
Probability Theory and Related Fields
https://doi.org/10.1007/s00440-022-01135-y

Density of imaginary multiplicative chaos via Malliavin
calculus

Juhan Aru1 · Antoine Jego1 · Janne Junnila1

Received: 6 June 2021 / Revised: 30 March 2022 / Accepted: 1 April 2022
© The Author(s) 2022

Abstract
We consider the imaginary Gaussianmultiplicative chaos, i.e. the complexWick expo-
nentialμβ :=: eiβ�(x) : for a log-correlated Gaussian field� in d ≥ 1 dimensions.We
prove a basic density result, showing that for any nonzero continuous test function f ,
the complex-valued random variable μβ( f ) has a smooth density w.r.t. the Lebesgue
measure onC. As a corollary, we deduce that the negativemoments of imaginary chaos
on the unit circle do not correspond to the analytic continuation of the Fyodorov-
Bouchaud formula, even when well-defined. Somewhat surprisingly, basic density
results are not easy to prove for imaginary chaos and one of the main contributions of
the article is introducing Malliavin calculus to the study of (complex) multiplicative
chaos. To apply Malliavin calculus to imaginary chaos, we develop a new decompo-
sition theorem for non-degenerate log-correlated fields via a small detour to operator
theory, and obtain small ball probabilities for Sobolev norms of imaginary chaos.

Mathematics Subject Classification 60G15 · 60G20 · 60G57 · 60G60 · 60H07 · 82B21

1 Introduction

In this paper we study imaginary Gaussian multiplicative chaos, formally written as
μβ :=: eiβ�(x) :, where � is a log-correlated Gaussian field on a bounded domain
U ⊂ R

d and β a real parameter. The study of imaginary chaos can be traced back to
at least [8, 12], in case of cascade fields to [5], and to [16, 18] in a wider setting of
log-correlated fields.

Imaginary multiplicative chaos distributions : eiβ�(x) : can be rigorously defined as
distributions in a Sobolev space of sufficiently negative index [16]. In the case where
� is the 2D continuum Gaussian free field (GFF), they are related to the sine-Gordon
model [16, 19] and the scaling limit of the spin-field of the critical XOR-Ising model
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is given by the real part of : ei2−1/2�(x) : [16]. Imaginary chaos has also played a
role in the study of level sets of the GFF [29], giving a connection to SLE-curves. In
[10] it was shown usingWiener chaos methods that certain fields constructed using the
Brownian Loop Soup converge to imaginary chaos. Recently, reconstruction theorems
have been proved for both the continuum [4] and the discrete version [14] of the
imaginary chaos, showing that, somewhat surprisingly, when d ≥ 2 it is possible to
recover the underlying field from the information contained in the imaginary chaos in
the whole subcritical phase β ∈ (0,

√
d).

In a wider context, real multiplicative chaos : eγ�(x) :, with γ ∈ R has been the
subject of a lot of recent progress (see e.g. reviews [24, 26]). Complex and in particular
imaginary multiplicative chaos appear then naturally, for example, as analytic exten-
sions in γ . Complex variants of multiplicative chaos also come up when studying the
statistics of zeros of the Riemann zeta function on the critical line [28].

The main result of this paper is the existence and smoothness of density for ran-
dom variables of the type μβ( f ). The main contribution, however, is probably the
technique used to prove the main result. Indeed, whereas in the case of imaginary
multiplicative cascades [6] and real multiplicative chaos [27] rather direct Fourier
methods give the existence of a density, this approach is problematic in the case of
imaginary chaos. The main obstacle is the presence of cancellations that are difficult
to control without an exact recursive independence structure or monotonicity. We cir-
cumvent these problems by turning to Malliavin calculus. Interestingly, in order to
apply methods of Malliavin calculus we have to first obtain new decomposition the-
orems for log-correlated fields, and prove quite technical concentration estimates for
tails of imaginary chaos.

1.1 Themain result: existence of density

Let us now denote by μ = μβ the imaginary chaos with parameter β ∈ (0,
√
d) in d

dimensions. In the appendix of [20] and in [16] the tails of this random variable were
studied and it was shown that P[|μ( f )| > t] behaves roughly like exp(−t2d/β2

) – this
basically follows from the fact that using Onsager inequalities, one can obtain a very
good control on the moments of imaginary chaos.

In the present article we are interested in the local properties of the law of μβ( f )
and our main result is that this random variable has a smooth density. The following
slightly informal statement is made precise in Theorem 3.6.

Theorem Let � be a non-degenerate log-correlated field in an open domain U and
let f be a nonzero continuous function with compact support in U. Then the law of
μβ( f ) is absolutely continuous with respect to the Lebesgue measure on C and the
density is a Schwartz function.

Moreover, for any η > 0 the density is uniformly bounded from above for β ∈
(η,

√
d) and converges to zero pointwise as β →√

d.
Finally, the same holds in the case where μβ is the imaginary chaos corresponding

to the field �̂ with covariance E[�̂(x)�̂(y)] = − log |x − y| on the unit circle, with f
being any nonzero continuous function defined on the circle.
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Remark The reason why the circle field is brought out separately is because it does not
satisfy our definition of non-degenerate log-correlated fields, see Sect. 2, and requires
a bit of extra work. With similar work other cases of degenerate log-correlated fields
could be handled. However, a unified approach to handle a more general class of
log-correlated fields is still lacking.

The requirement of compact support for f can also be dropped in many situations.
For example, the theorem is also true in the case where � is the zero-boundary GFF
on a bounded simply connected domain in R

2 and f ≡ 1.

This theorem has already proved to be useful in further study of imaginary chaos1,
but we also expect this basic result and the method to be useful more generally in
the study of complex chaos [18], and in studying the integrability results related to
multiplicative chaos [17, 25] and the Sine-Gordon model. Not only should one be
able to use this technique to prove density results in these more general cases, but as a
corollary one can deduce the existence of certain negativemoments, which have played
important role in the above-mentioned results. In a follow-up work, we will prove
by independent methods that the density for imaginary chaos is in fact everywhere
positive.

1.2 An application to the Fyodorov–Bouchaud formula

Let us mention here one direct application of our results, linking our studies to recent
integrability results on the Gaussian multiplicative chaos stemming from Liouville
conformal field theory [17, 25]. Namely, in [25] the author proved that for real γ ∈
(0,
√
2) the total mass of : eγ̂�(x) :, where ̂� is the log-correlated Gaussian field

on S1 with covariance C(x, y) = − log |x − y|, has an explicit density w.r.t. the
Lebesgue measure; this was conjectured in [13] and proved by different methods in
[11]. Moreover, in Theorem 1.1 of [25] the author proves an explicit expression for
the p−th moment of Yγ := 1

2π

∫

S1 : eγ̂�(x) : dx with −∞ < p < 2/γ 2:

E

(

Y p
γ

)

= �(1− pγ 2/2)

�(1− γ 2/2)p
, (1.1)

where with a slight abuse of notation � is here the usual �-function.2 Notice that for
any p, the expression is analytic in γ (outside of isolated singularities) and in particular
analytic in a neighbourhood around the imaginary axis. So naively one might think
that at least as long as the moments are defined for : eiβ̂�(x) :, they would correspond
to the expression given by (1.1) with γ = iβ. And indeed, it is not hard to see that for
p ∈ N this is the case. Our results however imply that this cannot be true in general,
even in the case where the p−th moment is well-defined for the imaginary chaos.
In other words, the analytic extension of the moment formulas is in general different
from naively changing γ in the Wick exponential.

1 A work in preparation studies the monofractal structure of imaginary chaos.
2 Notice that in that paper the author is using a different normalization of the field with local behaviour of
−2 log |x − y|.
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Corollary 1.1 Let μ̂β be the imaginary chaos corresponding to the log-correlated field
̂� on the unit circle. Then E

(

μ̂β(S1)−1
)

converges to zero as β → 1. In particular,
E
(

μ̂β(S1)−1
)

does not agree with the analytic continuation of Eq. (1.1) for γ ∈
(−i, i).
Proof From Theorem 3.6 it follows that

|E
(

μ̂β(S1)−1
)

| ≤ E

(

|μ̂β(S1)|−1
)

→ 0

as β → 1. On the other hand a direct check shows that in Eq. (1.1), the expression
remains uniformly positive for p = −1, when we set γ = iβ and let β → 1. 
�
Remark 1.2 It might be ineteresting to take note that almost surely Yγ does have an
analytic continuation in γ to the unit disk of radius

√
2 around the origin. Moreovoer,

from Theorem 1.1 in [25] we know that for γ ∈ [0, 2], the law of Yγ is equal to
1

�(1− 1
2 γ 2)

Y−
γ 2

2 ,withY ∼ Exp(1).One can then interpret the above corollary as saying

that for γ = iβ, the law of Yiβ cannot be given by 1
�(1+ 1

2β2)
Y

β2

2 , with Y ∼ Exp(1).

1.3 Other results: a decomposition of log-correlated fields and Sobolev norms of
imaginary chaos

Asmentioned, ourmain tool in the proof of Theorem 3.6 isMalliavin calculus which is
an infinite-dimensional differential calculus on theWiener space introduced byMalli-
avin in the seventies [21]. Whereas Malliavin calculus has been used to prove density
results in various other settings [22], we believe that it is a novel tool in the context of
multiplicative chaos and could possibly have further interesting applications—e.g. in
proving density results for more general models. In order to apply Malliavin calculus,
we need to derive some results that could be of independent interest.

First, we derive a new decomposition theorem for non-degenerate log-correlated
fields. The following statement is more carefully formulated in Theorem 4.5 and the
proof has an operator-theoretic flavour.

Theorem Let� be a non-degenerate log-correlated Gaussian field on an open domain
U ⊆ R

d with covariance kernel given by − log |x − y| + g(x, y) and g subject to
some regularity conditions. Then, for every V � U we may write (possibly in a larger
probability space)

�|V = Y + Z ,

where Y is an almost �-scale invariant field and Z is aHölder-regular field independent
of Y , both defined on the whole of Rd .

Second, we develop a way to study the small ball probabilities of ‖ f μβ‖H−d/2(Rd ).
The precise version of the following statement is given by Proposition 6.7.
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Proposition Let f ∈ C∞c (U ). Then for all β ∈ (0,
√
d) the probability

P[‖ f μβ‖H−d/2(Rd ) ≤ λ] decays super-polynomially as λ → 0.

This result is closely related to small ball probabilities of theMalliavin determinant
ofμβ( f ). To prove it we establish concentration results on the tail of imaginary chaos.

1.4 Structure of the article

We have set up the article to highlight how the general theory of Malliavin calculus is
applied to prove such a density result and what are the concrete estimates of imaginary
chaos needed to apply it. After collecting some preliminaries in Sect. 2, we use Sect. 3
to walk the reader through the relevant notions and results of Malliavin calculus in the
context of imaginary multiplicative chaos, thereby building up the backbone of the
proof of the main theorem. In that section we state carefully the main result, and prove
it up to technical estimates. The remaining proofs are then collected in Sect. 5 and
in Sect. 6; the former contains some general lemmas of Malliavin calculus, and the
latter deals with concentration results for imaginary chaos, including the proof of the
Proposition 6.7 above. In Sect. 4 we prove the decomposition theorem stated above.

2 Basic notions and definitions

2.1 Log-correlated Gaussian fields and imaginary chaos

In this section we establish the formal setup for the log-correlated field � and of the
imaginary chaos associated to �, often denoted by : exp(iβ�) : with β ∈ R.

2.1.1 Log-correlated Gaussian fields

Let U ⊂ R
d be a bounded and simply connected domain and suppose we are given a

kernel of the form

C(x, y) = log
1

|x − y| + g(x, y) (2.1)

where g is bounded from above and satisfies g(x, y) = g(y, x). Furthermore, we
assume that g ∈ Hd+ε

loc (U ×U ) ∩ L2(U ×U ) for some ε > 0.3 We may also extend
C(x, y) as 0 outside ofU×U . ThenC defines a Hilbert–Schmidt operator on L2(Rd),
and hence C is self-adjoint and compact.

Assuming C is positive definite, by spectral theorem there exists a sequence of
strictly positive eigenvalues λ1 ≥ λ2 ≥ · · · > 0 and corresponding orthogonal eigen-
functions ( fk)k≥1 spanning the subspace L := (KerC)⊥ in L2(Rd). We may now

3 For any s ∈ R andU ⊂ R
d we denote by Hs

loc(U ) the space of distributions f for which ϕ f ∈ Hs (Rd )

for all ϕ ∈ C∞c (U ).
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construct the log-correlated field � with covariance kernel C(x, y) via its Karhunen–
Loève expansion

� =
∑

k≥1
AkC

1/2 fk =
∑

k≥1
Ak

√

λk fk, (2.2)

where (Ak)k≥1 is an i.i.d. sequence of standard normal random variables. It has been
shown in [16,Proposition 2.3] that the above series converges in H−ε(Rd) for any
fixed ε > 0.

From the KL-expansion one can see that heuristically � is a standard Gaussian
on the space H� := C1/2L . The space H := H� is called the Cameron–Martin
space of �, and it becomes a Hilbert space by endowing it with the inner product
〈 f , g〉H = 〈C−1/2 f ,C−1/2g〉L2 , where C−1/2 f ,C−1/2g ∈ L . This definition makes
sense since C1/2 is an injection on L . We will define the KL-basis (ek)k≥1 for H by
setting ek := √

λk fk , and we will also write 〈�, h〉H :=∑∞
k=1 Ak〈h, ek〉H for h ∈ H .

The left hand side in the latter definition is purely formal since � /∈ H almost surely.
Let us finally define what we mean by a non-degenerate log-correlated field in all

of this paper.

Definition 2.1 (Non-degenerate log-correlated field) Consider a kernel C�(x, y) =
C(x, y) from (2.1) and the associated log-correlated field �, given by (2.2). We call
the kernelC and the field � non-degenerate whenC is an injective operator on L2(U ),
i.e. KerC = {0}.

Note that for covariance operators injectivity is equivalent to being strictly positive
in the sense that 〈C� f , f 〉 > 0 for all f ∈ L2(U ), f �= 0.4

The standard log-correlated field on the circle.
The only degenerate field we will work with in this paper is the standard log-

correlated field on the circle. I.e. it is the field � on the unit circle which has the
covariance C�(x, y) = log 1

|x−y| , where one now thinks of x and y as being complex
numbers of modulus 1. Equivalently, we may consider the field on [0, 1] with the
covariance

E[�(e2π i t )�(e2π is)] = log
1

2| sin(π(t − s))| ,

in which case we may write

�(e2π i t ) = √
2
∞
∑

k=1

1√
k
(Ak cos(2πkt)+ Bk sin(2πkt))

4 On R
d one could also imagine a different definition of non-degenerate fields. Namely, a canonical way

to define a log-correlated field �d on Rd for any d ≥ 1 is to take Hd/2(Rd ) as the Cameron–Martin space
of the field. It would then be natural to call any log-correlated field on R

d non-degenerate if its Cameron–
Martin space is equivalent to Hd/2(Rd ). We will basically see in Sect. 4 that very roughly our condition
implies that the Cameron–Martin space of a suitable extension of the non-degenerate field � to the whole
plane coincides up to an equivalent norm with Hd/2(Rd ).
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where Ak and Bk are i.i.d. standard normal random variables.
This circlefield is degenerate because it is conditioned to satisfy

∫ 1
0 �(e2π iθ ) dθ = 0

and the operator C maps constant functions to zero. It is however not hard to see that
after restricting the domain of the field �(e2π i ·) to I0 := [−1/4, 1/4] it becomes
non-degenerate.

2.1.2 Imaginary chaos

Let us now fix β ∈ (0,
√
d). For any f ∈ L∞(U ) we may define the imaginary chaos

μ tested against f via the regularization and renormalisation procedure

μ( f ) := lim
ε→0

∫

U
f (x)eiβ�ε(x)+ β2

2 E�ε(x)2 dx,

where �ε is a convolution approximation of � against some smooth mollifier ϕε. An
easy computation shows that the convergence takes place in L2(�). Importantly, the
limiting random variable does not depend on the choice of mollifier. Again, one has
to be careful however when defining μ( f ) for uncountably many f simultaneously.
Indeed, μ turns out to have a.s. infinite total variation, but it does define a random
Hs(Rd)-valued distribution when s < −β2/2 [16]. One may also (via a change of
the base measure in the proofs of [16]) fix f ∈ L∞(Rd) and consider g �→ μ( f g) as
an element of Hs(Rd). Although μ is not defined pointwise, we will below freely use
the notation

∫

U f (x)μ(x) dx to refer to μ( f ).

