]s1, s2]×]y1, y2] if
their intersection is empty, i.e. E ∩ F = ∅.

We shall relax some of the above assumptions. If the thermal energy
added to system does not have zero mean, then we could replace Ẇ (t, x) by
b(t, x) + Ẇ (t, x), for some function b(t, x) that would represent the average
power density at time t and position x. In fact, the power density added to
the system could well depend on the temperature of the system. For example,
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when the system is a conductor with electrical current flowing through it,
the power density released is given by

b(t, x, u) = re(t, x, u)ie(t, x)2,

where ie is the electrical flux and re is the specific electrical resistance of the
material. For small variation of temperature, re and hence b vary linearly
with respect to u. Assuming that the mean of power density added to the
system behave linearly with respect to the increase of temperature, it seems
natural to assume that the standard deviation of the noise may also vary
with temperature. For this reason, Ẇ (t, x) could be replaced by b(t, x, u) +
σ(t, x, u)Ẇ (t, x), where b and σ satisfy a linearity condition, see (2.6).

We shall consider a more general class of gaussian noises, those that are
white in time and correlated in space. Loosely speaking, for a fixed position
the behaviour of the noise at two different times are independent, whereas
for a fixed time the behaviour of the noise at two different positions may be
correlated. The letter Ṁ shall represent such a noise.

Finally, we shall consider a medium that could well be two, three, or
d-dimensional. In that case the second order space derivative inside (1.1)
should be replaced by the Laplace operator

∆u(t, x) :=
d∑
i=1

∂2u

∂x2
i

(t, x),

where x = (x1, . . . , xd) ∈ Rd.
The above considerations in mind, we shall study the following stochastic

heat equation:

∂u

∂t
(t, x) = ν∆u(t, x) + b(t, x, u(t, x)) + σ(t, x, u(t, x))Ṁ(t, x). (1.2)

In what follows, we shall define rigorously what a correlated noises is and
what it means to be a solution of (1.2).

1.1 Correlated noises and types of solutions

We start by recalling the solution to Equation (1.2), on the whole space
Rd with b ≡ 0 and σ ≡ 1, in the particular case where the power density
is given by a non-random bounded continuous function Φ(t, x). To analyse
the temperature of the medium at future time, we need to know at least the
initial (t=0) profile of temperature. Suppose that it is given by a bounded
continuous function f, i.e. u(0, x) = f(x). Then, it can be verified, see
Section A.1, that

u(t, x) =

∫ t

0

∫
Rd

Γν(t− s, x− y)Φ(s, y) dsdy+

∫
Rd

Γν(t, x− y)f(y) dy (1.3)
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solves indeed problem (1.2), where Γν is called the fundamental solution (to
the heat equation) and is given by (A.8).

For a bounded regular domain D, we also need to impose boundary
conditions, i.e. we need to specify how the medium interacts with the en-
vironment. Vanishing Dirichlet boundary conditions correspond to the case
in which the temperature at the boundary is fixed to zero degree. Vanishing
Neumann boundary conditions mean that the medium is perfectly insulated.
In both cases, it can be verified, see Section A.2, that the solution is given
by

uD(t, x) =

∫ t

0

∫
D
GD(t− s, x, y)Φ(s, y) dsdy +

∫
D
GD(t, x, y)f(y) dy.

The function GD, called the Green function, is different for Dirichlet or
Neumann boundary conditions. When the geometry of the medium is simple,
we can find explicitly the expression for the Green functions, see Section A.4.

In the present case of a random power density Ṁ, do these expressions
make sense? What happens when the initial condition is also assumed to be
random? These questions are the starting point of the theory of stochastic
partial differential equations.

1.1.1 Correlated noise

We shall define the class of correlated noises in a somewhat abstract way.
Examples of such noises will be given and in particular, we shall confirm the
intuitive properties of space-time white noise given after equation (1.1).

We consider a Gaussian family1 of mean zero random variables

M =
{
M(g), g ∈ C∞c (Rd+1)

}
,

indexed by C∞c (Rd+1) the space of infinitely differentiable functions with
compact support, with covariance

E [M(g)M(h)] =

∫
R
dt

∫
Rd

Λ(dx)
[
g(t) ∗ h̃(t)

]
(x)

=

∫
R
dt

∫
Rd
µ(dξ)Fg(t)(ξ)Fh(t)(ξ), (1.4)

for all g, h ∈ C∞c (Rd+1), where “∗” denotes convolution in the space variable,
h̃(t, x) := h(t,−x), with z̄ the complex conjugate of z ∈ C, and

Ff(ξ) :=

∫
Rd
f(x)e−2πix·ξ dx

the Fourier transform of any (measurable) function f : Rd → R. We need to
impose the following natural conditions on the positive measure Λ :

1It means that every random vector (M(g1), . . . ,M(gn)) is Gaussian, for all n ∈ N and
g1, . . . , gn ∈ C∞c (Rd+1).
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• It is symmetric, i.e. Λ(B) = Λ(−B), for any Borel set B ⊆ Rd. This
guarantees that E [M(g)M(h)] = E [M(h)M(g)] .

• It is positive definite, i.e.
∫
Rd Λ(dx) (φ∗ φ̃)(x) ≥ 0, for all φ ∈ C∞c (Rd).

This guarantees that E [M(g)M(g)] ≥ 0.

• It is a tempered measure2, i.e. it satisfies the following integrability
condition ∫

Rd

Λ(dx)

(1 + |x|)p
<∞,

for some p ∈ R.

Being positive definite and tempered, it is in fact the Fourier transform, in
the sense of distributions, of some (tempered) positive measure µ, i.e.∫

Rd
ψ(x) Λ(dx) =

∫
Rd
Fψ(ξ)µ(dξ),

for all test functions ψ ∈ S(Rd). We say that µ is the spectral measure of Λ.
More informations about distributions are given in Section 6.1.

Two important properties should be mentioned here. First, it can be
shown that M is linear, i.e. for all α, β ∈ R and g, h ∈ C∞c (Rd+1), we have

M(αg + βh) = αM(g) + βM(h) a.s.,

where equality is understood as random variables. This shall imply further
down that stochastic integration is indeed linear. Another property is trans-
lation invariance. For example, the random vector (M(gy),M(hy)) has the
same law as that of (M(g),M(h)), where gy(x) := g(x+ y).

We now would like to extend the definition of M to a broader class of
functions. First, we consider the space variable. Let U be the completion of
the Schwartz space S(Rd) with respect to the semi-inner product

〈φ, ψ〉U :=

∫
Rd

Λ(dx) (φ ∗ ψ̃)(x) =

∫
Rd
µ(dξ)Fφ(ξ)Fψ(ξ).

Whereas the first expression would restrict our extension to a subclass of
functions, the second equality enables to reach even Schwartz distributions.
For example, the Dirac delta functional belong to U when µ is a finite mea-
sure. Another important example is the fundamental solution of the wave
equation in any dimension, see [11].

For any fixed time horizon T > 0, we define the norm ‖·‖UT as

‖g‖2UT :=

∫ T

0
〈g(s), g(s)〉U ds,

2This is equivalent to assuming that Λ defines a distribution on the space of Schwartz
test functions S(Rd). It is the space of infinitely differentiable functions that, together
with all their partial derivatives, decrease faster than any polynomial.
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for any g ∈ C∞c ([0, T ]× Rd). In fact, the set of such test functions are dense
in UT := L2([0, T ];U), the set of square integrable functions on [0, T ] with
values in the separable Hilbert space U. See [17, Lemma 2.4] for the latter
result.

Finally, we observe that the map g 7→M(g) is an isometry between(
C∞c ([0, T ]× Rd), ‖·‖UT

)
→ L2(Ω,F ,P).

Following the standard method to extend an isometry, M(g) can be defined
for any g ∈ UT , and the collection remains a Gaussian family of random
variable with mean zero and covariance given by (1.4). We pause for a
second and give two important examples of correlated noises.

Example 1.1 (Space-time white noise). When the positive measure Λ is
the Dirac delta measure, we say that M is a space-time white noise, and it
is denoted by W. Its spectral measure is the Lebesgue measure µ(dξ) = dξ.
In particular, it can be extended to the space of square integrable functions
UT = L2(R× Rd), with covariance given by

E [W (g)W (h)] =

∫∫
R×Rd

g(t, x)h(t, x) dtdx.

The random thermal energy added to the system within the time-space re-
gion E =]t1, t2]×]x1, x2] is given by the mean zero Gaussian random variable
W (1E), whose variance is

E [W (1E)W (1E)] =

∫∫
R×Rd

1E(t, x)1E(t, x) dtdx = (t2 − t1)(x2 − x1).

Compared to another time-space region F =]s1, s2]×]y1, y2], their covariance
is given by

E [W (1E)W (1F )] =

∫∫
R×Rd

1E(t, x)1F (t, x) dtdx = |E ∩ F | ,

the area of their intersection. If E ∩F = ∅, their covariance is zero and both
random variables are independent, since they are Gaussian.

Example 1.2 (Riesz kernels). It is the case when the positive measure Λ is
given by Λ(dx) = f(x)dx for f(x) = |x|−d+α , with α ∈ (0, d). Its spectral
measure is given by µ(dξ) = g(ξ)dξ for g(ξ) = cα |ξ|−α and some constant
cα > 0. In particular, the covariance (1.4) is given by

E [M(g)M(h)] =

∫∫∫
R×Rd×Rd

g(t, x)f(x− y)h(t, y) dtdxdy.
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Other examples of correlated noises are Poisson kernels, Cauchy kernels,
Ornstein-Uhlenbeck-type kernels, and Bessel kernels. For some of their prop-
erties, see [24].

We have introduced, on purpose, two different notations for the space-
time white noise. The first one, Ẇ (t, x), comes from a physical interpreta-
tion, and represents the random power density. Implicitly, this (wrongly)
assumes that white noise can be evaluated at each point. Yet, once inte-
grated on some time-space region E, it represents the random total energy
produced within E. The second one, W (1E), also represents the total energy
produced within E. The following formal chain of equalities may link both
notation styles.∫∫

E
Ẇ (t, x) dtdx =

∫∫
E
W (dt, dx) = W (E) = W (1E).

If W were a measure with density given by the function Ẇ (t, x), then the
above chain of equalities would perfectly make sense. In the general case of
correlated noise, we shall also write M(g) as the following integral∫∫

R×Rd
g(t, x)M(dt, dx). (1.5)

1.1.2 Different types of solutions

At the beginning the present section, we asked whether the first integral
on the right hand side of (1.3) would make sense if the function Φ is replaced
by Ẇ or Ṁ. The integral notation of the noise given in (1.5) is precisely what
we need. In view of the previous subsection, the following integral∫ t

0

∫
Rd

Γν(t− s, x− y)W (dsdy)

would make sense if the function (s, y) 7→ Γν(t− s, x− y) belongs to L2(R×
Rd). In fact, it does if and only if d = 1, and the same condition holds for
the expression involving the Green function GD on bounded domains. The
former follows from (A.12), and the latter, in the particular case when the
domain is a two dimensional cube with Neumann boundary conditions, is
considered in the last paragraph of [55, Chapter 3].

Correlated noises are tailor-made to solve such problems. Indeed, an
extra integrability assumption on the positive measure Λ enables to make
sense of ∫ t

0

∫
Rd

Γν(t− s, x− y)M(ds, dy)

in any dimension d ≥ 1. Such an assumption is given by (4.4) or equivalently
by (4.3), and is called Dalang’s condition. This integrability condition is a
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trade-off between the roughness of the noise and the regularity of the inte-
grant. This condition was first formulated in the study of the stochastic wave
equation, in [12], and then applied to a larger class of stochastic parabolic
equations, in the seminal paper [11]. In the case of Riesz kernels, the latter
condition becomes d < 2 + α.

If we set b ≡ 0, σ ≡ 1, the initial temperature profile f ≡ 0, and we as-
sume that the correlated noise satisfies Dalang’s condition, then the solution
to (1.2) should resemble formula (1.3), and an educated guess would be to
set

u(t, x) =

∫ t

0

∫
Rd

Γν(t− s, x− y)M(ds, dy).

The regularity of this Gaussian field depends on the regularity of the noise.
Sharp Hölder continuity results can be found in [36] and [48]. In the partic-
ular case of Riesz kernel,

u ∈ C 1
2
− d−α

4
−,1− d−α

2
−(R∗+ × Rd),

and it is not differentiable! Thus, it cannot be a classical solution to (1.2).
We need to transform the general form of (1.2) into an integral equation.

There are many possible ways to proceed, and each of them lead to a different
definition of a solution to (1.2). A standard method is to first define a weak
formulation by multiplying the equation on each side by a test function, and
formally apply an integration by part to remove the unavailable derivatives of
u. From the weak formulation, it is possible to reach another type of solution,
which we shall shortly define as a random field solution. This procedure was
carefully imagined and explained by Walsh in [55].

Definition 1.3. A real-valued, jointly measurable and adapted process(
u(t, x, ω), t ∈ [0, T ], x ∈ D, ω ∈ Ω

)
is a random field solution of (1.2), if for all (t, x) ∈ [0, T ]×D,

u(t, x) = I0(t, x) +

∫ t

0

∫
D
G(t− s, x, y)b(s, y, u(s, y)) dyds

+

∫ t

0

∫
D
G(t− s, x, y)σ(s, y, u(s, y))M(dy, ds) a.s.,

(1.6)

where I0 is the contribution of the initial condition u(0, x) = u0(x), and G is
the Green function associated to the heat equation on some domain D ⊆ Rd,
under some possible boundary conditions.

The last term of (1.6) needs some comments. In Section 1.1.1, our def-
inition of a noise was a Gaussian family of random variable indexed by the
space UT := L2([0, T ];U). Now, we need to perform integration of random
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elements such as (s, y, ω) → G(t − s, x, y)σ(s, y, u(s, y, ω)). Once more, we
need to extend the definition of stochastic integration to such processes. In-
tegration with respect to a (worthy) martingale measure is described in [55],
and is called Walsh stochastic integral. An extension was presented in [11],
which enables to use correlated noise as a (worthy) martingale measure, and
therefore make sense of (1.6).

In the case of white noise in one space dimension, it is a standard result
from [55] that if both functions b and σ are Lipschitz, and if the initial
condition is bounded, then equation (1.2) admits a unique random field
solution. Moreover, the solution has continuous trajectories. In the case
of correlated noise in any space dimension, it is a standard result from [11]
that under the same hypotheses, together with Dalang’s condition (4.4),
equation (1.2) admits a unique random field solution.

When the noise does not satisfy Dalang’s condition (4.4), then the last
term of (1.6) is not well defined and we cannot talk about random field
solution. In particular, white noise in higher dimension d ≥ 2, do not have
any random field solution. Nevertheless, it can be defined as random linear
functional in the space of Schwartz distributions, see [55, Chapter 5].

Final extension of the noise: For some specific class of random processes
P : Ω × (0, T ) × Rd → R, those that are adapted, jointly measurable, and
satisfy E[|IP (T )|2] < ∞, it is possible to define the stochastic integral, for
t ∈ [0, T ],

IP (t) :=

∫∫
(0,t)×Rd

P (ω, s, y)M(ds, dy).

The process t 7→ IP (t) is a continuous square integrable martingale, whose
quadratic variation is given by∫ t

0
‖P (ω, s)‖2U ds.

We will mostly be interested in the case P (ω, s, y) = G(s, y)Z(ω, s, y),
where G will be either the heat kernel or the Green function associated to
Dirichlet boundary conditions, and Z will typically be Z(s, y) = σ(u(s, y)).

1.1.3 Further concepts

Many generalisations of equation (1.2) are possible. For example, we
could study more general type of equations, consider non-Lipschitz functions
b and σ, or assign a broader class of noises.

In [11], the wave equation, the damped wave equation, and parabolic
equations are considered. Dalang’s condition (4.4) is still a necessary and
sufficient condition to study these equations.

For the heat equation with white noise (in one dimension), the solution
gets infinite energy almost surely in finite time, when σ ≡ c 6= 0, and b ≥ 0 is
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convex and has super-linear growth. A precise result is given in [14], together
with the existence of a continuous random field solution that doesn’t blow-up
when |b(z)| = O (|z| log |z|) and |σ(z)| = o

(
|z| (log |z|)1/4

)
, as z →∞.

Broader classes of noises exist. For example, Gaussian noises with covari-
ance in both time and space variables. They have many applications, such
as in biology, physics, or finance. In the case of the heat equation, see [54]
for the additive case, and [2] for the Anderson model. For an operator given
by a generator of a Lévy process, see [36]. Regularity results are given in
each. A study of Levy white noise is given in [15]. The path regularity of
the solution to the heat equation with such multiplicative noise is studied
in [10]. The relation between the random field solution and the generalized
solution is given in [16]. As one might expect, thanks to a newly derived
version Fubini theorem.

Remark. A clear introduction toWalsh theory of SPDE is given [13]. Another
important theory of stochastic integration is the one with respect to Hilbert-
space-valued processes, presented in [46]. Both theories can be applied to get
complementary informations about the solution of some stochastic partial
differential equation. It is the primery objective of [17] to compare both
theories.

1.2 Goals of the thesis

The driving scenario of this thesis is to compare the solution to the
stochastic heat equation on the whole space Rd, with the one on some (se-
quence of) bounded domains D ⊆ Rd, to which boundary conditions are
imposed, i.e.

∂u

∂t
(t, x) = ∆u(t, x) + b(u(t, x)) + σ(u(t, x)) Ṁ, t > 0, x ∈ Rd,

u(0, x) = u0(x), x ∈ Rd,

and
∂uD
∂t

(t, x) = ∆uD(t, x) + b(uD(t, x)) + σ(uD(t, x)) Ṁ, t > 0, x ∈ D,

uD(t, x) = 0 or
∂uD
∂ν

(t, x) = 0, t > 0, x ∈ ∂D,

uD(0, x) = u0(x), x ∈ D,

where b, σ and u0 satisfy the d-dimensional versions of (2.6) and (2.7), the
noise Ṁ on R+ × Rd is white in time and correlated in space, and ν is the
unit outward normal vector at the point x ∈ ∂D.

We study the regularity of their difference, as well as bounds of its p-
moments. To the best of our knowledge, the former has not been solved yet,
and the second has application in numerical approximations of SPDEs.
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1.2.1 Regularity analysis

In one space dimension with white noise, when both b and σ are glob-
ally Lipschitz functions, it is well known that the random field solutions
admit continuous modifications. In fact, they are Hölder continuous, with
u ∈ C1/4−,1/2−(R∗+×R), and uD ∈ C1/4−,1/2−(R∗+×D), but both are nowhere
differentiable. The case of vanishing Neumann boundary conditions was al-
ready considered in [55], when the initial condition is bounded in expecta-
tion. To understand our future strategy, we give the main ideas of that proof,
when D = (−L,L), b ≡ 0, and u0 ≡ 0. The random field solution admits the
representation formula

uD(t, x) =

∫ t

0

∫ L

−L
GD(t− s, x, y)σ(uD(s, y))W (dsdy),

which can also be written as

uD(t, x) =

∫ t

0

∫ L

−L
[GD − Γ] (t− s, x, y)σ(uD(s, y))W (dsdy),

+

∫ t

0

∫ L

−L
Γ(t− s, x− y)σ(uD(s, y))W (dsdy). (1.7)

The trick is to observe that the difference GD − Γ is infinitely smooth, and
each of its partial derivatives is bounded on R∗+×(−L,L)×(−L,L), see Sec-
tion 2.3 for an explicit formula. From that observation, it can be proved that
the first integral of (1.7) admits a version that is in fact infinitely smooth.
For an example of such a derivation, applying Kolmogorov continuity the-
orem to show that the guessed partial derivative is continuous and using
Fubini theorem to show that it is indeed the derivative in the sense of distri-
butions, see [40, Section 3.3]. The limiting regularity of uD is therefore that
of the last integral of (1.7), which involves the fundamental solution Γ.

A similar argument can be applied to the solution on R. It admits the
representation

u(t, x) =

∫ t

0

∫
R

Γ(t− s, x− y)σ(u(s, y))W (dsdy),

which can also be written as

u(t, x) =

∫ t

0

∫
R\(−L,L)

Γ(t− s, x− y)σ(u(s, y))W (dsdy)

+

∫ t

0

∫ L

−L
Γ(t− s, x− y)σ(u(s, y))W (dsdy). (1.8)

For x ∈ [−L + ε, L − ε] and y ∈ R \ (−L,L), the function Γ(s, x − y) is in-
finitely smooth with bounded (exponentially fast decreasing) partial deriva-
tives. Therefore, the first integral of (1.8) also admits a version that is
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infinitely smooth. The second integral of (1.8), which very much looks like
the second integral of (1.7), is the one limiting the regularity of u.

In fact, for additive withe noise σ ≡ 1, the above argument becomes, for
x ∈ (−L,L),

u(t, x)− uD(t, x) =

∫ t

0

∫
R\(−L,L)

Γ(t− s, x− y)W (dsdy)

+

∫ t

0

∫ L

−L
[Γ−GD] (t− s, x, y)W (dsdy),

which proves that the difference of interest u − uD is smooth. A similar
procedure also applies for additive correlated noise in any dimension, if the
boundary of the domain is smooth. Useful inequalities are given by (3.10)
and (A.22).

In the case of additive white noise, in dimension d ≥ 2, such formulas
do not apply, for no random field solution exists. Yet, the regularity of the
these distributions can be studied in Sobolev spaces. For a regular domain
D ⊆ Rd, it is known that uD is a continuous process in time with values
in H−n for n > d/2 − 1, for some special versions of Sobolev spaces Hs.
This result applies in fact to more general classes of equations, noises, and
boundary conditions, see [55, Theorems 5.1 and 5.2]. Similar results holds
for u on Rd, in yet other versions of Sobolev spaces.

In Chapter 3, we prove that the difference of interest u(t)−uD(t), for any
fixed time t > 0, has in fact very smooth trajectories in space. The precise
statement is given in Theorem 3.7. In fact, the more regular the boundary of
the domain is, the higher the regularity of the latter difference is. To reach
this conclusion, we first need to find some versions of Sobolev spaces that
can analyse both u(t) and uD(t). In a failed first attempt, we did consider
the ones given by

Hs =

{
f ∈ S ′(Rd) :

∫
Rd

(
1 + |ξ|2

)s
|F(f)(ξ)|2 dξ <∞

}
.

In fact, we proved in Proposition 3.5 that the Fourier transform of u(t), in
the sense of distributions, do not have any function valued representative.
Yet, any product φu(t), for φ ∈ C∞c (Rd), does. This translates the fact that
u(t), having already irregular local properties, has also a lack of integrability
at infinity. Theorem 3.7 concludes that the local regularity of u(t) and uD(t)
is the same, which was to be expected from the one dimensional case.

A possible next step could be to analyse the regularity, say in space, of
the difference u(t)−uD(t), for an additive correlated noise that do not satisfy
Dalang’s condition. We challenge the reader to do so.
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1.2.2 Moment bounds

In the framework of non-stochastic partial differential equations, it is
a fair objective to find a way to numerically approximate a phenomenon
that is mathematically described on an unbounded domain, or a domain
so large that the actual computation techniques are not sufficient. One
obvious way is to restrict the problem on some bounded domain and impose
artificial boundary conditions, such as (vanishing) Dirichlet or Neumann
boundary conditions. The choice of the new bounded domain D is important
to guarantee that the error made when approximating u(t, x) by uD(t, x) is
not too large. In finance, the price of an asset is profoundly linked with
the solution to the heat equation, see [41, Chapter 5]. Introducing artificial
vanishing Dirichlet boundary conditions on the intervalD = (−L,L) gives an
approximative price. It is discussed below in Example 2.3, and in particular,
for any α ∈ (0, 1), we have the uniform bound

sup
t∈[0,T ]

sup
x∈[−αL,αL]

|u(t, x)− uD(t, x)| ≤ c
√

2ν2T

L(1− α)
exp

(
−L

2(1− α)2

2ν2T

)
.

The further apart from the artificial boundary we are, the smaller the local-
ization error is. Moreover, the error decreases exponentially fast as L→∞.
To find such a bound, at least two approaches are possible. In [41], they used
an application of Feynmann-Kac’s formula. Another way, which we shall use
throughout this thesis, is to carefully compare Γ−GD.

It is now possible to introduce a numerical method to approximate the
function uD. The total error in the approximation process of u(t, x) is the
sum of the error from the artificial boundary and that of the numerical
method. We can tune the order of the method and the size of the domain
to reach a desire threshold error.

In Chapter 2, we explore the stochastic heat equation on R with white
noise, and conclude in Theorem 2.4, that any p-moment of the difference
u − uD admits the same exponential rate of convergence as L → ∞. The
cases of vanishing Dirichlet, mixed, or Neumann boundary conditions are
studied on the symmetric interval (−L,L), with bounded (random) initial
data. (An obvious application to the non stochastic heat equation shows
that the idea of studying the difference Γ − GD works well for the basic
case.)

Numerical methods for the heat equation, with multiplicative white noise
and vanishing Dirichlet boundary conditions on a finite interval, are already
available. See [56] and [18] for finite element and finite difference methods.
An interesting fact about a lower bound for the rate of convergence is given
in the latter. It says that if h is the space step and k the time step, then
any scheme, implicit of explicit, will have an error at least O(h

1
2 + k

1
4 ). This

is strongly related to the fact that the solution is only Hölder continuous,
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with exponent 1/2 in space and 1/4 in time. In fact, the latter remark is
only true if the numerical scheme uses equidistant evaluations of the noise,
see [38].

In Chapter 4, we explore the stochastic heat equation on Rd with corre-
lated noises, and conclude in Theorem 4.2, that any p-moment of the differ-
ence admits the same exponential rate of convergence as L→∞. The cases
of vanishing Dirichlet, mixed, or Neumann boundary conditions are studied
with bounded (random) initial data.

In a series of four papers, Gerencsér and Gyöngy introduced two methods
to study the numerical approximation of the solution in the whole space.
In [34], [29], [30], they constructed a finite difference scheme directly applied
to the whole space. In [31, Theorem 5.1], they introduced vanishing Dirichlet
boundary conditions, and apply a new version of Feynmann-Kac formula.
They reached error estimates in supremum norms via Sobolev’s embeddings.
In that regard, their results are stronger than ours.

We compare their second method to ours. Their result only apply for a
sequence of increasing balls, yet this might be generalised later to C1, since
their Feynmann-Kac formula is valid for such domains. Our method ap-
ply to slightly more general boundary conditions, regular boundaries in the
sense of [20]. For example, boundaries satisfying the exterior cone condition.
Their approach is valid for a different class of noises. Concerning the choice
of possible functions b and σ, the two classes of functions are different. They
must impose W 1

p regularity for the initial condition, whereas we can ask for
a polynomially increasing one, in the case of the Anderson model. It should
be mentioned that their method holds for an enormous class of parabolic
equations, even degenerate ones.

In Chapter 5, we study the Anderson model in Rd, i.e. for the special
forms of b ≡ 0 and σ(u) = λu. One reason to study this simplified model
is that it allows a broader class of initial conditions, from the delta Dirac
measure at the origin to exponentially growing measures. Other reasons are
explained in [24], together with a detailed list of physic literature. In Theo-
rem 5.1, we derived a very convenient expression for two points correlations

E
[
{u(t, x)− uD(t, x)}

{
u(t, x′)− uD(t, x′)

}]
=

∫∫
R2d

µ0(dα)µ0(dα′) [K1,1 −K1,2 −K2,1 +K2,2] (t, x, x′, α, α′),

for any initial condition µ0 satisfying (5.1). Its derivation was similar to that
of u given in [9]. The functions K gather informations about the nature of
the heat equation and that of the noise. The initial condition appears only
at the very end through integration. Second moment bounds are deduced
from a careful analysis of the functions K. For example, exponentially fast
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convergence on compact sets is obtained for any initial condition with poly-
nomial growth. More interestingly, from a given convergence rate, we can
decide whether some initial data is admissible.





Chapter 2

One space dimension with
white noise

In this chapter, we will study the heat equation in one space dimension,
with white noise and bounded initial data. We will compare the behavior
of the solution on the whole real line R with the solution on the bounded
symmetric interval (−L,L). The former satisfies

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + b(t, x, u(t, x))

+ σ(t, x, u(t, x))Ẇ , t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R.

(2.1)

The latter satisfies
∂uL
∂t

(t, x) =
∂2uL
∂x2

(t, x) + b(t, x, uL(t, x))

+ σ(t, x, uL(t, x))Ẇ , t > 0, x ∈ (−L,L),

uL(0, x) = u0(x), x ∈ (−L,L),

(2.2)

subjected to either vanishing Dirichlet, Neumann, or mixed boundary con-
ditions,

uL(t,−L) = 0 = uL(t, L), t > 0, (2.3)
∂uL
∂x

(t,−L) = 0 =
∂uL
∂x

(t, L), t > 0, (2.4)

uL(t,−L) = 0 =
∂uL
∂x

(t, L), t > 0. (2.5)

Both equations (2.1) and (2.2) have the same white noise Ẇ on R+ × R.
Throughout this chapter, we will assume the following particular condi-

tions on b, σ, and u0 :

17
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• The functions b, σ : [0, T ]× R× R→ R are continuous, globally Lips-
chitz in the last variable and have linear growth, i.e., uniformly for all
t ∈ [0, T ] and x ∈ R, there exists some constants Lip and K such that

|b(t, x, u)− b(t, x, v)| ∧ |σ(t, x, u)− σ(t, x, v)| ≤ Lip |u− v| ,
|b(t, x, u)| ∧ |σ(t, x, u)| ≤ K(1 + |u|),

(2.6)

where a ∧ b := max(a, b).

• The random measurable function u0 : Ω×R→ R is independent of Ẇ
and bounded in expectation, i.e., for some p ≥ 2,

‖u0‖ := sup
x∈R

E [|u0(x)|p]1/p <∞. (2.7)

Those assumptions guarantee existence, uniqueness, and even some Hölder
regularity of the random field solutions u, and uL, see [55, Theorem 3.2,
Corollary 3.4, and Exercise 3.4]. They satisfy the representation

u(t, x) =

∫
R

Γ(t, x− y)u0(y) dy

+

∫ t

0

∫
R

Γ(t− s, x− y) b(s, y, u(s, y)) dyds

+

∫ t

0

∫
R

Γ(t− s, x− y)σ(s, y, u(s, y))W (dyds),

(2.8)

and

uL(t, x) =

∫ L

−L
GL(t, x, y)u0(y) dy

+

∫ t

0

∫ L

−L
GL(t− s, x, y)b(s, y, uL(s, y)) dyds

+

∫ t

0

∫ L

−L
GL(t− s, x, y)σ(s, y, uL(s, y))W (dyds).

(2.9)

where Γ is the heat kernel given by (A.8), and GL is the Green function
associated with the corresponding boundary conditions, see (A.48), (A.62),
and (A.77).

2.1 Warm up

Before we get to the comparisons in full generality, we first consider the
simplest possible assumptions b = 0, σ = 0, and u0 ≥ 0 non-random. From
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the representation of the solutions, see (A.9) and (A.47), (A.61), and (A.76),
we have

u(t, x) =

∫
R

Γ(t, x− y)u0(y) dy,

uL(t, x) =

∫ L

−L
GL(t, x, y)u0(y) dy,

where
Γ(t, x) := Γ1(t, x) =

1

(4πt)1/2
e−

x2

4t

is the heat kernel and GL is the corresponding Green function, different for
every boundary conditions, see (A.48), (A.62), and (A.77).

Example 2.1. Vanishing Dirichlet boundary conditions (2.3) and constant
positive initial data u0 = c > 0. In that case, we have

u(t, x) = c

∫
R

Γ(t, x− y) dy = c,

and

uL(t, x) = c

∫ L

−L
GL(t, x, y) dy = c(t, x) ≤ c.

Moreover, from the properties of the Green function GL, see Proposition A.8,
we know that

uL(t,±L) = 0,

for all t > 0, and
uL(t, x) −→ 0, as t→∞,

for all x ∈ [−L,L], with convergence rate t−1/2.

Example 2.2. Vanishing Neumann boundary conditions (2.4) and Gaussian
initial data u0(x) = Γ(s, x). In that case, we have

u(t, x) =

∫
R

Γ(t, x− y)Γ(s, y) dy = Γ(t+ s, x),

and

uL(t, x) =

∫ L

−L
GL(t, x, y)Γ(s, y) dy ≥ Γ(s, L),

by Proposition A.10. We see that uL(t, x) always stays greater than some
positive threshold, whereas u(t, x) will eventually decrease to zero, with con-
vergence rate t−1/2. Indeed, if u0 is merely an integrable function, then

|u(t, x)| =
∫
R

Γ(t, x− y) |u0(y)| dy ≤ (4πt)−1/2 ‖u0‖L1(R) −→ 0,

as t→∞, uniformly for x ∈ R.
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We now analyse a slightly higher level example, when b(u) = λu+h and
σ ≡ 0.

Example 2.3. To have an idea of the expected rate of convergence, we can
analyse the deterministic equation,

∂u

∂t
(t, x) =

ν2

2

∂2u

∂x2
(t, x) + λu(t, x) + h(t, x), t > 0, x ∈ R,

u(0, x) = f(x), x ∈ R.

We let uL the solution to the same equation, but with vanishing Dirichlet
boundary conditions on the domain (−L,L). When f and h are bounded
and continuous on R, respectively R+ × R, Feynman-Kac’s formula can be
applied to evaluate the difference

u(t, x)− uL(t, x) = E
[
1{∃s≤t: Xs /∈(−L,L)} e

λtf(Xt)
]

+ E
[∫ t

τ
eλsh(t− s,Xs) ds

]
where Xs = νBs + x for some Brownian motion Bs, and the exit time
τ = inf{s ≥ 0 : Xs /∈ (−L,L)} ∧ t. For such a probabilistic resolution of the
heat equation, we refer the reader to Section A.3.1. Using a similar argument
to [41, chapter 5.2.1], we get the following bound: for any 0 < α < 1,

sup
t∈[0,T ]

sup
x∈[−αL,αL]

|u(t, x)− uL(t, x)| ≤ c
√

2ν2T

L(1− α)
exp

(
−L

2(1− α)2

2ν2T

)
,

(2.10)
where c = c(‖f‖∞ , ‖h‖∞ , λ, T ).

Another way of finding inequality (2.10) is to write explicitly the differ-
ence of the two solutions, and since f and h are assumed to be bounded, it
is enough to find effective bounds on the difference of the associated Green
functions. We shall use the latter procedure.

From Example 2.1, we cannot hope to have a good approximation at
the boundary points. In case of constant initial condition, we see that the
difference u(t, x)− uL(t, x) is directly related to the following difference∫

R
Γ(t, x− y) dy −

∫ L

−L
GD(t, x, y) dy = 1−

∫ L

−L
GD(t, x, y) dy.

For such bounds, see Lemmas 2.7 and 4.5 or Equation (A.34).
From all three examples, we expect the difference u−uL to become more

and more different as time evolves. We shall restrict our attention to a finite
time horizon T > 0.
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2.2 Main results and general ideas

We will prove that if x ∈ (−L,L) is sufficiently far away from the bound-
ary points, then both solutions are very close to one another, within some
finite time horizon t ∈ [0, T ]. In the present case of one space dimension,
a point is close to the boundary if either |x− L| or |x+ L| is small. The
final bound will in fact be a function of these differences. As we shall see,
Neumann boundary condition has to be treated separately.

The random field solutions to equations (2.1) and (2.2), subjected to
either (2.3) or (2.5) satisfy the following convergence rate.

Theorem 2.4. Fix T > 0. For all t ∈ [0, T ], L > 0, and x ∈ [−L,L],

E [|u(t, x)− uL(t, x)|p]1/p ≤ c̃
(

exp

(
−(L− x)2

8t

)
+ exp

(
−(L+ x)2

8t

))
,

where c̃ = c̃(T,Lip,K, ‖u0‖ , p) is independent of t, x, and L. This bound is
valid for the same p as in (2.7).

The solutions to equations (2.1), and (2.2) subjected to (2.4) satisfy the
following convergence rate.

Theorem 2.5. Fix T > 0 and l > 0. For all t ∈ [0, T ], L ≥ l
√
T , and

x ∈ [−L,L],

E [|u(t, x)− uL(t, x)|p]1/p ≤ c̃
(

exp

(
−(L− x)2

8t

)
+ exp

(
−(L+ x)2

8t

))
,

where c̃ = c̃(T, l,Lip,K, ‖u0‖ , p) is independent of t, x, and L. This bound
is valid for the same p as in (2.7).

In order to reach both of these conclusions in Section 2.5, we will apply
the fact that the moments of the solutions are uniformly bounded. That fact
was already known for u and uL.We will find a bound that is valid uniformly
on L > 0, or on L ≥ l

√
T respectively.

To simplify notations, we denote uDL , u
N
L , or u

M
L the solutions to equa-

tion (2.2) with Dirichlet boundary conditions (2.3), Neumann boundary con-
ditions (2.4), or mixed boundary conditions (2.5), respectively.

Proposition 2.6. The solutions u, and uDL , u
M
L , and u

N
L to the heat equa-

tions (2.1) and (2.2) satisfy

sup
t∈[0,T ]

sup
x∈R

E [|u(t, x)|p] <∞, (2.11)

sup
t∈[0,T ]

sup
L>0

sup
x∈[−L,L]

E
[∣∣uDL (t, x)

∣∣p] <∞, (2.12)

sup
t∈[0,T ]

sup
L>0

sup
x∈[−L,L]

E
[∣∣uML (t, x)

∣∣p] <∞, (2.13)

sup
t∈[0,T ]

sup
L>l
√
T

sup
x∈[−L,L]

E
[∣∣uNL (t, x)

∣∣p] <∞. (2.14)



22 Chapter 2. One space dimension with white noise

The first uniform bound is already well known in the literature, see for
example [55, Theorem 3.2] for white noise in one space dimension or [11,
Theorem 13] for colored noise in higher space dimension. The proof is given
in Section 2.4.

Once these uniform bounds are obtained, we can use the representation
formulas that satisfy the random field solutions, see equations (2.8) and (2.9),
to write the difference of interest as

u(t, x)− uL(t, x) =
6∑
i=0

Ii(t, x), (2.15)

where,

I0(t, x) =

∫
R

Γ(t, x− y)u0(y) dy −
∫ L

−L
GL(t, x, y)u0(y) dy,

I1(t, x) =

∫ t

0

∫ L

−L
[Γ(t− s, x− y)−GL(t− s, x, y)]b(s, y, uL(s, y)) dyds,

I2(t, x) =

∫ t

0

∫ L

−L
[Γ(t− s, x− y)−GL(t− s, x, y)]σ(s, y, uL(s, y))W (dyds),

I3(t, x) =

∫ t

0

∫ L

−L
Γ(t− s, x− y)[b(s, y, u(s, y))− b(s, y, uL(s, y))] dyds,

I4(t, x) =

∫ t

0

∫ L

−L
Γ(t− s, x− y)[σ(s, y, u(s, y))− σ(s, y, uL(s, y))]W (dyds),

I5(t, x) =

∫ t

0

∫
R\[−L,L]

Γ(t− s, x− y)b(s, y, u(s, y)) dyds,

I6(t, x) =

∫ t

0

∫
R\[−L,L]

Γ(t− s, x− y)σ(s, y, u(s, y))W (dyds).

For the first three terms I0, I1, and I2, we will need to analyse the
difference

Γ(t, x− y)−GL(t, x, y)

between the heat kernel and the Green function, and its integral properties.
This is carried in Section 2.3. For the last two terms I5 and I6, we will need
to find some integral bounds of the heat kernel on R \ [−L,L]. The terms I3

and I4, together with the Lipschitz conditions on b and σ, will enable a
recursive argument. If we set

fL(t, x) := E [|u(t, x)− uL(t, x)|p]1/p ,

for x ∈ (−L,L), then we shall reach a Gronwall-type inequality

fL(t, x)2 ≤ cJ(t, x)2 + k

∫ t

0

∫ L

−L
H̄(t− s, x− y)fL(s, y)2 dyds,
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valid for t ∈ [0, T ], where J(t, x) = e−
(L−x)2

4t + e−
(L+x)2

4t has precisely the
behavior we are trying to prove, and

H̄(r, z) := Γ(r, z) + Γ(r, z)2.

The final steps include iterations of the latter Gronwall-type inequality,
which will be possible thanks to precise integral bounds on H̄.

2.3 Some Prerequisites

2.3.1 Properties of Dirichlet Green function

This subsection contains bounds on the following difference

F (t, x, y) = FDL (t, x, y) := Γ(t, x− y)−GDL (t, x, y)

=
∞∑

k=−∞
Γ(t, x+ y + (4k + 2)L)−

∞∑
k=−∞
k 6=0

Γ(t, x− y + 4kL),

where Γ is the heat kernel, given by (A.38), and GDL is the Green function
associated to the Dirichlet boundary conditions on the symmetric interval
(−L,L), given by (A.48).

Lemma 2.7. Fix any t > 0 and x, y ∈ D = [−L,L]. The difference F is
non-negative and symmetric in x and y. Furthermore, it satisfies

F (t, x, y) ≤ Γ(t, x+ y + 2L) + Γ(t, x+ y − 2L)

≤ 4Γ (4t, |x− y|+ dist(x, ∂D) + dist(y, ∂D))

≤ 4 exp

(
−dist(x, ∂D)2

16t

)
exp

(
−dist(y, ∂D)2

16t

)
Γ(4t, x− y),

(2.16)
where dist(x, ∂D) = min(L+ x, L− x). In particular,

sup
y∈[−L,L]

F (t, x, y) ≤ Γ(t, x− L) + Γ(t, x+ L).

Proof. Both facts, F (t, x, y) ≥ 0 and F (t, x, y) = F (t, y, x), come from
Proposition A.8 and the fact that Γ(t, x − y) = Γ(t, y − x). We can rewrite
the function F as follows:

F (t, x, y) = Γ(t, x+ y + 2L) + Γ(t, x+ y − 2L)

−
∞∑
k=1

[Γ(t, x− y + 4kL)− Γ(t, x+ y + (4k + 2)L)]

−
−1∑

k=−∞
[Γ(t, x− y + 4kL)− Γ(t, x+ y + (4k − 2)L)] ,



24 Chapter 2. One space dimension with white noise

with both sums being non-negative.
We now show that 2(x + y + 2L) ≥ |x− y| + dist(x, ∂D) + dist(y, ∂D),

for all x, y ∈ [−L,L]. First, we suppose that x ≥ y, then

2x+2y+4L = x−y+(L+x)+3(L+y) ≥ |x− y|+dist(x, ∂D)+3 dist(y, ∂D),

since L+x ≥ dist(x, ∂D), and L+y ≥ dist(y, ∂D). Second, we suppose that
x ≤ y, then

2x+2y+4L = y−x+3(L+x)+(L+y) ≥ |x− y|+3 dist(x, ∂D)+dist(y, ∂D).

We can also show that 2 |x+ y − 2L| ≥ |x− y| + dist(x, ∂D) + dist(y, ∂D).
This is done by observing that

2 |x+ y − 2L| = 2(−x− y + 2L) ≥ |x− y|+ dist(x, ∂D) + dist(y, ∂D),

since −x,−y ∈ [−L,L]. This concludes the proof.

We are now interested in finding integral bounds of the function F.

Lemma 2.8. For all t > 0 and x ∈ [−L,L], we have the following integral
bounds, ∫ L

−L
F (t, x, y) dy ≤ 1

2

(
e−

(L−x)2
4t + e−

(L+x)2

4t

)
,∫ t

0

∫ L

−L
F (s, x, y) dyds ≤ t

2

(
e−

(L−x)2
4t + e−

(L+x)2

4t

)
.

(2.17)

Proof. Recall that F (t, x, y) ≥ 0. If we bound

F (t, x, y) ≤
∞∑

k=−∞
Γ(t, x+ y + (4k + 2)L) +

∞∑
k=−∞
k 6=0

Γ(t, x− y + 4kL),

and integrate∫ L

−L
F (t, x, y) dy ≤

∫ x−L

−∞
Γ(t, y) dy +

∫ ∞
L−x

Γ(t, y) dy.

Using equation (A.16), the first inequality of (2.17) is proved.
The second inequality (2.17) follows since exp(−z2/4s) ≤ exp(−z2/4t),

when 0 < s ≤ t and z ∈ R. It remains to integrate, in time, the constant one
function.

Lemma 2.9. For all t > 0 and x ∈ [−L,L], we have the following integral
bounds, ∫ L

−L
F (t, x, y)2 dy ≤ 1

2

1√
4πt

(
e−

(L−x)2
4t + e−

(L+x)2

4t

)2

,∫ t

0

∫ L

−L
F (s, x, y)2 dyds ≤

√
t√

4π

(
e−

(L−x)2
4t + e−

(L+x)2

4t

)2

.

(2.18)
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Proof. The first inequality (2.18) is a consequence of Lemma 2.8 and the
observation

∫ L

−L
F (t, x, y)2 dy ≤ sup

y∈[−L,L]
F (t, x, y)

∫ L

−L
F (t, x, y) dy,

with supy∈[−L,L] F (t, x, y) ≤ Γ(t, x− L) + Γ(t, x+ L), by Lemma 2.7.
The second inequality (2.18) follows since exp(−z2/4s) ≤ exp(−z2/4t),

when 0 < s ≤ t and z ∈ R. It remains to integrate, in time, the function
1/2
√
s.

2.3.2 Properties of Mixed Green function

This subsection contains bounds on the following difference

F (t, x, y) = FML (t, x, y) := Γ(t, x− y)−GML (t, x, y),

where Γ is the heat kernel, given by (A.38), and GML is the Green func-
tion associated to the mixed boundary conditions on the symmetric interval
(−L,L), given by (A.77).

Lemma 2.10. Fix any t > 0 and x, y ∈ D = [−L,L]. The difference F is
symmetric in x and y. Furthermore, it satisfies

F (t, x, y) ≥ −Γ(t, x+ y − 2L),

F (t, x, y) ≤ Γ(t, x+ y + 2L) + Γ(t, x− y + 4L) + Γ(t, x+ y − 6L).
(2.19)

In particular,

|F (t, x, y)| ≤ 12Γ (4t, |x− y|+ dist(x, ∂D) + dist(y, ∂D))

≤ 12 exp

(
−dist(x, ∂D)2

16t

)
exp

(
−dist(y, ∂D)2

16t

)
Γ(4t, x− y),

and

sup
y∈[−L,L]

|F (t, x, y)| ≤ 3 (Γ(t, x− L) + Γ(t, x+ L)) .

Proof. The fact that F (t, x, y) = F (t, y, x) comes from Proposition A.12 and
the fact that Γ(t, x − y) = Γ(t, y − x). We can rewrite GML in two different
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ways. First, we observe that

GML (t, x, y) = Γ(t, x− y) + Γ(t, x+ y − 2L)

−
∞∑
n=0

[Γ(t, x− y + (8n+ 4)L)− Γ(t, x− y + (8n+ 8)L)]

−
−1∑

n=−∞
[Γ(t, x− y + (8n+ 4)L)− Γ(t, x− y + 8nL)]

−
∞∑
n=0

[Γ(t, x+ y + (8n+ 2)L)− Γ(t, x+ y + (8n+ 6)L)]

−
−1∑

n=−∞
[Γ(t, x+ y + (8n+ 2)L)− Γ(t, x+ y + (8n− 2)L)] ,

where all four series are positive for x, y ∈ [−L,L]. Another way of writing
is as follows:

GML (t, x, y) = Γ(t, x− y) + Γ(t, x+ y − 2L)− Γ(t, x− y − 4L)

− Γ(t, x+ y + 2L)− Γ(t, x− y + 4L)− Γ(t, x+ y − 6L)

+
∞∑
n=1

[Γ(t, x− y + 8nL)− Γ(t, x− y + (8n+ 4)L)]

+
−1∑

n=−∞
[Γ(t, x− y + 8nL)− Γ(t, x− y + (8n− 4)L)]

+

∞∑
n=1

[Γ(t, x+ y + (8n− 2)L)− Γ(t, x+ y + (8n+ 2)L)]

+
−2∑

n=−∞
[Γ(t, x+ y + (8n+ 6)L)− Γ(t, x+ y + (8n+ 2)L)] ,

where Γ(t, x + y − 2L) − Γ(t, x − y − 4L) ≥ 0 and the four series are again
positive for x, y ∈ [−L,L].

We can show, as in the proof of Lemma 2.7, that each of 2 |x+ y − 2L| ,
2 |x+ y − 2L| , 2 |x− y + 4L| , and 2 |x+ y − 6L| is greater than |x− y| +
dist(x, ∂D) + dist(y, ∂D).

We are now interested in finding integral bounds of the function F.

Lemma 2.11. For all t > 0 and x ∈ [−L,L], we have the following integral
bounds, ∫ L

−L
|F (t, x, y)| dy ≤ 1

2

(
e−

(L−x)2
4t + e−

(L+x)2

4t

)
,∫ t

0

∫ L

−L
|F (s, x, y)| dyds ≤ t

2

(
e−

(L−x)2
4t + e−

(L+x)2

4t

)
.

(2.20)
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Proof. We apply a similar argument as the proof of Lemma 2.8, in which we
use the bounds of Lemma 2.10 instead.

Lemma 2.12. For all t > 0 and x ∈ [−L,L], we have the following integral
bounds, ∫ L

−L
F (t, x, y)2 dy ≤ 3

2

1√
4πt

(
e−

(L−x)2
4t + e−

(L+x)2

4t

)2

,∫ t

0

∫ L

−L
F (s, x, y)2 dyds ≤ 3

√
t√

4π

(
e−

(L−x)2
4t + e−

(L+x)2

4t

)2

.

(2.21)

Proof. We apply a similar argument as the proof of Lemma 2.9, in which we
use the bounds of Lemma 2.10 instead.

2.3.3 Properties of Neumann Green function

This subsection contains bounds on the following difference

F (t, x, y) = FNL (t, x, y) := GNL (t, x, y)− Γ(t, x− y)

=

∞∑
k=−∞

Γ(t, x+ y + (4k + 2)L) +

∞∑
k=−∞
k 6=0

Γ(t, x− y + 4kL), (2.22)

where Γ is the heat kernel, given by (A.38), and GNL is the Green function
associated to the Neumann boundary conditions on the symmetric interval
(−L,L), given by (A.62).

For the following results, we need to introduce the Theta function, defined
as

θ(a) :=
∞∑
k=0

e−ak
2
, (2.23)

for any real number a > 0. In Appendix B.2, inequalities (B.7) and (B.8)
give some estimations of the Theta function. In particular, θ(a) ≈ a−1/2 as
a→ 0.

Lemma 2.13. Fix any t > 0 and x, y ∈ D = [−L,L]. The difference F is
non-negative and symmetric in x and y. Furthermore, it satisfies

sup
y∈[−L,L]

FL(t, x, y) ≤ θ(L2/t) [Γ(t, x− L) + Γ(t, x+ L)] ,

and

FL(t, x, y) ≤ 16 exp

(
−dist(x, ∂D)2

16t

)
exp

(
−dist(y, ∂D)2

16t

)
× θ(4L2/t) Γ(4t, x− y).
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Proof. The fact that F (t, x, y) ≥ 0 comes from Equation (2.22). The fact
that F (t, x, y) = F (t, y, x) comes from Proposition A.10 and the fact that
Γ(t, x− y) = Γ(t, y − x).

We can bound, for n ≥ 0 and x, y ∈ [−L,L],

x− y + 4(n+ 1)L ≥ (x+ L) + (L− y) + (4n+ 2)L ≥ (x+ L) + (4n+ 2)L,

x+ y + (4n+ 2)L ≥ (x+ L) + (L+ y) + 4nL ≥ (x+ L) + 4nL,

and both are non-negative. Using |(x+ L) + 2kL|2 ≥ (x+ L)2 + 4k2L2, we
get
∞∑
n=0

Γ(t, x+ y + (4n+ 2)L) +

∞∑
n=1

Γ(t, x− y + 4nL)

≤ 1√
4πt

e−
(L+x)2

4t

∞∑
k=0

e−
k2L2

t = θ(L2/t) Γ(t, x+ L),

uniformly in y ∈ [−L,L]. We proceed in a similar way to get

−1∑
n=−∞

Γ(t, x+ y + (4n+ 2)L) +
−1∑

n=−∞
Γ(t, x− y + 4nL)

≤ 1√
4πt

e−
(L−x)2

4t

∞∑
k=0

e−
k2L2

t = θ(L2/t) Γ(t, x− L).

Indeed, for n ≤ −1 and x, y ∈ [−L,L], we have

x+ y + (4n+ 2)L = (x− L) + (y − L) + 4(n+ 1)L ≤ (x− L) + 4(n+ 1)L,

x− y + 4nL = (x− L) + (−y − L) + (4n+ 2)L ≤ (x− L) + (4n+ 2)L,

and both are non-positive. Then, we use the observation that for any k ≥ 0,
|(x− L)− 2kL|2 ≥ (L− x)2 + 4k2L2.

