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1. Introduction

We study equilibrium measures of the natural extension of β-shifts. This is an interesting

class of dynamical systems which have been studied in ergodic and number theory since

the fundamental papers [Re, Pa]. We want to determinate whether an equilibrium measure

for a continuous function ϕ is a weak Gibbs measure. In [PS3] we developed a method

based on a decoupling property [PS3, Definition 2.3], which is a slightly weaker condition

than condition (D) in [Ru, §4.1]. The results of [PS3] are valid only for β such that the

β-shift has the specification property and ϕ is of bounded total oscillations. This set of β

is the set C3 in [Sc]. Schmeling proved that C3 has Lebesgue measure 0, but Hausdorff

dimension 1. For the more restricted class of functions satisfying the Bowen condition

[Bo], one has a stronger result. Under expansiveness and specification Haydn and Ruelle

[HR] proved the equivalence of equilibrium measures and Gibbs measures (in the sense

of Bowen [Bo] and Capocaccia [Ca]).

However, using basic ideas of [PS3, CTY], it is possible to obtain a necessary and

sufficient condition on β such that for any function of bounded total oscillations all

equilibrium measures are weak Gibbs measures.

To formulate our main result, Theorem 2.12, precisely we need to recall first some basic

properties of β-shifts. This is done in §2.1. In §2.2 we consider the class of functions

Downloaded from https://www.cambridge.org/core, subject to the Cambridge Core terms of use.

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1017/etds.2021.38
mailto:charles.pfister@epfl.ch
mailto:Wayne.Sullivan@ucd.ie
https://crossmark.crossref.org/dialog?doi=10.1017/etds.2021.38&domain=pdf
https://www.cambridge.org/core


2 C.-E. Pfister and W. G. Sullivan

of bounded total oscillations following [PS3, §3], and in §2.3 we consider the pressure,

establishing two basic estimates for the proof of Theorem 2.12. Our main result is stated

in §2.4 and proved in §3. We discuss briefly large deviations for empirical measures

in §2.4.

2. Setting and main result

2.1. Beta-shift. Let β > 1 be fixed. The case β ∈ N is special and corresponds to the

full shift. From now on we assume that β 6∈ N. For t ∈ R, let ⌈t⌉ := min{i ∈ Z : i ≥ t}.

We define b := ⌈β⌉. Consider the β-expansion of 1,

1 =

∞∑

i=1

ciβ
−i ,

which is given by the algorithm

r0 := 1, ci+1 := ⌈β ri⌉ − 1, ri+1 := β ri − ci+1, i ∈ Z+,

which ensures that ri > 0 for all i ∈ Z+. It follows that c1 = ⌈β⌉ − 1 > 0 and cβ :=

(c1, c2, . . .) cannot end with zeros only. For sequences (a1, a2, . . .) and (b1, b2, . . .)

the lexicographical order is defined by (a1, a2, . . .) ≺ (b1, b2, . . .) if and only if for the

smallest index i with ai 6= bi , ai < bi . Let A := {0, . . . , b− 1}; the (one-sided) β-shift is

Xβ := {x = (x1, x2, . . .) : xi ∈ A, T kx � cβ for all k ∈ Z+},

where T is the left shift operator. In particular, T kcβ � cβ for all k ∈ Z+, so that Xβ is

a shift-invariant closed subset of AN (with product topology). The language of the shift

Xβ is denoted by Lβ and the set of the words of length n by L
β
n . In this paper the empty

word is always denoted by ǫ, L
β

0 = {ǫ}, while ε is always a positive real number. A word

is written w1 · · · wn or simply w. The length of a word w is written |w|.

The shift-space Xβ can be described by a labeled graph Gβ = (V , Eβ) where V :=

{qj : j ∈ Z+}. The root of the graph is the vertex q0. There is an edge q0 → q0, labeled

by k, for each k = 0, . . . , b− 2, and there is an edge qj−1 → qj labeled by cj for each

j ∈ N. Moreover, if the label cj of qj−1 → qj is different from 0, then there are cj edges

qj−1 → q0 labeled by 0, . . . , cj − 1. Each wordw1 · · · wn ∈ Lβ can always be presented

by a path of length n in Gβ starting with vertex q0. For a word w ∈ Lβ we define q(w)

as the end vertex of this path starting at q0 and presenting w. One can concatenate two

words w and w′ if and only if there is a path η in Gβ presenting w and a path η′ in

Gβ presenting w′, so that η ends at vertex q and η′ starts at vertex q. In particular, one

can concatenate w with any words of Lβ if q(w) = q0. There is a unique labeled path

presenting the infinite sequence cβ , which is the path (q0, q1, q2, . . .). Let Pβ be the set

of the prefixes of the sequence cβ , including the empty word ǫ. Let c1 · · · cn ∈ Pβ and

suppose that cn+1 = cm+2 = · · · cn+m = 0, cn+m+1 6= 0. The word c1 · · · cn is presented

by a path starting at q0 and ending at qn. Since there is only one outgoing edge from each

of the vertices qn, . . . , qn+m−1, the only words w with prefix c1 · · · cn are the words

c1 · · · cn, c1 · · · cn0, c1 · · · cn00, . . . , c1 · · · cn 0 · · · 0︸ ︷︷ ︸
m

, c1 · · · cn 0 · · · 0︸ ︷︷ ︸
m

w′, c1 · · · ck ,
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where w′ is any word of Lβ with first letter 0 ≤ w′
1 ≤ cn+m+1 − 1, and c1 · · · ck ∈ Pβ

with k > n+m. For u ∈ Pβ we set

zβ(u) :=

{
0 if u = ǫ,

p if u = c1 · · · cℓ, cℓ+1 = · · · = cℓ+p = 0 and cℓ+p+1 > 0.
(1)

zβ(u) is a measure of the obstruction to going from vertex q(u) to vertex q0. We set

zβ(n) := max{zβ(u) : u prefix of cβ , |u| ≤ n}. (2)

