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Abstract—We consider a problem of labeling a memoryless
temporal point process. The labelings have to be done causally.
We study the tradeoff between the rate and age of the labeled
process and characterize the optimal tradeoff curve. We show
that the optimal curve can be achieved with rather simple labeling
procedures which repeatedly do the following: Wait for T time
units and label the next arrival.

Index Terms—Age of Information, Causal Labeling, Memory-
less Process, Markov Decision Process, Policy Updates

I. INTRODUCTION

Timely data transmission requirements on large-scale net-
works have raised the importance of data transmission pro-
tocols that classify and convey the freshest data to keep
the receivers up-to-date. Age-of-Information (AoI), a metric
proposed by Kaul et al. [1], is well-suited for evaluation of
such protocols, and studied extensively in recent work — see
[2], [3] for detailed surveys. Now, think of a component in the
network, which receives data at a higher rate than it is allowed
to send. In this case, one may ask (i) what and (ii) when to
send with an aim to optimize AoI? Studying the first question
may need classification of data according to their importance,
which might be based on a distortion metric [4]–[6]; or one
may resort to packet management techniques [7] in the absence
of such metrics. The second question is addressed for example
in [8]–[10], and in [11]–[16] when the throughput is limited
due to energy constraints. All of these studies assume a priori
knowledge of the network dynamics, e.g., the data is known to
be conveyed through a single-server queue [4], [5], or through
a Multiple Access Channel [6], etc. In this work, we assume
that the sender is oblivious of the network dynamics except
the limit on the output data rate.

Our work focuses on arrivals modeled as a memoryless
point process with an arrival rate greater than the limited
output rate. The sender thus needs to filter out some of the
arrivals. We call this filtering operation a ‘labeling procedure’,
where an arrival is passed through the network as soon as it
is labeled. We consider causal labelings, i.e., a data can be
labeled only after it has arrived. These labeling procedures
relate to both questions (i) and (ii) above. As the sender is
oblivious of the network dynamics, we study the tradeoff
between the rate and the age of the labeled process, which
are to be defined in Section II.

The outline of this work is as follows: In Section II,
we provide the problem definition in a discrete-time setting.
The rate-age tradeoff is related to an appropriate Markov
Decision Problem (MDP) formulation. In Section III, we study
a finite-state approximation which allows to characterize the
optimal labeling procedures for the original one. The optimal
procedures turn out to be rather simple: Wait T time slots and
label the next arrival, where T is tuned to match the output

rate. In Section IV, we extend the results to a continuous-time
model, where the arrivals are modeled as a Poisson process.

II. PROBLEM DEFINITION

Consider a discrete-time memoryless point process, where
the interarrival times Z1, Z2, . . . are independent and identi-
cally distributed (i.i.d.) with Geometric distribution. Suppose
their success probability is p, which is also equal to the rate of
the arrival process. The arrivals can also be modeled as i.i.d.
Bernoulli random variables Xt with success probability p, with
the natural filtration {Ft} where Ft := σ(X1, . . . , Xt). For
convenience assume X0 = 1. We define a causal labeling on
the point process as a sequence of (possibly random) labeling
functions adapted to the filtration {Ft} as St : {0, 1}t →
{1, . . . , t} ∪ {?}, with the following restriction that if St 6= ?,
then (i) XSt

must be 1 and (ii) St 6= Sτ for all τ < t. Arrival
XSt

is labeled at time t, and ‘phantom’ labelings and multiple
labelings of a single point are not allowed. We assume S0 = 0.

Given a procedure {St}, we define the rate R as the
expected long term average of the number of labelings. More
precisely,

R(S) := E

[
lim sup
t→∞

1

t

t∑
τ=1

1{St 6= ?}
]
. (1)

Define the most recent labeling at time t as Mt := max{Sτ :
0 ≤ τ < t, Sτ 6= ?} with M0 = 0. The instantaneous age
∆

(S)
t and average age ∆(S) are then defined as

∆
(S)
t := t−Mt, ∆(S) := E

[
lim sup
t→∞

1

t

t∑
τ=1

∆(S)
τ

]
. (2)

Sometimes we omit the superscript (S) from the above ex-
pressions for brevity. At this point, it might be useful to give
the following examples of different labeling procedures to
demonstrate what they resemble in practice.

Example 1. Label every point upon arrival with probability α.
This labeling procedure constitutes a renewal process whose
interarrival times W are Geometric random variables with
parameter αp. Hence, the rate and age of this renewal process
are R = αp and ∆ = E[W (W+1)]

2E[W ] = 1
αp = 1

R .