For k ≥ 0, we can show, as in the proof of Lemma 2.7, that

2 |x+ y + (4k + 2)L| ≥ 2 |x+ y + 2L|+ 8kL

≥ |x− y|+ dist(x, ∂D) + dist(y, ∂D) + 8kL,

and

2 |x− y + 4(k + 1)L| ≥ 2 |x− y + 4L|+ 8kL

≥ |x− y|+ dist(x, ∂D) + dist(y, ∂D) + 8kL.

Therefore,
∞∑
k=0

Γ(t, x+ y + (4k + 2)L) +
∞∑
k=1

Γ(t, x− y + 4kL)

≤ 4Γ(4t, x− y) exp

(
−dist(x, ∂D)2

16t

)
exp

(
−dist(y, ∂D)2

16t

)
2

∞∑
k=0

e−
4k2L2

t .
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As similar computation holds for the remaining terms.

We are now interested in finding integral bounds of the function F.

Lemma 2.14. For all t > 0 and x ∈ [−L,L], we have the following integral
bounds, ∫ L

−L
F (t, x, y) dy ≤ 1

2

(
e−

(L−x)2
4t + e−

(L+x)2

4t

)
,∫ t

0

∫ L

−L
F (s, x, y) dyds ≤ t

2

(
e−

(L−x)2
4t + e−

(L+x)2

4t

)
.

(2.24)

Proof. We apply a similar argument as the proof of Lemma 2.8, in which we
use the bounds of Lemma 2.13 instead.

Lemma 2.15. For all t > 0 and x ∈ [−L,L], we have the following integral
bounds, ∫ L

−L
F (t, x, y)2 dy ≤ γ

2

1√
4πt

(
e−

(L−x)2
4t + e−

(L+x)2

4t

)2

,∫ t

0

∫ L

−L
F (s, x, y)2 dyds ≤ γ

√
t√

4π

(
e−

(L−x)2
4t + e−

(L+x)2

4t

)2

,

(2.25)

where γ = θ(L2/t).

Proof. We apply a similar argument as the proof of Lemma 2.9, in which we
use the bounds of Lemma 2.13 instead.

2.4 Proof of uniform bounds, Proposition 2.6

We will be able to prove all four bounds in very similar ways. In fact, we
introduce some notations that will allow a single argument instead of four.
The letter D will stand for some domain, either D = R, or D = (−L,L)
with any boundary conditions (2.3), (2.4), or (2.5). The solution uD will
be either u, or uL with the corresponding boundary conditions. Finally,
GD(t, x, y) will stand for either the heat kernel Γ(t, x − y), or the Green
function GL(t, x, y) associated with the corresponding boundary conditions.
We gather two important properties.

Lemma 2.16. For any t ∈ [0, T ] and x ∈ D, we have∫ t

0

∫
D
GD(s, x, y) dyds ≤ t,∫ t

0

∫
D
GD(s, x, y)2 dyds ≤ c

√
t,

where the constant c denotes either (2π)−1/2, (2/π)1/2, or c(l) when GD = Γ,
GD = GML , or GD = GNL , respectively.
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It is very surprising that none of the two inequalities depends on the
quantity L, which corresponds to the (half) length of the rod.

Proof. The first property is a direct consequence of equations (A.10), (A.52),
(A.66), and (A.82). Indeed,∫ t

0

∫
D
GD(s, x, y) dyds ≤

∫ t

0
1 ds = t.

The second is a consequence of the semi-group properties (A.6), (A.51),
(A.65), and (A.80), and the uniform bounds (A.50), (A.64), and (A.79).
Indeed,∫ t

0

∫
D
GD(s, x, y)2 dyds =

∫ t

0
GD(2s, x, x) ds ≤

∫ t

0

c

2
√
s
ds = c

√
t.

The case of Neumann boundary conditions need the quantity L2/T ≥ l2. In
that case 1/L ≤ l/

√
t for all t ∈ [0, T ], and

GNL (2s, x, x) ≤ 1

2L
+

1√
2πt
≤ 1

2
√
t

(
1

l
+

√
2√
π

)
=
c(l)

2
√
t
,

where c(l) = l−1 + (2/π)1/2.

In order to deduce properties of the solution uD(t, x) it is very often nec-
essary to go back to the Picard iteration scheme, from which the solution was
constructed. We recall it now. The initial condition initiates the recursive
definition:

u0
D(t, x) :=

∫
D
GD(t, x, y)u0(y) dy.

For n ≥ 0, we define recursively

un+1
D (t, x) = u0

D(t, x) +

∫ t

0

∫
D
GD(t, x, y) b(s, y, unD(s, y)) dyds

+

∫ t

0

∫
D
GD(t− s, x, y)σ(s, y, unD(s, y))W (dyds).

Recalling the fact that the initial condition is bounded in expectation (2.7),
we get, from either (A.52), (A.66), or (A.82), that∥∥u0

D(t, x)
∥∥
Lp(Ω)

≤
∫
D
GD(t, x, y) ‖u0(y)‖Lp(Ω) dy ≤ ‖u0‖ .

Therefore, we have a uniform bound for the initiation of the recursion

C0 := sup
t∈[0,T ]

sup
x∈D

∥∥u0
D(t, x)

∥∥
Lp(Ω)

≤ ‖u0‖ .
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We define in a similar way

Cn := sup
t∈[0,T ]

sup
x∈D
‖unD(t, x)‖Lp(Ω) .

We can prove by induction that each Cn is bounded. Indeed, from
Minkowski’s and Burkholder’s inequalities, given by (B.1) and (B.3), to-
gether with linear growth of the functions b and σ, assumed in (2.6), we
get

∥∥un+1
D (t, x)

∥∥
Lp(Ω)

≤
∥∥u0

D(t, x)
∥∥
Lp(Ω)

+

∫ t

0

∫
D
GD(t− s, x, y)K

(
1 + ‖unD(s, y)‖Lp(Ω)

)
dyds

+ kp

(∫ t

0

∫
D
GD(t− s, x, y)2K2

(
1 + ‖unD(s, y)‖Lp(Ω)

)2
dyds

)1/2

.

Using the induction hypothesis and Lemma 2.16

∥∥un+1
D (t, x)

∥∥
Lp(Ω)

≤ C0 +K(1 + Cn)

∫ t

0

∫
D
GD(s, x, y) dyds

+ kpK(1 + Cn)

(∫ t

0

∫
D
GD(s, x, y)2 dyds

)1/2

≤ C0 +K(1 + Cn)t+ kpK(1 + Cn)
(
c
√
t
)1/2

.

Therefore,

Cn+1 ≤ C0 +K(1 + Cn)T + kpK(1 + Cn)
√
cT 1/4 <∞.

We can now show a much better bound using the Lipschitz assumptions
instead of the linear growth. For further use, let us write

Dn(t) := sup
x∈D

∥∥un+1
D (t, x)− unD(t, x)

∥∥
Lp(Ω)

,

and notice that

sup
t∈[0,T ]

D0(t) ≤ K(1 + C0)T + kpK(1 + C0)
√
cT 1/4 <∞. (2.26)

From Minkowski’s and Burkholder’s inequalities, the Lipschitz condition of
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the functions b and σ, and Lemma 2.16, we get∥∥un+1
D (t, x)− unD(t, x)

∥∥
Lp(Ω)

≤ Lip
∫ t

0

∫
D
GD(t− s, x, y)

∥∥unD(s, y)− un−1
D (s, y)

∥∥
Lp(Ω)

dyds

+ kpLip
(∫ t

0

∫
D
GD(t− s, x, y)2

∥∥unD(s, y)− un−1
D (s, y)

∥∥2

Lp(Ω)
dyds

)1/2

≤ Lip
∫ t

0
Dn−1(s)

∫
D
GD(t− s, x, y) dyds

+ kpLip
(∫ t

0
|Dn−1(s)|2

∫
D
GD(t− s, x, y)2 dyds

)1/2

≤ Lip
∫ t

0
Dn−1(s) ds+ kpLip

(∫ t

0
|Dn−1(s)|2 c

2(t− s)1/2
ds

)1/2

,

Therefore,

Dn(t) ≤ Lip
∫ t

0
Dn−1(s) ds

+
√
c/2kpLip

(∫ t

0
|Dn−1(s)|2 (t− s)−1/2 ds

)1/2

.

Taking squares on both sides and using the inequality (a+b)2 ≤ 2(a2+b2),
as well as Hölder’s inequality, we obtain

|Dn(t)|2 ≤ 2Lip2

(∫ t

0
Dn−1(s) ds

)2

+ck2
pLip

2

∫ t

0
|Dn−1(s)|2 (t−s)−1/2 ds

≤ 2Lip2t

∫ t

0
|Dn−1(s)|2 ds+ ck2

pLip
2

∫ t

0
|Dn−1(s)|2 (t− s)−1/2 ds.

Thus

|Dn(t)|2 ≤ k
∫ t

0
|Dn−1(s)|2 g(t− s), (2.27)

where k = max(2Lip2T, ck2
pLip

2) and g(r) = 1 + r−1/2. Again, we emphasize
the fact that we have no dependence on L for this Gronwall type inequal-
ity (2.27).

The extension of Gronwall’s lemma, presented in the paper of Dalang [11,
Lemmas 15 and 17], enables to conclude, thanks to (2.26) and the facts that∫ T

0 g(r) dr <∞, that the following series converges uniformly on [0, T ],

∞∑
n=0

Dn(t) ≤ Kg sup
t∈[0,T ]

D0(t) <∞,
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where Kg is a constant only depending on k and g. Thus,

‖uD(t, x)‖Lp(Ω) = lim
n→∞

‖unD(t, x)‖Lp(Ω)

≤
∥∥u0

D(t, x)
∥∥
Lp(Ω)

+
∞∑
n=0

Dn(t) ≤ C0 +Kg sup
t∈[0,T ]

D0(t).

Therefore, we can conclude

sup
t∈[0,T ]

sup
x∈D
‖uD(t, x)‖Lp(Ω)

≤ ‖u0‖+Kg

(
K(1 + ‖u0‖)T + kpK(1 + ‖u0‖)

√
cT 1/4

)
<∞,

and that the latter bound doesn’t depend of L. This complete the proof of
Proposition 2.6.

Addendum. If we wet fn(t) = |Dn(t)|2 , then we would have

fn(t) ≤ k
∫ t

0
fn−1(s)g(t− s) = k(g ∗ fn−1)(t).

We can iterate this convolution pattern directly. Moreover, for t ∈ [0, T ], we
could bound

g(t) ≤ 1 +
1

t1/2
≤ (T 1/2 + 1)t−1/2,

and iterate fn(t) ≤ k(T 1/2+1)(g̃∗fn−1)(t) for g̃(t) = 1/
√
t, which can be done

using Beta integrals. An exact computation is given in [6, Proposition 2.2].

2.5 Proof of convergence rate, Theorem 2.4

We will be able to prove both convergence rates in very similar ways. In
fact, we introduce some notations that will allow a single argument instead
of two. We will set the difference F (t, x, y) = Γ(t, x − y) − GL(t, x, y),
where GL will stand for either one of the three Green functions GDD, G

M
L ,

or GNL , associated with Dirichlet, mixed, or Neumann boundary conditions,
respectively. We summarize some properties of that difference. We introduce
the quantity

J(t, x) = e−
(L−x)2

4t + e−
(L+x)2

4t ,

and precise that in the case of Neumann boundary conditions, we need to
introduce the quantity

L2/T ≥ l2 > 0.
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Lemma 2.17. For all t ∈ [0, T ] and x ∈ [−L,L], we have

∫ t

0

∫ L

−L
|F (s, x, y)| dyds ≤ c1tJ(t, x),∫ t

0

∫ L

−L
F (s, x, y)2 dyds ≤ γ

√
tJ(t, x)2,

where c1 = 1/2 and γ = 1/
√

4π, γ = 3/
√

4π, or γ = θ(l2)/
√

4π, in the case
of Dirichlet, mixed, or Neumann boundary conditions, respectively.

Proof. These are precisely Lemmas 2.8, 2.9, 2.11, 2.12, 2.14, 2.15.

We need similar bounds concerning the heat kernel.

Lemma 2.18. For all t > 0 and x ∈ [−L,L], we have

∫ t

0

∫
R\[−L,L]

Γ(t, x− y) dy ≤ c1tJ(t, x),∫ t

0

∫
R\[−L,L]

Γ(t, x− y)2 dy ≤ c2

√
tJ(t/2, x) ≤ c2

√
tJ(t, x)2,

where c1 = 1/2 and c2 = 1/
√

8π.

Proof. These are direct consequences of inequalites (A.16) and (A.17).

We make use of the uniform bounds found in Proposition 2.6. We set

C := sup
t∈[0,T ]

sup
x∈R
‖u(t, x)‖Lp(Ω) ,

CD := sup
t∈[0,T ]

sup
L>0

sup
x∈[−L,L]

‖uL(t, x)‖Lp(Ω) ,

in both cases of Dirichlet or mixed boundary conditions. In the case of
Neumann boundary conditions, the second supremum is over L ≥ l

√
T .

Recalling the representation formulas (2.8) and (2.9) satisfied by the
solutions, we can write

u(t, x)− uL(t, x) =

6∑
i=0

Ii(t, x),
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where,

I0(t, x) =

∫
R

Γ(t, x− y)u0(y) dy −
∫ L

−L
GL(t, x, y)u0(y) dy,

I1(t, x) =

∫ t

0

∫ L

−L
[Γ(t− s, x− y)−GL(t− s, x, y)]b(s, y, uL(s, y)) dyds,

I2(t, x) =

∫ t

0

∫ L

−L
[Γ(t− s, x− y)−GL(t− s, x, y)]σ(s, y, uL(s, y))W (dyds),

I3(t, x) =

∫ t

0

∫ L

−L
Γ(t− s, x− y)[b(s, y, u(s, y))− b(s, y, uL(s, y))] dyds,

I4(t, x) =

∫ t

0

∫ L

−L
Γ(t− s, x− y)[σ(s, y, u(s, y))− σ(s, y, uL(s, y))]W (dyds),

I5(t, x) =

∫ t

0

∫
R\[−L,L]

Γ(t− s, x− y)b(s, y, u(s, y)) dyds,

I6(t, x) =

∫ t

0

∫
R\[−L,L]

Γ(t− s, x− y)σ(s, y, u(s, y))W (dyds).

We now evaluate each Ii. Rewriting the first one, we get

I0(t, x) =

∫ L

−L
[Γ(t, x−y)−GL(t, x, y)]u0(y) dy+

∫
R\[−L,L]

Γ(t, x−y)u0(y) dy.

Thus, using Minkowski’s inequality (B.1) and Lemmas 2.17,

‖I0(t, x)‖Lp(Ω) ≤
∫ L

−L
|F (t, x, y)| ‖u0(y)‖Lp(Ω) dy

+

∫
R\[−L,L]

Γ(t, x− y) ‖u0(y)‖Lp(Ω) dy

≤ 2c1 ‖u0‖ J(t, x). (2.28)

Using Minkowski’s inequality, linear growth of the function b, assumed in (2.6),
and the uniform bounds of Proposition 2.6, we get

‖I1(t, x)‖Lp(Ω) ≤
∫ t

0

∫ L

−L
|F (t− s, x, y)|K

(
1 + ‖uL(s, y)‖Lp(Ω)

)
dyds

≤ K(1 + CD)

∫ t

0

∫ L

−L
F (s, x, y) dyds

≤ K(1 + CD)c1tJ(t, x).

Using Burkholder’s inequality (B.3) and linear growth of the function σ, we
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get

‖I2(t, x)‖2Lp(Ω) ≤ k
2
p

∫ t

0

∫ L

−L
F (t− s, x, y)2 ‖σ(s, y, uL(s, y))‖2Lp(Ω) dyds

≤ k2
pK

2(1 + CD)2

∫ t

0

∫ L

−L
F (s, x, y)2 dyds

≤ k2
pK

2(1 + CD)2γ
√
tJ(t, x)2.

Using the Lipschitz condition of the functions b and σ, we can evaluate

‖I3(t, x)‖Lp(Ω) ≤ Lip
∫ t

0

∫ L

−L
Γ(t− s, x− y) ‖u(s, y)− uL(s, y)‖Lp(Ω) dyds,

and

‖I4(t, x)‖2Lp(Ω)

≤ k2
pLip

2

∫ t

0

∫ L

−L
Γ(t− s, x− y)2 ‖u(s, y)− uL(s, y)‖2Lp(Ω) dyds.

We evaluate the remaining integrals as in the case of I1 and I2.

‖I5(t, x)‖Lp(Ω) ≤ K(1 + C)

∫ t

0

∫
R\[−L,L]

Γ(t− s, x− y) dyds

≤ K(1 + C)c1tJ(t, x),

and

‖I6(t, x)‖2Lp(Ω) ≤ k
2
pK

2(1 + C)2

∫ t

0

∫
R\[−L,L]

Γ(t− s, x− y)2 dyds

≤ k2
pK

2(1 + C)2c2

√
tJ(t, x)2.

Putting everything together and setting

fL(t, x) = ‖u(t, x)− uL(t, x)‖Lp(Ω) ,

we have

fL(t, x) ≤ cJ(t, x) + Lip
∫ t

0

∫ L

−L
Γ(t− s, x− y)fL(s, y) dyds

+ kpLip
(∫ t

0

∫ L

−L
Γ(t− s, x− y)2fL(s, y)2 dyds

)1/2

,

where

c = 2c1 ‖u0‖+ c1K(2 + CD + C)T

+ kpK(1 + CD)
√
γT 1/4 + kpK(1 + C)

√
c2T

1/4.
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Squaring both sides and using (a+ b+ c)2 ≤ 3(a2 + b2 + c2) lead to

fL(t, x)2 ≤ 3c2J(t, x)2 + 3Lip2

(∫ t

0

∫ L

−L
Γ(t− s, x− y)fL(s, y) dyds

)2

+ 3k2
pLip

2

∫ t

0

∫ L

−L
Γ(t− s, x− y)2fL(s, y)2 dyds.

We can bound the middle term using Cauchy-Schwarz inequality,

(∫ t

0

∫ L

−L
Γ(t− s, x− y)fL(s, y) dyds

)2

≤
∫ t

0

∫ L

−L
Γ(t− s, x− y) dyds ·

∫ t

0

∫ L

−L
Γ(t− s, x− y)fL(s, y)2 dyds

≤ t
∫ t

0

∫ L

−L
Γ(t− s, x− y)fL(s, y)2 dyds.

Therefore

fL(t, x)2 ≤ J̃(t, x) + k

∫ t

0

∫ L

−L
H̄(t− s, x− y)fL(s, y)2 dyds, (2.29)

where J̃(t, x) = 3c2J(t, x)2, k = max(3Lip2T, 3k2
pLip

2), and H̄(r, z) :=
Γ(r, z) + Γ(r, z)2.

If we iterate inequality (2.29), we get

fL(t, x)2 ≤ J̃(t, x) + k

∫ t

0

∫ L

−L
H̄(t− s, x− y)J̃(s, y) dyds

+ k2

∫ t

0

∫ L

−L
H̄(t− s, x− y)

∫ s

0

∫ L

−L
H̄(s− r, y − z)fL(r, z)2 dzdr dyds.

Using Fubini’s theorem, the last multiple integral can be re-written as∫ t

0

∫ L

−L
fL(r, z)2

∫ t

r

∫ L

−L
H̄(t− s, x− y)H̄(s− r, y − z) dyds dzdr.

Anticipating the iteration behaviour, we want to prove

Lemma 2.19. For any α ≥ 0, x, z ∈ R and 0 ≤ r < t ≤ T,∫ t

r
(t− s)α

∫
R
H̃(t− s, x− y)H̃(s− r, y − z) dyds

≤ dΓ(α+ 1/2)

Γ(α+ 1)
(t− r)α+1/2H̃(t− r, x− z), (2.30)
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where Γ is the Gamma function, d =
√
T + 1, and

H̄(r, z) = Γ(r, z) + Γ(r, z)2 = Γ(r, z) +
1√
8πr

Γ(r/2, z)

≤ Γ(r, z)

(
1 +

1√
4πr

)
=: H̃(r, z).

For a review on the Gamma function, see Appendix B.2. There, it is re-
called the log-convexity of the Gamma function and the relationship between
the Beta and Gamma functions. Both of these facts will be used.

Addendum. A much easier iteration scheme would be to consider

H̄(r, z) = Γ(r, z) + Γ(r, z)2 = Γ(r, z) +
1√
8πr

Γ(r/2, z)

≤ Γ(r, z)

(
1 +

1√
4πr

)
≤ cΓ(r, z)√

t
=: H̃(r, z),

where c =
√

4πT+1√
4π

. In fact, an exact formula can be found for each iteration

of such H̃, see [6, Proposition 2.2].

Proof. Using the semi-group property of Γ,∫
R
H̃(t− s, x− y)H̃(s− r, y − z) dy

=

(
1 +

1√
4π(t− s)

)(
1 +

1√
4π(s− r)

)
Γ(t− r, x− z).

We can now evaluate four integrals as follows:∫ t

r
(t− s)α ds =

1

α+ 1
(t− r)α+1 ≤ (t− r)α+1/2

√
T

Γ(α+ 1)

Γ(α+ 2)

≤ (t− r)α+1/2
√
T

Γ(α+ 1)

Γ(α+ 3/2)
≤ (t− r)α+1/2

√
T

Γ(α+ 1/2)

Γ(α+ 1)
.

We used the facts that for all α ≥ 0, we have Γ(α + 3/2) ≤ Γ(α + 2), and
that x 7→ Γ(x+ 1/2)/Γ(x) is an increasing function on R∗+ (see 4. and 5. in
Appendix B.2.1). Then we observe that

1√
4π

∫ t

r
(t− s)α−1/2 ds =

(t− r)α+1/2

2
√
π(α+ 1/2)

=
(t− r)α+1/2

2
√
π

Γ(α+ 1/2)

Γ(α+ 3/2)

≤ (t− r)α+1/2

π

Γ(α+ 1/2)

Γ(α+ 1)
,
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since Γ(α+ 1) ≤ (2/
√
π)Γ(α+ 3/2), for all α ≥ 0, by 4. in Appendix B.2.1.

Then, using Beta integrals (Lemma B.1), and the increasing function x 7→
Γ(x+ 1/2)/Γ(x), we have

1√
4π

∫ t

r
(t− s)α(s− r)−1/2 ds =

(t− r)α+1/2

2
√
π

Γ(α+ 1)Γ(1/2)

Γ(α+ 3/2)

≤ (t− r)α+1/2

2

Γ(α+ 1/2)

Γ(α+ 1)
.

Finally, using Beta integrals,

1

4π

∫ t

r
(t− s)α−1/2(s− r)−1/2 ds =

(t− r)α

4π

Γ(α+ 1/2)Γ(1/2)

Γ(α+ 1)

=
(t− r)α+1/2

2

1√
4π(t− r)

Γ(α+ 1/2)

Γ(α+ 1)
,

which ends the proof.

If we keep iterating inequality (2.29), we will deduce the following:

Proposition 2.20. For all t ∈ [0, T ] and x ∈ [−L,L],

fL(t, x)2 ≤ J̃(t, x) + k

∫ t

0
φT (t− s)

∫ L

−L
H̃(t− s, x− y)J̃(s, y) dyds, (2.31)

where φT (r) :=
√
πE1/2,1/2 (kd

√
r) is defined via the Mittag-Leffler functions

Eα,β(z) :=
∞∑
k=0

zk

Γ(αk + β)
, α, β > 0.

Even though we restrict to real arguments z ∈ R, the Mittag-Leffler
functions are entire functions in the complex plane. In the special case
where α = 1 and β = 1, it reduces to the exponential function. It turns
out that E1/2,1/2, hence φT , can be bounded explicitly by the exponential
function as in equation (B.6) of the Appendix B.2.

Proof. Iterating equation (2.29), using Fubini’s theorem and Lemma 2.19
with α = 0,

fL(t, x)2 ≤ J̃(t, x) + k

∫ t

0

∫ L

−L
H̃(t− s, x− y)J̃(s, y) dyds

+ k(kd)
Γ(1/2)

Γ(1)

∫ t

0
(t− s)1/2

∫ L

−L
H̃(t− s, x− y)fL(s, y)2 dyds.
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Again, using equation (2.29), Fubini’s theorem and Lemma 2.19 with α =
1/2,

fL(t, x)2 ≤ J̃(t, x)

+ k

∫ t

0

(
1 +

Γ(1/2)

Γ(1)
kd(t− s)1/2

)∫ L

−L
H̃(t− s, x− y)J̃(s, y) dyds

+ k(kd)2 Γ(1/2)

Γ(3/2)

∫ t

0
(t− s)

∫ L

−L
H̃(t− s, x− y)fL(s, y)2 dyds.

Repeating the same arguments as before with α = 1, then α = 3/2, and so
on, we get

fL(t, x)2 ≤ J̃(t, x)

+ k

∫ t

0
ds

(
1 +

Γ(1/2)

Γ(1)
kd(t− s)1/2 + · · ·+ Γ(1/2)

Γ(n/2)
(kd)n−1(t− s)(n−1)/2

)
×
∫ L

−L
dy H̃(t− s, x− y)J̃(s, y)

+ k(kd)n
Γ(1/2)

Γ((n+ 1)/2)

∫ t

0
(t− s)n/2

∫ L

−L
H̃(t− s, x− y)fL(s, y)2 dyds.

We easily observe that the expression in the parenthesis in the middle term
above is the partial sum, from 0 to n− 1, of

√
πE1/2,1/2

(
kd
√
t− s

)
. There-

fore, for all n ≥ 1,

fL(t, x)2 ≤ J̃(t, x) + k

∫ t

0
φT (t− s)

∫ L

−L
H̃(t− s, x− y)J̃(s, y) dyds

+ k(kd)n
Γ(1/2)

Γ((n+ 1)/2)

∫ t

0
ds (t− s)n/2

×
∫ L

−L
dy H̃(t− s, x− y)fL(s, y)2.

Thanks to the uniform bounds of Proposition 2.6, the function fL(t, x) is
uniformly bounded by some constant Q, for all t ∈ [0, T ], x ∈ [−L,L], and
L > 0. In the case of Neumann boundary conditions, we recall that we must
restrict to L ≥ l

√
T . If we bound∫ t

0
(t− s)n/2

∫ L

−L
H̃(t− s, x− y) dyds ≤

∫ t

0
sn/2

(
1 +

1√
4πs

)
ds

=
t(n+2)/2

(n+ 2)/2
+

1√
4π

t(n+1)/2

(n+ 1)/2
,

and use the following property of the Gamma function:

n+ 2

2
Γ ((n+ 1)/2) ≥ n+ 1

2
Γ ((n+ 1)/2) = Γ ((n+ 3)/2) ,
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we obtain

fL(t, x)2 ≤ J̃(t, x) + k

∫ t

0
φT (t− s)

∫ L

−L
H̃(t− s, x− y)J̃(s, y) dyds

+ k(kd)n
Γ(1/2)

Γ((n+ 3)/2)

(
t(n+2)/2 +

t(n+1)/2

√
4π

)
Q2.

To conclude, we let n→∞.

Proof of Theorems 2.4 and 2.5. Thanks to inequality (2.31) and the fact
that φT (t) is bounded in [0, T ], it is sufficient to evaluate∫ t

0

∫ L

−L
H̃(t− s, x− y)J̃(s, y) dyds.

Recalling that

J̃(t, x) = 3c2J(t, x)2 ≤ 6c2
√

2πt [Γ(t/2, L− x) + Γ(t/2, L+ x)] ,

it is then sufficient to evaluate the following, which uses the semi-group
property of Γ and the Beta integrals:

∫ t

0

√
2πs

∫ L

−L
H̃(t− s, x− y)Γ(s/2, L− y) dyds

≤
∫ t

0

√
2πs

(
1 +

1√
4π(t− s)

)
Γ(t− s/2, L− x) ds

≤
√

2Γ(t, L− x)

∫ t

0

√
2πs

(
1 +

1√
4π(t− s)

)
ds

=
e−

(L−x)2
4t

√
t

∫ t

0

√
s

(
1 +

1√
4π(t− s)

)
ds

=
e−

(L−x)2
4t

√
t

(
2t
√
t

3
+
t
√
π

4

)
= e−

(L−x)2
4t

(
2t

3
+

√
πt

4

)
.

The second term is bounded similarly, therefore,

fL(t, x)2 ≤ 3c2

(
e−

(L−x)2
4t + e−

(L+x)2

4t

)2

+ 6c2k ‖φT ‖L∞([0,T ])

(
2t

3
+

√
πt

4

)(
e−

(L−x)2
4t + e−

(L+x)2

4t

)
,

which concludes the proof.
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2.6 Remark on Neumann boundary conditions

In the case of Neumann boundary conditions (2.4), we had to restrict to

L2/T ≥ l2 > 0,

for some l > 0. A reason for this assumption is explained in [19, Corol-
lary 3.2.8 and Theorem 3.2.9]. There it is proved that there is a fundamental
difference between the Green functions associated to Dirichlet and Neumann
boundary conditions. In fact, that difference is valid for a broader class of
parabolic equations and in higher space dimension. There, it is proved that
the Green function associated to Dirichlet boundary conditions satisfies

0 ≤ GD(s, x, y) ≤ c1

sd/2
e
− |x−y|

2

c2s , ∀s > 0, ∀x, y ∈ D,

for some constants c1, c2 that may depend on the domain D. In the case of
Neumann boundary conditions, we don’t have the same behaviour as s→∞,
and a possible bound is

0 ≤ GN (s, x, y) ≤ c1 max(1, s−d/2)e
− |x−y|

2

c2s , ∀s > 0, ∀x, y ∈ D.

In the case of the heat equation in one space dimension in which D =
(−L,L), we have the dilation property

GDL (t, x, y) =
1

L
GD1

(
t

L2
,
x

L
,
y

L

)
, GNL (t, x, y) =

1

L
GN1

(
t

L2
,
x

L
,
y

L

)
.

In the case of Dirichlet, the dilation property implies that

GDL (t, x, y) =
1

L
GD1

(
t

L2
,
x

L
,
y

L

)
≤ c1√

t
e
− (x−y)2

c2t ,

for all t > 0 and x, y ∈ [−L,L], where the constant c1, c2 are now independent
of the length L. Compare with (A.50).
In the case of Neumann, the dilation property implies that

GNL (t, x, y) =
1

L
GN1

(
t

L2
,
x

L
,
y

L

)
≤ c1 max(1/L, 1/

√
t)e
− (x−y)2

c2t ,

for all t > 0 and x, y ∈ [−L,L], where the constant c1, c2 are now independent
of the length L. Compare with (A.64).

The only hope to reach an upper bound with the heat kernel, is to impose
the condition

1

L
=

√
t

L

1√
t
≤ l−1 1√

t
,

with
√
t/L ≤ l−1, which is equivalent to L2/t ≥ l2 > 0. This holds for all

t ∈ [0, T ], if L2/T ≥ l2 > 0.
The same problem occurs for the heat equation in higher space dimension.

Indeed, in the case of a rectangular domain, the Green function is the product
of the one dimensional Green functions.



Chapter 3

Distributional solutions in
higher space dimension

In this chapter, we will study the heat equation in higher space dimension,
d ≥ 2, with additive white noise, i.e. the case where the functions b = 0 and
σ = 1. First, we will assume vanishing initial condition, and then generalize
to bounded initial data.

We will compare the behavior of the solution on the whole space Rd with
the solution on some bounded domain D ⊆ Rd, with Dirichlet boundary
conditions, 

∂u

∂t
(t, x) = ∆u(t, x) + Ẇ , t > 0, x ∈ Rd,

u(0, x) = 0, x ∈ Rd,
(3.1)

and 
∂uD
∂t

(t, x) = ∆uD(t, x) + Ẇ , t > 0, x ∈ D,

uD(t, x) = 0, t > 0, x ∈ ∂D
uD(0, x) = 0, x ∈ D,

(3.2)

where Ẇ is white noise on R+ × Rd. As we shall see, the regularity of the
boundary ∂D will play an important role.

In the case of additive white noise in dimension d ≥ 2, it is well known
that no random field solution exits to these problems. It is a consequence of
the fact that the squared heat kernel is not integrable on [0, T ]×Rd, and the
fact that the squared Green function, associated to Dirichlet or Neumann
boundary conditions, is not integrable on [0, T ]×D.

It is possible though to interpret solutions in the sense of distributions. To
find their respective weak formulation, we informally multiply both sides by
some test function ψ(x), integrate in time and in space, and apply integration
by parts. The weak formulation associated to problem (3.1) is to find a

43
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random process {u(t) : t > 0} such that for all ψ ∈ S(Rd),

〈u(t), ψ〉 =

∫ t

0
〈u(s),∆ψ〉 ds+

∫ t

0

∫
Rd
ψ(y)W (dyds). (3.3)

The weak formulation associated to problem (3.2) is to find a random process
{uD(t) : t > 0} such that for all ψ ∈ S(D),

〈uD(t), ψ〉 =

∫ t

0
〈uD(s),∆ψ〉 ds+

∫ t

0

∫
D
ψ(y)W (dyds), (3.4)

where S(D) = {ψ ∈ C∞(D̄) : ψ = 0 on ∂D}. Functions in C∞(D̄) are func-
tions in C∞(D) with the property that each derivative admits a continuous
extension to D̄. The requirement ψ = 0 on ∂D for (3.4) plays the role of a
Dirichlet boundary condition. The requirement ψ ∈ S(Rd) for (3.3) assumes
that u(t) and W should not grow too quickly at infinity. In fact, it makes
sense a fortiori. Indeed, we have the following existence and uniqueness
results from [55, Theorems 5.1 and 5.2]:

Theorem 3.1. There exists a unique process {u(t) : t > 0} with values in
S ′(Rd) which satisfies (3.3). It is given by

〈u(t), ψ〉 :=

∫ t

0

∫
Rd

(∫
Rd
ψ(x)Γ(t− s, x− y) dx

)
W (dyds), (3.5)

where Γ is the heat kernel given by Γ(t, x) = (4πt)−d/2e−|x|
2/4t.

Theorem 3.2. There exists a process {uD(t) : t > 0} with values in S ′(Rd),
which satisfies (3.4) for any ψ ∈ S(D) ∩ S(Rd). It can be extended to a
stochastic process {u(t, ψ) : t > 0, ψ ∈ S(D)}; this process is unique. It is
given by

〈uD(t), ψ〉 :=

∫ t

0

∫
D

(∫
D
ψ(x)GD(t− s, x, y) dx

)
W (dyds), (3.6)

where GD is the Green function to the heat equation associated to Dirich-
let boundary conditions. As a consequence, the support of each distribution
uD(t) is contained in D̄.

Remark. The existence and uniqueness results from [55] are in fact much
more general. They guarantee existence and uniqueness when the Laplacian
operator is replaced by a uniformly elliptic self-adjoint second order differen-
tial operator with bounded smooth coefficients. White noise can be replaced
by some space derivatives of some worthy (continuous) martingale measure
with tempered dominating measure. Neumann boundary conditions are also
covered. In the present case of white noise, both processes are continuous as
a function of t.

We treat the deterministic case in Appendix D. There, a proof of exis-
tence and uniqueness is given in the class of continuous process with values
in S ′(Rd).
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3.1 Main results and general ideas

As before, we would like to conclude that uD(t) converges to u(t) as
the domain D expands to the whole space. Should we also expect some
exponential rate of convergence? In Theorem 2.4 of the previous chapter,
the expressions (L − x)2 and (L + x)2 correspond to the distance of some
point x ∈ (−L,L) to the right and left boundary of the interval. In the
present case of distributions, we cannot evaluate the solutions at any given
point. Thus, a pointwise convergence is out of range. We will analyse how
the distributional solutions u and uD differ from each other when evaluated
against some test function ψ ∈ C∞c (Rd). The quantity of interest is the
difference

〈u(t), ψ〉 − 〈uD(t), ψ〉 .

How should translate the distance of some point to the boundary? If the
support of the test function is contained into the domain, supp(ψ) ⊆ D, then
we could consider the distance between its support and the boundary of the
domain ∂D. For that matter, we introduced δ = dist(supp(ψ), ∂D). In fact,
we have

Proposition 3.3. For any test function ψ ∈ C∞c (Rd), with supp(ψ) ⊆ D,
and t ∈ [0, T ],

‖〈u(t), ψ〉 − 〈uD(t), ψ〉‖L2(Ω) ≤ c ‖ψ‖L2(Rd) exp

(
− δ2

4ct

)
,

where c is a constant independent of t and ψ, but which depends on the
domain D.

The latter is not sufficient to conclude exponential convergence. Indeed,
the fact that the constant c in the exponential depends on the domain D
prevents from doing so. To bypass this problem, we fix, once and for all, some
open bounded domain D, containing the origin, and consider the dilations

LD := {Lx ∈ Rd : x ∈ D},

for any L > 0. This was in fact the procedure of the previous chapter in
one space dimension. There, we considered the symmetric intervals (−L,L),
which are the scaled versions of (−1, 1).

The computations will be in the same spirit as in the previous chapter.
In order to evaluate the difference (3.1), we will need to consider the positive
difference

FD(t, x, y) := Γ(t, x− y)−GD(t, x, y)

between the heat kernel and the Green function, see (A.30) for positivity.
What we should really consider is the difference Γ(t, x − y) − GLD(t, x, y),
where GLD is the Green function associated with the dilated domain LD. In
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the particular case of the heat equation, the latter difference can be expressed
from the former. This is a consequence of the scaling property of both the
heat kernel and the Green function, see (A.32).

FLD(t, x, y) = Γ(t, x− y)−GLD(t, x, y)

=
1

Ld
[
Γ(t/L2, (x− y)/L)−GD(t/L2, x/L, y/L)

]
=

1

Ld
FD(t/L2, x/L, y/L).

The last component we shall need is an appropriate bound on the latter
difference FD. In the present case of Dirichlet boundary conditions, the
bound (2.16) can be generalized to any open domain. The result is given in
Lemma 4.5.

We introduce the concise notation uL(t) instead of uLD(t). We also set
δ(L) = dist (supp(ψ), ∂(LD)) for any test function ψ ∈ C∞c (Rd), whose
support is contained into LD for some L large enough. The following result
will be proved in Section 3.3.

Theorem 3.4. For any open domain D and any test function ψ ∈ C∞c (Rd)
such that supp(ψ) ⊆ LD, we have

‖〈u(t), ψ〉 − 〈uL(t), ψ〉‖L2(Ω) ≤ C ‖ψ‖L2(Rd)

√
te−

δ(L)2

4ct , (3.7)

for all t > 0. In fact, both constants C and c depend neither on D, L > 0,
nor ψ. In particular, if D contains the origin, then for L large enough,

‖〈u(t), ψ〉 − 〈uL(t), ψ〉‖L2(Ω) ≤ C ‖ψ‖L2(Rd)

√
te−

L2

4ct .

It is a fair question to ask whether the previous convergence result can be
generalized. As we shall see, it does in some local version of Sobolev spaces.
First, recall the usual Sobolev spaces

Hs =

{
f ∈ S ′(Rd) :

∫
Rd

(
1 + |ξ|2

)s
|F(f)(ξ)|2 dξ <∞

}
. (3.8)

The index s ∈ R accounts for the regularity of the distribution, see Ap-
pendix C for some explanations. In particular, we have the following chain
of inclusions:

S ⊆ Hs ⊆ Hr ⊆ L2(Rd) ⊆ H−r ⊆ H−s ⊆ S ′,

for any two real numbers 0 ≤ r ≤ s.
In order to show convergence in the usual version of Sobolev spaces Hs,

we would need to consider the Fourier transform, in the sense of distribu-
tions, of the solution u(t), and hope that it is given by a (random) function.
Unfortunately, it is not. The following result will be proved in Section 3.4.
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Proposition 3.5. Fix any t > 0.There exists no jointly measurable locally
mean-square integrable C-valued process X : (x, ω)→ X(x, ω) such that a.s.,
for all ψ ∈ C∞c (Rd),

〈F(u(t)), ψ〉 =

∫
Rd
X(x)ψ(x) dx.

In order for a (non-random) function to belong to some Hs space, it
must be regular enough locally, and regular enough at infinity, i.e. satisfy
some integrability condition. For example, even though the constant one
function is infinitely smooth locally, it does not belong to any of the Hs

spaces because of its lack of integrability. In fact, its Fourier transform is
the Dirac delta measure.

An effective way to focus on the local regularity is to multiply by some
function that vanishes at infinity. For example, the product 1 · ψ of the
constant one function with any ψ ∈ C∞c (Rd) belongs to all Hs spaces. The
solution u(t) has the same lack of regularity at infinity.

Lemma 3.6. Fix t > 0. For any φ ∈ C∞c (Rd), the Fourier transform of the
product φ · u(t) is given by the random function

F(φ · u(t))(ξ) =

∫ t

0

∫
Rd
F [φ · Γ(t− s, • − y)] (ξ)W (dsdy).

Moreover, it is a Gaussian process, and with probability one u(t) ∈ Hr
loc, for

all r < −d/2 + 1.

To put this result in perspective, it was already known that uD(t) ∈
Hr(D), for r < −d/2 + 1, where Hr(D) is some version of Sobolev spaces in
the bounded (smooth) domain D, see [55, Remarks after Proposition 5.3].

To circumvent the lack of integrability of the solution u(t), we introduce
the local version of Sobolev spaces

Hs
loc =

{
f ∈ S ′(Rd) : ∀φ ∈ C∞c (Rd), φ · f ∈ Hs

}
.

In Lemma C.2, we show the expected inclusion Hs ⊆ Hs
loc, for all s ∈ R.

In order to analyse the difference φu(t) − φuD(t) = φ(u(t) − uL(t)), we
shall again use appropriate bounds on the difference Γ − GD. This time
though, we shall require bounds on the difference of their derivatives. One
way to guarantee that GD is sufficiently differentiable is to assume conditions
on the regularity of the boundary of the domain. The following result will
be proved in Section 3.6.

Theorem 3.7. Let α ∈ (0, 1) and n ∈ N. Fix a bounded domain D containing
the origin whose boundary belongs to C2+n+α. Fix t > 0. Then uL(t)→ u(t)
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in Hr
loc, for all r < n − d/2, as L → ∞. Moreover, for any test function

φ ∈ C∞c (Rd), and L large enough so that supp(φ) ⊂ LD, we have

E
[
‖φ(u(t)− uL(t))‖2Hr(Rd)

]
≤ c ‖φ‖2Hn te

−δ(L)2/ctν(δ(L)),

where ν(δ(L)) = O(1), as L→∞, and c = c(α, d, T,D, r, n) does not depend
on L > 0.

In particular, if ∂D is C∞, then with probability one the difference u(t)−
uL(t) ∈ C∞(K) for any compact set K ⊆ LD.

The last statement is a consequence of the following Sobolev embed-
ding [35, Theorem 3.32 and Exercise 3.34]:

Theorem 3.8. Let l ≥ 0. If s > l+ d/2, then any distribution in Hs can be
represented by a C l(Rd) function.

The last Section 3.7 focuses on generalizing both convergence results to
the case of non-vanishing initial condition. In fact, Theorem 3.7 remains
valid for vanishing Neumann boundary conditions.

Final remark: If we are not interested in the convergence rate at all, then
the second part of Theorem 3.7 is expected to remain valid for a broader class
of equations. Indeed, for second order parabolic differential equations, the
fundamental solution and the Green function satisfy bounds such as (3.9),
and their difference verifies (3.10), see [21, Theorem 1.1] and [22, Chapter 6].

3.2 Some Prerequisites

The precise relation between the regularity of the boundary ∂D of some
open bounded domain D and the regularity of the Green function GD, and
its difference with the heat kernel

FD(t, x, y) = Γ(t, x− y)−GD(t, x, y)

is given in the following result, see [21, Theorem 1.1]. The fact that the Green
function is bounded by the heat kernel was already known, see (A.30). The
fact that the difference FD is bounded by the heat kernel and the distance
to the boundary was already known, see Lemmas 2.7 and 4.5. The fact
that the derivatives of the heat kernel can be bounded by itself times some
polynomial in t was already known, see (A.22).

Theorem 3.9. Suppose the boundary ∂D belongs to C2+n+α, for some in-
teger n ≥ 0 and α ∈ (0, 1). Then, the Green function GD is continuous on
(0, T ]× D̄ × D̄. It satisfies G(t, x, y) = 0 if x ∈ ∂D, and∣∣∣∂kt ∂lxGD(t, x, y)

∣∣∣ ≤ Ct−k−|l|/2Γc(t, x− y); (3.9)∣∣∣∂kt ∂lxFD(t, x, y)
∣∣∣ ≤ Ct−k−|l|/2Γc (t, |x− y|+ dist(y, ∂D)) , (3.10)
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for all t ∈ (0, T ] and x, y ∈ D, for as long as the total order of derivation
2k + |l| ≤ 2 + n. Furthermore,∣∣∣∂kt ∂lxGD(t, x, y)− ∂kt ∂lxGD(t, x0, y)

∣∣∣
≤ C

(
|x− x0|√

t

)α
t−n/2Γc(t, x̄− y), (3.11)

∣∣∣∂kt ∂lxFD(t, x, y)− ∂kt ∂lxFD(t, x0, y)
∣∣∣

≤ C
(
|x− x0|√

t

)α
t−n/2Γc(t, |x̄− y|+ dist(y, ∂D)), (3.12)

for all t ∈ (0, T ] and x, x0, y ∈ D, only when 2k+ |l| = 2 + n, with |x̄− y| =
min (|x− y| , |x0 − y|) . Both constants c and C depend on d, T, n, α and the
domain D.

The bounds on the difference FD are deduced from the bounds satisfied
by the Green function GD, in which we replace the expressions of |x− y|
and |x̄− y| by |x− y|+ dist(y, ∂D) and |x̄− y|+ dist(y, ∂D), respectively.

The fact that the constants c and C in equation (3.10) depend on the do-
main is very inconvenient. As already mentioned, we fix some open bounded
domain D containing the origin and consider its dilations LD = {Lx ∈ Rd :
x ∈ D}, for L > 0. Using the scaling properties, we have

FLD(t, x, y) =
1

Ld
FD(t/L2, x/L, y/L),

and the following result is easily deduced.

Corollary 3.10. If the boundary ∂D belongs to C2+n+α, then∣∣∣∂kt ∂lxFLD(t, x, y)
∣∣∣ ≤ Ct−k−|l|/2Γc (t, |x− y|+ dist(y, ∂LD)) , (3.13)

for all t ∈ (0, TL2] and x, y ∈ LD, as long as 2k+ |l| ≤ 2+n. The constant c
and C depend only on n, α, d, T, and the domain D, but not on the constant
L > 0.

Proof. We give the intuition by proving only the case k = 1 and l = 0. By
the chain rule, inequality (3.10) and the scaling property of the heat kernel

∂FLD
∂t

(t, x, y) =
1

Ld
1

L2

∂FD
∂t

(t/L2, x/L, y/L)

≤ 1

Ld
1

L2
C(t/L2)−1Γc

(
t/L2, |x/L− y/L|+ dist(y/L, ∂D)

)
=

1

Ld
Ct−1Γc

(
t/L2,

|x− y|+ dist(y, ∂LD)

L

)
= Ct−1Γc (t, |x− y|+ dist(y, ∂LD)) .
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The equalities are true for all t > 0 and x, y ∈ Rd. The inequality is valid only
for t/L2 ∈ (0, T ] and x/L, y/L ∈ D, thus t ∈ (0, TL2] and x, y ∈ LD.

In the present case of the heat equation, the difference FD is symmet-
ric in the x and y variable, FD(t, x, y) = FD(t, y, x) from equation (A.30).
Therefore, the expression dist(y, ∂D) can be replaced by dist(x, ∂D) in the
bound (3.10) at least when k = 0 and l = 0. If FD were not symmetric, we
could use the following trick: The bound dist(x, ∂D) ≤ |x− y|+ dist(y, ∂D)
implies easily

|x− y|+ dist(y, ∂D) ≥ 1

2
|x− y|+ 1

2
dist(y, ∂D) +

1

2
dist(x, ∂D),

(|x− y|+ dist(y, ∂D))2 ≥ 1

4

(
|x− y|2 + dist(y, ∂D)2 + dist(x, ∂D)2

)
.

Therefore, upon replacing c by 4c, inequality (3.10) remains valid if the
expression dist(y, ∂D) is replaced by dist(y, ∂D) + dist(x, ∂D). A similar
reasoning holds for the bound (3.13). We introduce the notation

Jc(t, x;D) = exp

{
−dist(x, ∂D)2

ct

}
.

Corollary 3.11. If the boundary ∂D belongs to C2+n+α, then∣∣∣∂kt ∂lxGLD(t, x, y)
∣∣∣ ≤ Ct−k−|l|/2Γc(t, x− y),∣∣∣∂kt ∂lxFLD(t, x, y)
∣∣∣ ≤ Ct−k−|l|/2Γc(t, x− y)Jc(t, x;LD)Jc(t, y;LD),

(3.14)

for all t ∈ (0, TL2] and x, y ∈ LD, as long as 2k+ |l| ≤ 2+n. The constant c
and C depend only on n, α, d, T, and the domain D, but not on the constant
L > 0.

Remark. A similar result is valid for Neumann boundary conditions. Indeed,
both inequalities (3.9) and (3.10) are valid in the case of Neumann bound-
ary conditions by [21, Theorem 1.1] and the scaling property of the Green
function is also satisfied.

3.3 Convergence in distribution

In order to prove Theorem 3.4, we explicitely evaluate the difference

〈u(t), ψ〉 − 〈uD(t), ψ〉 =

3∑
i=1

Ii(t),
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for ψ ∈ C∞c (Rd), where

I1(t) =

∫ t

0

∫
D

(∫
D
ψ(x) [Γ(t− s, x− y)−GD(t− s, x, y)] dx

)
W (dyds),

I2(t) =

∫ t

0

∫
Rd

(∫
Rd\D

ψ(x)Γ(t− s, x− y) dx

)
W (dyds),

I3(t) =

∫ t

0

∫
Rd\D

(∫
D
ψ(x)Γ(t− s, x− y) dx

)
W (dyds).

By assumption, supp(ψ) ⊆ D, and therefore I2(t) is identically zero. To
simplify notations, we set D′ := supp(ψ), and δ = dist(D′, ∂D).

We now analyse the L2(Ω)-norm of I3(t).

‖I3(t)‖L2(Ω) =

[∫ t

0
ds

∫
Rd\D

dy

(∫
D
ψ(x)Γ(t− s, x− y) dx

)2
]1/2

=

[∫ t

0
J(t− s)2 ds

]1/2

=

[∫ t

0
J(s)2 ds

]1/2

,

where

J(s) =

[∫
Rd\D

dy

(∫
D′
ψ(x)Γ(s, x− y) dx

)2
]1/2

=

[∫
Rd
dy 1Rd\D(y)

(∫
Rd
1D′(x)ψ(x)Γ(s, x− y) dx

)2
]1/2

=

[∫
Rd
dy

(∫
Rd
1D′(x+ y)1Rd\D(y)ψ(x+ y)Γ(s, x) dx

)2
]1/2

≤
∫
Rd

Γ(s, x)K(x)1/2 dx,

thanks to Minkowski’s inequality for integrals (B.1), where

K(x) =

∫
Rd
1D′(x+ y)1Rd\D(y)ψ2(x+ y) dy

=

∫
Rd
1D′(y)1Rd\D(y − x)ψ2(y) dy

=

∫
Rd
1D′(y)1Rd\D(y − x)ψ2(y) dy.

We can bound

1D′(y)1Rd\D(y − x) ≤ 1D′(y)1Rd\B(0,δ)(x)
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Indeed, for y ∈ D′ and y − x ∈ Rd \ D, we have ‖x‖ = ‖y − (y − x)‖ ≥
dist(D′, ∂D) = δ. Finally, we get

‖I3(t)‖L2(Ω) ≤ ‖ψ‖L2(Rd)

[∫ t

0
ds

(∫
Rd

Γ(s, x)1Rd\B(0,δ)(x) dx

)2
]1/2

.

(3.15)
We can estimate the inner integral as follows:

Lemma 3.12. Independently of δ > 0, there are c, C ≥ 1 such that∫
‖x‖≥δ

Γ(s, x) dx ≤ Ce−
δ2

4cs . (3.16)

Proof. Applying spherical coordinates, setting φ(z) = e−z
2/2/
√

2π, and us-
ing inequalites (A.18) or (A.19), we get∫

‖x‖≥δ
Γ(s, x) dx =

wd−1

(4πs)d/2

∫ ∞
δ

zd−1e−
z2

4s dz

=
wd−1

(2π)(d−1)/2

∫ ∞
δ/
√

2s
zd−1φ(z) dz

≤ CPd−2

(
δ√
2s

)
e−

δ2

4s

where wd−1 is the area of the sphere in Rd, and Pd−2 a polynomial of degree
d− 2. We conclude with inequality (A.21).