For each prefix u = c1 · · · cn of cβ we define a new word û as follows. Let cj be the last

letter in c1 · · · cn which is different from 0. We set

ĉℓ :=

{
cℓ if ℓ 6= j ,

cj − 1 if ℓ = j .
(3)

The word û := ĉ1 · · · ĉn differs from u = c1 · · · cn by a single letter and q(̂u) = q0. For

any word w ∈ Lβ there is a unique decomposition of w into

w = vs(w) where s(w) is the largest suffix of w belonging to P
β . (4)

We extend the definition (1) to any word w by setting

zβ(w) := zβ(s(w)),

and extend the transformation u 7→ û to any word by setting

ŵ :=

{
w if s(w) = ǫ,

vû if s(w) = u.
(5)

By convention we set ǫ̂ = ǫ. The words ŵ can be freely concatenated since q(ŵ) = q0

(see Lemma 2.2).

LEMMA 2.1. Let a = a1 · · · ak and b = b1 · · · bℓ be two prefixes of cβ . If ab ∈ Lβ , then

ab is a prefix of cβ .

Proof. By hypothesis ai = ci , i = 1, . . . , k, and bj = cj , j = 1, . . . , ℓ. Let w = ab ∈

Lβ . Suppose that w is not a prefix of cβ . Then there exists j , 1 ≤ j ≤ ℓ, so that

cm = wk+m = ck+m, for 1 ≤ m < j , and cj = wk+j < ck+j .

Hence, wk+1 · · · wk+ℓ = c1 · · · cℓ ≺ ck+1 · · · ck+ℓ, a contradiction with T kcβ � cβ .

LEMMA 2.2.

(a) Let w = vu, s(w) = u. Then q(v) = q0 and s(ŵ) = s(vû) = ǫ.

(b) Let p1 := zβ(c1), where c1 the first character of cβ . Then the mapping on Lβ , w 7→

ŵ, is at most (p1 + 2)-to-one, and s(ŵ) = ǫ.

Proof. (a) Let w = vu, u = s(w) and ŵ = vû. If q(v) 6= q0, then s(v) 6= ǫ, so that, by

Lemma 2.1, u is not maximal, a contradiction. Since s(v) = ǫ and q(̂u) = q0, s(ŵ) =

s(̂u) = ǫ.
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(b) Let P̂β := {̂u : u ∈ Pβ}. The list is ordered according to increasing length. The first

p1 + 2 words in the list P̂β are

ǫ, ĉ1, ĉ10, ĉ100, . . . , ĉ1 0 · · · 0︸ ︷︷ ︸
p1

. (6)

On the other hand, if |̂u| > p1 + 1, then the first character of û is c1.

Let ŵ = w′. Let ŝ(w′) be the largest suffix of w′ among the first |w′| + 1 elements of

the list P̂β . We writew′ = v′u′ with u′ = ŝ(w′). Letw = vu, u = s(w), such that ŵ = w′.

We have |u| ≤ |u′|, otherwise ŵ = w′ would imply that ŝ(w′) is not maximal. In particular,

if ŝ(w′) = ǫ, then s(w) = ǫ and w′ = w.

Suppose that ŵ = w′ and p1 + 2 ≤ |u| < |u′|. Then the first character of u′ is c1 and

also the first character of û is c1 since |u| ≥ p1 + 2. By hypothesis |u| < |u′|. This implies

that v = v′a with a a prefix of u′. Hence the first letter of a is the first letter of u′, which

is c1, and the letter following a is the first letter of û, which is c1. We have u′ = aû =

ŝ(w′) ∈ P̂β . By definition of the map w 7→ ŵ (see (5) and (3)) we conclude that a is

a prefix of cβ . By Lemma 2.1, au is a prefix of cβ , contradicting the maximality of u.

Therefore |u| = |u′|, and in this case the mapping w 7→ ŵ is two-to-one. In the remaining

cases |s(w)| ≤ p1 + 1. Therefore the mapping w 7→ ŵ is at most (p1 + 2)-to-one.

Definition 2.3. The natural extension 6β of Xβ is

6β = {x ∈ AZ : for all k ∈ Z, (xk , xk+1, . . .) ∈ Xβ}.

It is henceforth simply called the β-shift.

The language of 6β is also Lβ . Let k < ℓ, [k, ℓ] = {k, k + 1, . . . , ℓ− 1, ℓ}, and x ∈

6β . The projection J[k,ℓ] : 6β → Lβ is defined as

x 7→ J[k,ℓ](x) := x[k,ℓ] ≡ xkxk+1 · · · xℓ.

Let w = xkxk+1 · · · xk+m−1 ∈ L
β
m. We can always extend w to the left by 0, that is,

there exist y ∈ 6β , yj = 0, j < k, and yj = xj , j = k, . . . , k +m− 1. We can also

extend w to the right by 0. If q(w) = q0, this is clear. If w = vu, s(w) = u 6= ǫ, then

u = c1 · · · cp for some p ≥ 1. When cp+1 6= 0, we may change cp+1 into 0. When

cp+1 = · · · = cp+r = 0, but cp+r+1 6= 0, we may change cp+r+1 into 0. Hence there exist

y ∈ 6β , yj = xj , for all j = k, . . . , k +m− 1, and yj = 0 for all j < k and j ≥ m.

2.2. Functions of bounded total oscillations. We recall the definition of a function

of bounded total oscillations. For details we refer to [PS3, §3]. Let f̄ ∈ C(AZ) be a

continuous function defined on the full shift AZ. On AZ we define for each i ∈ Z,

δi(f̄ ) := sup{|f̄ (x)− f̄ (y)| : x, y ∈ AZ, where xk = yk for all k 6= i}

and

‖f̄ ‖δ :=
∑

i∈Z

δi(f̄ ).
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A function has bounded total oscillations if ‖f̄ ‖δ < ∞. On a subshift X ⊂ AZ, δi(f )may

not make sense. If f ∈ C(X) is a continuous function onX and has a continuous extension

f̄ ∈ C(AZ) on AZ , we write

f ≈ f̄ ⇐⇒ f (x) = f̄ (x) for all x ∈ X.