Example 2. Label every kth point upon arrival. Likewise,
this procedure yields a renewal process whose interarrival
times are sum of k Geometric random variables with success
probability p. Hence, R = p

k , and ∆ = k+1
2p = 1+1/k

2
1
R , which

is strictly smaller than the age resulting from the labeling
procedure in Example 1 for k > 1. This labeling procedure
can be extended to cover the rates R = pr for rational r and



the resulting age can be shown to be smaller than the one in
Example 1 as well, see Appendix A.

We are interested in finding the achievable region of possible
(R,∆) pairs with causal labeling procedures. More precisely,
we are interested in finding the boundary curve of such pairs.
Given the large class of possible labelings, this search seems
difficult at first sight. However, we can eliminate some of the
labeling procedures to make the search tractable.

Definition 1 (Strictly Increasing Procedures). A labeling pro-
cedure {St} is strictly increasing if its subsequence {St : St 6=
?} is strictly increasing.

Lemma 1. For any labeling procedure {St}, there exists a
strictly increasing modification {S̃t} such that R(S̃) ≤ R(S)

and ∆(S̃) = ∆(S).

Proof: Take S̃t = St if St = Mt+1; otherwise S̃t =

?. Then, ∆
(S̃)
t = ∆

(S)
t and R

(S̃)
t ≤ R

(S)
t , where R

(S)
t =∑t

τ=1 1{Sτ 6= ?}. Thus, R̃ ≤ R and ∆̃ = ∆.
Lemma 1 can be interpreted as follows: At time t, a strictly

increasing modification of {St} will consider arrivals after the
most recent labeling Mt, and the (R,∆) pair pertaining to this
modification will be closer to the boundary curve we are trying
to find. Hence we may focus on strictly increasing labelings
that omit arrivals before and including Mt.

We further restrict the space of labeling procedures we are
interested in by introducing the lemma below.

Lemma 2. For any t1 < t2 ≤ τ such that Xt1 = Xt2 = 1,
and for every strictly increasing {St} with Sτ = t1, there
exists a strictly increasing modification {S̃t} with S̃τ = t2

and ∆
(S̃)
t ≤ ∆

(S)
t , R(S̃)

t ≤ R
(S)
t . Consequently, R(S̃) ≤ R(S)

and ∆(S̃) ≤ ∆(S).

Proof: Define {S̃t} such that S̃t = St for t < τ , S̃τ = t2
and for all t > τ ,

S̃t =

{
St, St > t2
?, else

. (3)

In words, whenever an arrival later than t2 is labeled by {St},
it is also labeled by {S̃t}. Observe M̃t ≥ Mt and R

(S̃)
t ≤

R
(S)
t , thus ∆(S̃) ≤ ∆(S) and R(S̃) ≤ R(S).
Set the index of the freshest arrival as It := max{τ ≤ t :

Xτ = 1}. Observe that Lemmas 1 and 2 imply

Corollary 1. For any {St}, there exists a strictly increasing
modification {S̃t} such that S̃t = It or S̃t = ? and R(S̃) ≤
R(S), ∆(S̃) ≤ ∆(S).

Corollary 1 tells that one should examine the procedures
that label only the freshest arrival. Let SF be the space of
such labeling procedures. The following theorem gives a lower
bound to CR + ∆, C > 0 for a specific class of labeling
functions and hence gives a lower bound to the boundary curve
of feasible (R,∆) region.

Theorem 1. For {St} ∈ SF such that suptE[∆2
t ] <∞,

CR+ ∆ ≥ lim sup
t→∞

1

t

t∑
τ=1

E
[
C1{Sτ 6= ?}+ ∆τ

]
. (4)

Proof: Since 1
t

∑t
τ=1 1{St = ?} is bounded for all t, we

directly apply Reverse Fatou’s lemma to the first term on the
left-hand side and obtain R ≥ lim supt→∞

1
t

∑t
τ=1 Pr{St =

?}. Since suptE[∆2
t ] is finite, suptE

[(
1
t

∑t
τ=1 ∆t

)2]
is also

finite and constitutes a uniformly integrable family; allow-
ing the use of Reverse Fatou’s lemma [17]. Thus, ∆ ≥
lim supt→∞

1
t

∑t
τ=1E[∆τ ]. Lastly, we observe

CR+ ∆ ≥ lim sup
t→∞

C

t

t∑
τ=1

Pr{St = ?}+ lim sup
t→∞

1

t

t∑
τ=1

E[∆τ ]

≥ lim sup
t→∞

1

t

t∑
τ=1

E
[
C1{Sτ 6= ?}+ ∆τ

]
.