This leads directly to

‖I3(t)‖L2(Ω) ≤ C ‖ψ‖L2(Rd)

√
te−

δ2

4ct .

It remains to estimate I1(t) :

‖I1(t)‖2L2(Ω) =

∫ t

0

∫
D

(∫
D
ψ(x)FD(t− s, x, y) dx

)2

dy ds.

Recall again that supp(ψ) = D′ ⊆ D, and δ = dist(supp(ψ), ∂D). Using
Lemma 4.5, we have∫

D

(∫
D
ψ(x)FD(s, x, y) dx

)2

dy

≤ C2

∫
D

(∫
D′
|ψ(x)|Γc(s, x− y)Jc(s, x) dx

)2

dy

≤ C2 exp

(
− δ2

4cs

)∫
Rd

(∫
Rd
|ψ(x)|Γc(s, y − x) dx

)2

dy

= C2 exp

(
− δ2

4cs

)
‖|ψ| ∗ Γc(s)‖2L2(Rd)

≤ C2 exp

(
− δ2

4cs

)
‖ψ‖2L2(Rd) ,
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where the last inequality follows from the convolution inequality (B.2) ap-
plied to f = |ψ| and g(x) = Γc(s, x). Finally, we get

‖I1(t)‖L2(Ω) ≤ C ‖ψ‖L2(Rd)

√
te−

δ2

4ct .

This conclude the proof of Theorem 3.4. Indeed, replacing D by LD
everywhere, and setting δ(L) = dist(D′, LD), we observe that each bound
for Ii(t) remains valid thanks to Corollary 3.11.

Addendum. We give a simplification of the derivation involving I3, that re-
quire Lemma 4.8. It applies to bound

Γ(s, x−y)1Rd\D(y)1D′(x) ≤ cd/2Γc(s, x−y)Jc(s, x) ≤ cd/2Γc(s, x−y)e−
δ2

4ct ,

for any s ≤ t. Therefore

J(s)2 =

∫
Rd
dy

(∫
Rd
1Rd\D(y)1D′(x)ψ(x)Γ(s, x− y) dx

)2

≤ cde−
δ2

2ct ‖|ψ| ∗ Γc‖2L2(Rd) ≤ c
de−

δ2

2ct ‖ψ‖2L2(Rd) .

Then

‖I3(t)‖L2(Ω) =

[∫ t

0
J(s)2 ds

]1/2

≤ cd/2e−
δ2

4ct ‖ψ‖L2(Rd)

√
t.

which conclude the argument.

3.4 Regularity of the distributional solution u(t)

We start this section by some informal computations. Those should
somehow reveal the lack of integrability of the distributional solution u(t).

In one space dimension, we know that the (random field) solution u(t, x)
is continuous in both variables t, x. In the case of additive white noise, i.e.
b ≡ 0 and σ ≡ 1, say with vanishing initial condition u0 ≡ 0, it is given by

u(t, x) =

∫ t

0

∫
R

Γ(t− s, x− y)W (dyds),

see equation (2.8). Even in this very simple case, its Fourier transform in
space is not well defined as a function. Indeed, an application of Fubini’s
theorem, whose hypotheses are not satisfied, see (B.4), would give

F(u(t))(ξ) =

∫
R
e−2πiξx

(∫ t

0

∫
R

Γ(t− s, x− y)W (dsdy)

)
dx

≈
∫ t

0

∫
R

(∫
R
e−2πiξxΓ(t− s, x− y) dx

)
W (dsdy), (3.17)
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from which we can conclude that it is not a well-defined process in L2(Ω) :

E
[
|F(u(t))(ξ)|2

]
=

∫ t

0

∫
R

∣∣∣∣∫
R
e−2πiξxΓ(t− s, x− y) dx

∣∣∣∣2 dsdy
=

∫ t

0

∫
R

∣∣∣e−2πiye−4π2(t−s)ξ2
∣∣∣2 dsdy =∞,

since FΓ(t)(ξ) = e−4π2t|ξ|2 .
A rigorous way to obtain the Fourier transform, as a distribution, in the

general setting of Rd, makes use of equation (3.5). For any ψ ∈ S(Rd), we
have

〈F(u(t)), ψ〉 := 〈u(t),F(ψ)〉

=

∫ t

0

∫
Rd

(∫
Rd
F(ψ)(ξ)Γ(t− s, ξ − y) dξ

)
W (dyds)

=

∫ t

0

∫
Rd

(∫
Rd
ψ(ξ)

(∫
Rd
e−2πiξxΓ(t− s, x− y) dx

)
dξ

)
W (dsdy).

(3.18)

where the first equality is obtained using Plancherel identity. Again, an infor-
mal computation using Fubini’s theorem, whose hypotheses are not satisfied,
would lead to

〈F(u(t)), ψ〉 ≈∫
Rd
dξ ψ(ξ)

∫ t

0

∫
Rd

(∫
Rd
e−2πiξxΓ(t− s, x− y) dx

)
W (dsdy).

Therefore, if F(u(t)) were to be a function, then it should resemble equa-
tion (3.17).

We now give the proof of Propositon 3.5. It was inspired by the proof
of [11, Theorem 11]. In order to avoid back and forth, we recall that propo-
sition here.

Proposition. Fix t > 0. There exists no jointly measurable locally mean-
square integrable C-valued process X : (x, ω) → X(x, ω) such that a.s., for
all ψ ∈ C∞c (Rd),

〈F(u(t)), ψ〉 =

∫
Rd
X(x)ψ(x) dx. (3.19)

Proof. By contradiction, we suppose that such a process exists. We de-
fine the following approximation to the identity: let φ ∈ C∞c (Rd) be a
non-negative bump function1 with compact support and unit mass, and set

1In the present case, we choose φ and δ > 0 so that φ ≡ 1 in B(0, δ/2), 0 ≤ φ ≤ c,
φ ≡ 0 in Rd \B(0, δ), and

∫
Rd φ(x) dx = 1.
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φn(x) = ndφ(nx). We will estimate, in two different ways, the quantity

E
[
|〈F(u(t)), ψn〉|2

]
,

for ψn(x) = φn(x0 − x), and let n → ∞. Using assumption (3.19), we shall
show that the limit is finite. Using its definition (3.18), we shall show that
the limit is infinite.

From (3.19) and Cauchy-Schwarz inequality, we get

E
[
|〈F(u(t)), ψn〉|2

]
=

∫
Rd

∫
Rd
φn(x0 − x)φn(x0 − y)E

[
X(x)X(y)

]
dydx

≤
∫
Rd
φn(x0 − x)E

[
|X(x)|2

]1/2
dx

×
∫
Rd
φn(x0 − y)E

[
|X(y)|2

]1/2
dy.

This is a convolution in Rd of the locally integrable function E
[
|X(x)|2

]1/2

with an approximation to the identity φn of compact support. Thus, us-
ing [52, Theorem 2.1 of Chapter 3], we get that for almost every x0 ∈ Rd,∫

Rd
φn(x0 − x)E

[
|X(x)|2

]1/2
dx −→ E

[
|X(x0)|2

]1/2
, as n→∞,

and therefore,

lim sup
n→∞

E
[
|〈F(u(t)), ψn〉|2

]
≤ E

[
|X(x0)|2

]
<∞.

From (3.18) and Parseval’s identity, we get

E
[
|〈F(u(t)), ψn〉|2

]
=

∫ t

0

∫
Rd
|(F(ψn) ∗ Γ(t− s)) (y)|2 dyds

=

∫ t

0

∫
Rd
|ψn(ξ)FΓ(t− s)(ξ)|2 dξds

=

∫ t

0

∫
Rd
|φn(x0 − ξ)|2FΓ(2(t− s))(ξ) dξds,

the last equality follows from the fact that FΓ(t)(ξ) = e−4π2t|ξ|2 . The fact
that φn is raised to the second power in the previous integral will imply
that the limit is infinite. With our specific definition of φ, we have that
φn(x0 − ξ) = nd for ξ ∈ B(x0, δ/(2n)), and we can define the following
approximation to the identity: φ̃n(x) = ndφ̃(nx), where φ̃ := c̃φ1B(0,δ/2),

where c̃ is such that
∫
Rd φ̃(x) dx = 1, i.e. c̃ =

(
vd(δ/2)d

)−1
, with vd the
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volume of the unit ball in Rd. We can estimate∫ t

0

∫
Rd
|φn(x0 − ξ)|2FΓ(2(t− s))(ξ) dξds

≥
∫ t

0

∫
B(x0,δ/(2n))

|φn(x0 − ξ)|2FΓ(2(t− s))(ξ) dξds

=

∫ t

0

nd

c̃

∫
B(x0,δ/(2n))

φ̃n(x0 − ξ)FΓ(2(t− s))(ξ) dξds

= ndvd(δ/2)d
∫ t

0

∫
Rd
φ̃n(x0 − ξ)FΓ(2(t− s))(ξ) dξds

By the same result [52, Theorem 2.1 in Chapter 3], we can ensure that for
every x0 ∈ Rd,∫

Rd
φ̃n(x0 − ξ)FΓ(2(t− s))(ξ) dξ −→ FΓ(2(t− s))(x0), as n→∞,

since ξ 7→ FΓ(2(t − s))(ξ) is continuous. Therefore, using Fatou’s Lemma,
we can conclude that

lim inf
n→∞

E
[
|〈F(u(t)), ψn〉|2

]
≥ vd(δ/2)d lim inf

n→∞

[
nd
∫ t

0

∫
Rd
φ̃n(x0 − ξ)FΓ(2(t− s))(ξ) dξds

]
≥ vd(δ/2)d lim

n→∞
nd ×

∫ t

0
lim
n→∞

∫
Rd
φ̃n(x0 − ξ)FΓ(2(t− s))(ξ) dξds

=∞,

since∫ t

0
lim
n→∞

∫
Rd
φ̃n(x0 − ξ)FΓ(2(t− s))(ξ) dξds

=

∫ t

0
FΓ(2(t− s))(x0) ds > 0.

This contradicts the fact that X was assumed to be locally mean-square
integrable.

As already mentioned, an effective way to remove the lack of integrability
is to multiply by some regular test function with compact support. That
product will reveal the local regularity.

Lemma. Fix t > 0. For any φ ∈ C∞c (Rd), the Fourier transform of φ · u(t)
is given by

F(φ · u(t))(ξ) =

∫ t

0

∫
Rd
F (φ · Γ(t− s, • − y)) (ξ)W (dsdy). (3.20)
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Moreover, it is a Gaussian process, and with probability one u(t) ∈ Hr
loc, for

all r < −d/2 + 1.

Proof. Fix φ ∈ C∞c (Rd) and ψ ∈ S(Rd). By the definition of the Fourier
transform and equation (3.5),

〈F(φ · u(t)), ψ〉 = 〈φ · u(t),F(ψ)〉 = 〈u(t), φ · F(ψ)〉

=

∫ t

0

∫
Rd

(∫
Rd
φ(x)F(ψ)(x) Γ(t− s, x− y) dx

)
W (dsdy)

=

∫ t

0

∫
Rd

(∫
Rd
ψ(x)F (φ · Γ(t− s, • − y)) (x) dx

)
W (dsdy)

=

∫
Rd
ψ(x)

∫ t

0

∫
Rd
F (φ · Γ(t− s, • − y)) (x)W (dsdy),

thanks to the Plancherel and Fubini theorems, and therefore, equation (3.20)
follows. We verify Fubini’s hypothesis. We consider the finite measure space
(Rd, |ψ(x)| dx), and we need to show that the following integral is finite:∫ t

0
ds

∫
Rd
dy

∫
Rd
|ψ(x)| dx |F(φ · Γ(t− s, • − y))(x)|2

≤ ‖ψ‖L1(Rd)

∫ t

0
ds

∫
Rd
dy sup

x∈Rd
|F(φ · Γ(t− s, • − y))(x)|2

≤ ‖ψ‖L1(Rd)

∫ t

0
ds

∫
Rd
dy

∣∣∣∣∫
Rd
|φ(x)|Γ(t− s, x− y) dx

∣∣∣∣2
= ‖ψ‖L1(Rd)

∫ t

0
‖|φ| ∗ Γ(t− s)‖2L2(Rd) ds

≤ ‖ψ‖L1(Rd)

∫ t

0
‖φ‖2L2(Rd) ‖Γ(t− s)‖2L1(Rd) ds

= t ‖ψ‖L1(Rd) ‖φ‖
2
L2(Rd) <∞.

The last inequality is the convolution inequality (B.2). The next careful
computations will yield the proposed local Sobolev exponent r < −d/2 + 1.

E
[
|F (φ · u(t)) (ξ)|2

]
=

∫ t

0

∫
Rd
|F (φ · Γ(t− s, • − y)) (ξ)|2 dsdy

=

∫ t

0
ds

∫
Rd
dy

∫
Rd
dx e2πiξ·xφ(x)Γ(t− s, x− y)

×
∫
Rd
dz e−2πiξ·zφ(z)Γ(t− s, z − y)

=

∫ t

0
ds

∫
Rd
dx e2πiξ·xφ(x)

∫
Rd
dz e−2πiξ·zφ(z)

×
∫
Rd
dy Γ(t− s, x− y)Γ(t− s, z − y)
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=

∫ t

0
ds

∫
Rd
dx e2πiξ·xφ(x)

∫
Rd
dz e−2πiξ·zφ(z)Γ(2(t− s), z − x),

where the last equality comes from the semi-group property of the funda-
mental solution, equation (A.6). Using the fact the Fourier transform of a
product is the convolution of the Fourier transforms, applied to the functions
φ(z) and z 7→ Γ(2(t− s), z − x), we get

E
[
|F (φ · u(t)) (ξ)|2

]
=

∫ t

0
ds

∫
Rd
dx e2πiξ·xφ(x)

∫
Rd
dzFφ(z)e−2πi(ξ−z)·xe−8π2(t−s)|ξ−z|2

=

∫ t

0
ds

∫
Rd
dzFφ(z)e−8π2(t−s)|ξ−z|2

∫
Rd
dx e2πiz·xφ(x)

=

∫ t

0
ds

∫
Rd
dz |Fφ(z)|2 e−8π2(t−s)|ξ−z|2 .

To evaluate the last double integral, we will use the following easy facts.
(1− e−x)/x ≤ 2/(1 + x), for all x ≥ 0, and thus∫ t

0
e−λsds =

1− e−λt

λ
= t

1− e−λt

λt
≤ t 2

1 + λt
=

2

1/t+ λ
. (3.21)

Therefore,∫ t

0
e−8π2(t−s)|ξ−z|2 ds ≤ 2

1/t+ 8π2 |ξ − z|2
≤ 2 max(t, 1/8π2)

1 + |ξ − z|2
≤ c1 + |z|2

1 + |ξ|2
,

by equation (C.1) in Appendix C, with c = 4 max(t, 1/8π2). Hence

E
[
|F (φ · u(t)) (ξ)|2

]
≤ c

1 + |ξ|2

∫
Rd
|Fφ(z)|2 (1 + |z|2) dz

=
c

1 + |ξ|2
‖φ‖2H1 <∞,

since φ ∈ C∞0 . In fact, we can conclude that

E
[
‖φ · u(t)‖2Hr

]
=

∫
Rd
dξ (1 + |ξ|2)rE

[
|F (φ · u(t)) (ξ)|2

]
≤ c ‖φ‖2H1

∫
Rd
dξ (1 + |ξ|2)r−1.

The last integral is finite if and only if 2(r − 1) < −d which is equivalent to
r < −d/2 + 1.
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3.5 Regularity of the distributional solution uD(t)

We have the following result.

Lemma 3.13. In the sense of distributions, the Fourier transform of uD(t)
is a random function given by

F(uD(t))(ξ) =

∫ t

0

∫
D

(∫
D
e−2πiξ·xGD(t− s, x, y) dx

)
W (dsdy). (3.22)

Moreover, it is a mean-square bounded Gaussian process, and with probability
one uD(t) ∈ Hr, for all r < −d/2.

Proof. Recall that the definition of uD(t) is given in equation (3.6). By
Plancherel identity, we get

〈F(uD(t)), ψ〉 := 〈uD(t),Fψ〉

=

∫ t

0

∫
D

(∫
D
F(ψ)(x)GD(t− s, x, y) dx

)
W (dyds)

=

∫ t

0

∫
Rd

(∫
Rd
dxψ(x)

∫
Rd
dξ e−2πix·ξ 1D(ξ)1D(y)GD(t− s, ξ, y)

)
W (dyds)

=

∫ t

0

∫
Rd

(∫
Rd
dxψ(x)g(s, x, y)

)
W (dyds),

for g(x, s, y) =
∫
Rd e

−2πix·ξ 1D(ξ)1D(y)GD(t − s, ξ, y) dξ. In order to use
Fubini’s theorem, applied to the finite measure space (Rd, |ψ(x)| dx), we
need to check that the following integral is finite:∫ t

0
ds

∫
Rd
dy

∫
Rd
dx |ψ(x)| |g(s, x, y)|2 ≤

∫ t

0
ds

∫
D
dy

∫
Rd
|ψ(x)| dx

= t |D| ‖ψ‖L1(Rd) <∞,

since |g(s, x, y)| ≤ 1D(y)
∫
DGD(t− s, ξ, y) dξ ≤ 1D(y), by inequality (A.31).

Therefore,

〈F(uD(t)), ψ〉 =

∫
Rd
dxψ(x)

(∫ t

0

∫
Rd
g(s, x, y)W (dyds)

)
=

∫
Rd
dxψ(x)

∫ t

0

∫
D

(∫
D
e−2πix·ξGD(t− s, ξ, y) dξ

)
W (dyds),

which proves equation (3.22) and the fact that it is a well-defined stochastic
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integral. Moreover,

E
[
|F(uD(t))(ξ)|2

]
=

∫ t

0

∫
D

∣∣∣∣∫
D
e−2πiξ·xGD(t− s, x, y) dx

∣∣∣∣2 dsdy
≤
∫ t

0

∫
D

∣∣∣∣∫
D
GD(t− s, x, y) dx

∣∣∣∣2 dsdy
≤
∫ t

0
ds

∫
D
dy = t |D| <∞,

which proves that the process ξ 7→ F(uD(t))(ξ) is a mean-square bounded
Gaussian process. To conclude the proof, we observe that

E
[
‖uD(t)‖2Hr

]
=

∫
Rd
dξ (1 + |ξ|2)rE

[
|F (uD(t)) (ξ)|2

]
≤ t |D|

∫
Rd
dξ (1 + |ξ|2)r,

which is finite if r < −d/2.

In a similar manner, an analogous formula is also valid for the Fourier
transform of φ · uD(t) :

Lemma 3.14. Fix t > 0. For any φ ∈ C∞c (Rd), we have

F(φ · uD(t))(ξ) =

∫ t

0

∫
D
F (φ1DGD(t− s, •, y)) (ξ)W (dsdy). (3.23)

Moreover,

E
[
|F (φ · uD(t)) (ξ)|2

]
≤ t · ‖φ‖2L2(Rd) <∞.

Proof. We use the same derivation as in the proof of Lemma 3.6, except we
replace every occurence of Γ(t− s, x− y) by GD(t− s, x, y) and Rd by D. In
order to verify Fubini’s hypothesis, we make use of inequality (A.31).

E
[
|F (φ · uD(t)) (ξ)|2

]
=

∫ t

0
ds

∫
D
dy |F (φ1DGD(t− s, •, y)) (ξ)|2

=

∫ t

0
ds

∫
D
dy

∣∣∣∣∫
D
e−2πix·ξφ(x)GD(t− s, x, y) dx

∣∣∣∣2
≤
∫ t

0
ds

∫
D
dy

∣∣∣∣∫
D
|φ(x)|GD(t− s, x, y) dx

∣∣∣∣2
≤ ‖φ‖2L2(D)

∫ t

0
ds = t ‖φ‖2L2(D) .



3.6. Convergence in local Sobolev spaces 61

where the last inequality is derived by Cauchy-Schwarz inequatliy,∣∣∣∣∫
D
φ(x)GD(s, x, y) dx

∣∣∣∣2 ≤ ∫
D
|φ(x)|2GD(s, x, y) dx ·

∫
D
GD(s, x, y) dx

≤
∫
D
|φ(x)|2GD(s, x, y) dx.

This concludes the proof.

3.6 Convergence in local Sobolev spaces

We know that both distributional solutions u(t) and uD(t) belong to
some Hs

loc space. We shall see that their difference u(t)−uD(t) can be more
regular that each of them, provided the boundary of the domain is sufficiently
regular. We now prove Theorem 3.7

We will proceed as in the proof of Theorem 3.4. First we will consider the
difference u(t) − uD(t) and evaluate it for some test function φ ∈ C∞c (Rd),
whose support D′ := supp(ψ) ⊆ D. We set δ = dist(D′, D). We should need
some constant ν = ν(δ).

All computations will remain valid if each occurence of D is replaced
by the dilation LD. Each occurence of δ and ν should also be replaced by
δ(L) = dist(D′, LD) and ν(L). This is possible thanks to Corollary 3.11.

We are interested in the values of r ∈ R, for which the integral∫
Rd

(
1 + |ξ|2

)r
|F(φ [u(t)− uD(t)])(ξ)|2 dξ

is finite. Its expectation is given by∫
Rd
dξ
(

1 + |ξ|2
)r

E
[
|F(φ [u(t)− uD(t)])(ξ)|2

]
=

∫
Rd
dξ
(

1 + |ξ|2
)r

E
[
I2 + J2

]
,

where

I =

∫ t

0

∫
D
F (φ · FD(t− s, •, y)) (ξ)W (dsdy),

J =

∫ t

0

∫
Rd\D

F (φ · Γ(t− s, • − y)) (ξ)W (dsdy).

Indeed, we can write the difference F(φ · u(t))(ξ)−F(φ · uD(t))(ξ) as∫ t

0

∫
Rd
F (φ · Γ(t− s, • − y)) (ξ)W (dsdy)

−
∫ t

0

∫
D
F (φ1DGD(t− s, •, y)) (ξ)W (dsdy),
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by (3.20) and (3.23). Thus,

F(φ · u(t))(ξ)−F(φ · uD(t))(ξ)

=

∫ t

0

∫
D
F (φ · FD(t− s, •, y)) (ξ)W (dsdy)

−
∫ t

0

∫
Rd\D

F (φ · Γ(t− s, • − y)) (ξ)W (dsdy) = I − J.

Both stochastic integrals have zero mean and are independent, indeed the
integrals are over the disjoint sets [0, t] × D and [0, t] × Rd \ D. Thus, we
have E[|I − J |2] = E[I2] + E[J2].

We start with the computation of E[I2]. Fix ξ ∈ Rd and β ∈ Nd a multi-
index with |β| ≤ n. Later, β will depend on ξ. We will prove

E[I2] ≤ C

|ξβ|2
‖φ‖2Hn te

−δ2/ctν. (3.24)

Using integration by parts |β| times,

E[I2] =

∫ t

0

∫
D
|F (φ · FD(t− s, •, y)) (ξ)|2 dsdy

=

∫ t

0

∫
D

∣∣∣∣∫
Rd
e−2πiξ·xφ(x)FD(s, x, y) dx

∣∣∣∣2 dsdy
=

∫ t

0

∫
D

∣∣∣∣ ∫
supp(φ)

e−2πiξ·x

(2πi)|β|ξβ
∂|β| (φ · FD(s, •, y))

∂xβ
(x) dx

∣∣∣∣2 dsdy.
We estimate now the inner integral. By the Leibniz derivation formula, and
inequality (3.14)

∣∣∣∣ ∫
supp(φ)

e−2πiξ·x

(2πi)|β|ξβ
∂|β| (φ · FD(s, •, y))

∂xβ
(x) dx

∣∣∣∣
≤ C

|ξβ|

∫
supp(φ)

∑
γ≤β

(
β

γ

) ∣∣∣∣∣∂|β−γ|φ∂xβ−γ
(x)

∣∣∣∣∣
∣∣∣∣∣∂|γ|FD∂xγ

(s, x, y)

∣∣∣∣∣ dx
≤ C

|ξβ|
∑
γ≤β

e−δ
2/cs

s|γ|/2

∫
supp(φ)

∣∣∣∣∣∂|β−γ|φ∂xβ−γ
(x)

∣∣∣∣∣Γc(s, x− y) dx

≤ C

|ξβ|
∑
γ≤β

e−δ
2/cs

s|γ|/2

(∣∣∣∣∣∂|β−γ|φ∂xβ−γ

∣∣∣∣∣ ∗ Γc(s)

)
(y).



3.6. Convergence in local Sobolev spaces 63

Thus, using the convolution inequality (B.2),

E[I2] ≤ C

|ξβ|2

∫ t

0


∥∥∥∥∥∥
∑
γ≤β

e−δ
2/cs

s|γ|/2

(∣∣∣∣∣∂|β−γ|φ∂xβ−γ

∣∣∣∣∣ ∗ Γc(s)

)∥∥∥∥∥∥
L2(Rd)


2

ds

≤ C

|ξβ|2

∫ t

0

∑
γ≤β

e−δ
2/cs

s|γ|/2

∥∥∥∥∥∂|β−γ|φ∂xβ−γ

∥∥∥∥∥
L2(Rd)

· ‖Γc(s)‖L1(Rd)

2

ds.

Using Cauchy-Schwarz inequality, (
∑

i aibi)
2 ≤

(∑
i a

2
i

) (∑
i b

2
i

)
,

E[I2] ≤ C

|ξβ|2
‖φ‖2Hn

∑
γ≤β

∫ t

0

e−2δ2/cs

s|γ|
ds

In the latter, we used the equivalent norm on Hn, given by the sum of all
L2 norms of the partial derivatives of order up to |β| = n, see Appendix C.
Rewriting 1/s|γ| = (δ2|γ|/s|γ|)/δ2|γ|, and recalling (A.21), we can conclude

E[I2] ≤ C

|ξβ|2
‖φ‖2Hn te

−δ2/ct
∑
γ≤β

1

δ2|γ| ,

which proves (3.24) for ν =
∑

γ≤β
1

δ2|γ|
.

We will show a similar bound

E[J2] ≤ C

|ξβ|2
‖φ‖2Hn te

−δ2/ctν. (3.25)

In a similar way, using integration by parts and Leibniz derivation formula,
we get

E[J2] ≤ C

|ξβ|2

∫ t

0
ds

∫
Rd\D

dy

∣∣∣∣∣∣
∑
γ≤β

∫
Rd

∣∣∣∣∂|β−γ|φ∂xβ−γ
(x)

∣∣∣∣∣∣∣∣∂|γ|Γ∂xγ
(s, x− y)

∣∣∣∣dx
∣∣∣∣∣∣
2

.

An application of the usual Minkowski inequality in L2((0, t) × (Rd \ D))
enables to take the sum out

C

|ξβ|2

∑
γ≤β

∫ t

0
ds

∫
Rd\D

dy

∣∣∣∣∣
∫
Rd

∣∣∣∣∂|β−γ|φ∂xβ−γ
(x)

∣∣∣∣∣∣∣∣∂|γ|Γ∂xγ
(s, x− y)

∣∣∣∣dx
∣∣∣∣∣
2
1/2


2

.

Each partial derivative of the heat kernel is bounded as in (A.22). If we
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follow a similar reasoning as the one leading to (3.15), we get

E[J2] ≤ C

|ξβ|2

∑
γ≤β

∥∥∥∥∥∂|β−γ|φ∂xβ−γ

∥∥∥∥∥
L2(Rd)

∫ t

0

ds

s|γ|

∣∣∣∣∣
∫
‖x‖≥δ

Γc(s, x) dx

∣∣∣∣∣
2
1/2


2

≤ C

|ξβ|2
‖φ‖2Hn

∑
γ≤β

∫ t

0

ds

s|γ|

(∫
‖x‖≥δ

Γc(s, x) dx

)2

The constant c > 1 will increase from line to line. Using bounds (3.16)
and (A.21),

E[J2] ≤ C

|ξβ|2
‖φ‖2Hn

∑
γ≤β

∫ t

0

ds

s|γ|
e−

δ2

4cs

=
C

|ξβ|2
‖φ‖2Hn

∑
γ≤β

1

δ2|γ|

∫ t

0

δ2|γ|

s|γ|
e−

δ2

4cs ds

≤ C

|ξβ|2
‖φ‖2Hn te

− δ2

4ct

∑
γ≤β

1

δ2|γ| ,

which proves (3.25).
In conclusion, we have proved that

E
[∫

Rd
dξ
(

1 + |ξ|2
)r
|F(φ(u(t)− uD(t)))(ξ)|2

]
≤ C ‖φ‖2Hn te

−δ2/ctν

∫
Rd
dξ
(

1 + |ξ|2
)r 1

|ξβ|2
(3.26)

We will now make use of the fact that β was any multi-index satisfying
0 ≤ |β| ≤ n. For each ξ ∈ Rd, we can choose β that maximizes

∣∣ξβ∣∣ . For
ξ ∈ Rd in the unit ball, we can choose β = 0, so that

∣∣ξβ∣∣ = 1. For ξ ∈ Rd

outside of the unit ball, at least one component satisfies |ξi| ≥ |ξ| /
√
d, and

setting βi = n yields
∣∣ξβ∣∣ ≥ d−n/2 |ξ|n . This makes the integral in the right

hand side of (3.26) converge for any value r < n− d/2.
This concludes the proof Theorem 3.7.

Addendum. Using Lemma 4.8, we can again simplify the derivation of E[J2].

Final remark A similar reasoning can be applied to the case of vanishing
Neumann boundary conditions. Every bound involving the Green function
should be replaced by either Lemma 4.7, Corollary 3.11 or the remark fol-
lowing it.
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3.7 Non-vanishing initial data

In this section, we generalize both convergence results, Theorem 3.4 and
Theorem 3.7, to the case of a non-vanishing (random) initial data u0 : Ω ×
Rd → R independent of Ẇ and bounded in expectation, i.e., for some p ≥ 2,

‖u0‖ := sup
x∈Rd

E [|u0(x)|p]1/p <∞. (3.27)

Recall that D is assumed to be an open bounded domain containing
the origin and with boundary of class C2+n+α, for some integer n ≥ 0 and
α ∈ (0, 1). We consider the weak formulations associated to the following
initial value problems:{

∂u
∂t (t, x) = ∆u(t, x) + Ẇ , t > 0, x ∈ Rd,
u(0, x) = u0(x), x ∈ Rd,

(3.28)

and 
∂uD
∂t (t, x) = ∆uD(t, x) + Ẇ , t > 0, x ∈ D,
uD(t, x) = 0, t > 0, x ∈ ∂D
uD(0, x) = u0(x), x ∈ D,

(3.29)

where Ẇ is white noise on R+×Rd. To find their respective weak formulation,
we informally multiply by some test function ψ(x), integrate in time and in
space, and apply integration by parts.

The weak formulation to problem (3.28) is to find a process {u(t) : t > 0}
such that for all ψ ∈ S(Rd),

〈u(t), ψ〉 =

∫
Rd
u0(y)ψ(y) dy +

∫ t

0
〈u(s),∆ψ〉 ds+

∫ t

0

∫
Rd
ψ(y)W (dyds).

(3.30)
The weak formulation to problem (3.29) is to find a process {uD(t) : t >

0} such that for all ψ ∈ S(D),

〈uD(t), ψ〉 =

∫
D
u0(y)ψ(y) dy +

∫ t

0
〈uD(s),∆ψ〉 ds+

∫ t

0

∫
D
ψ(y)W (dyds),

(3.31)
where S(D) = {ψ ∈ C∞(D̄) : ψ = 0 on ∂D}.

Theorem 3.15. There exists a unique process {u(t) : t > 0} with values in
S ′(Rd) which satisfies (3.30). It is given by

〈u(t), ψ〉 := It0(ψ) +

∫ t

0

∫
Rd

(∫
Rd
ψ(x)Γ(t− s, x− y) dx

)
W (dyds), (3.32)

where Γ is the heat kernel in d-space dimensions given by (A.8), and

It0(ψ) :=

∫
Rd
dxψ(x)

∫
Rd
dy Γ(t, x− y)u0(y)

is the contribution of the initial condition.
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Proof. Using Theorem 3.1, it is sufficient to verify that

It0(ψ) =

∫
Rd
u0(y)ψ(y) dy +

∫ t

0
Is0(∆ψ) ds.

Using Fubini’s theorem, we get∫ t

0
Is0(∆ψ) ds =

∫
Rd
dy u0(y)

∫ t

0
ds

∫
Rd
dx∆ψ(x)Γ(s, x− y).

Using twice integration by parts in the x variable, and recalling both prop-
erties (A.5) satisfied by Γ, we get

∫ t

0
Is0(∆ψ) ds =

∫
Rd
dy u0(y)

∫
Rd
dxψ(x)

∫ t

0
ds
∂Γ

∂t
(s, x− y)

=

∫
Rd
dy u0(y)

∫
Rd
dxψ(x)Γ(t, x− y)−

∫
Rd
u0(y)ψ(y) dy,

since Γ(0, x− y) = δ(x− y).

Theorem 3.16. There exists a process {uD(t) : t > 0} with values in S ′(Rd)
which satisfies (3.31), for any ψ ∈ S(D) ∩ S(Rd). It can be extended to a
stochastic process {u(t, ψ) : t > 0, ψ ∈ S(D)}; this process is unique. It is
given by

〈uD(t), ψ〉 := J t0(ψ) +

∫ t

0

∫
D

(∫
D
ψ(x)GD(t− s, x, y) dx

)
W (dyds) (3.33)

where GD is the Green function for the heat equation in D with Dirichlet
boundary conditions, and

J t0(ψ) :=

∫
D
dxψ(x)

∫
D
dy GD(t, x, y)u0(y),

is the contribution of the initial condition. As a consequence, the support of
each distribution uD(t) is contained in D̄.

Proof. Using Theorem 3.2, it is sufficient to verify that

J t0(ψ) =

∫
D
u0(y)ψ(y) dy +

∫ t

0
Js0(∆ψ) ds.

Fix y ∈ D, then two applications of integration by parts lead to∫
D

∆ψ(x)GD(s, x, y) dx =

∫
D
ψ(x)∆xGD(s, x, y) dx,
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since ψ(x) = 0 = G(s, x, y) for any x ∈ ∂D. Then recalling the proper-
ties (A.26) satisfied by the Green function, we get∫ t

0
Js0(∆ψ) ds =

∫
D
dy u0(y)

∫ t

0
ds

∫
D
dx∆ψ(x)GD(s, x, y)

=

∫
D
dy u0(y)

∫
D
dxψ(x)

∫ t

0
ds
∂GD
∂t

(s, x, y)

=

∫
D
dy u0(y)

∫
D
dxψ(x)GD(t, x, y)−

∫
D
u0(y)ψ(y) dy,

since GD(0, x, y) = δ(x− y).

We check that indeed the initial contributions It0 and J t0 are Schwartz
distributions.

Lemma 3.17. If the initial condition u0 satisfies (3.27), then there exist
versions of It0 and J t0 with value in S ′(Rd).

Proof. Let (ψn)∞n=0 ⊆ S(Rd) be a sequence converging to 0 in S(Rd). It is
enough to show that both It0(ψn) and J t0(ψn) converge to 0 in L2(Ω).

E
[∣∣It0(ψn)

∣∣2] = E
[ ∫

Rd
dxψn(x)

∫
Rd
dy Γ(t, x− y)u0(y)

×
∫
Rd
dv ψn(v)

∫
Rd
dw Γ(t, v − w)u0(w)

]
=

∫
Rd
dxψn(x)

∫
Rd
dv ψn(v)

∫
Rd
dy Γ(t, x− y)

×
∫
Rd
dw Γ(t, v − w)E [u0(y)u0(w)]

≤ ‖u0‖2
∫
Rd
dx |ψn(x)|

∫
Rd
dv |ψn(v)| = ‖u0‖2 ‖ψn‖2L1(Rd) ,

which converges to 0. We have used the fact that
∫
Rd Γ(t, x − y) dy = 1

for all x ∈ Rd. The argument for J t0 is similar, we instead use the fact that∫
DGD(t, x, y) dy ≤ 1 for all x ∈ D.

3.7.1 Convergence in distributions

The objectif of this section is to generalize Theorem 3.4 to the present
case of random non-vanishing initial data.

Theorem 3.18. For any open domain D and any test function ψ ∈ C∞c (Rd)
such that supp(ψ) ⊆ LD, we have

‖〈u(t), ψ〉 − 〈uL(t), ψ〉‖L2(Ω) ≤ C max
(
‖ψ‖L1(Rd) , ‖ψ‖L2(Rd)

)√
te−

δ(L)2

4ct ,
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for all t > 0. In fact, both constants C and c depend neither on D, L > 0,
nor ψ. In particular, if D contains the origin, then for L large enough,

‖〈u(t), ψ〉 − 〈uL(t), ψ〉‖L2(Ω) ≤ C max
(
‖ψ‖L1(Rd) , ‖ψ‖L2(Rd)

)√
te−

L2

4ct .

Proof. As in Section 3.3, we rewrite the difference

〈u(t), ψ〉 − 〈uD(t), ψ〉 =
6∑
i=1

Ii(t),

where

I1(t) =

∫ t

0

∫
D

(∫
D
ψ(x) [Γ(t− s, x− y)−GD(t− s, x, y)] dx

)
W (dyds),

I2(t) =

∫ t

0

∫
Rd

(∫
Rd\D

ψ(x)Γ(t− s, x− y) dx

)
W (dyds),

I3(t) =

∫ t

0

∫
Rd\D

(∫
D
ψ(x)Γ(t− s, x− y) dx

)
W (dyds),

I4(t) =

∫
D
dy u0(y)

∫
D
dxψ(x) [Γ(t, x− y)−GD(t, x, y)] ,

I5(t) =

∫
Rd
dy u0(y)

∫
Rd\D

dxψ(x)Γ(t, x− y),

I6(t) =

∫
Rd\D

dy u0(y)

∫
D
dxψ(x)Γ(t, x− y).

Observe that Ii(t) and Ii+3(t) play a similar role, for i = 1, 2, 3. To handle
Ii+3(t), we will use similar ideas as for Ii(t).

By assumption, supp(ψ) ⊆ D, and therefore I5(t) is identically zero. To
simplify notations, we set D′ := supp(ψ), and δ = dist(D′, ∂D). By Cauchy-
Schwarz inequality, we have

E
[
|I6(t)|2

]
= E

[ ∫
Rd\D

dy u0(y)

∫
D′
dxψ(x)Γ(t, x− y)

×
∫
Rd\D

dw u0(w)

∫
D′
dv ψ(v)Γ(t, v − w)

]
=

∫
Rd\D

dy

∫
D′
dxψ(x)Γ(t, x− y)

×
∫
Rd\D

dw

∫
D′
dv ψ(v)Γ(t, v − w)E [u0(y)u0(w)]

≤ ‖u0‖2
(∫

Rd\D
dy

∫
D′
dx |ψ(x)|Γ(t, x− y)

)2

.
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By Lemma 4.8,∫
Rd\D

dy

∫
D′
dx |ψ(x)|Γ(t, x− y) ≤ cd/2e−

δ2

4ct ‖|ψ| ∗ Γc(t)‖L1(Rd)

= cd/2 ‖ψ‖L1(Rd) e
− δ2

4ct ,

and thus
‖I6(t)‖L2(Ω) ≤ c

d/2 ‖u0‖ ‖ψ‖L1(Rd) e
− δ2

4ct .

For the remaining term I4(t), as in the computations of I6(t), we can
bound

E
[
|I4(t)|2

]
≤ ‖u0‖2

(∫
D
dy

∫
D′
dx |ψ(x)|FD(t, x, y)

)2

,

where FD = Γ−GD. As in the computations of I1(t), using Lemma 4.5, we
can bound∫

D
dy

∫
D′
dx |ψ(x)|FD(t, x, y)

≤ C exp

(
− δ2

4ct

)∫
Rd
dy

∫
Rd
dx |ψ(x)|Γc(t, y − x)

= C exp

(
− δ2

4ct

)
‖ψ‖L1(Rd) .

Therefore,

‖I4(t)‖L2(Ω) ≤ C ‖u0‖ ‖ψ‖L1(Rd) exp

(
− δ2

4ct

)
.

Replacing D by LD, and setting δ(L) = dist(D′, LD), we observe that
each bound for Ii(t) remains valid. This concludes the proof.

3.7.2 Convergence in Sobolev spaces

The objectif of this section is to generalize Theorem 3.7 to the case of
non-random and non-vanishing initial data.

Theorem 3.19. Suppose u0 is a deterministic bounded Borel function. Let
α ∈ (0, 1) and n ∈ N. Fix a bounded domain D containing the origin whose
boundary belongs to C2+n+α. Then uL(t)→ u(t) in Hr

loc, for all r < n−d/2,
as L→∞, where u(t) and uL(t) are defined in (3.32) and (3.33). The rate
of convergence is the same as in Theorem 3.7.

In particular, if ∂D is C∞, then with probability one the difference u(t)−
uL(t) ∈ C∞(K) for any compact set K ⊆ LD.

Remark. A similar reasoning can be applied to the case of vanishing Neu-
mann boundary conditions. See the final remark of Section 3.6.
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If u0 is non-random, the contributions of the initial conditions are distri-
butions given by the following two functions It0 : Rd → R and J t0 : Rd → R
defined by

It0(x) =

∫
Rd
u0(y)Γ(t, x− y) dy,

J t0(x) = 1D(x)

∫
D
u0(y)GD(t, x, y) dy.

We analyse their regularity now.

Lemma 3.20. The function It0 is C∞b (Rd) ⊆ S ′ and the function J t0 is
C2+n+α(D) ∩ C0(Rd) ⊆ S ′. Furthermore, let φ ∈ C∞0 (D). Then φ · It0 ∈
S(Rd) ⊂ Hs(Rd), for all s ∈ R, and φ · J t0 ∈ Hs(Rd), for all s < 2 + n+ α.

Proof. Because u0 is assumed to be bounded, and the derivatives of the heat
kernel satisfy bound (A.22), dominated convergence theorem implies that

∂|β|It0
∂xβ

(x) =

∫
Rd
u0(y)

∂|β|Γ

∂xβ
(t, x− y) dy =

∫
Rd
u0(x− y)

∂|β|Γ

∂xβ
(t, y) dy.

Thus every partial derivative of It0 is bounded, whence It0 ∈ C∞b (Rd). For
φ ∈ C∞0 (D), it is clear that φ · It0 ∈ C∞c (Rd) ⊂ S(Rd).

Using bounds (3.9) and (3.11), we can deduce that J t0 ∈ C2+n+α(D), and
thus φ·J t0 ∈ C

2+n+α
0 (Rd) ⊆ Hs(Rd), for any s < 2+n+α by Lemma C.3.

We need to show that the distribution J t0 converges to the distribution It0
in the local versions of the Sobolev spaces. We are interested in the functions
f : Rd → R and g : D → R defined by

f(x) :=

∫
Rd\D

u0(y)Γ(t, x− y) dy,

g(x) :=

∫
D
u0(y) [Γ(t, x− y)−GD(t, x, y)] dy,

so that
φ(x) · (It0(x)− J t0(x)) = φ(x) · (f(x) + g(x)) ,

for all x ∈ D. For φ ∈ C∞0 (D), we set D′ = supp(φ), and δ := dist(D′, ∂D).

Lemma 3.21. The function f is C∞(Rd). Furthermore, for all k ∈ N,

‖φ · f‖Hk(Rd) ≤ C ‖u0‖ ‖φ‖Hk(Rd) e
− δ

2λ
4t ν(δ), (3.34)

where C = C(k, λ, d), λ ∈ (0, 1), and ν(δ) = O(1) as δ →∞.

We use the equivalent definitions of the Sobolev spaces and their related
norms, see Appendix C.



3.7. Non-vanishing initial data 71

Proof. We observe first that f ∈ C∞(Rd), with

∂βf(x) =

∫
Rd\D

u0(y)∂βxΓ(t, x− y) dy.

In order to show the desired inequality, it is sufficient to evaluate the L2(Rd)
norms of each partial derivative of the form ∂αφ∂βf, for |α+ β| ≤ k.∫

Rd

∣∣∣∂αφ(x) ∂βf(x)
∣∣∣2 dx

=

∫
D′
dx |∂αφ(x)|2

(∫
Rd\D

dy u0(y)∂βxΓ(t, x− y)

)2

≤ ‖u0‖2L∞(Rd)

∫
Rd
dx |∂αφ(x)|2

×
(∫

Rd
dy 1D′(x)1Rd\D(y)

∣∣∣∂βxΓ(t, x− y)
∣∣∣)2

,

Using Lemmas 4.8 and A.22, we can bound

1D′(x)1Rd\D(y)
∣∣∣∂βxΓ(t, x− y)

∣∣∣ ≤ C

t|β|
e−

δ2

4ctΓc(t, x− y),

for some C = C(d, c, β). Therefore,∥∥∥∂αφ∂βf∥∥∥2

L2(Rd)
≤ ‖u0‖2L∞(Rd) ‖∂

αφ‖2L2(Rd)

C

t|β|
e−

δ2

2ct .

Rewriting 1
t|β|

= δ2|β|

t|β|
1

δ2|β|
and setting

ν(δ) =

∑
|β|≤k

1

δ2|β|

1/2

,

we can conclude the proof using bound (A.21).

Lemma 3.22. The function g is C2+n+α(D). Furthermore,

‖φ · g‖H2+n(Rd) ≤ C ‖u0‖ ‖φ‖H2+n(Rd) e
− δ2

4ct ν(δ), (3.35)

where both constants c, C = c(d, α, n, T,D), ν(δ) = O(1) as δ →∞.

Proof. Using bounds (3.10) and (3.12), we can deduce that g ∈ C2+n+α(D)
and thus φ · g ∈ C2+n+α

0 (Rd) ⊆ Hs(Rd), for any s < 2 + n+ α.
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In order to show the desired inequality, it is sufficient to evaluate every
partial derivative of the form ∂αφ∂βg, for |α+ β| ≤ 2 + n. Using (3.14)∫

Rd

∣∣∣∂αφ(x) ∂βg(x)
∣∣∣2 dx =

∫
D′
dx |∂αφ(x)|2

∣∣∣∣∫
D
dy u0(y)∂βxFD(t, x, y)

∣∣∣∣2
≤ ‖u0‖2L∞(Rd)

∫
D′
dx |∂αφ(x)|2 C

t|β|
e−

dist(x,∂D)2

2ct

≤ ‖u0‖2L∞(Rd) ‖∂
αφ‖2L2(Rd)

C

t|β|
e−

δ2

2ct ,

where both C, c = c(d, T,D, n, α). This concludes the proof.

Recall that φ(x) · (It0(x) − J t0(x)) = φ(x) · (f(x) + g(x)) , for x ∈ D.
Corollary 3.11 enables us to replace D by the scaled version LD in the
preceding calculations. This concludes the proof of Theorem 3.19.



Chapter 4

Multiplicative correlated noise

Up to now, we have considered space-time white noise. In one space
dimension with random field solutions and in higher dimension with distri-
butional solutions. In this chapter, we will study the heat equation in any
space dimension with other type of noises, those that are white in time and
correlated in space. We shall fix some open bounded domain D ⊆ Rd con-
taining the origin. In what follows, D will either be the d-dimensional square
(−1, 1)d or have a regular boundary. As in the previous chapter, we shall
consider the dilation LD = {Lx ∈ Rd : x ∈ D}, for any L > 0.

We will compare the behavior of the (random field) solution on the whole
space with the (random field) solution on the dilated domain LD with van-
ishing Dirichlet boundary conditions, i.e.

∂u

∂t
(t, x) = ∆u(t, x) + σ(t, x, u(t, x)) Ṁ, t > 0, x ∈ Rd,

u(0, x) = u0(x), x ∈ Rd,
(4.1)

and
∂uL
∂t

(t, x) = ∆uL(t, x) + σ(t, x, uL(t, x)) Ṁ, t > 0, x ∈ LD,

uL(t, x) = 0, t > 0, x ∈ ∂(LD)

uL(0, x) = u0(x), x ∈ LD,

(4.2)

where σ and u0 satisfy the d-dimensional versions of (2.6) and (2.7), and Ṁ
is a noise on R+ × Rd that is white in time and correlated in space. For an
evident notational reason, we shall write σ(u(t, x)) instead of σ(t, x, u(t, x)).

As already mentioned, some trade off between the roughness of the noise
and the regularity of the integrant must be imposed. Set

k(s, ν) :=

∫
Rd

Λ(dz) Γν(s, z), λ(t, ν) :=

∫ t

0
k(s, ν) ds, (4.3)

where Γν is the heat kernel defined by (A.8), and Λ is the measure associ-
ated with the noise Ṁ. We ask the latter measure to satisfies the following
properties.

73
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Assumption 4.1. The positive measure Λ is tempered, symmetric, positive
definite, and satisfies λ(t, ν) <∞ for all t > 0 (and for all ν > 0).

Those assumptions guarantee that stochastic integration can be defined
in the sense of Walsh as a (worthy) martingale measure. In the present case
of the heat equation, we need to impose λ(t, ν) < ∞ for all t > 0. If this
assumption is satisfied by some ν > 0, then it is satisfied for all ν > 0. It
is sometimes called Dalang’s condition, and it may also be formulated with
the help of the spectral measure as

Υ(β) :=

∫
Rd

µ(dξ)

β + |ξ|2
<∞, for some and hence for all β > 0. (4.4)

By computing (4.3), we get∫ t

0
k(s, ν) ds =

∫ t

0
ds

∫
Rd
µ(dξ) e−4νπ2s|ξ|2 =

∫
R
µ(dξ)

1− e−4νπ2t|ξ|2

4νπ2 |ξ|2
,

and the last fraction is equivalent to (1/t + 4νπ2 |ξ|2)−1, see (3.21). With
the help of the spectral measure, we observe that k(t, ν) = k(νt, 1) and that
it is decreasing, i.e. k(t, β) ≤ k(t, ν), for ν ≤ β.

Under Assumption 4.1, it is known that equations (4.1) and (4.2) admit
unique random field solutions, that satisfy the representation formulas

u(t, x) =

∫
Rd

Γ(t, x− y)u0(y) dy

+

∫ t

0

∫
Rd

Γ(t− s, x− y)σ(u(s, y))M(ds, dy), (4.5)

and

uL(t, x) =

∫
LD

GL(t, x, y)u0(y) dy

+

∫ t

0

∫
LD

GL(t− s, x, y)σ(uL(s, y))M(ds, dy), (4.6)

where Γ is the heat kernel, given by (A.8), and GL is the Green function
of the heat equation on the bounded domain LD associated with Dirichlet
boundary conditions, see Proposition A.6 for its existence and some basic
properties. See [11] for existence and uniqueness of these random field solu-
tions.

4.1 Main result and general ideas

We will prove that if x ∈ LD is sufficiently far away from the boundary
points, then both solutions u and uL are very close to one another. In fact,
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we shall attain a similar convergence result to that of Chapter 2, given in
Theorem 2.4. Therefore, the present results generalize those of Chapter 2.

The difference of the random field solutions (4.5) and (4.6) satisfies the
following convergence rate, for any p ≥ 2.

Theorem 4.2. Uniformly for t ∈ [0, T ], L > 0, and x ∈ LD, we have

‖u(t, x)− uL(t, x)‖Lp(Ω) ≤ Θ(t) exp

(
−dist(x, ∂LD)2

4ct

)
,

for some increasing function Θ(t) = Θ(t, T, Lip,K,Λ, u0, D, p) and some
positive constant c = c(D).

Remark. It is important to emphasize that both the function Θ and the
constant c do not depend on the dilation constant L > 0.

Remark. In the present case of Dirichlet boundary conditions, it is possible
to find a positive constant c that works for all open set D bounded or not.
See Lemma 4.5. In fact, we can also find Θ(t) = Θ(t, T, Lip,K,Λ, u0, p).

We shall use a similar approach as that of Chapter 2. Some steps will
require only minor changes, whereas the crucial induction step will turn out
to be very different.

First, we apply the fact that the p-moments of the solutions are uniformly
bounded.

Proposition 4.3. The solutions u and uL to equations (4.1) and (4.2) sat-
isfy

sup
t∈[0,T ]

sup
x∈R

E [|u(t, x)|p] <∞, (4.7)

sup
t∈[0,T ]

sup
L>0

sup
x∈LD

E [|uL(t, x)|p] <∞. (4.8)

Bound (4.7) is already well-known, see Dalang [11, Theorem 13]. The
second bound (4.8) is obtained in a very similar way, in which we need to
bound the Green function GL by the heat kernel. The trick is to find a
bound that is valid independently of the scaling factor L > 0, see (4.12).
The procedure is as in Section 2.4, with some obvious changes.

Once the uniform bounds are obtained, we can use the representation
formulas to write the difference

u(t, x)− uL(t, x) = I0(t, x) + I2(t, x) + I4(t, x) + I6(t, x), (4.9)
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where,

I0(t, x) =

∫
Rd

Γ(t, x− y)u0(y) dy −
∫
LD

GL(t, x, y)u0(y) dy,

I2(t, x) =

∫ t

0

∫
LD

[Γ(t− s, x− y)−GL(t− s, x, y)]σ(uL(s, y))M(ds, dy),

I4(t, x) =

∫ t

0

∫
LD

Γ(t− s, x− y)[σ(u(s, y))− σ(uL(s, y))]M(ds, dy),

I6(t, x) =

∫ t

0

∫
Rd\LD

Γ(t− s, x− y)σ(u(s, y))M(ds, dy).