An extension f̄ of f exists [PS3, Proposition 3.2]. For f ∈ C(X) we define

‖f ‖δ := inf{‖f̄ ‖δ : f̄ ∈ C(AZ), f̄ ≈ f }.

A function f ∈ C(X) has bounded total oscillations if ‖f ‖δ < ∞. Examples of functions

of bounded total oscillations are given in [PS3]. The set of bounded total oscillations is a

Banach space B(6β) with the norm [PS3, Proposition 3.1]

‖f ‖δ + sup
x∈X

|f (x)|.

We prove two basic estimates for functions with bounded total oscillations. For

convenience, from now on we write f̄ for a continuous extension of f to AZ. The

arguments do not require that f̄ satisfies ‖f̄ ‖δ = ‖f ‖δ but just that f ≈ f̄ and ‖f̄ ‖δ < ∞.

Fundamental to many of the arguments is the following lemma.

LEMMA 2.4. Let x, y ∈ X and Ŵ := {j : xj 6= yj }. Then for 3 ⊂ Z and f ∈ C(X),

∑

i∈3

|f (T ix)− f (T iy)| ≤
∑

i∈3

∑

j∈Ŵ

δj−i(f̄ ) ≤ ∞.

Proof. Since Ŵ is at most countable, we can list the elements of Ŵ, so that Ŵ =

{j1, j2, . . .}. We define a sequence of elements of AZ as follows. Let zj0 := x. For jℓ ∈ Ŵ,

set

z
jℓ
k :=

{
yk if k = j1, . . . , jℓ,

xk if k ∈ Z \ {j1, . . . , jℓ}.

Then

|f (T ix)− f (T iy)| ≤
∑

jk∈Ŵ

|f̄ (T izjk−1)− f̄ (T izjk )| ≤
∑

jk∈Ŵ

δjk (f̄ ◦ T i).

The lemma follows from the identity

δj (f̄ ◦ T i) = δj−i(f̄ ).

Indeed,

δj (f̄ ◦ T i) = sup{|(f̄ ◦ T i)(x)− (f̄ ◦ T i)(y)| : xk = yk for all k 6= j}

= sup{|f̄ (T ix)− f̄ (T iy)| : (T −iT ix)k = (T −iT iy)k for all k 6= j}

= sup{|f̄ (x′)− f̄ (y′)| : (T −ix′)k = (T −iy′)k for all k 6= j} = δj−i(f̄ ).
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LEMMA 2.5. Let f be a function of bounded total oscillations on X. Given ε > 0, there

exists Nε such that for m ≥ Nε,

sup

{ ∑

1≤i≤m

|f (T ix)− f (T iy)| : x, y, xk = yk for all k ∈ {1, . . . , m}

}
≤ mε (7)

and

sup

{ ∑

j 6∈{1,...,m}

|f (T jx)− f (T jy)| : x, y, xk = yk for all k 6∈ {1, . . . , m}

}
≤ mε. (8)

Proof. Let ε > 0 be given. There exists rε so that
∑
k:|k|>rε

δk(f̄ ) ≤ ε/2. Ifm > 2rε, then

for x[1,m] = y[1,m] the sum over [1, m] of |T if (x)− T if (y)| can be written as over

[1, rε] ∪ [rε + 1, m− rε] ∪ [m+ 1 − rε, m].

For i in the middle interval and j /∈ [1, m] we have |i − j | > rε, so that by Lemma 2.4,

|f (T ix)− f (T iy)| ≤
∑

j 6∈{1,...,m}

δj (f̄ ◦ T i) ≤
∑

k:|k|>rε

δk(f̄ ) ≤ ε/2.

For the i in the outside intervals we use |f (T ix)− f (T iy)| ≤ 2‖f ‖ to yield

1

m

∑

1≤i≤m

|f (T ix)− f (T iy)| ≤
4rε‖f ‖

m
+
ε(m− 2rε)

2m
≤ ε for m large enough.

The proof of the second statement is similar.

2.3. Equilibrium measure and pressure. In our setting a shift-invariant (Borel) proba-

bility measure ν is an equilibrium measure for a continuous function ϕ if and only if ν is a

tangent functional to the pressure p at ϕ (see [Wa, Theorems 8.2 and 9.5]).

Definition 2.6. An invariant probability measure ν is a tangent functional to the pressure

p at ϕ if

p(ϕ + f ) ≥ p(ϕ)+

∫
f dν for all continuous functions f .

The set of tangent functionals to the pressure at ϕ is denoted ∂p(ϕ).

For each n ∈ N we choose a set En ⊂ 6β with the following properties:

J[−n,n](E
n) = L

β

2n+1 and (x, x′ ∈ En, J[−n,n](x) = J[−n,n](x
′)) H⇒ x = x′. (9)

Let ϕ be a continuous function and set

4n(ϕ) :=
∑

x∈En

exp

( ∑

j∈[−n,n]

ϕ(T jx)

)
and PEn(ϕ) :=

1

2n+ 1
ln 4n(ϕ). (10)

The pressure p(ϕ) is defined as

p(ϕ) = lim
n→∞

PEn(ϕ). (11)
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The result in (11) is independent of the choice of the sets En. From now on we choose En

so that if x ∈ En, then xj = 0, for all |j | > n.

Let [k, ℓ] ⊂ [−n, n], x ∈ En. Set

x−
k := x(−∞,k−1] and x+

ℓ := x[ℓ+1,∞).

By our choice of En we can extend (4) and (5) to the infinite sequence x−
k since xj = 0 for

j < −n. Let s(x−
k ) be the largest suffix ∈ Pβ of x−

k , and

x̂−
k := y ̂s(x−

k ) where x−
k = ys(x−

k ).

