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Abstract
The Internodes method is a general purpose method to deal with non-conforming dis-
cretizations of partial differential equations on 2D and 3D regions partitioned into disjoint
subdomains. In this paper we are interested in measuring how much the Internodes method
is conservative across the interface. If hp-fem discretizations are employed, we prove that
both the total force and total work generated by the numerical solution at the interface of the
decomposition vanish in an optimal way when the mesh size tends to zero, i.e., likeO(hp),
where p is the local polynomial degree and h the mesh-size. This is the same as the error
decay in the H 1-broken norm. We observe that the conservation properties of a method are
intrinsic to the method itself because they depend on the way the interface conditions are
enforced rather then on the problem we are called to approximate. For this reason, in this
paper, we focus on second-order elliptic PDEs, although we use the terminology (of forces
and works) proper of linear elasticity. Two and three dimensional numerical experiments
corroborate the theoretical findings, also by comparing Internodes with Mortar and WACA
methods.
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1 Introduction

We are interested in the approximation of partial differential equations by non-conforming
domain decomposition methods, more specifically in the conservation properties at the
interface between non-overlapping subdomains. The non-conformity at the interface can
be induced by different independent discretizations inside the subdomains, as well as by
non-watertight interfaces.

Is the traction and the work at exact equilibrium across the interface? If not, how well it
is, and what is the dependence on the mesh refinement? And maybe even more importantly,
which quantities may-be expected to be conserved at the interface?

Among the non-conforming coupling methods, the most widely used and studied is the
Mortar method (far from be exhaustive see, e.g., [3–5, 7, 9, 29]), which is optimal in terms of
convergence rates and is based on a single L2 projection operator; as we will see throughout
the paper, the Mortar method also conserves traction forces and works along the interface;
see also [14] for a discussion in the case of fluid-structure interation problems.

Differently from theMortar method, the Internodes (INTERpolation for NOnconforming
DEcompositionS) method is based on two intergrid interpolation operators, one for transfer-
ring the Dirichlet trace across the interface, the others for transferring the Neumann trace,
i.e., the fluxes or the stresses. The Internodes method has been proposed in [11] in the con-
text of second order elliptic differential problems, and it has been applied successfully to
fluid-structure interaction problems [13], Navier–Stokes equations [11], Stokes–Darcy cou-
pling [18]. Its analysis for 2D and 3D second-order elliptic equations has been carried out in
[16] and its generalization to decompositions with more than two subdomains is presented
in [16, 19]. The Internodes method has also been applied in the context of Isogeometric
Analysis [15] to deal with non-conforming multi-patch geometries. For what concerns the
theoretical analysis, it has been proved in [16] that, when the mesh sizes h1 and h2 of the
two subdomains vanish with the same rate and the local polynomial degree p (the same in
both subdomain) grows up, the Internodes method features the same convergence order of
the Mortar method in the H 1-broken norm error. More precisely, it holds that the global
H 1-broken norm error behaves likeO(hp), with h = max{h1, h2}. When this happens, it is
said that the convergence order of the multidomain method is optimal. The spectral proper-
ties of the algebraic form of the Internodes method have been investigated in [11, Sect. 6]
and compared with those of the Mortar method. Numerical results show that the extreme
moduli of the eigenvalues of the global Internodes matrix, associated with the discretiza-
tion of the Laplace operator, behave like the analogous quantities related to the Mortar
method.

We point out that the Internodes method works with two independent interpolation
matrices, and this choice guarantees to keep the optimal convergence order of the local
discretizations inside the two subdomains. On the contrary, the consistent interpolating
approach discussed in [14], that coincides with the pointwise interpolation method anal-
ysed in [6], features a degradation of the solution of the coupled problem with respect
to the mesh-size and to the polynomial degree, although it is conservative across the
interface.

Alternatives are Nietsche [1] or discontinuous Galerkin approaches, in which jumps
between domains are evaluated, and that needs interpolation or projection operators between
subdomains for the computation of integrals of quantities of both domains simultaneously.
The Internodes method needs an interpolation operator between the subdomains but there
is no need of crossed integrals.
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In this paper we show that the Internodes method conserves both traction forces and
works across the interface, in the sense that the total force and the total work at the inter-
face vanish at least like the global broken-norm error when the discretizations in both
subdomains are refined.

The conservation properties of some coupling methods have been reviewed in [10]. In the
present paper, we try to give a clear characterisation of what conservativemethod means by
defining the quantities that a coupling method should conserve (asymptotically or exactly);
then, on one hand we provide a mathematical proof of the conservation properties of the
Internodes method, on the other hand we yield numerical experiments showing the conser-
vation properties of the Mortar method, the Internodes method, and the weighted average
continuity approach (WACA) proposed in [10].

In [22] the authors addressed the problem of conserving the energy across an interface
in the framework of non-conforming interfaces between a finite volume and FEM; they
consider that the energy is conserved if the work is equal on both sides of the interface.

We observe that the conservation properties of a method are intrinsic to the method itself
because they depend on the way the interface conditions are enforced rather than on the
problem we are called to approximate. For this reason we focus on second order elliptic
partial differential equations (PDEs) and after decompositon of the computational domain
into two subregions, we analyse the conservation properties across the common interface;
this interface can be either conforming or non-conforming depending on the local space
discretisations and on the meshes. In the continuous settings, the total force and the total
work across the interface are zero, both when computed as integrals (in strong form) on the
interface and as sum of residuals (weak form); indeed they coincide thanks to the Green
formula. When using classical conforming methods based on the Galerkin projection [26,
28], the sums of residuals are null while the strong forms asymptotically vanish when the
mesh-size tends to zero.

In case of non-conforming methods, one has to first establish how to compute the total
force and work, since the interface on the two sides may be different (geometric non-
conforming, see, e.g., the characterization given in [11]). In this case the integral forms and
the residual ones do not coincide anymore. The Mortar method guarantees that the residual
forms of total work and total force are zero, however the strong ones are “only” optimally
convergent, but not identically null. By optimal convergence we mean here the H 1-broken-
norm convergence order that behaves like the worst best approximation error inside the
two subdomains and that is generally used to measure the approximation properties of
non-conforming methods.

In Section 4 we prove that Internodes provides optimal convergence for both versions
(strong and residual-based) of the total force and work. We have performed two and three
dimensional experiments using geometrical conforming and non-conforming decomposi-
tions and different polynomial degrees, by using finite element or spectral element methods.
We have compared Mortar, Internodes, and WACAmethods. Mortar and Internodes provide
optimal order convergence (when not exact, as explained above), whilst WACA allows for
exact residual versions of the total quantities, but at most for first order convergence for the
strong forms, even for high order approximations.

The paper is structured as follows. In Section 2, we briefly recall the mathematical set-
ting of elliptic PDE’s in a two subdomains framework in either 2D or 3D domains and,
by inheriting the terminology from linear elasticity, we define the quantitites that we want
to analyse in order to evaluate the conservation properties of a multidomain method, i.e.,
the total force and the total work. In Section 3 we recall the Internodes method and its
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approximation properties. Section 4 is devoted to the analysis of the conservation properties
of the Internodes method and in Section 5 we provide numerical evidence to the conser-
vation and approximation properties of the Internodes and Mortar methods by reporting
numerical results in both 2D and 3D domains.

2 Problem Formulation

Let us consider a self-adjoint second order elliptic problem, for which we seek the function
u : Ω → R solution of

⎧
⎪⎪⎨

⎪⎪⎩

Lu = −∇ · (ν∇u) + γ u = f in Ω ⊂ R
d ,

u = 0 on ∂ΩD,

ν
∂u

∂n
= gN on ∂ΩN,

(1)

where Ω ⊂ R
d , with d = 2, 3, is an open domain with Lipschitz boundary ∂Ω , ν > 0, γ ≥

0, and f are given functions defined in Ω , while gN is a given function defined on ∂ΩN ⊆
∂Ω (∂ΩN and ∂ΩD ⊆ ∂Ω are such that ∂Ω = ∂ΩD ∪ ∂ΩN and ∂ΩD ∩ ∂ΩN = ∅),
and finally n is the outward unit normal vector to ∂Ω . (See Fig. 1, left.) Non-homogeneous
Dirichlet conditions can be dealt with by standard arguments (see, e.g., [25]).

