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A mon freére.

CALIBAN:

Be not afraid: the isle is full of noises,
Sounds, and sweet airs, that give delight,
and hurt not.

Sometimes a thousand twangling
instruments

Will hum about mine ears; and
sometimes voices,

That, if I then had waked after long
sleep,

Will make me sleep again: and then, in
dreaming,

The clouds methought would open and
show riches

Ready to drop upon me; that, when I
waked,

I cried to dream again.

Shakespeare
The Tempest, Acte III Scene 2.



Abstract

This thesis is constituted of the article [Pos22] and the preprints [Pos21c, Pos21b, Pos2lal.
Their common theme is the moduli theory of algebraic varieties. In the first article I study
the Chow—Mumford line bundle for families of uniformly K-stable Fano pairs, and I show it is
ample when the family has maximal variation. The three preprints deal with a generalization
to positive characteristic of Kollar’s gluing theory for stable varieties. I generalize this theory
to surfaces and threefolds. Then I apply it to study the abundance conjecture for surfaces,
the topology of Ic centers on threefolds, existence of semi-resolutions for surfaces, and gluing
theory for families of surfaces in mixed characteristic.
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Résumé

Cette these de doctorat est constituée de D'article [Pos22] et des pré-publications [Pos2lc,
Pos21b, Pos21al. Le theme commun est la théorie des modules des variétés algébriques. Dans
le premier article, j’étudie le fibré en droites de Chow—Mumford pour les familles de variétés de
Fano logarithmiques uniformément K-stables, et je montre que ce fibré est ample si la famille
est de variation maximale. Les trois pré-publications sont consacrées a une généralisation
en caractéristique positive de la théorie de recollement de Kollar pour les variétés stables.
Je développe une telle généralisation pour les surfaces et les solides; puis je 'applique a la
conjecture d’abondance pour les surfaces, a la topologie des centres log canoniques sur les
solides, a l'existence de semi-résolutions pour les surfaces, et a la théorie de recollement pour
les familles de surfaces en caractéristique mixte.

MoOTS CLES

Géométrie algébrique, variété algébrique, géométrie birationnelle, théorie des modules,
variété de Fano, K-stabilité, fibré de Chow—Mumford, théorie de recollement de Kollar, variété
stable, noeud, surfaces, solides, abondance, centre log canonique, semi-résolution, caractéristique
positive, caractéristique mixte.
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Chapter 1

Introduction

It seems that I must bid the Muse go
pack,

Choose Plato and Plotinus for a friend
Until imagination, ear and eye,

Can be content with argument and deal
In abstract things; or be derided by

A sort of battered kettle at the heel.

W. B. Yeats
The Tower.

This PhD thesis consists of four articles [Pos22, Pos2lc, Pos21b, Pos21la] that I wrote
during my doctoral studies at EPFL, between February 2018 and May 2022. The first article
[Pos22] has been accepted for publication by the Transactions of the AMS, and the three other
have been submitted to peer-reviewed journals. Compared to the versions available on the
arXiv, I have made few changes: the common notations and terminology have been gathered in
Chapter 2 and the technical background of [Pos21c, Pos21b, Pos21a] is presented in Chapter 4.
The first article [Pos22] has little in common with the three other ones — with the exception
of their author. My goal for the present introduction is therefore to sketch the mathematical
theory from which they all sprouted, and then give an overview of the new results contained in
this thesis. The reader will find more specific informations about each article in their original
introduction at the beginning of the corresponding chapters.

1.1 MoDULI THEORY

The motivation of these four articles can be traced back to MODULI THEORY. This theory is
a central theme of algebraic geometry: given a set of algebraic objects § sharing some common
properties, is there a geometric space Mz whose points are in bijection with the elements of
3§, and whose geometry reflects the way these elements may vary?

A classical instance of this question is the moduli theory of Riemann surfaces. Riemann
proved, already in the middle of the XIX'" century, that the parameter space M, of compact
complex surfaces of genus g > 2 depends on 3g — 3 parameters. The Italian school of algebraic
geometry studied degenerating families of curves and rational properties of M, in the first half
of the XX century. Modern methods to study M, were introduced by Mumford [Mum65]
and latter by Deligne-Mumford [DM69], and the Kodaira dimension and topological invariants
of M, remain an active topic of research nowadays.