Let

En[k,ℓ](v) := {x ∈ En : x[k,ℓ] = v} and E
∗,n
[k,ℓ](v) := {x ∈ En[k,ℓ](v) : s(x−

k ) = ǫ},

and set

4n[k,ℓ](v) : =
∑

x∈En[k,ℓ](v)

exp

( ∑

j∈[−n,n]

ϕ(T jx)

)
, (12)

4
∗,n
[k,ℓ](v) : =

∑

x∈E
∗,n
[k,ℓ](v)

exp

( ∑

j∈[−n,n]

ϕ(T jx)

)
.

We have

4n(ϕ) =
∑

v

4n[k,ℓ](v). (13)

Lemmas 2.7 and 2.8 give basic estimates used in the proof of Theorem 2.12.

LEMMA 2.7. Let [k, ℓ] ⊂ [−n, n] and ‖ϕ‖δ < ∞. Then

4
∗,n
[k,ℓ](v) ≤ 4n[k,ℓ](v) ≤ (zβ(c1)+ 2)e2‖ϕ‖δ 4

∗,n
[k,ℓ](̂v).

Proof. This first inequality follows from E
∗,n
[k,ℓ](v) ⊂ En[k,ℓ](v). We define a map f̂ from

En[k,ℓ](v) to E
∗,n
[k,ℓ](̂v) by setting

f̂ : En[k,ℓ](v) → E
∗,n
[k,ℓ](̂v), x = x−

k vx
+
ℓ 7→ f̂ (x) := x̂−

k v̂x
+
ℓ . (14)

Since x̂−
k and v̂ are presented by paths in Gβ with end-point q0, f̂ (x) is well defined and

f̂ (x) ∈ E
∗,n
[k,ℓ](̂v). By Lemma 2.2 the map x−

k 7→ x̂−
k is at most (zβ(c1)+ 2)-to-one. Hence

the map f̂ is at most (zβ(c1)+ 2)-to-one (v is fixed, hence v̂ is also fixed). The sequences

x and x′ = f̂ (x) differ at most at two coordinates, so that by Lemma 2.4,

∣∣∣∣
∑

j∈[−n,n]

(ϕ(T jx)− ϕ(T jx′))

∣∣∣∣ ≤ 2‖ϕ‖δ .
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Hence

∑

x∈En[k,ℓ](v)

exp

( ∑

j∈[−n,n]

ϕ(T jx)

)
≤ e2‖ϕ‖δ

∑

x∈En[k,ℓ](v)

exp

( ∑

j∈[−n,n]

ϕ(T jx′)

)

≤ (zβ(c1)+ 2)e2‖ϕ‖δ
∑

y∈En[k,ℓ] (̂v):

s(y−
k )=ǫ

exp

( ∑

j∈[−n,n]

ϕ(T jy)

)

= (zβ(c1)+ 2)e2‖ϕ‖δ 4
∗,n
[k,ℓ](̂v).

LEMMA 2.8. Let [k, ℓ] ⊂ [−n, n] and ‖ϕ‖δ < ∞. Then

4
∗,n
[k,ℓ](v) ≥ |A|−(z

β (v)+1)e−(zβ (v)+2)‖ϕ‖δ 4
∗,n
[k,ℓ](̂v).

Proof. If s(v) = ǫ, then v = v̂ and the inequality is trivial. Let v with s(v) 6= ǫ; we define

a map f : E
∗,n
[k,ℓ](̂v) → E

∗,n
[k,ℓ](v),

f (x−
k v̂x

+
ℓ ) := x−

k vx
′+
ℓ ,

with

x′+
ℓ+1 = · · · = x′+

ℓ+zβ (v)+1 = 0 and x′+
j = xj if j > ℓ+ zβ(v)+ 1.

This map is at most |A|z
β (v)+1-to-one. We have

∑

j∈[−n,n]

ϕ(T j (x−
k v̂x

+
ℓ )) =

∑

j∈[−n,n]

(ϕ(T j (x−
k v̂x

+
ℓ ))− ϕ(T j (x−

k v̂x
′+
ℓ )))

+
∑

j∈[−n,n]

(ϕ(T j (x−
k v̂x

′+
ℓ ))− ϕ(T j (x−

k vx
′+
ℓ )))

+
∑

j∈[−n,n]

ϕ(T j (x−
k vx

′+
ℓ )).

The configurations x−
k v̂x

+
ℓ and x−

k v̂x
′+
ℓ differ at most at i = ℓ+ 1, . . . , ℓ+ zβ(v)+ 1, so

that

∣∣∣∣
∑

j∈[−n,n]

(ϕ(T j (x−
k v̂x

+
ℓ ))− ϕ(T j (x−

k v̂x
′+
ℓ )))

∣∣∣∣ ≤ (zβ(v)+ 1)‖ϕ‖δ . (15)

The configurations x−
k v̂x

′+
ℓ and x−

k vx
′+
ℓ differ at one coordinate, so that

∣∣∣∣
∑

j∈[−n,n]

(ϕ(T j (x−
k v̂x

′+
ℓ ))− ϕ(T j (x−

k vx
′+
ℓ )))

∣∣∣∣ ≤ ‖ϕ‖δ .
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Equilibrium measures of β-shifts 9

Therefore

4
∗,n
[k,ℓ](̂v) =

∑

x∈E
∗,n
[k,ℓ] (̂v)

exp
∑

j∈[−n,n]

ϕ(T jx)

=
∑

y∈E
∗,n
[k,ℓ](v)

∑

x∈E
∗,n
[k,ℓ] (̂v):

f (x)=y

exp
∑

j∈[−n,n]

ϕ(T jx)

≤ |A|z
β (v)+1e(z

β (v)+2)‖ϕ‖δ
∑

y∈E
∗,n
[k,ℓ](v)

exp
∑

j∈[−n,n]

ϕ(T jy)

= |A|z
β (v)+1e(z

β (v)+2)‖ϕ‖δ 4
∗,n
[k,ℓ](v).