We split Ω into two disjoint subdomains Ω1 and Ω2 such that Ω1 ∪ Ω2 = Ω and we
denote the common interface by Γ = ∂Ω1 ∩ ∂Ω2 (see Fig. 1, right).

The multidomain formulation of (1) reads (see, e.g., [26, 28]): for k = 1, 2 look for the
functions uk defined on Ωk such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∇ · (ν∇uk) + γ uk = f in Ωk, k = 1, 2,
u1 = u2, on Γ,

ν
∂u1

∂n1
+ ν

∂u2

∂n2
= 0 on Γ,

+ boundary conditions inhereted from (1) on ∂Ωk ∩ ∂Ω,

(2)

where nk is the outward unit normal vector to ∂Ωk , while ∂Ωk,D = ∂ΩD ∩ ∂Ωk and
∂Ωk,N = ∂ΩN ∩ ∂Ωk are the Dirichlet and Neumann boundaries, respectively, restricted to
the domain Ωk . Condition (2)2 enforces the continuity of the solution across the interface
Γ , while (2)3 enforces the balance of the normal derivatives on Γ .

Fig. 1 The computational domain (on the left) and its decomposition (on the right)
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To write the weak form of (2) we define the spaces

Vk = {v ∈ H 1(Ωk) : v|∂Ωk,D
= 0}, for k = 1, 2,

V 0
k = {vk ∈ Vk : vk|Γ = 0}, for k = 1, 2,

Λ = {λ ∈ H 1/2(Γ ) : ∃v ∈ H 1
0,∂ΩD

(Ω) : v|Γ = λ},
where H 1

0,∂ΩD
(Ω) = {v ∈ H 1(Ω) : v|∂ΩD

= 0}. Λ is the space of traces of the functions
of V on the interface.

Provided that f ∈ L2(Ω), gN ∈ L2(∂ΩN), and ν, γ ∈ L∞(Ω), the weak form of (2)
reads: for k = 1, 2 find uk ∈ Vk such that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫

Ωk

ν∇uk · ∇vk + γ ukvk =
∫

Ωk

f vk +
∫

∂Ωk,N

gNvk ∀vk ∈ V 0
k , k = 1, 2,

u1 = u2 on Γ,∫

Γ

ν
∂u1

∂n1
μ +

∫

Γ

ν
∂u2

∂n2
μ = 0 ∀μ ∈ Λ,

(3)

where the integrals in the last equation must be interpreted as dualities between the trace
space Λ and its dual space Λ′.

The classical abstract form of (3) reads: for k = 1, 2, find uk ∈ Vk such that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ak(uk, vk) = Fk(vk) ∀vk ∈ V 0
k , k = 1, 2,

u1 = u2 on Γ,
∑

k=1,2

ak(uk,Rkμ) =
∑

k=1,2

Fk(Rkμ) ∀μ ∈ Λ,
(4)

where ak(uk, vk) = ∫

Ωk
ν∇uk · ∇vk + γ ukvk , Fk(vk) = ∫

Ωk
f vk + ∫

∂Ωk,N
gNvk and Rk :

Λ → Vk denotes any linear and continuous lifting operator from the interface to the domain
Ωk .

It is well known (see, e.g. [26]) that problem (4) admits a unique solution and that u1 and
u2 are the restrictions to Ω1 and Ω2, respectively, of the weak solution of (1).

The conditions (3)3 (that should be interpreted as duality when the normal derivatives
are not sufficiently regular) and (4)3 are the weak counterpart of (2)3 and, by choosing the
test function μ in a suitable way, they express two fundamental balance principles at the
interface, that we are going to describe below. We make the following assumptions that we
comment at the end of the present section, see Remark 1.

Assumption 1 Let us assume that Neumann boundary conditions are imposed on that part
of ∂Ω that matches the interface Γ (i.e., we assume that ∂Γ ∩ ∂ΩD = ∅).

Let Assumption 1 be satisfied. By adopting the terminology of linear elasticity (in which
the Laplace operator is replaced by the divergence of the Cauchy stress tensor), if we choose
μ ≡ 1 in (3)3 we obtain a sort of “balance of forces” at the interface, that reads

T F =
∫

Γ

ν
∂u1

∂n1
+
∫

Γ

ν
∂u2

∂n2
= 0, (5)

where T F stands for Total Force. This terminology is inherited from linear elasticity, where
the normal derivative of the solution on the boundary is the normal component of the stress
tensor and expresses a traction or a normal force to the boundary.
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If instead we choose μ = u1|Γ = u2|Γ (in virtue of (3)2), we obtain a sort of “null total
work” on Γ , i.e,

T W =
∫

Γ

ν
∂u1

∂n1
u1 +

∫

Γ

ν
∂u2

∂n2
u2 = 0, (6)

here T W stands for Total Work. Also here we refer to linear elasticity, where the product
ν ∂u

∂nu is replaced by the product between the normal stress and the displacement, thus giving
a work.

Finally, we notice that by setting λ = u1|Γ = u2|Γ in (6) and by applying the first Green
formula, the identities (5) and (6) can be equivalently written as

T Fa =
∑

k=1,2

[
ak(uk,Rk1)) − Fk(Rk1))

] = 0, (7)

T Wa =
∑

k=1,2

[
ak(uk,Rkλ)) − Fk(Rkλ)

] = 0. (8)

In fact, they are sum of residuals and are particular instances of the equation (4)3 with μ = 1
and μ = u|Γ , respectively. Formulas (5) and (6) are what we call strong forms of the total
force and total work, respectively, while (7) and (8) are the corresponding residual orweak forms.

The balance of forces (5), or (7), and the null total work (6), or (8), express the
conservation for the multidomain problem (3).

When the multidomain problem (3) is approximated (by either a conforming or a
non-conforming method) it is desiderable that the discrete solution satisfies the discrete
counterpart of (5)–(8) up to a term that vanishes with a certain order q with respect to the
discretization parameters, e.g. the mesh size of the discretization. If that happens, we say
that the multidomain approach is conservative of order q with respect to the mesh size. We
refer to Section 4, Definition 1 for a formal definition of this concept.

In this paper, we show that when we combine Internodes with Finite Elements or Spectral
Elements, we obtain a conservative multidomain discrete approach and that the order of
conservation equals the order of the broken-norm error (with respect to the mesh size).

We notice that conservation of a method is intrinsic to the method itself because conser-
vation depends on the way the interface conditions are enforced rather then on the problem
we are called to approximate. Thus, the analysis provided here can be extended to other
PDEs for which the conservation at the interface is meaningful.

Remark 1 Assumption 1 is made for two reasons both connected with the theoretical anal-
ysis. First of all we notice that, if we set Dirichlet conditions on the part of ∂Ω that matches
the interface Γ , then μ should belong to Λ = H

1/2
00 (Λ) and we could not choose μ ≡ 1

in (3)3. This would imply that the conservation of forces could not be brought back to the
interface condition (3)3. The second reason is related to the convergence analysis of the
Internodes method that, at the moment, is available provided that Assumption 1 is satisfied.

However, we can infer from the numerical results of Section 5 that the conservation
properties of the Internodes method are kept even when Assumption 1 is not satisfied.

3 Internodes for hp-fem Discretization

We sketch here the idea of Internodes and we refer to [11, 16, 19] for an exahustive pre-
sentation of the method for what concerns theoretical properties, algebraic formulation, and
algorithmic aspects.
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We consider two a-priori independent families of triangulations T1,h in Ω1 and T2,h
in Ω2, respectively, characterized by different mesh-sizes h1 and h2. This means that the
meshes in Ω1 and in Ω2 can be non-conforming on Γ . The elements can be either simplices
(triangles if d = 2 or tetrahedra if d = 3) or quads (i.e. quadrilaterals if d = 2 or hexahe-
dra if d = 3). Moreover, different polynomial degrees p1 and p2 can be used to define the
finite element spaces on T1,h and T2,h. Inside each subdomain Ωk we assume that the tri-
angulations Tk,h are regular and quasi-uniform [25, Chapter 3]. Moreover, we assume that
they are affine when simplices are considered. We denote by Γ1 and Γ2 the internal bound-
aries of Ω1 and Ω2, respectively, induced by the triangulations T1,h and T2,h. If Γ is flat,
then Γ1 = Γ2 = Γ , otherwise Γ1 and Γ2 can be different. The finite element approximation
spaces (for k = 1, 2) are

Xk,h =
{
v ∈ C0(Ωk) : v|Tm ∈ Qpk

, ∀Tm ∈ Tk,h

}
,

Vk,h = Xk,h ∩ Vk, V 0
k,h = Xk,h ∩ V 0

k ,

where Qpk
= Ppk

if the Tm are simplices and Qpk
= Qpk

◦ F−1
Tm

if the Tm are quads; the
corresponding spaces of traces on the interfaces are

Yk,h = {λ = v|Γk
, v ∈ Xk,h} and Λk,h = {λ = v|Γk

, v ∈ Vk,h}.
In order to exchange information between the two independent grids on the interface Γ ,

we introduce two independent interpolation operators:

Π12 : Y2,h → Y1,h and Π21 : Y1,h → Y2,h (9)

that are going to interpolate the derivatives and traces from one interface to the other one.
These arguments apply both in two and three dimensions.