2.2 Malliavin calculus: basic definitions

In this subsection we will collect some very basic notions of Malliavin calculus:
the Malliavin derivative and Malliavin smoothness. We will mainly follow [22] in
our definitions, making some straightforward adaptations for complex-valued random
variables both here and in the following sections.

Let C∞p (Rn;R) be the class of real-valued smooth functions defined on R
n such

that f and all its partial derivatives grow at most polynomially.

Definition 2.2 We say that F is a smooth (real) random variable if it is of the form

F(�) = f (〈�, h1〉H , . . . , 〈�, hn〉H )

for some h1, . . . , hn ∈ H and f ∈ C∞p (Rn;R), n ≥ 1.
For such a variable F we define its Malliavin derivative DF by

DF =
n
∑

k=1

∂

∂k
f (〈�, h1〉H , . . . , 〈�, hn〉H )hk .

Thus we see that DF is an H -valued random variable and in fact, in the case where
F is a smooth random variable, DF corresponds to the usual derivative map: for any
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h ∈ H , we have that

〈DF(�), h〉H = lim
ε→0

F(� + εh)− F(�)

ε
.

One may also define DmF as a H⊗m-valued random variable by setting

DmF =
n
∑

k1,...,km=1

∂m

∂k1 . . . ∂km
f (〈�, h1〉H , . . . , 〈�, hn〉H )hk1 ⊗ · · · ⊗ hkm .

In our case H is a space of functions defined on U and hence H⊗m can be seen as a
space of functions defined on Um . At times it will be convenient to write down the
arguments of the function explicitly using subscripts, e.g. for all t1, . . . , tm ∈ U we
set

Dm
t1,...,tm F := DmF(t1, . . . , tm),

with

DmF(t1, . . . , tm) =
n
∑

k1,...,km=1

∂m

∂k1 . . . ∂km
f (〈�, h1〉H , . . . , 〈�, hn〉H )hk1(t1) . . . hkm (tm).

Weextend the above definition in a naturalway to complex smooth randomvariables
by setting

D(F + iG) = DF + i DG

when F andG are real smooth random variables. Thus in general D will map complex
random variables to the complexification of H , which we denote by HC. We will
assume that the inner product 〈·, ·〉HC

is conjugate linear in the second variable. From
here onwards we will use F for complex-valued Malliavin smooth random variables,
unless otherwise stated.

To define D for a larger class of random variables one uses approximation by the
smooth functions above. More precisely, we define for any non-negative integer k and
real p ≥ 1 the class of random variables Dk,p as the completion of (complex) smooth
random variables with respect to the norm

‖F‖pk,p := E|F |p +
k
∑

j=1
E‖D j F‖p

H⊗ j
C

.

The spaces Dk,p are decreasing with p and k, and we denote D
∞ := ⋂

p,k≥1 Dk,p.

Similarly we set Dk,∞ :=⋂p≥1 Dk,p.
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Finally, viewing D as an unbounded operator on L2(�;C) with values in
L2(�; HC), we may define its adjoint δ which is also called the divergence opera-
tor. More specifically we have

E[Fδu] = E〈DF, u〉HC

for any u such that |E〈DF, u〉HC
|2 � EF2 for all F ∈ D

1,2.

3 Density of imaginary chaos via Malliavin calculus

Let f be a continuous function of compact support inU . Our goal is to applyMalliavin
calculus to show that the random variable M := μ( f ) has a smooth density with
respect to the Lebesgue measure on C.

We start by walking through the basic results of Malliavin calculus that we want to
apply and we then reduce the proof of Theorem 3.6 to concrete estimates on imagi-
nary chaos. Some useful lemmas of Malliavin calculus are proven in Sect. 5 and the
estimates on imaginary chaos are verified in Sect. 6, with input from Sect. 4.

Formally one can write the Malliavin derivative DM of M = μ( f ) as

DtM =
∫

f (x)Dt : eiβ
∑∞

n=1〈�,en〉Hen(x) : dx

=
∫

f (x)
∞
∑

k=1
: eiβ�(x) : iβek(t)ek(x) dx

= iβ
∫

f (x)μ(x)C(t, x) dx .

The content of the following proposition is tomake the above computations rigorous
by truncating the series

∑∞
n=1〈�, en〉Hen(x) to be able to work withMalliavin smooth

random variables, as in Definition 2.2.

Proposition 3.1 Let f ∈ L∞(C). Then M ∈ D
∞ and

DtM = iβ
∫

U
f (x)μ(x)C(t, x) dx

for all t ∈ U.

The reason we are interested in showing that M belongs to D
∞ is the following

classical result of Malliavin calculus, stating sufficient conditions for the existence of
a smooth density. For convenience we state it here directly for complex valued random
variables.

Proposition 3.2 Let F ∈ D
∞ be a complex valued random variable and let

det γF := 1

4
(‖DF‖4HC

− |〈DF, DF〉HC
|2) (3.1)
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be the Malliavin determinant of F. If E| det(γF )|−p < ∞ for all p ≥ 1, then F has
a density ρ w.r.t. the Lebesgue measure in C and ρ is a Schwartz function.

The proof follows rather directly from [22,Proposition 2.1.5]:

Proof Following [22], the Malliavin matrix of a random vector F = (F1, . . . , Fn) ∈
R
n is given by γF := (〈DFj , DFk〉H )nj,k . We will use Proposition 2.1.5 from [22],

which states that if Fi ∈ D
∞ and E| det γF |−p < ∞ for all p ≥ 1, then F has a

density w.r.t. the Lebesgue measure on R
n which is a Schwartz function.

As Re F, Im F ∈ D
∞ by assumption, it is enough to check that det γF is equal to

the given formula in the case F = (Re F, Im F). This is easy to check by writing

det γF = 〈DF1, DF1〉H 〈DF2, DF2〉H − 〈DF1, DF2, 〉2H
= 1

16
‖DF + DF‖2HC

‖DF − DF‖2HC
− 1

16
|〈DF + DF, DF − DF〉HC

|2

and expanding the squares on the right hand side. We leave the details to the reader. 
�
Thus to show that F has a smooth and bounded density it will be enough to show

that the negative moments of ‖DF‖4HC
− |〈DF, DF〉HC

|2 are all finite. In fact this
quantity is not straightforward to control directly and to make calculations possible,
we first apply the following projection bounds, whose proofs we postpone to Sect. 5:

Lemma 3.3 (Projection bounds) Let F ∈ D
1,2 and let h be any function in HC. Then

det γF
‖DF‖2HC

≥ 1

4

(|〈DF, h〉HC
| − |〈DF, h〉HC

|)2
‖h‖2HC

. (3.2)

and

det γF ≥ 1

4

(|〈DF, h〉HC
| − |〈DF, h〉HC

|)4
‖h‖4HC

. (3.3)

To further show that the density is uniformly bounded in β outside any interval
surrounding the origin, we need to have some quantitative control on the densities. We
will use the following simple adaption of Lemma 7.3.2 in [23] to the complex case to
do this:

Lemma 3.4 Let p > 2 and F be a complex Malliavin random variable in D2,∞. Then
there is a constant c = cp > 0 depending only on p such that the density ρ of F
satisfies for all x ∈ C

ρ(x) ≤ cp(E|δ(A)|p)2/p,

where A is defined by

A = ‖DF‖2HC
DF − 〈DF, DF〉HC

DF

‖DF‖4HC
− |〈DF, DF〉HC

|2 .
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Bounding δ(A) is again technically not straightforward, but the following general
bound could possibly be of independent interest. It is again proved in Sect. 5.

Proposition 3.5 Let F be a complex Malliavin random variable in D2,∞. We have

|δ(A)| � ‖DF‖2HC
(|δ(DF)| + ‖D2F‖HC⊗HC

)

‖DF‖4HC
− |〈DF, DF〉HC

|2 .

Using the above results on Malliavin calculus, we can now reduce Theorem 3.6
to concrete propositions on imaginary chaos. Proving the estimates needed for these
propositions is basically the content of Sect. 6.

We start with a precise statement of the main theorem:

Theorem 3.6 Let U be an open bounded domain and � a non-degenerate log-
correlated field in U as in Definition 2.1 and f be a nonzero continuous function
of compact support in U. We denote by μ the imaginary chaos associated to � and
parameter β ∈ (0,

√
d). Then

• the law of μ( f ) is absolutely continuous with respect to the Lebesgue measure on
C and the density is a Schwartz function;

• for any η > 0 the density is uniformly bounded from above for β ∈ (η,
√
d) and

converges to zero pointwise as β →√
d.

Finally, the same holds in the case where� is defined on the unit circle with covariance
E[�̂(x)�̂(y)] = − log |x − y| and f is any nonzero continuous function on the circle.

There are basically two technical chaos estimates needed to deduce the theorem.
First, super-polynomial bounds on small ball probabilities of theMalliavin determinant
are used both to prove that the density exists and is a Schwartz function, and to show
uniformity:

Proposition 3.7 Let �, f , M = μ( f ) be as in the theorem above. Then we have the
following bounds for the Malliavin determinant det γM. For any ν > 0, there exist
constants C, c, a, ε0 > 0 (which do not depend on β) such that for all ε ∈ (0, ε0) and
for all β ∈ (ν,

√
d),

P

(

det γM ≥ (d − β2)−4ε
)

≥ 1− C exp
(

−aε−c/2
)

. (3.4)

and

P

(

det γM
‖DM‖2HC

≥ (d − β2)−2ε
)

≥ 1− C exp
(−aε−c

)

. (3.5)

Here the bound on
‖DM‖2HC
det γM

is necessary, when bounding the divergence of the
covering field via Proposition 3.5. Second, in order to apply Lemma 3.4 we also need
upper bounds on |δ(DM)| and ‖D2M‖HC⊗HC

:
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Proposition 3.8 Let �, f , M = μ( f ) be as in the theorem above. Then for all N ≥ 1,
there exists C = C(N ) > 0 such that for all β ∈ (0,

√
d)

E

[

|δ(DM)|2N
]

≤ C(d − β2)−3N (3.6)

and

E

[

‖D2M‖2NHC⊗HC

]

≤ C(d − β2)−3N . (3.7)

We can now prove Theorem 3.6 modulo these propositions.

Proof of Theorem 3.6 To apply Proposition 3.2 to prove that M = μ( f ) has a density
w.r.t. Lebesgue measure, and that moreover this density is a Schwartz function, we
need to verify two conditions:

• That M ∈ D
∞ – this is the content of Proposition 3.1;

• And that E| det(γM )|−p < ∞ for all p ≥ 1 – this follows directly from the bound
(3.4) in Proposition 3.7.

Finally, it remains to argue that the density is uniformly bounded from above for
β ∈ (η,

√
d) for some fixed η > 0, and converges to zero pointwise onRd asβ →√

d.
This follows from Lemma 3.4, once we show that E|δ(A)|4 is uniformly bounded in
β ∈ (η,

√
d) and tends to zero as β →√

d . By Proposition 3.5

E|δ(A)|4 � E

∣

∣

∣

‖DM‖2HC
(|δ(DM)| + ‖D2M‖HC⊗HC

)

‖DM‖4HC
− |〈DM, DM〉HC

|2
∣

∣

∣

4
.

By using the inequality (x + y)4 � x4 + y4 and then Cauchy–Schwarz we have that

E|δ(A)|4 �

√

E

∣

∣

∣

‖DM‖2HC

det γM

∣

∣

∣

8
E|δ(DM)|8 +

√

E

∣

∣

∣

‖DM‖2HC

det γM

∣

∣

∣

8
E|‖D2M‖HC⊗HC

|8.

We thus conclude from (3.5) in Propositions 3.7 and 3.8. 
�
The proofs of the above-mentioned chaos estimates appear in Sect. 6. More precisely,

• In Sect. 6.2 we prove that M is in D
∞, i.e. Proposition 3.1. This boils down to

bounding moments of DM and is a rather standard calculation. Similar computa-
tions with small improvements on existing estimates allow to prove Proposition
3.8 in Sect. 6.3.

• In Sect. 6.4, we prove Proposition 3.7, which requires a novel approach. It is also
in this subsection where we make use of the almost global decomposition theorem
for non-degenerate log-correlated fields, proved in Sect. 4.

The missing general results of Malliavin calculus are proved in Sect. 5.
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4 Almost global decompositions of non-degenerate log-correlated
fields

It is often useful to try to decompose the log-correlated Gaussian field � on the open
set U ⊂ R

d as a sum of two independent fields Y and Z , where Y is in some sense
canonical and easy to calculate with, and Z is regular. In [15] it was shown that such
decompositions exist around every point x0 ∈ U when g ∈ Hs

loc(U × U ) for some
s > d and Y is taken to be a so-called almost �-scale invariant field.

Our goal in this section is to establish a more general variant of this decomposition
theorem which removes the need to restrict to small balls and works in any subdomain
V � U (we write A � B to indicate that A ⊂ B) by simply assuming that � is non-
degenerate on V , meaning that C� defines an injective integral operator on L2(V ), as
explained in Sect. 2.

In the context of the present article, the usefulness of this result is strongly inter-
linked with the following standard comparison result for Cameron–Martin spaces. In
the case of Reproducing Kernel Hilbert spaces, this can be found for example in [3].

Lemma 4.1 Let Y and Z be two independent distribution-valued Gaussian fields and
denote� = Y+Z. Let (H�, ‖·‖H� ) and (HY , ‖·‖HY ) be the Cameron–Martin spaces
of � and Y respectively. Then HY ⊂ H� and moreover for every h ∈ HY , we have
that ‖h‖HY ≥ ‖h‖H� .

Basically, via this Lemma our decomposition allows to meaningfully transfer cal-
culations on the initial field � to easier ones on the almost �-scale invariant fields Y ,
where Fourier methods become available.

Wewill start by recalling the basic definitions related to �-scale invariant and almost
�-scale invariant log-correlated fields.We then state the theorem and discuss heuristics,
and finally prove the theorem in two last subsections. In this section all function spaces
are the standard function spaces for real-valued functions, i.e.we don’t need to consider
their complexified counterparts.

4.1 Overview of �-scale and almost �-scale invariant log-correlated fields

To define �-scale invariant and almost �-scale invariant fields, we first need to pick a
seed covariance k. For simplicity we will in what follows make the following assump-
tions on k:

Assumption 4.2 The seed covariance k : Rd → R satisfies the following properties:

• k(x) ≥ 0 for all x ∈ R
d and k(0) = 1;

• k(x) = k((|x |, 0, . . . , 0)) =: k(|x |) is rotationally symmetric and supp k ⊂
B(0, 1),

• There exists s > d+1
2 such that 0 ≤ k̂(ξ) � (1+ |ξ |2)−s for all ξ ∈ R

d .

The fact that k is supported in B(0, 1) yields the useful property that distant regions
of the associated Gaussian field will be independent.

Let us also remark that an easy way to construct a seed covariance k satisfying
the above assumptions is to take a smooth, non-negative and rotationally symmetric
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function ϕ supported in B(0, 1/2) with ‖ϕ‖L2 = 1 and then letting k = ϕ ∗ ϕ be the
convolution of ϕ with itself.

Definition 4.3 Let k : Rd → R be as above. The �-scale invariant covariance kernel
CX associated to k is given by

CX (x, y) :=
∫ ∞

0
k(eu(x − y)) du.

Similarly, the related almost �-scale invariant covariance kernelCY = CY (α) associated
to k and a parameter α > 0 is given by

CY (x, y) :=
∫ ∞

0
k(eu(x − y))(1− e−αu) du.

We often use approximations Yδ of Y , which can be defined via the stochastic
integrals

Yδ(x) =
∫

Rd×[0,log 1
δ
]
edu/2k̃(eu(t − x))

√

1− e−αudW (t, u), (4.1)

where W is the standard white noise on R
d+1 and k̃(x) = F−1√Fk(x) with F

denoting the Fourier transform.
We also define the tail field Ŷδ := Y − Yδ , which decorrelates at distances bigger

than δ. The following lemma then gives basic estimates on the covariance of this tail
field. See Appendix A for the proof.