The first two terms I0 and I2 will require to bound the difference

FL(t, x, y) := Γ(t, x− y)−GL(t, x, y)

between the heat kernel and the Green function. Again, the trick is to find
a bound that is valid independently of the scaling factor L > 0, see (4.12).
The last term I6 will require some integral bounds of the heat kernel on
Rd \ LD, see Lemma 4.8. The term I4 will produce a recursive argument.
More precisely, if we set

fL(t, x) := ‖u(t, x)− uL(t, x)‖Lp(Ω) ,

h(t, c) := sup
x∈LD

fL(t, x)2

Jc(t, x)2
,

(4.10)

where

Jc(t, x) = exp

{
−dist(x, ∂LD)2

4ct

}
,

then we shall find, see (4.24), that

h(t) ≤ c1 + c2(k ∗ 1)(t) +
c3

2
(k . h)(t).

Both functions k and h are given by k(s) = k(s, c) and h(s) = h(s, c). The
constants c, c1, c2, and c3 shall not depend on the scaling factor L > 0. Con-
volution is represented by ∗, whereas . will turn out to be a non-associative
and non-commutative operator. In fact, the . operator is sometimes compa-
rable to convolution, see Lemma 4.27.

At this point, we do not know whether the function h is finite valued.
Informal iterations and limits of the latter inequality yield the following
educated guess

h(t) ≤ c1 + [c1 + c2/c3] · (K ∗ 1)(t), (4.11)

where

K(t) =
∞∑
m=1

cm3 k
∗m(t).
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Thus, we could set Θ(t) =
√
c1 + [c1 + c2/c3] · (K ∗ 1)(t). In order to confirm

the validity of (4.11), we shall go back to the Picard iteration scheme defining
both random field solutions u and uL.

Finally, we shall extend both Theorem 4.2 and Proposition 4.3 in the
following two directions. First, we shall consider more general equations,
see (4.29). Second, we may admit more general vanishing boundary condi-
tions. For square domains, we can require each side to have either Dirichlet
or Neumann boundary conditions. For domains with regular boundary, we
can have Neumann boundary conditions. Yet, Robin boundary conditions
are not possible with the present method. This has to do with the scaling
property of the Green function.

4.2 Some Prerequisites

The following inequalities describe the bounds, mentioned earlier, about
the Green function and the difference of the Green function with the heat
kernel. Under some assumptions on the domain D, and for some l > 0, we
have

|GL(t, x, y)| ≤ CΓc(t, x− y),

|Γ(t, x− y)−GL(t, x, y)| ≤ CΓc(t, x− y)Jc(t, x)Jc(t, y),
(4.12)

for all t ∈ (0, T ], L ≥ l, and x, y ∈ LD. Both constants c and C depend only
on T, l, and the domain D, but not on the scaling factor L ≥ l.

In some specific cases, explicit values for both constants C and c are
available, yet we do not, in general, pursue the optimal ones. We now give
some examples of domains, for which inequalities (4.12) are satisfied:

• In the particular case of vanishing Dirichlet boundary conditions, the
first inequality of (4.12) is satisfied with C = c = 1, see (A.30). In one
space dimension, with LD = (−L,L), the second inequality of (4.12)
is satisfied with C = c = 4, see Lemma 2.7.

• In the particular case of vanishing mixed boundary conditions in one
space dimension, with LD = (−L,L), the first inequality of (4.12) is
satisfied with C = 2 and c = 1, see (A.81). The second inequality
of (4.12) is satisfied with C = 12 and c = 4, see Lemma 2.10.

• In the particular case of vanishing Neumann boundary conditions in
one space dimension, with LD = (−L,L), the second inequality of (4.12)
is satisfied with C = 16θ(4L2/t) and c = 4, see Lemma 2.13. The first
inequality of (4.12) is in fact a consequence of the second one. Indeed,

|GL(t, x, y)| ≤ |Γ(t, x− y)−GL(t, x, y)|+ Γ(t, x− y) ≤ CΓc(t, x− y),

for C = 16θ(4L2/t) + 2d and c = 4.
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Observe that in the first two cases, the bounds are valid for all L > 0, and
t > 0. In the third case, we have to restrict to 4L2/T ≥ l > 0, because the
theta function θ is decreasing and unbounded close to the origin. In that
case, θ(4L2/t) ≤ θ(l), for all L ≥

√
l/4T and t ∈ (0, T ].

Square domains: The Green function associated to the square domain
D = (−L,L) × · · · × (−L,L) ⊆ Rd is given by the product of the one-
dimensional Green functions associated to (−L,L), see equation (A.27). For
example, in dimension d = 3, if we are interested in the following vanishing
boundary conditions:

uL(t,−L, x2, x3) = 0, uL(t, x1,−L, x3) = 0,
∂uL
∂x3

(t, x1, x2,−L) = 0,

uL(t, L, x2, x3) = 0,
∂uL
∂x2

(t, x1, L, x3) = 0,
∂uL
∂x3

(t, x1, x2, L) = 0,

then its Green function is given by

GL(t, x, y) = GDL (t, x1, y1)GML (t, x2, y2)GNL (t, x3, y3), (4.13)

where GDL , G
M
L , and G

N
L are the one dimensional Green functions associated

with Dirichlet, mixed, and Neumann boundary conditions, respectively. As
in Chapter 2, if only Dirichlet or mixed boundary conditions are imposed,
then we shall find results uniformly for L > 0. If Neumann boundary con-
dition is imposed, then we shall restrict to L ≥

√
l/4T , for any l > 0. For

examples of this distinction, see Theorems 2.4 and 2.5 and Proposition 2.6.

Lemma 4.4. For all t ∈ (0, T ], and x, y ∈ LD = (−L,L)d, we have

|GL(t, x, y)| ≤ CΓc(t, x− y),

|Γ(t, x− y)−GL(t, x, y)| ≤ CΓc(t, x− y)Jc(t, x)Jc(t, y),

where both C and c do not depend on the scaling variable L.

We need to restrict to finite time horizon only when Neumann boundary
conditions are present.

Proof. The first estimate is a consequence of the examples given after (4.12).
In the case of (4.13), we have

|GL(t, x, y)| ≤ 1 · 2 · (θ(l) + 2d) · Γc(t, x− y),

for c = 4.
The second estimate is a consequence of Lemmas 2.7, 2.10, and 2.13,

together with Lemma 5.16. For example, in the case of (4.13), we have

Γ(t, x− y)−GL(t, x, y) =[
Γ(t, x1 − y1)−GDL (t, x1, y1)

]
Γ(t, x2 − y2)Γ(t, x3 − y3)

+GDL (t, x1, y1)
[
Γ(t, x2 − y2)−GML (t, x2, y2)

]
Γ(t, x3 − y3)

+GDL (t, x1, y1)GML (t, x2, y2)
[
Γ(t, x3 − y3)−GNL (t, x3, y3)

]
,
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and thus,

|Γ(t, x− y)−GL(t, x, y)| ≤ CΓc(t, x− y)Jc(t, x1)Jc(t, y1)

+ CΓc(t, x− y)Jc(t, x2)Jc(t, y2) + CΓc(t, x− y)Jc(t, x3)Jc(t, y3)

≤ CΓc(t, x− y)Jc(t, x)Jc(t, y),

since

Jc(t, x) = max
i∈{1,2,3}

Jc(t, xi) = max
i∈{1,2,3}

exp

{
−min [|xi − L| , |xi + L|]2

4ct

}
.

The latter translates the fact that the distance of any point x ∈ (−L,L)d to
the boundary is given by the smallest distance

min [|x1 − L| , |x1 + L| , |x2 − L| , |x2 + L| , |x3 − L| , |x3 + L|] .

This completes the proof.

In the case of Dirichlet boundary conditions, we can show the following:

Lemma 4.5. There exist two positive constants C and c, such that for any
open set D ⊆ Rd, we have

0 ≤ Γ(t, x− y)−GD(t, x, y) ≤ CΓc(t, x− y)Jc(t, x)Jc(t, y), (4.14)

for all t > 0 and x, y ∈ D, where Jc(t, x) = Jc(t, x;D) = e−
dist(x,∂D)2

4ct .

The proof relies on the fact that the present result is valid for cubes, see
Lemma 4.4, which in turn was proven from the one dimensional case, see
Lemma 2.7, which holds for arbitrary (large or small) interval.

Proof. The value of both constants C and c are not important. Without loss
of generality, we can assume that dist(x, ∂D) ≥ dist(y, ∂D). Thus, Jc(t, x) =
J2c(t, x)J2c(t, x) ≤ J2c(t, x)J2c(t, y), and it is sufficient to show that Γ(t, x−
y) − GD(t, x, y) ≤ CΓc(t, x − y)Jc(t, x). We consider two cases, whether or
not y ∈ B, the open ball centered at x with radius dist(x, ∂D)/

√
d.

First, we consider the case y ∈ B. Let Q be any open cube centered at x
with side length 2 dist(x, ∂D)/

√
d. Thus, y ∈ B ⊆ Q ⊆ D. Then, by (A.33),

Γ(t, x− y)−GD(t, x, y) ≤ Γ(t, x− y)−GQ(t, x, y)

≤ Γc(t, x− y)Jc(t, x;Q)Jc(t, y;Q),

for some C and c independent of the side length of the cube. Because
dist(x, ∂D) =

√
ddist(x, ∂Q), we have Jc(t, x;Q) = Jcd(t, x;D), and hence

Γ(t, x− y)−GD(t, x, y) ≤ Γc(t, x− y)Jcd(t, x;D),
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since Jc(t, y;Q) ≤ 1.
Second, we consider the case y /∈ B, i.e. |x− y|2 ≥ dist(x, ∂D)2/d. We

bound, for any c ≥ 2,

Γ(t, x− y)−GD(t, x− y) ≤ Γ(t, x− y) = cd/2Γc(t, x− y)e−
|x−y|2

4ct

≤ cd/2Γc(t, x− y)e−
dist(x,∂D)2

4cdt

= cd/2Γc(t, x− y)Jcd(t, x;D),

which completes the proof.

Remark. Observe that c = 4d is a possible value.

Corollary 4.6. In the case of Dirichlet boundary conditions, both inequali-
ties of (4.12) are satisfied for all t > 0 and L > 0.

Regular domains: We consider some open bounded domain D ⊆ Rd con-
taining the origin and whose boundary belongs to C2+α, for some α ∈ (0, 1).
In the case of the heat equation with vanishing Dirichlet and/or Neumann
boundary conditions, we can observe that the Green function GLD associated
to the dilated domain LD is given by

GLD(t, x, y) =
1

Ld
GD(t/L2, x/L, y/L), (4.15)

for all t > 0 and x, y ∈ LD. This scaling formula is a consequence of the fact
that if GD satisfies (A.26), then GLD satisfies the same system of equations
in which D is replaced by LD, i.e. it is the Green function associated to
the dilated domain LD. (The latter fact is not true if we consider Robin
boundary conditions.) Thus,

FLD(t, x, y) = Γ(t, x− y)−GLD(t, x, y)

=
1

Ld
[
Γ(t/L2, x/L− y/L)−GD(t/L2, x/L, y/L)

]
=

1

Ld
FD(t/L2, x/L, y/L),

(4.16)

for all t > 0 and x, y ∈ LD. For simplicity, we shall write GL instead of GLD,
and FL instead of FLD.

For Neumann boundary conditions, the following result holds.

Lemma 4.7. If the boundary ∂D belongs to C2+α, then

|GL(t, x, y)| ≤ CΓc(t, x− y),

|Γ(t, x− y)−GL(t, x, y)| ≤ CΓc(t, x− y)Jc(t, x)Jc(t, y),

for all t ∈ (0, TL2] and x, y ∈ LD. The constant c and C depend only on
α, d, T, and the domain D, but not on the constant L > 0.
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In particular, for l = 1, the latter inequalities are satisfied for all t ∈ (0, T ]
and L ≥ l.

Proof. It is a consequence of Corollary 3.11 and the remark following it.

As we already mentioned, the first inequality of (4.12) is used to find
the uniform bounds of Proposition 4.3 and the second inequality of (4.12)
is used to bound the p-moment of I0 and I2. To bound the p-moment of I0

and I6, we shall need the following.

Lemma 4.8. For any x ∈ LD, and c ≥ 2,

Γ(t, x− y)1Rd\LD(y) ≤ cd/2Γc(t, x− y)Jc(t, x).

Proof. We can rewrite Γ(t, z) = 2d/2Γ2(t, z) exp
(
−z2/8t

)
. We bound

exp

(
−(x− y)2

8t

)
1Rd\LD(y) ≤ exp

(
−dist(x, ∂LD)2

8t

)
≤ Jc(t, x),

and we use the fact that Γc1(t, z) ≤ (c2/c1)d/2Γc2(t, z), for any c2/c1 > 0.

4.3 Proof of uniform bounds, Proposition 4.3

We will prove both bounds (4.7) and (4.8) in very similar ways. If fact,
we introduce some notations that will allow a single argument instead of two.
The letter D will stand for either the whole space Rd or the dilated domain
LD. The function v will stand for either u or uL, the random field solutions
to (4.1) or (4.2), respectively. Finally, G(t, x, y) will stand for either the
heat kernel Γ(t, x − y) or the Green function GL(t, x, y) associated to the
dilated domain LD with Dirichlet boundary conditions. Thanks to the first
inequality of (4.12), we can use the fact that

|G(t, x, y)| ≤ CΓc(t, x− y).

In order to deduce properties of the function v, it is useful to go back to
the Picard iteration scheme, from which it was built. We recall it now. The
initial condition initiates the recursive definition:

v0(t, x) :=

∫
D
G(t, x, y)u0(y) dy.

For n ≥ 0, we define recursively

vn+1(t, x) = v0(t, x) +

∫ t

0

∫
D
G(t− s, x, y)σ(vn(s, y))M(ds, dy).
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Recalling the fact that the initial condition is bounded in expectation (2.7),
an application of Minkowski’ inequality gives∥∥v0(t, x)

∥∥
Lp(Ω)

≤
∫
D
|G(t, x, y)| ‖u0(y)‖Lp(Ω) dy

≤ C ‖u0‖
∫
Rd

Γc(t, x− y) dy = C ‖u0‖ .

Therefore, we have a uniform bound for the initiation of the recursion

C0 := sup
t∈[0,T ]

sup
x∈D

∥∥v0(t, x)
∥∥
Lp(Ω)

≤ C ‖u0‖ .

We define in a similar way

Cn := sup
t∈[0,T ]

sup
x∈D
‖vn(t, x)‖Lp(Ω) .

We prove by induction that each Cn is bounded. First, we need to recall
that

τ 7→Mτ :=

∫ τ

0

∫
D
G(t− s, x, y)σ(vn(s, y))M(ds, dy),

for τ ∈ [0, t], is a continuous square integrable martingale, whose quadratic
variation is given by

〈M〉τ =

∫ τ

0
ds

∫
Rd

Λ(dz)

∫
Rd
dv 1D(v)G(t− s, x, v)σ(vn(s, v))

× 1D(v − z)G(t− s, x, v − z)σ(vn(s, v − z)).
By Minkowski’s inequality,

‖〈M〉τ‖Lp/2(Ω) ≤
∫ τ

0
ds

∫
Rd

Λ(dz)

∫
Rd
dv 1D(v) |G(t− s, x, v)|

× 1D(v − z) |G(t− s, x, v − z)|
× ‖σ(vn(s, v))σ(vn(s, v − z))‖Lp/2(Ω) .

By Cauchy-Schwarz inequality and linear growth of the function σ,

‖σ(vn(s, v))σ(vn(s, v − z))‖Lp/2(Ω)

≤ ‖σ(vn(s, v))‖Lp(Ω) ‖σ(vn(s, v − z))‖Lp(Ω) ≤ K
2(1 + Cn)2.

Thus, by inequality (4.12) and the semi-group property of the heat kernel,

‖〈M〉τ‖Lp/2(Ω) ≤ C
2K2(1 + Cn)2

∫ τ

0
ds

∫
Rd

Λ(dz)

×
∫
Rd
dv Γc(t− s, x− v)Γc(t− s, x− (v − z))

= C2K2(1 + Cn)2

∫ τ

0
ds

∫
Rd

Λ(dz)Γ2c(t− s, z)

= C2K2(1 + Cn)2

∫ τ

0
k(t− s, 2c) ds.
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By Burkholder’s inequality,

‖Mt‖Lp(Ω) ≤ kp ‖〈M〉t‖
1/2

Lp/2(Ω)
,

and hence, by Minkowski’s inequalitiy,

∥∥vn+1(t, x)
∥∥
Lp(Ω)

≤
∥∥v0(t, x)

∥∥
Lp(Ω)

+ kpCK(1 + Cn)

(∫ t

0
k(s, 2c) ds

)1/2

.

Therefore,

Cn+1 ≤ C ‖u0‖+ kpCK(1 + Cn)λ(T, 2c)1/2 <∞,

by Assumption 4.1.
We can now show a much better bound using the Lipschitz assumption

instead of the linear growth. We set

Dn(t) := sup
x∈D

∥∥vn+1(t, x)− vn(t, x)
∥∥
Lp(Ω)

.

Notice that

v1(t, x)− v0(t, x) =

∫ t

0

∫
D
G(t− s, x, y)σ(v0(s, y))M(ds, dy)

satisfies, with a similar argument as before,∥∥v1(t, x)− v0(t, x)
∥∥
Lp(Ω)

≤ kpCK(1 + ‖u0‖)λ(t, 2c)1/2,

and thus
sup
t∈[0,T ]

D0(t) ≤ kpCK(1 + ‖u0‖)λ(T, 2c)1/2 <∞. (4.17)

For any n ≥ 1, we have

vn+1(t, x)− vn(t, x) =

∫ t

0

∫
D
G(t− s, x, y)

×
[
σ(vn(s, y))− σ(vn−1(s, y))

]
M(ds, dy).

From a similar argument as before, involving Burkholder’s, Minkowski’s, and
Cauchy-Schwarz’ inequalities, we have

∥∥vn+1(t, x)− vn(t, x)
∥∥2

Lp(Ω)
≤ k2

p

∫ t

0
ds

∫
Rd

Λ(dz)

×
∫
Rd
dv 1D(v) |G(t− s, x, v)|1D(v − z) |G(t− s, x, v − z)|

×
∥∥σ(vn(s, v))− σ(vn−1(s, v))

∥∥
Lp(Ω)

×
∥∥σ(vn(s, v − z))− σ(vn−1(s, v − z))

∥∥
Lp(Ω)

.
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From (4.12), the Lipschitz assumption of the function σ, and the semi-group
property of the heat kernel, we have

∥∥vn+1(t, x)− vn(t, x)
∥∥2

Lp(Ω)
≤ k2

pC
2Lip2

∫ t

0
ds

∫
Rd

Λ(dz)

×
∫
Rd
dv Γc(t− s, x− v)Γc(t− s, x− (v − z))

×
∥∥vn(s, v)− vn−1(s, v)

∥∥
Lp(Ω)

∥∥vn(s, v − z)− vn−1(s, v − z)
∥∥
Lp(Ω)

≤ k2
pC

2Lip2

∫ t

0
Dn−1(s)2

∫
Rd

Λ(dz) Γ2c(t− s, z)

= k2
pC

2Lip2

∫ t

0
Dn−1(s)2k(t− s, 2c).

Therefore,

Dn(t)2 ≤ k2
pC

2Lip2(k ∗D2
n−1)(t), (4.18)

for all t ∈ [0, T ], L ≥ l, and for k(t) = k(t, 2c).

Remark. In the present case of Dirichlet boundary conditions, the latter
inequality (4.18) is in fact valid for all t > 0 and L > 0.

The extension of Gronwall’s lemma, presented in the paper of Dalang [11,
Lemmas 15 and 17], enables to conclude, thanks to (4.17) and the facts that∫ T

0 k(t) dt <∞, that the following series converges uniformly on [0, T ],

∞∑
n=0

Dn(t) ≤ C̄ sup
t∈[0,T ]

D0(t) <∞.

where C̄ = c(T,Λ,Lip, p). Thus,

‖v(t, x)‖Lp(Ω) = lim
n→∞

‖vn(t, x)‖Lp(Ω) ≤ sup
n≥0
‖vn(t, x)‖Lp(Ω)

≤
∥∥v0(t, x)

∥∥
Lp(Ω)

+

∞∑
n=0

Dn(t) ≤ C ‖u0‖+ C̄ sup
t∈[0,T ]

D0(t).

Therefore, we can conclude

sup
t∈[0,T ]

sup
x∈D
‖v(t, x)‖Lp(Ω) ≤ C ‖u0‖+ C̄kpCK(1 + ‖u0‖)λ(T, 2c)1/2, (4.19)

which is finite by Assumption 4.1. Observe that the latter bound doesn’t
depend on the scaling variable L. This complete the proof of Proposition 4.3.
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4.3.1 Another way to solve Gronwall type inequalities

Instead of using the extension of Gronwall’s lemma presented in [11], we
can estimate the series

∑∞
n=0Dn(t) using Laplace transform. We will use a

method presented in Lemma 3.8 of [2]. Definition of Laplace transform, for
some positive function f : R+ → R+, is

L(f)(γ) :=

∫ ∞
0

f(t) e−γt dt,

for γ ∈ R. It acts on convolution as follows L(f ∗ g)(γ) = L(f)(γ) · L(g)(γ),
and satisfies, by Hölder’s inequality,

L(f1/p)(γ) =

∫ ∞
0

f(t)1/pe−γt dt

≤
(∫ ∞

0
f(t)e−γt dt

)1/p(∫ ∞
0

e−γt dt

)1/q

= L(f)(γ)1/pγ−1/q,

for any p > 1 and 1/p+ 1/q = 1.

We are mainly interested in computing
∑∞

n=0Dn(t), for it led to the
following upper bound

‖v(t, x)‖Lp(Ω) = lim
n→∞

‖vn(t, x)‖Lp(Ω) ≤
∥∥v0(t, x)

∥∥
Lp(Ω)

+

∞∑
n=0

Dn(t).

In fact, we have a more explicit formula.

Proposition 4.9. There exist two constants γ, cγ > 0, both depending on
(Lip,Λ, p) such that

sup
x∈D
‖v(t, x)‖Lp(Ω) ≤ C ‖u0‖+ cγkpCK(1 + ‖u0‖)eγt,

for all t ∈ [0, T ], and L ≥ l.

At the end of the present section, we give a brief comparison between the
present approach and the extension of Gronwall’s lemma presented in [11].

Remark. In the present case of Dirichlet boundary conditions, the latter
inequality of Proposition 4.9 is in fact valid for all t > 0 and L > 0.

We first iterate inequality (4.18). To simplify notations, we set c̄ =
kpCLip. For n ≥ 1,

Dn(t)2 ≤ c̄2n(k∗n ∗D2
0)(t),

for all t ∈ [0, T ], where
k∗n = k ∗ k ∗ · · · ∗ k︸ ︷︷ ︸

n times

.
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Recall the initial bound D0(t)2 ≤ k2
pC

2K2(1 + ‖u0‖)2λ(t). Thus,

Dn(t)2 ≤ k2
pC

2K2(1 + ‖u0‖)2c̄2n(k∗n ∗ λ)(t),

Dn(t) ≤ kpCK(1 + ‖u0‖)c̄n [(k∗n ∗ λ)(t)]1/2 ,

for any n ≥ 0. Adding them together yields

∞∑
n=0

Dn(t) ≤ kpCK(1 + ‖u0‖)
∞∑
n=0

c̄n [(k∗n ∗ λ)(t)]1/2 ,

where the right hand side is an increasing functions. Indeed, it is a conse-
quence of Lemma 4.10 below, and the following observation:

λ(t) =

∫ t

0
k(s)ds = (k ∗ 1)(t).

Since 1 is increasing, so is the convolution k∗1, and each convolution k∗n∗λ.

Lemma 4.10. If k and h are positive and if h is increasing, then k ∗ h is
increasing.

Proof. For ε > 0,

(k ∗ h)(t+ ε) =

∫ t+ε

0
k(s)h(t+ ε− s) ds ≥

∫ t

0
k(s)h(t+ ε− s) ds

≥
∫ t

0
k(s)h(t− s) ds = (k ∗ h)(t),

which completes the proof.

We now show that
∑∞

n=0Dn(t) is finite-valued using Laplace transform.
Using Hölder’s inequality with p = 2, the Laplace transform of the following
series is bounded by

L

( ∞∑
n=0

c̄n(k∗n ∗ λ)1/2

)
(γ) ≤ γ−1/2

∞∑
n=0

c̄n [L(k∗n ∗ λ)(γ)]1/2

=
1

γ
L(k)(γ)1/2

∞∑
n=0

c̄n [L(k)(γ)]n/2 ,

We used the fact that L(λ)(γ) = L(k ∗ 1)(γ) = L(k)(γ)/γ. Observe that the
latter series is finite if and only if c̄2L(k)(γ) < 1, which is valid for γ large
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enough. Indeed,

L(k)(γ) =

∫ ∞
0

k(t, 2c) e−γt dt =

∫ ∞
0

dt e−γt
∫
Rd

Λ(dz) Γ2c(t, z)

=

∫ ∞
0

dt e−γt
∫
Rd
µ(dξ)FΓ2c(t)(ξ)

=

∫
Rd
µ(dξ)

∫ ∞
0

dt exp
(
−γt− 8cπ2|ξ|2t

)
=

∫
Rd

µ(dξ)

γ + 8cπ2|ξ|2
,

which is finite precisely by Dalang’s condition (4.4). By dominated conver-
gence, L(k)(γ) < 1/c̄2 for γ sufficiently large.

By applying Lemma 4.11 below, we can conclude that

∞∑
n=0

Dn(t) ≤ kpCK(1 + ‖u0‖)cγeγt,

for some γ > 0 and cγ > 0, both depending on (c̄, c,Λ). This complete the
proof of Proposition 4.9.

The next result was found in [2, Lemma A.1]. The present proof is
simpler.

Lemma 4.11. For a positive increasing function H : R+ → R+, if

γ0 := inf

{
γ ∈ R : L(H)(γ) =

∫ ∞
0

H(t) e−γt dt <∞
}
<∞,

then
lim sup
t→∞

1

t
logH(t) ≤ γ0.

Furthermore, for every γ > γ0, there exists cγ > 0, such that

H(t) ≤ cγeγt, ∀t ≥ 0.

Proof. Fix ε > 0 and γ > γ0. Because
∫∞

0 H(s) e−γs ds < ∞, there exists
T = T (ε, γ) > 0 such that∫ ∞

t
H(s) e−γs ds < ε, ∀t ≥ T.

In particular,

ε >

∫ t+ε

t
H(s) e−γs ds ≥ εH(t) e−γ(t+ε), ∀t ≥ T,

and hence,
H(t) < eγεeγt, ∀t ≥ T.
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This proves both our conclusions. First, recalling that H is increasing yields

H(t) ≤ cγeγt, ∀t ≥ 0.

Second,
1

t
logH(t) ≤ γε

t
+ γ, ∀t ≥ T,

implies that

lim sup
t→∞

1

t
logH(t) ≤ γ.

This concludes the proof since this last inequality is true for all γ > γ0.

Remark. We do expect an exponential growth in time of any p-moment. For
p = 2, such lower and upper bounds can be found in [9]. The special case of
Riesz kernels is treated in their Example 1.2. In one space dimension, the
special case of white noise is treated in their Example 1.5.

In the special case of Anderson model, σ(u) = λu, with white noise and
constant one initial data, the second moment has been explicitly computed
in [6, Corollary 2.5]. It is given by

E
[
u(t, x)2

]
= 2eλ

4t/8Φ(λ2
√
t/4),

where Φ(s) =
∫ s
−∞(2π)−1/2e−y

2/2 dy. The key step is the explicit computa-
tion of

∑∞
n=1 a

nk∗n(t), for all a > 0.
In the extension of Gronwall’s lemma presented in [11, Lemma 17], it is

proved that the latter sum is indeed finite using a large deviations argument.
An application of Hölder’s inequality implies that for any p > 1, we also have∑∞

n=1 a
nk∗n(t)1/p <∞. More precisely, observe that

∞∑
n=1

an/2 [(k∗n ∗ λ)(t)]1/2 ≤ λ(t)1/2
∞∑
n=1

λ(t)n/2an/2P(Sn ≤ t)1/2,

where Sn =
∑n

i=1 Yi, for (Yi) a sequence of i.i.d. random variables with law
given by the density fY (y) = k(y)/

∫ t
0 k(s) ds = k(y)/λ(t), for y ∈ (0, t).

This is a consequence of the fact that λ is an increasing function and that∫ t
0 k
∗n(s) ds = λ(t)nP(Sn ≤ t). Large deviations enable to bound P(Sn ≤

t) ≤ b−n for any b ≥ 1, and n large enough.
The precise exponent, of the time exponential growth, can be found in

the preceding references. In fact, the same growth in time can be obtained
for any p-th moment, for p ≥ 1, see [2].

4.4 Proof of convergence rate, Theorem 4.2

Recall both representation formulas (4.5) and (4.6), as well as the decom-
position of the difference u(t, x) − uL(t, x), given in (4.9). To evaluate the
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p-moment of each of I0, I2, I4, and I6, we make use of the uniform bounds
of Proposition 4.3. We set

C1 := sup
t∈[0,T ]

sup
x∈Rd

‖u(t, x)‖Lp(Ω) , (4.20)

C2 := sup
t∈[0,T ]

sup
L>0

sup
x∈LD

‖uL(t, x)‖Lp(Ω) . (4.21)

As mentioned earlier, we first prove that the function h, see (4.10), satisfies
a Gronwall type inequality.

Lemma 4.12. For all t ∈ [0, T ], we have

h(t) ≤ c1 + c2

∫ t

0
k(s) ds+ c3

∫ t

0
k(t− s)h(s) ds, (4.22)

for c1 = c(‖u0‖ , D), c2 = c(T,K,Lip, ‖u0‖ ,Λ, D, p), c3 = c(Lip, p), and
k(s) = k(s, 2c), h(t) = h(t, c).

The values of the constants are not important, yet they should not depend
on the scaling variable L.

Proof. We start with the p-moment of I0. By Minkowski’s inequality (B.1)
applied to the decomposition

I0(t, x) =

∫
LD

[Γ(t, x− y)−GL(t, x, y)]u0(y) dy

+

∫
Rd\LD

Γ(t, x− y)u0(y) dy,

we get,

‖I0(t, x)‖Lp(Ω) ≤
∫
LD
|Γ(t, x− y)−GL(t, x, y)| ‖u0(y)‖Lp(Ω) dy

+

∫
Rd\LD

Γ(t, x− y) ‖u0(y)‖Lp(Ω) dy.

Using (4.12) and Lemma 4.8, we can bound

‖I0(t, x)‖Lp(Ω) ≤ (C + cd/2) ‖u0‖ Jc(t, x)

∫
Rd

Γc(t, x− y) dy

= (C + cd/2) ‖u0‖ Jc(t, x).

(4.23)

In order to compute the p-moments of Ii, for i ∈ {2, 4, 6}, we shall use
the following method. By Burkholder inequality,

‖I2(t, x)‖2Lp(Ω) = ‖Mt‖2Lp(Ω) ≤ k
2
p ‖〈M〉t‖Lp/2(Ω) ,
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where τ 7→Mτ is the following continuous square integrable martingale

Mτ =

∫ τ

0

∫
LD

[Γ(t− s, x− y)−GL(t− s, x, y)]σ(uL(s, y))M(ds, dy),

for τ ∈ [0, t], whose quadratic variation is given by

〈M〉τ =

∫ τ

0
ds

∫
Rd

Λ(dz)

∫
Rd
dv 1LD(v)FL(t− s, x, v)σ(uL(s, v))

× 1LD(v − z)FL(t− s, x, v − z)σ(uL(s, v − z)).

Thus, by Minkowski’s inequality,

‖〈M〉τ‖Lp/2(Ω) ≤
∫ τ

0
ds

∫
Rd

Λ(dz)

∫
Rd
dv 1LD(v) |FL(t− s, x, v)|

× 1LD(v − z) |FL(t− s, x, v − z)|
× ‖σ(uL(s, v))σ(uL(s, v − z))‖Lp/2(Ω) .

By Cauchy-Schwarz inequality, under the following form,

‖XY ‖Lp/2(Ω) ≤ ‖X‖Lp(Ω) ‖Y ‖Lp(Ω) ,

together with linear growth of the function σ and (4.21), we get

‖〈M〉τ‖Lp/2(Ω) ≤ K
2(1 + C2)2

∫ τ

0
ds

∫
Rd

Λ(dz)

×
∫
Rd
dv 1LD(v) |FL(t− s, x, v)|1LD(v − z) |FL(t− s, x, v − z)| .

Using inequality (4.12) and the semi-group property of the heat kernel, we
get

‖〈M〉τ‖Lp/2(Ω) ≤ C
2K2(1 + C2)2Jc(t, x)2

∫ τ

0
ds

∫
Rd

Λ(dz)

×
∫
Rd
dv Γc(t− s, x− v)Γc(t− s, x− (v − z))

= C2K2(1 + C2)2Jc(t, x)2

∫ τ

0
ds

∫
Rd

Λ(dz)Γ2c(t− s, z).

Therefore,

‖I2(t, x)‖2Lp(Ω) ≤ k
2
pC

2K2(1 + C2)2Jc(t, x)2

∫ t

0
k(s, 2c) ds.

To compute the p-moment of I6, we use Burkholder’s inequality

‖I6(t, x)‖2Lp(Ω) = ‖Mt‖2Lp(Ω) ≤ k
2
p ‖〈M〉t‖Lp/2(Ω) ,
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where τ 7→Mτ is the following continuous square integrable martingale

Mτ =

∫ t

0

∫
Rd\LD

Γ(t− s, x− y)σ(u(s, y))M(ds, dy),

for τ ∈ [0, t], whose quadratic variation is given by

〈M〉τ =

∫ τ

0
ds

∫
Rd

Λ(dz)

∫
Rd
dv 1Rd\LD(v)Γ(t− s, x− v)σ(u(s, v))

× 1Rd\LD(v − z)Γ(t− s, x− (v − z))σ(u(s, v − z)).

Minkowski’s and Cauchy-Schwarz’ inequality, together with linear growth of
the function σ and (4.20), yield

‖〈M〉τ‖Lp/2(Ω) ≤ K
2(1 + C1)2

∫ τ

0
ds

∫
Rd

Λ(dz)

×
∫
Rd
dv 1Rd\LD(v)Γ(t− s, x− v)

× 1Rd\LD(v − z)Γ(t− s, x− (v − z)).

Two applications of inequality (4.8) and the semi-group property of the heat
kernel yield

‖〈M〉τ‖Lp/2(Ω) ≤ c
dK2(1 + C1)2Jc(t, x)2

∫ τ

0
ds

∫
Rd

Λ(dz)

×
∫
Rd
dv Γc(t− s, x− v)Γc(t− s, x− (v − z))

= cdK2(1 + C1)2Jc(t, x)2

∫ τ

0
ds

∫
Rd

Λ(dz) Γ2c(t− s, z).

Therefore,

‖I6(t, x)‖2Lp(Ω) ≤ k
2
pc
dK2(1 + C1)2Jc(t, x)2

∫ t

0
k(s, 2c) ds.

Finally, to compute the p-moment of I4, we use Burkholder’s inequality

‖I4(t, x)‖2Lp(Ω) = ‖Mt‖2Lp(Ω) ≤ k
2
p ‖〈M〉t‖Lp/2(Ω) ,

where τ 7→Mτ is the following continuous square integrable martingale

Mτ =

∫ τ

0

∫
LD

Γ(t− s, x− y)[σ(u(s, y))− σ(uL(s, y))]M(ds, dy),

for τ ∈ [0, t], whose quadratic variation is given by

〈M〉τ =

∫ τ

0
ds

∫
Rd

Λ(dz)

∫
Rd
dv 1LD(v)Γ(t− s, x− v)

× 1LD(v − z)Γ(t− s, x− (v − z))
× {σ(u(s, v))− σ(uL(s, v))} {σ(u(s, v − z))− σ(uL(s, v − z))} .
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Using Minkowski’s and Cauchy-Schwarz’ inequality, together with the fact
that σ is a Lipschitz function, we get

‖〈M〉τ‖Lp/2(Ω) ≤ Lip2

∫ τ

0
ds

∫
Rd

Λ(dz)

∫
Rd
dv 1LD(v)Γ(t− s, x− v)

× 1LD(v − z)Γ(t− s, x− (v − z))
× ‖u(s, v)− uL(s, v)‖Lp(Ω) ‖u(s, v − z)− uL(s, v − z)‖Lp(Ω)

Recall the definitions of (4.10). We multiply and divide by Jc(t, x)2 and
Jc(s, y)2 to get

‖〈M〉τ‖Lp/2(Ω) ≤ Lip2Jc(t, x)2

∫ τ

0
ds

∫
Rd

Λ(dz)

∫
Rd
dv

× 1LD(v)Γ(t− s, x− v)
Jc(s, v)

Jc(t, x)

fL(s, v)

Jc(s, v)

× 1LD(v − z)Γ(t− s, x− (v − z))Jc(s, v − z)
Jc(t, x)

fL(s, v − z)
Jc(s, v − z)

≤ Lip2Jc(t, x)2

∫ τ

0
ds h(s, c)

∫
Rd

Λ(dz)

∫
Rd
dv q(s, v; t, x)q(s, v − z; t, x),

where
q(s, v; t, x) := 1LD(v)Γ(t− s, x− v)

Jc(s, v)

Jc(t, x)
.

By Lemma 4.13 below, we can conclude that

‖I4(t, x)‖2Lp(Ω) ≤ k
2
pc
dLip2Jc(t, x)2

∫ t

0
h(s, c)k(t− s, 2c).

If we put together each bound for I0, I2, I6, and I4, we reach the following

h(t)1/2 ≤ (C + cd/2) ‖u0‖+ kpCK(1 + C2)(k ∗ 1)(t)1/2

+ kpc
d/2K(1 + C1)(k ∗ 1)(t)1/2 + kpc

d/2Lip(k ∗ h)(t)1/2,

where k(s) = k(s, 2c), and h(s) = h(s, c). If we define C̄ = C + cd/2, and
C3 = max(C1, C2), we get

h(t)1/2 ≤ C̄ ‖u0‖+ kpC̄K(1 + C3)(k ∗ 1)(t)1/2 + kpc
d/2Lip(k ∗ h)(t)1/2.

We now simplify the latter inequality. Observe that we have different powers
of the function h on both sides. Squaring both side, we get

h(t) ≤ 3C̄2 ‖u0‖2 + 3k2
pC̄

2K2(1 + C3)2(k ∗ 1)(t) + 3k2
pc
dLip2(k ∗ h)(t).

The proof is complete if we set c1 = 3C̄2 ‖u0‖2 , c2 = 3k2
pC̄

2K2(1 + C3)2,

and c3 = 3k2
pc
dLip2.
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Remark. If we used Lemmas 4.14 or 4.15 below instead of Lemma 4.13, then
convolution would not appear in (4.22). Its last integral would become

c3

2

∫ t

0

s

t
k(2s(t− s)/t)h(s) ds.

We don’t know which one is the most effective bound. We shall analyse the
worst possible case, i.e.

h(t) ≤ c1 + c2

∫ t

0
k(s) ds+

c3

2

∫ t

0
k(2s(t− s)/t)h(s) ds, (4.24)

for k(s) = k(s, c), since c 7→ k(s, c) is decreasing, and k(t− s, 2c) = k(2(t−
s), c) ≤ k(2s(t−s)/t, c), for all 0 ≤ s ≤ t. In the next section, we shall iterate
inequality (4.24).

Lemma 4.13. Independently of x ∈ LD, and c ≥ 2, we have∫
Rd

Λ(dz)

∫
Rd
dv q(s, v; t, x)q(s, v − z; t, x) ≤ cdk(t− s, 2c).

Proof. Using the same trick as in Lemma 4.8, we can bound, for c ≥ 2,

Γ(t− s, x− v) ≤ cd/2Γc(t− s, x− v)e
− |x−v|

2

4c(t−s) . (4.25)

Let w be (one of) the closest points of v in ∂LD, and y be (one of) the
closest points of x in ∂LD, thus

q(s, v; t, x) ≤ cd/2Γc(t− s, x− v)
e
− |x−v|

2

4c(t−s) e−
|v−w|2

4cs

e−
|x−y|2

4ct

.

Because |x− y| ≤ |x− w| ≤ |x− v|+ |v − w| , a version of Cauchy-Schwarz
inequality, Lemma 5.14, applies and

|x− y|2

t
≤ (|x− v|+ |v − w|)2

t
≤ |x− v|

2

t− s
+
|v − w|2

s
.

Therefore, the quotient of exponentials is bounded by one and

q(s, v; t, x) ≤ cd/2Γc(t− s, x− v).

The double integral becomes, using the semi-group property (A.6),∫
Rd

Λ(dz)

∫
Rd
dv q(s, v; t, x)q(s, v − z; t, x)

≤ cd
∫
Rd

Λ(dz)

∫
Rd
dv Γc(t− s, x− v)Γc(t− s, x− (v − z))

= cd
∫
Rd

Λ(dz) Γ2c(t− s, z) = cdk(t− s, 2c),

which concludes the proof.
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In the particular case of the symmetric interval D = (−1, 1), we can also
find the following.

Lemma 4.14. Independently of x ∈ LD = (−L,L) and c ≥ 1, we have∫
R

Λ(dz)

∫
R
dv q(s, v; t, x)q(s, v − z; t, x) ≤ 16c

s

t
k(2s(t− s)/t, c).

Proof. First, observe that the inner most integral is a convolution, evaluated
at the point z, i.e. (q ∗ q̃)(z). In the present case of one space dimension, we
can bound

Jc(t, x) ≤
√

4cπt [Γc(t, x− L) + Γc(t, x+ L)] ≤ 2Jc(t, x),

for all x ∈ (−L,L). Furthermore, for c ≥ 1, Γ(r, x) ≤
√
cΓc(r, x). Thus

q(s, v; t, x) ≤ 2
√
c

√
s√
t
Γc(t− s, x− v)

Γc(s, v − L) + Γc(s, v + L)

Γc(t, x− L) + Γc(t, x+ L)

≤ 2
√
c

√
s√
t

[b(s, v; t, x, L) + b(s, v; t, x,−L)] ,

where

b(s, v; t, x, L) =
Γc(t− s, x− v)Γc(s, v − L)

Γc(t, x− L)

= Γc

(
s(t− s)

t
,
(t− s)(L− v) + s(x− v)

t

)
= Γc

(
s(t− s)

t
,−v +

s

t
x+

t− s
t

L

)
.

The second equality is an application of the multiplication formula for the
heat kernel, see (A.11). The function v 7→ b(s, v; t, x, L) is the density of a
scaled brownian bridge starting at the point L at time s = 0, and finishing at
the point x at time s = t. This observation is made rigorous in Lemma 6.17.
Because it is a Schwartz function, we can compute its Fourier transform in
the v variable,

Fb(s, t, x, L)(ξ) = exp

(
−4cπ2 s(t− s)

t
|ξ|2
)

exp

(
−2πiξ

(
s

t
x+

t− s
t

L

))
.

Thus,

|Fb(s, t, x, L)(ξ) + Fb(s, t, x,−L)(ξ)|2

= 4 exp

(
−4cπ2 2s(t− s)

t
|ξ|2
)

cos2

(
2πξ

t− s
t

L

)
.
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Putting every bounds together yields∫
R

Λ(dz)

∫
R
dv q(s, v; t, x)q(s, v − z; t, x)

≤ 4c
s

t

∫
R

Λ(dz)

∫
R
dv [b(s, v; t, x, L) + b(s, v; t, x,−L)]

× [b(s, v − z; t, x, L) + b(s, v − z; t, x,−L)]

= 4c
s

t

∫
R
µ(dξ) |F [b(s, t, x, L) + b(s, t, x,−L)] (ξ)|2

≤ 16c
s

t

∫
R
µ(dξ) exp

(
−4cπ2 2s(t− s)

t
|ξ|2
)

= 16c
s

t

∫
R

Λ(dz)Γc

(
2s(t− s)

t
, z

)
= 16c

s

t
k(2s(t− s)/t, c).

This completes the proof.

The generalization to the square D = (−1, 1)d is given now.

Lemma 4.15. Independently of x ∈ LD = (−L,L)d, and c ≥ 1, we have∫
Rd

Λ(dz)

∫
Rd
dv q(s, v; t, x)q(s, v − z; t, x) ≤ (2d)4cd

s

t
k(2s(t− s)/t, c).

Proof. We use the special notation Γd for the heat kernel in d space dimen-
sions and Γ for the heat kernel in one space dimension. We would like to
bound

q(s, v; t, x) = 1D(v)Γd(t− s, x− v)Jc(s, v)/Jc(t, x).

We first observe that

Jc(t, x)√
4cπt

≤ Γc(t, x1−L) + Γc(t, x1 +L) + · · ·+ Γc(t, xd−L) + Γc(t, xd +L)

≤ 2d
Jc(t, x)√

4cπt
,

and thus,

Jc(s, v)

Jc(t, x)
≤ 2d

√
s√
t

× Γc(s, v1 − L) + Γc(s, v1 + L) + · · ·+ Γc(s, vd − L) + Γc(s, vd + L)

Γc(t, x1 − L) + Γc(t, x1 + L) + · · ·+ Γc(t, xd − L) + Γc(t, xd + L)
.

To simplify notations, we set Rd−1 3 x̂j = (x1, · · · , xj−1, xj+1, . . . , xd) the
vector whose j-th component has been removed. We need to bound 2d terms,
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each of the form

Γd(t− s, x− v)
Γc(s, v1 − L)

Γc(t, x1 − L)

≤ cd/2Γd−1
c (t− s, x̂1 − v̂1)

Γc(t− s, x1 − v1)Γc(s, v1 − L)

Γc(t, x1 − L)

= cd/2Γd−1
c (t− s, x̂1 − v̂1)b(s, v1; t, x1, L),

where
b(s, v1; t, x1, L) :=

Γc(t− s, x1 − v1)Γc(s, v1 − L)

Γc(t, x1 − L)
,

is the density of a scaled brownian bridge starting at the point L at time
s = 0, and finishing at the point x1 at time s = t. This observation is made
rigorous in Lemma 6.17. We apply the multiplication formula for the heat
kernel, see (A.11), to get

b(s, v1; t, x1, L) = Γc

(
s(t− s)

t
,−v1 +

s

t
x1 +

t− s
t

L

)
,

whose one dimensional Fourier transform in the v1 variable is given by

Fb(s; t, x1, L)(ξ1) = exp

{
−4cπ2 s(t− s)

t
|ξ1|2

}
e−2πiξ1( st x1+ t−s

t
L).

Observe that the following d dimensional Fourier transform in the v variable
can be split into a d − 1 dimensional Fourier transform in the v̂1 variable
and a one dimensional Fourier transform in the v1 variable,

F
{

Γd−1
c (t− s, x̂1 − v̂1)b(s, v1; t, x1, L)

}
(ξ)

= exp

{
−4cπ2(t− s)

∣∣∣ξ̂1
∣∣∣2} e−2πiξ̂1·x̂1

× exp

{
−4cπ2 s(t− s)

t
|ξ1|2

}
e−2πiξ1( st x1+ t−s

t
L),

with module given by

exp

{
−4cπ2(t− s)

∣∣∣ξ̂1
∣∣∣2} exp

{
−4cπ2 s(t− s)

t
|ξ1|2

}
≤ exp

{
−4cπ2 s(t− s)

t
|ξ|2
}
.

Therefore,∫
Rd

Λ(dz)

∫
Rd
dv q(s, v; t, x)q(s, v − z; t, x)

≤ (2d)4cd
s

t

∫
Rd
µ(dξ) exp

{
−4cπ2 2s(t− s)

t
|ξ|2
}

= (2d)4cd
s

t
k(2s(t− s)/t, c),
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which concludes the proof.

4.4.1 Iteration of some Gronwall type inequality

It is time to iterate inequality (4.24). To do so, we define a triangle
operator

(f . g)(t) :=

∫ t

0
f

(
2
s(t− s)

t

)
g(s) ds. (4.26)

The iteration scheme could be written as

h(t) ≤ c1 + c2(k ∗ 1)(t) +
c3

2
(k . h)(t),

for all t ∈ [0, T ]. The latter is very similar to the one of [11, Lemma 15], with
the difference that the above triangle operator is replaced by convolution.
As we shall see, both operators can sometimes be compared to one another.
We iterate the latter inequality to get

h(t) ≤ c1 + c2(k ∗ 1)(t) + c1
c3

2
(k . 1)(t)

+ c2
c3

2
(k . k ∗ 1)(t) +

(c3

2

)2
(k . k . h)(t).

If we iterate it again, we get

h(t) ≤ c1 + c2(k ∗ 1)(t) + c1
c3

2
(k . 1)(t)

+ c2
c3

2
(k . k ∗ 1)(t) + c1

(c3

2

)2
(k . k . 1)(t)

+ c2

(c3

2

)2
(k . k . k ∗ 1)(t) +

(c3

2

)3
(k . k . k . h)(t).

It will be checked that the present triangle operator is neither commutative
nor associative, see Lemma 4.16 below. In fact, we wrote

f . g . h := f . (g . h) 6= (f . g) . h.

The fact that both convolution and the triangle operator appear in the Gron-
wall inequality makes the computations harder. In fact, computations in-
volving the triangle operator are much harder, see Lemma 5.23.

Lemma 4.17 below enables to bound the triangle operator with convo-
lution, which is associative and commutative. Using Lemma 4.10 together
with Lemma 4.17, we can bound, for example,

(k . k . k ∗ 1)(t) := (k . (k . (k ∗ 1)))(t)

≤ 2(k . (k ∗ (k ∗ 1)))(t)

≤ 4(k ∗ k ∗ k ∗ 1)(t).
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In fact, we can replace each occurence of f . g by 2f ∗ g, if we can make sure
that the hypotheses of Lemma 4.17 are verified. In particular, we have

k . 1 ≤ 2k ∗ 1, k . k ∗ 1 ≤ 2k ∗ k ∗ 1, and k . k . 1 ≤ 22k ∗ k ∗ 1.

Thus,

h(t) ≤ c1 + c2(k ∗ 1)(t) + c1c3(k ∗ 1)(t)

+ c2c3(k ∗ k ∗ 1)(t) + c1c
2
3(k ∗ k ∗ 1)(t)

+ c2c
2
3(k ∗ k ∗ k ∗ 1)(t) +

(c3

2

)3
(k . k . k . h)(t).

If we keep iterating, finitely many time, we get

h(t) ≤ c1 +

(
c1 +

c2

c3

) n−1∑
m=1

cm3 (k∗m ∗ 1)(t)

+
c2

c3
cn3 (k∗n ∗ 1)(t) +

(c3

2

)n
(k.n . h)(t).

We would like to let n→∞, and somehow hope that

h(t) ≤ c1 +

(
c1 +

c2

c3

) ∞∑
m=1

cm3 (k∗m ∗ 1)(t).

We shall later see that such a bound is valid. To have such a conclusion, we
should show that both remaining terms

cn3 (k∗n ∗ 1)(t) −→ 0 and
(c3

2

)n
(k.n . h)(t) −→ 0,

as n → ∞. The fact that the latter series is convergent is a consequence of
either [11, Lemma 17] or the Laplace transform argument in Proposition 4.9
above. Hence, the first remaining term has to converge to zero. If h were to
be a bounded function, say h(s) ≤ M for all s ≤ t, then we could argue as
before and conclude that the second remaining term is bounded by(c3

2

)n
(k.n . h)(t) ≤Mcn3 (k∗n ∗ 1)(t) −→ 0, as n→∞.

Unfortunately, the boundedness (and more generally the finiteness) of the
function h is precisely what we are trying to prove! To overcome the lat-
ter circular argument, we need to go back to the Picard iteration schemes
defining both u(t, x) and uL(t, x). This will be done in the next Section 4.4.2.

We now gather two properties, mentioned above, regarding the triangle
operator.

Lemma 4.16. The triangle operator, defined by (4.26), is neither commu-
tative nor associative.
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Proof. Non-commutativity is obvious from the definition. To show non-
associativity, we first compute

((f . g) . h) (t) =

∫ t

0
(f . g)

(
2s− 2s2

t

)
h(s) ds

=

∫ t

0
ds

∫ 2
s(t−s)
t

0
dr f

(
2r − 2r2

2s− 2s2

t

)
g(r)h(s).