When Γ1 and Γ2 coincide, then Π12 and Π21 are the classical Lagrange interpolation
operators (see [11, 16]), otherwise Π12 and Π21 can be defined as the Rescaled Localized
Radial Basis Function (RL-RBF) interpolation operators introduced in formula (3.1) of [12]
(see also [19, Sect. 2.2.2]).

Obviously, in the conforming case for which Γ1 = Γ2, h1 = h2 and p1 = p2, the
interpolation operators Π12 and Π21 are the identity operator.

The Internodes method applied to (1) reads: find u1,h ∈ V1,h and u2,h ∈ V2,h, such that
⎧
⎪⎨

⎪⎩

ak(uk,h, vk,h) = Fk(vk,h) ∀vk,h ∈ V 0
k,h, k = 1, 2

u2,h = Π21u1,h on Γ2,

r1,h + Π12r2,h = 0 on Γ1,

(10)

where for k = 1, 2, rk,h ∈ Y ′
k,h(= Yk,h) is the so-called residual at the interface Γk , and it

is defined starting from the solutions uk,h as follows:

– set the real values

rk,i = ak

(
uk,h,Rkμ

(k)
i

)
− Fk

(
Rkμ

(k)
i

)
, i = 1, . . . nk, (11)

where {μ(k)
i }nk

i=1 is the Lagrange basis in Yk,h and Rkμ
(k)
i ∈ Xk,h is the finite element

extension to Ωk of μ
(k)
i ∈ Yk,h (that is the function in Xk,h that is null at all nodes of

Tk,h not belonging to Γk and that coincides with μ
(k)
i on Γk),

– define the functions

rk,h =
nk∑

i=1

rk,iΦ
(k)
i , (12)



S. Deparis, P. Gervasio

where {Φ(k)
i }nk

i=1 is the canonical dual basis of the Lagrange primal basis {μ(k)
i }nk

i=1, i.e.,
satisfying

〈
Φ

(k)
i , μ

(k)
j

〉
=
(
Φ

(k)
i , μ

(k)
j

)

L2(Γk)
= δij .

We remark that the expansion (12) with respect to the dual basis is not suitable to apply the
Lagrange interpolation, but in order to interpolate rk,h we have to write it with respect to the
primal basis. This is possible because Y ′

k,h and Yk,h are the same algebraic space [8]. The
matrix that realizes the change from the primal basis to the dual one is the interface mass
matrix MΓk

whose entries are

(MΓk
)ij =

(
μ

(k)
j , μ

(k)
i

)

L2(Γk)
; i, j = 1, . . . , nk, (13)

conversely, M−1
Γk

realizes the change from the dual to the primal expansion.

Denoting by r(k)
Γ the array whose entries are the values rk,i , we define the array

z(k)
Γ = M−1

Γk
r(k)
Γ

whose entries are denoted by zk,j for j = 1, . . . , nk .
Then the primal expansion of the residual function rk,h reads

rk,h =
nk∑

j=1

zk,jμ
(k)
j ,

and we are going to apply the interpolation to it.

Remark 2 If Assumption 1 are not satisfied and Dirichlet conditions are imposed on the part
of ∂Ω matching the boundary of the interface Γ , then formula (11) must be replaced by

rk,i = ak

(
uk,h,Rkμ

(k)
i

)
− Fk

(
Rkμ

(k)
i

)
−
∫

Gk

ν
∂uk,h

∂nk

Rkμ
(k)
i , (14)

where Gk = ∂Ωk \ (Γk ∪ ∂Ωk,N ).
Formula (14) is justified as follows. When a Lagrange basis function μ

(k)
i is associated

with a node xi belonging to the boundary of the interface, its extension Rkμ
(k)
i is indeed

also not null on a part of the external boundary ∂Ωk \ Γk . Thus, by integrating by parts
ak(uk,h,Rkμ

(k)
i ) and bearing in mind that rk,h must be an approximation of the normal

derivative of uk,h on Γk , we obtain (14).

3.1 Algebraic Form of Internodes

Using standard notations for finite elements, we denote by A(k) the stiffness matrix
associated with the bilinear form ak and we decompose it into the 2 × 2 block-wise form

A(k) =
[

A
(k)
II A

(k)
IΓ

A
(k)
Γ I A

(k)
Γ Γ

]

reflecting the partition of the degrees of freedom (d.o.f.) between internal (I ) and on the
interface (Γ ). (Notice that the set I in fact includes also Neumann d.o.f..) Similarly, we
define the array f(k) associated with the functional Fk and we split it into the “internal” f(k)

I

and “interface” part f(k)
Γ .
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Then let u(k)
I and u(k)

Γ be the arrays of the d.o.f. in Ωk \ Γk and on Γk , respectively,

while r(k)
Γ is the array of the interface residual introduced before. Finally, let P12 and P21

the matrices associated with the interface interpolation operators Π12 and Π21, respectively,
introduced in (9).

The algebraic form of the Internodes method reads: find u(1) =
[
u(1)

I

u(2)
Γ

]

and u(2) =
[
u(2)

I

u(2)
Γ

]

solutions of

⎧
⎪⎪⎨

⎪⎪⎩

A
(k)
II u

(k)
I + A

(k)
IΓ u

(k)
Γ = f(k)

I for k = 1, 2,

u(2)
Γ = P21u

(1)
Γ ,

r(1)
Γ + MΓ1P12M

−1
Γ2

r(2)
Γ = 0.

(15)

If the meshes are conforming at the interface, then the interpolation matrices P12 and P21
are in fact the identity matrix and MΓ2 = MΓ1 . It follows that the Internodes method (15)
reduces to ⎧

⎪⎪⎨

⎪⎪⎩

A
(k)
II u

(k)
I + A

(k)
IΓ u

(k)
Γ = f(k)

I for k = 1, 2,

u(2)
Γ = u(1)

Γ ,

r(1)
Γ + r(2)

Γ = 0

(16)

that is nothing else the algebraic form of a classical substructuring method on two
subdomains (see [26, 28]).

3.2 Accuracy of the Internodes Method

Under the assumptions that problem (1) is well posed (see, e.g., [25]), the convergence
analysis of the Internodes method with respect to the mesh sizes h1 and h2 is carried out in
[16]. More precisely, let

uh =
{

u1,h in Ω1,

u2,h in Ω2

denote the Internodes solution and let u ∈ H 1
0,∂ΩD

(Ω) be the solution of the weak
monodomain formulation

∫

Ω

(ν∇u · ∇v + γ uv) =
∫

Ω

f v +
∫

∂ΩN

gNv ∀v ∈ H 1
0,∂ΩD

(Ω)

of problem (1).
We define the broken-norm error

‖u − uh‖∗ =
⎛

⎝
∑

k=1,2

‖u − uh‖2H 1(Ωk)

⎞

⎠

1/2

. (17)

Let uλ
k be the the weak harmonic extension of λ to Ωk , i.e. the solution of the problem

uλ
k ∈ Vk : ak(u

λ
k , v) = 0 ∀v ∈ V 0

k , uλ
k = λ on Γ,

and ûk be the solution in Ωk of the elliptic problem with null trace on the interface, i.e.

ûk ∈ V 0
k : ak(̂uk, v) = (f, v)L2(Ωk)

∀v ∈ V 0
k .