Lemma 4.4 There exists a constant C > 0 such that

E[Ŷδ(x)Ŷδ(y)] ≤ δ

|x − y|
and

E[Ŷδ(x)Ŷδ(y)] ≥ δ

|x − y| − C .

Moreover E[Ŷδ(x)Ŷδ(y)] = 0 whenever |x − y| ≥ δ.

4.2 Statement of the theorem and the high level argument

The main theorem of this section can be stated as follows.

Theorem 4.5 Let � be a non-degenerate log-correlated Gaussian field on an open
domain U ⊆ R

d as in Definition 2.1. Assume further that the covariance kernel given
by (2.1) satisfies g ∈ Hs

loc(U ×U ) for some s > d.
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Then for every seed kernel k satisfying Assumption 4.2 and every V � U, there
exists α > 0 (possibly depending on V ) such that we may write (possibly in a larger
probability space)

�|V = Y + Z ,

where Y is an almost �-scale invariant field with seed covariance k and parameter α

and Z is a Hölder-regular field independent of Y , both defined on the whole of Rd .
Moreover, there exists ε > 0 such that the operatorCZ maps Hs(Rd) → Hs+d+ε(Rd)

for all s ∈ [−d, 0].
Notice that the 2D zero boundary Gaussian free field is a non-degenerate log-

correlated field in the open disk. However, there is no hope to decompose it using an
almost �-scale invariant field on the whole of D, so in that sense the above theorem is
as global as you could hope.5

Remark 4.6 In [15,Theorem B] it was shown that even for a degenerate log-correlated
field �, one can for any x ∈ U find a ball B(x, r(x)), restricted to which � is non-
degenerate and can be decomposed as an independent sum of an almost star-scale
invariant field and a Hölder-regular field. In this sense one can see Theorem 4.5 as a
generalization in the special case of non-degenerate fields.

Before going to the proof of Theorem 4.5, let us try to illustrate the high level
argument in terms of the following toy problem on the unit circle T = {z ∈ C :
|z| = 1}: Let � be a non-degenerate log-correlated field on T with covariance of the
form log 1

|x−y| + g(|x − y|), where now also the g term only depends on the distance
between the two points. This means that we can write the covariance using the Fourier
series

C�(x, y) = g0
2
+ Re

∞
∑

n=1

(

1

n
+ gn

)

xn y−n,

where

gn := 1

π

∫

T

g(|1− x |)x−n|dx |,

with |dx | denoting the arc-length measure. As � is assumed to be non-degenerate, we
know that 1

n + gn > 0 for all n ≥ 1.
The almost �-scale field would correspond to a field with covariance of the form

CY (x, y) = Re
∞
∑

n=1

(

1

n
− 1

n1+α

)

xn y−n,

5 This can be checked e.g. by considering the equality C�(x, y) = CY (x, y) + CZ (x, y) at two points x
and y with y tending first to a fixed boundary point z and then x tending to the same point. In the limit one
formally obtains 0 = ∞.
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and thus the difference between the tail and the two covariances would be

C�(x, y)− CY (x, y) = g0
2
+ Re

∞
∑

n=1

(

1

n1+α
+ gn

)

xn y−n .

It is now easy to see that if gn = O(n−s) for some s > 1+ α, the coefficients in the
above difference are positive for all large enough n. By further reducing α, we can
guarantee that 1

n1+α + gn > 0 for all n ≥ 1, so that the difference C� − CY is again a
positive definite kernel.

Themain issue in implementing this strategy for general log-correlated covariances
on domains in Rd is the fact that in general we do not have a canonical basis such that
C� and CX would be simultaneously diagonalizable. To still be able to make useful
calculations, we thus want to find some universal, non-basis dependent setting, where
both can be studied. This is comfortably offered for example by the Fourier transform
on spaces L2(Rd) and Hs(Rd). Thus as a first step we will find a suitable extension
of � to a log-correlated field on the whole of Rd with covariance of the form CX + R
whereCX is the covariance of a �-scale invariant field and R is the kernel of an integral
operator which maps L2(Rd) to Hs(Rd) for some s > d (in particular it is in this
sense more regular than CX which maps L2(Rd) to Hd(Rd)). The second step is then
to actually make the calculations work, and to do this in the general set-up we make
use of some operator-theoretic methods.

4.3 Extension of log-correlated fields to the whole space

Let us begin by solving the aforementioned extension problem. In what follows we
will denote by the same symbols both the integral operators and their kernels, and CX

(resp. CY (α)) will always refer to the covariance operator of a �-scale (resp. almost
�-scale) invariant field with a fixed seed covariance k (resp. and parameter α).

First of all, we note the existence of the following partition of unity consisting of
squares of smooth functions.

Lemma 4.7 Let U ⊂ R
d be an open domain and V � U an open subdomain. Then

there exists an open set W with V � W � U and non-negative functions a, b ∈
C∞(Rd) such that a2 + b2 ≡ 1, b(x) = 0 for all x ∈ V , b(x) > 0 for all x ∈ R

d \ V
and a(x) = 0 for all x ∈ R

d \W.

Proof Pick any W with V � W � U . It is well-known that one can pick a function
u ∈ C∞(Rd) which is 1 in V , 0 outside W and 0 ≤ u(x) < 1 for x ∈ W \ V . The
function u(x)2 + (1 − u(x))2 ≥ 1

2 is everywhere strictly positive and therefore the

function v(x) := √u(x)2 + (1− u(x))2 is smooth and strictly positive. Finally define
a(x) := u(x)/v(x) and b(x) := (1− u(x))/v(x) to obtain the desired functions. 
�

Secondly we need the following estimates on the covariance operator CX .

Lemma 4.8 For any s ∈ R the operator CX is a bounded invertible operator
Hs(Rd) → Hs+d(Rd). The same holds for CY (α) for any α > 0. In particular the
Cameron–Martin space of Y (α) equals Hd/2(Rd) with an equivalent norm.
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Moreover the Fourier transform of the associated kernel

K (u) := CX (u, 0) =
∫ ∞

0
k(esu) ds

is smooth and satisfies

|∇ξ K̂ (ξ)| � (1+ |ξ |2)− d+1
2 .

Proof We have CX f = K ∗ f , so it is enough to study the Fourier transform of K .
We compute

K̂ (ξ) =
∫ ∞

0
e−du k̂(e−uξ)du =

∫ 1

0
vd−1k̂(vξ) dv = |ξ |−d

∫ |ξ |

0
vd−1k̂(v) dv.

Since k̂(0) > 0 and also k̂(ξ) = O(|ξ |−α) for some α > d + 1, we see that the
above quantity is bounded from above and below by a constant multiple of (1 +
|ξ |2)−d/2, which implies the claim that CX maps Hs(Rd) to Hs+d(Rd) continuously
and bijectively.

Similarly CY (α) f = Kα ∗ f with

K̂α(ξ) =
∫ 1

0
vd−1k̂(vξ)(1− vα) dv = |ξ |−d

∫ |ξ |

0
vd−1k̂(v)(1− |ξ |−αvα) dv

and one again sees that this is bounded from above and below by a constant multiple
of (1+ |ξ |2)−d/2. In particular HY (α) = C1/2

Y (α)L
2(Rd) = Hd/2(Rd).

Next we note that since k is compactly supported, k̂ is smooth and also |∇ k̂(ξ)| =
O(|ξ |−α). Thus

∇ K̂ (ξ) =
∫ 1

0
vd∇ k̂(vξ)dv = |ξ |−d−1

∫ |ξ |

0
vd∇ k̂(v) dv,

from which the second claim follows. 
�
As a corollary of the following lemma from [15] we can rephrase (2.1) using a

�-scale invariant covariance instead of pure logarithm.

Lemma 4.9 ([15,Proposition 4.1 (vi)]) The covariance CX of a �-scale invariant field
X satisfies CX (x, y) = log 1

|x−y| + g0(x, y), where g0(x, y) belongs to Hs′(Rd) for

some s′ > d.

Let us next prove the extension itself. We emphasise that the kernel R in the propo-
sition below is not necessarily definite positive.

Proposition 4.10 Let C� be as in Theorem 4.5. Let V � U be an open subdomain.
Let X be a �-scale invariant log-correlated field with a seed covariance k satisfying
Assumption 4.2.
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Then there exists a bounded integral operator R : L2(Rd) → L2(Rd) such that
CX + R is strictly positive and the corresponding kernels satisfy

C�(x, y) = CX (x, y)+ R(x, y)

for all x, y ∈ V . The kernel R is Hölder-continuous with some exponent γ > 0 and
moreover, there exists δ > 0 such that R defines a bounded operator Hr (Rd) →
Hr+d+2δ(Rd) for all r ∈ [−d, 0].
Proof Let V � W � U and a, b ∈ C∞(Rd) be as in Lemma 4.7 and consider the
(distribution-valued) Gaussian field Z = a� + bX defined on R

d . Here � and X
are independent and have covariance operators C� and CX respectively. By using
Lemma 4.9 we can write C�(x, y) = CX (x, y) + g̃(x, y) with g̃ ∈ Hs′

loc(R
d × R

d)

for some s′ > d. Thus we may write the kernel of the covariance operator of Z as

CZ (x, y) = a(x)a(y)C�(x, y)+ b(x)b(y)CX (x, y) = CX (x, y)+ R(x, y),

where

R(x, y) := (a(x)a(y)+ b(x)b(y)− 1)CX (x, y)+ a(x)a(y)g̃(x, y). (4.2)

Note that G(x, y) := a(x)a(y)g̃(x, y) is an element of Hs′(Rd × R
d). For any

f ∈ Hr (Rd) with r ∈ [−s′, 0] we have that the corresponding operator G satisfies

‖G f ‖2
Hr+s′ (Rd )

=
∫

Rd
(1+ |ξ |2)r+s′

∣

∣

∣

∫

Rd
Ĝ(ξ, ζ ) f̂ (ζ ) dζ

∣

∣

∣

2
dξ

� ‖G‖2
Hs′ (Rd×Rd )

‖ f ‖2Hr (Rd )
.

We conclude that G is a bounded operator Hr (Rd) → Hr+s′(Rd).
Let us then consider the operator T with kernel

T (x, y) := (a(x)a(y)+ b(x)b(y)− 1)CX (x, y)

corresponding to the first term in the definition of R. Again for f ∈ L2(Rd) we have

‖T f ‖2Hd+1(Rd )
=
∫

Rd
(1+ |ξ |2)d+1

∣

∣

∣

∫

Rd
T̂ (ξ, ζ ) f̂ (ζ ) dζ

∣

∣

∣

2
dξ.

Note that since a2 + b2 = 1 we have

T (x, y) = (a(x)(a(y)− a(x))+ b(x)(b(y)− b(x)))CX (x, y).

The maps f �→ a f and f �→ b f = (b− 1) f + f are bounded operators Hα(Rd) →
Hα(Rd) for any α ∈ R since a and b− 1 are compactly supported and smooth. Thus
it is enough to show that A : f �→ [

x �→ ∫

(a(y) − a(x))K (x − y) f (y) dy
]

and

123



Density of imaginary multiplicative chaos via Malliavin calculus

B : f �→ [

x �→ ∫

(b(y)−b(x))K (x− y) f (y) dy
]

are bounded operators Hr (Rd) →
Hr+d+1(Rd), where K (u) = CX (u, 0).

We will show the claim for A – the same proof works for B as well since we only
use the fact that a is smooth and has compact support and we can again reduce to this
situation by replacing b with b − 1.

The boundedness of A : Hr (Rd) → Hr+d+1(Rd) boils down to showing that for
any f ∈ Hr (Rd) we have the inequality

∫

(1+ |ξ |2)r+d+1|̂A f (ξ)|2 dξ �
∫

(1+ |ξ |2)r | f̂ (ξ)|2 dξ. (4.3)

A small computation shows that we can write

̂A f (ξ) =
∫

Rd
â(ξ − ζ )(K̂ (ξ)− K̂ (ζ )) f̂ (ζ ) dζ

We can bound

∫

Rd
â(ξ − ζ )(K̂ (ξ)− K̂ (ζ )) f̂ (ζ ) dζ �

∫

Rd\B(ξ,|ξ |/2)
|â(ξ − ζ )|| f̂ (ζ )| dζ

+
∫

B(ξ,|ξ |/2)
|â(ξ − ζ )||ξ − ζ |

sup
z∈B(ξ,|ξ |/2)

|∇ K̂ (z)|| f̂ (ζ )| dζ.

By using the smoothness of a, we have for ζ ∈ R
d \ B(ξ, |ξ |/2) the inequality

|â(ξ − ζ )| � (1 + |ξ |2)d−1(1 + |ζ |2) r−d−1
2 . By Cauchy–Schwarz we can therefore

bound the first term by

� (1+ |ξ |2)d−1
(

∫

Rd
(1+ |ζ |2)−d−1 dζ

)1/2(
∫

Rd
(1+ |ζ |2)r | f̂ (ζ )|2 dζ

)1/2

� (1+ |ξ |2)−d−1‖ f ‖Hr (Rd ).

This combined with using Lemma 4.8 to bound the second term we get

̂A f (ξ) � (1+ |ξ |2)−d−1‖ f ‖Hr (Rd ) + (1+ |ξ |2)− d+1
2

∫

Rd
|â(ξ − ζ )||ξ − ζ || f̂ (ζ )| dζ.

Thus recalling that we want to prove (4.3) we have

∫

(1+ |ξ |2)r+d+1|̂A f (ξ)|2

�
∫

(1+ |ξ |2)r+d+1(1+ |ξ |2)−2d−2‖ f ‖2Hr (Rd )
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+
∫

(1+ |ξ |2)r+d+1(1+ |ξ |2)−d−1
(∫

Rd
|â(ξ − ζ )||ξ − ζ || f̂ (ζ )|dζ

)2

.

Now, as r < 0, the first term is bounded by a constant times ‖ f ‖2
Hr (Rd )

. For the

second term we let p(ξ) := |ξ ||â(ξ)| and note that since | f̂ (ζ )|| f̂ (ζ ′)| ≤ (| f̂ (ζ )|2 +
| f̂ (ζ ′)|2)/2 we have

∫

Rd
(1+ |ξ |2)r+d+1(1+ |ξ |2)−d−1

(∫

Rd
p(ξ − ζ )| f̂ (ζ )| dζ

)2

dξ

=
∫

Rd

∫

Rd

∫

Rd
(1+ |ξ |2)r p(ξ − ζ )p(ξ − ζ ′)| f̂ (ζ )|| f̂ (ζ ′)| dζ dζ ′ dξ

≤
∫

Rd

∫

Rd

∫

Rd
(1+ |ξ |2)r p(ξ − ζ )p(ξ − ζ ′)| f̂ (ζ )|2 dζ dζ ′ dξ.

Integrating over ζ ′ gives just ‖p‖L1(Rd ) and then by using the inequality (1+|ξ |2)r �
(1+ |ζ − ξ |2)−r (1+ |ζ |2)r we may also integrate over ξ and ζ separately to see that
the above is bounded by a constant times

‖p‖L1(Rd )‖(1+ | · |)−r p(·)‖L1(Rd )‖ f ‖2Hr (Rd )
.

Thus putting things together we obtain (4.3). Overall we have shown that R as defined
in (4.2) maps Hr (Rd) → Hr+d+2δ for δ > 0 small enough.