The expression on the right-hand side of (4) contains a
summation whose τ th term is Fτ -measurable. This tells that
for any {St}, this expression is the average reward (cost,
in our case) of a Markov Reward Process with state space
B := {0, 1}∗ and the problem of choosing an appropriate la-
beling procedure {St} is a Markov Decision Problem (MDP),
which is formulated as finding the infimal limsup average cost

λ∗ := inf
{St}∈SF

J{St}(C), where

J{St}(C) := lim sup
t

1

t

t∑
τ=1

E
[
C1{Sτ 6= ?}+ ∆τ

]
.

In the current problem formulation, and given the definition of
the labeling procedures at the beginning of this manuscript, the
states and actions seem to be complicated. However, Corollary
1 tells that it is sufficient to consider only two actions: (i) label
the freshest arrival or (ii) wait, which we denote by l and w
respectively. Since all arrivals before It are ignored at time t,
we can reduce the state space to binary strings Bt of length
t − Mt, with its (It − Mt)

th element being 1 and its other
elements being 0, e.g., [000100].

Remark 1. At this point, we have not imposed that the
labeling strategies depend only on the current state Bt. The
procedures can depend on the whole past (also called history
dependent). Thus, one may argue that by reducing the state
space, the history may not be recovered. However, this is not
true as one is able to construct X1, . . . , Xt from B1, . . . ,Bt.

Note that Bt’s are binary strings which contain at most
a single 1. We can represent such a string by a pair (m,n)
of non-negative integers, where m is the number of elements
from the beginning of the string until and including the 1, and
n is the remaining number of zeros. For instance, the buffer
content [000100] becomes (4, 2); and [000] becomes (0, 3).

The current problem is classified as countable-state average
cost MDP [18]. This class of problems is in general difficult to
work with and it is not guaranteed that an optimal stationary
policy exists. Even when it exists, it can be difficult to find
such an optimal strategy. In the next section, we give a finite-
state approximation to the problem with an aim to use the
methods for finite-state problems; and as we will see, the
finite-state formulation fortunately allows us to characterize
the optimal strategies for the countable-state model as well.



III. FINITE-STATE APPROXIMATION

Assume ‘phantom’ arrivals are generated whenever m+n =
L, with no sending cost, i.e., do not contribute to R. With a
similar proof as in Lemma 2, one can show that if the length
of the buffer reaches L, procedures that label the phantom
arrival will have a smaller ∆ compared to the procedures that
wait instead. Hence, the boundary curve of pairs pertaining to
such procedures will lie under the original (R,∆) curve. This
truncated problem is finite state. Furthermore, since the state
(0,L) is recurrent under any policy — because the Geometric
distribution has infinite tail and thus the buffer length reaches
L infinitely often — the problem is unichain, i.e., every policy
induces a Markov Chain with a single recurrent class [18].
Define

λ∗L := inf
{St}∈SF,L

J{St}(C)

where SF,L is the set of labeling procedures that only label the
freshest arrival and always label the phantom arrival. Observe
that λ∗L is non-decreasing with L. Moreover, the sequence
{λ∗L} has a limit. To see this, take the strategy ‘label every
point upon arrival’ in the untruncated problem. The average
cost corresponding to this strategy will be C

E[Z] +
E[Z(Z+1)]

2E[Z] =

Cp + 1/p. Then, λ∗L ≤ Cp + 1/p for all L. Since {λ∗L} is
bounded from above and is non-decreasing, it has a limit which
we denote by λ∗∞.

At this moment, the problem has become finite state and
unichain; and it is known that there exists an optimal station-
ary policy for such problems. One may therefore focus on
stationary policies and their evaluation methods. A stationary
policy s : N × N → {l, w} in our problem is evaluated by
solving for λ, h in the system of linear equations below. [18]

h(m,n) + λ

=



m+ n+ C
+ ph(n+ 1, 0)
+ qh(0, n+ 1)

, s(m,n) = l, m+ n < L, m ≥ 1

m+ n
+ ph(m+ n+ 1, 0)
+ qh(m,n+ 1)

, s(m,n) = w, m+ n < L

L+ ph(1, 0)
+qh(0, 1)

, m+ n = L (5)

where q := 1 − p. We choose the state (1, 0), i.e., the buffer
content [1], as the reference state and set h(1, 0) = 0. λ gives
the average cost of the unichain stationary labeling policy and
h(m,n) is called relative value of the state (m,n) [18].