Depending on the nature of the objects in §, there might exist different and non-equivalent
approaches to construct and study Mjz. In the case of Riemann surfaces, one can use either
Teichmiiller theory or Hodge theory to construct M, (see [HM98, 2.C]). These two methods
rely in an essential way on the analytic structure that a Riemann surface carries. But (com-



pact) Riemann surfaces can be seen as complex algebraic curves, and one might rightfully insist
to develop a moduli theory that relies only on algebraic tools. As a by-product, such a theory
would apply to a broader class of curves, for example curves that are defined over finite fields,
for which the help of complex analysis is not available. A purely algebraic approach to moduli
theory was pioneered by Mumford with his GEOMETRIC INVARIANT THEORY (GIT), first ex-
posed in [Mum65] (see [MEFK94] for the most recent edition). This approach has been extremely
successful in several cases, including moduli of curves, of surfaces of general type [Gie77a], of
canonically polarized manifolds [Vie95] and of vector bundles [NS64, Gie77b]. Although GIT
is not discussed in this thesis, it has a fundamental feature that I want to highlight.

1.2 GIT APPROACH TO MODULI THEORY

A typical situation for a GIT moduli is the following. Assume that § is a set of isomorphism
class of pairs (X, L), where X is a variety of fixed dimension and L a line bundle on X of
fixed Hilbert polynomial h(t), with the property that the linear system |L| embeds X into
PN for N = N(h(t)) independent of X. According to a theorem of Grothendieck, there is a
proper space H = H(N, h(t)) that parametrizes in the strongest possible sense the embedded
subschemes X C PV for which the Hilbert polynomial of O(1)|x is h(t). Amongst those X
are the varieties X € § embedded using a basis of the linear system |L|. Usually the locus
Hg of H corresponding to these embeddings is locally closed. Moreover the multiple choices
of embeddings X C PV corresponding to the many basis of |L|, are recovered as the orbit
of one embedding under the action of Aut(P",O(1)) = PGL(N + 1) on H. Therefore the
quotient space Hgz/PGL(n + 1), should it exist, would give a good notion of parameter space
for §. However taking quotients by infinite groups is a delicate matter: GIT was designed to
understand to which extent quotients exist in these situations. After a polarization is chosen
on H, the general theory identifies a subset H®® C H, called the locus of SEMI-STABLE POINTS,
for which a categorical quotient morphism

7 H® — H J PGL(N + 1)

exists. It also identifies an open subset H® C H®, called the locus of STABLE POINTS, for which
the restriction 7% = 7%|gs has all the properties one can reasonably expect from a quotient (for
example, its fibers are exactly the orbits). In favourable cases it holds that Hgz C H®, and by
restricting 7° accordingly we obtain a parameter space for §. In fact, we usually enlarge the
collection § so that we have an equality Hg = H°.

Now let me explain the special feature given by GIT. It follows from the general theory
that the quotient Mgz = H J PGL(N + 1) is projective: it is therefore a compactification of
Mgz = H?/ PGL(N + 1), which sits inside M as an open subset. This compactification has a
modular interpretation: while points of Mg correspond bijectively to elements of §, points in
the boundary OMz = Mz \ Mj can be interpreted as one-parameter semi-stable degenerations
of elements of §.

The existence of a modular compactification Mz C Mz is the best situation we can hope
for in moduli theory. Tools from cohomology, intersection theory and birational geometry can
be used to understand the geometry of (Mg, OM5): see for example [Has03, HH09, HH13].
Furthermore, the mere existence of a modular compactification implies that any one-parameter
family of objects in § can be filled-in uniquely (up to finite base-change) with semi-stable
objects.