Let us next show that R is Hölder-continuous. As g̃ belongs to Hs′
loc(R

d × R
d)

for some s′ > d, it follows from the Sobolev embedding Hd+δ(R2d) → Cδ(R2d)

where Cδ(R2d) is the space of δ-Hölder functions vanishing at infinity, that g̃ is
γ -Hölder for some γ > 0. By (4.2) this implies that we only need to show that
(a(x)a(y)+ b(x)b(y)− 1)CX (x, y) is Hölder-continuous. As this term is compactly
supported, we can add a smooth cutoff function ρ such that

(a(x)a(y)+ b(x)b(y)− 1)CX (x, y)

= ρ(x)ρ(y)(a(x)(a(y)− a(x))+ b(x)(b(y)− b(x)))CX (x, y)

for all x, y ∈ R
d . Moreover, since CX (x, y) = log 1

|x−y| + g0(x, y) with g0 smooth,
it is enough to show that

(a(y)− a(x))ρ(x)ρ(y) log
1

|x − y|

is Hölder-continuous (the term with b(y) − b(x) can again be handled in a similar
manner). Let us write the above as

∫ 1

0
∇a(x + u(y − x)) du · (y − x)ρ(x)ρ(y) log

1

|x − y| .
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As a is smooth, the map (x, y) �→ ∫ 1
0 ∇a(x + u(y − x)) du is in particular a Hölder

continuous mapR2d → R
d . Thus it is enough to show that (x, y) �→ (y−x) log 1

|x−y|
is Hölder-continuous but this follows easily by checking that each component function
(y j − x j ) log 1

|x−y| is Hölder continuous in each coordinate. The Hölder constants are
also easily seen to be bounded for x, y ∈ supp ρ.

Finally let us note that CZ is strictly positive since if f ∈ L2(Rd) is
nonzero, then at least one of f |V or f |supp b is nonzero. In the first case
∫

a(x)a(y)C�(x, y) f (x) f (y) > 0 by the assumption that C� was assumed to be
injective in V , while in the second case

∫

b(x)b(y)CX (x, y) f (x) f (y) > 0 since CX

is strictly positive on whole of Rd . 
�

4.4 Deducing the decomposition theorem

Having obtained the desired extension, we are ready to prove the decomposition the-
orem. The second part of the proof consists in showing that we may subtract CY (α)

from CX + R for some small enough α > 0 and still obtain a positive operator.
To do this, we need to use the following classical stability property of strictly

positive operators of the form 1 + K with K compact and self-adjoint that follows
directly from the spectral theorem.

Lemma 4.11 Let H be a Hilbert space and T a self-adjoint compact operator on H
and suppose that 1+T is strictly positive. Then there exists ε > 0 such that 1+ A+T
is strictly positive for any self-adjoint A with ‖A‖H→H ≤ ε.

As a consequence of the above lemma and the smoothing properties of the map R
obtained in Lemma 4.10 we first create a necessary lee-room. Notice that CX + R =
C1/2
X (I + C−1/2X RC−1/2X )C1/2

X and hence

〈(CX + R) f , f 〉L2(Rd ) = 〈(I + C−1/2X RC−1/2X )C1/2
X f ,C1/2

X f 〉L2(Rd ).

The following statement is thus effectively saying that in fact 〈(CX+R) f , f 〉L2(Rd ) >

0 not only for f ∈ L2(Rd), but also for f ∈ H−d/2(Rd).

Lemma 4.12 There is some ε > 0 such that 1+A+C−1/2X RC−1/2X is a strictly positive
operator on L2(Rd) for any self-adjoint A with ‖A‖L2(Rd )→L2(Rd ) ≤ ε.

Proof We start by observing that the operator R̃ = C−1/2X RC−1/2X is compact from

L2(Rd) to L2(Rd). Indeed, we can write R̃ as C−1/2X J RC−1/2X where J is the identity
map. Now, due to the fact that R(x, y) has compact support (see Eq. (4.2) and recall
that CX (x, y) = 0 for |x − y| > 1) this mapping takes successively

L2(Rd) → H−d/2(Rd) → Hd/2+2δ(B) → Hd/2(B) → L2(Rd),

where B ⊂ R
d is some fixed large enough open ball such that B × B ⊃ supp R. The

identity map J from Hd/2+2δ(B) → Hd/2(B) is compact by Rellich-Kondrachov
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theorems for fractional Sobolev spaces (see e.g. Chapters 1, 2 in [30]) and as the other
maps are bounded, the whole composition is compact.

As R is also self-adjoint on L2(Rd), there is an orthonormal basis of L2(Rd)

consisting of eigenfunctions of R̃. To show that 1+ R̃ is strictly positive it is enough
to show that R̃ has no eigenfunctions with eigenvalues ≤ −1. Assume that f is an
eigenfunction of R̃ with nonzero eigenvalue λ. Then by Lemma 4.10 we know that
R̃ maps Hs(Rd) → Hs+2δ(Rd) for any s ∈ [0, d/2] and thus after applying R̃ to
f roughly 1/δ times we see that actually f ∈ Hd/2(Rd). Thus there exists some
g ∈ L2(Rd) such that f = C1/2

X g, and we have that

(1+ λ)‖ f ‖2L2(Rd )
= 〈(1+ R̃) f , f 〉L2(Rd )

= 〈(1+ R̃)C1/2
X g,C1/2

X g〉L2(Rd ) = 〈(CX + R)g, g〉L2(Rd ) > 0

by the assumption on CX + R, implying that λ > −1. Thus 1+ R̃ is strictly positive
and the claim follows from Lemma 4.11. 
�

The final important technical ingredient is that for any α0 > 0,

(CX − CY (α) )
−1/2 − C−1/2X : L2(Rd) → H

−d−α0
2 (Rd)

converges pointwise to 0 when we let the parameter α of the almost �-scale invariant
field Y (α) to 0.

Lemma 4.13 For all α > 0 set Uα := CX − CY (α) and let U0 = CX . Then U 1/2
α is a

bounded bijection Hs(Rd) → Hs+ d+α
2 (Rd) for all s ∈ R, and for any α0 > 0, we

have

sup
α0≥α>0

‖U−1/2
α ‖

L2(Rd )→H− d+α0
2 (Rd )

< ∞.

Moreover, for any fixed α0 > 0 and f ∈ L2(Rd) we have

lim
α→0

‖(U−1/2
α − C−1/2

Y (α) ) f ‖
H− d+α0

2 (Rd )
= 0.

Before proving the lemma, let us see how it implies the theorem:

Proof of Theorem 4.5: We begin by writing

〈(CX − CY (α) + R) f , f 〉L2(Rd ) = 〈(1+ R̃α)U 1/2
α f ,U 1/2

α f 〉L2(Rd ),

where Uα = CX − CY (α) and R̃α = U−1/2
α RU−1/2

α . It thus suffices to show that for
some sufficiently small α > 0 we have

〈(1+ R̃α)g, g〉L2(Rd ) > 0

123



Density of imaginary multiplicative chaos via Malliavin calculus

for all nonzero g ∈ L2(Rd). Indeed, this implies thatCX−CY (α)+R is a positive inte-
gral operator on L2(Rd), whose kernel by Lemma 4.10 and [15,Proposition 4.1 (iii)] is
Hölder-continuous, and thus the corresponding Gaussian process has an almost surely
Hölder-continuous version (see e.g. [2,Theorem 1.3.5]). In addition by Lemma 4.10
and Lemma 4.13 we see that R andCX−CY α map Hs(Rd) → Hs+d+ε(Rd) for some
ε > 0 and all s ∈ [−d, 0].

To show that 1+ R̃α is positive on L2(Rd) on the other hand wemaywrite 1+ R̃α =
1+ R̃ + (R̃α − R̃), where R̃ = C−1/2X RC−1/2X . By Lemma 4.12 it is enough to show
that ‖R̃α − R̃‖L2(Rd )→L2(Rd ) can be made as small as we wish by choosing α small.

As R̃α − R̃ is self-adjoint we have

‖R̃α − R̃‖L2(Rd )→L2(Rd ) = sup
u∈L2(Rd ),||u||2=1

|〈(R̃α − R̃)u, u〉|L2(Rd ).

By linearity and self-adjointness of C−1/2X , R and U−1/2
α , we can write 〈(R̃α −

R̃)u, u〉L2(Rd ) as

〈(U−1/2
α − C−1/2X )RC−1/2X u, u〉L2(Rd ) + 〈(U−1/2

α − C−1/2X )RU−1/2
α u, u〉L2(Rd ).

Now choose α0 = δ in Lemma 4.13 and observe that then for all α < α0, the unit
ball of L2(Rd) under RU−1/2

α and RC−1/2X is contained in a fixed compact set of

H
d+δ
2 (Rd). As Lemma 4.13 establishes uniform boundedness as well as pointwise

convergence, we have that U−1/2
α → C−1/2X uniformly on this set and thus conclude

the theorem. 
�
We finally prove the lemma:

Proof of Lemma 4.13 Note that Uα is a Fourier multiplier operator with the symbol

ûα(ξ) =
∫ 1

0
vd−1+α k̂(vξ) dv = |ξ |−d−α

∫ |ξ |

0
vd−1+α k̂(v) dv.

As by assumption k̂ is non-negative and decays faster than any polynomial, we have
that

(1+ |ξ |2)− d+α
2 � ûα(ξ) � (1+ |ξ |2)− d+α

2

where the hidden constant does not depend on α. In particular for every α < α0, we

have (1+ |ξ |2)− d+α0
2 � ûα(ξ).

Let us now fix α0 and consider for α < α0 the self-adjoint operator Tα = U−1/2
α −

C−1/2Y whichmaps L2(Rd) to H− d+α
2 (Rd) ⊆ H− d+α0

2 (Rd). For any fixed f ∈ L2(Rd)

we have

‖Tα f ‖
H− d+α0

2 (Rd )
=
∫

Rd
(1+ |ξ |2)− d+α0

2 |ûα(ξ)−1/2 − K̂ (ξ)−1/2|2| f̂ (ξ)|2 dξ.
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For any fixed ξ the integrand tends to 0 as α → 0. Thus, as ûα(ξ) � (1+ |ξ |2)− d+α0
2

for all α < α0, we can apply the dominated convergence theorem to deduce that

Tα f → 0 in H− d+α0
2 (Rd). 
�

5 General bounds on det� M and ı(A)

In this section we prove two (to our knowledge) non-standard lemmas for Malliavin
calculus, that we believe could possibly be of independent interest for proving the
existence of density and its positivity also in more general settings. Firstly, we prove a
certain projection bound for the determinant of complex Malliavin variables. Second,
we obtain an estimate on the complex covering fields that is again a much easier
starting point for further calculations.

5.1 Proof of the projection bound: Proposition 3.3

Proof of Proposition 3.3 Let us first expand

‖DF‖2HC

∥

∥

∥DF − 〈DF, DF〉HC

‖DF‖2HC

DF
∥

∥

∥

2

HC

= ‖DF‖2HC

(

‖DF‖2HC
−
〈

DF, DF
〉

HC

‖DF‖2HC

〈

DF, DF
〉

HC

−
〈

DF, DF
〉

HC

‖DF‖2HC

〈

DF, DF
〉

HC

+
| 〈DF, DF

〉

HC

|2
‖DF‖4HC

‖DF‖2HC

)

= ‖DF‖4HC
− | 〈DF, DF

〉

HC

|2.

By (3.1), we deduce that

det γF = 1

4
‖DF‖2HC

∥

∥

∥DF − 〈DF, DF〉HC

‖DF‖2HC

DF
∥

∥

∥

2

HC

. (5.1)

As we have the following projection inequality

‖DF‖HC
≥
∥

∥

∥DF − 〈DF, DF〉HC

‖DF‖2HC

DF
∥

∥

∥

HC

,

the result follows, once we show that for any h ∈ HC,

∥

∥

∥DF − 〈DF, DF〉HC

‖DF‖2HC

DF
∥

∥

∥

HC

≥
∣

∣|〈DF, h〉HC
| − |〈DF, h〉HC

|∣∣
‖h‖HC

. (5.2)
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By Cauchy–Schwarz inequality and the triangle inequality we have

∥

∥

∥DF − 〈DF, DF〉HC

‖DF‖2HC

DF
∥

∥

∥

HC

≥
|〈DF − 〈DF,DF〉HC

‖DF‖2HC
DF, h〉HC

|
‖h‖HC

≥
|〈DF, h〉HC

| − |〈DF,DF〉HC |
‖DF‖2HC

|〈DF, h〉HC
|

‖h‖HC

≥ |〈DF, h〉HC
| − |〈DF, h〉HC

|
‖h‖HC

.

By now repeating the bound with h in place of h we obtain (5.2) which finishes the
proof. 
�

5.2 Bounding ı(A) via derivatives in independent Gaussian directions –
Proposition 3.5

For a succinct write-up, it is helpful to use directional derivatives in independent
random directions, although the proposition could also be proved by first proving a
version for smooth random variables and then taking limits.

Now, recall that for smooth random variables F , and h ∈ HC we could write

〈DF(�), h〉H = d

dt

∣

∣

∣

t=0F(� + th). (5.3)

We consider directional derivatives in independent random directions, with the law
of �. More precisely, let X ∼ � be an independent Gaussian field defined on a new
probability space (�X ,FX ,PX )whose expectation we denote by EX . For a Malliavin
variable F ∈ D

2,∞, as DF ∈ HC and X is independent of �, one can define

DX F := 〈X , DF(�)〉H (5.4)

and directly conclude from this definition that:

Lemma 5.1 Let X ∼ � be independent of � and F,G ∈ D
1,∞. We then have that

EX [DX F ·DXG] = 〈DF, DG〉HC
.

We are now ready to prove Proposition 3.5.

Proof of Proposition 3.5 Write � := 4 det γF = ‖DF‖4HC
− |〈DF, DF〉HC

|2. Then
by the integration by parts rule for the divergence operator δ (e.g. [22,Proposition
1.3.3]), δ(A) equals

‖DF‖2HC
δ(DF)− 〈DF, DF〉HC

δ(DF)

�
− 〈D ‖DF‖2HC

�
, DF〉HC
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+〈D 〈DF, DF〉HC

�
, DF〉HC

.

The first term is� �−1‖DF‖2HC
|δ(DF)| in absolute value, so it is enough to consider

the other two terms. By the product rule for Malliavin derivatives, we may write

〈D 〈DF, DF〉HC

�
, DF〉HC

− 〈D ‖DF‖2HC

�
, DF〉HC

as

= �−1 (〈D〈DF, DF〉HC
, DF〉HC

− 〈D‖DF‖2HC
, DF〉HC

)

−
−�−2 (〈DF, DF〉HC

〈D�, DF〉HC
− ‖DF‖2HC

〈D�, DF〉HC

)

To bound the first term, we first notice that by Cauchy–Schwarz

〈D〈DF, DF〉HC
, DF〉HC

≤ ‖D〈DF, DF〉HC
‖‖DF‖HC

.

For the first term, it is now helpful to use the averaging in Lemma 5.1 for a quick
bound. We write

‖D〈DF, DF〉HC
‖HC

= 2|EX ,YDY F ·DXDY F |.

By Cauchy–Schwarz this can be bounded by

2
√

EX ,Y |DY F |2
√

EX ,Y |DXDY F |2 = 2‖DF‖HC
‖D2F‖HC⊗HC

.

Similarly, one can bound

〈D‖DF‖2HC
, DF〉HC

≤ 2‖DF‖HC
‖D2F‖HC⊗HC

,

and thus

�−1 (〈D〈DF, DF〉HC
, DF〉HC

− 〈D‖DF‖2HC
, DF〉HC

)

≤ 4
‖DF‖2HC

‖D2F‖HC⊗HC

�
.

It remains to handle

�−2 (〈DF, DF〉HC
〈D�, DF〉HC

− ‖DF‖2HC
〈D�, DF〉HC

)

,

which we can rewrite as

�−2〈D�, 〈DF, DF〉HC
DF − ‖DF‖2HC

DF〉HC
.
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By Cauchy–Schwarz this expression is bounded by

�−2‖D�‖HC
‖〈DF, DF〉HC

DF − ‖DF‖2HC
DF‖HC

= �−3/2‖D�‖HC
‖DF‖HC

,

where we have used the fact (derived in Eq. (5.1)) that

‖DF‖2HC
� = ‖〈DF, DF〉HC

DF − ‖DF‖2HC
DF‖2HC

. (5.5)

Thus the proposition follows from the following claim:

Claim 5.2 We have that ‖D�‖HC
� �1/2‖DF‖HC

‖D2F‖HC⊗HC
.