Then, we compute

(f . (g . h)) (t) =

∫ t

0
f

(
2s− 2s2

t

)
(g . h)(s) ds

=

∫ t

0
ds

∫ s

0
dr f

(
2s− 2s2

t

)
g

(
2r − 2r2

s

)
h(r)

=

∫ t

0
dr

∫ t

r
ds f

(
2s− 2s2

t

)
g

(
2r − 2r2

s

)
h(r).

For r fixed, we can make the change of variable x = 2r(s− r)/s, or equiva-
lently s = 2r2/(2r − x), which yields

(f . (g . h)) (t)

=

∫ t

0
dr

∫ 2
r(t−r)
t

0
dx

2r2

(2r − x)2
f

2

(
2r2

2r − x

)
−

2
(

2r2

2r−x

)2

t

 g(x)h(r).

This concludes the proof.

Under the following special assumptions, the triangle operator is compa-
rable to convolution.

Lemma 4.17. Suppose g ≥ 0 is increasing and k ≥ 0 is decreasing, then
1

2
(k ∗ g)(t) ≤ (k . g)(t) ≤ 2(k ∗ g)(t). (4.27)

The author discovered this result before encountering the second inequal-
ity in [2, Lemma 3.6].

Proof. First, we observe that (t− s)/t ≥ 1/2 for s ∈ (0, t/2), and s/t ≥ 1/2
for s ∈ (t/2, t). Using the facts that k is decreasing, g is increasing, and that
both are positive, we get∫ t

0
g(s)k

(
2
s(t− s)

t

)
ds ≤

∫ t/2

0
g(s)k(s) ds+

∫ t

t/2
g(s)k(t− s) ds

=

∫ t/2

0
[g(s) + g(t− s)] k(s) ds

≤ 2

∫ t/2

0
g(t− s)k(s) ds ≤ 2

∫ t

0
g(t− s)k(s) ds.
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Similarly, we observe that (t − s)/t ≤ 1 for s ∈ (0, t/2), and s/t ≤ 1 for
s ∈ (t/2, t). Using the facts that k is decreasing, g is positive and increasing,
we get∫ t

0
g(s)k

(
2
s(t− s)

t

)
ds ≥

∫ t/2

0
g(s)k(2s) ds+

∫ t

t/2
g(s)k(2(t− s)) ds

=

∫ t/2

0
[g(s) + g(t− s)] k(2s) ds

≥
∫ t/2

0
g(t− s)k(2s) ds =

1

2

∫ t

0
g(t− r/2)k(r) dr

≥ 1

2

∫ t

0
g(t− r)k(r) dr,

which concludes the proof.

4.4.2 Last step of the proof

The main purpose of this section is to confirm the previous guess

h(t) ≤ c1 + [c1 + c2/c3] · (K ∗ 1)(t),

for all t ∈ [0, T ], where

K(t) =
∞∑
m=1

cm3 k
∗m(t).

To do so, we need to go back to the Picard iteration schemes associated to
equations (4.1) and (4.2), which are defined by

u0(t, x) :=

∫
Rd

Γ(t, x− y)u0(y) dy,

u0
L(t, x) :=

∫
LD

GL(t, x, y)u0(y) dy,

un+1(t, x) := u0(t, x) +

∫ t

0

∫
Rd

Γ(t− s, x− y)σ (un(s, y))M(ds, dy),

un+1
L (t, x) := u0

L(t, x) +

∫ t

0

∫
LD

GL(t− s, x, y)σ (unL(s, y))M(ds, dy).

We define the corresponding functions of (4.10),

fnL(t, x) := ‖un(t, x)− unL(t, x)‖Lp(Ω) ,

hn(t, c) := sup
x∈LD

fnL(t, x)2

Jc(t, x)2
,

It is possible to bound the function h by the functions hn in the following
way:
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Lemma 4.18. For all t > 0,

h(t) ≤ lim inf
n→∞

hn(t). (4.28)

Proof. Because un(t, x) and unL(t, x) converge to respectively u(t, x) and
uL(t, x), in Lp(Ω), we get that fnL(t, x) converges to fL(t, x). Now recall
that for any function φ of two parameters, we have

sup
y

inf
x
φ(x, y) ≤ inf

x
sup
y
φ(x, y).

Thus,

h(t) = sup
x∈LD

fL(t, x)2

Jc(t, x)2
= sup

x∈LD
lim inf
n→∞

fnL(t, x)2

Jc(t, x)2

= sup
x∈LD

sup
N≥1

inf
n≥N

fnL(t, x)2

Jc(t, x)2
= sup

N≥1
sup
x∈LD

inf
n≥N

fnL(t, x)2

Jc(t, x)2

≤ sup
N≥1

inf
n≥N

sup
x∈LD

fnL(t, x)2

Jc(t, x)2
= lim inf

n→∞
hn(t),

which concludes the proof.

We are now interested in computing each function hn. For n = 0, we
observe that u0(t, x)− u0

L(t, x) = I0(t, x), and thus by (4.23),

f0
L(t, x) = ‖I0(t, x)‖Lp(Ω) ≤ (C + cd/2) ‖u0‖ Jc(t, x).

Hence h0(t) ≤ (C+cd/2)2 ‖u0‖2 . The fact that the initial iteration is bounded
by a constant function will play a significant role. We can argue similarly as
in Lemma 4.12, and the remark that follows it, to get the following recursive
formula

hn+1(t) ≤ c1 + c2(k ∗ 1)(t) +
c3

2
(k . hn)(t).

Without lost of generality, we can assume that (C + cd/2)2 ‖u0‖2 ≤ c1. (In
fact, we had c1 = 3(C + cd/2)2 ‖u0‖2 .) In order to use the comparison be-
tween the triangle operator and convolution, see Lemma 4.17, we need to
recursively define another sequence of functions {h̄n}, with h̄0(t) = c1 and

h̄n+1(t) = c1 + c2(k ∗ 1)(t) + c3(k ∗ h̄n)(t).

That sequence satisfies the following two properties:

Lemma 4.19. Each function h̄n is increasing and dominates hn, i.e. for
any n ∈ N and ε, t > 0, we have h̄n(t) ≤ h̄n(t+ ε) and hn(t) ≤ h̄n(t).

This result was inspired by [9, Lemma 2.6].
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Proof. The fact that each function h̄n is increasing is a consequence of
Lemma 4.10 and the fact that the initial function h̄0 is constant. The fact
that each h̄n dominates hn is a consequence of Lemma 4.17 and the facts k
is decreasing and each h̄n is increasing. The proof is done by induction. For
n = 0, we have h0(t) ≤ c1 = h̄0(t). Moreover, for n ≥ 0,

c3

2
(k . hn)(t) ≤ c3

2
(k . h̄n)(t) ≤ c3(k ∗ h̄n)(t),

and thus hn+1(t) ≤ h̄n+1(t).

We now give the exact expression for the dominating sequence, i.e.

h̄1(t) = c1 + c2(k ∗ 1)(t) + c3(k ∗ h̄0)(t)

= c1 + c2(k ∗ 1)(t) + c1c3(k ∗ 1)(t)

= c1 + [c2 + c1c3] (k ∗ 1)(t);

h̄2(t) = c1 + c2(k ∗ 1)(t) + c3(k ∗ h̄1)(t)

= c1 + c2(k ∗ 1)(t) + c1c3(k ∗ 1)(t) + c3 [c2 + c1c3] (k ∗ k ∗ 1)(t)

= c1 + [c2 + c1c3] (k ∗ 1)(t) + c3 [c2 + c1c3] (k ∗ k ∗ 1)(t);

and by induction, for n ≥ 1,

h̄n = c1 + [c2 + c1c3] ·

(
n∑

m=1

cm−1
3 k∗m

)
∗ 1

= c1 + [c1 + c2/c3] ·

(
n∑

m=1

cm3 k
∗m

)
∗ 1 .

Therefore,

h(t) ≤ lim inf
n→∞

hn(t) ≤ lim
n→∞

h̄n(t) = c1 + [c1 + c2/c3] · (K ∗ 1)(t),

which completes the proof of (4.11).
We are left to show that the increasing function K∗1 is finite-valued. As

in the proof of Proposition 4.9, we compute its Laplace transform L(K∗1)(γ)
and observe that it is finite if and only if c3L(k)(γ) < 1. By dominated
convergence, this is possible for γ sufficiently large since

c3L(k)(γ) = c3

∫
Rd

µ(dξ)

γ + 4cπ2 |ξ|2
,

which is finite for all γ > 0, by Dalang’s condition (4.4).
The proof of Theorem 4.2 is completed. Indeed, we have proved that for

all t ∈ [0, T ],

h(t) = sup
x∈LD

‖u(t, x)− uL(t, x)‖2Lp(Ω)

Jc(t, x)2
≤ c1 + [c1 + c2/c3] · (K ∗ 1)(t),
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where nothing on the right hand side depends on the scaling variable L.
Therefore, uniformly for t ∈ [0, T ], L > 0, and x ∈ LD, we have

‖u(t, x)− uL(t, x)‖Lp(Ω) ≤ Θ(t) exp

(
−dist(x, ∂LD)2

4ct

)
,

for Θ(t) =
√
c1 + [c1 + c2/c3] · (K ∗ 1)(t).

4.5 Possible generalizations

We describe here two generalizations of Theorem 4.2. First, we consider
a more general type of equations, and second, vanishing Dirichlet boundary
conditions are replaced by combinations of vanishing Dirichlet and Neumann
boundary conditions. The open bounded domain D ⊆ Rd is as before. It
is either the d-dimensional square (−1, 1)d or has a regular boundary (and
contains the origin). Its boundary is decomposed into ∂D = S1 ∪ S2.

The method used in the previous sections applies for both generalizations
mentioned above. More precisely, we compare the behavior of the (random
field) solution on the whole space Rd with the (random field) solution on the
dilated domain LD, with vanishing Dirichlet and/or Neumann boundary
conditions, i.e.


∂u

∂t
(t, x) = ∆u(t, x) + b(u(t, x)) + σ(u(t, x)) Ṁ, t > 0, x ∈ Rd,

u(0, x) = u0(x), x ∈ Rd,
(4.29)

and

∂uL
∂t

(t, x) = ∆uL(t, x) + b(uL(t, x)) + σ(uL(t, x)) Ṁ, t > 0, x ∈ LD,

uL(t, x) = 0, t > 0, x ∈ LS1,
∂uL
∂ν

(t, x) = 0, t > 0, x ∈ LS2,

uL(0, x) = u0(x), x ∈ LD,
(4.30)

where b, σ and u0 satisfy the d-dimensional versions of (2.6) and (2.7),
the noise Ṁ on R+ × Rd is white in time and correlated in space, i.e. it
satisfies Assumption 4.1, and ν is the unit outward normal vector at the
point x ∈ ∂LD.

Under those assumptions, equations (4.29) and (4.30) admit unique ran-
dom field solutions u(t, x) and uL(t, x), that satisfy the following represen-



104 Chapter 4. Multiplicative correlated noise

tation formulas

u(t, x) =

∫
Rd

Γ(t, x− y)u0(y) dy

+

∫ t

0
ds

∫
Rd

Γ(t− s, x− y) b(u(s, y)) dy

+

∫ t

0

∫
Rd

Γ(t− s, x− y)σ(u(s, y))M(ds, dy), (4.31)

and

uL(t, x) =

∫
LD

GL(t, x, y)u0(y) dy

+

∫ t

0
ds

∫
LD

GL(t− s, x, y)b(uL(s, y)) dy

+

∫ t

0

∫
LD

GL(t− s, x, y)σ(uL(s, y))M(ds, dy), (4.32)

where Γ is the heat kernel, given by (A.8), and GL is the Green function of
the heat equation on the bounded domain LD associated with the boundary
conditions of (4.30). See [11] for existence and uniqueness of these random
field solutions. See also [9] for unbounded (or measure valued) initial condi-
tions.
Remark. The latter Green function GL is associated to the heat equation
∂u
∂t = ∆u but not to the operator ∂u

∂t = ∆u + b(u). In the particular case
b(u) = b·u, for b ∈ R, the operator ∂u∂t = ∆u+b·u admits the following Green
function ebtGL(t, x, y). Similarly, the fundamental solution is ebtΓ(t, x−y). In
that case, we would expect the solution to satisfy the following representation
formulas

v(t, x) =

∫
Rd
ebtΓ(t, x− y)u0(y) dy

+

∫ t

0

∫
Rd
eb(t−s)Γ(t− s, x− y)σ(v(s, y))M(ds, dy),

and

vL(t, x) =

∫
LD

ebtGL(t, x, y)u0(y) dy

+

∫ t

0

∫
LD

eb(t−s)GL(t− s, x, y)σ(vL(s, y))M(ds, dy).

In the present case, we don’t have the scaling properties (4.15) and (4.16).
But we have similar upper bounds when b < 0. Indeed,

ebtGLD(t, x, y) = ebt/L
2 1

Ld
GD(t/L2, x/L, y/L)ebt(1−1/L2),
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for all t > 0 and x, y ∈ LD. Thus,

ebt |GLD(t, x, y)| ≤ ebt/L2 1

Ld
∣∣GD(t/L2, x/L, y/L)

∣∣ ,
whenever b < 0 and L ≥ 1. A similar argument holds for the difference of the
fundamental solution and the Green function. Therefore, both inequalities
of (4.12) are verified for the Green function associated to the present operator
∂u
∂t = ∆u + b · u. Whence, the convergence result, Theorem 4.2, also holds
for the latter operator.

As in Chapter 2, the difference of interest is

u(t, x)− uL(t, x) =
6∑
i=0

Ii(t, x),

where

I0(t, x) =

∫
Rd

Γ(t, x− y)u0(y) dy −
∫
LD

GL(t, x, y)u0(y) dy,

I1(t, x) =

∫ t

0
ds

∫
LD

[Γ(t− s, x− y)−GL(t− s, x, y)]b(uL(s, y)) dy,

I2(t, x) =

∫ t

0

∫
LD

[Γ(t− s, x− y)−GL(t− s, x, y)]σ(uL(s, y))M(ds, dy),

I3(t, x) =

∫ t

0
ds

∫
LD

Γ(t− s, x− y)[b(u(s, y))− b(uL(s, y))] dy,

I4(t, x) =

∫ t

0

∫
LD

Γ(t− s, x− y)[σ(u(s, y))− σ(uL(s, y))]M(ds, dy),

I5(t, x) =

∫ t

0
ds

∫
Rd\LD

Γ(t− s, x− y)b(u(s, y)) dy,

I6(t, x) =

∫ t

0

∫
Rd\LD

Γ(t− s, x− y)σ(u(s, y))M(ds, dy).

The p-moments of I0, I2, I4, and I6 were already handled in Lemma 4.12.
The computations of the p-moments of I1, I3, and I5 are similar to those of
Chapter 2. Recall the definitions of (4.10). To get a better understanding
on what shall happen, we set

kΛ(t, c) :=

∫
Rd

Λ(dz) Γc(t, z),

kλ(t, c) :=

∫
Rd

Γc(t, z) dz.

The second definition is a particular case of the first, in which Λ(dz) = dz is
the Lebesgue measure on Rd. For some l > 0, we have the following uniform
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bounds,

C1 := sup
t∈[0,T ]

sup
x∈Rd

‖u(t, x)‖Lp(Ω) <∞, (4.33)

C2 := sup
t∈[0,T ]

sup
L>l

sup
x∈LD

‖uL(t, x)‖Lp(Ω) <∞. (4.34)

These uniform bounds are proved in a similar way as in Propositions 2.6
and 4.3, in which the recursive equation (4.18) should be replaced by

Dn(t)2 ≤ c̄Lip2
[
(kλ + kΛ) ∗D2

n−1

]
(t),

for all t ∈ [0, T ], where

Dn(t) := sup
x∈D

∥∥vn+1(t, x)− vn(t, x)
∥∥
Lp(Ω)

,

and c̄ = c(T, p,D). Do deduce the latter recursive bound, the computations
in the next Lemma may help.

We have the following Gronwall type inequality.

Lemma 4.20. For all t ∈ [0, T ], we have

h(t) ≤ c1 + c2 [(kλ + kΛ) ∗ 1] (t) + c3 [(kλ + kΛ) ∗ h] (t),

for some constants c1 = c(‖u0‖ , D), c2 = c(T,K,Lip, ‖u0‖ ,Λ, D, p), and
c3 = c(T,Lip, p), and kΛ(s) = kΛ(s, 2c), h(t) = h(t, c).

Going back to the Picard iteration scheme, as in Section 4.4.2, we can
show that equation (4.11) is still valid, i.e.

h(t) ≤ c1 + [c1 + c2/c3] · (K ∗ 1)(t),

for all t ∈ [0, T ], where

K(t) =
∞∑
m=1

cm3 (kλ + kΛ)∗m(t).

The convolution K ∗ 1 is again a finite valued increasing function with ex-
ponential growth. Indeed, its Laplace transform L(K ∗ 1)(γ) is finite if and
only if c3L(kλ + kΛ)(γ) < 1. This is the case for γ large enough since

L(kλ + kΛ)(γ) =
1

γ
+

∫
Rd

µ(dξ)

γ + 8cπ2 |ξ|2
,

and the latter integral is finite for all γ > 0, by Assumption 4.1.
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Proof. The computations of Lemma 4.12 can be written as follows:

‖I0(t, x)‖Lp(Ω) ≤ (C + cd/2) ‖u0‖ Jc(t, x),

‖I2(t, x)‖Lp(Ω) ≤ kpCK(1 + C2)Jc(t, x)(kΛ ∗ 1)(t)1/2,

‖I6(t, x)‖Lp(Ω) ≤ kpc
d/2K(1 + C1)Jc(t, x)(kΛ ∗ 1)(t)1/2,

‖I4(t, x)‖Lp(Ω) ≤ kpc
d/2LipJc(t, x)(kΛ ∗ h)(t)1/2.

We are left to compute I1, I3, and I5. By Minkowski’s inequality and linear
growth of the function b, we get

‖I1(t, x)‖Lp(Ω) ≤
∫ t

0
ds

∫
LD
|FL(t− s, x, y)|K

(
1 + ‖uL(s, y)‖Lp(Ω)

)
dy

≤ K(1 + C2)

∫ t

0
ds

∫
LD
|FL(s, x, y)| dy.

By (4.12) and the definition of kλ,

‖I1(t, x)‖Lp(Ω) ≤ CK(1 + C2)Jc(t, x)

∫ t

0
ds

∫
Rd

Γc(s, x− y) dy.

= CK(1 + C2)Jc(t, x)

∫ t

0
kλ(s, c) ds.

Similarly, by Minkowski’s inequality, linear growth of b, and Lemma (4.8),
we get

‖I5(t, x)‖Lp(Ω) ≤
∫ t

0
ds

∫
Rd\LD

Γ(t− s, x− y)K
(

1 + ‖u(s, y)‖Lp(Ω)

)
dy

≤ cd/2K(1 + C1)Jc(t, x)

∫ t

0
ds

∫
Rd

Γc(s, x− y) dy

= cd/2K(1 + C1)Jc(t, x)

∫ t

0
kλ(s, c) ds.

By Minkowski’s inequality, the fact that b is Lipschitz, and recalling defini-
tions of (4.10), we get

‖I3(t, x)‖Lp(Ω) ≤
∫ t

0
ds

∫
LD

Γ(t−s, x−y) ‖b(u(s, y))− b(uL(s, y))‖Lp(Ω) dy

≤ Lip
∫ t

0
ds

∫
LD

Γ(t− s, x− y) ‖u(s, y)− uL(s, y)‖Lp(Ω) dy

= Lip Jc(t, x)

∫ t

0
ds

∫
LD

Γ(t− s, x− y)
Jc(s, y)

Jc(t, x)

fL(s, y)

Jc(s, y)
dy

≤ Lip Jc(t, x)

∫ t

0
ds h(s, c)1/2

∫
LD

Γ(t− s, x− y)
Jc(s, y)

Jc(t, x)
dy.
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The arguments in the proof of Lemma 4.13 yield

Γ(t− s, x− y)
Jc(s, y)

Jc(t, x)
≤ cd/2Γc(t− s, x− y),

for all x, y ∈ LD, and c ≥ 2. Thus,

‖I3(t, x)‖Lp(Ω) ≤ c
d/2Lip Jc(t, x)

∫ t

0
ds h(s, c)1/2

∫
Rd

Γc(t− s, x− y) dy

= cd/2Lip Jc(t, x)

∫ t

0
h(s, c)1/2kλ(t− s, c) ds.

If we put these previous seven bounds together, we reach the following

h(t)1/2 ≤ (C + cd/2) ‖u0‖
+ CK(1 + C2)(kλ ∗ 1)(t) + cd/2K(1 + C1)(kλ ∗ 1)(t)

+ kpCK(1 + C2)(kΛ ∗ 1)(t)1/2 + kpc
d/2K(1 + C1)(kΛ ∗ 1)(t)1/2

+ cd/2Lip(kλ ∗ h1/2)(t) + kpLipcd/2(kΛ ∗ h)(t)1/2,

where kλ(s) = kλ(s, c), kΛ(s) = kΛ(s, 2c), and h(s) = h(s, c). If we define
C̄ = C + cd/2, and C3 = max(C1, C2), we get

h(t)1/2 ≤ C̄ ‖u0‖
+ C̄K(1 + C3)(kλ ∗ 1)(t) + kpC̄K(1 + C3)(kΛ ∗ 1)(t)1/2

+ cd/2Lip(kλ ∗ h1/2)(t) + kpc
d/2Lip(kΛ ∗ h)(t)1/2.

We now simplify the latter inequality. Observe that we have different powers
of the function h on both sides. Squaring both side, we get

h(t) ≤ 5C̄2 ‖u0‖2

+ 5C̄2K2(1 + C3)2(kλ ∗ 1)(t)2 + 5k2
pC̄

2K2(1 + C3)2(kΛ ∗ 1)(t)

+ 5cdLip2(kλ ∗ h1/2)(t)2 + 5k2
pc
dLip2(kΛ ∗ h)(t).

Using Cauchy-Schwarz inequality, we can bound

(kλ ∗ h1/2)(t)2 ≤ (kλ ∗ 1)(t) · (kλ ∗ h)(t).

Furthermore, recall that kλ(t) = 1, for all t > 0, and thus (kλ ∗ 1)(t) =
t ≤ T. If we set c1 = 5C̄2 ‖u0‖2 , c2 = 5C̄2K2(1 + C3)2 max(T, k2

p), and
c3 = 5cdLip2 max(T, k2

p), then

h(t) ≤ c1 + c2(kλ ∗ 1)(t) + c2(kΛ ∗ 1)(t) + c3(kλ ∗ h)(t) + c3(kΛ ∗ h)(t),

for all t ∈ [0, T ], which concludes the proof.
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We summarize our findings in the next three results. First, in the case
of vanishing Dirichlet boundary conditions, for any open set D 3 0 we have:

Theorem 4.21. Uniformly for t ∈ [0, T ], L > 0, and x ∈ LD, we have

‖u(t, x)− uL(t, x)‖Lp(Ω) ≤ Θ(t) exp

(
−dist(x, ∂LD)2

4ct

)
,

for some increasing function Θ(t) = Θ(t, T, Lip,K,Λ, u0, p) and some posi-
tive constant c.

Remark. By Lemma 4.5, a possible value is c = 4d.

Second, for the square domain D = (−1, 1)d, which on each side have
either Dirichlet or Neumann boundary conditions, we have:

Theorem 4.22. Fix any l > 0. Uniformly for t ∈ [0, T ], L >
√
l/4T , and

x ∈ LD, we have

‖u(t, x)− uL(t, x)‖Lp(Ω) ≤ Θ(t) exp

(
−dist(x, ∂LD)2

4ct

)
,

for some increasing function Θ(t) = Θ(t, T, Lip,K,Λ, u0, p, l) and some pos-
itive constant c.

Remark. If none of both opposite surfaces have Neumann boundary condi-
tions, then the results holds for all L > 0. Furthermore, by Lemma 4.4, c = 4
is a possible value.

Third, in the case of Neumann boundary conditions, for any open regular
domain D 3 0 (i.e. its boundary belongs to C2+α for some α ∈ (0, 1)), we
have:

Theorem 4.23. Uniformly for t ∈ [0, T ], L ≥ 1, and x ∈ LD, we have

‖u(t, x)− uL(t, x)‖Lp(Ω) ≤ Θ(t) exp

(
−dist(x, ∂LD)2

4ct

)
,

for some increasing function Θ(t) = Θ(t, T, Lip,K,Λ, u0, p,D) and some
positive constant c = c(T,D).





Chapter 5

Anderson model with
correlated noise

In this chapter, we will study the heat equation in any space dimension,
d ≥ 1, with a particular form of multiplicative noise. Anderson’s model is the
case where the functions b ≡ 0 and σ(u) = λu, for some non zero constant
λ ∈ R. As in the previous chapter, correlated noises will be considered.
Unlike any previous discussion, we will allow the initial condition to be a
positive measure µ0 that satisfies the growth condition:∫

Rd
e−a|x|

2

µ0(dx) <∞, for all a > 0. (5.1)

This condition allows the homogeneous heat equation to have the following
solution

u0(t, x) =

∫
Rd

Γ(t, x− y)µ0(dy).

We denoteMH(Rd) the set of positive measures for which (5.1) holds.
We will compare the behavior of the (random field) solution on the whole

space Rd with the (random field) solution on some bounded open domain
D ⊆ Rd, with vanishing Dirichlet boundary conditions, i.e.

∂u

∂t
(t, x) = ∆u(t, x) + λu Ṁ, t > 0, x ∈ Rd,

u(0, dx) = µ0(dx), x ∈ Rd,
(5.2)

and 
∂uD
∂t

(t, x) = ∆uD(t, x) + λuD Ṁ, t > 0, x ∈ D,

uD(t, x) = 0, t > 0, x ∈ ∂D,
uD(0, dx) = µ0(dx), x ∈ D,

(5.3)

111
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where Ṁ is a noise on R+×Rd that is white in time and correlated in space.
Recall Assumption 4.1 about the present correlated noise. The positive mea-
sure Λ is tempered, symmetric, and positive definite, and satisfies∫ t

0

∫
Rd

Λ(dz) Γν(s, z) <∞,

for all t > 0 (and for all ν > 0). The latter integral condition is equivalent
to Dalang’s condition

Υ(β) :=

∫
Rd

µ(dξ)

β + |ξ|2
<∞, for some and hence for all β > 0. (5.4)

The positive measure µ is also tempered and positive definite. It is called
the spectral measure of Λ. In the sense of distributions, Λ is the Fourier
transform of µ, i.e. Fµ = Λ.

Under those assumptions, the Anderson models (5.2) and (5.3) admit
unique random field solutions, that satisfy the representation formulas

u(t, x) =

∫
R

Γ(t, x− y)µ0(dy)

+ λ

∫ t

0

∫
R

Γ(t− s, x− y)u(s, y)M(ds, dy), (5.5)

and

uD(t, x) =

∫
D
GD(t, x, y)µ0(dy)

+ λ

∫ t

0

∫
D
GD(t− s, x, y)uD(s, y)M(ds, dy), (5.6)

where Γ is the heat kernel, given by (A.8), and GD is the Green function
associated with Dirichlet boundary conditions. See [9, Theorem 2.4] for
existence and uniqueness of these random field solutions.

5.1 Main results and general ideas

As in the previous chapters, we will conclude that uD(t) converges to
u(t) as the domain D expands to the whole space. We will in fact be able
to say much more about the rate of convergence. In some special cases, we
shall not be restricted to any finite time horizon.

All these good news are consequences of an “explicit" formula for the two
points correlation

E
[
{u(t, x)− uD(t, x)}

{
u(t, y)− uD(t, x′)

}]
= E

[
u(t, x)u(t, x′)

]
− E

[
u(t, x)uD(t, x′)

]
− E

[
uD(t, x)u(t, x′)

]
+ E

[
uD(t, x)uD(t, x′)

]
.



5.1. Main results and general ideas 113

In the present case of Anderson’s model, Le Chen and Kunwoo Kim found
an explicit formula for the two points correlation

E
[
u(t, x)u(t, x′)

]
=

∫∫
R2d

µ0(dα)µ0(dα′)K(t, x, x′, α, α′).

The latter formula is amazing! The mysterious function K will gather infor-
mations about the noise and the fundamental solution to the heat equation
only. The initial condition µ0 appears only when integrating that function.
Thus, any information about the function K turns into a precious insight for
the computation of the two points correlation. In this direction, Lemmas 5.21
and 5.23 could turn into precious allies. These computations were possible
thanks to a clearer way of writing the function K and its components. In
fact, Section 6 will be all about potential generalization to other classes of
noises, to other classes of parabolic equations, and to distribution-valued
initial condition, provided that the stochastic integral still makes sense. A
derivation of this formula is given in Lemma 5.5.

We shall derive similar “explicit" expressions for E [uD(t, x)uD(t, y)] and
E [u(t, x)uD(t, y)] , which will lead to

Theorem 5.1. For all µ0 ∈MH(Rd), and t > 0, x, x′ ∈ Rd,

0 ≤ E
[
{u(t, x)− uD(t, x)}

{
u(t, x′)− uD(t, x′)

}]
=

∫∫
R2d

µ0(dα)µ0(dα′) [K1,1 −K1,2 −K2,1 +K2,2] (t, x, x′, α, α′).

The main idea is to extract as much information as possible from the
difference K1,1−K1,2−K2,1 +K2,2, and combine it with the behavior of the
initial condition. For example,

Theorem 5.2. If the initial measure µ0(dx) = u0(x)dx for some non-
negative bounded function 0 ≤ u0(x) ≤ M, then there exists some constants
c, γ, cγ > 0 such that for all t ∈ [0, T ], x, x′ ∈ D, we have

E
[
{u(t, x)− uD(t, x)}

{
u(t, x′)− uD(t, x′)

}]
≤ cγeγtM exp

{
−dist(x, ∂D)2

ct

}
exp

{
−dist(x′, ∂D)2

ct

}
. (5.7)

As was done in the previous chapters, we shall apply the previous result
to the dilations

LD := {Lx ∈ Rd : x ∈ D}, L > 0,

of some bounded open domain D, containing the origin, and prove that the
above constants c, γ, cγ do not depend on the parameter L. That is a direct
consequence of Corollary 3.11, when the domain has a regular boundary.
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Corollary 5.3. If the boundary ∂D is sufficiently regular, i.e. belongs to
C2+α, then under the same hypotheses of Theorem 5.2, we have

E
[
{u(t, x)− uLD(t, x)}

{
u(t, x′)− uLD(t, x′)

}]
≤ cγeγtM exp

{
−dist(x, ∂LD)2

ct

}
exp

{
−dist(x′, ∂LD)2

ct

}
, (5.8)

for all t ∈ [0, L2T ] and x, x′ ∈ LD. The constants c, γ, cγ depend on α, d, T,
λ, Λ, and on the domain D, but not on the constant L.

In some particular cases, such as rectangle domains, inequalities (3.9)
and (3.10) are in fact valid for all t > 0 instead of t ∈ [0, T ]. An application of
Corollary 3.11 translates into the validity of bound (5.8) for t > 0 and x, x′ ∈
LD. We had such results in one space dimension in the case of Dirichlet or
mixed boundary conditions, see (2.16) and (2.19). An application of (A.27)
concludes the arguments for rectangular domains.

If we restrict ourselves to points x, x′ within some compact set, then we
can allow the initial condition to have polynomial growth.

Here is how we shall extract informations about the difference K1,1 −
K1,2 −K2,1 +K2,2. First, each of the Ki,j ’s functions will be expressed as an
infinite series of the form

Ki,j =
∞∑
k=1

L.ki,j ,

where L.ki,j is the k-th iteration of some associative triangle operator,

L.ki,j = Li,j . Li,j . · · · . Li,j︸ ︷︷ ︸
k-times

.

In fact, the function Li,j will be expressed solely in terms of the fundamental
solution or the Green function, and the triangle operator will solely contain
information about the noise. The difference of interest can be decomposed
into

K1,1 −K1,2 −K2,1 +K2,2 =

∞∑
k=1

[
L.k1,1 − L.k1,2 − L.k2,1 + L.k2,2

]
.

The plan is to find an appropriate bound for each component. The intuition
is easily carried for the first iteration. Indeed, we shall see that

0 ≤ [L1,1 − L1,2 − L2,1 + L2,2] (t, x, x′, α, α′)

≤ Γc(t, x− α)Γc(t, x
′ − α′)fc(t, x, α)fc(t, x

′, α′),

where

fc(t, x, α) = 1D×D(x, α)e−
dist(x,∂D)2

ct e−
dist(α,∂D)2

ct + 1(Rd×Rd)\(D×D)(x, α).
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The intuition is as follows. First, we will only consider points x, x′ ∈ D.
Second, recall that the α and α′ variables are to be integrated with respect
to the initial condition. Third, observe that the bound splits into the set
of variables (t, x, α) and (t, x′, α′). Thus, the double integral could become
a product of two integrals. Finally, we consider one of the two integrals,
say the one with the (t, x, α) variables. For α ∈ D, the expected rate of
convergence, exp{− dist(x, ∂D)2/(ct)}, appears in the function fc(t, x, α),
and can be taken outside of integration. For α ∈ Rd \D, we expect the heat
kernel Γc(t, x−α) to give it to us. This will be the case when bounded initial
data is assumed.

That procedure is exactly the one used in Chapters 2 and 4. See how we
decomposed the difference u(t, x)− uL(t, x) in Sections 2.5 and 4.4.

The objective is to get a similar bound for each difference L.k1,1 − L.k1,2 −
L.k2,1 + L.k2,2, and eventually for the whole series.

Theorem 5.4. For any x, x′, α, α′ ∈ Rd, we have

0 ≤ [K1,1 −K1,2 −K2,1 +K2,2] (t, x, x′, α, α′)

≤ Q(t, x− x′, α− α′)Γc(t, x− α)Γc(t, x
′ − α′)fc(t, x, α)fc(t, x

′, α′),

where Q is expressed as an infinite series

Q(t, x, y) =

∞∑
k=1

ck q/k(t, x, y),

for some inverse triangle / operator.

We shall study the relation between these two triangle operators. In
particular, the density of a Brownian bridge will make an appearance, from
which associativity of the inverse triangle operator will be deduced.

The final ingredient to prove Theorem 5.2 is a uniform bound for the
infinite series Q(t, x, y) ≤ Q(t). The latter was obtained in [9, Lemma 2.7].
It is an increasing function with exponential growth.

Remark. In the case of vanishing Neumann boundary conditions, similar
computations are possible thanks to Lemma 4.7. In the case of vanishing
Dirichlet boundary conditions, assumptions regarding the regularity of the
boundary are no longer necessary thanks to Lemma 4.5.

5.2 Two points correlation, proof of Theorem 5.1

The two point correlation formulas obtained in this section are strongly
inspired by [9, Section 2.2]. The present derivations look somehow more
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natural and allow, once more, the use of the Picard iteration scheme. We
set

u0(t, x) =

∫
Rd

Γ(t, x− y)µ0(dy),

un+1(t, x) = u0(t, x) + λ

∫∫
[0,t)×Rd

Γ(t− s, x− y)un(s, y)M(ds, dy).

The fact that the initial condition µ0 is non-random and positive, together
with positivity of the fundamental solution Γ(t, x), imply

J (t, x, x′) := E
[
u0(t, x)u0(t, x′)

]
= u0(t, x)u0(t, x′)

=

∫∫
R2d

µ0(dy)µ0(dy′) Γ(t, x− y)Γ(t, x′ − y′) ≥ 0.

The fact that the stochastic integral has zero mean implies that

E
[
un+1(t, x)un+1(t, x′)

]
=

J (t, x, x′) + λ2

∫ t

0
ds

∫
Rd

Λ(dz)

∫
Rd
dy Γ(t− s, x− y)Γ(t− s, x′ − (y − z))

× E [un(s, y)un(s, y − z)] .

To simplify computations, we introduce the triangle operator. For f, g :
R+ × Rd × Rd × Rd × Rd → R, we set

(f . g) (t, x, x′, α, α′) := λ2

∫ t

0
ds

∫
Rd

Λ(dz)

∫
Rd
dy f(t− s, x, x′, y, y − z)

× g(s, y, y − z, α, α′). (5.9)

If we set gn(t, x, x′) := E [un(t, x)un(t, x′)] and

L(t, x, x′, α, α′) := Γ(t, x− α)Γ(t, x′ − α′),

then we can write in a concise form

gn+1(t, x, x′) = J (t, x, x′) + (L . gn) (t, x, x′, 0, 0). (5.10)

For functions of only two space variables g : R+ ×Rd ×Rd → R, we will use
the following extension to four space variables

g(t, x, x′, α, α′) := g(t, x, x′).

Corollary 5.8 below ensures associativity of the triangle . operation. It is
thus non-ambiguous to define the k-th iteration

L.k = L . L . · · · . L︸ ︷︷ ︸
k-times

.
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Applying these definitions to the Picard iteration scheme gives

g0(t, x, x′) = J (t, x, x′),

g1(t, x, x′) = J (t, x, x′) + (L . J ) (t, x, x′, 0, 0),

g2(t, x, x′) = J (t, x, x′) +
(
L . g1

)
(t, x, x′, 0, 0)

= J (t, x, x′) + (L . J ) (t, x, x′, 0, 0) +
(
L.2 . J

)
(t, x, x′, 0, 0),

...

gn(t, x, x′) = J (t, x, x′) +

[(
n∑
k=1

L.k
)
. J

]
(t, x, x′, 0, 0).

Observe that each iteration is positive. Indeed, the initial step J is positive
and each step is obtained from it by applications of the triangle operator,
which contains the positive measure Λ. By monotone convergence, the limit
g(t, x, x′) := limn→∞ g

n(t, x, x′) exists and equals

g(t, x, x′) = J (t, x, x′) + [K . J ] (t, x, x′, 0, 0), (5.11)

where

K(t, x, x′, α, α′) =

( ∞∑
k=1

L.k
)

(t, x, x′, α, α′).

By (5.10) and monotone convergence, we can see that the limit g satisfies

g = J + (L . g) .

From the fact that un(t, x) → u(t, x) in L2(Ω,P), we get that the product
un(t, x)un(t, x′)→ u(t, x)u(t, x′) in L1(Ω,P) and

E
[
u(t, x)u(t, x′)

]
= lim

n→∞
E
[
un(t, x)un(t, x′)

]
= lim

n→∞
gn(t, x, x′) = g(t, x, x′).

Formula (5.11) gives the expectation of the solution as a combination of
the initial condition, through J , and the kernel K. The next result gives a
more convenient expression. It is an adaptation of [9, Lemma 2.8].

Lemma 5.5. For all µ0 ∈MH(Rd), and t > 0, x, x′ ∈ Rd,

0 ≤ E
[
u(t, x)u(t, x′)

]
= J (t, x, x′) + [K . J ] (t, x, x′, 0, 0)

=

∫∫
R2d

µ0(dα)µ0(dα′)K(t, x, x′, α, α′).

Before we give the proof, we need to observe the following property about
J and the kernel K :

J (t, x, x′) =

∫∫
R2d

µ0(dα)µ0(dα′)L(t, x, x′, α, α′),

K . L =

∞∑
k=1

L.(k+1) =

∞∑
k=2

L.k = K − L.
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Proof. This property comes from the link between the definition of J , L,
and K. Indeed,

K . J (t, x, x′, 0, 0)

= λ2

∫ t

0
ds

∫
Rd

Λ(dz)

∫
Rd
dyK(t− s, x, x′, y, y − z)J (s, y, y − z)

=

∫∫
R2d

µ0(dα)µ0(dα′)λ2

∫ t

0
ds

∫
Rd

Λ(dz)

∫
Rd
dy

×K(t− s, x, x′, y, y − z)L(s, y, y − z, α, α′)

=

∫∫
R2d

µ0(dα)µ0(dα′)(K . L)(t, x, x′, α, α′)

=

∫∫
R2d

µ0(dα)µ0(dα′)K(t, x, x′, α, α′)− J (t, x, x′),

which concludes the proof.

Remark. In equation (5.2), the term λuṀ could be understood either as
(λu)Ṁ or as u(λṀ). The second may be more appropriate. It corresponds
to a scaling of the correlated noise. Indeed, when taking covariance, the
expression λ2 appears every time the measure Λ appears. For example,
see (5.9). Therefore, upon replacing Λ by λ2Λ, we may assume that λ = 1.
Why not λ = −1? Well, in the present case of Gaussian noise, both would
have the same laws. Moreover, the stochastic integral has mean zero by
definition and we are solely interested in second moment computations.
Remark. We can now confirm the prediction that the function L is expressed
solely in terms of the fundamental solution to the heat equation, and the
triangle . operator solely contains information about the noise. They interact
through the function K, which is computed without any information about
the initial condition µ0.

Similar expressions for E [uD(t, x)uD(t, y)] and E [u(t, x)uD(t, y)] are now
derived. To simplify notations, we set

G1(t, x, y) := Γ(t, x− y) and G2(t, x, y) := GD(t, x, y);

Li,j(t, x, x′, y, y′) := Gi(t, x, y)Gj(t, x
′, y′), for any i, j ∈ {1, 2}. (5.12)

In fact, the exact same procedure can be applied. The triangle . operator
remains unchanged, and is given by (5.9). The k-th iteration are

L.ki,j = Li,j . Li,j . · · · . Li,j︸ ︷︷ ︸
k-times

.

In order for integrals to make sense, we extend the Green function GD :
R+ ×D ×D to R+ × Rd × Rd, as a vanishing function on the complement
R+ ×

(
(Rd × Rd) \ (D ×D)

)
. If we denote u1(t, x) = u(t, x) and u2(t, x) =

uD(t, x), then we have
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Lemma 5.6. For all µ0 ∈MH(Rd), and t > 0, x, x′ ∈ Rd,

0 ≤ E
[
ui(t, x)uj(t, x

′)
]

=

∫∫
R2d

µ0(dα)µ0(dα′)Ki,j(t, x, x′, α, α′),

where Ki,j =
∑∞

k=1 L.ki,j .

Proof. Positivity of the two points correlation is a consequence of positivity
of the Green function, see (A.30).

The present notations L1,1 and K1,1 correspond to L and K, previously
defined.

We now show that the triangle . operator is indeed associative. In fact,
much more can be proved.

Lemma 5.7. For any (positive) measure χ on Rn and any two (positive)
functions f, g : Rn × Rn → R+, the following operation is associative

(f . g)(u,w) =

∫
Rn
f(u, v)g(v, w)χ(dv).

See Lemma 6.13 for an extension to the case where χ is a distribution.

Proof. Thanks to Fubini’s theorem, we have

(f . (g . h)) (u,w) =

∫
Rn
f(u, x)(g . h)(x,w)χ(dx)

=

∫
Rn
χ(dx)

∫
Rn
χ(dy) f(u, x)g(x, y)h(y, w)

=

∫
Rn

(f . g)(u, y)h(y, w)χ(dy) = ((f . g) . h)) (u,w),

which proves associativity.

Corollary 5.8. The triangle . operator defined in (5.9) is associative.

Proof. It can easily be shown explicitly. We will argue differently. Recall
the notation for the reflection of some translated meaure∫

f(z) T̃yΛ(dz) :=

∫
f(y − z)Λ(dz).

Taking n = 2d, u = (x, x′), v = (y, z), and w = (α, α′) in the previous
Lemma 5.7, as well as χ(dydz) = dy T̃yΛ(dz), we have∫

Rn
f(u, v)g(v, w)χ(dv) =

∫∫
R2d

f(x, x′, y, z)g(y, z, α, α′)χ(dydz)

=

∫
Rd
dy

∫
Rd

Λ(dz)f(x, x′, y, y − z)g(y, y − z, α, α′)

=

∫
Rd

Λ(dz)

∫
Rd
dy f(x, x′, y, y − z)g(y, y − z, α, α′),
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which is the part of (5.9) containing space integration. The time integration
part of (5.9) corresponds to convolution, which is associative.

To complete the proof of Theorem 5.1, it remains to show that the dif-
ference K1,1 −K1,2 −K2,1 +K2,2 is positive. In fact, we will show that each
difference L.n1,1−L.n1,2−L.n2,1 +L.n2,2 is positive. It is basically a consequence of
the fact that the Green function is dominated by the heat kernel, and that
the latter difference can be written is a special way. First, we observe that

[L1,1 − L1,2 − L2,1 + L2,2] (t, x, x′, α, α′)

= G1(t, x, α)G1(t, x′, α′)−G1(t, x, α)G2(t, x′, α′)

−G2(t, x, α)G1(t, x′, α′) +G2(t, x, α)G2(t, x′, α′),

which can be factorized as

[L1,1 − L1,2 − L2,1 + L2,2] (t, x, x′, α, α′)

= [G1(t, x, α)−G2(t, x, α)]
[
G1(t, x′, α′)−G2(t, x′, α′)

]
≥ 0. (5.13)

To compute the difference of the higher terms, we need to write explicitly
each L.ni,j . The notation is simpler when considering the index n+ 1 instead
of n.

Lemma 5.9. For each n ≥ 0, we have

L.(n+1)
i,j (t, x, x′, α, α′)

=

∫ s0

0
ds1 · · ·

∫ sn−1

0
dsn

∫
Rd

Λ(dz1) · · ·
∫
Rd

Λ(dzn)

∫
Rd
dy1 · · ·

∫
Rd
dyn

n∏
k=0

Gi(sk − sk+1, yk, yk+1)Gj(sk − sk+1, yk − zk, yk+1 − zk+1),

where we set s0 = t, y0 = x, z0 = x− x′, sn+1 = 0, yn+1 = α, zn+1 = α− α′.
We interpret the case n = 0 in the obvious sense of (5.12).

Proof. For the case n = 1, by definition we have

L.2i,j(t, x, x′, α, α′)

=

∫ t

0
ds

∫
Rd

Λ(dz)

∫
Rd
dy Gi(t− s, x, y)Gj(t− s, x′, y − z)

×Gi(s, y, α)Gj(s, y − z, α′),

which has the desired form. For the induction step, we want to compute

L.(n+2)
i,j (t, x, x′, α, α′) =

(
Li,j . L.(n+1)

i,j

)
(t, x, x′, α, α′)

=

∫ t

0
ds1

∫
Rd

Λ(dz1)

∫
Rd
dy1Gi(t− s1, x, y1)Gj(t− s1, x

′, y1 − z1)

× L.(n+1)
i,j (s1, y1, y1 − z1, α, α

′)
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If we use the induction hypothesis, we can write

L.(n+1)
i,j (s1, y1, y1 − z1, α, α

′)

=

∫ s1

0
ds2 · · ·

∫ sn

0
dsn+1

∫
Rd

Λ(dz2) · · ·
∫
Rd

Λ(dzn+1)

∫
Rd
dy2 · · ·

∫
Rd
dyn+1

n+1∏
k=1

Gi(sk − sk+1, yk, yk+1)Gj(sk − sk+1, yk − zk, yk+1 − zk+1),

where we set sn+2 = 0, yn+2 = α, zn+2 = α − α′. Putting everything back
together, and applying Fubini’s theorem, concludes the proof.

In Lemma 5.21 below, we shall give another representation of the n-th
iteration L.n1,1 = L.n in terms of the inverse triangle / operator.

The following result concludes the proof of Theorem 5.1.

Corollary 5.10. For each n ≥ 0, we have[
L.(n+1)

1,1 − L.(n+1)
1,2 − L.(n+1)

2,1 + L.(n+1)
2,2

]
(t, x, x′, α, α′)

=

∫ s0

0
ds1 · · ·

∫ sn−1

0
dsn

∫
Rd

Λ(dz1) · · ·
∫
Rd

Λ(dzn)

∫
Rd
dy1 · · ·

∫
Rd
dyn[ n∏

k=0

G1(sk − sk+1, yk, yk+1)−
n∏
k=0

G2(sk − sk+1, yk, yk+1)

]

×
[ n∏
k=0

G1(sk − sk+1, yk − zk, yk+1 − zk+1)

−
n∏
k=0

G2(sk − sk+1, yk − zk, yk+1 − zk+1)

]
, (5.14)

where we set s0 = t, y0 = x, z0 = x− x′, sn+1 = 0, yn+1 = α, zn+1 = α − α′.
In particular,[

L.(n+1)
1,1 − L.(n+1)

1,2 − L.(n+1)
2,1 + L.(n+1)

2,2

]
(t, x, x′, α, α′) ≥ 0.

We interpret the case n = 0 in the obvious sense of (5.13).

Proof. This is a direct consequence of Lemma 5.9, equation (A.30), and the
following factorization

n∏
k=0

akbk −
n∏
k=0

akdk −
n∏
k=0

ckbk +
n∏
k=0

ckdk

=

[
n∏
k=0

ak −
n∏
k=0

ck

]
×

[
n∏
k=0

bk −
n∏
k=0

dk

]
,

for all ak, bk, ck, dk ∈ R.
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For the fun of it, we express now symmetries satisfied by each iteration.
They are consequences of the symmetry of the heat kernel and the Green
function, and that of the measure Λ.

Lemma 5.11. For all t > 0, x, x′α, α′ ∈ Rd, and i, j ∈ {1, 2}, we have

L.ni,j(t, x, x′, α, α′) = L.ni,j(t, α, α′, x, x′),
= L.nj,i(t, x′, x, α′, α),

for all n ∈ N.

Proof. From the definition of Li,j(t, x, x′, α, α′) = Gi(t, x, α)Gj(t, x
′, α′), we

easily get
Li,j(t, x, x′, α, α′) = Lj,i(t, x′, x, α′, α).

The symmetry property of both the heat kernel and the Green function
translates into Gi(t, x, α) = Gi(t, α, x) for any i ∈ {1, 2}, see (A.30). Thus,

Li,j(t, x, x′, α, α′) = Li,j(t, α, x′, x, α′) = Li,j(t, x, α′, α, x′)
= Li,j(t, α, α′, x, x′).

We prove now the first symmetry. By induction and the change of variable
s̄ = t− s, we have

L.(n+1)
i,j (t, x, x′, α, α′) =

(
L.ni,j . Li,j

)
(t, x, x′, α, α′)

=

∫ t

0
ds

∫
Rd

Λ(dz)

∫
Rd
dyL.ni,j(t− s, x, x′, y, y − z)Li,j(s, y, y − z, α, α′)

=

∫ t

0
ds̄

∫
Rd

Λ(dz)

∫
Rd
dyL.ni,j(s̄, y, y − z, x, x′)Li,j(t− s̄, α, α′, y, y − z)

=
(
Li,j . L.ni,j

)
(t, α, α′, x, x′) = L.(n+1)

i,j (t, α, α′, x, x′),

For the second, we make use of the symmetry of Λ, i.e. for any Borel set
B, we have the equality Λ(B) = Λ(−B). By induction and the changes of
variables ȳ = y − z, and z̄ = −z, we have

L.(n+1)
j,i (t, x′, x, α′, α)

=

∫ t

0
ds

∫
Rd

Λ(dz)

∫
Rd
dyL.nj,i(t− s, x′, x, y, y − z)Lj,i(s, y, y − z, α′, α)

=

∫ t

0
ds

∫
Rd

Λ(dz)

∫
Rd
dyL.ni,j(t− s, x, x′, y − z, y)Li,j(s, y − z, y, α, α′)

=

∫ t

0
ds

∫
Rd

Λ(dz̄)

∫
Rd
dȳL.ni,j(t− s, x, x′, ȳ, ȳ − z̄)Li,j(s, ȳ, ȳ − z̄, α, α′)

= L.(n+1)
i,j (t, x, x′, α, α′).

The proof is completed.
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In fact, another property is satisfied by the n-th iteration L.n1,1 = L.n. As
we shall see in Lemma 5.21, its dependence on the four variables x, x′, α, α′ is
only an illusion. It depends only through their differences x− x′, α−α′, x−
α, x′ − α′.

5.3 Estimations for each iteration difference

The purpose of this section is to prove the following estimation about
each iteration L.n1,1 −L.n1,2 −L.n2,1 + L.n2,2, which will be used later to estimate
the difference K1,1 −K1,2 −K2,1 +K2,2, in Theorem 5.4.

Proposition 5.12. For each n ∈ N, there exists some function hn+1 such
that for all t ∈ [0, T ], x, x′, α, α′ ∈ Rd, we have[
L.(n+1)

1,1 − L.(n+1)
1,2 − L.(n+1)

2,1 + L.(n+1)
2,2

]
(t, x, x′, α, α′)

≤ c2
n+1L.(n+1)

c (t, x, x′, α, α′)fc(t, x, α)fc(t, x
′, α′),

The constants are not important. Yet they can be expressed as follows: c =
2 max(c1, 4), cn+1 = Cn+1(n+ 2)2(n+1)d/2, and

C = max (C1,max(c1, 4)/min(c1, 4)) .