LEMMA 2.9. Let w ∈ L
β
m and w♯ ∈ 6β ,

w
♯
j :=

{
wj if 1 ≤ j ≤ m,

0 otherwise.
(16)

The pressure p(ϕ) is equal to

lim
m→∞

1

m
ln

∑

w∈L
β
m:s(w)=ǫ

exp

m∑

j=1

ϕ(T jw♯).

Proof. The configurations w♯ and ŵ♯ differ at most at one coordinate, so that

∣∣∣∣
m∑

j=1

(ϕ(T j ŵ♯)− ϕ(T jw♯))

∣∣∣∣ ≤ ‖ϕ‖δ .

The map w 7→ ŵ is at most (zβ(c1)+ 2)-to-one (Lemma 2.2). Therefore

∑

w∈L
β
m

exp

m∑

j=1

ϕ(T jw♯) ≤ e‖ϕ‖δ
∑

w∈L
β
m

exp

m∑

j=1

ϕ(T j ŵ♯)

≤ e‖ϕ‖δ (zβ(c1)+ 2)
∑

ŵ∈L
β
m

exp

m∑

j=1

ϕ(T j ŵ♯)

= e‖ϕ‖δ (zβ(c1)+ 2)
∑

w∈L
β
m:s(w)=ǫ

exp

m∑

j=1

ϕ(T jw♯).

Hence,

p(ϕ) ≤ lim
m→∞

1

m
ln

∑

w∈L
β
m:s(w)=ǫ

exp

m∑

j=1

ϕ(T jw♯).
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10 C.-E. Pfister and W. G. Sullivan

On the other hand,

∑

w∈L
β
m

exp

m∑

j=1

ϕ(T jw♯) ≥ e−‖ϕ‖δ
∑

w∈L
β
m

exp

m∑

j=1

ϕ(T j ŵ♯)

≥ e−‖ϕ‖δ
∑

w∈L
β
m:s(w)=ǫ

exp

m∑

j=1

ϕ(T jw♯).

Hence,

p(ϕ) ≥ lim
m→∞

1

m
ln

∑

w∈L
β
m:s(w)=ǫ

exp

m∑

j=1

ϕ(T jw♯).

2.4. Main result.

Definition 2.10. An invariant probability measure ν is a weak Gibbs measure for a

continuous function ψ , if for any δ > 0 there exists Nδ such that for m ≥ Nδ ,

sup
x∈X

∣∣∣∣
1

m
ln ν([x0 · · · xm−1])−

1

m

m−1∑

ℓ=0

ψ(T ℓ(x))

∣∣∣∣ ≤ δ,

where [x0 · · · xm−1] = {y ∈ 6β : y0 · · · ym−1 = x0 · · · xm−1}.

Remark 2.11. Our definition of weak Gibbs measure is stated so that if ν is weak Gibbs

for ψ , then p(ψ) = 0 [PS2]. If ψ = ϕ − p(ϕ), then it equivalent to

e−δm ≤
ν([x0 · · · xm−1])

exp(−mp(ϕ)+
∑m−1
ℓ=0 ϕ(T

ℓx))
≤ eδm.

THEOREM 2.12. Let β > 1 and ϕ be a function of bounded total oscillations on 6β .

(1) If ν is an equilibrium measure for ϕ and if

lim
n→∞

zβ(n)

n
= 0,

then ν is a weak Gibbs measure for ψ = ϕ − p(ϕ).

(2) If ν is an equilibrium measure for ϕ and if

lim sup
n→∞

zβ(n)

n
> 0,

then ν is not a weak Gibbs measure for ψ = ϕ − p(ϕ).

If ν is a weak Gibbs measure, then the empirical measures satisfy a large-deviations

principle [PS2]. Large deviations for (one-sided) β-shifts, for any β > 1, and equilibrium

measures have been proved by Climenhaga, Thompson and Yamamoto [CTY] for the class

of functions satisfying the Bowen condition. From the estimates of Lemma 3.2 [PS1,

Proposition 4.3 and Theorem 3.1], the result of [CTY] is also valid for all equilibrium

measures for functions ϕ of bounded total oscillations. This is important since the Bowen
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condition implies uniqueness of the equilibrium measure for β-shifts, while this is not

necessarily the case for bounded total oscillations functions.

3. Proof of Theorem 2.12

Let ϕ be a function of bounded total oscillations on 6β . In §3.1 we prove upper and lower

bounds for ν([y0 · · · ym−1]) for any equilibrium measure ν of ϕ. There is no restriction on

β > 1. In §3.2 we prove Theorem 2.12.

3.1. Upper and lower bounds. We first assume that there is a unique tangent functional

ν to the pressure at ϕ. The result is then extended to any ϕ of bounded total oscillations

using a theorem of Mazur and a theorem of Lanford and Robinson (see, for example, [Ru,

Appendix A.3.7]).

When there is a unique tangent functional to the pressure at ϕ we can estimate

ν([y0 · · · ym−1]) using a classical result about differentiability of a convex function, here

the pressure, which is a pointwise limit of convex functions [Ro, Theorem 25.7]. Let

ū ∈ L
β
m be fixed and set

Iū(y) :=

{
1 if y0 · · · ym−1 = ū,

0 otherwise.