Unfortunately, while the GIT approach is successful for constructing the moduli space of
curves (see [MFK94]), in many other situations it has serious shortcomings:

o If we use it to construct a moduli space of canonically polarized smooth varieties, then the

choice of different pluricanonical polarizations (X, L = w?}r) lead to an infinite collection
of modular compactifications [WX14].
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o The geometric meaning of GIT (semi-)stability is not easy to understand: consequently
the points on the boundary usually correspond to objects that are singular and difficult
to tell apart from unstable objects using only geometric criterions.

o In addition, If our collection § contains varieties that are singular, it is not even clear
that we can use the GIT approach! For surfaces already, it turns out that (asymptotic)
GIT stability imposes strong restrictions on the multiplicity of the local rings [Sha&1]:
hence many interesting yet mildly singular surfaces violate these restrictions.
Therefore different methods are needed to construct moduli spaces of varieties in higher di-
mensions. They should be powerful enough to provide modular compactifications, and provide
a good description of the objects at the boundary. Depending on the varieties we want to
parametrize, we can devise various strategies: below I present the KSBA approach to the mod-
uli of varieties of general type, and the K-stability approach to moduli of Fano varieties. These
are the two moduli theories that I study in the articles forming this thesis.

1.3 FUNCTORIAL APPROACH TO MODULI THEORY

Both approaches have a common theoretical framework, which goes back to the article of
Deligne and Mumford about the moduli space of curves [DM69]. Given a collection § for which
there is a meaningful notion of families of objects in § over a base scheme, one considers the
pseudo-functor

Mg : (Schemes)®? — (Groupoids)

sending a scheme S to the groupoid category of families of objects in § over S. We call Mz the
MODULI FUNCTOR of §.

At first glance it seems difficult to think about Mz as an actual space. However by the
Yoneda lemma, any scheme X induces a pseudo-functor hx = Hom(e, X), and many properties
of X — such as separatedness, properness, smoothness, irreducibility — can be read from the
pseudo-functor hx. By analogy, we think of Mz as a space in a generalized sense, and investigate
whether such scheme-like properties hold for Mz. In practice, this means proving properties
about families of objects in §: for example, properness of Mz amounts to show that, up to finite
base-change, a one-parameter family of objects in § has one and only one limit in § (about
valuative criterions for stacks, see [LMBO00, §7]). Therefore the choice of elements we allow in §
is critical for the properness of My: if we want § to contain a certain class of smooth varieties,
then we have to identify the correct class of singular degenerations of these varieties, so that
Mz will be a proper pseudo-functor.

1.4 MobDuLI OF KSBA STABLE VARIETIES

Following this functorial approach, let me first focus on the case of canonically polarized
varieties: these are the smooth varieties X for which the canonical line bundle wx = (det "X )*
is ample. What is a good notion of degenerations for these varieties? The curve case was settled
in the article of Deligne and Mumford, who identified the so-called stable curves as the correct
class of degenerations, and showed that the associated moduli functor is proper. This definition
was generalized in [KSB88], where stable surfaces were introduced. Shortly after it was shown
that the moduli functor of stable complex surfaces is proper [Kol90, Ale94]. Similarly, KSBA
STABLE VARIETIES can be defined in any dimension. It is now a theorem that in characteristic
zero their moduli functor Mkgpa is a proper Deligne-Mumford stack [K0121]1.

Now that we know that (KSBA) stability is a successful notion, you might rightfully ask for
its definition. It contains three parts. The first one is a purely algebraic restriction on the type

1Using the method that I will describe in Section 1.5.1, one can show in addition that the coarse moduli
space of Mkgsga (in the sense of Keel-Mori) is a projective variety [Fujl8, KP17, PX17]. Since I will not discuss
the projectivity of the moduli space of stable varieties in this thesis, I will not elaborate on this topic.
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of singularities (they should be at worst demi-normal, see Definition 4.2.0.2): it is important
to notice that a stable variety is not necessarily normal. The second part is that the canonical
sheaf should be ample. The third part is a geometric restriction on the singularities, in the
spirit of the Minimal Model Program (MMP): a stable variety is at worst semi-log canonical
(see Definition 4.2.0.4).