Remark 2. h(m,n) + λ is equal to the one-step cost plus
the expected relative value of the next state depending on the
action. E.g., if s(m,n) = l, then the one-step cost is m+n+C
and the next state will be (n + 1, 0) with probability p and
(0, n + 1) with probability q. Thus for any policy, the state
transitions are inferred from (5).

Let us provide a brief summary on policy updates. Choose a
stationary policy s(m,n), evaluate it by solving (5) and obtain
the relative values h(m,n), m + n ≤ L together with the
average cost λ. Given the relative values, take a state (m0, n0),

m0 + n0 < L, m0 ≥ 1 and consider the policy

s′(m0, n0) =


l,

C + ph(n0 + 1, 0) + qh(0, n0 + 1)

≤ ph(m0 + n0 + 1, 0) + qh(m0, 1)

w, else
(6)

and s(m,n) = s′(m,n) for all other states. Now, solve (5)
with respect to s′(m,n) to obtain λ′. It is known that λ′ ≤ λ
[18], i.e., the policy s is updated to a better policy s′. In
fact, if one does the above procedure not only for (m0, n0),
but also for every possible state, and then solves (5), the
procedure is the well-known policy iteration algorithm, see
[18] for example.

We aim to characterize the optimal strategies by using policy
updates as a tool. Instead of direct application of the generic
policy iteration algorithm, we consider the procedure described
above where at kth step we choose a single state (mk, nk),
update s(mk, nk) and solve (5). Denote the average cost at
the end of kth step as λ(k)L , denote the updated policy and the
relative values as s(k) and h(k) respectively.

Start the procedure with the initial policy ‘label every point
upon arrival’. That is, s(0)(m,n) = l if m > 0 and n =
0; otherwise it is equal to w. Note that s(0)(0, 0) = w and
although the state (0, 0) will never be encountered according
to our formulation, it provides convenience in the description
of the procedure. The average cost corresponding to this policy
is λ(0)L ≤ Cp+ 1/p.

At kth step, choose (mk, nk) = (k, 0). Apply the update
rule in (6) to obtain

s(k)(k, 0) =

{
l, C ≤ d(k−1)(k, 0) or k = L

w, else
(7)

where d(k−1)(k, 0) :=
(
ph(k−1)(k + 1, 0) + qh(k−1)(k, 1)

)
−(

ph(k−1)(1, 0) + qh(k−1)(0, 1)
)
. In fact, without solving the

linear system in (5), it is possible to calculate d(k−1)(k, 0).
Repeated application of (5) with h(k−1)(1, 0) = 0 yields

d(k−1)(k, 0) = E[G(k,0)]− λ(k−1)L E[T (k,0)]

where T (k,0) is the time until return to the reference state under
policy s(k−1) if we start from (k, 0) and opt not to label; and
G(k,0) is the accumulated cost until the return. T (k,0) has a
truncated Geometric distribution, i.e., T (k,0) = min{T, L−k}
for a geometrically distributed T with parameter p. Observe
that given T (k,0) = t(k,0), the accumulated cost G(k,0) will
be equal to

∑t(k,0)+k
τ=k+1 τ +1{t(k,0) < L− k}C. Therefore, the

expectations above can be calculated straightforwardly and we
obtain

d(k−1)(k, 0) =
k

p
+

1

p2
− εk
p2
−Lεk

p
+(1−εk+1)C−

λ
(k−1)
L

p
(1−εk)

where εk := qL−k. The update rule (7) is then equivalent to

λ
(k−1)
L (1− εk)

l
≶
w
k +

1

p
− εk

p
− Lεk − Cpεk+1.

Continue the procedure until s(KL)(KL, 0) 6= s(KL+1)(KL +
1, 0) for the first time for some KL ≥ 0. We are interested in



large L as we want to make the ‘phantom’ arrivals as rare as
possible. Thus, the limiting behavior of KL is of interest.

Lemma 3. limL→∞KL =: K exists and is finite. Further-
more,

K =

⌈−1 +
√

1 + 8C + 4q
p2

2
− 1

p

⌉
. (8)

Proof: See Appendix B
Since KL’s are integer, Lemma 3 implies the existence of

an L1 such that for all L > L1, KL = K. From now on,
assume L > L1 so that the termination time of our procedure
is K. The next step is to show that for m > K and n = 0,
the policy will not updated if L is large enough.