Proof of claim Maybe the nicest way to prove this claim is to use derivatives in random
directions as above. First, observe that using averaging we can write a neat analogue
of Eq. (5.5) :

� = 1

2
EZ ,W |DZ F ·DW F −DZ F ·DW F |2.

Thus we have

DX� = ReEZ ,W (DZ F ·DW F −DZ F ·DW F)DX (DZ F ·DW F −DZ F ·DW F).

By triangle inequality and Cauchy–Schwarz we obtain

|DX�|2 � �EZ ,W |DX (DZ F ·DW F)|2

and hence

‖D�‖2HC
= EX |DX�|2 � �‖DF‖2HC

‖D2F‖2HC⊗HC
,

from which the claim follows. 
�

�

6 Estimates for Malliavin variables in the case of imaginary chaos

The aim of this section is to prove the probabilistic bounds needed to apply the tools of
Malliavin calculus toM = μ( f ).We start by going through someold and newOnsager
inequalities and related integral bounds. In Sect. 6.2, we prove by a rather standard
argument that M is in D

∞, i.e. Proposition 3.1. In Sect. 6.3 we derive bounds on
|δ(DM)| and ‖D2M‖HC⊗HC

and deduce Proposition 3.8 by a quite similar argument.
Finally, in Sect. 6.4 we prove bounds on the Malliavin determinant of M and

this is the main technical input of the paper. Here things get quite interesting – we
rely both on the decomposition theorem, Theorem 4.5, and projection bounds for
Mallivan determinants from Sect. 5, but also need to find ways to get a good grip on
the concentration of M = μ( f ), and on Sobolev norms of the imaginary chaos μ

itself.
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6.1 Onsager inequalities and related bounds

In this section, we collect a few Onsager inequalities and related bounds. To this end,
we define for any Gaussian field � and x = (x1, . . . , xN ), y = (y1, . . . , yM ) the
quantity

E(�; x; y) = −
∑

1≤ j<k≤N

E�(x j )�(xk)−
∑

1≤ j<k≤M

E�(y j )�(yk)+
∑

1≤ j≤N
1≤k≤M

E�(x j )�(yk).

Also, we let �δ = � ∗ ϕδ be a mollification of � where ϕδ = δ−dϕ(·/δ) and ϕ is a
smooth non-negative function with compact support that satisfies

∫

Rd ϕ = 1.
The following is a restatement of a standard Onsager inequality from [16].6

Lemma 6.1 (Proposition 3.6(ii) of [16]) Let K be a compact subset of U or the circle
K = S1. There exists C = C(K ) > 0 such that the following holds true: Let N ≥
1, δ > 0 and for all i = 1 . . . N let xi , yi ∈ K be such that D(xi , δ) and D(yi , δ)
are included in K . For all i = 1 . . . N, denote zi := xi and zN+i := yi and set
d j := mink �= j |zk − z j |. Then

E(�δ; x; y) ≤ 1

2

2N
∑

j=1
log

1

d j
+ CN 2. (6.1)

Moreover, the same holds for the field � itself.

Wewill also need stronger Onsager inequalities for (almost) �-scale invariant fields,
whose rather standard proof is pushed to the appendix A.

Lemma 6.2 Let Yε and Ŷε be defined as in Sect. 4.1 and let x = (x1, . . . , xN ) and
y = (y1, . . . , yN ) be two N-tuples of points in U. For all j = 1, . . . , N, denote
z j := x j and zN+ j = y j and set d j := mink �= j |zk − z j |. Then

E(Yε; x; y) ≤ 1

2

2N
∑

j=1
log

1

d j ∨ ε

and

E(Ŷε(ε·); x; y) ≤ 1

2

2N
∑

j=1
log

1

d j
. (6.2)

Moreover, if R is a Gaussian field such that M := supx∈U E[R(x)2] < ∞, then

E(R; x; y) ≤ NM . (6.3)

6 In fact, the cited result does not contain the case of the circle, however essentially the same proof works.
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Both of these Onsager inequalities are used in conjunction with the following
bounds:

Lemma 6.3 For N ≥ 2, there exists C > 0 such that

• for all β ∈ (0,
√
d),

∫

B(0,1)N

N
∏

i=1

(

min
j �=i |zi − z j |

)−β2/2

dz1 . . . dzN ≤ CN (d − β2)−�N/2�N
Nβ2

2d ; (6.4)

• for all β ∈ (0,
√
d),

∫

B(0,1)N

N
∏

i=1

∣

∣

∣

∣

logmin
j �=i |zi − z j |

∣

∣

∣

∣

1/2 (

min
j �=i |zi − z j |

)−β2/2

dz1 . . . dzN

≤ CN (d − β2)−2�N/2�NN ; (6.5)

• for all β ∈ (0,
√
d),

∫

B(0,1)N

N
∏

i=1

∣

∣

∣

∣

logmin
j �=i |zi − z j |

∣

∣

∣

∣

(

min
j �=i |zi − z j |

)−β2/2

dz1 . . . dzN ≤ CN (d − β2)−3�N/2�NN ; (6.6)

• for all β > 0,

∫

B(0,1)N

(

N
∏

i=1
min
j �=i max(δ, |zi − z j |)

)−β2/2

dz1 . . . dzN

≤ CN NN (log
1

δ
)N/2δ−max(0,β2−d)N/2; (6.7)

Proof We only sketch the proof, as all the main ideas can be found in proof of
[16,Lemma 3.10].

Let us startwith showing (6.4). By carefully following the proof of [16,Lemma3.10]

which shows that (6.4) is less than c2�N/2�N
Nβ2

2d , one can actually see that the constant c
there can be taken to be equal to c′(d−β2)−1/2 for some constant c′ > 0 independent
of β (at one point in the proof there is a term of order (d − β2)−k coming from
�(1− d

β2 )
k where k ≤ �N/2�).

Wewill next show (6.7).Bymimicking thebeginningof theproof of [16,Lemma3.10],
we can bound the left hand side of (6.7) by

CN
�N/2�
∑

k=1

∑

F

∫

B(0,1)N

k
∏

i=1
(δ ∨ |u2i−1|)−β2

N
∏

i=2k+1
(δ ∨ |ui |)−β2/2du1 . . . duN
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where C > 0 and the second sum runs over all nearest neighbour configurations
F such that the induced graph with vertices {1, . . . , N } and edges (i, F(i)) has k
components. Of course, the domain on which we integrate is actually much smaller
than B(0, 1), but integrating over this larger domain will be enough for our purposes.
After integration, we obtain that the left hand side of (6.7) is at most

CN
�N/2�
∑

k=1

∑

F

Ak
β2 A

N−2k
β2/2

≤ CN NN
�N/2�
∑

k=1
Ak

β2 A
N−2k
β2/2

,

where

Aβ2 :=
∫ 1

0
rd−1(δ ∨ r)−β2

dr .

Now, by Jensen’s inequality A2
β2/2

≤ d−1Aβ2 , giving us the bound CN NN AN/2
β2 .

Noting that

Aβ2 � log
1

δ
δ−max(0,β2−d)

concludes the proof of (6.7).
We finally turn to the proof of (6.5) and (6.6). By again mimicking the beginning

of the proof of [16,Lemma 3.10], we can bound the left hand side of (6.5) by

CN
�N/2�
∑

k=1
Mk

∫

B(0,1)N

k
∏

i=1
|u2i−1|−β2 | log |u2i−1||

N
∏

i=2k+1
|ui |−β2/2| log |ui ||1/2

≤ CN
�N/2�
∑

k=1
Mk

(∫ 1

0
r−β2+d−1| log r |dr

)k

≤ CN
�N/2�
∑

k=1
Mk(d − β2)−2k ≤ CN (d − β2)−2�N/2�NN ,

where Mk is the number of nearest neighbour functions {1, . . . , N } → {1, . . . , N }
with k components and C is some large enough constant. This concludes the proof of
(6.5); the proof of (6.6) is similar. 
�

6.2 M belongs toD∞ – proof of Proposition 3.1

The purpose of this section is to prove Proposition 3.1. Before doing so, we collect
two auxiliary lemmas from Malliavin calculus.

Lemma 6.4 ([22,Lemma 1.2.3]) Let (Fn, n ≥ 1) be a sequence of (complex) random

variables inD1,2 that converges to F in L2(�)and such that supn E
[

‖DFn‖2HC

]

< ∞.
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Then F belongs to D
1,2 and the sequence of derivatives (DFn, n ≥ 1) converges to

DF in the weak topology of L2(�; HC).

Second, we need a rather direct consequence of [22,Lemma 1.5.3]:

Lemma 6.5 Let p > 1, k ≥ 1 and let (Fn, n ≥ 1) be a sequence of (complex) random
variables converging to F in L p(�). Suppose that supn ‖Fn‖k,p < ∞. Then F belongs
to Dk,p and ‖F‖k,p ≤ Ck,p lim supn ‖Fn‖k,p for some Ck,p > 0.

Proof of Lemma 6.5 See Appendix A. 
�
We now have the ingredients needed to prove Proposition 3.1. The proof of this

result is rather standard, but needs a bit of care as themost convenient way of obtaining
Malliavin smooth random variables is truncating the Karhunen–Loève expansion of
�. Doing so we face the issue that there is no Onsager inequality available for this
approximation of the field that we are aware of. We will bypass this difficulty by
considering a further convolution of this truncated version of � against a smooth
mollifier ϕ and then use the Onsager inequality (6.1) for convolution approximations.

Proof of Proposition 3.1 Here, we sketch the proof and give full details in theAppendix
B. We start by showing that M belongs to D

∞. Let n ≥ 1, δ > 0, j ≥ 0 and p ≥ 1.
In the following, we will denote

�δ = � ∗ ϕδ, �n,δ =
n
∑

k=1
Akek ∗ ϕδ, Mδ =

∫

C

f (x)eiβ�δ(x)+ β2

2 E[�δ(x)2]dx

and

Mn,δ =
∫

C

f (x)eiβ�n,δ(x)+ β2

2 E[�n,δ(x)2]dx .

Mn,δ is a smooth random variable (in the sense of Definition 2.2) and D jMn,δ is equal
to

(iβ) j
∫

C

dx f (x)eiβ�n,δ (x)+ β2
2 E[�n,δ (x)

2]
n
∑

k1,...,k j=1
(ek1 ∗ ϕδ)(x) . . . (ek j ∗ ϕδ)(x)ek1 ⊗ · · · ⊗ ek j .

Combining Onsager inequalities, (6.4) and Lemma 6.5, one can show by taking the
limit n →∞ that for all k ≥ 1, Mδ ∈ D

k,2p and that

sup
δ>0

‖Mδ‖k,2p < ∞.

Details of this are in the appendix. Now, because (Mδ, δ > 0) converges in L2p

towards M , Lemma 6.5 then implies that for all k ≥ 1, M ∈ D
k,2p. This concludes

the proof that M ∈ D
∞.
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The proof of the formula for DM now follows via a series of approximation argu-
ments. From the first part by taking n →∞, one can rather quickly deduce that

DMδ = iβ
∫

C

dx f (x)eiβ�δ(x)+ β2

2 E[�δ(x)2]
∞
∑

k=1
(ek ∗ ϕδ)(x)ek .

Next, one argues that (DMδ, δ > 0) converges in L2(�; H) towards

iβ
∫

C

dx f (x)μ(x)C(x, ·)

and concludes that it necessarly corresponds to DM by Lemma 6.4. Here one again
uses Onsager inequalities and dominated convergence. The full details are found in
the appendix. 
�

6.3 Bounds on |ı(DM)| and ‖D2M‖HC⊗HC – proof of Proposition 3.8

The goal of this section is to control the tails of |δ(DM)| and ‖D2M‖HC⊗HC
. We first

note that these two random variables can be written explicitly in terms of imaginary
chaos.

Lemma 6.6 Let f ∈ L∞(C). Then

δ(DM) = β

∫

C

f (x)
d

dβ
μ(x)dx, (6.8)

‖D2M‖2HC⊗HC
= β4 Re

∫

C×C
f (x) f (y)μ(x)μ(y)C(x, y)2dxdy, (6.9)

where the expression d
dβ

μ(x) is given sense by limδ→0
(

i�δ(x)+ βE�2
δ (x)

) :
exp(iβ�δ(x)) : with the limit, say, in H−d(U ) and in probability.

The proof of (6.9) is very similar to the proof of the formula of DM and we omit
the details. The origin of (6.8) can be explained by the following formal computation,
that can be turned into a rigorous proof in a very similar manner as what we did in the
proof of Proposition 3.1 when we obtained the explicit expression of DM – one needs
to use smooth approximations both for the field �, and smooth Malliavin variables.

’Formal’ proof of Lemma 6.6 By Proposition 3.1, and then by integration by parts for
δ (Proposition 1.3.3 of [22]), we have

δ(DM) = iβ
∫

C

f (x)δ(μ(x)C(x, ·))dx

= iβ
∫

C

f (x)
(

μ(x)δ(C(x, ·))− 〈Dμ(x),C(x, ·)〉HC

)

dx .
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Noticing that δ(C(x, ·)) = �(x) (see (1.44) of [22]) and that by Proposition 3.1
〈Dμ(x),C(x, ·)〉HC

= iβμ(x)C(x, x), we obtain

δ(DM) = β

∫

C

f (x)μ(x)(i�(x)+ βC(x, x))dx = β

∫

C

f (x)
d

dβ
μ(x)dx .

This shows (6.8). 
�
Proof of Proposition 3.8 We will only write the details for the variable δ(DM) since
bounding the moments of ‖D2M‖HC⊗HC

is very similar to bounding the moments of
imaginary chaos itself (with the use of (6.6) instead of (6.4)).

Let N ≥ 1 and let K � U be the support of f . By Lemma 6.6 we have

E[|δ(DM)|2N ] ≤ ‖ f ‖2N∞ β2N
∫

K 2N

∣

∣

∣E

[
N
∏

j=1

d

dβ
μ(x j )

d

dβ
μ(y j )

]∣

∣

∣ dx1 . . . dxN dy1 . . . dyN .

By a limiting argument, one can justify the formal identity:

E

[
N
∏

j=1

d

dβ
μ(x j )

d

dβ
μ(y j )

]

=
[

N
∏

�=1

d

dβ�

d

dγ�
E((β j )

N
j=1, (γ j )

N
j=1)

]

β1=···=βN=γ1=...γN=β
.

where

E((β j )
N
j=1, (γ j )

N
j=1) := e−

∑

j<k β jβkC(x j ,xk )−∑ j<k γ jγkC(y j ,yk )+∑ j,k β jγkC(x j ,yk ).

Let (z1, . . . , z2N ) := (x1, . . . , xN , y1, . . . , yN ). By induction one sees that after dif-
ferentiating w.r.t. the first k of the variables β1, . . . , βN , γ1, . . . , γN and expanding
one is left with a finite number of terms of the form

±
N
∏

j=1
β
n j
j γ

m j
j

�
∏

j=1
C(za j , zb j )E((β j )

N
j=1, (γ j )

N
j=1),

where 0 ≤ n j ,m j , � ≤ k, 1 ≤ a1 < a2 < · · · < a� ≤ k and 1 ≤ b1, . . . , b� ≤ 2N
with a j �= b j for all j . Hence we have

E[|δ(DM)|2N ] ≤ CN

2N
∑

�=1

∑

1≤a1<···<a�≤2N

2N
∑

b1,...,b�=1

∫

K 2N

�
∏

j=1
1a j �=b j |C(za j , zb j )|eE(�;x;y) dx jdy j .

Note that |C(za j , zb j )| ≤ C log 4R
|za j−zb j | for some C > 0 and R large enough so that

K ⊂ B(0, R). Thus applying Lemma 6.1 to each summand, we can bound the whole
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sum by

CN

∫

K 2N

2N
∏

j=1
log

4R

mink �= j |z j − zk | (min
k �= j

|z j − zk |)−β2/2 dz1 . . . dz2N .

By scaling this is less than

CN

∫

B(0,1/4)2N

2N
∏

j=1
log

1

mink �= j |z j − zk | (min
k �= j

|z j − zk |)−β2/2 dz1 . . . dz2N ,

which by Lemma 6.3 is less than CN (d − β2)3N . 
�

6.4 Small ball probabilities for theMalliavin determinant ofM – proof of
Proposition 3.7

This section contains the main probabilistic input to Theorem 3.6 – the proof of Propo-
sition 3.7. Roughly, the content of this proposition is to establish super-polynomial
decayofP(det γM < ε) as ε → 0,where det γM := (‖DM‖4HC

−|〈DM, DM〉HC
|2)/4

is the Malliavin determinant of M = μ( f ).
We will start by presenting a toy model explaining the strategy; then we explain

the proof setup and prove the proposition modulo some technical chaos lemmas. The
section finishes by proving the technical estimates.