Let us pause for a second: why should the MMP be relevant in moduli theory? In the case
of stable varieties, it was quickly realized that the log canonical condition on the singularities
implies that the moduli functor is separated (see [Kol21, 1.27, 2.47-48]; but a truly illuminating
proof is given in [Ben20, §3.1]). Thus it makes sense to restrict our attention to log canonical
varieties, for which the tools of MMP and birational geometry are available. In fact, it turns out
that the MMP is an extremely powerful tool: the recent breakthroughs in the moduli theory
of stable varieties and of Fano varieties (see Section 1.5 below) would not have been possible
without these techniques.

While it is now clear that log canonical varieties are interesting to consider, the attentive
reader may have noticed that I defined stable varieties to be semi-log canonical. There is no
mistake: we are forced to work with non-normal varieties to obtain a proper moduli space, and
accordingly semi-log canonical is the non-normal version of log canonical. This creates serious
technical challenges, because techniques of the MMP are usually not available on non-normal
varieties (see [Koll1]). A solution is given by KOLLAR’S GLUING THEORY [Kol13, §5], which
establishes a dictionary between semi-log canonical singularities and their normalizations. This
dictionary is an essential tool to prove the properness of Mksga .

We have so far considered stable varieties in characteristic zero, but the definition is also
valid in positive characteristic. So what about the moduli functor of stable varieties in charac-
teristic p > 07 For curves the theory of [DMG69] is general enough to encompass stable curves
in positive characteristic’>. But already for surfaces, much less is known: the current state
of our knowledge is summarized in [Pat17]. Many techniques from characteristic zero break
down, and potential replacements were only developed recently. The article [Pos21c] is my
attempt to adapt Kollar’s gluing theory in positive characteristic, and [Pos21b, Pos21a] consist
of applications to the geometry of surfaces in positive and mixed characteristics. My results
will be presented in Section 1.6 below.

1.5 MobuLl oF K-STABLE FANO VARIETIES

Let us now consider the moduli of Fano varieties over the complex numbers. Fano varieties
are smooth complex projective varieties X with the property that their canonical line bundle
(det TX)* is anti-ample. If § contains the class of Fano varieties, which degenerations should
we allow so that My is proper? General deformation theory together with the Kodaira—Nakano
vanishing theorem imply that the infinitesimal deformations of Fano varieties are very well-
behaved. However their one-parameter deformations are much more complicated to understand,
and for a long time the moduli theory of Fano varieties seemed out of reach.

Inspiration came from analytic complex geometry. Tian and Donaldson [Tia97, Don02]
introduced the notion of K-(SEMI)STABILITY in their work about Kéhler-Einstein metrics on
Fano manifolds. It turned out that K-stability provides a good stability notion to construct
proper moduli spaces of Fano manifolds, as demonstrated by [OSS16] and [LWX18]. In parallel,
the definition of K-stability had been translated into purely algebraic terms [Fujl9, FO18],
sparking hope for the construction of algebraic moduli spaces of Fano varieties®.

2 Actually the moduli theory of stable curves d la Deligne-Mumford works over Z, in other words in the
broadest possible generality.

3The algebraic definition of K-semistability is given in Section 3.2.2. Since we discussed the GIT approach
to moduli theory in this introduction, we should remark that the original definition of K-semistability is an
infinite dimensional generalisation of the Hilbert—Mumford criterion, which characterizes GIT semistability. In
general K-semistability cannot be recovered as a limit of GIT semistability: counterexamples exist Fano varieties
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This program was successfully completed very recently, in a series of articles culminating
in [LXZ21] and [Xu20] (see Section 3.1 for a detailed bibliography, and [Xu21] for a complete
survey). The moduli functor Mg of K-semistable Fano varieties is not proper, but it can be
approximated by a so-called GOOD MODULI SPACE M which is a projective algebraic space’.

When I starting working on [Pos22], the properness and projectivity of Myps were still
conjectures. I studied the question of projectivity: my results will be stated in Section 1.6. To

motivate it, I will now explain what it concretely means to show that M is projective.