In order to understand the notation, we treat the case n = 0. Recall
factorization (5.13),

[L1,1 − L1,2 − L2,1 + L2,2] (t, x, x′, α, α′)

= [G1(t, x, α)−G2(t, x, α)]
[
G1(t, x′, α′)−G2(t, x′, α′)

]
,

and the extended Green function G2 = GD : R+ × Rd × Rd, which van-
ishes on R+ ×

(
(Rd × Rd) \ (D ×D)

)
. In case both x, α ∈ D, we can use

Corollary 3.11 to bound

G1(t, x, α)−G2(t, x, α) ≤ C1 Γc1(t, x− α)e
−dist(x,∂D)2

c1t e
−dist(α,∂D)2

c1t .

In case x or α belongs to Rd \D, we have

G1(t, x, α)−G2(t, x, α) = G1(t, x, α) = Γ(t, x− α).

We can gather theses two observations in one,

G1(t, x, α)−G2(t, x, α) ≤ C Γc(t, x− α)fc(t, x, α),

where

fc(t, x, α) = 1D×D(x, α)e−
dist(x,∂D)2

ct e−
dist(α,∂D)2

ct + 1(Rd×Rd)\(D×D)(x, α),
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and c = max(c1, 4), C = max (C1,max(c1, 4)/min(c1, 4)) . Those constants
are not important. In fact, they will change in the general case, but will be
fixed for n ≥ 1. Therefore,

[L1,1 − L1,2 − L2,1 + L2,2] (t, x, x′, α, α′)

≤ C2 Γc(t, x− α)Γc(t, x
′ − α′)fc(t, x, α)fc(t, x

′, α′)

= C2 Lc(t, x, x′, α, α′)fc(t, x, α)fc(t, x
′, α′), (5.15)

where Lc(t, x, x′, α, α′) := Γc(t, x− α)Γc(t, x
′ − α′).

For the general case n ≥ 1, we use equation (5.14), in which we make
explicit the following difference:

n∏
k=0

G1(sk − sk+1, yk, yk+1)−
n∏
k=0

G2(sk − sk+1, yk, yk+1)

= 1D×···×D(x, y1, . . . , yn, α)

×

[
n∏
k=0

G1(sk − sk+1, yk, yk+1)−
n∏
k=0

G2(sk − sk+1, yk, yk+1)

]

+ 1(D×···×D)c(x, y1, . . . , yn, α)
n∏
k=0

G1(sk − sk+1, yk, yk+1).

We will use two different strategies, depending on the value of the indicator
function

1D×···×D(x, y1, . . . , yn, α).

When its value is zero we will apply Lemma 5.13, and when it is one we will
apply Lemma 5.15.

Lemma 5.13. If yk ∈ Rd \D for some k ∈ {1, . . . , n}, then

n∏
k=0

G1(sk − sk+1, yk, yk+1) ≤ 2(n+1)d/2
n∏
k=0

G1(2(sk − sk+1), yk, yk+1)

× exp

{
−dist(x, ∂D)2

8t

}
exp

{
−dist(α, ∂D)2

8t

}
.

Proof. First, we use the fact that

G1(s, y, z) = 2d/2G1(2s, y, z) exp

{
−|y − z|

2

8s

}
.

We fix j ∈ {1, . . . , n} such that yj ∈ Rd\D. Recall that y0 = x and yn+1 = α.
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It remains to show that both
j−1∏
k=0

exp

{
− |yk − yk+1|2

8(sk − sk+1)

}
≤ exp

{
−|x− yj |

2

8(t− sj)

}
≤ exp

{
−dist(x, ∂D)2

8t

}
,

n∏
k=j

exp

{
− |yk − yk+1|2

8(sk − sk+1)

}
≤ exp

{
−|yj − α|

2

8sj

}
≤ exp

{
−dist(α, ∂D)2

8t

}
.

We prove only the first one since the second one is analogous. We can rewrite
j−1∏
k=0

exp

{
− |yk − yk+1|2

8(sk − sk+1)

}
= exp

{
− 1

8(t− sj)

j−1∑
k=0

|yk − yk+1|2 λ−1
k

}
,

where λk =
sk−sk+1

t−sj . We can observe that
∑j−1

k=0 λk = 1. If we set θk =

|yk − yk+1| , then the triangle inequality and an application of Lemma 5.14
lead to

|x− yj |2 ≤

(
j−1∑
k=0

|yk − yk+1|

)2

≤
j−1∑
k=0

|yk − yk+1|2 λ−1
k .

Therefore,

exp

{
− 1

8(t− sj)

j−1∑
k=0

|yk − yk+1|2 λ−1
k

}
≤ exp

{
−|x− yj |

2

8(t− sj)

}
,

which concludes the proof.

Lemma 5.14. For θi > 0, and λi ∈ (0, 1) such that
∑k

i=1 λi = 1, we have(
k∑
i=1

θi

)2

≤
k∑
i=1

θ2
i λ
−1
i .

Proof. It is an application of Cauchy-Schwarz’s inequality applied to the
measure λ on the discrete space {1, . . . , k}. Indeed,

k∑
i=1

θi =
k∑
i=1

(
θi
λi

)
λi ≤

[
k∑
i=1

(
θi
λi

)2

λi

]1/2 [ k∑
i=1

λi

]1/2

=

[
k∑
i=1

θ2
i λ
−1
i

]1/2

,

which concludes the proof.

Lemma 5.15. If each yk ∈ D, for k ∈ {1, . . . , n}, then[
n∏
k=0

G1(sk − sk+1, yk, yk+1)−
n∏
k=0

G2(sk − sk+1, yk, yk+1)

]

≤ Cn+1

[
n∏
k=0

Γc(sk − sk+1, yk, yk+1)

] n∑
j=0

fc(sj − sj+1, yj , yj+1)

 ,
where c = max(c1, 4), and C = max (C1,max(c1, 4)/min(c1, 4)) .
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Proof. To bound the difference of products, we use Lemma 5.16 below, with
the values ak = G1(sk − sk+1, yk, yk+1) and ck = G2(sk − sk+1, yk, yk+1).
Inequality (A.30) says that ak ≥ ck ≥ 0, and Corollary 3.11 is used to bound
each difference ak − ck.

Lemma 5.16. Suppose each ak ≥ ck ≥ 0, then
n∏
k=0

ak −
n∏
k=0

ck ≤
n∑
k=0

(ak − ck)

 n∏
l 6=k

al

 .
Proof. We can rewrite

n∏
k=0

ak −
n∏
k=0

ck =

n∑
k=0

(ak − ck)
∏
l<k

cl
∏
l>k

al.

Using the fact that 0 ≤ cl ≤ al, for all l, concludes the proof.

Lemma 5.17. For any j ∈ {0, . . . , n}, we can bound

fc(sj − sj+1, yj , yj+1)

n∏
k=0

Γc(sk − sk+1, yk, yk+1)

≤ 2(n+1)d/2f2c(t, y0)f2c(t, yn+1)

n∏
k=0

Γ2c(sk − sk+1, yk, yk+1).

Proof. This is a repetition of the argument of Lemma 5.13.

We can now conclude the proof of Proposition 5.12. We did consider the
integrant of equation (5.14). We were able to bound it using the strategy
in which the indicator function was either one or zero. We can put together
those bounds to reach

n∏
k=0

G1(sk − sk+1, yk, yk+1)−
n∏
k=0

G2(sk − sk+1, yk, yk+1)

≤ cn+1fc(t, y0)fc(t, yn+1)
n∏
k=0

Γc(sk − sk+1, yk, yk+1),

and a similar formula for
n∏
k=0

G1(sk − sk+1, yk − zk, yk+1 − zk+1)

−
n∏
k=0

G2(sk − sk+1, yk − zk, yk+1 − zk+1)

≤ cn+1fc(t, y0 − z0)fc(t, yn+1 − zn+1)

×
n∏
k=0

Γc(sk − sk+1, yk − zk, yk+1 − zk+1).
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It remains to integrate and use the factorization formula of Lemma 5.9.
Recall that y0 = x, y0 − z0 = x′, yn+1 = α, and yn+1 − zn+1 = α′.

5.3.1 Proof of Theorem 5.4

For a fresh start, we recall it here

Theorem. For any x, x′, α, α′ ∈ Rd, we have

[K1,1 −K1,2 −K2,1 +K2,2] (t, x, x′, α, α′)

≤ Q(t, x− x′, α− α′)Γc(t, x, α)Γc(t, x
′, α′)fc(t, x, α)fc(t, x

′, α′),

where

fc(t, x, α) = 1D×D(x, α)e−
dist(x,∂D)2

ct e−
dist(α,∂D)2

ct + 1(Rd×Rd)\(D×D)(x, α).

Proof. From Proposition 5.12, we can bound

[K1,1 −K1,2 −K2,1 +K2,2] (t, x, x′, α, α′)

≤ fc(t, x, α)fc(t, x
′, α′)

∞∑
n=1

c̄nL.nc (t, x, x′, α, α′),

for some constants c and c̄. We now use Lemma 5.21 to write each iteration
term as

L.nc (t, x, x′, α, α′) = Γc(t, x, α)Γc(t, x
′, α′)q/nc (t, x− x′, α− α′).

By setting

Q(t, x, y) =

∞∑
n=1

c̄nq/nc (t, x, y),

the proof is completed.

We hoped that explicit formulations such as the one found in Lemma 5.23
could lead to a fine description of the function Q. Yet, time forces us to abort
that project. Instead we use the following, found in [9, Lemma 2.7].

Lemma 5.18. There exists an increasing function Q(t) such that for all
x, y ∈ Rd,

Q(t, x, y) ≤ Q(t).

Furthermore, there are γ > 0 and cγ such that

Q(t) ≤ cγeγt.
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5.4 Convergence rate, Proofs of Theorems 5.2

Thanks to Theorems 5.1 and 5.4, together with Lemma 5.18 we can
conclude that

E
[
(u(t, x)− uD(t, x))

(
u(t, x′)− uD(t, x′)

)]
≤ Q(t)

∫
Rd
µ0(dα) Γc(t, x, α)fc(t, x, α)

×
∫
Rd
µ0(dα′) Γc(t, x

′, α′)fc(t, x
′, α′).

In particular, when the initial condition µ0 is given by a non-negative bounded
function 0 ≤ u0(x) ≤M, we can further bound each integral as∫

Rd
µ0(dα) Γc(t, x, α)fc(t, x, α)

≤ fc(t, x)

∫
D
µ0(dα) Γc(t, x, α) +

∫
Rd\D

µ0(dα) Γc(t, x, α)

≤ e−
dist(x,∂D)2

ct M

∫
Rd

Γc(t, x, α)dα+M

∫
|α|>dist(x,∂D)

Γc(t, α) dα.

The first integral is one and the second can be bounded as in (3.16). This
concludes the proof of Theorem 5.2.

A similar proof can be applied for any initial condition with polynomial
growth. Indeed, for u0(x) = 1 + |x|n , we would get, in the first integral,
the n-th moment of the a Gaussian. In the second integral, we apply the
following generalisation of (3.16)

Lemma 5.19. For β > 0, λ ∈ (0, 1), there exists c = c(d, β, λ) such that for
all t ∈ (0, T ), ∫

|x|>δ
Γ(s, x) |x|β dx ≤ cT β/2e−

δ2λ
4s .

Proof. With spherical coordinates, the left hand side is equal to

wd−1(4πs)−d/2
∫ ∞
δ

e−
r2

4s rd−1+β.

With the change of variable z = r/
√

2s, it is in turn equal to

wd−1(2s)β/2(2π)−d/2
∫ ∞
δ/
√

2s
zβ+d−1e−

z2

2 dz.

The latter integral is bounded, thanks to (A.18), (A.19) by

Pd+β−2

(
δ√
2s

)
e−

δ2

4s ≤ ce−
δ2λ
4s ,

which concludes the proof.
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5.5 Relation between triangle operators . and /

We can prove another representation of L.n. The objective is given in
Lemma 5.21. In the next computation, we took λ = 1. Recall that is possible
if we replace Λ by λ2Λ.

Recall that the triangle . operator contained only properties of the noise.
And the definition of L contained only properties of the heat kernel. The
present inverse triangle / will contain information about both. We define it
as follows. For f, g : R+ × Rd × Rd → R+, we set

(f / g)(t, x, y) =

∫ t

0
ds

∫
Rd

Λ(dz) f(t− s, x, z)g(s, z, y)

× Γ

(
2s(t− s)

t
,−z +

s

t
x+

t− s
t

y

)
. (5.16)

By a change of variable s′ = t− s, we get

(f / g)(t, x, y) =

∫ t

0
ds

∫
Rd

Λ(dz) f(s, x, z)g(t− s, z, y)

× Γ

(
2s(t− s)

t
,−z +

t− s
t

x+
s

t
y

)
. (5.17)

This new operation is obviously not commutative.

Lemma 5.20. The operation / is associative.

Proof. For f, g, h : R+ × Rd × Rd → R+, we need to verify that

[f / (g / h)] (t, x, y) = [(f / g) / h] (t, x, y).

For the former, we first use equation (5.17), then equation (5.16), to get

[f / (g / h)] (t, x, y) =

∫ t

0
ds

∫
Rd

Λ(dz1)f(s, x, z1) (g / h) (t− s, z1, y)

× Γ

(
2s(t− s)

t
,−z1 +

t− s
t

x+
s

t
y

)
,

and

(g / h) (t− s, z1, y) =

∫ t−s

0
dr

∫
Rd

Λ(dz2)g(t− s− r, z1, z2)h(r, z2, y)

× Γ

(
2r(t− s− r)

t− s
,−z2 +

r

t− s
z1 +

t− s− r
t− s

y

)
,
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so that

[f / (g / h)] (t, x, y) =

∫ t

0
ds

∫ t−s

0
dr

∫
Rd

Λ(dz1)

∫
Rd

Λ(dz2)

× f(s, x, z1)g(t− s− r, z1, z2)h(r, z2, y)

× Γ

(
2s(t− s)

t
,−z1 +

t− s
t

x+
s

t
y

)
× Γ

(
2r(t− s− r)

t− s
,−z2 +

r

t− s
z1 +

t− s− r
t− s

y

)
.

For the latter, we first use equation (5.16), then equation (5.17), to get

[(f / g) / h] (t, x, y) =

∫ t

0
dr

∫
Rd

Λ(dz2) (f / g) (t− r, x, z2)h(r, z2, y)

× Γ

(
2r(t− r)

t
,−z2 +

r

t
x+

t− r
t

y

)
,

and

(f / g) (t− r, x, z2) =

∫ t−r

0
ds

∫
Rd

Λ(dz1)f(s, x, z1)g(t− r − s, z1, z2)

× Γ

(
2s(t− r − s)

t− r
,−z1 +

t− r − s
t− r

x+
s

t− r
z2

)
,

so that

[(f / g) / h] (t, x, y) =

∫ t

0
dr

∫ t−r

0
ds

∫
Rd

Λ(dz1)

∫
Rd

Λ(dz2)

× f(s, x, z1)g(t− r − s, z1, z2)h(r, z2, y)

× Γ

(
2r(t− r)

t
,−z2 +

r

t
x+

t− r
t

y

)
× Γ

(
2s(t− r − s)

t− r
,−z1 +

t− r − s
t− r

x+
s

t− r
z2

)
.

We permute the dr and the ds integral in the last formula. For any function
q(r, s), we have∫ t

0
dr

∫ t−r

0
ds q(r, s) =

∫ t

0
ds

∫ t−s

0
dr q(r, s).

Therefore,

[f / (g / h)] (t, x, y) =

∫ t

0
ds

∫ t−s

0
dr

∫
Rd

Λ(dz1)

∫
Rd

Λ(dz2)

× f(s, x, z1)g(t− s− r, z1, z2)h(r, z2, y)F (r, s, t, x, z1, z2, y),
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and

[(f / g) / h] (t, x, y) =

∫ t

0
ds

∫ t−s

0
dr

∫
Rd

Λ(dz1)

∫
Rd

Λ(dz2)

× f(s, x, z1)g(t− r − s, z1, z2)h(r, z2, y)G(r, s, t, x, z1, z2, y),

where

F (r, s, t, x, z1, z2, y) = Γ

(
2s(t− s)

t
,−z1 +

t− s
t

x+
s

t
y

)
× Γ

(
2r(t− s− r)

t− s
,−z2 +

r

t− s
z1 +

t− s− r
t− s

y

)
,

and

G(r, s, t, x, z1, z2, y) = Γ

(
2r(t− r)

t
,−z2 +

r

t
x+

t− r
t

y

)
× Γ

(
2s(t− r − s)

t− r
,−z1 +

t− r − s
t− r

x+
s

t− r
z2

)
.

To conclude the proof, we can verify that F = G.

We can relate both operations . and / as follows.

Lemma 5.21.

L.n(t, x, x′, α, α′) = L(t, x, x′, α, α′)qn(t, x, x′, α, α′), (5.18)

where
qn(t, x, x′, α, α′) = q/n(t, x− x′, α− α′),

with the initial function q = 1.

Proof. For n = 1, by definition we have q1 = 1, thus we can take q = 1. By
induction, we have

L.(n+1)(t, x, x′, α, α′) = (L . L.n)(t, x, x′, α, α′)

=

∫ t

0
ds

∫
Rd

Λ(dz)

∫
Rd
dyL(t− s, x, x′, y, y − z)L.n(s, y, y − z, α, α′)

=

∫ t

0
ds

∫
Rd

Λ(dz)

∫
Rd
dyL(t−s, x, x′, y, y−z)L(s, y, y−z, α, α′)qn(s, y, y−z, α, α′)

=

∫ t

0
ds

∫
Rd

Λ(dz) q/n(s, z, α− α′)

×
∫
Rd
dyL(t− s, x, x′, y, y − z)L(s, y, y − z, α, α′).
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We will show, in Lemma 5.22, that the last integral can be simplified as
follows∫

Rd
dyL(t− s, x, x′, y, y − z)L(s, y, y − z, α, α′)

= L(t, x, x′, α, α′)Γ

(
2s(t− s)

t
,−z +

s

t
(x− x′) +

t− s
t

(α− α′)
)
.

Thus,

L.(n+1)(t, x, x′, α, α′) = L(t, x, x′, α, α′)

∫ t

0
ds

∫
Rd

Λ(dz) q/n(s, z, α− α′)

× Γ

(
2s(t− s)

t
,−z +

s

t
(x− x′) +

t− s
t

(α− α′)
)
.

Using the fact that q(t − s, x − x′, z) = 1, the last double integral can be
rewritten as∫ t

0
ds

∫
Rd

Λ(dz) q(t− s, x− x′, z)q/n(s, z, α− α′)

× Γ

(
2s(t− s)

t
,−z +

s

t
(x− x′) +

t− s
t

(α− α′)
)
,

which is by definition (q / q/n)(t, x− x′, α − α′) = q/(n+1)(t, x− x′, α − α′).
This concludes the proof.

Lemma 5.22. We have the following identity∫
Rd
L(t− s, x, x′, y, y − z)L(s, y, y − z, α, α′) dy

= L(t, x, x′, α, α′)Γ

(
2s(t− s)

t
,−z +

s

t
(x− x′) +

t− s
t

(α− α′)
)
.

Proof. Recall that L(t, x, x′, α, α′) = G(t, x, α)G(t, x′, α′). Thus

L(t− s, x, x′, y, y − z)L(s, y, y − z, α, α′)
= G(t− s, x, y)G(t− s, x′, y − z)G(s, y, α)G(s, y − z, α′)

We can rewrite the following product as

G(t− s, x, y)G(s, y, α) = G(t, x, α)
G(t− s, x, y)G(s, y, α)

G(t, x, α)
.

The Levy bridge starting at the point α at time s = 0 and finishing at the
point x at time s = t, has density function B(y; t, s, x, α) at any other time
s ∈ (0, t), where

B(y; t, s, x, α) :=
G(t− s, x, y)G(s, y, α)

G(t, x, α)
.



5.5. Relation between triangle operators . and / 133

Thus, we can rewrite

L(t− s, x, x′, y, y − z)L(s, y, y − z, α, α′)
= L(t, x, x′, α, α′)B(y; t, s, x, α)B(y − z; t, s, x′, α′), (5.19)

and∫
Rd
L(t− s, x, x′, y, y − z)L(s, y, y − z, α, α′) dy

= L(t, x, x′, α, α′)

∫
Rd
B(y; t, s, x, α)B(y − z; t, s, x′, α′) dy.

Now, recall that for any two independent random vectors Z1 and Z2 with
density function fZ1 and fZ2 , the density function of the difference Z1 − Z2

is given by

fZ1−Z2(z) = (fZ1 ∗ f̃Z2)(z) =

∫
Rd
fZ1(y)fZ2(y − z) dy.

We can therefore conclude that∫
Rd
B(y; t, s, x, α)B(y − z; t, s, x′, α′) dy = fZ1−Z2(z)

is the density function at time s, evaluated at the point z, of the difference
Z1 − Z2 of two independent Levy bridge, where Z1 is starting at the point
α at time s = 0 and finishing at the point x at time s = t, and Z2 is staring
at the point α′ at time s = 0 and finishing at the point x′ at time s = t. See
Lemma 6.17 for more details.

The purpose of the next result is to give an expression of q/n(t, x, y) in
term of the spectral measure. Recall that by definition,

q/(n+1)(t, x, y) = (q / q/n)(t, x, y),

where q = q/1 ≡ 1, and

(f / g)(t, x, y) =

∫ t

0
ds

∫
Rd

Λ(dz) f(t− s, x, z)g(s, z, y)

× Γ

(
2s(t− s)

t
,−z +

s

t
x+

t− s
t

y

)
.
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Lemma 5.23. For t > 0, and x, y ∈ Rd, we have

q/(n+1)(t, x, y)

=

∫ t

0
ds1

∫ s1

0
ds2 · · ·

∫ sn−1

0
dsn

∫
Rd
µ(dξn)FΓ

(
2
sn(sn−1 − sn)

sn−1

)
(ξn)

×
∫
Rd
µ(dξn−1)FΓ

(
2
sn−1(sn−2 − sn−1)

sn−2

)(
ξn−1 +

sn
sn−1

ξn

)
× · · ·

×
∫
Rd
µ(dξ1)FΓ

(
2
s1(t− s1)

t

)(
ξ1 +

s2

s1
ξ2 + · · ·+ sn

s1
ξn

)
× exp

{
−2πix

(
s1ξ1 + · · ·+ snξn

t

)}
× exp

{
−2πiy

(
(t− s1)ξ1 + · · ·+ (t− sn)ξn

t

)}
.

After writing this proof, we found that a related result was given in [2,
Lemma 3.4] The present derivation is somewhat simpler.

Proof. This is easy induction procedure. Indeed, by definition and induction
hypothesis, we get

q/(n+1)(t, x, y)

=

∫ t

0
ds1

∫
Rd

Λ(dz) Γ

(
2s1(t− s1)

t
,−z +

s1

t
x+

t− s1

t
y

)
q/n(s1, z, y)

=

∫ t

0
ds1

∫
Rd

Λ(dz) Γ

(
2s1(t− s1)

t
,−z +

s1

t
x+

t− s1

t
y

)
×
∫ s1

0
ds2 · · ·

∫ sn−1

0
dsn

∫
Rd
µ(dξn)FΓ

(
2
sn(sn−1 − sn)

sn−1

)
(ξn)

×
∫
Rd
µ(dξn−1)FΓ

(
2
sn−1(sn−2 − sn−1)

sn−2

)(
ξn−1 +

sn
sn−1

ξn

)
× · · ·

×
∫
Rd
µ(dξ2)FΓ

(
2
s2(s1 − s2)

s1

)(
ξ2 +

s3

s2
ξ3 + · · ·+ sn

s2
ξn

)
× exp

{
−2πiz

(
s2ξ2 + · · ·+ snξn

s1

)}
× exp

{
−2πiy

(
(s1 − s2)ξ2 + · · ·+ (s1 − sn)ξn

s1

)}
.
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Using Fubini’s theorem, we need to compute∫
Rd

Λ(dz) Γ

(
2s1(t− s1)

t
,−z +

s1

t
x+

t− s1

t
y

)
× exp

{
−2πiz

(
s2ξ2 + · · ·+ snξn

s1

)}
.

Recall that for g(z) = e−2πizµf(−z + c), we have

Fg(ξ) = e−2πic(ξ+µ)Ff(−ξ − µ).

We apply the latter with µ =
(
s2ξ2+···+snξn

s1

)
, and c = s1

t x + t−s1
t y. With

Parseval’s identity, the latter integral is∫
Rd
µ(dξ1) exp

{
−2πi

(
s1

t
x+

t− s1

t
y

)(
ξ1 +

s2ξ2 + · · ·+ snξn
s1

)}
×FΓ

(
2
s1(t− s1)

t

)(
−ξ1 −

(
s2ξ2 + · · ·+ snξn

s1

))
Using the fact that FΓ(t, ξ) is even in the ξ variable, we can replace the ex-
pression −ξ1−

(
s2ξ2+···+snξn

s1

)
by ξ1 +

(
s2ξ2+···+snξn

s1

)
.We are left to simplify

the remaining exponential terms in x and y. For the former, we have

exp

{
−2πi

s1

t
x

(
ξ1 +

s2ξ2 + · · ·+ snξn
s1

)}
= exp

{
−2πix

(
s1ξ1 + s2ξ2 + · · ·+ snξn

t

)}
,

and for the latter, we have

exp

{
−2πiy

(
(s1 − s2)ξ2 + · · ·+ (s1 − sn)ξn

s1

)}
× exp

{
−2πi

t− s1

t
y

(
ξ1 +

s2ξ2 + · · ·+ snξn
s1

)}
= exp

{
−2πiy

(
(t− s1)ξ1 + · · ·+ (t− sn)ξn

t

)}
.

Indeed, we use the fact that for k ∈ {2, . . . , n}

s1 − sk
s1

+
t− s1

t

sk
s1

= 1− sk
s1

+
sk
s1
− sk

t
=
t− sk
t

.

This concludes the proof.
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In the previous chapter, we had the following definition (4.26):

(f ? g)(t) =

∫ t

0
f

(
2
s(t− s)

t

)
g(s) ds,

which was neither commutative, nor associative. That operation appeared
in a similar context. In fact, from a more careful observation of Lemma 2.7
in [9], the following can be shown. If we let p1 ≡ 1 and pn+1 = k ? pn, where

k(t) =

∫
R

Λ(dz) Γ(t, z) =

∫
R
µ(dξ)FΓ(t)(ξ),

then
q/n ≤ pn.

Using Lemma 4.17 we can get the bound

q/n ≤ pn ≤ 2n−1gn

where g1 ≡ 1, and gn+1 = k ∗ gn.

5.6 Time dilation

In this section, we give properties of both triangle operators, when the
time is scaled. The following observation motivates the next result. For any
ν ≥ 1, we have

Γ(νt, x) = ν−d/2Γ(t, x/
√
ν) ≥ ν−d/2Γ(t, x),

and thus
Γ(t, x) ≤ νd/2Γ(νt, x).

We will get a similar time scaled bound for the iterations q/n.

Lemma 5.24. For any ν ≥ 1, we have

q/n(t, x, y) ≤ cn−1q/n(νt, x, y),

where c = νd/2−1.

Proof. The case n = 1 is clear since q/1 is the constant one function. We
proceed by induction.

q/(n+1)(t, x, y) = (q/1 / q/n)(t, x, y)

=

∫ t

0
ds

∫
Rd

Λ(dz) q/1(t− s, x, z)q/n(s, z, y)

× Γ

(
2s(t− s)

t
,−z +

s

t
x+

t− s
t

y

)
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By a linear change of variable r = νs, we observe that

Γ

(
2s(t− s)

t
,−z +

s

t
x+

t− s
t

y

)
= Γ

(
2 rν (t− r

ν )

t
,−z +

r
ν

t
x+

t− r
ν

t
y

)
= Γ

(
1

ν

2r(νt− r)
νt

,−z +
r

νt
x+

νt− r
νt

y

)
,

and

q/(n+1)(t, x, y) =
1

ν

∫ νt

0
dr

∫
Rd

Λ(dz) q/n(r/ν, z, y)

× Γ

(
1

ν

2r(νt− r)
νt

,−z +
r

νt
x+

νt− r
νt

y

)
.

Using the induction hypothesis and the bound for Γ, we get

q/(n+1)(t, x, y) ≤ 1

ν
cn−1νd/2

∫ νt

0
dr

∫
Rd

Λ(dz) q/n(r, z, y)

× Γ

(
2r(νt− r)

νt
,−z +

r

νt
x+

νt− r
νt

y

)
= νd/2−1cn−1q/(n+1)(νt, x, y),

which concludes the proof.

We define the time-scaled version

Lν(t, x, x′, α, α′) := L(νt, x, x′, α, α′),

and write L.nν := (Lν).n. For f, g : R+ ×Rd ×Rd → R+, we define a similar
operation

(f /ν g)(t, x, y) =

∫ t

0
ds

∫
Rd

Λ(dz) f(t− s, x, z)g(s, z, y)

× Γ

(
ν

2s(t− s)
t

,−z +
s

t
x+

t− s
t

y

)
. (5.20)

The latter operator can be rewritten in term of that of /. We

Lemma 5.25. For any f, g, we have

(f /ν g)(t, x, y) =
1

ν
(f1/ν / g1/ν)(νt, x, y),

where fα(t, x, y) := f(αt, x, y) is the dilation in time.
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Proof. First, we observe that

f(t− s, x, z)g(s, z, y)Γ

(
ν

2s(t− s)
t

,−z +
s

t
x+

t− s
t

y

)
= f1/ν(νt− νs, x, z)g1/ν(νs, z, y)

× Γ

(
2νs(νt− νs)

νt
,−z +

νs

νt
x+

νt− νs
νt

y

)
.

Using a change of variable r = νs, we get

(f /ν g)(t, x, y) =
1

ν

∫ νt

0
dr

∫
Rd

Λ(dz) f1/ν(νt− r, x, z)g1/ν(r, z, y)

× Γ

(
2r(νt− r)

νt
,−z +

r

νt
x+

νt− r
νt

y

)
,

which concludes the proof.

We can give a time dilation result for the iterations L.nν .
Lemma 5.26. For any ν > 0, we have

L.nν (t, x, x′, α, α′) =
1

νn−1
L.n(νt, x, x′, α, α′).

Furthermore,

q/νn(t, x, y) =
1

νn−1
q/n(νt, x, y),

which can be written as (q/νn)1/ν = 1
νn−1 q

/n.

Proof. We proceed by induction. By the linear change of variable r = νs.

L.(n+1)
ν (t, x, x′, α, α′) = (Lν . L.nν )(t, x, x′, α, α′)

=

∫ t

0
ds

∫
Rs

Λ(dz)

∫
Rd
dvLν(t− s, x, x′, v, v − z)L.nν (s, v, v − z, α, α′)

=

∫ t

0
ds

∫
Rs

Λ(dz)

∫
Rd
dvL(νt−νs, x, x′, v, v−z) 1

νn−1
L.n(νs, v, v−z, α, α′)

=
1

νn−1

1

ν

∫ νt

0
dr

∫
Rs

Λ(dz)

∫
Rd
dvL(νt−r, x, x′, v, v−z)L.n(r, v, v−z, α, α′)

=
1

νn
L.(n+1)(νt, x, x′, α, α′).

Applying the preceding Lemma 5.25 to the constant function q ≡ 1, for
which q1/ν = q, we get by induction

q/ν(n+1)(t, x, y) = (q /ν q
/νn)(t, x, y)

=
1

ν
(q1/ν / (q/νn)1/ν)(νt, x, y)

=
1

νn
(q / q/n)(νt, x, y),

which concludes the proof.
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We could have also deduced one property from the other. Indeed, we
have the following relation

Corollary 5.27.

L.nν (t, x, x′, α, α′) = Lν(t, x, x′, α, α′)q/νn(t, x− x′, α− α′).

Proof. Applying the previous result and Lemma 5.21, we get

L.nν (t, x, x′, α, α′) =
1

νn−1
L.n(νt, x, x′, α, α′)

=
1

νn−1
L(νt, x, x′, α, α′)q/n(νt, x− x′, α− α′)

= Lν(t, x, x′, α, α′)q/νn(t, x− x′, α− α′),

which concludes the proof.

The latter result could have been observed directly from the definition
and Lemma 5.22. Indeed, by induction, we have

L.(n+1)
ν (t, x, x′, α, α′) = (Lν . L.nν )(t, x, x′, α, α′)

=

∫ t

0
ds

∫
Rs

Λ(dz)

∫
Rd
dvLν(t− s, x, x′, v, v − z)L.nν (s, v, v − z, α, α′)

=

∫ t

0
ds

∫
Rs

Λ(dz)

∫
Rd
dvLν(t− s, x, x′, v, v − z)

× Lν(s, v, v − z, α, α′)q/νn(s, z, α− α′)

=

∫ t

0
ds

∫
Rs

Λ(dz) q/νn(s, z, α− α′)

×
∫
Rd
dvL(νt− νs, x, x′, v, v − z)L(νs, v, v − z, α, α′)

= L(νt, x, x′, α, α′)

∫ t

0
ds

∫
Rs

Λ(dz) q/νn(s, z, α− α′)

× Γ

(
ν

2s(t− s)
t

,−z +
s

t
(x− x′) +

t− s
t

(α− α′)
)

= L(νt, x, x′, α, α′)(q /ν q
/νn)(t, x− x′, α− α′).





Chapter 6

Parabolic Anderson Dream

We will first define a very general version of the noise Ṁ, then apply it
to the resolution of the Anderson model, for parabolic or elliptic equations
that are compatible with the noise.

6.1 Important results on distributions

The next result is a corner stone in the theory of distributions. It can
be found in Chapter 1, Section 1 of [28], under Theorem 3, Theorem 5, and
Theorem 6.

Theorem 6.1 (The Kernel Theorem). Every bilinear functional B(φ, ψ) on
the space C∞c (Rd), respectivement on S(Rd), which is continuous in each of
the arguments φ and ψ has the form

B(φ, ψ) = 〈T, φ⊗ ψ〉 = 〈Tx,y, φ(x)ψ(y)〉 , (6.1)

where T is a continuous linear functional on the space C∞c (R2d), respective-
ment on S(R2d). Furthermore, there exists some constant C > 0 and some
norms ‖·‖n and ‖·‖m on C∞c (Rd), respectively on S(Rd), such that

|B(φ, ψ)| ≤ C ‖φ‖n ‖ψ‖m . (6.2)

In regard of the Kernel Theorem, we introduce the notion of positive-
definiteness of a distribution.

Definition 6.2. A distribution T on C∞c (R2d) is said to be positive-definite,
if

〈T, φ⊗ φ〉 = 〈Tx,y, φ(x)φ(y)〉 ≥ 0, (6.3)

for all φ ∈ C∞c (Rd).

Another notion of positve-definiteness is also possible, yet on lower space
dimensional distribution.

141
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Definition 6.3. A distribution T on C∞c (Rd) is said to be positive-definite,
if

〈T, φ ∗ φ∗〉 ≥ 0, (6.4)

for all φ ∈ C∞c (Rd), where φ∗(x) = φ(−x).

Both notions will be used further down. The former for general type
of noises, and the latter with the restricted class of translation invariant
noises. For the latter, we have the following useful result. It can be found
in Chapter 2, section 3 of [28], under Theorem 1, and Theorem 3.

Theorem 6.4 (Bochner-Schwartz). Every positive-definite distribution T
on C∞c (Rd), or on S(Rd), is the Fourier transform of a positive tempered
measure µ, i.e. it can be written as

〈T, φ〉 =

∫
Rd
Fφ(ξ)µ(dξ). (6.5)

If B is translation invariant bilinear functional continuous in each argu-
ment on C∞c (Rd), or on S(Rd), it can be written as

B(φ, ψ) = 〈T, φ⊗ ψ〉 = 〈Q,φ ∗ ψ∗〉 ,

where Q is a distribution on C∞c (Rd), or on S(Rd) respectively. See [28,
page 169].

Suppose thatB is translation invariant. IfB, or equivalently T, is positive
definite, then so is Q. In that case, using the Bochner-Schwartz theorem, we
conclude that

B(φ, ψ) =

∫
Fφ(ξ)Fψ(ξ)µ(dξ).

The last ingredient we will need about distributions is the existence of
tensor product. For two distributions S on C∞c (Rm) and T on C∞c (Rn),
there exists a unique distribution on C∞c (Rm+n), denoted by S ⊗ T, that
satisfies

〈S ⊗ T, φ⊗ ψ〉 = 〈Sx ⊗ Ty, φ(x)ψ(y)〉 = 〈S, φ〉 · 〈T, ψ〉 , (6.6)

for any pair of test functions φ ∈ C∞c (Rm) and ψ ∈ C∞c (Rn). Uniqueness
and existence can be found in Chapter IV of [50], under Theorem III and
Theorem IV. Uniqueness of this distribution is a consequence of the following
fact.

Theorem 6.5 (Uniqueness of tensor product). Linear combinations of func-
tions of the form φ(x)ψ(y) are dense in C∞c (Rm+n).

Existence is guaranteed by setting either

〈Sx ⊗ Ty, ϕ(x, y)〉 := 〈Sx, 〈Ty, ϕ(x, y)〉〉 ,
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or
〈Sx ⊗ Ty, ϕ(x, y)〉 := 〈Ty, 〈Sx, ϕ(x, y)〉〉 .

Any of the two indeed defines a distribution on C∞c (Rm+n), and both coin-
cide for functions of the form φ(x)ψ(y). By uniqueness, they are the same
distribution. In particular, it is possible to perform evaluation successively
and in any order. This is a general version of Fubini’s Theorem for distribu-
tions.

The tensor product extends to any finite number of distributions and that
product is associative. For example, if R, S, and T are three distributions
on C∞c (Rl), C∞c (Rm), and C∞c (Rn) respectively, then

(Rx ⊗ Sy)⊗ Tz = Rx ⊗ (Sy ⊗ Tz) .

In fact, we can directely define the tensor product

〈Rx ⊗ Sy ⊗ Tz, u(x)v(y)w(z)〉 := 〈R, u〉 · 〈S, v〉 · 〈T,w〉 ,

for any functions u ∈ C∞c (Rl), v ∈ C∞c (Rm), and w ∈ C∞c (Rn). Evaluation
can also be performed successively and in any order. For example,

〈Rx ⊗ Sy ⊗ Tz, ϕ(x, y, z)〉 = 〈Rx, 〈Sy, 〈Tz, ϕ(x, y, z)〉〉〉
= 〈Tz, 〈Rx, 〈Sy, ϕ(x, y, z)〉〉〉 ,

for any ϕ ∈ C∞c (Rl+m+n).

Analog results hold for tempered distributions on S(Rd).

6.2 Decomposition of distributions

Suppose T = R⊗ S.

Lemma 6.6. T is the zero distribution iff R or S is the zero distribution.

Proof. If R or S is the zero distribution, then so is R ⊗ S by the density
result, Theorem 6.5. If both R and S are not the zero distribution, then
there exist φ and ψ such that 〈R,φ〉 6= 0 6= 〈S, ψ〉 . But this contradicts the
fact that

〈R,φ〉 · 〈S, ψ〉 = 〈Rx ⊗ Sy, φ(x)ψ(y)〉 = 0.

This concludes the proof.

To avoid tautology, we assume that both R and S are not the zero dis-
tributions.

We now consider distributions Ru,v on C∞c (R2m), and Sx,y on C∞c (R2n),
whose tensor product is denoted by Tu,x,v,y. We could have chosen the other
notation Tu,v,x,y, which look simpler. The reason is that we want to consider
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T as a distribution on Rm+n × Rm+n, rather that on R2m × R2n. To make
this distinction more obvious, we could have written T(u,x),(v,y).

A distribution Sx,y is said to be symmetric if

〈Sx,y, ϕ(x, y)〉 = 〈Sx,y, ϕ(y, x)〉 ,

for all ϕ ∈ C∞c (R2n). This can be written as Sx,y = Sy,x.
A distribution S is said to by antisymmetric if

〈Sx,y, ϕ(x, y)〉 = −〈Sx,y, ϕ(y, x)〉 ,

for all ϕ ∈ C∞c (R2n). This can be written as Sx,y = −Sy,x. This is in fact
equivalent to 〈Sx,y, φ(x)φ(y)〉 = 0 for all φ ∈ C∞c (Rn). Indeed, this is a direct
consequence of Theorem 6.5 and the following observation

0 = 〈Sx,y, (φ(x) + ψ(x))(φ(y) + ψ(y))〉
= 〈Sx,y, φ(x)φ(y)〉+ 〈Sx,y, φ(x)ψ(y)〉
+ 〈Sx,y, ψ(x)φ(y)〉+ 〈Sx,y, ψ(x)ψ(y)〉

= 〈Sx,y, φ(x)ψ(y)〉+ 〈Sx,y, ψ(x)φ(y)〉 .

It is clear that a distribution that is both symmetric and antisymmetric is
the zero distribution. As we mentioned earlier, we will avoid those cases.

The tensor product has the same symmetries as that of its components.

Lemma 6.7. Tu,x,v,y and Ru,v have the same symmetry property in the pair
of indices (u, v).

Similarily, Tu,x,v,y and Sx,y have the same symmetry property in the pair
of indices (x, y).

Proof. This is a consequence of the density result, Theorem 6.5, and the
following observation

〈Tu,x,v,y, φ1(u)ψ1(x)φ2(v)ψ2(y)〉 = 〈Ru,v, φ1(u)φ2(v)〉 · 〈Sx,y, ψ1(x)ψ2(y)〉
= ±〈Ru,v, φ1(v)φ2(u)〉 · 〈Sx,y, ψ1(x)ψ2(y)〉

= ±〈Tu,x,v,y, φ1(v)ψ1(x)φ2(u)ψ2(y)〉 ,

which holds for all φ1, φ2 ∈ C∞c (Rm) and ψ1, ψ2 ∈ C∞c (Rn).

This does not say that if Sx,y is symmetric, then S is the tensor product
of two distributions.

For T to be symmetric as a distribution on Rm+n×Rm+n, we mean that
T(u,x),(v,y) = T(v,y),(u,x).

Lemma 6.8. T is symmetric if and only if either R and S are both sym-
metric, or R and S are both antisymmetric.
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Proof. Assume that T is symmetric. That means

〈Tu,x,v,y, χ(u, x, v, y)〉 = 〈Tu,x,v,y, χ(v, y, u, x)〉 ,

for all χ ∈ C∞c (R2(m+n)). If we take the special case

χ(u, x, v, y) = φ1(u)ψ1(x)φ2(v)ψ2(y),

for φ1, φ2 ∈ C∞c (Rm) and ψ1, ψ2 ∈ C∞c (Rn), the left hand side becomes

〈Ru,v, φ1(u)φ2(v)〉 · 〈Sx,y, ψ1(x)ψ2(y)〉 ,

whereas the right hand side becomes

〈Ru,v, φ1(v)φ2(u)〉 · 〈Sx,y, ψ1(y)ψ2(x)〉 .

We now use the fact that R is not the zero distribution. We have two cases
to handle. First, if we can find some φ̄ ∈ C∞c (Rm) such that〈

Ru,v, φ̄(u)φ̄(v)
〉
6= 0,

then we can conclude, using χ(u, x, v, y) = φ̄(u)ψ1(x)φ̄(v)ψ2(y), that

〈Sx,y, ψ1(x)ψ2(y)〉 = 〈Sx,y, ψ1(y)ψ2(x)〉 ,

for all ψ1, ψ2 ∈ C∞c (Rn). Thus S is symmetric. In turn, this implies that R
is symmetric.

Second, if we cannot find such φ̄ ∈ C∞c (Rm), this means that R is anti-
symmetric. In turn, this implies that S is antisymmetric.

The previous proof can be slightly modified to yield the following result.

Lemma 6.9. T is antisymmetric if and only if either R is symmetric and
S is antisymmetric, or R is antisymmetric and S is symmetric.

We would like to show an analog relation between R, S, and T concerning
positive definiteness. As the next expression shows, caution is rigor. If T is
positive definite, then for Φ(u, x) = φ(u)ψ(x), we must have

0 ≤ 〈Tu,x,v,y,Φ(u, x)Φ(v, y)〉 = 〈Ru,v, φ(u)φ(v)〉 · 〈Sx,y, ψ(x)ψ(y)〉 .

This could mean that both R and S are positive definite, or that both R and
S are negative definite, or that any of R and S is antisymmetric. Fortunately,
we can conclude something when symmetry is also assumed.

Lemma 6.10. T is symmetric and positive definite implies that R and S
are both symmetric.

In comparison with Lemma 6.8, the extra assumption that T is positive
definite excludes the possibility that R and S are both antisymmetric.
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Proof. We assume that T is symmetric and positive definite, and we will show
that if R and S are both antisymmetric, then T must also be antisymmetric.
A contradiction with the fact that T is not the zero distribution. We must
show that

〈Tu,x,v,y,Φ(u, x)Φ(v, y)〉 = 0,

for all Φ ∈ C∞c (Rm+n). By density result, Theorem 6.5, it is sufficient to
show it for Φ(u, x) =

∑l
k=1 αkφk(u)ψk(x). We will show this by induction

on the number of term in the linear combination. The starting point, l = 1,
is precisely the hypothesis that R and S are antisymmetric. Indeed, for
Φ(u, x) = αφ(u)ψ(x), we have

〈Tu,x,v,y,Φ(u, x)Φ(v, y)〉 = α2 〈Ru,v, φ(u)φ(v)〉 · 〈Sx,y, ψ(x)ψ(y)〉 = 0.

Assuming that the result holds for χ(u, x) =
∑l

k=1 αkφk(u)ψk(x), for any
αk ∈ R, φk ∈ C∞c (Rm), and ψk ∈ C∞c (Rn), we will show that it still holds
for Φ(u, x) = χ(u, x) + αφ(u)ψ(x). Because T is positive definite,

0 ≤ 〈Tu,x,v,y,Φ(u, x)Φ(v, y)〉
= 〈Tu,x,v,y, χ(u, x)χ(v, y)〉+ α 〈Tu,x,v,y, χ(u, x)φ(v)ψ(y)〉

+ α 〈Tu,x,v,y, φ(u)ψ(x)χ(v, y)〉+ α2 〈Tu,x,v,y, φ(u)ψ(x)φ(v)ψ(y)〉 .

By induction hypothesis, the first term 〈Tu,x,v,y, χ(u, x)χ(v, y)〉 = 0. The last
term is zero as before since R and S are antisymmetric. Using the fact that
T is symmetric, we conclude that

0 ≤ 〈Tu,x,v,y,Φ(u, x)Φ(v, y)〉 = 2α 〈Tu,x,v,y, χ(u, x)φ(v)ψ(y)〉 ,

for all α ∈ R. By taking α̃ = −α, we must have that

〈Tu,x,v,y, χ(u, x)φ(v)ψ(y)〉 = 0.

In turn, this shows that 〈Tu,x,v,y,Φ(u, x)Φ(v, y)〉 = 0. This proves the induc-
tion step, and concludes the proof.

We are now ready for the following result, which will be useful for the
general noises.

Proposition 6.11. T is symmetric and positive definite only if R and S are
both symmetric, and either R and S are both positive definite or R and S
are both negative definite.

If R and S are negative definite, then −R and −S would be positive
definite, and R⊗ S = (−R)⊗ (−S).

We will need the following definitions. For φ1, φ2 ∈ C∞c (Rm), we set

〈φ1, φ2〉R := 〈Ru,v, φ1(u)φ2(v)〉 .
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We shall see that 〈·, ·〉R acts as an inner product when R is a symmetric and
positive definite distribution. In that case, usual arguments show that 〈·, ·〉R
satisfies both Cauchy-Schwarz and Minkowski’s inequalities, i.e.

|〈φ1, φ2〉R|
2 ≤ 〈φ1, φ1〉R · 〈φ2, φ2〉R ,

〈φ1 + φ2, φ1 + φ2〉1/2R ≤ 〈φ1, φ1〉1/2R + 〈φ2, φ2〉1/2R ,

for all φ1, φ2 ∈ C∞c (Rm).

Proof. Suppose that T is symmetric and positive definite. By Lemma 6.10,
this implies that both R and S are symmetric. We want to show that either
(φ, φ)R ≥ 0 for all φ ∈ C∞c (Rm), or (φ, φ)R ≤ 0 for all φ ∈ C∞c (Rm). We
cannot have (φ, φ)R = 0 for all φ ∈ C∞c (Rm), for R would be both symmetric
and antisymmetric, and that would contradict the fact that R 6= 0. Suppose,
by contradiction, that there are φ1, φ2 ∈ C∞c (Rm) such that

〈φ1, φ1〉R > 0, and 〈φ2, φ2〉R < 0.

Since S is not the zero distribution and is symmetric, there is ψ ∈ C∞c (Rn)
such that 〈ψ,ψ〉S 6= 0. Using the fact that T is positive definite, we have

0 ≤ 〈Tu,x,v,y, (αφ1(u) + βφ2(u))ψ(x)(αφ1(v) + βφ2(v))ψ(y)〉
=
(
α2 〈φ1, φ1〉R + 2αβ 〈φ1, φ2〉R + β2 〈φ2, φ2〉R

)
〈ψ,ψ〉S ,

for all α, β ∈ R. We have two cases to cover. If 〈ψ,ψ〉S > 0, we can take
α = 0 and β = 1 to conclude that

0 ≤ 〈Tu,x,v,y, φ2(u)ψ(x)φ2(v)ψ(y)〉 = 〈φ2, φ2〉R 〈ψ,ψ〉S < 0,

which is a contradiction. If 〈ψ,ψ〉S < 0, we could take α = 1 and β = 0 to
conclude that

0 ≤ 〈Tu,x,v,y, φ1(u)ψ(x)φ1(v)ψ(y)〉 = 〈φ1, φ1〉R 〈ψ,ψ〉S < 0,

which is again a contradiction. Therefore, we showed that either (φ, φ)R ≥ 0
for all φ ∈ C∞c (Rm), or (φ, φ)R ≤ 0 for all φ ∈ C∞c (Rm). The former says that
R is positive definite. In turn, that implies that S is also positive definite.
The latter says that R is negative definite. In turn, that implies that S is
also negative definite.

The converse is trickier. Here are some ideas but we couldn’t conclude.
Second, we show that if both R and S are symmetric and positive definite,
then T is symmetric and positive definite. The symmetry of T from that of
R and S was already proved in Lemma 6.8. We are left to show that T is
indeed positive definite. We need to show that

〈Tu,x,v,y,Φ(u, x)Φ(v, y)〉 ≥ 0,



148 Chapter 6. Parabolic Anderson Dream

for all Φ ∈ C∞c (Rm+n). By the density result, Theorem 6.5, it sufficient to
show it for any linear combinations Φ(u, x) =

∑l
k=1 αkφk(u)ψk(x). We will

show this by induction of the number of term in the linear combination. The
starting point, l = 1, is a precisely the hypothesis that R and S are positive
definite. Indeed, for Φ(u, x) = αφ(u)ψ(x), we have

〈Tu,x,v,y,Φ(u, x)Φ(v, y)〉 = α2 〈φ, φ〉R · 〈ψ,ψ〉S ≥ 0.

Assuming that the result holds for χ(u, x) =
∑l

k=1 αkφk(u)ψk(x), for any
αk ∈ R, φk ∈ C∞c (Rm), and ψk ∈ C∞c (Rn), we want to show that it still
holds for Φ(u, x) = χ(u, x) + αφ(u)ψ(x).

This part seems hard. Maybe use the fact that the (de Gram) matrix,
ai,j = 〈ei, ej〉 for an inner product 〈·, ·〉 , is positive definite. It also looks
equivalent as showing that the Cauchy-Schwarz inequality is still valid on
the finite l+1 dimensional space, from that of the finite l dimensional space.

6.3 General type of noise

This section is strongly inspired by the generalized random field intro-
duced on page 242 of [28]

We want to assign to each φ ∈ C∞c (Rd) a random variable M(φ). If all
the finite dimensional laws (M(φ1), · · · ,M(φn)) are compatible, we call M
a random functional.

The random functional M is called linear if for any φ, ψ ∈ C∞c (Rd), and
α ∈ R, we have

M(φ+ αψ) = M(φ) + αM(ψ) P-almost surely.

In order to enlarge the domain of definition of the noise, we need to
impose some continuity assumption. We could ask the following. If a se-
quence of test functions converges to another test function, then we would
expect the corresponding random variables to converges weakly. In fact, we
need to extend that property to random vectors. If each φm,k converges
to φm in the space C∞c (Rd), for m ∈ {1, . . . , n}, then the random vectors
(M(φ1,k), . . . ,M(φn,k)) converge weakly to (M(φ1), . . . ,M(φn)), i.e. for any
bounded continuous function f : Rn → R, we have

E [f (M(φ1,k), . . . ,M(φn,k))] −→ E [f (M(φ1), . . . ,M(φn))] .

A continuous linear random functional will be called a generalized ran-
dom function. Such noise is also called a generalized random process (when
d = 1) or a generalized random field (when d ≥ 2).

For our purposes we need to restrict to random functional that admits
mean and correlation. In fact, we shall restrict to the one with zero mean.
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Assumption 6.12. For our purpose, it is sufficient to consider noises with
zero mean, i.e.

E[M(φ)] = 0,

for all φ ∈ C∞c (Rd).