We have

ν(Iū) =
d

dt
lim
n→∞

PEn(ϕ + t Iū)

∣∣∣∣
t=0

= lim
n→∞

d

dt
PEn(ϕ + t Iū)

∣∣∣∣
t=0

= lim
n→∞

1

2n+ 1

n∑

j=−n

∑
x∈En Iū(T

jx) exp
∑n
i=−n ϕ(T

ix)∑
x∈En exp

∑n
i=−n ϕ(T

ix)
. (17)

Let j = k and ℓ := k +m− 1. Then a term in (17) is written as a ratio of partition

functions (see (12) and (13))
∑
x∈En Iū(T

jx) exp
∑n
i=−n ϕ(T

ix)∑
x∈En exp

∑n
i=−n ϕ(T

ix)
=
4n[k,ℓ](ū)

4n(ϕ)
=

4n[k,ℓ](ū)∑
v 4

n
[k,ℓ](v)

. (18)

The core of the proof involves estimating the ratio of partition functions4n[k,ℓ](v)/4
n
[k,ℓ](ū),

uniformly in [k, ℓ] ⊂ [−n, n] using Lemmas 2.7 and 2.8. Since in (17) we take the limit

n → ∞, it is sufficient to consider the cases where [k, ℓ] ⊂ [−n, n].

LEMMA 3.1. Let ū ∈ L
β
m. For any ε > 0 and continuous ϕ such that ‖ϕ‖δ < ∞ there

exists Nε,ϕ so that if y is such that J[1,m](y) = ū and m ≥ Nε,ϕ , then

ν(Iū) ≤ K+
ϕ,ε(m, β) exp

( m∑

j=1

ϕ(T jy)−mp(ϕ)

)
,

where

K+
ϕ,ε(m, β) = (zβ(c1)+ 2)e3‖ϕ‖δe5mε.

Nε,ϕ is chosen so that all of the inequalities (7), (8) and (23) are satisfied for m ≥ Nε,ϕ .
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Proof. Let ε > 0 and ϕ be given and Nε,ϕ defined as above. We consider the term in the

sum (17) with j = k and [k, ℓ] ⊂ [−n, n] (see (18)),

4n[k,ℓ](ū)

4n(ϕ)
=

4n[k,ℓ](ū)∑
v 4

n
[k,ℓ](v)

.

We have
∑

v

4n[k,ℓ](v) ≥
∑

v:s(v)=ǫ

4n[k,ℓ](v) ≥
∑

v:s(v)=ǫ

4
∗,n
[k,ℓ](v).

From now on s(v) = ǫ. By Lemma 2.7,

4n[k,ℓ](ū) ≤ (zβ(c1)+ 2)e2‖ϕ‖δ 4
∗,n
[k,ℓ](̂ū).

Hence,

4
∗,n
[k,ℓ](v)

4n[k,ℓ](ū)
≥

1

(zβ(c1)+ 2)e2‖ϕ‖δ

4
∗,n
[k,ℓ](v)

4
∗,n
[k,ℓ](̂ū)

.

Since s(v) = ǫ and s(̂ū) = ǫ, if s(x−
k ) = ǫ, then

x−
k vx

+
ℓ ∈ E

∗,n
[k,ℓ](v) ⇐⇒ x−

k
̂̄ux+

ℓ ∈ E
∗,n
[k,ℓ](̂ū). (19)

We write

4
∗,n
[k,ℓ](v) =

∑

x∈E
∗,n
[k,ℓ](v)

exp(
∑n
j=−n ϕ(T

j (x−
k vx

+
ℓ ))

exp(
∑n
j=−n ϕ(T

j (x−
k
̂̄ux+

ℓ )))

× exp

( n∑

j=−n

ϕ(T j (x−
k
̂̄ux+

ℓ ))

)
. (20)

Let v♯ and ̂̄u♯ be defined as in (16) with 1 ≤ j ≤ m replaced by k ≤ j ≤ ℓ. Then

n∑

j=−n

(ϕ(T j (x−
k vx

+
ℓ ))− ϕ(T j (x−

k
̂̄ux+

ℓ )))

=
∑

j 6∈[k,ℓ]

(ϕ(T j (x−
k vx

+
ℓ ))− ϕ(T j (x−

k
̂̄ux+

ℓ )))

+
∑

j∈[k,ℓ]

(ϕ(T j (x−
k vx

+
ℓ ))− ϕ(T jv♯))+

∑

j∈[k,ℓ]

(ϕ(T ĵ̄u♯)− ϕ(T j (x−
k
̂̄ux+

ℓ )))

+
∑

j∈[k,ℓ]

(ϕ(T jv♯)− ϕ(T ĵ̄u♯)). (21)

By Lemma 2.5, if m ≥ Nε,ϕ , then

∣∣∣∣
n∑

j=−n

(ϕ(T j (x−
k vx

+
ℓ ))− ϕ(T j (x−

k
̂̄ux+

ℓ )))−
∑

j∈[k,ℓ]

(ϕ(T jv♯)− ϕ(T ĵ̄u♯))
∣∣∣∣ ≤ 3εm.

Let y ∈ 6β be such that J[k,ℓ](y) = ū. By definition of ū♯,

J[k,ℓ](ū
♯) = ū and ū

♯
i = 0 for all i 6∈ [k, ℓ].
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By Lemmas 2.4 and 2.5, if m ≥ Nε,ϕ , then

∣∣∣∣
∑

j∈[k,ℓ]

(ϕ(T ĵ̄u♯)− ϕ(T jy))

∣∣∣∣

≤

∣∣∣∣
∑

j∈[k,ℓ]

(ϕ(T ĵ̄u♯)− ϕ(T j ū♯))

∣∣∣∣ +

∣∣∣∣
∑

j∈[k,ℓ]

(ϕ(T j ū♯)− ϕ(T jy))

∣∣∣∣

≤ ‖ϕ‖δ +mε. (22)

Nε,ϕ has been chosen so that (see Lemma 2.9)

e−mε ≤
emp(ϕ)∑

v∈L
β
m:

s(v)=ǫ

exp
∑m
j=1 ϕ(T

jv♯)
≤ emε. (23)

From (18), (20), s(v) = ǫ and the above estimates, taking into account (19), which allows

the use of the elementary inequalities for positive real numbers ai and bi ,

inf
i

ai

bi
≤

∑n
i=1 ai∑n
i=1 bi

=

∑n
i=1(ai/bi) bi∑n

i=1 bi
≤ sup

i

ai

bi
, (24)

we get

∑
v 4

n
[k,ℓ](v)