1.5.1 Projectivity of moduli spaces

Let me take a step back, and consider anew a moduli functor Mg, represented by an algebraic
space My (either a coarse moduli space in the sense of Keel-Mori, either a good moduli space
in the sense of Alper). Assume that Mg is proper. To establish projectivity, we need to exhibit
an ample line bundle. The general theory tells us that every family f: X — T of objects in §
is equipped with a moduli morphism Mg (f): T" — Mgz, sending a point ¢ to the moduli point
of f~1(t). Hence a line £ bundle on My gives, for every such family f: X — T, a functorial
line bundle £(f) on T. But the converse is not true: a functorial family {L(f) | f: X — T}
descends to a line bundle on Mjy if and only if, for every object X of §, the automorphism group
of X acts trivially on £(X) [Alp13, 10.3]. Nonetheless, assume that we are able to construct
such a family £ = {£(f)}. How do we prove it is ample?

We present a strategy that was developed by Kollar in [Kol90]. It relies on the Nakai-
Moishezon criterion: £ is ample if and only if, for every irreducible and proper sub-algebraic
space V' C Mgy, the self-intersection L3V 55 strictly positive. If we manage to find a surjective
and (generically) finite cover V! — V that supports a family f: X — V' of objects in §
for which £(f)¥™ V" > 0, then we are done. The difficulty is of course to find such families
f: X = V' for which £(f)3™V" > 0.

Kollar’s key observation is the following. Assume that the family f: X — V' has maximal
variation, in the sense that (generically) distinct points v,v" € V' parametrize non-isomorphic
objects X, ¥ X,. Furthermore, let L be a relative ample line bundle on X, and assume
that the pushforward vector bundles f,L’ on V' are semipositive for j sufficiently large. Then
det f,L! is ample for [ large enough: this is the content of Kollar’s ampleness lemma [K0l90,
§3]. If det f.L' = £(f) then we have obtained that £ is ample on M.

Kollar’s strategy was successfully applied in several situations: Kolldr considered the cases
of the compactified Picard functor and of stable surfaces in [Kol90], and the method was
generalized to stable varieties of any dimension in [Fujl8, KP17].

Now we specialize to the case where My = Mg is the moduli functor of K-semistable

[OSY12]. But there are several cases where the K-stable moduli space is the same as the GIT moduli space, or
is closely related to it: see for example [LX19, Liu22, ADL21a, ADL21b].

4Let me give a short explanation. One defines several flavours of stability for Fano varieties: K-semistability,
K-polystability and K-stability. K-semistability is the weaker notion, and we consider its moduli functor Mkss.
Unfortunately Mkgs is not even separated: a given K-semistable variety can degenerate to several non-isomorphic
K-semistable varieties. This corresponds to the existence of non-closed rational points on Mkss. One would need
to somehow collapse the degeneration equivalence classes to achieve separatedness.

There is a strong parallel with GIT. Indeed, using the notations of Section 1.2, the GIT quotient H* —
H / PGL(V) identifies the non-closed orbits whose closures intersect (the non-closed orbits are precisely those
of strictly GIT semistable points). However no GIT interpretation of the moduli functor of K-semistable Fano
varieties is known.

A solution was recently given by the powerful framework of good moduli spaces developed by Alper [Alp13].
We say that an Artin stack X admits a good moduli space if there exists a morphism to an algebraic space
X — X with properties that emulate those of GIT quotients. In particular, the existence of a proper good
moduli space for Mkss would be a satisfactory replacement for the properness of the moduli functor.

The existence of a separated good moduli space (in characteristic zero) is guaranteed by two technical con-
ditions on the stack, called S-completeness and O-reductivity [AHLH19]. It is proved in [ABHLX20] that these
properties hold for Mkgs. By construction the points of its good moduli space Mkps parametrize K-polystable
Fano varieties. The properness and projectivity of Mkss were subsequently proved in [LXZ21, Xu20].
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Fano varieties. A candidate for the polarization is given by the so-called CHOW—MUMFORD
(CM) LINE BUNDLE. It was first considered in [Tia97] in connection to the stability of Fano
manifolds. In the smooth case, curvature calculations with the Weil-Petersson metric show
that the CM line bundle is ample [Sch12]: therefore the CM line bundle is expected to provide
a polarization on the good moduli space Myps. This was recently confirmed in [X720, LXZ21].
But at the beginning of my PhD it was still a conjecture: the only available purely algebraic
results were those of [CP21], where ampleness of the CM line bundle was established for the
special class of uniformly K-stable Fano varieties®. My goal in [Pos22] was to generalize the
main result of [CP21] to a more general set-up, as I will explain in Section 1.6.