Thanks to the linearity of the problem, when λ = u|Γ we have uk = uλ
k +ûk for k = 1, 2.
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The following convergence result has been proved in [16, Theorems 8 and 10] in the
case that Γ is a flat interface and the interpolation operators Π12 and Π21 are based on the
Lagrange interpolation.

Theorem 1 Assume that the weak solution u of the monodomain elliptic problem belongs
to Hs(Ω), for some s > 3/2, that λ = u|Γ ∈ Hσ (Γ ) for some σ > 1 and that r2 =
∂L2u2 ∈ Hτ (Γ ) for some τ > 0. Then there exist q ∈ [1/2, 1[, z ∈ [3/2, 2[, and a constant
c > 0 independent of both h1 and h2 s.t.

‖u − uh‖∗ ≤ c
{(

h
�1−1/2
1

(
1 + (h2/h1)

q
)+ h

�2−1/2
2

)
‖λ‖Hσ (Γ )

+
∑

k=1,2

h
�k−1
k

(‖uk‖Hs(Ωk) + uλ
k‖Hs(Ωk) + ‖ûk‖Hs(Ωk)

)

+
[
αh

ζ1+1/2
1 + (1 + (h1/h2)

z
)
h

ζ2+1/2
2

]
‖r2‖Hτ (Γ )

}
, (18)

where, for k = 1, 2, �k = min(s, pk +1), �k = min(σ, pk +1), ζk = min(τ, pk +1), α = 1
if τ > 1 and α = 0 otherwise.

Moreover, denoting by E the right-hand side of (18), Theorem 8 of [16] ensures that
∑

k=1,2

‖λ − λk,h‖H 1/2(Γ ) + ‖r2 − r2,h‖H−1/2(Γ ) ≤ E, (19)

where λk,h = uk,h|Γ are the traces on Γk of the discrete (non-conforming) solution.
When the the ratio h2/h1 is uniformly bounded from below and above (i.e., the two

mesh-sizes h2 and h1 vanish with the same rate), this result guarantees that the Internodes
method exhibits optimal accuracy, i.e., the broken-norm error behaves like the maximum
between the energy-norm local errors in the two subdomains.

Indeed, by applying standard trace results on polyhedral domains (see, e.g., [21, Theo-

rem 1.4.1]), we have that λ ∈ Hs− 1
2 (Γ ) and r2 ∈ Hs− 3

2 (Γ ) and we can take σ = s − 1
2 and

τ = s − 3
2 in (18). It follows that ρk = min{s − 1

2 , pk + 1} and ζk = min{s − 3
2 , pk + 1}

and the minimum exponent among �k − 1, ρk − 1
2 , and ζk + 1

2 is �k − 1.
Denoting by C = C(u) a positive constant depending on the exact solution u (and

then also on the trace λ and the conormal derivative r2) but independent of h1 and h2, and
recalling that we take h2/h1 uniformly bounded from below and above, we have

E ≤ C
∑

k=1,2

(

h
ρk− 1

2
k + h

�k−1
k + h

ζk+ 1
2

k

)

≤ C
∑

k=1,2

h
�k−1
k .

Thus, (18) and (19) can be summarized as

‖u − uh‖∗ +
∑

k=1,2

‖λ − λk,h‖H 1/2(Γ ) + ‖r2 − r2,h‖H−1/2(Γ ) ≤ C
(
h

�1−1
1 + h

�2−1
2

)
. (20)

Remark 3 Theorem 1 expresses the convergence order of the Internodes method with
respect to the mesh sizes h1 and h2, but not with respect to the local polynomial degree
p. The convergence with respect to p is showed numerically in Section 5, its analysis is in
progress.
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4 Conservation Properties

Let us consider the balance conditions (5)–(8). We are interested in analyzing the discrete
counterparts of T F , T W , T Fa and T Wa in order to measure the conservation properties
of a non-conforming domain decomposition method like Internodes. As a matter of fact,
it is not guaranteed that all such discrete counterparts are null, even when the meshes are
conforming on Γ and the polynomial degrees coincide in the two subdomains.

Let EΓk
be the set of the edges of the elements in Tk,h that belong to Γk (see Fig. 2) and

define

T Fh =
∑

e∈EΓ1

∫

e

ν
∂u1,h

∂n1
+
∑

e∈EΓ2

∫

e

ν
∂u2,h

∂n2
,

T Wh =
∑

e∈EΓ1

∫

e

ν
∂u1,h

∂n1
u1,h +

∑

e∈EΓ2

∫

e

ν
∂u2,h

∂n2
u2,h,

T Fa,h =
∑

k=1,2

[
ak(uk,h,Rk1) − Fk(Rk1)

]
,

T Wa,h =
∑

k=1,2

[
ak(uk,h, uk) − Fk(uk)

]
,

where uk = Rk(uk,h|Γk
) is the finite-element extension of uk,h|Γk

to Ωk .
Although the identities T F = T Fa and T W = T Wa are guaranteed at the con-

tinuous level, analogous identities are no longer valid at the discrete level. Indeed, by
counter-integrating by parts both T Fa,h and T Wa,h, we obtain

T Fa,h = T Fh +
∑

k=1,2

Bk(uk,h,Rk1), T Wa,h = T Wh +
∑

k=1,2

Bk(uk,h, uk),

Fig. 2 The triangulation in Ωk and the sets ωk (light blue region), Ek (blue edges), Ek,N (green edges), and
EΓk

(red edges)



S. Deparis, P. Gervasio

where

Bk(uk,h, μk) =
∑

T ∈ωk

∫

T

(Luk,h − f )μk +
∑

e∈Ek

∫

e

[[ν∇uk,h]]μk

+
∑

e∈Ek,N

∫

e

(

ν
∂uk,h

∂nk

− gN

)

μk, (21)

μk = Rkμk,h is the finite-dimensional extension to Ωk of any μk,h ∈ Yk,h, [[w]] = w+ ·
n+ +w− ·n− (following the standard notation of Discontinuous Galerkin methods), Ek,N is
the set of the edges of the elements in Tk,h that belong to ∂Ωk,N , ωk is the set of elements in
Tk,h having an edge on Γk , and Ek is the set of the edges internal to Ωk (see Fig. 2). Notice
that the finite element extensionRkμk,h is null on the blue edges that are not internal to ωk .

4.1 Algebraic Form of TFa,h and TWa,h

The terms T Fa,h and T Wa,h are strictly connected with the residual arrays r(k)
Γ introduced

in Section 3, and they can be easily computed by algebraic operations as follows [10]. We
denote by 1(k) the array of size nk whose entries are all equal to 1. It holds:

(1(k))T r(k)
Γ =

nk∑

i=1

rk,i = ak(uk,h,Rk1) − Fk(Rk1),

(u(k)
Γ )T r(k)

Γ =
nk∑

i=1

uΓk,irk,i = ak(uk,h, uk) − Fk(uk),

where we have exploited definition (11), the fact that the Lagrange basis functions μ
(k)
i of

Yk,h satisfy the unity partition property, i.e.,
∑nk

i=1μ
(k)
i ≡ 1, and that uk = Rk(uk,h|Γk

).
It follows that

T Fa,h = (1(1))T r(1)
Γ + (1(2))T r(2)

Γ , T Wa,h = (u(1)
Γ )T r(1)

Γ + (u(2)
Γ )T r(2)

Γ .

Thus, it turns out very convenient to measure the conservation properties of a method by
evaluating T Fa,h and T Wa,h by using these algebraic relations.

4.1.1 The Mortar Method

By adopting similar notations used to write the algebraic form (15) of the Internodes
method, we write the algebraic counterpart of the Mortar method, which, instead to
interpolate the trace and the normal derivative at the interface, is based on a projection
process.

To this aim, let us denote by P̃ the matrix implementing the projection of the trace from
the interface Γ1 to Γ2. Then we notice that Mortar is a symmetric method, in the sense that
the operator used to move from Γ2 to Γ1 is the transposed operator of P̃ .

The algebraic form of Mortar reads:
⎧
⎪⎨

⎪⎩

A
(k)
II u

(k)
I + A

(k)
IΓ u

(k)
Γ = f(k)

I for k = 1, 2,

u(2)
Γ = P̃u(1)

Γ ,

r(1)
Γ + P̃ T r(2)

Γ = 0.