4n[k,ℓ](ū)
≥

∑
v:s(v)=ǫ 4

∗,n
[k,ℓ](v)

4n[k,ℓ](ū)
≥

1

(zβ(c1)+ 2)e2‖ϕ‖δ

∑
v:s(v)=ǫ 4

∗,n
[k,ℓ](v)

4n[k,ℓ](̂ū)

≥ e−4mε−‖ϕ‖δ
e
−

∑
j∈[k,ℓ] ϕ(T

j y)

(zβ(c1)+ 2)e2‖ϕ‖δ

∑

v:s(v)=ǫ

exp
∑

j∈[k,ℓ]

ϕ(T jv♯)

≥
e−5mε

(zβ(c1)+ 2)e3‖ϕ‖δ
exp

(
−

∑

j∈[k,ℓ]

ϕ(T jy)+mp(ϕ)

)
.

The result follows from (17) by taking the limit n → ∞.

LEMMA 3.2. Let ū ∈ L
β
m. For any ε > 0 and continuous ϕ such that ‖ϕ‖δ < ∞ there

exists Nε,ϕ so that if y is such that J[1,m](y) = ū and m ≥ Nε,ϕ , then

ν(Iū) ≥ K−
ϕ,ε(m, β, ū) exp

( m∑

j=1

ϕ(T jy)−mp(ϕ)

)
,

where

K−
ϕ,ε(m, β, ū) =

|A|−(z
β (ū)+1)e−(zβ (ū)+2)‖ϕ‖δ

(zβ(c1)+ 2)2e5mε+3‖ϕ‖δ
.

Nε,ϕ is chosen so that all of the inequalities (7), (8) and (23) are satisfied for m ≥ Nε,ϕ .
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Proof. Let ε > 0 and ϕ be given and Nε,ϕ defined as above. We consider the term in the

sum (17) with j = k and [k, ℓ] ⊂ [−n, n] (see (18)),

4n[k,ℓ](ū)

4n(ϕ)
=

4n[k,ℓ](ū)∑
v 4

n
[k,ℓ](v)

.

As in the proof of Lemma 3.1, if s(v) = ǫ, then we can estimate the ratio4
∗,n
[k,ℓ](v)/4

∗,n
[k,ℓ](̂ū)

using (24) since (19) holds. If y ∈ 6β is such that J[k,ℓ](y) = ū and s(v) = ǫ, then (see

(21) and (22))

4
∗,n
[k,ℓ](v)

4
∗,n
[k,ℓ](̂ū)

≤ e4mε+‖ϕ‖δ exp

( ∑

j∈[k,ℓ]

ϕ(T jv♯)− ϕ(T jy)

)
.

Let m ≥ Nε,ϕ . Then

∑
v 4

n
[k,ℓ](v)

4n[k,ℓ](ū)
≤

∑

v

(zβ(c1)+ 2)e2‖ϕ‖δ

|A|−(z
β (ū)+1)e−(zβ (ū)+2)‖ϕ‖δ

4
∗,n
[k,ℓ](̂v)

4
∗,n
[k,ℓ](̂ū)

≤
(zβ(c1)+ 2)2e2‖ϕ‖δ

|A|−(z
β (ū)+1)e−(zβ (ū)+2)‖ϕ‖δ

∑

v:s(v)=ǫ

4
∗,n
[k,ℓ](v)

4
∗,n
[k,ℓ](̂ū)

≤
(zβ(c1)+ 2)2e5mε+3‖ϕ‖δ

|A|−(z
β (ū)+1)e−(zβ (ū)+2)‖ϕ‖δ

exp

( ∑

j∈[k,ℓ]

−ϕ(T jy)+mp(ϕ)

)
.

For the first inequality we use Lemmas 2.7 and 2.8, and for the second inequality, where we

replace v̂ by v with s(v) = ǫ, we use Lemma 2.2 and s(̂v) = s(v) = ǫ. The result follows

from (17) by taking the limit n → ∞.

We now remove the restriction that ν is the unique equilibrium measure for ϕ.

The pressure is convex and continuous on the Banach space B(6β) of bounded total

oscillations functions. The set R ⊂ B of ϕ, such that ∂p(ϕ) = {ν} has a unique element ν,

is residual (theorem of Mazur).

Let ϕ ∈ B be an arbitrary function of bounded total oscillations and ν be an equilibrium

measure for ϕ, such that there exists a sequence ϕk ∈ R with the properties that limk ϕk =

ϕ and limk νk = ν, {νk} = ∂p(ϕk) (weak convergence). For such ϕ let Nε,ϕ be defined as

in Lemmas 3.1 and 3.2. Let ε′ > ε. By our choice of rε (see the proof of Lemma 2.5),

∑

k:|k|>rε

δk(ϕk) ≤
∑

k:|k|>rε

δk(ϕ)+ ‖ϕk − ϕ‖δ ≤
ε

2
+ ‖ϕk − ϕ‖δ

and ‖ϕk‖ ≤ ‖ϕ‖ + ‖ϕk − ϕ‖. Since |p(ϕ)− p(ϕk)| ≤ ‖ϕ − ϕk‖, for m ≥ Nε,ϕ , the

upper and lower bounds of Lemmas 3.1 and 3.2 are true for νk and ϕk , with constants

K+
ϕk ,ε′

(m, β) andK−
ϕk ,ε′

(m, β, ū), provided that k is large enough. Since ε′ > ε is arbitrary,

Lemmas 3.1 and 3.2 are true for ν. This is also the case for anyµ in the weak-closed convex

hull of such ν. By the theorem of Lanford and Robinson this set coincides with the set of

equilibrium measures for ϕ.
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3.2. Proof of Theorem 2.12. (1) Suppose that limn→∞ zβ(n)/n = 0. Then

lim
m→0

sup

ū∈L
β
m

zβ(ū)

m
= 0.