If E[M(φ)M(ψ)] exists for all φ, ψ ∈ C∞c (Rd), and is continuous in each
of the arguments φ and ψ, we define the correlation functional

B(φ, ψ) := E[M(φ)M(ψ)].

By the Kernel Theorem, Theorem 6.1, there exists a distribution on C∞c (R2d)
such that

B(φ, ψ) = 〈Tx,y, φ(x)ψ(y)〉 .

For example, we could define a map M : C∞c (Rd) → L2(Ω,P), whose
range is very convenient since it is the largest space in which we can con-
sider covariance. The noise could be a set of mean zero random variables
{M(φ), φ ∈ C∞c (Rd)} that are jointly gaussian. If the covariance satisfies an
isometry property, e.g. E[M(φ)M(ψ)] =

∫
Rd φ(x)ψ(x)µ(dx), for some posi-

tive sigma finite measure µ, then the domain of definition of the noise can be
extended. It is in fact a mean zero gaussian noiseM : L2(Rd, µ)→ L2(Ω,P).
That process is usually called the isonormal process. For this example,
we can deduce that Tx,y is a measure σ on R2d supported on the diago-
nal ∆ = {(x, x) ∈ R2d : x ∈ Rd}, whose measure is given by σ(B) = µ(B∆),
where B is any Borel set B ⊆ R2d, and B∆ = {x ∈ Rd : (x, x) ∈ B}.

What happen when it is supported on the other diagonal? It would lead
to

B(φ, ψ) =

∫
φ(x)ψ(−x)µ(dx).

The latter cannot define a noise since is not positive definite. Indeed for any
odd function φ, the quantity B(φ, φ) ≤ 0.

As in the previous example, the structure of the noise is strongly related
to the properties satisfied by the covariance, when it exists. It should satisfy
the following three basic properties of covariance, i.e. linearity, symmetry,
and positive-definiteness:

B(φ, ψ + αθ) = B(φ, ψ) + αB(φ, θ)

B(φ, ψ) = B(ψ, φ);

B(φ, φ) ≥ 0

for all α ∈ R.
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6.4 Anderson model

From here, every argument is purely formal. We assume existence of
some mean zero stochastic integral. We also assume that correlations can
be computed in the usual way, see (6.8). The purpose of this section is
to generalize the triangle . operator of Chapter 5, and see that it remains
associative. We can also generalize the two points correlation formula.

We would also like to convince the reader that it is sometime more con-
venient to write

E [M(φ)M(ψ)] = 〈Tt,x,s,y, φ(t, x)ψ(s, y)〉

rather than any of the very informative

E [M(φ)M(ψ)] =

∫
R×R

dtds

∫
Rd×Rd

dxdy γ(t− s)λ(x− y)φ(t, x)ψ(s, y)

=

∫
R
γ(dt)

∫
Rd
λ(dx) (φ ∗ ψ̃)(t, x),

in the example of correlated noise in time and space. The latter are very
convenient to see that the bilinear form B(φ, ψ) = E [M(φ)M(ψ)] is bi-
linear, symmetric, and positive definite, when γ and λ are symmetric and
positive-definite measures. The former will show great effectiveness to show
associativity of the triangle . operator in the following Anderson model.

We are interested in the general parabolic equation,{
∂u
∂t (t, x) = Lu(t, x) + λu Ṁ, t > 0, x ∈ Rd,
u(s, ·) = S0, x ∈ Rd,

(6.7)

where L is a parabolic operator having a Green function G(t, x; s, y), i.e. the
solution to the homogeneous equations is given by

u0(t, x) =
〈
S0
y , G(t, x; s, y)

〉
,

for some (non-random) initial condition at time s given by a distribution S0.
The Picard iteration scheme would be given by

u0(t, x) = 〈Sy, G(t, x; s, y)〉 ,

un+1(t, x) = u0(t, x) + λ

∫∫
R×Rd

G(t, x; r, y)un(r, y)M(dr, dy).

To simplify notation we set G(t, x; r, y) = 1[s,t](r)G(t, x; r, y), so that instead
of having

∫ t
s dr we can have

∫
R dr.

Observe that

E[u0(t, x)u0(t′, x′)] = u0(t, x)u0(t′, x′)
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since the initial condition is non-random, and

E[un+1(t, x)un+1(t′, x′)] = u0(t, x)u0(t′, x′)

+ λ2E
[ ∫∫

R×Rd
G(t, x; r, y)un(r, y)M(dr, dy)

×
∫∫

R×Rd
G(t′, x′; r′, y′)un(r′, y′)M(dr′, dy′)

]
.

To simplify notations, we introduce the variable z = (t, x), z′ = (t′, x′),
v = (r, y), w = (r′, y′), and G(z, v) = G(t, x; r, y), so that we can rewrite

E[un+1(z)un+1(z′)] = u0(z)u0(z′)

+ λ2E
[∫∫

R×Rd
G(z, v)un(v)M(dv)

∫∫
R×Rd

G(z′, w)un(w)M(dw)

]
.

We suppose that the last expectation can be computed as

E
[∫∫

R×Rd
G(z, v)un(v)M(dv)

∫∫
R×Rd

G(z′, w)un(w)M(dw)

]
=
〈
Tv,w, G(z, v)G(z′, w)E [un(v)un(w)]

〉
. (6.8)

If we set
gn(z, z′) = E[un(z)un(z′)],

then we have the following relation, for n ≥ 0,

gn+1(z, z′) = g0(z, z′) + λ2
〈
Tv,w, G(z, v)G(z′, w)gn(v, w)

〉
.

We define the general operation . as follows. For f, g : R4(d+1) → R, we set

(f . g)(z, z′, y, y′) = λ2
〈
Tv,w, f(z, z′, v, w)f(v, w, y, y′)

〉
.

As was already observed, we could assume λ = 1, upon replacing each oc-
curence of the distribution T by λ2T. Furthermore, we set

L(z, z′, y, y′) := G(z, y)G(z′, y′)

and
gn(z, z′, y, y′) := gn(z, z′).

In that case, we have

gn+1(z, z′) = g0(z, z′) + (L . gn) (z, z′, 0, 0).

We show that the triangle . operator is associative. This is a consequence
of associativity of tensor product for distributions.
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Lemma 6.13. The operation . is associative.

Proof. We need to show that [(f . g) . h] = [f . (g . h)], for any f, g, h :
R4(d+1) → R. First, observe that

[(f . g) . h] (z, z′, y, y′) =
〈
Tv2,w2 , (f . g)(z, z′, v2, w2)h(v2, w2, y, y

′)
〉

=
〈
Tv2,w2 ,

〈
Tv1,w1 , f(z, z′, v1, w1)g(v1, w1, v2, w2)

〉
h(v2, w2, y, y

′)
〉

=
〈
Tv1,w1 ⊗ Tv2,w2 , f(z, z′, v1, w1)g(v1, w1, v2, w2)h(v2, w2, y, y

′)
〉
.

We also have

[f . (g . h)] (z, z′, y, y′) =
〈
Tv1,w1 , f(z, z′, v1, w1)(g . h)(v1, w1, y, y

′)
〉

=
〈
Tv1,w1 , f(z, z′, v1, w1)

〈
Tv2,w2 , g(v1, w1, v2, w2)h(v2, w2, y, y

′)
〉〉

=
〈
Tv1,w1 ⊗ Tv2,w2 , f(z, z′, v1, w1)g(v1, w1, v2, w2)h(v2, w2, y, y

′)
〉
.

This concludes the proof.

Using the associativity of the operation ., we can define

L.n = L . L . · · · . L︸ ︷︷ ︸
n-times

,

and deduce that

g1(z, z′) = g0(z, z′) +
(
L . g0

)
(z, z′, 0, 0),

g2(z, z′) = g0(z, z′) +
(
L . g1

)
(z, z′, 0, 0)

= g0(z, z′) +
(
L . g0

)
(z, z′, 0, 0) +

(
L.2 . g0

)
(z, z′, 0, 0),

...

gn(z, z′) = g0(z, z′) +

[(
n∑
k=1

L.k
)
. g0

]
(z, z′, 0, 0).

From that induction procedure, we see that the fonction

K(z, z′, y, y′) =

( ∞∑
k=1

L.k
)

(z, z′, y, y′)

plays an important role. If the sequence converges, the limit g = limn→∞ g
n

would satisfy
g(z, z′) = g0(z, z′) +

[
K . g0

]
(z, z′, 0, 0).

The formula gives the expectation of the solution as a combination of the
initial condition, through g0, and the kernel K. The next result gives a more
convenient expression. It is an adaptation of [9, Lemma 2.8].
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Theorem 6.14. For any initial distribution S0,

E
[
u(z)u(z′)

]
= g0(z, z′) +

[
K . g0

]
(z, z′, 0, 0)

=
〈
S0
α ⊗ S0

α′ ,K(z, z′, (s, α), (s, α′))
〉
.

Before we give the proof, we need to observe the following property about
g0 and the kernel K :

g0(z, z′) = u0(z)u0(z′) =
〈
S0
α, G(z, (s, α))

〉 〈
S0
α′ , G(z′, (s, α′))

〉
=
〈
S0
α ⊗ S0

α′ , G(z, (s, α))G(z′, (s, α′))
〉

=
〈
S0
α ⊗ S0

α′ ,L(z, z′, (s, α), (s, α′))
〉
,

and

K . L =
∞∑
k=1

L.(k+1) =
∞∑
k=2

L.k = K − L.

Proof. This property comes from the link between the definition of g0, L,
and K. Indeed,

(K . g0)(z, z′, 0, 0) =
〈
Tv,w,K(z, z′, v, w)g0(v, w)

〉
=
〈
Tv,w,K(z, z′, v, w)

〈
S0
α ⊗ S0

α′ ,L(v, w, (s, α), (s, α′))
〉〉

=
〈
Tv,w ⊗ S0

α ⊗ S0
α′ ,K(z, z′, v, w)L(v, w, (s, α), (s, α′))

〉
=
〈
S0
α ⊗ S0

α′ ,
〈
Tv,w,K(z, z′, v, w)L(v, w, (s, α), (s, α′))

〉〉
=
〈
S0
α ⊗ S0

α′ , (K . L)(z, z′, (s, α), (s, α′))
〉

=
〈
S0
α ⊗ S0

α′ ,K(z, z′, (s, α), (s, α′))
〉

−
〈
S0
α ⊗ S0

α′ ,L(z, z′, (s, α), (s, α′))
〉
,

which concludes the proof.

6.4.1 Inverse triangle operator

One effective way to get a bound on the kernel K, is to get a bound for
each of the L.k.

Instead of using the operation ., we can directly give an expression for
E [u(z)u(z′)] from g0, or S0 ⊗ S0, and the tensor products

T⊗nv,w := Tv1,w1 ⊗ Tv2,w2 ⊗ · · · ⊗ Tvn,wn︸ ︷︷ ︸
n-times

.

For any n ≥ 1, we have

E[un(z)un(z′)] = u0(z)u0(z′)

+
n∑
k=1

〈
T⊗kv,w , G(z, vk)G(vk, vk−1) · · ·G(v2, v1)u0(v1)

×G(z′, wk)G(wk, wk−1) · · ·G(w2, w1)u0(w1)

〉
.
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E[un(z)un(z′)] = u0(z)u0(z′)

+
n∑
k=1

〈
T⊗kv,w,

 k∏
j=1

G(vj+1, vj)G(wj+1, wj)

u0(v1)u0(w1)

〉

where for each k, we have set vk+1 = z, wk+1 = z′.

Lemma 6.15. If we set v0 = (s, α), and w0 = (s, α′), we also have

E[un(z)un(z′)] =
n∑
k=0

〈
T⊗kv,w ⊗ S0

α ⊗ S0
α′ ,

k∏
j=0

G(vj+1, vj)G(wj+1, wj)

〉
.

From here we would like to know if the product

k∏
j=0

G(vj+1, vj)G(wj+1, wj),

or if the expression involving that product,〈
T⊗kv,w,

k∏
j=0

G(vj+1, vj)G(wj+1, wj)

〉
,

could be simplified. For example, could we write

k∏
j=0

G(vj+1, vj)G(wj+1, wj) = G(z, v0)G(z′, w0)X

where X is a function of all variables vj , wj , for j ∈ {0, . . . , k + 1} ?
If the noise is correlated in space, then we could find the corresponding

inverse triangle / operator. From the fact that G satisfies the semi-group
property, ∫

Rd
G(t, x; r1, y1)G(r1, y1; r2, y2) dy1 = G(t, x; r2, y2),

we could rewrite

G(z, v1)G(v1, v2) = G(z, v2)
G(z, v1)G(v1, v2)

G(z, v2)
= G(z, v2)X(z, v1, v2),

where we define
X(z, v1, v2) :=

G(z, v1)G(v1, v2)

G(z, v2)
.
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If the Green function G(z, v2) vanishes for some z or v2, then so should
X(z, v1, v2), so it is set to be zero for all v1.

From the semi-group property, we know that X(z, v1, v2) is a probability
distribution, in the space variable y1 of v1 = (r1, y1). We would like to know
if it has the same law as a Lévy bridge? At least in the following case it
does.

Example 6.16. For the heat equation on Rd, the Green function is given
by the fundamental solution, i.e.

G(t, x; r, y) = G(t− r, x− y),

where G(t, x) = 1√
4πt
e
−x2
4t . Let B(t) be a brownian motion with variance 2t.

We will show that the quotient

Xt,z,r,x
s (y) =

G(t, z; s, y)G(s, y; r, x)

G(t, z; r, x)
, (6.9)

is the density law at time s and point y of a brownian bridge that starts at
time r and point x, and finishes at time t and point z. Of course, we assume
that r ≤ s ≤ t. We let

Ys = Y t,z,r,x
s = B(s)− t− s

t− r
B(r)− s− r

t− r
B(t) +

t− s
t− r

x+
s− r
t− r

z,

Zs = Zt,z,r,xs = B(s)|(B(r) = x,B(t) = z),

and will show that both random variable Ys and Zs have density Xt,z,r,x
s (y).

Zs should be read as B(s) knowing B(r) = x and B(t) = z.

Lemma 6.17. The density of both random variables Ys and Zs is given by
the quotient (6.9).

Proof. By definition of the conditional density, we have

fZs(y) =
fB(t),B(s),B(r)(z, y, x)

fB(t),B(r)(z, x)
.

By a change of variable, we can simplify as

fZs(y) =
fB(t)−B(s),B(s)−B(r),B(r)(z − y, y − x, x)

fB(t)−B(r),B(r)(z − x, x)
.

Using the independence of the increments of Brownian motion, we can sim-
plify further

fZs(y) =
fB(t)−B(s)(z − y)fB(s)−B(r)(y − x)

fB(t)−B(r)(z − x)

=
G(t− s, z − y)G(s− r, y − x)

G(t− r, z − x)
.
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This is what needed to be proved for Zs. For Ys, we can rewrite it as

Ys = −s− r
t− r

(B(t)−B(s)) +
t− s
t− r

(B(s)−B(r)) +
(s− r)z + (t− s)x

t− r
.

By independence of increments, the fact that the increments have normal
distributions with variance 2(t− s) and 2(s− r), we conclude that Ys follows
a normal distribution with mean µs and variance σ2

s , given by

µs =
(s− r)z + (t− s)x

t− r

and

σ2
s =

(
s− r
t− r

)2

2(t− s) +

(
t− s
t− r

)2

2(s− r) = 2
(t− s)(s− r)

t− r
.

To conclude the proof, we will give the exact form of the quotient, and find
that it is indeed the law of a normal distribution with mean µs and variance
σ2
s as above. We apply the product identity (A.11) of the heat kernel to get

G(t− s, z − y)G(s− r, y − x)

= G(t− r, z − x)G

(
(t− s)(s− r)

t− r
,
(s− r)(z − y)− (t− s)(y − x)

t− r

)
= G(t− r, z − x)G

(
(t− s)(s− r)

t− r
,
(s− r)z + (t− s)x

t− r
− y
)
,

which concludes the proof.

Observe that for the derivation of the law of Zs, we “solely" needed the
fact that the increments of brownian motion are independent.



Appendix A

Parabolic equations

We restrict our discussion to second order parabolic type equations. We
will distinguish the Cauchy problem and the boundary value problem. The
former is an equation on the whole space Rd, whereas the latter is on some
(simply connected) domain D ⊆ Rd. The domain D, bounded or unbounded,
is a proper subset of Rd. The concepts of fundamental solutions, respectively
Green functions, are key tools to find the solutions to the Cauchy problem,
respectively the boundary value problem. Most ideas in that chapter can be
found in [44].

A.1 Cauchy problem

The Cauchy problem can be expressed as
∂u

∂t
(t, x)− (Au)(t, x) = Φ(t, x), t > 0, x ∈ Rd,

u(0, x) = f(x), x ∈ Rd,
(A.1)

where A is a second order differential operator

(Au)(t, x) =
d∑

i,j=1

ai,j(t, x)
∂2u

∂xi∂xj
(t, x) +

d∑
i=1

ai(t, x)
∂u

∂xi
(t, x) + a(t, x)u(t, x),

(A.2)
with the property of uniform ellipticity, i.e.

d∑
i,j=1

ai,j(t, x)ξiξj ≥ ν
d∑
i=1

ξ2
i , ν > 0. (A.3)

Equations (A.1) is said to be homogeneous if Φ ≡ 0, and have vanishing
initial condition if f ≡ 0.

Very strong results are known for the class of such parabolic equations.
Under some precise assumptions on the regularity of the operators A, the
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solution can be expressed as

u(t, x) =

∫ t

0

∫
Rd

Γ(t, x; r, y)Φ(s, y) dydr +

∫
Rd

Γ(t, x; 0, y)f(y) dy, (A.4)

where Γ is the fundamental solution of the Cauchy problem (A.1). As we
shall see, the fundamental solution doesn’t depend of the functions Φ and f.
In fact, it satisfies the following homogeneous equation

∂Γ

∂t
(t, x; r, y)− (AxΓ)(t, x; r, y) = 0, t > 0, x,∈ Rd,

Γ(t, x; t, y) = δ(x− y), t ≥ 0, x ∈ Rd.
(A.5)

In (A.5), the quantities r and y are free parameters, with t > r ≥ 0 and
y ∈ Rd, and δ is the Dirac delta functional.
Remark. If the coefficients of the operator A are independent of the time
variable t, then the fundamental solution depends only on three arguments,
Γ(t, x; r, y) = Γ(t− r, x, y). Furthermore, if the coefficients of the operator A
are constant, then the fundamental solution depends only on two arguments,
Γ(t, x; r, y) = Γ(t− r, x− y).

This section was strongly inspired by [44, Section 16.2.2].
The fundamental solution satisfies the following semi-group property.

Lemma A.1. For all t > s > r ≥ 0 and x, z ∈ Rd, we have∫
Rd

Γ(t, z; s, y)Γ(s, y; r, x) dy = Γ(t, z; r, x). (A.6)

This result is given in [22, Theorem VI.I]. For many bounds satisfied by
the fundamental solution, see the whole Chapter 6 of [22]. In the particular
assumptions of [22, Theorem VI.6], the fundamental solution is positive and
have both lower and upper bounds given by the heat kernel. Therefore,
Dalang’s condition (4.4) is satisfied exactly for the same class of correlated
noises.

A.1.1 Heat equation

The heat equation is the particular case of (A.1) where the operator A
has constant coefficients of the form

(Au)(t, x) = ν∆u(t, x) := ν
d∑
i=1

∂2u

∂x2
i

(t, x), (A.7)

where ν > 0 represents the heat diffusivity of the medium. Φ represents
the volume thermal source. Its fundamental solution can be expressed as
Γ(t, x; r, y) = Γν(t− r, x− y), with

Γν(t, x) = 1R+(t) · 1

(4νtπ)d/2
exp

{
−|x|

2

4νt

}
, (A.8)
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where 1R+ is the Heaviside unit step function, i.e. 1R+(t) = 0 for t ≤ 0, and
1R+(t) = 1 for t > 0. The function Γν will also be called the heat kernel.
The notion of (good) kernel, or approximation to the identity, is linked to
the fact that indeed Γν(t, ·) converges to the Dirac delta functional as t→ 0.
That fact can be found in [51, Theorem 1.6 of Chapter 5].

Therefore, the solution to the homogeneous heat equation, with initial
condition u0(x), is given by

u(t, x) =

∫
Rd

1

(4νtπ)d/2
e−
|x−y|2

4νt u0(y) dy. (A.9)

In addition to the semi-group property (A.6), the fundamental solution
to the heat equation has the following two properties.

Lemma A.2. For any x, z ∈ Rd, and r, t > 0, we have∫
Rd

Γν(t, y) dy = 1, (A.10)

Γν(r, x)Γν(t, z) = Γν

(
rt

r + t
,
rz + tx

r + t

)
Γν(r + t, x− z). (A.11)

These can be verified directly. We omit the proof.

A.1.2 Properties of the heat kernel

We derive here some properties of the heat kernel. By the semi group
property, ∫

Rd
Γν(t, y)2 dy = Γν(2t, 0) = (8νtπ)−d/2. (A.12)

We deduce in any dimension∫ t

0

∫
Rd

Γν(s, y) dyds = t. (A.13)

And in one space dimension d = 1,∫ t

0

∫
R

Γν(s, y)2 dyds =

∫ t

0
Γν(2s, 0) ds =

√
t√

2νπ
. (A.14)

For all x, γ > 0, the following bound∫ ∞
x

e−γy
2
dy =

∫ ∞
0

e−γ(z+x)2 dz = e−γx
2

∫ ∞
0

e−2γxze−γz
2
dz

≤ e−γx2
∫ ∞

0
e−γz

2
dz =

√
π

2
√
γ
e−γx

2
,

(A.15)
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can be used to estimate integrals of the heat kernel:∫ ∞
x

Γν(s, y) dy =
1√

4νsπ

∫ ∞
x

e
−y2
4νs dy ≤ 1

2
e−

x2

4νs , (A.16)∫ ∞
x

Γν(s, y)2 dy =
1

4νsπ

∫ ∞
x

e
−y2
2νs dy ≤ 1

4
√

2νsπ
e−

x2

2νs . (A.17)

In [43, Table 1], we can found more general integral bounds for the heat
kernel. For example, if we consider the function

φ(y) = Γ1/2(1, y) =
1√
2π
e−

y2

2 ,

then for any nonnegative integer k we have∫ ∞
x

y2k+1φ(y) dy = φ(x)(2k)!!

k∑
j=0

x2j

(2j)!!
, (A.18)

∫ ∞
x

y2k+2φ(y) dy = φ(x)(2k + 1)!!

k∑
j=0

x2j+1

(2j + 1)!!
+ (2k + 1)!!Φ(x), (A.19)

where the double factorial of a nonnegative integer is defined as follows:
n!! = n · (n − 2) · · · 4 · 2 if n is even, n!! = n · (n − 2) · · · 5 · 3 · 1 if n is odd,
and 0!! = 1 = 1!!. The function Φ(x) is defined by

∫∞
x φ(y) dy and can be

estimated with (A.16).
Another interesting property concerns the derivatives of Γν(t, x, y) :=

Γν(t, x− y) in one space dimension.

Lemma A.3. For any k, n ∈ N and λ > 1, there exists c = c(k, n, λ) such
that ∣∣∣∣∂k∂nΓν

∂tk∂xn
(t, x, y)

∣∣∣∣ ≤ c

νn/2tk+n/2
Γνλ(t, x, y). (A.20)

Proof. Recalling that the heat kernel satisfies the heat equation, we observe
that

∂Γν
∂t

(t, x, y) =
∂Γν
∂t

(t, x− y) = ν
∂2Γν
∂x2

(t, x− y),

and thus, we only need to get estimates for the space derivatives. By induc-
tion, we can show that

∂nΓν
∂xn

(t, x) = (νt)−n/2Pn

(
x√
4νt

)
Γν(t, x),

where Pn is a polynomial of degree n. Indeed, the cases n = 1 and n = 2
follow from direct computations

∂Γν
∂x

(t, x) =
−2x

4νt
Γν(t, x) = − 1√

νt

x√
4νt

Γν(t, x),
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and

∂2Γν
∂x2

(t, x) =

(
−1

2νt
+

(
−2x

4νt

)2
)

Γν(t, x)

=
1

νt

(
−1

2
+

(
x√
4νt

)2
)

Γν(t, x).

The general case is deduced by the Leibniz derivation formula. Thus

∂k∂nΓν
∂tk∂xn

(t, x, y) = νk
∂2k+nΓν
∂x2k+n

(t, x, y)

= ν−n/2t−k−n/2P2k+n

(
x− y√

4νt

)
Γν(t, x− y).

Finally, we observe that for any r ≥ 0 and 1/λ = θ ∈ (0, 1), we have

zre−z ≤ (r + 1)!

(1− θ)r+1
e−θz = c(r, λ)e−θz. (A.21)

Therefore, ∣∣∣∣P2k+n

(
x− y√

4νt

)∣∣∣∣Γν(t, x− y) ≤ c(k, n, λ)Γνλ(t, x− y),

which concludes the proof.

In any space dimension, we get

Lemma A.4. For any k ∈ N, γ ∈ Nd, and λ > 1, there exists a constant
C = C(d, k, γ, λ) such that∣∣∣∣∣∂k∂|γ|Γν∂tk∂xγ

(t, x, y)

∣∣∣∣∣ ≤ C

ν|γ|/2tk+|γ|/2 Γνλ(t, x, y). (A.22)

Proof. It is a direct consequence of the one dimensional result (A.20) and
the fact that

Γν(t, x, y) = Γ1
ν(t, x1, y1) · · ·Γ1

ν(t, xd, yd),

where Γ1
ν is the heat kernel in one space dimension.

A.2 Boundary value problems

To express the boundary value problem, we need further information on
the behavior that is expected to happen at the boundary S = ∂D.

∂u

∂t
(t, x)− (Au)(t, x) = Φ(t, x), t > 0, x ∈ D,

(Bu)(t, x) = g(t, x), t > 0, x ∈ S,
u(0, x) = f(x), x ∈ D,

(A.23)
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where A is given by (A.2) and satisfies (A.3), and B is a first order differential
operator

(Bu)(t, x) =

d∑
i=1

bi(t, x)
∂u

∂xi
(t, x) + b(t, x)u(t, x). (A.24)

Equation (A.23) is said to be homogeneous if Φ ≡ 0, have vanishing
boundary condition if g ≡ 0, and have vanishing initial condition if f ≡ 0.

We say that (A.23) is the “first" boundary value problem, when the
boundary condition reduces to u(t, x) = g(t, x) for t > 0, and x ∈ S, i.e. each
bi ≡ 0 and b ≡ 1 in (A.24). It is also called the Dirichlet boundary condition.
“Second" and “third" boundary value problems can also be defined, with
special forms of the boundary operator B. In the case of the heat equation,
the “second" boundary value problem is the case in which the boundary
condition reduces to

∑d
i=1 νi(x) ∂u∂xi (t, x) = g(t, x), where ν(x) is the unit

outward normal to the surface S, at the point x ∈ S. It is also called the
Neumann boundary condition.

Very strong results are known for the class of such parabolic equations.
Under some precise assumptions on the regularity of the operators A and B,
and on the smoothness of the boundary S, the solution can be expressed as

u(t, x) =

∫ t

0

∫
D
G(t, x; r, y)Φ(r, y) dydr +

∫
F
G(t, x; 0, y)f(y) dy

+

∫ t

0

∫
S
G(t, x; r, y)g(r, y)S(dy)dr, (A.25)

where G is the Green function of the boundary value problem (A.23). As we
shall see, the Green function doesn’t depend of the functions Φ, f, and g. In
fact, it satisfies the following homogeneous equation

∂G

∂t
(t, x; r, y)− (AxG)(t, x; r, y) = 0, t > 0, x ∈ D,

(BxG)(t, x; r, y) = 0 t > 0, x ∈ S,
G(t, x; t, y) = δ(x− y), t ≥ 0, x ∈ D.

(A.26)

In (A.26), the quantities r and y are free parameters, with t > r ≥ 0 and
y ∈ D, and δ is the Dirac delta functional.

The function G appearing in the representation formula (A.25) can in
fact be expressed via the Green function G. Its expression may depend on
both operators A and B.

Remark. If the coefficients of the operator A and B are independent of the
time variable t, then the Green function depends only on three arguments,
G(t, x; r, y) = G(t−r, x, y). Furthermore, if the coefficients of the operator A
and B are constant, then the Green function depends only on two arguments,
G(t, x; r, y) = G(t− r, x− y).
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This section was strongly inspired by [44, Section 17.4.2]. Further details
about the expression of the function G can be found there.

Remark. For general type equations, the construction of the Green function
requires solving an associated eigenvalue problem, see [44, Section 17.5.1].
This method is also applicable for other classes of equations, such as elliptic
and hyperbolic.

A.2.1 Heat equation

As we shall see in Section A.4, the method of separation of variables
can be applied to find the Green function to the heat equation in one space
dimension. To solve the heat equation in higher space dimension, at least
for rectangular domains, the following general construction applies.

Consider the rectangular domain D = [α1, β1] × · · · × [αd, βd], together
with the parabolic equation

∂u

∂t
−A1u · · · −Adu = Φ,

where each term Ai is a second-order linear differential operator in only one
space variable xi, such that each coefficient depends only on t and xi, i.e.

(Aiu)(t, x) = ai,i(t, xi)
∂2u

∂x2
i

(t, x) + ai(t, xi)
∂u

∂xi
(t, x) + āi(t, xi)u(t, x),

for i = 1, . . . , d. In fact, this relates to general operator A given by (A.2),
in which the matrix ai,j is diagonal, with diagonal coefficient ai,i(t, x) =

ai,i(t, xi). The coefficients ai(t, x) = ai(t, xi) and a(t, x) =
∑d

i=1 āi(t, xi).

Suppose that the boundary conditions at each faces of the domain are
prescribed as in a one dimensional problem, then the Green function has the
product form

G(t, x; r, y) =
d∏
i=1

Gi(t, xi, r, yi), (A.27)

where each Gi is the Green function of the one dimensional equation, i.e. it
verifies

∂Gi
∂t

(t, xi; r, yi)− (A1G)(t, xi; r, yi) = 0, t > 0, xi ∈ (αi, βi),

(BiG)(t, xi; r, yi) = 0 t > 0, x ∈ {αi, βi},
G(t, xi; t, yi) = δ(xi − yi), t ≥ 0, x ∈ (αi, βi).

(A.28)

In (A.28), the quantities r and yi are free parameters, with t > r ≥ 0 and
yi ∈ (αi, βi), and δ is the Dirac delta functional.

This section was strongly inspired by [44, Section 17.5.2].
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A.3 Probabilistic methods

Some powerful probabilistic methods can be applied to solve partial dif-
ferential equations. To solve the Laplace equation, see [53, Theorem 6.1 of
Chapter 6]. To solve the heat equation, see [20, Chapter 4]. To solve more
general parabolic equations, see [23, Chapter 6.5].

A.3.1 Heat equation

The fundamental solution Γν(t, x), given by (A.8), to the heat equation
can be seen as the probability density of a Gaussian random variable with
zero mean and variance 2νt. If we let t 7→ Bt be a standard Brownian motion,
then the solution to the heat equation (A.9) can be rewritten as

u(t, x) =

∫
Rd

1

(4νtπ)d/2
e−
|x−y|2

4νt u0(y) dy

= E
[
u0(x+

√
2νBt)

]
= E [u0(X(t))] . (A.29)

For latter use, we let X(t) := x+
√

2νBt be a Brownian motion that starts
at x at time t = 0, whose variance is 2νt.

It is also possible to solve the homogeneous heat equation with Dirichlet
boundary condition via a Brownian motion argument. Fix D ⊆ Rd any open
set and x ∈ D. Let X(t) be a Brownian motion starting at x at time t = 0,
with variance 2νt. Let T = inf{t > 0 : X(t) /∈ D} be the first time the
process X leaves the domain D, and Tt = min(t, T ).

Interpretation of the process t 7→ X(Tt) : The Brownian particule X(t)
moves freely until, if ever, it touches the boundary ∂D. When it does, at
time T, it stops and forever remains at that boundary point X(T ). We say
that X(Tt) is “killed" at the boundary.

Theorem A.5. The solution to the homogeneous heat equation, with Dirich-
let boundary condition, is given by

u(t, x) = E [u(t− Tt, X(Tt))] ,

when both the initial condition and the boundary condition are continuous
and bounded (up to time t).

Proof. This is [20, Theorem 4 of Chapter 4].

This expectation is computed solely from the initial condition u(0, x), for
x ∈ D, the boundary condition u(t, x), for t ≥ 0 and x ∈ ∂D, and of course
the law of the random vector (Tt, X(Tt)). Indeed, if t < T, that means the
process X has remained within D until time t. In that case u(t−Tt, X(Tt)) =
u(0, X(t)) depends only on the initial condition. If T ≤ t, that means the
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process X has left the domain D at time T through some boundary point
X(T ) ∈ ∂D. In that case u(t−Tt, X(Tt)) = u(t−T,X(T )) depends only on
the boundary condition.

The random variable X(Tt) induces a probability measure on the closure
D̄ of D by

µt,x(A) = P [X(Tt) ∈ A] ,

for any Borel set A ⊆ D̄. It can be shown that the restriction of µt,x to the
open domain D is precisely the associated Green function, i.e.

P [X(Tt) ∈ A] =

∫
A
GD(t, x, y) dy,

for any Borel set A ⊆ D.

Proposition A.6. Let D ⊆ Rd be any open set and t > 0. The Green
function GD : R+ × D × D associated to the heat equation with Dirichlet
boundary conditions is continuous. Furthermore, for any x, y ∈ D,

0 ≤ GD(t, x, y) = GD(t, y, x) ≤ Γν(t, x− y), (A.30)∫
D
GD(t, x, y) dy ≤ 1, (A.31)

GδD(δ2t, δx, δy) =
1

δd
GD(t, x, y), ∀δ > 0, (A.32)

where Γν is the fundamental solution given in (A.8).

Proof. Observe that the event {X(Tt) ∈ A} ⊆ {X(t) ∈ A}, for any Borel set
A ⊆ D. Therefore,∫

A
GD(t, x, y) dy = P [X(Tt) ∈ A] ≤ P [X(t) ∈ A] =

∫
A

Γν(t, x− y) dy.

The inequalities of (A.30) follows by continuity, and (A.31) is a conse-
quence of (A.10). The scaling property (A.32) follows from the same scal-
ing property of Brownian motion, or it can be shown that GδD(t, x, y) :=
GD(t/δ2, x/δ, y/δ)/δd satisfies the conditions (A.26) of a Green function on
δD if GD does on D.

Details can be found in [20, Theorems 6–9 of Chapter 4]. Moreover, if
D1 ⊆ D2 are two open sets, then

GD1(t, x, y) ≤ GD2(t, x, y), (A.33)

for all t > 0 and x, y ∈ D1. It follows directly from the interpretation of
the Green function in term of the killed Brownian motion, or from [20,
Theorem 7].
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In fact, more can be said when we impose a special geometry of the
domain D. When it is connected, we have

GD(t, x, y) > 0.

When Rd \D has positive measure,∫
D
GD(t, x, y) dy < 1.

When D is bounded and convex, an application of the maximum principle
gives ∫

D
GD(t, x, y) dy ≥ 1− 2

∫
Rd\D

Γν(t, x− y) dy, (A.34)

for any t > 0, and x ∈ D. See [20, Theorem 14 of Chapter 4].

A.4 How to find the Green function in one space
dimension

The method of separation of variable is very useful to solve the homoge-
neous heat equation and find the associated Green function, on some partic-
ular domain and with some prescribed boundary conditions. We will give a
complete derivation of the Green functions for the vanishing Dirichlet bound-
ary conditions on both domains [0, L] and [−L,L]. In fact, the latter will be
derived easily from the former. Similar derivations, with less details, will
also be done for Neumann and mixed boundary conditions.

The method of separation of variable is described in [44, Section 15.1.2].
Green functions for many other domains and boundary conditions can be
found in Sections 3.1.1 and 3.1.2 of [44].

For many boundary conditions, it is known that the Green function is
related to the density of some process that is linked to a Brownian motion.
As a rule of thumb, Dirichlet boundary conditions will be associated with a
Brownian motion that is killed at the boundary points, whereas Neumann
boundary condition will be associated with a Brownian motion that is re-
flected at the boundary points.

A.4.1 Dirichlet boundary conditions

The method of separation of variables is very useful to solve the homo-
geneous heat equation with vanishing Dirichlet boundary condition,

∂u
∂t (t, x) = ∂2u

∂x2
(t, x), t > 0, x ∈ (0, L),

u(t, 0) = u(t, L) = 0, t > 0,

u(0, x) = u0(x), x ∈ (0, L).

(A.35)
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It leads to solutions of the form

u(t, x) =
∞∑
k=1

ak sin
(
π
Lkx

)
e
−π2k2
L2 t. (A.36)

When the initial condition u0 is an integrable function, we impose the Fourier
coefficients

ak =
2

L

∫ L

0
u0(x) sin

(
π
Lkx

)
dx.

Recall that if these coefficients are uniformly bounded, ak ≤ M, ∀k ∈ N,
then formula (A.36) gives a C∞ solution on 0 ≤ x ≤ L, t > 0. Furthermore,
if
∑∞

k=1 |ak| < ∞, then the solution is continuous up to the boundary. To
get the right initial temperature distribution

u0(x) = u(0, x) =

∞∑
k=1

ak sin
(π
L
kx
)
,

sufficient conditions are as follow: u0 is continuous and
∑∞

k=1 |ak| < ∞.
With such conditions, and for t > 0, the solution given by (A.36) can be
rewritten as

u(t, x) =

∞∑
k=1

sin
(
π
Lkx

)
e
−π2k2
L2 t 2

L

∫ L

0
u0(y) sin

(
π
Lky

)
dy

=

∫ L

0
u0(y)

(
2

L

∞∑
k=1

sin
(
π
Lkx

)
sin
(
π
Lky

)
e
−π2k2
L2 t

)
dy

=

∫ L

0
u0(y) Ḡ(t, x, y) dy,

where

Ḡ(t, x, y) :=
2

L

∞∑
k=1

sin
(π
L
kx
)

sin
(π
L
ky
)
e
−π2k2
L2 t (A.37)

is the Green function associated to the problem (A.35). That is,
∂Ḡ
∂t (t, x, y) = ∂2Ḡ

∂x2
(t, x, y), t > 0, x, y ∈ (0, L),

Ḡ(t, 0, y) = Ḡ(t, L, y) = 0, t > 0, y ∈ (0, L),

Ḡ(0, x, y) = δ(x− y), x, y ∈ (0, L).

The first two equalities are easily verified. The last equality should be un-
derstood in the sense of distributions, i.e.∫ L

0
u0(y)Ḡ(t, x, y) dy

t→0−−→ u0(x),
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for any test function u0 ∈ C∞c ((0, L)). Results in Fourier analysis handle the
convergence for more general class of functions. In particular, the concepts
of Poisson kernel and Abel summability, introduced in [51, Section 5.4 of
Chapter 2], enable to conclude that the limit exists for the general class on
integrable function, and the limit is indeed u0(x) for all continuity point
x ∈ (0, L).

We now describe some properties of the Green function Ḡ, which for later
use will also be denoted as ḠL. Formula (A.37) defines in fact a continuous
function on R+ × R × R. We can relate that Green function to the heat
kernel (A.8) in one space dimension

H(t, x) := 1R+(t)
1√
4πt

e
−x2
4t . (A.38)

Proposition A.7. Fix any s, t > 0 and x, y ∈ R. The Green function ḠL is
symmetric in x and y, (2L, 0)- and (L,L)-periodic, odd, and antisymmetric
around L:

ḠL(t, y, x) = ḠL(t, x, y) = ḠL(t, x+ 2L, y) = ḠL(t, x+ L, y + L)

= −ḠL(t,−x, y) = −ḠL(t, 2L− x, y);
(A.39)

is uniformly bounded in space

∣∣ḠL(t, x, y)
∣∣ ≤ 1√

πt
exp

(
−π2t

L2

)(
1 +

2
√
πt

L

)
; (A.40)

is uniformly bounded in the variables x, y and L > 0 :∣∣ḠL(t, x, y)
∣∣ ≤ H(t, x− y) ≤ 1√

4πt
; (A.41)

satisfies the semi-group property:∫ L

0
ḠL(s, x, z)ḠL(t, z, y) dz = ḠL(s+ t, x, y); (A.42)

can be represented with the heat kernel:

ḠL(t, x, y) =
∞∑

n=−∞
[H(t, x− y + 2nL)−H(t, x+ y + 2nL)] ; (A.43)

and is integrable ∫ L

0

∣∣ḠL(t, x, y)
∣∣ dy ≤ ∫ ∞

−∞
H(t, y) dy = 1. (A.44)

Furthermore, if x, y ∈ [0, L] then ḠL(t, x, y) ≥ 0.
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Equation (A.43) will be a consequence of the Poisson summation formula,
which we now recall: if f ∈ S(R) is a function in the Schwartz space, and
f̂(ξ) =

∫
R f(y)e−2πiξy dy denotes its Fourier transform, then

∞∑
n=−∞

f(z + 2nL) =
1

2L

∞∑
n=−∞

f̂
(
n

2L

)
e
π
L
inz. (A.45)

A clear proof of this fact can be read in [51, Theorem 3.1 of Chapter 5].
The fact that the Green function, for particular domains, can be repre-

sented with the fundamental solution is also true in higher dimension, see [44,
Page 1230].

Proof of Proposition A.7. Equalities in (A.39) follow easily from (A.37) and
the properties of the sine function. Uniformly in x, y ∈ R, we have∣∣ḠL(t, x, y)

∣∣ ≤ 2

L

∞∑
k=1

e
−π2k2
L2 t =

2

L
e
−π2
L2 t

(
1 +

∞∑
k=2

e
−π2(k2−1)

L2 t

)
.

We can bound the series by the following integral,
∞∑
k=2

e
−π2(k2−1)

L2 t ≤
∫ ∞

1
e
−π2(x2−1)

L2 t dx ≤
∫ ∞

0
e
−π2x2
L2 t dx =

√
π

2

√
L2

π2t
.

By setting λ =
√
π2t/L2, we get∣∣ḠL(t, x, y)
∣∣ ≤ 2

L
e−λ

2

(
1 +

√
π

2

1

λ

)
=

2λ√
π2t

e−λ
2

(
1 +

√
π

2

1

λ

)
=

1√
πt
e−λ

2

(
2λ√
π

+ 1

)
,

which is inequality (A.40). We observe that e−λ2
(

2λ√
π

+ 1
)

is a bounded
function in the argument λ. Uniformly in x, y ∈ R, and L > 0,∣∣ḠL(t, x, y)

∣∣ ≤ 2

L

∞∑
k=1

e
−π2k2
L2 t ≤ 2

L

∫ ∞
0

e
−π2x2
L2 t dx =

1√
πt
.

The semi-group property comes from the facts that

2

L

∫ L

0
sin
(π
L
mz
)

sin
(π
L
nz
)
dz = δ(n−m),

and that integration can be interchanged with double summation.
For the representation with heat kernel, we rewrite the products of sines

as sums of exponentials:

sin
(
π
Lkx

)
sin
(
π
Lky

)
=
e
π
L
ikx − e−

π
L
ikx

2i
· e

π
L
iky − e−

π
L
iky

2i

=
1

4

(
e
π
L
ik(x−y) + e−

π
L
ik(x−y) − e

π
L
ik(x+y) − e−

π
L
ik(x+y)

)
.
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Therefore,

ḠL(t, x, y) =
2

L

∞∑
k=1

1

4

(
e
π
L
ik(x−y) + e−

π
L
ik(x−y)

)
e−

π2k2

L2 t

− 2

L

∞∑
k=1

1

4

(
e
π
L
ik(x+y) + e−

π
L
ik(x+y)

)
e−

π2k2

L2 t

=
1

2L

∞∑
k=−∞

e
π
L
ik(x−y)e−

4π2k2

4L2 t − 1

2L

∞∑
k=−∞

e
π
L
ik(x+y)e−

4π2k2

4L2 t

=
∞∑

n=−∞

1√
4πt

e−
(x−y+2nL)2

4t −
∞∑

n=−∞

1√
4πt

e−
(x+y+2nL)2

4t ,

where the last equality is obtained by applying the Poisson summation for-
mula with f(z) = 1√

4πt
e−

z2

4t , and f̂(ξ) = e−4π2ξ2t.

Finally, the integral bound is obtained from the representation with the
heat kernel as follows:∫ L

0

∣∣ḠL(t, x, y)
∣∣ dy ≤ ∞∑

k=−∞

∫ L

0
[H(t, x− y + 2kL) +H(t, x+ y + 2kL)] dy

=

∞∑
k=−∞

[∫ x+2kL

x−L+2kL
H(t, y) dy +

∫ x+L+2kL

x+2kL
H(t, y) dy

]
=

∫ ∞
−∞

H(t, y) dy = 1.

Non-negativity for x, y ∈ [0, L] can be deduced from the maximum prin-
ciple. Indeed, for any non-negative continuous function u0 : [0, L]→ R, with
u0(0) = u0(L) = 0,

u(t, x) =

∫ L

0
u0(y) ḠL(t, x, y) dy

is continuous in [0, T ]× [0, L] and satisfy the heat equation in (0, T )× (0, L).
The maximum principle, see [32, Theorem 3.1], guarantees in the present
case of vanishing Dirichlet boundary conditions that u(t, x) is non-negative
in [0, T ]× [0, L]. Therefore, ḠL(t, x, y) is non-negative.

Non-negativity for x, y ∈ [0, L] can also be deduced thanks to the link be-
tween Green function and Brownian motion, introduced in subsection A.3.1.
More precisely, it is (A.30). If we let t 7→ X(t) be a Brownian motion start-
ing at x, with variance 2t, and define t 7→ X(Tt) to be the “killed" process
at the boundary points 0 and L, then

0 ≤ P [X(Tt) ∈ I] =

∫
I
ḠL(t, x, y) dy,
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for any open sub-interval of I ⊆ (0, L).

A probabilistic argument involving killed Brownian motion can also lead
to (A.43). For example [20, Theorem 2 of Chapter 4] or [39, Proposition 8.10
of Section 2.8].

Shifted rod

We are now interested in considering a rod of length 2L, centered at the
origin, with the corresponding vanishing Dirichlet boundary conditions, i.e.

∂u
∂t (t, x) = ∂2u

∂x2
(t, x) + f(t, x), t > 0, x ∈ (−L,L),

u(t,−L) = u(t, L) = 0, t > 0,

u(0, x) = u0(x), x ∈ (−L,L).

(A.46)

In that case, using (A.25), the solution becomes

u(t, x) =

∫ L

−L
GL(t, x, y)u0(y) dy +

∫ t

0

∫ L

−L
GL(t− s, x, y) f(s, y) dyds,

(A.47)
where

GL(t, x, y) = Ḡ2L(t, x+ L, y + L)

=
1

L

∞∑
k=1

sin
( π

2L
k(x+ L)

)
sin
( π

2L
k(y + L)

)
e
−π2k2
4L2 t

=
∞∑

k=−∞
[H(t, x− y + 4kL)−H(t, x+ y + (4k + 2)L)] .

(A.48)

To get the preceding formulas (A.48), we first considered the boundary value
problem on [0, 2L], and then shifted it to [−L,L]. These induced the following
changes: every occurence of L is replaced by 2L, and every occurence of x
or y is replaced by x+ L or y + L, respectively.

In similar ways, as previously done for ḠL, we can show that

Proposition A.8. Fix any s, t > 0 and x, y ∈ R. The Green function GL
is symmetric in x and y, (4L, 0)- and (2L, 2L)-periodic, and antisymmetric
around −L and L :

GL(t, y, x) = GL(t, x, y) = GL(t, x+ 4L, y) = GL(t, x+ 2L, y + 2L)

= −GL(t,−2L− x, y) = −GL(t, 2L− x, y); (A.49)

is uniformly bounded in the variable L > 0 :

|GL(t, x, y)| ≤ H(t, x− y) ≤ 1√
4πt

; (A.50)
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satisfies the semi-group property:∫ L

−L
GL(s, x, z)GL(t, z, y) dz = GL(s+ t, x, y); (A.51)

and is integrable: ∫ L

−L
|GL(t, x, y)| dy ≤ 1. (A.52)

Furthermore, if x, y ∈ [−L,L] then GL(t, x, y) ≥ 0.

Remark. We can deduce the Green function for any interval [a, b]. It is given
by G(t, x, y) = Ḡb−a(t, x− a, y − a).

A.4.2 Neumann boundary conditions

The method of separation of variables is very useful to solve the homo-
geneous heat equation with vanishing Neumann boundary conditions

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x), t > 0, x ∈ (0, L)

∂u

∂x
(t, 0) = 0 =

∂u

∂x
(t, L), t > 0,

u(0, x) = u0(x), x ∈ (0, L),

(A.53)

It leads to solutions of the form

u(t, x) =
a0

2
+
∞∑
k=1

ak cos
(
π
Lkx

)
e−

π2k2

L2 t.

Identifying the Fourier coefficients ak as in Section A.4.1, we get that

u(t, x) =

∫ L

0
u0(y)Ḡ(t, x, y) dy,

where

Ḡ(t, x, y) =
1

L
+

2

L

∞∑
k=1

cos
(π
L
kx
)

cos
(π
L
ky
)
e−

π2k2

L2 t (A.54)

is the Green function associated to the problem (A.53). That is,
∂Ḡ
∂t (t, x, y) = ∂2Ḡ

∂x2
(t, x, y), t > 0, x, y ∈ (0, L),

∂Ḡ
∂x (t, 0, y) = 0 = ∂Ḡ

∂x (t, L, y), t > 0, y ∈ (0, L)

Ḡ(0, x, y) = δ(x− y), x, y ∈ (0, L).

The first two equalities are easily verified. The last should be understood in
the sense of distributions, i.e.∫ L

0
u0(y)Ḡ(t, x, y) dy

t→0−−→ u0(x),
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for any test function u0 ∈ C∞c ((0, L)). This can be verified for the more
general class of continuous functions, see [51, Corollary 3.4 of Chapter 5].

We now describe some properties of the Green function Ḡ, which for later
use will also be denoted as ḠL. Formula (A.54) defines in fact a continuous
function on R+ × R × R. We can relate that Green function to the heat
kernel (A.38).

Proposition A.9. Fix any s, t > 0, and x, y ∈ R. The Green function ḠL is
symmetric in x and y, (2L, 0)- and (L,L)- periodic, even, symmetric around
L, and non-negative:

ḠL(t, y, x) = ḠL(t, x, y) = ḠL(t, x+ 2L, y) = ḠL(t, x+ L, y + L)

= ḠL(t,−x, y) = ḠL(t, 2L− x, y) ≥ 0;
(A.55)

is uniformly bounded in space:∣∣∣∣ḠL(t, x, y)− 1

L

∣∣∣∣ ≤ 1√
πt

; (A.56)

satisfies the semi-group property:∫ L

0
ḠL(s, x, z)ḠL(t, z, y) dz = ḠL(s+ t, x, y); (A.57)

can be represented with the heat kernel:

ḠL(t, x, y) =

∞∑
n=−∞

[H(t, x− y + 2nL) +H(t, x+ y + 2nL)] ; (A.58)

and is integrable: ∫ L

0
ḠL(t, x, y) dy =

∫ ∞
−∞

H(t, y) dy = 1. (A.59)

Proof. The equalities in (A.55) follow easily from (A.54) and the properties
of the cosine function. Uniformly in x, y ∈ R, we have∣∣∣∣ḠL(t, x, y)− 1

L

∣∣∣∣ ≤ 2

L

∞∑
k=1

e−
π2k2

L2 t ≤ 2

L

∫ ∞
0

e−
π2x2

L2 t dx =
1√
πt
.

Equality (A.57) is obtained by interchanging integration with double
summation and by orthogonality of the cosine functions, i.e. for integers m
and n,

2

L

∫ L

0
cos
(π
L
mz
)

cos
(π
L
nz
)
dz = δ(n−m).

The Poisson summation formula (A.45) has been used to deduce (A.58).
It is sufficient to write the product of cosines as a sum of exponentials and
follow the same derivation as in the proof of Proposition A.7.

Non-negativity and (A.59) follow directly from (A.58).
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Let X(t) be a Brownian motion starting at x at time t = 0, with variance
2t. We can define the doubly reflected Brownian motion as φ(X(t)), where
φ : R→ [0, L] satisfies

φ(2nL) = 0, φ((2n+ 1)L) = L, for all n ∈ Z,

and piecewise linear between those points. Then

P [φ(X(t)) ∈ I] =

∫
I
ḠL(t, x, y) dy,

for any open sub-interval I of (0, L). This follows from (A.58) and [39, Ex-
ercise 8.9 of Chapter 2.8].