6.4.1 A toy model: small ball probabilities for ‖ : exp(iˇGFF) : ‖H−1(R2)

To explain the strategy of our proof, we consider a toy problem asking about the small
ball probabilities for norms of imaginary chaos. For concreteness, let us do it here
with the 2D Gaussian free field; see Proposition 6.7 at the end of this section for a
more general statement.

Consider the 2D zero boundary GFF on K = [0, 1]2 and the imaginary chaos μβ .
We know that as a generalized function μβ ∈ H−1(K ) for all β ∈ (0,

√
2). Can

we prove super-polynomial bounds for P
(‖μβ‖H−1(K ) < ε

)

? Moreover, can we

obtain bounds that are tight as β →√
2?

Writing out the norm squared, we have that

‖μ‖2H−1(K )
=
∫

K 2
μ(x)G(x, y)μ(y) dx dy > 0,

where G is the Dirichlet Green’s function on K . Now, the expectation E‖μ‖2
H−1(K )

is
easy to calculate and it is bounded. As all moments exist, one could imagine proving
bounds near zero by using concentration results on μ. However, these concentration
results do not see the special role of zero andwould not suffice for good enough bounds
for asymptotics near 0.
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The idea is then to use only the decorrelated high-frequency part of � to stay away
from zero. Tomake this more precise, denote by�δ the part of the GFF containing only
frequencies less than δ−1 and let �̂δ = �−�δ denote the tail of the GFF. Consider now
the projection bound ‖ f ‖H−1(K )‖μ‖H−1(K ) ≥ 〈μ, f 〉H−1(K ) for any f ∈ H−1(K ).
Setting f (x) = fδ(x) = �(: eiβ�δ(x) :), we get that

‖μ‖H−1(K ) ≥
| ∫K : eiβ�̂δ(x) : eβ2

E[�δ(x)2] dx |
‖ fδ‖H−1(K )

.

A small calculation shows that ‖ fδ‖H−1(K ) = ‖ : eiβ�δ(y) : ‖H1(K ). It is further

believable that we should have ‖ : eiβ�δ(y) : ‖H1(K ) � δ−β2/2‖�δ‖H1(K ), and that
this expression admits Gaussian concentration. As in the concrete caseE‖�δ‖H1(K ) �
δ−1, we can conclude that the denominator is of order δ−1−β2/2 with super-polynomial
concentration on fluctuations.

In the numerator, the term of the form
∫

K : eiβ�̂δ(x) : eβ2
E[�δ(x)2]dx remains. Such

a tail chaos is very highly concentrated around its mean which is of order δ−β2
, with

fluctuations of unit order having a super-polynomial cost in δ. Thus the whole ratio
will concentrate around

C
δ−β2

δ−1−β2/2
∼ Cδ1−β2/2,

with super-polynomial cost for fluctuations on the same scale. Thus setting ε =
δ1−β2/2 we obtain super-polynomial decay for P

(‖μ‖H−1(K ) < ε
)

.

Whereas this is good enough for any fixed β, observe that as β →√
2 the exponent

1 − β2/2 goes to 0. Moreover, we have E‖μ‖2
H−1(K )

= O((2 − β2)−2), but E| ∫ :
e−iβ�̂δ(x) : |2 = O((2 − β2)−1). As further ‖ fδ‖H−1(K ) � δ−β2/2‖�δ‖H1(K ) and
‖�δ‖H1(K ) does not depend on β, we see that we are in fact losing in terms of β2 − 2
as well.

Illustratively, we are losing in high frequencies because we are replacing

∫

μ(x)G(x, y)μ(y) by
∫

: eiβ�̂δ(x) :: e−iβ�̂δ(y) : .

After taking expectation, in terms of near-diagonal contributions, as G(x, y) ∼
− log |x−y|near thediagonal, this basically translates to replacing− ∫ |x |−β2/2 log |x |
with

∫ |x |−β2/2 and results in the loss of a factor of 2−β2 as β2 → 2. Thus we have to
tweak our test function fδ further to at the same time guarantee sufficient concentration
and not to lose too much on tails.

We will see later on that this strategy gives us more generally the following result.

123



J. Aru et al.

Proposition 6.7 Let f ∈ C∞c (U ). Then for each ν ∈ (0,
√
d), there exist constants

c1, c2, c3 > 0 such that

P[‖ f μ‖H−d/2(Rd ) ≤ (d − β2)−2λ] ≤ c1e
−c2λ−c3

for all λ > 0 and all β ∈ (ν,
√
d).

The same strategy for the determinant requires some extra input, yet the key ideas
are present already in this toymodel: the projection bound corresponds to the analogue
of Malliavin determinants given by Lemma 3.3, the concentration of the numerator
to Lemma 6.8 and that of the denominator to Lemma 6.9. The only new technical
ingredient will enter as Lemma 6.10.

6.4.2 Proof setup and proof of Proposition 3.7 modulo technical lemmas

Let f be a bounded continuous function whose support is a compact subset of U and
set M = μ( f ). Our goal in this section is to obtain lower bounds on P[det γM ≥ λ],
where det γM is the Malliavin determinant (3.1).

As in the toy problem, it is not so clear how to obtain sharp bounds directly and the
idea is to use the projection bound from Lemma 3.3, which says that

P[det γM ≥ λ] ≥ P

[ (|〈DM, h〉HC
| − |〈DM, h〉HC

|)4
‖h‖4HC

≥ 4λ
]

(6.10)

for any h ∈ HC. A key step is the specific choice of h(x), which needs to at the
same time give a precise enough bound and allow for chaos computations. Moreover,
we have to ensure that it also belongs to the Cameron–Martin space. Here, one of
the technical difficulties is that in general we do not have a good understanding of
the Cameron–Martin space of �. To deal with that, we will use the decomposition
theorem, Theorem 4.5 to be able to work with almost �-scale invariant fields.

More precisely, let us fix an open set V with V a compact subset of U such that
supp f ⊂ V . Then by Theorem 4.5 one can write �|V = Y + Z =: X where Y is an
almost �-scale invariant field with smooth and compactly supported seed covariance
k and parameter α, and Z is an independent Hölder-continuous field. Recall further
the approximations Yε of Y of such a field from Sect. 4.1 and the notation for its tail
field Ŷε := Y − Yε.

Now, notice that

det γM = β4

4

(∣

∣

∣

∫

U
f (x) f (y)μ(x)μ(y)C(x, y) dx dy

∣

∣

∣

2

−
∣

∣

∣

∫

U
f (x) f (y)μ(x)μ(y)C(x, y) dx dy

∣

∣

∣

2)

,

where the right hand side only depends on μ, and thus on �, restricted to V . Thus, to
obtain bounds on det γM , we can instead ofworkingwith the (complexified)Cameron–
Martin space HC = H�,C, just as well work with the Cameron–Martin space of Y+Z ,
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which is defined on the whole plane. Apologising for the abuse of notation, we still
denote it by HC. This small trick allows us to use the independence structure of the
field Y , and also puts Fourier techniques in our hand.
Definition of h.

Whereas the decomposition theorem and the change of Cameron–Martin space
make the computations potentially doable, they become practically doable only with
a very careful choice of the test function h. Namely, we set

h(x) = hδ(x) = eiβYδ(x)− β2

2 E[Yδ(x)2]
∫

U
f (y) : eiβZ(y) :: eiβŶδ(y) : Rδ(x, y) dy,

where Rδ(x, y) = gδ(x)gδ(y)E[Ŷδ(x)Ŷδ(y)] is defined using a smooth indicator gδ

of δ-separated squares and the parameter δ will be chosen in a suitable way according
to λ.

More precisely, let Qδ be the collection of cubes of the form

[4k1δ, (4k1 + 1)δ] × · · · × [4kdδ, (4kd + 1)δ],

where k1, . . . , kd ∈ Z. Note in particular that the cubes are δ-separated and hence the
restrictions of Ŷδ to two distinct cubes in Qδ are independent. We then set

gδ = ϕδ ∗ 1⋃Qδ∩V , (6.11)

where ϕ is a smooth mollifier supported in the unit ball and ϕδ(x) = δ−dϕ(x/δ).
We note that h is indeed almost surely an element of HC, since the Malliavin

derivative of (iβ)−1
∫

f (y) : eiβZ(y) : gδ(y) : eiβŶδ(y) : dy with respect to the field
Ŷδ equals

x �→
∫

U
f (y) : eiβZ(y) : gδ(y) : eiβŶδ(y) : E[Ŷδ(x)Ŷδ(y)] dy

and lies in HŶδ,C
(the complexification of the Cameron–Martin space of Ŷδ). In par-

ticular, since Y = Yδ + Ŷδ is an independent sum, it lies in HY ,C as well and, by
Lemma 4.8, this as a set of functions coincides with Hd/2

C
(Rd). Moreover, the map

x �→ gδ(x)eiβYδ(x)− β2

2 E[Yδ(x)2] is almost surely smooth so multiplying by it shows
that

x �→ gδ(x)e
iβYδ(x)− β2

2 E[Yδ(x)2]
∫

U
f (y) : eiβZ(y) : gδ(y) : eiβŶδ(y) :

E[Ŷδ(x)Ŷδ(y)] dy ∈ Hd/2
C

(Rd).

Finally, as Y + Z is an independent sum, Lemma 4.1 implies that Hd/2
C

(Rd) ⊂ HC as
desired.
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Proof of Proposition 3.7 In order to derive bounds onP[det γM < λ] andP(
det γM
‖DM‖2HC

<

λ) for λ > 0 small, we will look at the three terms |〈DM, hδ〉HC
|, |〈DM, hδ〉HC

| and
‖hδ‖HC

appearing in (6.10) separately and collect the results in the following lemmas.

Lemma 6.8 For every ν > 0, there exists a constant c2 > 0 such that for all c > 0
small enough

P[|〈DM, hδ〉HC
| ≤ c(d − β2)−2δd ] ≤ exp

(

−c2δ−d∧2
)

for all small enough δ > 0 and all β ∈ (ν,
√
d).

Lemma 6.9 For all η > 0 small enough, we can choose C > 0 such that

‖hδ‖2HC
≤ Cδβ2−2d−2ηW 2|〈DM, hδ〉HC

|,

where W is a Yδ-measurable positive random variable.Moreover, we can pick c1, c2 >

0 such that for all δ ∈ (0, 1) and t ≥ c1δ−2−η we have

P(W > t) ≤ exp(−c2δηt
2
d ).

Lemma 6.10 For every ν > 0, there exists a constant c1 > 0 such that the following
holds. For every c > 0, we can choose c2 > 0 such that

P[|〈DM, hδ〉HC
| ≥ c(d − β2)−2δd ] ≤ exp(−c2δ−c1)

for all small enough δ > 0 and all β ∈ (ν,
√
d).

We now explain how we deduce Proposition 3.7 from these lemmas, and then in
the next subsections turn to their proofs.

Proof of Proposition 3.7 By Lemma 3.3, we have that

P

(

det γM
‖DM‖2HC

≥ ε/4

)

≥ P

(

(|〈DM, hδ〉HC
| − |〈DM, hδ〉HC

|)2
‖hδ‖2HC

≥ ε

)

and

P (det γM ≥ ε/4) ≥ P

(

(|〈DM, hδ〉HC
| − |〈DM, hδ〉HC

|)2
‖hδ‖2HC

≥ √ε

)

,

so it suffices to bound P

(

(|〈DM,hδ〉HC |−|〈DM,hδ〉HC |)2
‖hδ‖2HC

≤ ε

)

from above. Here hδ is as

above and we will choose δ depending on ε.
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Using Lemma 6.9, we first bound for some η > 0

(|〈DM, hδ〉HC
| − |〈DM, hδ〉HC

|)2
‖hδ‖2HC

≥ C−1δ−β2+2d+2ηW−2(|〈DM, hδ〉HC
| − 2|〈DM, hδ〉HC

|).

Hence, taking c to be the constant from Lemma 6.8 we can bound

P

( (|〈DM, hδ〉HC
| − |〈DM, hδ〉HC

|)2
‖hδ‖2HC

≤ (d − β2)−2δ3d+5
)

by

P

(

|〈DM, hδ〉HC
| − 2|〈DM, hδ〉HC

| ≤ c

2
(d − β2)−2δd

)

+P
(

Cδβ2−2d−2ηW 2 >
c

2
δ−2d−5

)

.

The second term can be bounded using Lemma 6.9 loosely by exp(−c1δ−c1) for some
c1 > 0.

For the first term, Lemma 6.8 gives that

P(|〈DM, hδ〉HC
| ≤ c(d − β2)−2δd) ≤ exp(−c2δ−d∧2)

and Lemma 6.10 gives constants c3 > 0

P(2|〈DM, hδ〉HC
| ≥ c

2
(d − β2)−2δd) ≤ exp(−δ−c3),

and we thus obtain the proposition.
The case of the standard log-correlated field on circle needs extra attention, and is

treated in Sect. 6.4.6. 
�
One can see that a simplified version of the above proof can also be used to prove

Proposition 6.7.

Proof of Proposition 6.7 Recall that on the support of f , we can write �|V = Y + Z =
X , where Y is almost �−scale invariant and Z is Holder regular, both defined on
the whole space. Note that by Lemma 4.8 and Theorem 4.5 the operators CY and
CZ are bounded from H−d/2(Rd) to Hd/2(Rd) and hence so is CX . Thus for any
ϕ ∈ H−d/2(Rd) we have

〈CXϕ, ϕ〉L2(Rd )

≤ ‖CXϕ‖Hd/2(Rd )‖ϕ‖H−d/2(Rd ) ≤ ‖CX‖H−d/2(Rd )→Hd/2(Rd )‖ϕ‖2H−d/2(Rd )
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so that in particular

‖ f μ‖2H−d/2(Rd )
� 〈CX ( f μ), f μ〉L2(Rd ) = β−2‖DM‖2HC

≥ β−2 |〈DM, hδ〉HC
|2

‖hδ‖2HC

.

Using this inequality one can proceed as in the proof of Proposition 3.7 except one
does not need to take care of the term 〈DM, hδ〉. 
�

The rest of this subsection is dedicated to the proofs of Lemmas 6.8, 6.9 and 6.10,
and sketching the extension to the case of the circle.

6.4.3 Proof of Lemma 6.8

Proof of Lemma 6.8 Let us fix some ν > 0 small. Note that 〈DM, hδ〉HC
is equal to

iβ
∫

U
f (x) : eiβX(x) : hδ(x) dx

= iβ
∫

U×U
f (x) f (y) : eiβ(Ŷδ(x)+Z(x)) :: e−iβ(Ŷδ(y)+Z(y)) : Rδ(x, y)

= iβ
∑

Q∈Qδ

∫

Q×Q
f (x) f (y) : eiβ(Ŷδ(x)+Z(x)) :: e−iβ(Ŷδ(y)+Z(y)) : Rδ(x, y) dx dy

since Rδ(x, y) = 0 if x and y are not in the same square inQδ .Moreover the summands
are mutually independent, when we condition on the field Z , and by scaling each term
agrees in law with

δ2d JQ := δ2d
∫

δ−1Q×δ−1Q
f (δx) : eiβZ(δx)

:: e−iβZ(δy) : f (δy) : eiβŶδ(δx) :: e−iβŶδ(δy) : Rδ(δx, δy) dx dy.

We can write

E[JQ |Z ] =
∫

δ−1Q×δ−1Q
f (δx) f (δy) : eiβZ(δx)

:: e−iβZ(δy) : eβ2
E[Ŷδ(δx)Ŷδ(δy)]Rδ(δx, δy) dx dy.