Lemma 4. There exists an L2 such that for all L > L2, one
obtains a worse policy by the modification s̃(K)(m,n) = w
for any (m,n) such that m > K and n = 0.

Proof: See Appendix C
At this point, we have covered the states given in the region

(a) of Figure 1. It only remains to find the optimal actions
for states (m,n) with n > 0, i.e., regions (b) and (c) in
Figure 1. Our procedure did not modify the actions of these
states. Hence, s(K)(m,n) = w for n > 0. Now we show that
the actions of region (b) should remain unchanged.

Fig. 1. States as (m,n) pairs covered until different steps our analysis. (a)
corresponds to the darkest shaded region and includes the states n = 0 and
m+n = L, which are covered with Lemma 4. (b) corresponds to the slightly
shaded region including the states n > 0, m ≤ K, m + n < L, which are
covered with Lemma 5. The moderately shaded region (c) corresponds to the
remaining states and these states turn out to be transient according to the
Markov Chain induced by s(K).

Lemma 5. There exists an L3 such that for all L > L3, one
obtains a worse policy by the modification s̃(K)(m,n) = l for
any (m,n) such that m ≤ K and n > 0.

Proof: See Appendix D
Lemma 5 points out an unintuitive result: If an arrival is not

labeled upon arrival, it will remain unlabeled. For instance,
suppose an arrival occured at K − 1. The optimal procedure
skips it and waits for the next arrival even though it occurs
very late.

Together with Lemma 5 we have covered the regions (a) and
(b). Now observe that for the policy s(K), the states in region
(c) are transient since these states cannot be reached from any
other state — check the state transitions in light of Remark 2

to see that transitions from regions (a) and (b) are to (a) and
(b). Therefore, no matter what action is taken at a transient
state in region (c), the average cost remains the same. This
completes the proof that an optimal strategy is indeed s(K) as
any of its modification results in a higher cost.

Let us summarize what we have shown so far: There exists
an L′ = max{L1, L2, L3} such that for all L > L′, the
optimal strategy is

s(K)(m,n) =

{
l, m > K, n = 0

w, else

to which we shall refer as ‘wait K, label next’ strategy. One
can easily calculate λ∗L for L > L′ as

λ∗L =

K(K+1)
2 + K

p − (Lp + 1
p2 )εK + 1

p2 + C(1− εK+1)

K + 1
p (1− εK)

and thus (recall εk = qL−k)

λ∗∞ =
K2 + (2/p+ 1)K + 2/p2 + 2C

2(K + 1/p)
.

Since λ∗L ≤ λ∗ for all L, λ∗∞ ≤ λ∗. Moreover, λ∗∞ can be
achieved via ‘wait K, label next’ strategy in the untruncated
problem. Therefore λ∗∞ ≥ λ∗, and thus λ∗∞ = λ∗.

The ‘wait K, label next’ strategy satisfies the square integra-
bility condition in Theorem 1, i.e., suptE[∆2

t ] < ∞. To see
this, observe that at time t, the previous labeled arrival must
have arrived at most K +Z time slots ago. Hence, we obtain
E[∆2

t ] ≤ E[(K + Z)2] = (K + 1
p )2 + q

p2 <∞ for all t. Fur-
thermore, this strategy is stationary and constitutes a renewal
process, which implies R = limt

1
t

∑t
τ=1E[C1{Sτ 6= ?}]

and ∆ = limt
1
t

∑t
τ=1E[∆(τ)], thus CR + ∆ = λ∗. This

finally proves

Theorem 2. The boundary of the feasible region of (R,∆)
pairs is characterized as the interpolation of the set of pairs
{(Rk,∆k)}k∈N where

∆k =
k2 + (2/p+ 1)k + 2/p2

2(k + 1/p)

Rk =
1

k + 1/p
.

As a final remark, we point out that the pairs
{(Rk,∆k)}k∈N are achievable with ’wait k, label next’ strate-
gies, and the remaining pairs on the boundary curve are
achievable with time sharing between at most two of such
strategies, e.g., for 0 < ρ < 1, do ‘wait k, label next’ ρ
fraction of the time and do ‘wait k + 1, label next’ 1 − ρ
fraction of the time.