(22)



Conservation of Forces and Total Work at the Interface...

Since the projection matrix P̃ satisfies the property P̃11 = 12 (this means that a constant
function on Γ1 is mapped on the same constant function on Γ2), the identities

T Fa,h =
∑

k=1,2

(1(k))T r(k)
Γ = 0 and T Wa,h =

∑

k=1,2

(u(k))T r(k)
Γ = 0 (23)

immediately follow from (22)2,3.

4.1.2 The Internodes Method

On the contrary the Internodes method is not symmetric, since the two intergrid matrices
P21 and MΓ1P21M

−1
Γ2

are not one the transpose of the other, thus there is no way that (23)
are exactly satisfied by Internodes, but in the next Section we will prove that both T Fa,h

ans T Wa,h provided by Internodes go to zero like the broken-norm error when h1, h2 tend
to zero with the same rate. Clearly this result is weaker than (23), nevertheless we know
that the broken-norm error of the Internodes method behaves like that of the Mortar method
[16], and numerical results (see Section 5) show that T Fh and T Wh behave in the same
manner for Internodes and Mortar methods.

Thus the question is: Are (23) necessary and sufficient conditions to guarantee that a
method is conservative and, not less important, accurate?

We state that T Fa,h = 0 and T Wa,h = 0 alone do not guarantee that the coupling method
one is using is convergent. This is the case of the Weighted Average Continuity Approach
(WACA) proposed in [10, Sect. 3.5].

4.1.3 WACA

WACA can be formulated like (22), but with the matrix P̃ replaced by M−1
Γ2

S2P21S
−1
1 MΓ1 ,

where MΓk
are the interface mass matrices defined in (13), P21 is the interpolation matrix

associated with the interpolation operator Π21 (see (9)), while Sk is the lumped interface
mass matrix1 on Γk . In view of the symmetry of WACA (like for Mortar), the identities (23)
are satisfied.

However, when the discretization in almost one subdomain is based on Qp Spectral Ele-
ment Methods with Numerical Integration (SEM–NI), in virtue of the fact the SEM–NI
mass matrix is diagonal, we have that Sk = MΓk

and P̃ = P21, so that WACA method coin-
cides with the so-called pointwise matchingmethod that was presented in the seminal mortar
paper [6, eqs. (3.5)–(3.7)] and that is notoriously sub-optimal, as proven in [6, Sect. 3.2]
and numerically corroborated in [2] for spectral elements discretizations (see also Fig. 5).

4.2 Analysis of Conservation Properties

So far, set h = max{h1, h2} and let us give the following definition of conservation for a
multidomain approach.

Definition 1 A multidomain approach is conservative at least of order q with respect to h

if |T Fh|, |T Wh|, |T Fa,h| and |T Wa,h| are O(hq) when h tends to zero.2

1It holds that (Sk)ii = ∫

Γk
ϕi(x)dx = ∑

j (MΓk
)ij

2We recall that f (h) = O(hq) when h → 0, if there exists a positive constant c independent of h such that
|f (h)| ≤ chq when h → 0.
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4.2.1 Analysis of Conservation Properties of the Internodes Method

The following theorems ensure that the discrete total force T Fh and T Fa,h and the discrete
total work T Wh and T Wa,h converge to zero as optimally as the broken-norm error (20) and
then, that the Internodes method is conservative of the same order of the broken-norm error.

In the whole Section make the following assumption.

Assumption 2 Let us assume that the discretisation of the interface Γ is geometrically
conforming, i.e., ∪e∈EΓ1

e = ∪e∈EΓ2
e = Γ and that the intergrid operators Π12 and Π21 are

based on the Lagrange interpolation. We also assume that there exist two positive constants
c1 and c2 such that c1 ≤ h1/h2 ≤ c2 when h1, h2 → 0.

Remark 4 When the interfaces are not geometrically conforming, we have two difficulties
in analysing the conservation properties: first we should be able to quantify the non-
conformity of geometric type (and this is not often possible), second we should have conver-
gence estimates of the Internodes method when RBF interpolation instead of Lagrange inter-
polation is used, and we do not have it. We notice that, for high polynomial degree p (typ-
ically when p ≥ 5), the RBF interpolation does not always exploit the same convergence
order of the Lagrange interpolation and this can downgrade the accuracy of the Internodes
method.

Theorem 2 Let Assumptions 1 and 2 be satisfied. If u ∈ Hs(Ω) with s > 3/2, then there
exists a positive constantC depending on the data (the domain and the coefficient functions)
and on the exact solution u, but independent of h1 and h2 such that3

|T Fh| ≤ C
(
h

�1−1
1 + h

�2−1
2

)
, and |T Wh| ≤ C

(
h

�1−1
1 + h

�2−1
2

)
,

where, for k = 1, 2, �k = min(s, pk + 1), where pk is the polynomial degree in the domain
Ωk .

Proof First we analyse T Fh. Since ∪e∈EΓk
e for k = 1, 2, and n1 = −n2, we have

T Fh =
∑

e∈EΓ1

∫

e

ν
∂u1,h

∂n1
+
∑

e∈EΓ2

∫

e

ν
∂u2,h

∂n2

=
∫

Γ

ν
∂u1,h

∂n1
+
∫

Γ

ν
∂u2,h

∂n2

=
∫

Γ

ν
∂u1,h

∂n1
−
∫

Γ

ν
∂u

∂n1
−
∫

Γ

ν
∂u

∂n2
+
∫

Γ

ν
∂u2,h

∂n2

=
∫

Γ

ν
∂
(
u1,h − u

)

∂n1
+
∫

Γ

ν
∂
(
u2,h − u

)

∂n2
.

3From now on, let C denote a constant with the aforementioned properties, but it may be different from time
to time.
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From Cauchy–Schwarz inequality and the trace theorem for polygons and polyhedra [21,
27], we have that

|T Fh| ≤ ‖ν‖L∞(Ω)|Γ |
∑

k=1,2

∥
∥
∥
∥
∥

∂
(
uk,h − u

)

∂nk

∥
∥
∥
∥
∥

H−1/2(Γ )

≤ C
∑

k=1,2

‖uk,h − u‖H 1(Ωk)
≤ CE.

The proof for T Wh needs few more steps and is based on similar arguments:

T Wh =
∑

e∈EΓ1

∫

e

ν
∂u1,h

∂n1
u1,h +

∑

e∈EΓ2

∫

e

ν
∂u2,h

∂n2
u2,h

=
∫

Γ

ν
∂u1,h

∂n1
u1,h +

∫

Γ

ν
∂u2,h

∂n2
u2,h −

∫

Γ

ν
∂u

∂n1
u −

∫

Γ

ν
∂u

∂n2
u

=
∑

k=1,2

[∫

Γ

ν
∂uk,h

∂nk

uk,h −
∫

Γ

ν
∂u

∂nk

uk,h +
∫

Γ

ν
∂u

∂nk

uk,h −
∫

Γ

ν
∂u

∂nk

u

]

=
∑

k=1,2

[∫

Γ

ν

(
∂uk,h

∂nk

− ∂u

∂nk

)

uk,h +
∫

Γ

ν
∂u

∂nk

(
uk,h − u

)
]

.

Thanks to the trace theorem for Sobolev spaces and the triangle inequality, we also have that

‖uk,h‖H 1/2(Γ ) ≤ c‖uk,h‖H 1(Ωk)
≤ c

(‖uk,h − u|Ωk
‖H 1(Ωk)

+ ‖u|Ωk
‖H 1(Ωk)

)

≤ (ch
�k−1
k + 1)‖u|Ωk

‖H 1(Ωk)
≤ (ch

�k−1
k + 1)‖u‖H 1/2(Γ ), (24)

where c is a positive constant depending on Ωk but independent of u. Then, recalling that
λ = u|Γ and λk,h = (uk,h)|Γ , exploiting again the trace inequality and the estimate (18),
when h1, h2 → 0 we get

|T Wh| ≤ C
∑

k=1,2

⎡

⎣

∥
∥
∥
∥
∥

∂
(
uk,h − u

)

∂nk

∥
∥
∥
∥
∥

H−1/2(Γ )

‖u‖H 1/2(Γ )

+
∥
∥
∥
∥

∂u

∂nk

∥
∥
∥
∥

H−1/2(Γ )

‖λk,h − λk‖H 1/2(Γ )

]

≤ C
∑

k=1,2

[

‖uk,h − u‖H 1(Ωk)
‖u‖H 1/2(Γ ) +

∥
∥
∥
∥

∂u

∂nk

∥
∥
∥
∥

H−1/2(Γ )

‖uk,h − u‖H 1(Ω)

]

≤ C E.