Whenever Q is such that f (x) ≥ ‖ f ‖∞/2 for all x ∈ Q (or similarly if f (x) ≤
−‖ f ‖∞/2), and the event EQ := {supx,y∈Q |Z(x)− Z(y)| ≤ π/(4β)} holds, a basic
calculation that uses Lemma 4.4 shows that

• E[JQ |Z , EQ] ≥ C(d − β2)−2, for some constant C > 0 that is uniform over
β ∈ (ν, d) and depends only on ‖ f ‖∞

• E[J 2Q |Z , EQ] ≤ c(d − β2)−4 for some constant c > 0 that is again uniform over
β ∈ (ν, d) and depends solely on ‖ f ‖∞.
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In particular, by the Paley-Zygmund inequality for any such square Q it holds that
P[JQ ≥ λ(d − β2)−2|Z , EQ] ≥ p, where λ = C/2 and p > 0 is some constant. In
the following, we denote by Q̃δ the collection of those squares in which f is larger
than ‖ f ‖∞/2 (again, we may consider − f instead of f if needed).

Now, recall that Z is a Hölder continuous Gaussian field, and thus by local chaining
inequalities (e.g. Proposition 5.35 in [31]), we have that for some universal constant
C > 0

P

(

sup
|x−y|≤2δ

|Z(x)− Z(y)| > π/(4β)

)

≤ C exp(−Cδ−2).

Thus denoting E = {sup|x−y|≤2δ |Z(x)− Z(y)| ≤ π/(4β)} , we can bound

P[|〈DM, hδ〉HC
| ≤ c(d − β2)−2δd ] ≤ P(Ec)

+P
[

|〈DM, hδ〉HC
| ≤ c(d − β2)−2δd |E

]

.

As P(Ec) ≤ C exp(−Cδ−2) and E ⊆ ⋂

Q EQ , it remains to only take care of the
second term working under the assumption that the event EQ holds for all Q. For any
t > 0 to be chosen later, we have

P

[

|〈DM, hδ〉H | ≤ (d − β2)−2t |E
]

≤ P

[

JQ ≥ (d − β2)−2λ for at most t/(βλδ2d)

distinct Q ∈ Q̃δ|E
]

≤ P[Bin(|Q̃δ|, p) ≤ t/(βλδ2d)]

≤ e
−2|Q̃δ |

(

p−
⌈

t
βλδ2d

⌉

|Q̃δ |−1
)2

where Bin(n, p) denotes the Binomial distribution. In the second line we used the
conditional independence of JQ given Z and the conditional probability obtained
above; on the last line we used the Hoeffding’s inequality

P[Bin(n, p) ≤ m] ≤ e−2n(p−m
n )2 .

Noting that c1δ−d ≤ |Q̃δ| ≤ c2δ−d for some c1, c2 > 0, we see that by choosing
t = pβλδd/(2c2) we get

P

[

|〈DM, hδ〉H | ≤ (d − β2)−2t |E
]

≤ e−2c1
p
3 δ−d

for small enough δ > 0 and the lemma follows. 
�
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6.4.4 Proof of Lemma 6.9

Proof of Lemma 6.9 We start with some immediate bounds that allow the usage of
inequalities on Sobolev spaces Hs

C
(Rd). First, by Lemma 4.8 we have

C−1‖ · ‖
Hd/2
C

(Rd )
≤ ‖ · ‖HY ,C

≤ C‖ · ‖
Hd/2
C

(Rd )

for some C > 0. On the other hand, by Lemma 4.1, we have that

‖ · ‖HC
≤ ‖ · ‖HY ,C

≤ ‖ · ‖HŶδ ,C
.

Now let ψ ∈ C∞c (Rd) be a non-negative function which equals 1 in the support of gδ

(recall that gδ is defined in (6.11)). Set

F(x) := eiβYδ(x)− β2

2 E[Yδ(x)2]ψ(x)

and

G(x) :=
∫

U×U
f (y) : eiβZ(y) :: eiβŶδ(y) : gδ(y)E[Ŷδ(x)Ŷδ(y)] dx dy

so that gδ(x)F(x)G(x) = hδ(x). Using the above norm bounds in conjunction with
the classical inequality ‖FG‖Hd/2(Rd ) � ‖F‖

Hd/2+ε

C
(Rd )

‖G‖
Hd/2
C

(Rd )
for any ε > 0

(see e.g. Theorem 5.1 in [7]), we can bound ‖hδ‖HC
by some constant times

‖gFG‖
Hd/2
C

(Rd )
� ‖gδ‖Hd/2+ε

C
(Rd )

‖F‖
Hd/2+ε

C
(Rd )

‖G‖
Hd/2
C

(Rd )

� ‖gδ‖Hd/2+ε

C
(Rd )

‖F‖
Hd/2+ε

C
(Rd )

‖G‖HŶδ ,C
.

We can bound ‖gδ‖Hd/2+ε

C
(Rd )

� δ−d−ε by scaling and triangle inequality. Further,

by definition we have that ‖G‖2HŶδ ,C
= |〈DM, hδ〉HC

|. Thus it remains to deal with

‖F‖
Hd/2+ε

C
(Rd )

. To do this, we will use Gaussian concentration inequalities.

Namely, by Theorem 4.5.7 in [9], if X is isonormal on a Hilbert space H ′, and any
T : H ′ → R is L−Lipschitz w.r.t ‖ · ‖H ′ , then for all t > 0

P(T (X)− ET (X) > t) ≤ exp(− t2

2L2 ).

We will make use of this concentration in the case T = ‖ · ‖Hd/2+ε(Rd ) to boundW :=
T (F). We first apply TheoremA in [1], which gives that for f ∈ Hd/2+ε(Rd)we have
‖ exp(i f )ψ‖

Hd/2+ε

C

� ‖ f ‖Hd/2+ε(Rd )+‖ f ‖d/2+ε

Hd/2+ε(Rd )
.7 This togetherwith the fact that

7 In [1] the authors consider compositions with real-valued functions; in our case one can apply it directly
to the real and imaginary part. Note that by the theorem the first operator in the chain f �→ ei f − 1 �→
(ei f − 1)ψ �→ ei f ψ is bounded and the other two are bounded since ψ is smooth.
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E[Yδ(x)2] is constant in x gives us that ‖F‖
Hd/2+ε

C
(Rd )

≤ cδβ2/2(‖Yδψ̃‖Hd/2+ε(Rd ) +
‖Yδψ̃‖d/2+ε

Hd/2+ε(Rd )
) for some c > 0. Here ψ̃ ∈ C∞c (Rd) is some function which is 1 in

the support of ψ . Further, we have the following bounds:

Claim 6.11 It holds that
1. ‖ · ‖Hd/2+ε(Rd ) is O(δ−2ε)−Lipschitz with respect to ‖ · ‖HYδ

.

2. (E‖ψ̃Yδ‖Hd/2+ε(Rd ))
2 ≤ E‖ψ̃Yδ‖2Hd/2+ε(Rd )

� δ−d−4ε.

Proof of Claim 6.11 Recall from the proof of Lemma 4.8 that the operator CYδ is a
Fourier multiplier operator with the symbol

K̂δ(ξ) :=
∫ 1

δ

vd−1(1− vα)k̂(vξ)dv

and k is by assumption smooth. Moreover,

‖ f ‖2HYδ
=
∫

Rd
K̂δ(ξ)−1| f̂ (ξ)|2 dξ

and

E‖ψ̃Yδ‖2Hd/2+ε(Rd )
=
∫

Rd
(1+ |ξ |2)d/2+ε

∫

Rd
| ˆ̃ψ(ζ )|2 K̂δ(ξ − ζ ) dζ dξ.

The two claims thus directly follow from bounding K̂δ respectively by

K̂δ(ξ) � δ−2ε(1+ |ξ |2)−d/2−ε, (6.12)

and K̂δ(ξ) � δ−d−4ε(1+ |ξ |2)−d−2ε, (6.13)

where the underlying constants do not depend on δ. These inequalities are clear when
|ξ | ≤ 1, and follow by integrating the bounds k̂(vξ) ≤ C |vξ |−d−2ε and k̂(vξ) ≤
C |vξ |−2d−4ε for |ξ | > 1. 
�

We can finally apply the Gaussian concentration to deduce that for all ε ∈ (0, d/2),
there are some c,C ′ > 0, such that for all t > cδ−d−4ε

P(‖ψ̃Yδ‖Hd/2+ε(Rd ) > t) ≤ exp
(

−C ′δεt2
)

,

and thus for some c′,C ′′ > 0 and for all t > c′δ−2−4ε

P(‖ψ̃Yδ‖Hd/2+ε(Rd ) + ‖ψ̃Yδ‖d/2+ε

Hd/2+ε(Rd )
> t) ≤ exp

(

−C ′δεt
2
d

)

,

implying the lemma. 
�
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6.4.5 Proof of Lemma 6.10

Proof We have

〈

DM, hδ

〉 = iβ
∫

U×U
f (x) f (y)e−2β2

E[Xδ (x)2] : ei2βXδ (x) :: eiβŶδ (x) :: eiβŶδ (y) : Rδ(x, y)dxdy,

which we can write as a sum

iβ
∑

Q∈Qδ

∫

Q×Q
f (x) f (y)e−2β2

E[Xδ(x)2] : ei2βXδ(x) :: eiβŶδ(x)

:: eiβŶδ(y) : Rδ(x, y)dxdy =: iβ
∑

Q∈Qδ

LQ .

We can then first bound

E| 〈DM, hδ

〉 |2N ≤ β2N
E|

∑

Q∈Qδ

LQ |2N .

If we expand the 2N -th moment of such a sum, we obtain terms of the form

β2N
E

[

LQ1 . . . LQN LQ′1 . . . LQ′N

]

.

Before taking expectation in each such term we separate the field Yδ = Y√δ+˜Yδ , with
˜Yδ := Yδ − Y√δ being independent of Y√δ . We can then write each term as

= β2N
∫

U2N

N
∏

j=1
f (x j ) f (y j ) f (x

′
j ) f (y

′
j )Rδ(x j , y j )Rδ(x

′
j , y

′
j )e

4β2E(Y√
δ
;x;x′)eβ2E(Ŷδ;x,y;x′,y′)

× e−2β
2∑N

j=1(E[Xδ (x j )2]+E[Xδ (x ′j )2])E

⎛

⎝

N
∏

j=1
: ei2β(Z(x j )+˜Yδ(x j )) :: e−i2β(Z(x ′j )+˜Yδ(x ′j )) :

⎞

⎠ ,

where the integration is over x j , y j ∈ Q j and x ′j , y′j ∈ Q′j . We bound the expectation
by

E

∣

∣

∣

∣

∣

∣

N
∏

j=1
: ei2β(Z(x j )+˜Yδ(x j )) :: e−i2β(Z(x ′j )+˜Yδ(x ′j )) :

∣

∣

∣

∣

∣

∣

≤ CN δ−2Nβ2
,

sinceE[˜Yδ(x)2] = 1
2 log

1
δ
+O(1).Now, there is some c > 0 such thatE(Yδ1/2; x; x′) ≥

E(Y 1/2
δ ,q;q′)−c√δN 2,whereq andq′ denote the vectors ofmidpoints for the ordered

squares Q j and Q′j . This can be seen by noting that since the seed covariance k is
Lipschitz, we have

|E[Y√δ(x)Y
√

δ(x
′)] − E[Y√δ(q)Y√δ(q

′)]|
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�
∫ 1

2 log
1
δ

0
eu ||x − x ′| − |q − q ′||(1− e−αu) du �

√
δ

when |x − q|, |x ′ − q ′| � δ. Thus we obtain the upper bound

‖ f ‖4N∞ β2N δ2β
2Nec

√
δN2

e4β
2E(Y

δ1/2 ;q1;q2)E[JQ1 . . . JQN JQ′1 . . . JQ′N ],

where now

JQ =
∫

Q×Q
: eiβŶδ(x) :: eiβŶδ(y) : Rδ(x, y)dxdy.

By Hölder’s inequality we can bound

E[JQ1 . . . JQN JQ′1 . . . JQ′N ] ≤ E|JQ1 |2N .

By scaling the right hand side equals

δ4Nd
∫

[0,1]4Nd

N
∏

j=1
Rδ(δx j , δy j )Rδ(δx

′
j , δy

′
j )e

β2E(Y (δ);x,y;x′,y′)

≤ δ4Nd
∫

[0,1]4Nd

N
∏

j=1

√

log C
|x j−π(x j )| log

C
|y j−π(y j )| log

C
|x ′j−π(x ′j )| log

C
|y′j−π(y′j )| e

β2E(Y (δ);x,y;x′,y′),

where we have used Lemma 4.4 and π(x) denotes the closest point to point x in the
set

{x1, . . . , xN , y1, . . . , yN , x ′1, . . . , x ′N , y′1, . . . , y′N } \ {x}.

By relabeling the points as z1, . . . , z4N and using Lemma 6.2 we then have the upper
bound

δ4Nd
∫

[0,1]4Nd

4N
∏

j=1

√

log
C

|z j − zF( j)|
1

|z j − zF( j)|β2/2
,

which by Lemma 6.3 is bounded by

CN (d − β2)−4N δ4Nd N 4N

for some constant C > 0. Hence we can bound E| 〈DM, hδ

〉 |2N by

CN (d − β2)−4N δ4Nd N 4Nβ2N δ2β
2Ne2c

√
δN2

δ−2Nd
∫

K 2N
exp

(

4β2E(Yδ1/2; x; x′)
)

,
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where for convenience we have turned q,q′ back to x, x′ by paying the same price. The
latter integral is the 2N -th moment of the 2β chaos of field Yδ1/2 , which by Lemma 6.2

and (6.7) is bounded by CN N 2N
(

log 1
δ

)N
δ−N max(2β2− d

2 ,0), giving

E| 〈DM, hδ

〉 |2N ≤ CNec
√

δN2
(d − β2)−4N

(

log
1

δ

)N
δN (2d+min( d2 ,2β2))N 6N .

Note that for any fixed b,C, ν > 0 we have 2b−1C log 1
δ

< δ−ν and δ small enough.
One thus sees that

P[|〈DM, hδ〉H | ≥ b(d − β2)−2δd ] ≤ 2−Nec
√

δN2
δ−νN δN min( d2 ,2β2)N 6N

yields the desired upper bound by choosing e.g. N = δ−β2/(24d). 
�

6.4.6 Special case: the standard log-correlated field on the circle

In this section we will briefly explain how to extend the proof of Proposition 3.7 to the
case where we are interested in the total mass of the imaginary chaos defined using the
field� on the unit circle which has the covariance log 1

|x−y| , where one now thinks of x
and y as being complex numbers of modulus 1. See Sect. 2 for the precise definitions.

Recall, that the extra complication in this case is that the field is degenerate in
the sense that it is conditioned to satisfy

∫ 1
0 �(e2π iθ ) dθ = 0. In terms of the proof

of Proposition 3.7 this creates some annoyance, as the function hδ we used in the
projection bounds does not anymore belong to the Cameron–Martin space HC of �,
and we will instead need to look at the function h̃δ = hδ −

∫

hδ(y) dy.
As the field �(e2π i ·) is non-degenerate when restricted to I0 := [−1/4, 1/4] (see

again Sect. 2), it is also beneficial to introduce a smooth bump function ψ supported
in I0 := [−1/4, 1/4] , and thus set

hδ(x) = ψ(x)eiβYδ(x)− β2

2 E[Yδ(x)2]
∫

I0
ψ(y) : eiβ(Ŷδ(y)+Z(y)) : Rδ(x, y) dy.

This will let us still use the decomposition X = Y + Z where �|I0 = X |I0 and
streamline most of the proof.

In the case of Lemmas 6.8 and 6.10, i.e. in terms 〈DM, h̃δ〉HC
and 〈DM, h̃δ〉HC

,

this subtraction of the mean introduces the extra term iβM
∫ 1
0 hδ(y) dy. In the case of

Lemma 6.9, we have an extra term of the form | ∫ 10 hδ(y)|. The next lemma guarantees
that both terms are negligible.

Lemma 6.12 For all c > 0 there is some c1 > 0 such that we have

P[|
∫ 1

0
hδ(y) dy| > cδ(1− β2)−1/2] ≤ e−c1δ−1c

2
β2

123



Density of imaginary multiplicative chaos via Malliavin calculus

and

P[|M
∫ 1

0
hδ(y) dy| > cδ(1− β2)−1] ≤ e−c1δ−1/2c

1
β2

for all δ small enough.