IV. EXTENSION TO POISSON PROCESSES

In this section, we extend the results obtained for the
discrete-time problem to a continuous-time problem: The
arrivals are modeled as a Poisson process. Let N (t) be the
counting process associated with a stationary Poisson process
of intensity ν, with its natural filtration {Ft}t≥0. Similar to
the discrete case, the causal labelings for the continuous model
are defined as the collection of functions {St}t∈R+ , such that
every St is Ft-measurable and St : P [0,t] → [0, t] ∪ {?}



where P [0,t] denotes the space of the sample paths of N (t)
on the interval [0, t]. Observe that the process that tracks
the number of labelings until t constitutes another counting
process. Denote this process by R(t). Note that R(t) ≤ N (t).

The rate and the average age are defined analogously to the
discrete-time case — see (1) and (2) — namely

R := E

[
lim sup
t→∞

1

t
R(t)

]
and

δ := E

[
lim sup
t→∞

1

t

∫ t

τ=0

∆τdτ

]
.

Recall that the proofs of Lemma 1 and Lemma 2 involve path-
wise coupling arguments and can be extended to continuous-
time straightforwardly. Therefore Lemma 1, Lemma 2 and thus
Corollary 1 hold for the continuous-time model as well. Once
more, this restricts the class of labelings to the set SF : the
procedures that only label the freshest arrival. In the following
theorem, we extend the results of the discrete model and show
that ‘wait T , label next’ type of strategies are optimal for the
continuous-time problem as well; which concludes our work.

Theorem 3. For {St}t∈R+ ∈ SF such that supt∈R+ E[∆2
t ] <

∞, the boundary curve of achievable (R, δ) pairs lie on the
curve

δ(R) =
1

2R
+
R

2ν2
, R ≤ ν

which are achieved with ‘wait T , label next’ strategies with
T = 1

R −
1
ν .

Proof: We discretize the time axis by dividing it into
small intervals of length h. Then, for any strategy {St} ∈ SF ,
consider a modification that only makes decisions at times that
are multiples of h. Suppose the continuous-time strategy {St}
has made k labelings at times l1, . . . , lk on the interval ((n−
1)h, nh]; and ∆t drops down to values a1, . . . , ak respectively
for each labeling. We can infer that the labeled arrivals have
occured at times t1 = l1 − a1, . . . , tk = lk − ak. Observe
that only the first labeled arrival can belong to a past interval;
otherwise it would not be the freshest arrival. This implies that
li − ti ≤ h for i > 1. Suppose the discrete-time modification
labels only the kth arrival at time nh and its instantaneous
age ∆̃n drops down to bnh−(lk−ak)h ch. If k > 1, ∆̃n = 0,
hence smaller than ∆t. If k = 1, then ∆̃n = bnh−(l1−a1)h ch ≤
bh+a1h ch ≤ a1+h ≤ ∆t+h for all t ∈ ((n−1)h, nh]. Hence,
the discrete age can at most be h higher than the continuous
age for all t, yielding

1

t

∫ t

τ=0

∆τdτ ≥
1

(N + 1)

N∑
n=1

(∆̃n − h)

where N = bt/hc. Then, taking limsup on both sides, we have

lim sup
t→∞

1

t

∫ t

τ=0

∆τdτ ≥ lim sup
N→∞

1

N

N∑
n=1

∆̃n − h.

Also observe that the number of labelings made by the
discrete-time modification is always smaller than R(t) — as
it only labels the kth arrival. Proceeding similarly as above,
we have

lim sup
t→∞

1

t
R(t) ≥ lim sup

N→∞

1

Nh

N∑
n=1

R(h)
n

where R
(h)
n := 1{∃t ∈ ((n− 1)h, nh] : St 6= ?}. Using Re-

verse Fatou’s lemma once more as in Theorem 1, we obtain

CR+ δ ≥ lim sup
N→∞

1

Nh

N∑
n=1

E[∆̃nh+ CR(h)
n ]− h.