The proof is completed.

Now we are going to analyse the terms T Fa,h and T Wa,h. To this aim, we exploit the
results proved in [16] after reformulating the problem (4) like a three fields problem as
follows.
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Let λ1 and λ2 ∈ Λ represent the (a-priori) different traces of u1 and u2 on Γ and r2 ∈ Λ′
the conormal derivative ν∂u2

∂n2
on Γ , then problem (4) is equivalent to looking for λ1 ∈ Λ,

λ2 ∈ Λ, and r2 ∈ Λ′ s.t. (see [16, Theorem 2])
⎧
⎪⎪⎨

⎪⎪⎩

∑

k=1,2

ak(u
λk

k ,Rkμk) + 〈r2, μ1 − μ2〉 =
∑

k=1,2

[(f,Rkμk)L2(Ωk)
− ak(̂uk,Rkμk)]

∀(μ1, μ2) ∈ Λ × Λ,

〈t, λ1 − λ2〉 = 0 ∀t ∈ Λ′,
(25)

where 〈·, ·〉 denotes the duality between Λ and Λ′.
Similarly (see [16, Theorem 3]), the Internodes problem (10) can be written in an equiva-

lent formulation with 3 fields λ1,h ∈ Λ1,h, λ2,h ∈ Λ2,h, and r2,h ∈ Λ′
2,h that are the discrete

counterparts of λ1, λ2 and r2, respectively, as follows: find λ1,h ∈ Λ1,h, λ2,h ∈ Λ2,h, and
r2,h ∈ Λ′

2,h s.t.
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑

k=1,2

ak(Hkλk,h,Rkμk,h) + 〈Π12r2,h, μ1,h〉 − 〈r2,h, μ2,h〉

=
∑

k=1,2

[
(f,Rkμk,h)L2(Ωk)

− ak(Ûk,Rkμk,h)
]

∀(μ1,h, μ2,h) ∈ Λ1,h × Λ2,h,

〈t2,h, λ2,h − Π21λ1,h〉 = 0 ∀t2,h ∈ Λ′
2,h,

(26)

whereHkλk,h is the discrete counterpart of uλ
k and Ûk is the discrete counterpart of ûk .

For any (μ1,h, μ2,h) ∈ Λ1,h × Λ2,h, we define

Ta,h(μ1,h, μ2,h) =
∑

k=1,2

[
ak(uk,h,Rkμk,h) − Fk(Rkμk,h)

]

and, in view of (26)1 and the fact that uk,h = Hkλk,h + Ûk , it holds

Ta,h(μ1,h, μ2,h) = 〈r2,h, μ2,h〉 − 〈Π12r2,h, μ1,h〉,
and we have

T Fa,h = Ta,h(1, 1), T Wa,h = Ta,h(u1,h|Γ , u2,h|Γ ).

It is useful to define also

Ta(μ1, μ2) =
∑

k=1,2

[
ak(uk,Rkμk) − Fk(Rkμk)

]

for any (μ1, μ2) ∈ Λ×Λ. In view of (25)1 and the fact that uk = uλ
k + ûk , we can also write

Ta(μ1, μ2) = 〈r2, μ2 − μ1〉
and notice that

T Fa = Ta(1, 1), T Wa = Ta(u1|Γ , u2|Γ ).

In the next theorem we are going to prove that |T Fa,h| and |T Wa,h| behave like the
broken-norm error (20) when h1/h2 is uniformly bounded from below and above.

Theorem 3 Under the assumptions of Theorem 2, there exists a positive constantC depend-
ing on the data (the domain and the coefficient functions) and on the exact solution u, but
independent of h1 and h2 such that

|T Fa,h| ≤ C
(
h

�1−1
1 + h

�2−1
2

)
, and |T Wa,h| ≤ C

(
h

�1−1
1 + h

�2−1
2

)
.
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Proof Recalling that Ta(μ1, μ2) = 0 for any (μ1, μ2) ∈ Λ × Λ, it holds

|Ta,h(μ1,h, μ2,h)| = |Ta(μ1, μ2) − Ta,h(μ1,h, μ2,h)|
= |〈r2, μ1 − μ2〉 − 〈Π12r2,h, μ1,h〉 + 〈r2,h, μ2,h〉|(±〈r2, μ1,h − μ2,h〉)
≤
∑

k=1,2

|〈r2, μk − μk,h〉| + |〈r2 − r2,h, μ2,h〉| + |〈r2 − Π12r2,h, μ1,h〉|.

Because we are interested in bounding |T Fa,h| and |T Wa,h| (that is μ1,h = μ2,h = 1
in the first case and μk,h = λk,h = uk,h|Γk

in the second one), when μ1,h = μ2,h = 1 we
choose μ1 = μ2 = 1, while when μk,h = λk,h = uk,h|Γk

we choose μk = λ = u|Γ . We
bound each term as follows:

• First we apply the Cauchy–Schwarz inequality
∑

k=1,2

|〈r2, μk − μk,h〉| ≤ ‖r2‖H−1/2(Γ )

(‖μ1 − μ1,h‖H 1/2(Γ ) + ‖μ2 − μ2,h‖H 1/2(Γ )

)
.

Now, if μ1,h = μ2,h = 1 (and μ1 = μ2 = 1), the left-hand side of the previous formula
is null; on the other hand, if μk,h = λk,h = uk,h|Γk

(and μk = λ = u|Γ ), by applying
(20), we have

∑

k=1,2

|〈r2, λk − λk,h〉| ≤ C
(
h

�1−1
1 + h

�2−1
2

)
.

Notice that r2 is related to the exact solution u and its norm is included in the constant
C.

• By applying the Cauchy–Schwarz inequality and (20) it holds

|〈r2 − r2,h, μ2,h〉| ≤ ‖r2 − r2,h‖H−1/2(Γ )‖μ2,h‖H 1/2(Γ )

≤ C
(
h

�1−1
1 + h

�2−1
2

)
‖μ2,h‖H 1/2(Γ ).

If μ2,h = 1, then ‖μ2,h‖H 1/2(Γ ) is the measure of Γ ; while if μ2,h = u2,h|Γ2 , by
applying (24) we can conclude

|〈r2 − r2,h, μ2,h〉| ≤ C
(
h

�1−1
1 + h

�2−1
2

)
.

• Let t2 = πh2r2 denote the L2-projection of r2 onto Y2,h. By applying the triangle
inequality it holds

|〈r2 − Π12r2,h, μ1,h〉| ≤ |〈r2 − t2, μ1,h〉| + |〈t2 − Π12t2, μ1,h〉|
+|〈Π12(t2 − r2,h), μ1,h〉|.

We examine each term in the right-hand side of the previous inequality:

– by Cauchy–Schwarz inequality and the projection error [16, (115)] it holds

|〈r2 − t2, μ1,h〉| ≤ ‖r2 − t2‖H−1/2(Γ )‖μ1,h‖H 1/2(Γ )

≤ ch
ζ2+1/2
2 ‖r2‖Hτ (Γ )‖μ1,h‖H 1/2(Γ ),

where ζ2 has been introduced in Theorem 1.
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– by interpreting the duality 〈t2 − Π12t2, μ1,h〉 as L2-product on Γ (both terms
are finite dimensional) and applying the same arguments used in the proof of
Theorem 10 of [16], we have

|〈t2 − Π12t2, μ1,h〉| ≤ ch
1/2
1 ‖t2 − Π12t2‖L2(Γ )‖μ1,h‖L2(Γ )

≤ ch
1/2
1

(

αh
ζ1+1/2
1 +

(

1+
(

h1

h2

)z)

h
ζ2+1/2
2

)

‖r2‖Hτ (Γ )‖μ1,h‖L2(Γ )

(by (18), (20), and (24))

≤ C
(
h

�1−1
1 + h

�2−1
2

)
,

where α and z have the same meaning as in (18);
– denoting by Π∗

12 the adjoint operator of Π12, by the fact that c = ‖Π∗
12‖ =

‖Π12‖ and thanks to Lemma 5 of [16], we have

|〈Π12(πh2r2 − r2,h), μ1,h〉| = |〈πh2r2 − r2,h, Π
∗
12μ1,h〉|

≤ c‖πh2r2 − r2,h‖H−1/2(Γ )‖μ1,h‖H 1/2(Γ ).