Inequality (A.56) can be compared to [3, Theorem 2.4], where it is proved
that for the Neumann boundary condition on any Hölder domain D, its
Green function satisfies ∣∣∣∣G(t, x, y)− 1

|D|

∣∣∣∣ ≤ Ce−ct,
for some positive constants C, c and t ≥ t0 > 0. This means that the Green
function approches the stationary distribution uniformly and exponentially.
In the present case, this bound can be achieved using the following estima-
tions. Uniformly in x, y ∈ R, we have∣∣∣∣ḠL(t, x, y)− 1

L

∣∣∣∣ ≤ 2

L

∞∑
k=1

e
−π2k2
L2 t =

2

L
e
−π2
L2 t

(
1 +

∞∑
k=2

e
−π2(k2−1)

L2 t

)
.

We can bound the series by the following integral,

∞∑
k=2

e
−π2(k2−1)

L2 t ≤
∫ ∞

1
e
−π2(x2−1)

L2 t dx ≤
∫ ∞

0
e
−π2x2
L2 t dx =

√
π

2

√
L2

π2t
.

Thus,∣∣ḠL(t, x, y)
∣∣ ≤ 2

L
e−π

2t/L2

(
1 +

L

2
√
πt

)
= e−π

2t/L2

(
2

L
+

1√
πt

)
.

Shifted rod

We are now interested in considering a rod of length 2L, centered at the
origin, with the corresponding vanishing Neumann boundary conditions, i.e.

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + f(t, x), t > 0, x ∈ (−L,L),

∂u

∂x
(t, 0) = 0 =

∂u

∂x
(t, L), t > 0,

u(0, x) = u0(x), x ∈ (−L,L).

(A.60)
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In that case, using (A.25), the solution becomes

u(t, x) =

∫ L

−L
GL(t, x, y)u0(y) dy +

∫ t

0

∫ L

−L
GL(t− s, x, y) f(s, y) dyds,

(A.61)
where

GL(t, x, y) = Ḡ2L(t, x+ L, y + L)

=
1

2L
+

1

L

∞∑
k=1

cos
( π

2L
k(x+ L)

)
cos
( π

2L
k(y + L)

)
e
−π2k2
4L2 t

=
∞∑

k=−∞
[H(t, x− y + 4kL) +H(t, x+ y + (4k + 2)L)] . (A.62)

In similar ways, as previously done for ḠL, we can show that

Proposition A.10. Fix any s, t > 0, and x, y ∈ R. The Green function GL
is symmetric in x and y, (4L, 0)- and (2L, 2L)- periodic, symmetric around
−L and L, and non-negative:

GL(t, y, x) = GL(t, x, y) = GL(t, x+ 4L, y) = GL(t, x+ 2L, y + 2L)

= GL(t,−2L− x, y) = GL(t, 2L− x, y) ≥ 0; (A.63)

is uniformly bounded in space:∣∣∣∣GL(t, x, y)− 1

2L

∣∣∣∣ ≤ 1√
πt

; (A.64)

satisfies the semi-group property:∫ L

−L
GL(s, x, z)GL(t, z, y) dz = GL(s+ t, x, y); (A.65)

and is integrable: ∫ L

−L
GL(t, x, y) dy =

∫ ∞
−∞

H(t, y) dy = 1. (A.66)

Remark. We can deduce the Green function for any interval [a, b]. It is given
by G(t, x, y) = Ḡb−a(t, x− a, y − a).

A.4.3 Mixed boundary conditions

The method of separation of variables is very useful to solve the homo-
geneous heat equation with vanishing mixed boundary conditions,

∂u
∂t (t, x) = ∂2u

∂x2
(t, x), t > 0, x ∈ (0, L)

u(t, 0) = 0 = ∂u
∂x(t, L), t > 0,

u(0, x) = u0(x), x ∈ (0, L).

(A.67)
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It leads to solutions of the form

u(t, x) =
∞∑
k=0

ak sin
(
π

2L(2k + 1)x
)
e−

π2(2k+1)2

4L2 t.

Identifying the Fourier coefficients ak as in Section A.4.1, we get that

u(t, x) =

∫ L

0
u0(y)Ḡ(t, x, y) dy,

where

Ḡ(t, x, y) =
2

L

∞∑
k=0

sin
(
π

2L(2k + 1)x
)

sin
(
π

2L(2k + 1)y
)
e−

π2(2k+1)2

4L2 t (A.68)

is the Green function associated to the problem (A.67). That is,
∂Ḡ
∂t (t, x, y) = ∂2Ḡ

∂x2
(t, x, y), t > 0, x, y ∈ (0, L),

Ḡ(t, 0, y) = 0 = ∂Ḡ
∂x (t, L, y), t > 0, y ∈ (0, L),

Ḡ(0, x, y) = δ(x− y), x, y ∈ (0, L).

The first two equalities are easily verified. The last should be understood in
the sense of distributions, i.e.∫ L

0
u0(y)Ḡ(t, x, y) dy

t→0−−→ u0(x),

for any test function u0 ∈ C∞c ((0, L)). This can be proven from the same
property satisfied by the Green function ḠD2L(t, x, y) associated to the Dirich-
let problem on the interval [0, 2L], see definition (A.37), and the following
representation (A.73). Indeed, extend u0 to the interval (0, 2L) by u0(x) = 0
for x ∈ [L, 2L). Then∫ L

0
Ḡ(t, x, y)u0(y) dy

=

∫ 2L

0
ḠD2L(t, x, y)u0(y) dy +

∫ 2L

0
ḠD2L(t, x, 2L− y)u0(y) dy

=

∫ 2L

0
ḠD2L(t, x, y)u0(y) dy +

∫ 2L

0
ḠD2L(t, x, y)u0(2L− y) dy.

The first integral on the right hand side converges to u0(x), and the second
integral to u0(2L− x) = 0, for any x ∈ (0, L) by definition of the extension.

We now describe some properties of the Green function Ḡ, which for later
use will also be denoted as ḠL. Formula (A.68) defines in fact a continuous
function on R+ × R × R. We can relate that Green function to the heat
kernel (A.38).
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Proposition A.11. Fix any s, t > 0, and x, y ∈ R. The Green function
ḠL is symmetric in x and y, (2L, 0)-antiperiodic, odd, and thus (4L, 0)- and
(2L, 2L)-periodic and symmetric around L :

ḠL(t, y, x) = ḠL(t, x, y) = −ḠL(t, x+ 2L, y) = −ḠL(t,−x, y)

= ḠL(t, x+ 4L, y) = ḠL(t, x+ 2L, y + 2L) = ḠL(t, 2L− x, y); (A.69)

is uniformly bounded in space:

∣∣ḠL(t, x, y)
∣∣ ≤ 2√

4πt
; (A.70)

satisfies the semi-group property:∫ L

0
ḠL(s, x, z)ḠL(t, z, y) dz = ḠL(s+ t, x, y); (A.71)

can be represented with the heat kernel:

ḠL(t, x, y) =

∞∑
n=−∞

(−1)n [H(t, x− y + 2nL)−H(t, x+ y + 2nL)] (A.72)

= ḠD2L(t, x, y) + ḠD2L(t, x, 2L− y); (A.73)

and is integrable:∫ L

0

∣∣ḠL(t, x, y)
∣∣ dy ≤ ∫ ∞

−∞
H(t, y) dy = 1. (A.74)

Furthermore, if x, y ∈ [0, L] then ḠL(t, x, y) ≥ 0.

Proof. Equalities in (A.69) follow easily from (A.68) and the properties of
the sine function. Uniformly in x, y ∈ R, we have

∣∣ḠL(t, x, y)
∣∣ ≤ 2

L

∞∑
k=1

e−
π2k2

4L2 t ≤ 2

L

∫ ∞
0

e
−π2x2
4L2 t dx =

2√
πt
.

Equality (A.71) is obtained by interchanging integration with double
summation and by orthogonality of the sine functions, i.e. for integers m
and n,

2

L

∫ L

0
sin
( π

2L
(2m+ 1)z

)
sin
( π

2L
(2n+ 1)z

)
dz = δ(n−m).
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For the representation with heat kernel (A.72), we apply the Poisson
summation formula (A.45) to deduce that

∞∑
n=−∞

H(t, x− y + 4nL)−
∞∑

n=−∞
H(t, x+ y + 4nL)

−
∞∑

n=−∞
H(t, x− y + (4n+ 2)L) +

∞∑
n=−∞

H(t, x+ y + (4n+ 2)L)

=
1

4L

∞∑
k=−∞

e−
π2k2t
4L2 ei

π
2L
k(x−y) − 1

4L

∞∑
k=−∞

e−
π2k2t
4L2 ei

π
2L
k(x+y)

− 1

4L

∞∑
k=−∞

e−
π2k2t
4L2 ei

π
2L
k(x−y+2L) +

1

4L

∞∑
k=−∞

e−
π2k2t
4L2 ei

π
2L
k(x+y+2L),

the four components with k = 0 cancel out, and we rewrite each summation
from k = −∞ to k = +∞ as two summations from k = 1 to k = +∞, hence
this is equal to

1

4L

∞∑
k=1

e−
π2k2t
4L2

[
ei

π
2L
k(x−y) + e−i

π
2L
k(x−y)

]
− 1

4L

∞∑
k=1

e−
π2k2t
4L2

[
ei

π
2L
k(x+y) + e−i

π
2L
k(x+y)

]
− 1

4L

∞∑
k=1

e−
π2k2t
4L2

[
ei

π
2L
k(x−y+2L) + e−i

π
2L
k(x−y+2L)

]
+

1

4L

∞∑
k=1

e−
π2k2t
4L2

[
ei

π
2L
k(x+y+2L) + e−i

π
2L
k(x+y+2L)

]
=

1

4L

∞∑
k=1

e−
π2k2t
4L2

[
ei

π
2L
k(x−y) + e−i

π
2L
k(x−y) − ei

π
2L
k(x+y) − e−i

π
2L
k(x+y)

]
− 1

4L

∞∑
k=1

e−
π2k2t
4L2

[
ei

π
2L
k(x−y+2L) + e−i

π
2L
k(x−y+2L) − ei

π
2L
k(x+y+2L) − e−i

π
2L
k(x+y+2L)

]
,

recall that eiθ+e−iθ = 2 cos(θ), and that cos(b)−cos(a) = 2 sin
(
a+b

2

)
sin
(
a−b

2

)
,

hence this is equal to

1

L

∞∑
k=1

e−
π2k2t
4L2 sin

(
π

2Lkx
)

sin
(
π

2Lky
)

− 1

L

∞∑
k=1

e−
π2k2t
4L2 sin

(
π

2Lk(x+ 2L)
)

sin
(
π

2Lky
)
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=
1

L

∞∑
k=1

e−
π2k2t
4L2

[
sin
(
π

2Lkx
)
− sin

(
π

2Lk(x+ 2L)
)]

sin
(
π

2Lky
)

=
2

L

∞∑
k=0

sin
(
π

2L(2k + 1)x
)

sin
(
π

2L(2k + 1)y
)
e−

π2(2k+1)2

4L2 t,

since

sin(θ)− sin(θ + kπ) =

{
0, if k is even,
2 sin(θ), if k is odd.

Prove that ḠL(t, x, y) = ḠD2L(t, x, y)− ḠD2L(t, x+ 2L, y) using the defini-
tion (A.37), and the fact that for θ = πk

2L ,

sin(θ)− sin(θ + kπ) =

{
0, if k is even,
2 sin(θ), if k is odd.

Then use the representation (A.43) to deduce the present representation (A.72).
The Inequality (A.74) follows from (A.72) exactly as (A.44) followed

from (A.43),∫ L

0

∣∣ḠL(t, x, y)
∣∣ dy ≤ ∞∑

k=−∞

∫ L

0
[H(t, x− y + 2kL) +H(t, x+ y + 2kL)] dy

=

∞∑
k=−∞

[∫ x+2kL

x−L+2kL
H(t, y) dy +

∫ x+L+2kL

x+2kL
H(t, y) dy

]
=

∫ ∞
−∞

H(t, y) dy = 1.

Non-negativity of ḠL(t, x, y) for x, y ∈ [0, L] follows from non-negativity
of ḠD2L(t, u, v) for u, v ∈ [0, 2L], see Proposition A.7. Indeed,

ḠL(t, x, y) =
∞∑

n=−∞
(−1)n [H(t, x− y + 2nL)−H(t, x+ y + 2nL)]

=

∞∑
n=−∞

[H(t, x− y + 4nL)−H(t, x+ y + 4nL)]

−
∞∑

n=−∞
[H(t, x− y + (4n+ 2)L)−H(t, x+ y + (4n+ 2)L)]

= ḠD2L(t, x, y)− ḠD2L(t, x+ 2L, y)

= ḠD2L(t, x, y)− ḠD2L(t, x, y − 2L)

= ḠD2L(t, x, y) + ḠD2L(t, x, 2L− y) ≥ 0,

since x, y, 2L− y ∈ [0, 2L].
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We will define a Brownian motion φ(X(Tt)) that is killed at the origin
(Dirichlet boundary condition) and reflected at the boundary point L (Neu-
mann boundary condition), and show that its density law is given by ḠL in
the open interval (0, L). First, let X(t) be a Brownian motion starting at x,
with variance 2t. Then define the Brownian motion that is reflected at the
boundary point L as φ(X(t)), where φ : R→ (−∞, L] satisfies{

φ(x) = x, x ≤ L,
φ(x) = 2L− x, x ≥ L.

Finally, let

T = inf{t > 0 : φ(X(t)) = 0} = inf{t > 0 : X(t) /∈ (0, 2L)},

be the first time the reflected Brownian motion φ(X(t)) hits 0, or equivalently
the first time the Brownian motion X(t) leaves the domain (0, 2L), and
Tt = min(t, T ).

We now find the density law of φ(X(Tt)) in the open interval (0, L).
Recall that the density law of X(Tt) in the open interval (0, 2L) was already
found to be the Green function ḠD2L associated to the Dirichlet problem on
(0, 2L). Thus

P [φ(X(Tt)) ∈ (a, b)] = P [X(Tt) ∈ (a, b)] + P [X(Tt) ∈ (2L− b, 2L− a)]

=

∫ b

a
ḠD2L(t, x, y) dy +

∫ 2L−a

2L−b
ḠD2L(t, x, y) dy

=

∫ b

a
ḠD2L(t, x, y) + ḠD2L(t, x, 2L− y) dy

=

∫ b

a
ḠL(t, x, y) dy,

for any interval (a, b) ⊆ (0, L).

Shifted rod

We are now interested in considering a rod of length 2L, centered at the
origin, with the corresponding vanishing mixed boundary conditions, i.e.

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + f(t, x), t > 0, x ∈ (−L,L),

u(t, 0) = 0 =
∂u

∂x
(t, L), t > 0,

u(0, x) = u0(x), x ∈ (−L,L).

(A.75)

In that case, using (A.25), the solution becomes

u(t, x) =

∫ L

−L
GL(t, x, y)u0(y) dy +

∫ t

0

∫ L

−L
GL(t− s, x, y) f(s, y) dyds,

(A.76)
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where

GL(t, x, y) = Ḡ2L(t, x+ L, y + L)

=
1

L

∞∑
k=0

sin
(
π

2L(2k + 1)(x+ L)
)

sin
(
π

2L(2k + 1)(y + L)
)
e−

π2(2k+1)2

16L2 t

=
∞∑

n=−∞
(−1)n [H(t, x− y + 4nL)−H(t, x+ y + (4n+ 2)L)] . (A.77)

In similar ways, as previously done for ḠL, we can show that

Proposition A.12. Fix any s, t > 0, and x, y ∈ R. The Green function GL
is symmetric in x and y, (4L, 0)-antiperiodic, (8L, 0)- and (4L, 4L)-periodic,
antisymmetric around −L, and symmetric around L :

GL(t, y, x) = GL(t, x, y) = −GL(t, x+ 4L, y) = GL(t, x+ 8L, y)

= GL(t, x+ 4L, y + 4L) = −GL(t,−2L− x, y) = GL(t, 2L− x, y); (A.78)

is uniformly bounded in space:

|GL(t, x, y)| ≤ 2√
4πt

; (A.79)

satisfies the semi-group property:∫ L

0
GL(s, x, z)GL(t, z, y) dz = GL(s+ t, x, y); (A.80)

can be represented with the Dirichlet Green function:

GL(t, x, y) = GD2L(t, x− L, y − L) +GD2L(t, x− L,L− y); (A.81)

and is integrable:∫ L

0
|GL(t, x, y)| dy ≤

∫ ∞
−∞

H(t, y) dy = 1. (A.82)

Furthermore, if x, y ∈ [−L,L] then GL(t, x, y) ≥ 0.

Remark. We can deduce the Green function for any interval [a, b]. It is given
by G(t, x, y) = Ḡb−a(t, x− a, y − a).
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Some general results

B.1 Minkowski, Burkholder, Fubini

The next two inequalities will be used to evaluate the Lp(Ω) norm of the
stochastic heat solution.

Fact 1 (Minkowski’s inequality for integrals). Let (X1, µ1) and (X2, µ2) be
two (σ-finite) measure spaces, and 1 ≤ p ≤ ∞. If f(x1, x2) is measurable on
X1 ×X2 and non-negative, then∥∥∥∥∫

X2

f(x1, x2) dµ2

∥∥∥∥
Lp(X1)

≤
∫
X2

‖f(x1, x2)‖Lp(X1) dµ2. (B.1)

Some indications on the proof can be found in [53, Exercise 15 of Chap-
ter 1]. We will use this inequality in the special case where (X1, µ1) = (Ω,P),
and where X2 is some (measurable) subset of the Euclidean space R or Rd
and µ2 is the Lebesgue measure. Another application is the following:∥∥∥∥∫

X2

f(x2)K(x1, x2) dµ2

∥∥∥∥
Lp(X1)

≤
∫
X2

|f(x2)| ‖K(x1, x2)‖Lp(X1) dµ2

≤ ‖f‖L1(X2) ‖K‖Lp,∞(X1,X2) ,

where

‖K‖Lp,∞(X1,X2) = sup
x2∈X2

(∫
X1

|K(x1, x2)|p dµ1

)1/p

.

In the particular case of convolution, (X1, µ1) = (X2, µ2) = (Rd, dx), we get

‖f ∗ g‖Lp(Rd) ≤ ‖f‖Lp(Rd) ‖g‖L1(Rd) . (B.2)

Fact 2 (Burkholder’s inequality). Let {Mt}t≥0 be a continuous (local) mar-
tingale, with initial condition M0 = 0 and with quadratic variation 〈M〉t at
time t. There exist universal constants kp, only depending on p > 0, such
that

‖Mt‖2Lp(Ω) ≤ k
2
p ‖〈M〉t‖Lp/2(Ω) . (B.3)
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We will only need the cases p ≥ 2. In those cases, Itô’s formula can be
applied and the proof is almost done. More details can be found in [13,
Theorem 5.27].

Fact 3 (Fubini’s theorem). Let P the set of predicable functions in Ω×R+,
and let (G,G, µ) be a finite measure space. If a function f : Ω×R+×Rd×G
is P ⊗ B(Rd)⊗ G-measurable and satisfies

E

[∫
[0,T ]

∫
Rd

∫
G
|f(ω, s, x, z)|2 dsdxµ(dz)

]
<∞,

then almost surely,∫
G

(∫ t

0

∫
Rd
f(ω, s, x, z)W (dsdx)

)
µ(dz)

=

∫ t

0

∫
Rd

(∫
G
f(ω, s, x, z)µ(dz)

)
W (dsdx). (B.4)

This is [55, Theorem 2.6].

B.2 Special functions

B.2.1 Properties of Gamma function

Let us recall the definition of the Gamma function and its derivatives:

Γ(x) =

∫ ∞
0

e−ttx−1 dt, Γ(k)(x) =

∫ ∞
0

e−ttx−1 log(t)k dt.

Lemma B.1 (Beta integrals). For any t > r ≥ 0, and x, y > 0,∫ t

r
(t− s)x−1(s− r)y−1 ds = (t− r)x+y−1 Γ(x)Γ(y)

Γ(x+ y)
. (B.5)

In the special case where r = 0 and t = 1, the left hand side is denoted by
B(x, y) and is called the Beta distribution.

Proof. We only prove the case r = 0 and t = 1 since the general result then
follows. Using the change of variable s = pq and t = p(1− q), we get

Γ(x)Γ(y) =

∫ ∞
0

e−ssx−1 ds

∫ ∞
0

e−tty−1 dt

=

∫ ∞
0

∫ 1

0
e−pqpx−1qx−1e−p(1−q)py−1(1− q)y−1p dpdq

=

∫ ∞
0

e−ppx+y−1 dp

∫ 1

0
qx−1(1− q)y−1 dq = Γ(x+ y)B(x, y).
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We now recall some properties of the Gamma function:

1. It takes the special values Γ(1) = 1 and Γ(1/2) =
√
π. The first is

trivial, and the second comes from the change of variable s =
√
t and

the Gauss integral.

2. For all x > 0, Γ(x + 1) = xΓ(x). Hence, Γ(2) = 1 and Γ(3/2) =
√
π

2 .
This comes from an integration by parts.

3. It is log-convex, i.e., for x > 0, x 7→ log(Γ(x)) is convex. Indeed,
the second derivative of log(Γ(x)) is non-negative as can be seen by
applying the Cauchy-Schwarz inequality to the measure e−ttx−1dt:

[log(Γ(x))]′′ =
Γ′′(x)Γ(x)− Γ′(x)2

Γ(x)2
≥ 0.

4. For any α > 0, the function x 7→ Γ(x + α)/Γ(x) in increasing on R∗+.
This fact follows directly from log-convexity, but can also be proved
using the Beta distribution. Indeed

Γ(x+ α)/Γ(x) = Γ(α)/B(x, α),

and x 7→ B(x, α) is decreasing on R∗+. In particular for α = 1/2 and
x = y + 1, we have Γ(y + 1) ≤ (2/

√
π)Γ(y + 3/2) for all y ≥ 0.

5. Since Γ is a strictly convex function on R∗+ (because Γ′′(x) > 0 for
all x > 0) and Γ(1) = Γ(2), it admits a unique minimum at some
point γ ∈ (1, 2). Furthermore, Gamma is strictly decreasing before γ
and strictly increasing after γ. It can be shown that γ ≈ 1.4616 and
Γ(γ) ≈ 0.8856, which is very close to Γ(3/2) =

√
π

2 ≈ 0.8862.

We may use the following result found in Gelfand, book 1, page 53.∫ ∞
0

tx
(
e−at − e−bt

)
dt =

(
1

ax+1
− 1

bx+1

)
Γ(x+ 1).

That integral is defined for <(x) > −2.

B.2.2 Bounds on Mittag-Leffler functions

Recall the definition of the Mittag-Leffler functions: for α, β > 0,

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α, β > 0.

In the text, we were interested in the special case where α = β = 1/2. We
bound E1/2,1/2 by polynomials and the exponential function:
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Lemma B.2. For z ≥ 0,

1√
π
− 1 + (z + 1) exp

(
z2
)
≤ E1/2,1/2(z)

≤ 1√
π

+

(
2

π
− 1

)
z2 + (z2 + z) exp

(
z2
)
.

(B.6)

In fact, it is shown in [45, equation (1.147)] that

E1/2,1/2(z) ≤ c1 + c2(z + 1) exp(z2),

for some constants c1 and c2.

Proof. We separate the summation over the even and odd integers,

E1/2,1/2(z) =
∞∑
k=0

z2k

Γ(k + 1/2)
+ z

∞∑
k=0

z2k

Γ(k + 1)
.

The second series is equal to exp
(
z2
)
. Recalling that Γ(1/2) =

√
π, and

Γ(x) < Γ(y) if 3/2 ≤ x ≤ y, the first series can be decomposed as

∞∑
k=0

z2k

Γ(k + 1/2)
=

1√
π

+
∞∑
k=1

z2k

Γ(k + 1/2)

≥ 1√
π

+

∞∑
k=1

z2k

Γ(k + 1)

=
1√
π
− 1 +

∞∑
k=0

z2k

k!
=

1√
π
− 1 + exp

(
z2
)
,

or as
∞∑
k=0

z2k

Γ(k + 1/2)
=

1√
π

+
z2

Γ(3/2)
+
∞∑
k=2

z2k

Γ(k + 1/2)

≤ 1√
π

+
2√
π
z2 + z2

∞∑
k=1

z2k

Γ(k + 1)

=
1√
π

+
2√
π
z2 − z2 + z2

∞∑
k=0

z2k

k!

=
1√
π

+

(
2√
π
− 1

)
z2 + z2 exp

(
z2
)
.

We used the fact that Γ(3/2) =
√
π

2 . To improve the inequality, we should
use a generalization of [45, equation (1.60)].
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B.2.3 Bounds on Theta function

Recall the definition of the theta function, for a > 0,

θ(a) =
∞∑
k=0

e−ak
2
.

We can bound it as follows:
√
π

2
√
a

=

∫ ∞
0

e−ax
2
dx ≤ θ(a) ≤ 1 +

∫ ∞
0

e−ax
2
dx = 1 +

√
π

2
√
a
, (B.7)

1 ≤ θ(a) ≤
∞∑
k=0

e−ak =
1

1− e−a
. (B.8)

The behaviour of the theta function is easily deduced. When a→ 0, we see
that the bound (B.7) goes as 1/

√
a, whereas the bound (B.8) goes as 1/a.

When a → ∞, the bound (B.8) is much better. Many definitions of the
theta function exist in the literature, for example ϑ(s) =

∑∞
n=−∞ e

−πn2s, for
s > 0. Some important properties of ϑ can be found in [51, Section 3.1 of
Chapter 5].

B.3 Generalization of Convolution

We define, for some function φ : R+ × R+ → C,

(f ? g)(t) =

∫ t

0
f(t− s)φ(t− s, s)g(s) ds

=

∫ t

0
f(s)φ(s, t− s)g(t− s) ds.

Lemma B.3. Applied to real-valued functions, the ? operator is associative
if, for all r, s, t ∈ R,

φ(s, t− s)φ(t− s− r, r) = φ(s, t− s− r)φ(t− r, r). (B.9)

This operator is hermitian if φ(r, s) = φ(s, r). In particular, it is both asso-
ciative and hermitian when φ is some power of the harmonic mean, i.e.

φ(r, s) =

(
rs

r + s

)β
=

(
1

1
r + 1

s

)β
,

for any β ∈ R.

Equation (B.9) could be closely related to reversibility?
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Proof. Suppose that φ(r, s) = φ(s, r), then

(g ? f)(t) =

∫ t

0
g(s)φ(s, t− s)f(t− s) ds =

∫ t

0
g(s)φ(t− s, s) f(t− s) ds,

and thus (g ? f)(t) = (f ? g)(t). We proceed with associativity.

[f ? (g ? h)] (t) =

∫ t

0
ds f(s)φ(s, t− s)(g ? h)(t− s)

=

∫ t

0
ds f(s)φ(s, t− s)

∫ t−s

0
dr g(t− s− r)φ(t− s− r, r)h(r).

[(f ? g) ? h] (t) =

∫ t

0
dr (f ? g)(t− r)φ(t− r, r)h(r)

=

∫ t

0
dr

∫ t−r

0
ds f(s)φ(s, t− r − s)g(t− r − s)φ(t− r, r)h(r)

=

∫ t

0
ds

∫ t−s

0
dr f(s)φ(s, t− r − s)g(t− r − s)φ(t− r, r)h(r),

which concludes the proof when h is real.

Application to white noise when φ(r, s) =
(
rs
r+s

)−1/2
. And to Riesz

kernel.

Corollary B.4. For q(t) ≡ 1, and φ(r, s) =
(
r+s
rs

)α
, for α < 1, we define

q?1 = q, and
q?(n+1) = q ? q?n.

We can explicitly compute

q?n(t) = t(n−1)(1−α) Γ(1− α)n

Γ (n(1− α))
.

Proof. We proceed by induction. By definition, induction hypothesis, and
the change of variable r = s/t, we get

q?(n+1)(t) =

∫ t

0
q(t− s)φ(t− s, s)q?n(s) ds

= tα
∫ t

0
(t− s)−αs−αs(n−1)(1−α) Γ(1− α)n

Γ(n(1− α))
ds

= tα+1 Γ(1− α)n

Γ(n(1− α))

∫ 1

0
(t− tr)−α(tr)−α(tr)(n−1)(1−α) dr

= tn(1−α) Γ(1− α)n

Γ(n(1− α))

∫ 1

0
(1− r)(1−α)−1rn(1−α)−1 dr,
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since (α + 1) − α − α + (n − 1)(α − 1) = n(α − 1). Using Beta integrals,
Lemma B.1, we can rewrite the last integral as follows∫ 1

0
(1− r)(1−α)−1rn(1−α)−1 dr =

Γ(1− α)Γ(n(1− α))

Γ((n+ 1)(1− α))
,

which conclude the proof.
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Sobolev spaces

Let us recall the Sobolev spaces Hs. For any s ∈ R,

Hs =

{
f ∈ S ′(Rd) :

∫
Rd

(
1 + |ξ|2

)s
|F(f)(ξ)|2 dξ <∞

}
is a Hilbert space with the following inner product: for any f, g ∈ Hs,

〈f, g〉Hs =

∫
Rd

(
1 + |ξ|2

)s
F(f)(ξ)F(g)(ξ) dξ.

Another definition of the Sobolev spaces is in term of the weak derivatives.
In the case s = n ∈ N, we have the equivalent definition [35, Remark 3.14]:

Hn = Wn
2 :=

{
f ∈ L2(Rd) : ∀β ∈ Nd such that |β| ≤ n, Dβf ∈ L2(Rd)

}
,

where Dβf is a derivative in the sense of distributions. It has the equivalent
norm

‖f‖2Wn
2

=
∑
|β|≤n

∥∥∥Dβf
∥∥∥2

L2(Rd)
.

In the case s = n + σ, for n ∈ N and 0 < σ < 1, we have the equivalent
definition [35, Theorem 3.24]:

Hs = W s
2 :=

{
f ∈Wn

2 : ‖f‖W s
2
<∞

}
,

where

‖f‖2W s
2

= ‖f‖2Wn
2

+
∑
|α|=n

∫
h≤1

dh

|h|d+2σ

∫
Rd
dx |Dαf(x+ h)−Dαf(x)|2 .

Therefore, the index s in the definition of Hs accounts for the regularity of
the distribution. In particular, we have the following chain of inclusions:

S ⊆ Hs ⊆ Hr ⊆ L2(Rd) ⊆ H−r ⊆ H−s ⊆ S ′,

for any two real numbers 0 ≤ r ≤ s. It can be shown that H−s is in fact the
dual space of Hs.

191
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C.1 Local versions of Sobolev spaces

We introduce the local version of Sobolev spaces. For any s ∈ R,

Hs
loc =

{
f ∈ S ′(Rd) : ∀φ ∈ C∞c (Rd), φ · f ∈ Hs

}
.

Lemma C.1. For any v, w ∈ Rd,(
1 + |v + w|2

)
≤ 2

(
1 + |v|2

)(
1 + |w|2

)
. (C.1)

In particular, we get
(

1 + |v|2
)−1
≤ 2

(
1 + |v + w|2

)−1 (
1 + |w|2

)
.

Lemma C.2. For any s ∈ R, the Sobolev space Hs(Rd) is contained into its
local version Hs

loc(Rd).

Proof. Let us fix f ∈ Hs(Rd). We begin with the following claim: for any
φ ∈ C∞0 , the distribution F(φ · f) is given by the function Ff ∗ Fφ. By
definition, for any ψ ∈ S,

〈F(φ · f), ψ〉 = 〈φ · f,Fψ〉 = 〈f, φ · Fψ〉 =
〈
Ff,F−1(φ · Fψ)

〉
=
〈
Ff, (F−1φ) ∗ ψ

〉
=

∫
Rd
Ff(ξ)

(
(F−1φ) ∗ ψ

)
(ξ) dξ

=

∫
Rd
dξFf(ξ)

∫
Rd
dyF−1φ(ξ − y)ψ(y)

=

∫
Rd
dy ψ(y)

∫
Rd
dξFf(ξ)F−1φ(ξ − y)︸ ︷︷ ︸

=Fφ(y−ξ)

=

∫
Rd
ψ(y) (Ff ∗ Fφ) (y) dy,

where Fubini’s theorem has been used in the next-to-last equality. Before
checking Fubini’s hypothesis, we observe that the function Ff ∗ Fφ is well-
defined. Indeed,∫

Rd
|Ff(ξ)| |Fφ(y − ξ)| dξ

=

∫
Rd
|Ff(ξ)|

(
1 + |ξ|2

)s/2
|Fφ(y − ξ)|

(
1 + |ξ|2

)−s/2
dξ

≤ ‖f‖Hs(Rd)

(∫
Rd
|Fφ(y − ξ)|2

(
1 + |ξ|2

)−s
dξ

)1/2

.

The last integral is finite for all s ∈ R since Fφ ∈ S(Rd). In the case s ≤ 0,
we can apply inequality (C.1) with v = −y and w = y − ξ, so that(

1 + |ξ|2
)−s
≤ 2−s

(
1 + |y|2

)−s (
1 + |y − ξ|2

)−s
.



C.1. Local versions of Sobolev spaces 193

In the case s ≥ 0, we apply inequality (C.1) with v = ξ and w = y − ξ, so
that (

1 + |ξ|2
)−s
≤ 2s

(
1 + |y|2

)−s (
1 + |y − ξ|2

)s
.

In both cases, we get

(∫
Rd
|Fφ(y − ξ)|2

(
1 + |ξ|2

)−s
dξ

)1/2

≤ 2|s|/2
(

1 + |y|2
)−s/2(∫

Rd
|Fφ(y − ξ)|2

(
1 + |y − ξ|2

)|s|
dξ

)1/2

= 2|s|/2 ‖φ‖H|s|(Rd)

(
1 + |y|2

)−s/2
,

and therefore,

∫
Rd
|Ff(ξ)| |Fφ(y − ξ)| dξ ≤ 2|s|/2 ‖f‖Hs(Rd) ‖φ‖H|s|(Rd)

(
1 + |y|2

)−s/2
.

(C.2)
Upon replacing v = ξ and w = −y in the second case s ≥ 0, we can derive
the similar bound:

∫
Rd
|Ff(ξ)| |Fφ(y − ξ)| dξ ≤ 2|s|/2 ‖f‖Hs(Rd) ‖φ‖H−s(Rd)

(
1 + |y|2

)|s|/2
.

(C.3)
We are now able to prove Fubini’s hypothesis we needed above. Indeed,

∫
Rd
dy |ψ(y)|

∫
Rd
dξ |Ff(ξ)| |Fφ(y − ξ)|

≤ 2|s|/2 ‖f‖Hs(Rd) ‖φ‖H−s(Rd)

∫
Rd
|ψ(y)|

(
1 + |y|2

)|s|/2
dy <∞,

since ψ ∈ S.
We are left to show that the distribution φ · f ∈ Hs(Rd). We will apply

Minkowski’s inequality for integrals (B.1) to the function

(ξ, y) 7→
(

1 + |ξ|2
)s/2
Fφ(y)Ff(ξ − y),

as well as inequality (C.1) to the following two cases: if s ≥ 0 we set v = y
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and w = ξ − y, and if s < 0 we set v = ξ and w = −y. Hence,

‖φ · f‖Hs(Rd) =

(∫
Rd

(
1 + |ξ|2

)s
|(Ff ∗ Fφ)(ξ)|2 dξ

)1/2

=

(∫
Rd
dξ
(

1 + |ξ|2
)s ∣∣∣∣∫

Rd
dyFφ(y)Ff(ξ − y)

∣∣∣∣2
)1/2

≤
∫
Rd
dy |Fφ(y)|

(∫
Rd
dξ
(

1 + |ξ|2
)s
|Ff(ξ − y)|2

)1/2

≤ 2|s|/2
∫
Rd
dy
(

1 + |y|2
)|s|/2

|Fφ(y)|

×
(∫

Rd
dξ
(

1 + |ξ − y|2
)s
|Ff(ξ − y)|2

)1/2

= 2|s|/2 ‖f‖Hs(Rd)

∫
Rd

(
1 + |y|2

)|s|/2
|Fφ(y)| dy <∞,

which concludes the proof.

Notice that the same proof applies if we replace the hypothesis φ ∈ C∞0
by φ ∈ S.

We have the trivial inclusions for compactly supported functions.

Lemma C.3. Let n ∈ N and 0 < σ < 1. We have Cn0 ⊆ Hn, and Cn+σ
0 ⊆

Hn+σ−ε, for all ε > 0.

Proof. For a function f ∈ Cn0 , and |β| ≤ n, the derivative Dβf in the
sense of distribution is given by its usual derivative, which is continuous and
compactly supported, hence in L2(Rd). Hence Cn0 ⊆Wn

2 = Hn.
For a function f ∈ Cn+σ

0 , we evaluate its Wn+σ−ε
2 norm. We already

know that ‖f‖Wn
2
< ∞, by the previous argument, so we are left with the

estimates of the form∫
h≤1

dh

|h|d+2σ−2ε

∫
Rd
dx |Dαf(x+ h)−Dαf(x)|2

≤
∫
h≤1

dh

|h|d+2σ−2ε

∫
supp(f)+B(0,1)

dxC2 |h|2σ

≤ c
∫
h≤1

dh

|h|d−2ε
<∞,

for all multi-index α ∈ Nd with |α| = n.

For more information about Sobolev spaces, and a proof of the Sobolev
embedding, see [35, Section 3.2 and 3.3].
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Uniqueness of solution to the
heat equation

The weak formulation (3.3) to the heat equation admits a unique solution
in the space of C0([0,∞),S ′(Rd)). Indeed, if u, v are two such solutions, then
the difference w := u− v is a solution to

〈w(t), ψ〉 =

∫ t

0
〈w(s),∆ψ〉 ds. (D.1)

Observe that this is the weak formulation to the following initial value heat
equation: {

∂w
∂t (t, x) = ∆w(t, x) t > 0, x ∈ Rd,
w(0, x) = 0, x ∈ Rd.

(D.2)

Theorem D.1. The unique solution to (D.1) in the space C0([0,∞),S ′(Rd))
is the zero distribution, i.e. w(t) = 0 ∈ S ′(Rd), for all t ≥ 0.

D.1 Calculus in S ′(Rd)

Before proving this result, we need to clarify whether the weak or the
strong topology is used in S ′(Rd). Let Tn be a sequence in S ′(Rd). In the weak
topology, we say that this sequence converges to T ∈ S ′(Rd), if 〈Tn, φ〉 →
〈T, φ〉 , for all φ ∈ S(Rd). In the strong topology, we further require that the
convergence holds uniformly on any bounded set in S(Rd). A useful result
about weak and strong topologies is the following:

Lemma D.2. Any continuous map w ∈ C0([0,∞),S ′(Rd)) in the weak topol-
ogy is also continuous in the strong topology.

This is Theorem XIII of Chapter III together with Section 4 in Chap-
ter VII of [50]. It is also a consequence of the fact that the class of bounded
sets in the weak topology coincide with the class of bounded sets in the
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strong topology, see Section 5.5 in Chapter I of [27]. It is therefore sufficient
to consider convergence in the weak topology.

Lemma D.3. Suppose w ∈ C0([0,∞),S ′(Rd)) and satisfies (D.1), then w ∈
C∞([0,∞),S ′(Rd)).

Proof. We first show that t 7→ w(t) is (weakly) differentiable. For h > 0,

〈w(t+ h), ψ〉 − 〈w(t), ψ〉
h

=
1

h

∫ t+h

t
〈w(s),∆ψ〉 ds −→ 〈w(t),∆ψ〉 ,

as h→ 0, for any ψ ∈ S(Rd), since each map s 7→ 〈w(s),∆ψ〉 is continuous
by assumption. A similar argument can be applied for h < 0. Thus,〈

w′(t), ψ
〉

= 〈w(t),∆ψ〉 . (D.3)

The fact that t 7→ w′(t) is continuous follows at once from continuity of
t 7→ w(t). Proceeding inductively, we conclude that〈

w(n)(t), ψ
〉

= 〈w(t),∆nψ〉 ,

and again, continuity of w(n) follows from that of w.

Proof of Theorem D.1. From equation (D.1), it is clear that w(0) is the zero
distribution. Fix T > 0 and ψ ∈ S(Rd).We want to show that 〈w(T ), ψ〉 = 0.
We consider the dual problem{

∂U
∂t (t, x) = −∆U(t, x) t ∈ (0, T ), x ∈ Rd,
U(T, x) = ψ(x), x ∈ Rd,

(D.4)

for which U(t) := Γ(T − t) ∗ ψ is a solution, and belongs to S(Rd) for all
t ∈ [0, T ]. To conclude the proof, it is sufficient to show that the function
H : [0, T ] → R defined by H(t) = 〈w(t), U(t)〉 is continuous on [0, T ] and
differentiable on (0, T ) with H ′(t) = 0. In that case,

〈w(T ), ψ〉 = 〈w(T ), U(T )〉 = 〈w(0), U(0)〉 = 0.

We are left to analyse the function H. Assuming that t 7→ U(t) is differ-
entiable in S(Rd), we could apply Lemma D.4 and deduce that

H ′(t) =
〈
w′(t), U(t)

〉
+
〈
w(t), U ′(t)

〉
= 〈w(t),∆U(t)〉+ 〈w(t),−∆U(t)〉 = 0,

thanks to equations (D.3) and (D.4).
In turn, we are left to analyse the regularity of the function t 7→ U(t) =

Γ(T−t)∗ψ. In Proposition D.10, we show that U ∈ C∞([0, T ],S(Rd)), which
concludes the present proof.
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This proof was strongly inspired by Chapter II of [26].

Lemma D.4. Suppose w : [0, T ] → S ′(Rd) is continuous and (weakly) dif-
ferentiable on (0, T ), and U : [0, T ]→ S(Rd) is continuous and differentiable
on (0, T ). Then, the function H : [0, T ] → R defined by H(t) = 〈w(t), U(t)〉
is continuous and differentiable on (0, T ), with

H ′(t) =
〈
w′(t), U(t)

〉
+
〈
w(t), U ′(t)

〉
.

Proof. This is precisely Appendix 2 in Chapter II of [27].

D.2 Calculus in S(Rd)

In order to complete the proof of the uniqueness theorem, we need to
introduce the class of Ck([0,∞),S(Rd)) functions. They are k-times contin-
uously differentiable functions taking values in the Schwartz space S(Rd).
The latter space is endowed with its usual topology generated by the family
of norms {‖·‖N}N∈N : for ψ ∈ S(Rd), and any two multi-indices α, β ∈ Nd,

‖ψ‖α,β = sup
x∈Rd

∣∣∣∣∣xα∂|β|ψ∂xβ
(x)

∣∣∣∣∣ , and ‖ψ‖N = sup
|α|,|β|≤N

‖ψ‖α,β .

In order to prove any continuity (or differentiability) property of some func-
tion f : (a, b) → S(Rd), it will be sufficient (and it is in fact equivalent) to
prove continuity (or differentiability) of

f : ((a, b), |·|)→
(
S(Rd), ‖·‖α,β

)
,

as a map between normed vector spaces, for all α, β ∈ Nd. For example, to
say that f is differentiable at some point c ∈ (a, b), it means that there exists
some Schwartz function g ∈ S(Rd) such that for all α, β ∈ Nd∥∥∥∥f(c+ h)− f(c)

h
− g
∥∥∥∥
α,β

−→ 0, as h→ 0.

As usual, if such a function g exists, it is written as f ′(c).
Using general differential calculus results in normed vector spaces (non-

necessarily Banach spaces), we can deduce the following two lemmas.

Lemma D.5. Suppose φ : (a, b) → (r, s) is differentiable at some point
c ∈ (a, b), and f : (r, s) → S(Rd) is differentiable at the point φ(c). Then,
their composition f ◦ φ is differentiable at the point c, with

(f ◦ φ)′(c) = f ′(φ(c)) · φ′(c).

Moreover, if both φ and f are assumed to be of class Ck, then so is their
composition.
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Proof. This is a copy of the arguments in Theorem 2.2.1 and in Theorem 5.4.2
of [4], applied to each norm ‖·‖α,β .

Lemma D.6. Suppose f, g : (a, b)→ S(Rd) are differentiable at some point
c ∈ (a, b). Then, their product f · g is differentiable at the point c, with
(f · g)′(c) = f ′(c) · g(c) + f(c) · g′(c). Moreover, if both f and g are assumed
to be of class Ck, then so is their product.

Proof. Let us remark that S(Rd) is an algebra with continuous multiplica-
tion. Indeed, for all α, β ∈ Nd,

‖f · g‖α,β ≤ cα,β ‖f‖α,β · ‖g‖α,β .

The rest is a copy of the arguments in Proposition 2.5.2 of [4], and induction
on the order of differentiability.

We want to consider the function t 7→ Γ(t)∗ψ, for any ψ ∈ S(Rd). Under
the Fourier transformation, convolution becomes multiplication and we are
left to analyse FΓ(t) · Fψ.

Lemma D.7. A function f is in Ck([0,∞),S(Rd)) if and only if its Fourier
transform (in the space variables) Ff is in ∈ Ck([0,∞),S(Rd)).

Proof. This is an easy consequence of the inequality

‖Ff‖N ≤ cN ‖f‖N+d+1 ,

which can be found in Section 1.5 within Chapter 3 of [53].

The next two results will show that first t 7→ FΓ(t) is C∞((0,∞),S(Rd)),
and second that t 7→ FΓ(t) · Fψ extends to C∞([0,∞),S(Rd)).

Let f ∈ S(Rd), and define g : (0,∞) × Rd by g(t, x) = t−df(x/t). To
simplify notations, we set F (y) := Ff(y) and G(t, y) := (Fg(t))(y). Thus,

G(t, y) =

∫
Rd
e−2πiy·xg(t, x) dx = t−d

∫
Rd
e−2πiy·xf(x/t) dx

=

∫
Rd
e−2πi(ty)·xf(x) dx = F (ty).

Observe that the function G can be continuously extended at t = 0 by
G(0, y) = F (0) =

∫
Rd f(x) dx. Therefore, the function G(0, ·) is a constant

function, and hence may not be in S(Rd).

Lemma D.8. The map t 7→ G(t, ·) is C∞((0,∞),S(Rd)).

Proof. The fact that F is a Schwartz function implies at once that G ∈
C∞([0,∞) × Rd). We prove differentiability in S(Rd) of any order. Fix
s > 0 and h sufficiently small as well as any integer k ∈ N and multi-indices
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α, β ∈ Nd. Then, by the mean value theorem, for all y ∈ Rd there exists
θ = θ(y) such that |θ| ≤ |h| and

yα∂βy

(
∂kG
∂tk

(s+ h, y)− ∂kG
∂tk

(s, y)

h
− ∂k+1G

∂tk+1
(s, y)

)
= yα

(
∂k+2
t ∂βyG

)
(s+ θ(y), y) · h.

We can explicit the partial derivative(
∂k+2
t ∂βyG

)
(s, y) = ∂k+2

t

(
t|β|(∂βyF )(ty)

)
(s)

=
k+2∑
l=0

(
k + 2

l

)
∂lt

(
t|β|
)

(s)∂k+2−l
t

(
(∂βyF )(ty)

)
(s),

with
∂k+2−l
t

(
(∂βyF )(ty)

)
(s) =

∑
|γ|=k+2−l

yγ
(
∂β+γ
y F

)
(sy).

We easily bound∣∣∣∂lt (t|β|) (s+ θ(y))
∣∣∣ ≤ cl,β(s+ |h|)max(|β|−l,0),

and use the trick of multiplying and dividing by (s+ θ(y))|α+γ| to get∣∣∣yα+γ
(
∂β+γ
y F

)
((s+ θ(y))y)

∣∣∣
≤ 1

(s− |h|)|α+γ|

∣∣∣((s+ θ(y))y)α+γ
(
∂β+γ
y F

)
((s+ θ(y))y)

∣∣∣
≤ 1

(s− |h|)|α+γ| ‖F‖α+γ,β+γ .

Therefore,∥∥∥∥∥
(
∂kG
∂tk

(s+ h, ·)− ∂kG
∂tk

(s, ·)
h

− ∂k+1G

∂tk+1
(s, ·)

)∥∥∥∥∥
α,β

≤ |h|
k+2∑
l=0

(
k + 2

l

)
cl,β(s+ |h|)max(|β|−l,0)

∑
|γ|=k+2−l

‖F‖α+γ,β+γ

(s− |h|)|α+γ| ,

which converge to 0 as h→ 0.

Remark that the last fraction (s − |h|)−|α+γ| is another signal that no
derivative exists at s = 0. In the present case of interest t 7→ FΓ(t) · Fψ, the
multiplication by the Schwartz function Fψ greatly improves the situation.
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Lemma D.9. For any φ ∈ S(Rd), the map t 7→ φ · G(t, ·) is in the space
C∞([0,∞),S(Rd)). Furthermore, its value at t = 0 is

φ ·G(0, ·) = φ ·
∫
Rd
f(x) dx.

Proof. In the present case, observe that φ ·G(0, ·) ∈ S(Rd). We use a similar
argument as in the proof of the previous lemma. Let us fix s > 0 and h
sufficiently small, as well as any integer k ∈ N and multi-indices α, β ∈ Nd.
Then, by the mean value theorem, there exists θ = θ(y, δ) such that |θ| ≤ |h|
and

yα∂βy

[
φ(y)

(
∂kG
∂tk

(s+ h, y)− ∂kG
∂tk

(s, y)

h
− ∂k+1G

∂tk+1
(s, y)

)]

= h · yα
∑
δ≤β

(
β

δ

)
(∂β−δy φ)(y)

(
∂k+2
t ∂δyG

)
(s+ θ, y)

= h · yα
∑
δ≤β

(
β

δ

)
(∂β−δy φ)(y)

k+2∑
l=0

(
k + 2

l

)
∂lt

(
t|δ|
)

(s+ θ)

×
∑

|γ|=k+2−l

yγ
(
∂δ+γy F

)
((s+ θ)y)

As before, we bound∣∣∣∂lt (t|δ|) (s+ θ)
∣∣∣ ≤ cl,δ(s+ |h|)max(|δ|−l,0).

In the present case, we use the fact that F is a Schwartz function to only
bound ∣∣∣(∂δ+γy F

)
((s+ θ)y)

∣∣∣ ≤ ‖F‖0,δ+γ .
Thus,∥∥∥∥∥φ

(
∂kG
∂tk

(s+ h, ·)− ∂kG
∂tk

(s, ·)
h

− ∂k+1G

∂tk+1
(s, ·)

)∥∥∥∥∥
α,β

≤ |h|
∑
δ≤β

k+2∑
l=0

cl,δ(s+ |h|)max(|δ|−l,0)
∑

|γ|=k+2−l

‖φ‖α+γ,β−δ ‖F‖0,δ+γ ,

which converge to 0 as h → 0. We can also see that this derivation is valid
at the point s = 0 and h↘ 0.

We are now ready to prove the last remaining part of Theorem D.1.

Proposition D.10. For any Schwartz function ψ, the function t 7→ Γ(t) ∗ψ
belongs to C∞([0,∞),S(Rd)). Furthermore, its k-th order derivative at t = 0
is given by ∆kψ.
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Proof. We will first prove that the map of interest is C∞((0,∞),S(Rd))
using the previous lemmas. Then, we prove that it can be continuously
extended up to t = 0, i.e., it is in C0([0,∞),S(Rd)). Finally, the fact that
Γ satisfies the heat equation enables to conclude that all derivatives can be
continuously extended up to t = 0.

If we set f(x) = (4π)−d/2 exp
{
−x2/4

}
and g(t, x) = t−df(x/t), we can

rewrite
Γ(t, x) = (4πt)−d/2 exp

{
−x2/4t

}
= g(
√
t, x).

Using the fact that t 7→
√
t is C∞((0,∞)) together with Lemmas D.5, D.7,

and D.8, we can conclude that t 7→ Γ(t) is C∞((0,∞),S(Rd)).
Using the fact that t 7→

√
t is continuous at t = 0, we can conclude that

the map t 7→ FΓ(t) · Fψ = F(g(
√
t)) · Fψ can be continuously extended

at t = 0, thanks to Lemmas D.5 and D.9. Its value at t = 0 is given by
Fψ since

∫
Rd f(x) dx = 1. Lemma D.7 implies that t 7→ Γ(t) ∗ ψ belongs to

C0([0,∞),S(Rd)) and its value at t = 0 is given by ψ, i.e. Γ(t) ∗ ψ → ψ in
S(Rd), as t↘ 0.

Using the fact that Γ is a solution to the heat equation, we get

∂(Γ ∗ ψ)

∂t
(t) =

∂Γ

∂t
(t) ∗ ψ = ∆Γ(t) ∗ ψ = Γ(t) ∗∆ψ.

Since ∆ψ is a Schwartz function, we can conclude as before that Γ(t)∗∆ψ →
∆ψ in S(Rd), as t↘ 0. In a similar way,

∂k(Γ ∗ ψ)

∂tk
(t) = Γ(t) ∗∆kψ −→ ∆kψ in S(Rd), as t↘ 0,

which concludes the proof.
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