The limsup expression above can be lower bounded by the
average cost of a very similar problem that we have considered
in discrete-time. Recall that the discrete-time modification is
able to label from an interval as long as there exists at least
one arrival. This implies that the interarrival times of the
discrete model are Geometrically distributed with parameter
p = 1 − e−νh, which is equal to the probability that at least
one arrival occurs on an interval of length h. Furthermore,
the discrete-time modification is able to label from the same
interval more than once. Hence, comparing with our discrete-
time formulation in Section II, we see that R(h)

n ≥ 1{Sn 6= ?},
where Sn is defined as in Section II. The expression above is
then lower bounded by h times the optimal average cost of an
MDP with

lim sup
N→∞

1

N

N∑
n=1

E[∆n+1 − 1 +
C

h2
1{Sn 6= ?}]. (9)

where ∆n is defined as in our discrete-time formulation in
Section II. The crucial difference is the first term, which is
a time shifted version of the original problem. With similar
truncation arguments as in Section III, we can analyze the
modified problem and study its optimal stationary policies.
However, observe that any stationary and unichain policy
of the modified problem can be simulated with our original
problem — a time shift of instantaneous ages does not change
the long-term average. Hence, the optimal policy will exactly
be the optimal policy of the original problem. Now write down
the optimal average cost and do the appropriate scaling to
obtain

δ + CR ≥ lim
h→0

h
K2 + (2/p+ 1)K + 2/p2 + 2C/h2

2(K + 1/p)
− 2h

= lim
h→0

T 2 + 2T/ν + 2/ν2 + Th+ 2C

2(T + 1/ν)

where T := hK(h). We have written K(h) to emphasize its
dependence in h. Substituting C/h2 and p = 1− e−νh in (8),
we see that T tends to

√
2C + 1

ν2 − 1
ν as h→ 0, which is a

constant. Hence,

δ + CR ≥ T 2 + 2T/ν + 2/ν2 + 2C

2(T + 1/ν)
.

Similar to the end of the proof of Theorem 2, we argue that
‘wait T and label’ strategy is stationary, satisfies the square
integrability condition and attains the average cost above;
concluding that the above is an equality.
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APPENDIX

A. Extension of Example 2 to Rational r:
Let r = m

n with m ≤ n. Write n = mα+ β, where α ≥ 1
is the quotient and β is the remainder. Note that β < m. Write
r as

r =
m

(α+ 1)β + α(m− β)
.

Consider the following strategy: (i) Label every α + 1th
arrival, do this β times. Then (ii) label every αth arrival, do
this m − β times. Then repeat (i) and (ii) consecutively. By
renewal theory, the average rate will be pr. Also note that the
interarrival times are sum of β Geometric random variables
with parameter p

α+1 plus sum of m − β Geometric random
variables with parameter p

α . With some algebra, one can obtain

∆ =
r(α+ 1)

2R

(
1 +

βr

m

)
.

To check if this expression is smaller than 1/R, observe

r(α+ 1)

2R

(
1 +

βr

m

)
=

1

2R

m

n
(α+ 1)(1 + β/n)

=
1

2R

n− β +m

n
(1 + β/n)

=
1

2R
(1− β

n
+
m

n
)(1 +

β

n
)

=
1

2R
(1− β2

n2
+
m

n
+ r

β

n
)

≤ 1

2R
(1 +

m+ rβ

n
) ≤ 1

2R
(1 + 1) =

1

R

as n = mα+ β and α ≥ 1 and r ≤ 1.

B. Proof of Lemma 3
KL is defined as the minimum non-negative integer satis-

fying λL(k) < gL(k), where

λL(k) =

k(k+1)
2 + k

p − (Lp + 1
p2 )εk + 1

p2 + C(1− εk+1)

k + 1
p (1− εk)

is the average cost pertaining to the ‘wait k, label next’ strategy
and

gL(k) :=
k + 1 + 1

p −
εk+1

p − Lεk+1 − Cpεk+2

(1− εk+1)
.

Define gL(L − 1) = ∞ for convenience. This ensures that
KL ≤ L − 1. Observe that for any finite k ≥ 0 and small ε,
we can find large enough L such that a sufficient condition
for the inequality λL(k) < gL(k) can be obtained as

k2 + ( 2
p + 1)k + 2

p2 + 2C < 2(k + 1
p )(k + 1 + 1

p )− ε

which is equivalent to

ε < (k + 1
p )2 + (k + 1

p )− 2C − 1
p2 + 1

p =: fL(k).

Since KL is the smallest integer satisfying the above, we must
have λL(k − 1) ≥ gL(k − 1). Again, for large enough L, an
equivalent sufficient condition will be

fL(k − 1) ≤ −ε.

f(k) is a quadratic function of k and it always has two distinct
real roots. The smaller root is always negative, hence take the
larger root

k̃ =
−1 +

√
1 + 8C + 4q

p2

2
− 1

p

and note that for small enough ε both sufficient conditions are
satisfied at k = dk̃e. This shows that KL ≤

⌈
k̃
⌉

for large
enough L, which implies lim supLKL ≤

⌈
k̃
⌉
. Furthermore,

for 0 < C ≤ 1
p , −1 < k̃ ≤ 0 and thus

⌈
k̃
⌉

= 0, so limLKL =

0 for such C. For C > 1
p , with a similar argument, obtain

necessary conditions by choosing large enough L and small
enough ε; which are

f(k) > −ε and f(k − 1) ≤ ε.