Now we apply the triangle inequality to ‖πh2r2 − r2,h‖H−1/2(Γ ):

‖πh2r2 − r2,h‖H−1/2(Γ ) ≤ ‖r2 − r2,h‖H−1/2(Γ ) + ‖r2 − πh2r2‖H−1/2(Γ )

and by exploiting again the projection error [16, (115)], (20), (18) and (24),
we can conclude that

|〈Π12(πh2 r2 − r2,h), μ1,h〉| ≤ C
(
h

ζ2+1/2
2 ‖r2‖Hτ (Γ )

+h
1/2
1

(

αh
ζ1+1/2
1 +

(

1 +
(

h1

h2

)z)

h
ζ2+1/2
2

)

‖r2‖Hτ (Γ )

+
(
h

�1−1
1 + h

�2−1
2

)
‖μ1,h‖H 1/2(Γ )

)

≤ C
(
h

�1−1
1 + h

�2−1
2

)
.

Finally, by summing up all terms the thesis follows.

The following theorem is an immediate consequence of Theorems 2 and 3.

Theorem 4 Set � = min{�1, �2} and h = max{h1, h2}, under the assumptions of Theo-
rem 2, the Internodes method is conservative up to order q = � − 1, that is the order of the
broken-norm error.

We can also formulate an upper bound for the forms Bk defined in (21):

Corollary 1 Under the assumptions of Theorem 2, it holds

Bk(uk,h, 1) = O(h�−1) and Bk(uk,h, uk,h) = O(h�−1) for k = 1, 2.

5 Numerical Results

The numerical results of this section corroborate the theoretical results proved above,
that is the Internodes method is conservative of order q = � − 1 (see Theorem 4).
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We consider here both 2D and 3D test cases with either geometric conformity and non-
conformity at the interface. The non-conforming geometric case is not covered by the
theory but the numerical results are however consistent with the geometric conforming
situation.

In all cases we compare the quantities |T Fh|, |T Fa,h|, |T Wh| and |T Wa,h| with the
broken-norm error (see (17)) and the L2 error ‖u − uh‖L2(Ω). Moreover, for the first test
case we compare Internodes with the Mortar method in terms of accuracy and conservation
properties. We show that T Fh and T Wh behave like O(hp) for both Mortar and Internodes
(exactly as the broken-norm errors do); that |T Fa,h| and |T Wa,h| are O(hp) for Internodes
and null up to the machine precision for both Mortar and WACA.

In the whole section we set h = max{h1, h2}.

5.1 Test Case #1: d = 2, Flat Interface (Geometric Conformity)

Let us set the domainΩ = (0, 2)×(0, 1) and the coefficients ν = γ = 1; the right-hand side
f and the boundary datum gN are such that the exact solution is u(x, y) = (2x + 1)(2y +
1) sin(xπ/2) sin(πy). Then we decompose Ω into the subdomains Ω1 = (0, 1) × (0, 1)
and Ω2 = (1, 2) × (0, 1), so that the interface is Γ = {1} × (0, 1). Neumann boundary
conditions are imposed on the horizontal sides of Ω and homogeneous Dirichlet boundary
conditions are imposed elsewhere.

In Fig. 3 we compare Internodes with the Mortar method, more precisely we consider
P1 fem in both subdomains of size h1 = 1/(2k − 1) and h2 = 1/k with k = 10, . . . , 20,
so that the mesh is finer in the domain Ω1. The two approaches provide very similar
errors (broken and L2-norms), also the quantities |T Fh| and |T Wh| are very similar and
we have

|T Fh| ∼ |T Wh| ∼ ‖u − uh‖∗ = O(h), ‖u − uh‖L2(Ω) = O(h2).

As anticipated in Section 4, the quantities |T Fa,h| and |T Wa,h| behave like O(h) for the
Internodes method while they are about the machine precision for the the Mortar method.
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Fig. 3 Test case #1. Internodes (left) and Mortar (right), flat interface, P1, finer discretization in Ω1. T Fa,h

and T Wa,h are about machine precision for Mortar
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Fig. 4 Test case #1. Internodes (left) and Mortar (right), flat interface, Q3, finer discretization in Ω1. T Fa,h

and T Wa,h of Mortar are about machine precision

In Fig. 4 we compare Internodes with Mortar as before, but now by taking p = p1 =
p2 = 3, thus Q3–SEM–NI are employed in each subdomain. Numerical results show that

|T Fh| ∼ |T Wh| ∼ ‖u − uh‖∗ = O(h3), ‖u − uh‖L2(Ω) = O(h4).

The quantities |T Fa,h| and |T Wa,h| behave like O(h3) for the Internodes method while,
again, they are about the machine precision for the Mortar method.

The different behaviour of T Fa,h and T Wa,h for the two methods strictly depends on the
way the interface conditions are imposed at the interface, as we have explained in Section 4.

In Fig. 5, the broken-norm and the L2-norm errors, as well as T Fh and T Wh, are shown
for the WACA method [10]. WACA exhibits the same accuracy of Mortar and Internodes
methods when P1 discretization is adopted in both subdomains, while it is sub-optimal for
high-order spectral element discretizations.
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Fig. 5 Test case #1. WACA with P1 (left) and Q3 (right) discretization, flat interface, finer discretization in
Ω1. T Fa,h and T Wa,h are about machine precision
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Fig. 6 Test case #1. Internodes with P1 (left) and Q3 (right) discretization, flat interface, finer discretization
in Ω1

In Figs. 6, 7 and 8 we show the quantities

E
(k)
T F,a =

∣
∣
∣
∣

∫

Γk

∂u

∂nk

− (1(k)
Γ )T r(k)

Γ

∣
∣
∣
∣ ,

E
(k)
T W,a =

∣
∣
∣
∣

∫

Γk

∂u

∂nk

u − (r(k)
Γ )T u(k)

Γ

∣
∣
∣
∣ ,

E
(k)
T F =

∣
∣
∣
∣
∣
∣

∫
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−
∑

e∈EΓk

∫

e
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∣
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∣
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E
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∣
∣
∣
∣
∣
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∫
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∂nk

u −
∑

e∈EΓk

∫

e

∂uk,h

∂nk

uk,h

∣
∣
∣
∣
∣
∣

(27)

for Internodes, Mortar and WACA methods.
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Fig. 7 Test case #1. Mortar with P1 (left) and Q3 (right) discretization, flat interface, finer discretization in
Ω1
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Fig. 8 Test case #1. WACA with P1 (left) and Q3 (right) discretization, flat interface, finer discretization in
Ω1

The values (27) measure how well the contributions from each side of the interface
approximate the force and the work. We notice that for each k = 1, 2 the quan-
tity (1(k)

Γ )T r(k)
Γ approximates

∫

Γk
∂u/∂nk better than

∑
e∈EΓk

∫

e

∂uk,h

∂nk
does and, similarly,

(r(k)
Γ )T u(k)

Γ approximates
∫

Γk
(∂u/∂nk)u better than

∑
e∈EΓk

∫

e

∂uk,h

∂nk
uk,h does.

Notice that T Fa,h = 0 (or T Wa,h = 0) does not imply that the single contribution E
(k)
T F,a

from the side k of the interface is approximated accurately, as in the case of the WACA
method.