The estimates of Lemmas 3.1 and 3.2 prove that the equilibrium measure ν for ϕ is a weak

Gibbs measure for ψ = ϕ − p(ϕ).

(2) Suppose that lim supn→∞ zβ(n)/n > 0. There exist an increasing diverging

sequence {mk}k and wk ∈ L
β
mk so that limk z

β(wk)/mk = a > 0. Let

w̃k := wk 0 · · · 0︸ ︷︷ ︸
zβ (wk)

.

By definition |w̃k| = mk + zβ(wk) and ν(Iwk ) = ν(I
w̃k
). If y ∈ [wk], then by Lemma

3.1 (and mk large enough),

ν(Iwk )

exp(−mkp(ϕ)+
∑mk
ℓ=1 ϕ(T

ℓy))
=

ν(I
w̃k
)

exp(−mkp(ϕ)+
∑mk
ℓ=1 ϕ(T

ℓy))

≤ K+
ϕ,ε(mk+z

β(wk), β) exp

(zβ (wk)∑

j=1

(ϕ(T mk+jy)−p(ϕ))

)
.

We can compare
∑zβ (wk)
j=1 ϕ(T mk+jy) with zβ(wk)ϕ(0), where 0 is the configuration with

all coordinates equal to 0. For zβ(wk) ≥ Nε,ϕ ,

∣∣∣∣
zβ (wk)∑

j=1

(ϕ(T mk+jy))− zβ(wk)ϕ(0)

∣∣∣∣ ≤ εzβ(wk),

so that

ν(Iwk )

exp(−mkp(ϕ)+
∑mk
ℓ=1 ϕ(T

ℓy))
≤ K+

ϕ,ε(mk + zβ(wk), β)ez
β (wk)(ϕ(0)−p(ϕ)+ε).

For any T -invariant probability measure µ and any continuous function ϕ,

p(ϕ) ≥ hT (µ)+

∫
ϕ dµ,

where hT (µ) is the (metric) entropy of µ. A T -invariant probability measure ν is an

equilibrium measure for ϕ if and only if

p(ϕ) = hT (ν)+

∫
ϕ dν.

The support of a measure is the complement of the union of the open sets of measure 0.

For the β-shift any equilibrium measure has support 6β , since by Lemma 3.2 all cylinder

sets have positive measure and the cylinder sets generate the topology. Therefore the Dirac

measure δ0 cannot be an equilibrium measure. Hence

p(ϕ) > hT (δ0)+

∫
ϕ δ0 = ϕ(0) (25)
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because the entropy of δ0 is zero. Inequality (25) implies that ν is not a weak Gibbs measure

for ψ = ϕ − p(ϕ). Indeed, for x such that J[1,mk](x) = wk ,

1

mk

(
ln ν(Iwk )−

mk∑

j=1

ψ(T jx)

)
≤

ln K+
ϕ,ε(mk + zβ(wk), β)

mk

+
zβ(wk)(ϕ(0)− p(ϕ)+ ε)

mk
.

Taking the limit k → ∞ and observing that ε is as small as we wish in that limit,

lim
k→∞

1

mk

(
ln ν(Iwk )−

mk∑

j=1

ψ(T jx)

)
≤ lim
k→∞

zβ(wk)

mk
(6ε + ϕ(0)− p(ϕ))︸ ︷︷ ︸
< 0 if ε is small enough

< 0.

REFERENCES

[Bo] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lecture Notes in

Mathematics, 470), 2nd revised edn. Ed. J.-R. Chazottes. Springer, Berlin, 2008.

[Ca] D. Capocaccia. A definition of Gibbs state for a compact set with a Zνaction. Comm. Math. Phys. 48

(1976), 85–88.

[CTY] V. Climenhaga, D. J. Thompson and K. Yamamoto. Large deviations for systems with non-uniform

structure. Trans. Amer. Math. Soc. 369 (2017), 4167–4192.

[HR] N. T. A. Haydn and D. Ruelle. Equivalence of Gibbs and equilibrium states for homeomorphisms

satisfying expansiveness and specification. Comm. Math. Phys. 148 (1992), 155–167.

[Pa] W. Parry. On the β-expansions of real numbers. Acta Math. Hungar. 11 (1960), 401–416.

[PS1] C.-E. Pfister and W. G. Sullivan. Large deviations estimates for dynamical systems without the

specification property. Application to the β-shifts. Nonlinearity 18 (2005), 237–261.

[PS2] C.-E. Pfister and W. G. Sullivan. Weak Gibbs measures and large deviations. Nonlinearity 31 (2018),

49–53.

[PS3] C.-E. Pfister and W. G. Sullivan. Asymptotic decoupling and weak Gibbs measures for finite alphabet

shift spaces. Nonlinearity 33 (2020), 4799–4817.

[Re] A. Rényi. Representations for real numbers and their ergodic properties. Acta Math. Hungar. 8 (1957),

477–493.

[Ro] R. T. Rockafellar. Convex Analysis (Princeton Mathematical Series, 28). Princeton University Press,

Princeton, NJ, 1970.

[Ru] D. Ruelle. Thermodynamic Formalism (Encyclopedia of Mathematics and its Applications, 5).

Addison-Wesley, Reading, MA, 1978.

[Sc] J. Schmeling. Symbolic dynamics for β-shifts and self-normal numbers. Ergod. Th. & Dynam. Sys. 17

(1997), 675–694.

[Wa] P. Walters. An Introduction to Ergodic Theory. Springer, New York, 1982.

Downloaded from https://www.cambridge.org/core, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

	1 Introduction
	2 Setting and main result
	2.1 Beta-shift
	2.2 Functions of bounded total oscillations
	2.3 Equilibrium measure and pressure
	2.4 Main result

	3 Proof of Theorem 2.12
	3.1 Upper and lower bounds
	3.2 Proof of Theorem 2.12

	References