Observe that f(dk̃e − 1) is negative and bounded away from
zero — as k̃ > 0 and the smaller root is always negative.
Hence the necessary conditions will not be satisfied for
dk̃e − 1 and KL > dk̃e − 1 eventually. This concludes that
lim infLKL ≥

⌈
k̃
⌉

and therefore limLKL =
⌈
k̃
⌉

=: K. We
remark that K ≤ bCpc. This fact will be important when
proving Lemma 4 and Lemma 5.



C. Proof of Lemma 4
This is equivalent to showing that the update condition

λ
(K)
L (1− εm) ≥ m+

1

p
− εm

p
− Lεm − Cp

q εm.

is violated for all K < m < L. It is sufficient to check if the
minimum of the function

f(t) = L+ 1
p + log t

log
1
q

− λ(K)
L (1− t)− (L+ 1

p + Cp
q )t

on t ∈ [qL−K−1, q] is greater than zero. f is concave, therefore
the minimum occurs at boundaries. Observe f(q) = Lp −
Cp − pλ(K)

L ≥ Lp − Cp − p(Cp + 1
p ) therefore greater than

zero for L ≥ L2 := C + (Cp + 1
p2 ). The other boundary

corresponds to m = K + 1, and from the definition of K
as being the termination time of the procedure — check the
definition in the beginning of Appendix B — we must have
f(qL−K−1) ≥ 0. Thus, the condition above is violated for all
m > K.

D. Proof of Lemma 5
The condition in (6) implies that if we alter s(K)(m,n) to

l, the policy does not improve if

C+ph(n+1, 0)+qh(0, n+1) ≥ ph(m+n+1, 0)+qh(m,n+1).

Some calculation reveals that this condition is equivalent to
(10) — at the bottom of this page.

Now, consider the three cases (for which m ≤ K according
to the main statement of the Lemma):
(i) n > K

Then (10) is equivalent to

Cp−m
qL−m−n − qL−n

+ L+
1

p
+ Cp ≥ λ(K)

L .

Recall that Cp ≥ K — see the end of Appendix B —
hence the first term on the left-hand side is positive. We
also know that λ(K)

L ≤ Cp + 1/p as the latter is the
average cost of the untruncated problem with ‘label every
point upon its arrival’ policy. Hence the inequality always
holds.

(ii) n ≤ K, m+ n > K
Observe that the (m,n) pairs lie on a bounded set that
does not grow with L. Hence, for large enough L, the
condition will be equivalent to

C+(K−n)(K+n+1)/2−(m+n−K)/p ≥ λ(K−n)

the left-hand side is minimized at m = K, which yields

C + (K − n)(K + n+ 1)/2− n/p ≥ λ(K − n).

Since the left-hand side is a concave quadratic function
of n, it is minimized at either n = 0, or n = K. For
n = 0, the state corresponds to (K, 0) and we know the
inequality holds from definition of K. For n = K, we
have

C −K/p ≥ 0

which we know is true.
(iii) n ≤ K, m + n ≤ K. Again, the possible pairs lie in

a bounded set that does not grow with L. For large L,
rewrite the condition as

C ≥ λm−m(m+ 2n+ 1)/2.

The right-hand side is maximized at n = 0, and similar
to (ii) the result is immediate from the definition of K.

As K, m, n are integers, there also exists an L3 such that the
conditions in (ii), (iii) are exact for L > L3.

C +

K∑
τ=n+1

τ +

L−1∑
τ=K∨n

(τ + 1)qτ−K∨n + C(1− qL−K∨n)− λ
( K∑
τ=n+1

1 +

L−1∑
τ=K∨n

qτ−K∨n
)

≥
K∑

τ=m+n+1

τ +

L−1∑
τ=K∨(m+n)

(τ + 1)qτ−K∨(m+n) + C(1− qL−K∨(m+n))− λ
( K∑
τ=m+n+1

1 +

L−1∑
τ=K∨(m+n)

qτ−K∨(m+n)

)
(10)