Finally, in Fig. 9 we report the errors and the quantities |T Wh|, |T Fh| in the case of a
decomposition that is conforming at the interface, i.e., with mesh-size h = h1 = h2 and
polynomial degree p = p1 = p2. These pictures highlight that T Wh and T Fh are not
null also in the case of conforming decomposition, without however detracting from the
conservation properties of the multidomain approach; more precisely, T Wh and T Fh are
O(hp) when h1, h2 → 0 uniformly. In the conforming case, T Fa,h = T Wa,h = 0 in virtue
of the interface conditions (16)2,3. The two meshes are regular and uniform with k × k

elements in each subdomain, k = 10, 20, . . . , 50 for P1 and k = 8, . . . , 20 for Q3.
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Fig. 9 Test case #1. Conforming decomposition, with P1 (left) and Q3 (right) discretization, flat interface.
T Fa,h and T Wa,h are about machine precision
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Fig. 10 Test case #2. The non-conforming meshes (P1 left and Q3 right)

5.2 Test Case #2: d = 2, Curved Interface (Geometric Non-conformity)

Let C1(0) be the circle of center 0 and ray 1. We set Ω = ((−1.5, 1.5) × (0, 1.5)) \ C1(0)
and ν = γ = 1; moreover, f , gN and gD (gD is the non-homogeneous Dirichlet datum) are
such that the exact solution is u(x, y) = sin(xπ/2 + π/3) sin(πy + π/4). Then we impose
Neumann boundary conditions on the horizontal side of the domain and Dirichlet boundary
conditions elsewhere. The computational domain is split into Ω2 = {x ∈ Ω : |x| < 1} and
Ω1 = Ω \ Ω2, so that the interface is a semicircle (see Fig. 10). First we consider P1 finite
elements in both subdomains of size h1 = 1.5/k and h2 = 1/(k − 1) with k = 10, . . . , 50,
and then Q3 spectral elements in both subdomains of size h1 = 1.5/k and h2 = 1/(k − 1)
with k = 5, . . . , 20. The finer mesh is that in the slave domain Ω2.

For this test case we report numerical results only for the Internodes method (see Fig. 11),
since, with the help of RL-RBF interpolation, Internodes does not feature any additional
difficulty with respect to the case of geometric matching interfaces. On the contrary, the
implementation of Mortar method for curved interfaces is far from trivial: it requires several
steps such as projection, intersection, local meshing and numerical quadrature to build up
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Fig. 11 Test case #2. Internodes, curved interface, P1 (left) and Q3 (right), non-conforming discretization
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Fig. 12 Test case #2. Internodes, curved interface, P1 (left) and Q3 (right), conforming discretization on the
interface

the mortar interface coupling operator. These aspects are carefully addressed in [24] (see in
particular Algorithm 1, Section 3.2.3).

As in the case of flat interface, all the quantities T Fh, T Wh, T Fa,h and T Wa,h are
O(hp) (recall that h = max{h1, h2}), ensuring the conservation properties of the Internodes
method.

Finally in Fig. 12 we show the errors and the quantities |T Wh|, |T Fh|, |T Wa,h|, and
|T Fa,h| when the discretization at the interface is conforming; we notice that |T Wa,h| and
|T Fa,h| are affected by rounding errors, while |T Wh| and |T Fh| are O(hp) as in the non-
conforming case.

5.3 Test Case #3: d = 2, Discontinuous Coefficients andM > 2 Subdomains

Let us consider now the Kellogg’s test case (see, e.g., [17, 23]), in which the function ν

is piece-wise constant and γ = 0. The exact solution can be written in terms of the polar
coordinates r and θ as u(r, θ) = rαμ(θ), where α ∈ (0, 2) is a given parameter, while μ(θ)

is a 2π -periodic continuous function (more regular only when α = 1); see Fig. 13. When

Fig. 13 Test case # 3. The Kellogg’s test case. On the left, the decomposition of Ω into four subdomains. In
the middle, the nonconforming P1 meshes for k = 10. On the right, the Kellogg’s solution with α = 0.4 and
γ1 = 9.472135954999585 computed by INTERNODES and P1
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α �= 1, u ∈ H 1+α−ε(Ω), for any ε > 0; the solution features low regularity at the origin
and its normal derivatives to the axis are discontinuous. The positive value γ1 depends on
α and on two other real parameters σ and ρ. The set {γ1, α, σ, ρ} must satisfy a nonlinear
system (see formula (5.1) of [23]). In particular we fixed ρ = π/4.

We consider here the domain splitting as well as the discretization described in [17],
where the numerical convergence order of the Internodes method has been shown for dif-
ferent values of the parameter α. In [17], the convergence estimate provided by Theorem 1
for two subdomains has been confirmed, although this test case involves four subdomains
instead of two.

Here we show that also the conservation properties of the Internodes method are pre-
served when the problem features discontinuous coefficients. In Fig. 14 we compare the
total force and the total work (in both strong and weak form) with the H 1-broken norm error
and the L2-norm error, for P1 (Q2, resp) discretization in each subdomain when α = 0.6
(α = 1.8, resp.). Recalling that u ∈ H 1+α−ε(Ω), it is useless to consider higher polynomial
degrees.

5.4 Test Case #4: d = 2, M > 2 Subdomains and Conservation Properties vs. p

This is another test case with more than two subdomains in which we show both the con-
vergence and the conservation properties of the Internodes method with respect to the local
polynomial degree p.

The domain Ω = (0, 3)2 is split in five subdomains as in a tatami (see Fig. 15). We
have considered the same polynomial degree p in each subdomain, while the mesh sizes
are all different, as we can evince from the left picture of Fig. 15. In the right picture of
Fig. 15 we show the errors between the Internodes solution and the exact one u(x, y) =
cos((x + y)π/2)(x − 2y), as well as the weak and strong total forces and total works. The
coefficients of the problem are ν = 1 and γ = 0. Dirichlet boundary conditions are imposed
on the whole ∂Ω .

The curves plotted in the right picture of Fig. 15 show that the errors (H 1-broken norm
and L2-norm), as well as the weak and strong total forces and total works decay more
than algebraically with respect to p, as it is typical for spectral elements (or hp-fem)
discretizations.
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Fig. 14 Test case #3. On the left, α = 0.6 and P1 discretization; on the right, α = 1.8 and Q2 discretization.
The subdomains mesh-sizes are: h1 = 1/(k−1), h2 = 1/(k−2), h3 = 1/(k+5) and h4 = 1/k in both cases
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Fig. 15 Test case #4. On the left, the domain splitting (the different colors refer to the different subdomains,
the quads are the elements of the mesh, inside each element there are (p+1)2 nodes) and the non-conforming
meshes. On the right, the errors, the total forces and the total works at the interface vs. the polynomial degree
p

5.5 Test Case #5: d = 3, Curved Interface (Geometric and Non-geometric
Conformity)

Now, let Ω = (0, 1) × (0, 1) × (0, 2) be split into two subdomains with curved interface
Γα = {(x, y, z) ∈ R

3 : (x, y) ∈ [0, 1]2, z = 0.3(xα + yα) + 1}, with α = 2 or α = 3.
Neumann (Dirichlet, resp.) boundary conditions have been imposed on the vertical (hori-
zontal, resp.) faces of ∂Ω , while f , gD and gN are chosen so that the exact solution is
u(x, y, z) = sin(xyzπ). The coefficients of the problem are ν = γ = 1.

First, we have set the interface Γα with α = 3 and we have consideredQ2 discretizations
in both the subdomains with variable h1 = 1/k and h2 = 1/(k + 1), for k = 2, . . . , 9. RL-
RBF interpolation has been used to build the interpolation matrices of Internodes, since the
interface cannot be described exactly byQ2 isoparametric elements, thus we have geometric
non-conformity. The errors, as well as the total forces and the total works are shown in the
left picture of Fig. 16: they decrease at least like h2, i.e., like the H 1-broken-norm error.
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Fig. 16 Test case #5. On the left, Q2 discretization, cubic interface and RBF interpolation, geometric
non-conforming. On the right, Qp discretization, quadratic interface and Lagrange interpolation, geometric
conforming
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Then, we have set the interface Γα with α = 2 and we have considered Qp Spectral
Element discretization in both the subdomains with fixed h1 = 1/4 and h2 = 1/3, for p =
3, . . . , 7. Now, Lagrange interpolation has been considered to build the intergrid matrices of
Internodes. We can use Lagrange interpolation since the interface can be described exactly
by Qp spectral elements4 with p ≥ 2, thus the interfaces are geometric conforming. The
total forces and the total works are shown in the right picture of Fig. 16: they decrease versus
p like both the H 1-broken-norm and the L2-norm errors. The numerical results confirm the
theoretical estimates of Section 4 also in this 3D test case.
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