Files

Abstract

Evolution has found countless ways to transport material across cells and cellular compartments separated by membranes. Protein assemblies are the cornerstone for the formation of channels and pores that enable this regulated passage of molecules in and out of cells, contributing to maintaining most of the fundamental processes that sustain living organisms. As in several other occasions, we have borrowed from the natural properties of these biological systems to push technology forward and have been able to hijack these nano-scale proteinaceous pores to learn about the physical and chemical features of molecules passing through them. Today, a large repertoire of biological pores is exploited as molecular sensors for characterizing biomolecules that are relevant for the advancement of life sciences and application to medicine. Although the technology has quickly matured to enable nucleic acid sensing with transformative implications for genomics, biological pores stand as some of the most promising candidates to drive the next developments in single-molecule proteomics.

Details

PDF