Proof We will bound the N–th moment of |M ∫

hδ(y)|, use the Chebyshev inequality
and optimize over N . Note that by the Cauchy–Schwarz inequality we have

E

[

∣

∣

∣

∣

M
∫ 1

0
hδ(y) dy

∣

∣

∣

∣

N
]

≤ E[|M |2N ]1/2E
[

∣

∣

∣

∣

∫ 1

0
hδ(y) dy

∣

∣

∣

∣

2N
]1/2

and by [16,Theorem 1.3] we know that (recall that we are currently in a one-
dimensional setting)

E[|M |2N ] ≤ CN (d − β2)−N Nβ2N

for some C > 0. We mention that, in the article [16], the dependence of the above
constant in terms of β was not stated but follows from their approach (see (6.4)). To
bound E[| ∫ 10 hδ(y) dy|2N ], we note that by Jensen’s inequality we have

E

[∣

∣

∣

∫ 1

0
hδ(y) dy

∣

∣

∣

2N] ≤ E

[(

∫ 1

0
|hδ(y)|2 dy

)N]

,

where the right hand side equals

E

[(

∫ 1

0
|ψ(x)|2e−β2

E[Yδ(x)2]
∣

∣

∣

∫ 1

0
ψ(y) : eiβ(Ŷδ(y)+Z(y)) : Rδ(x, y) dy

∣

∣

∣

2
dx
)N]

.

We bound |ψ(x)|2e−β2
E[Yδ(x)2] by Cδβ2

and since Rδ(x, y) = 0 whenever x, y do not
belong to the same square, we can bound the above expression by

CN δNβ2
δ−N

∑

Q∈Qδ

E

[(

∫

Q3
ψ(y)ψ(z) : eiβ(Ŷδ(y)+Z(y))

: Rδ(x, y)Rδ(x, z) : e−iβ(Ŷδ(z)+Z(z)) : dz dx dy
)N]

.

By developing the expectation into a multiple integral, using an Onsager inequality
associated to the smooth field Z (see (6.3)) and then rewriting the multiple integrals
as an expectation, we see that we can get rid of the field Z in the above expectation
by only paying a multiplicative price CN .

Thus it remains to bound

CN δNβ2
δ−N

∑

Q∈Qδ

E

[(

∫

Q3
ψ(y)ψ(z) : eiβŶδ (y) : Rδ(x, y)Rδ(x, z) : e−iβŶδ (z) : dz dx dy

)N ]

.

123



J. Aru et al.

By scaling we see that each term in the sum is equal in law to

δ3N JQ := δ3NE
[(

∫

δ−1Q×δ−1Q×δ−1Q
ψ(δy)ψ(δz) : eiβŶδ(δy) : Rδ(δx, δy)Rδ(δx, δz)

: e−iβŶδ(δz) : dz dx dy
)N]

.

To bound this expectation, we expand the product and obtain a multiple integral over

xi , yi , zi , i = 1 . . . N . The expectation of the product of : eiβŶδ(δy) : and : e−iβŶδ(δz) :
leads to E(Ŷδ(δ·); y; z) that we bound using the Onsager inequality (6.2). Since for
any fixed y and z,

ψ(δy)ψ(δz)
∫

δ−1Q
Rδ(δx, δy)Rδ(δx, δz) dx < C,

we can first integrate the variables xi and control the remaining integral over yi and
zi , i = 1 . . . N with (6.4). Overall, JQ is bounded by (d − β2)−N Nβ2N .

Altogether we obtain that

E

[∣

∣

∣

∫ 1

0
hδ(y) dy

∣

∣

∣

2N] ≤ CN (d − β2)−N δ(β2+2)N Nβ2N

and hence

E

[∣

∣

∣M
∫ 1

0
hδ(y) dy

∣

∣

∣

N] ≤ CN (d − β2)−N δ(
β2

2 +1)N Nβ2N ,

which gives us the tail estimates

P

[∣

∣

∣

∫ 1

0
hδ(y) dy

∣

∣

∣ ≥ λ(d − β2)−1/2
]

≤ CN δ(
β2

2 +1)N N
β2

2 N

λN
.

and

P

[∣

∣

∣M
∫ 1

0
hδ(y) dy

∣

∣

∣ ≥ λ(d − β2)−1
]

≤ CN δ(
β2

2 +1)N Nβ2N

λN
.

Optimising over N now concludes. 
�
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A Appendix: Some standard proofs

Proof of Lemma 4.4 It is calculationally somewhat easier to work with the rescaled
field Y (ε)(x) = Ŷε(δx), which can be expressed using white noise as:

Y (δ)(x) :=
∫

Rd×[0,∞)

edu/2k̃(eu(t − x))
√

1− δαe−αudW (t, u).

The first inequality then follows directly:

E[Y (δ)(x)Y (δ)(y)] =
∫ ∞

0
k(eu(x − y))(1− δαe−αu) du

≤
∫ ∞

0
k(eu(x − y)) du ≤ log

1

|x − y|
by the fact that k is supported in B(0, 1) and k(t) ≤ 1 for all t .

For the second inequality we compute

∫ ∞

0
k(eu(x − y))(1− δαe−αu) du ≥

∫ ∞

0
k(eu(x − y))(1− e−αu) du

≥
∫ log 1

|x−y|

0
k(eu(x − y)) du −

∫ ∞

0
e−αu du

≥ log
1

|x − y| +
∫ log 1

|x−y|

0
(k(eu(x − y))− 1) du − 1

α

Note that by Taylor’s theorem we have for all t ∈ R the inequality

k(t) ≥ 1+ k′(0)t − ct2

for some constant c > 0, and in fact since k is smooth and symmetric we have
k′(0) = 0. Hence

∫ log 1
|x−y|

0
(k(eu(x − y))− 1) du ≥ −c

∫ log 1
|x−y|

0
e2u |x − y|2

= −c
(

1

2|x − y|2 |x − y|2 − |x − y|2
2

)

≥ − c

2
,
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from which the claim follows.
Finally, the independence comes from the fact that k is supported in B(0, 1) 
�

Proof of Lemma 6.2 Let us begin with the field Yε. Set q j = 1 for 1 ≤ j ≤ N and
q j = −1 for N + 1 ≤ j ≤ 2N and note that

E(Yε; x; y) = −1

2
E

⎡

⎣

(
2N
∑

j=1
q jYd j∧ε(z j )

)2

⎤

⎦

+1

2

2N
∑

j=1
E[Yd j∧ε(z j )

2] ≤ 1

2

2N
∑

j=1
log

1

d j ∧ ε

sinceE[Yε(x)Yε(y)] = E[Ys(x)Yt (y)] for all s, t ≤ ε∧|x− y| andE[Yδ(x)2] ≤ log 1
δ

for all δ ∈ (0, 1).
As the field Ŷε(εx) has the same distribution as the field Y (ε)(x) from the proof of

Lemma 4.4, we have

E(Ŷε(ε·); x; y) = −1

2
E

⎡

⎣

(
2N
∑

j=1
q j Ŷ

(ε)
d j

(z j )
)2

⎤

⎦+ 1

2

2N
∑

j=1
E[Ŷ (ε)

d j
(z j )

2] ≤ 1

2

2N
∑

j=1
log

1

d j
.

Finally, if R is a regular field then

E(R; x; y) = −1

2
E

⎡

⎣

(
2N
∑

j=1
q j R(z j )

)2

⎤

⎦+ 1

2

2N
∑

j=1
E[R(z j )

2] ≤ N sup
1≤ j≤2N

E[R(z j )
2].


�
Proof of Lemma 6.5 We prove this lemma in the context of real-valued random vari-
ables. The extension to complex-valued random variables follows immediately.

In page 58 of [22], an operator L on the set of variables with finite second moment

is introduced and used to define the norm ‖|F |‖k,p := E
[

((I − L)k/2F)p
]1/p

. The
norms ‖| · |‖k,p and ‖·‖k,p are equivalent (see [22] page 77). Hence
supn E

[

((I − L)k/2Fn)p
]

< ∞. By weak compactness of balls in L p(�), we can
extract a subsequence (n(i), i ≥ 1) such that ((I − L)k/2Fn(i), i ≥ 1) converges
weakly towards some elementG. Since the L p-norm is weakly lower-semicontinuous,
we moreover have

E
[

Gp] ≤ lim inf
i

E

[

((I − L)k/2Fn(i))
p
]

≤ lim sup
n

E

[

((I − L)k/2Fn)
p
]

.

In the proof of [22,Lemma 1.5.3], D. Nualart shows that F = (I − L)−k/2G. This
implies that
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‖F‖k,p ≤ Ck,p ‖|F |‖k,p = Ck,pE
[

Gp]1/p ≤ Ck,p lim sup
n

‖|Fn|‖k,p
≤ C ′k,p lim sup

n
‖Fn‖k,p .

This concludes the proof. 
�

B Appendix: Proof of Proposition 3.1

Proof of Proposition 3.1 We start by showing that M belongs to D
∞. Let n ≥ 1, δ >

0, j ≥ 0 and p ≥ 1. In the following, we will denote

�δ = � ∗ ϕδ, �n,δ =
n
∑

k=1
Akek ∗ ϕδ, Mδ =

∫

C

f (x)eiβ�δ(x)+ β2

2 E[�δ(x)2]dx

and

Mn,δ =
∫

C

f (x)eiβ�n,δ(x)+ β2

2 E[�n,δ(x)2]dx .

Mn,δ is a smooth random variable and D jMn,δ is equal to

(iβ) j
∫

C

dx f (x)eiβ�n,δ(x)+ β2

2 E[�n,δ(x)2]

×
n
∑

k1,...,k j=1
(ek1 ∗ ϕδ)(x) . . . (ek j ∗ ϕδ)(x)ek1 ⊗ · · · ⊗ ek j . (B.1)

Since (ek1 ⊗ · · · ⊗ ek j , k1, . . . , k j = 1 . . . n) is an orthonormal family of H⊗ j , we
deduce that

∥

∥

∥D jMn,δ

∥

∥

∥

2

H⊗ j
C

= β2 j
∫

C2
f (x) f (y)eiβ�n,δ(x)−iβ�n,δ(y)+ β2

2 E[�n,δ(x)2]+ β2

2 E[�n,δ(y)2]

×
(

n
∑

k=1
(ek ∗ ϕδ)(x)(ek ∗ ϕδ)(y)

) j

dxdy.

Thanks to the convolution, all the integrated terms are uniformly bounded in n and
x1 . . . xp, y1 . . . yp. By dominated convergence theorem and then by using (6.1) which
provides an Onsager inequality for convolution approximations, we deduce that

lim sup
n→∞

E

[

∥

∥

∥D j Mn,δ

∥

∥

∥

2p

H⊗ j
C

]

≤ β2 j p
∫

C2p
dx1 . . . dxpdy1 . . . dyp

p
∏

l=1
f (xl ) f (yl ) (C ∗ (ϕδ ⊗ ϕδ)(xl , yl ))

j eβ2E(�δ ;x;y)
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≤ C j,p ‖ f ‖2p∞
∫

K 2p
dz1 . . . dz2p

2p
∏

l=1

(

min
l ′ �=l

|zl − zl ′ |
)−β2/2 (

max
l ′ �=l

C ∗ (ϕδ ⊗ ϕδ)(zl , zl ′ )

) j/2

where K is the support of f . Importantly, the above constant C j,p does not depend
on δ. Notice that

C ∗ (ϕδ ⊗ ϕδ)(x, y) ≤ C log
c

|x − y| ∨ δ
.

Hence, if we let ε > 0 be such that β2/2+ε < d/2, there existsC ′j,p > 0 independent
of δ such that

lim sup
n→∞

E

[

∥

∥

∥D jMn,δ

∥

∥

∥

2p

H⊗ j
C

]

≤ C ′j,p
∫

K 2p
dz1 . . . dz2p

2p
∏

l=1

(

min
l ′ �=l

|zl − zl ′ |
)−β2/2−ε

≤ C ′′j,p (B.2)

by (6.4). Since (Mn,δ, n ≥ 1) converges in L2p towards Mδ , Lemma 6.5 and (B.2)
imply that for all k ≥ 1, Mδ ∈ D

k,2p and that

sup
δ>0

‖Mδ‖k,2p < ∞. (B.3)

Now, because (Mδ, δ > 0) converges in L2p towards M , Lemma 6.5 implies that for
all k ≥ 1, M ∈ D

k,2p. This concludes the proof that M ∈ D
∞.

We now turn to the proof of the formula for DM . On the one hand, (B.1) gives

DMn,δ = iβ
∫

C

dx f (x)eiβ�n,δ(x)+ β2

2 E[�n,δ(x)2]
n
∑

k=1
(ek ∗ ϕδ)(x)ek .

One can then show that (DMn,δ, n ≥ 1) converges in L2(�; H) towards

iβ
∫

C

dx f (x)eiβ�δ(x)+ β2

2 E[�δ(x)2]
∞
∑

k=1
(ek ∗ ϕδ)(x)ek .

On the other hand, the first part of the proof showed that supn E
[

∥

∥DMn,δ

∥

∥

2
HC

]

< ∞
and Lemma 6.4 implies that (DMn,δ, n ≥ 1) converges to DMδ in the weak topology
of L2(�; H). Hence

DMδ = iβ
∫

C

dx f (x)eiβ�δ(x)+ β2

2 E[�δ(x)2]
∞
∑

k=1
(ek ∗ ϕδ)(x)ek .
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Let us now show that (DMδ, δ > 0) converges in L2(�; H) towards

iβ
∫

C

dx f (x)μ(x)C(x, ·).

Firstly, since

C(x, ·) =
∑

k≥1
ek(x)ek(·)

and the ek, k ≥ 1, form an orthonormal family of H , we have

E

[

∥

∥

∥

∥

∫

C

dx f (x)μ(x)C(x, ·)−
∫

C

dx f (x)eiβ�δ(x)+ β2

2 E[�δ(x)2]C(x, ·)
∥

∥

∥

∥

2

HC

]

=
∑

k≥1
E

[

(∫

C

f (x)μ(x)ek(x)dx −
∫

C

f (x)eiβ�δ(x)+ β2

2 E[�δ(x)2]ek(x)dx
)2
]

.

(B.4)

Each single term in the above sum goes to zero as δ → 0. Moreover, using Onsager
inequality for convolution approximations (6.1), one can obtain a domination in a sim-
ilar manner as what we did in the first part of the proof. By the dominated convergence
theorem, it implies that (B.4) goes to zero as δ → 0. Secondly,

E

⎡

⎢

⎣

∥

∥

∥

∥

∥

∥

∫

C

dx f (x)eiβ�δ(x)+ β2

2 E[�δ(x)2]∑

k≥1
(ek ∗ ϕδ)(x)ek −

∫

C

dx f (x)eiβ�δ(x)+ β2

2 E[�δ(x)2]C(x, ·)
∥

∥

∥

∥

∥

∥

2

HC

⎤

⎥

⎦

=
∑

k≥1
E

[

(∫

C

f (x)eiβ�δ(x)+ β2

2 E[�δ(x)2]((ek ∗ ϕδ)(x)− ek(x))dx

)2
]

≤ C ‖ f ‖2∞
∫

K 2
|x − y|−β2

∣

∣

∣

∣

∣

∣

∑

k≥1
((ek ∗ ϕδ)(x)− ek(x))((ek ∗ ϕδ)(y)− ek(y))

∣

∣

∣

∣

∣

∣

dxdy (B.5)

where K is as before the support of f . The above integrand is dominated by the
integrable function C |x − y|−β2

log(c/|x − y|). Dominated convergence theorem
thus implies that (B.5) goes to zero as δ → 0. Putting things together, we have shown
the aforementioned convergence: (DMδ, δ > 0) converges in L2(�; H) towards

iβ
∫

C

dx f (x)μ(x)C(x, ·).

With (B.3), we notice that supδ E

[

‖DMδ‖2HC

]

< ∞ and Lemma 6.4 also shows that

(DMδ, δ > 0) converges to DM in the weak topology of L2(�; H). This yields
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DM = iβ
∫

C

dx f (x)μ(x)C(x, ·).


�
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