Let me say a word about the method of [CP21]. It follows Kollar’s strategy, but some
twists are necessary. The reason is the following: given a family of Fano varieties f: X — T,
the natural relative polarization is given by relative anti-canonical sheaf w)_(}T. But f*w)_(;T is

usually not semi-positive! Furthermore, the CM line bundle is not equal to det f.w rather,

=J .
X/T*
the CM line bundle corresponds (up to a sign) to the leading coefficient of the Knudsen—
Mumford expansion of this determinant (see Section 3.4). Fortunately some controlled twist of

f*w)_(;T is semipositive, the ampleness lemma still applies and gives the positivity of some twist

of det f*w;(}T, and the product trick of Viehweg can be used to deduce positivity of the CM
line bundle: see [CP21, §1.7.3] for more precisions. The other parts of the strategy (descent
of the CM line bundle to Mxkyps, existence of families with maximal variation) also hold for
K-semistable Fano varieties [CP21, §10].

1.6 MAIN RESULTS

It is high time to state the results of my thesis. I have chosen to give the precise statements,
even though some of them are technical. Most of them are phrased in the language of PAIRS,
that is commonly used in birational geometry. This notion appears naturally when we perform
adjunction, when we use inductive arguments on the dimension, or when we consider families
over a curve with the data of a special fiber. See Section 2.4 for our conventions.

1.6.1 Ampleness of the CM line bundle

The following results can be found in Chapter 3, which corresponds to [Pos22]. As hinted
above, it concerns the Chow—Mumford line bundle of a family of Fano varieties. It can be
defined as follows: let f: (X, D) — T be a morphism for which each fiber (Xy, D;) is a log Fano
variety of dimension n. Then the CM line bundle is defined by

App = —fo((=Kx/7 — D)").

By definition it is an element of the Chow group of codimension one cycles on 7', and one can
show that it is actually a Q-Cartier divisor (see Section 3.2.4). The main result of [Pos22] is
the following:

Theorem 1 (Theorem 3.1.0.2). Let f: (X,D) — T be a flat morphism of relative dimension
n with connected fibers from a normal projective pair to a normal projective variety, such that
—(Kx/r + D) is Q-Cartier and f-ample. Assume that D does not contain any fibers.
(a) BIGNESS: If each fiber (X, Dy) is klt, the general geometric fibers (Xz, Dy) are uniformly
K-stable, and the variation of f is mazimal, then \f p is big.
(b) AMPLENESS: If all the geometric fibers (Xz, Di) are uniformly K-stable, and the variation
of f is maximal, then Xy p is ample.

5The definition is given in Section 3.2.2. It is a priori stronger than the other forms of stability, but it was
conjectured that uniform K-stability is actually equivalent to K-stability. This has been confirmed (for Fano
varieties) in [LXZ21, Theorem 1.6].
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This generalizes [CP21, 1.9] to the logarithmic case, that is when A # 0. The implication for
moduli theory is the following: the CM line bundle gives a polarization on the normalization of
any proper subspace of Mxps parametrizing uniformly K-stable log Fano varieties. This result
has been superseded since by [LXZ21, 1.3].

1.6.2 Geometry of surfaces in positive characteristic

Next I will state the main results about the geometry of surfaces and threefolds obtained in
[Pos21c, Pos2la, Pos21a], which you can read in Chapter 5, Chapter 6 and Chapter 7. T begin
with surfaces.

The first result generalizes Kollar’s gluing theory to surfaces in positive characteristic:

Theorem 2 (Theorem 5.1.1.1). Let k be a field of positive characteristic.
(a) If chark > 2, then normalization gives a bijection

Le surface pairs (S, D + A)
<Slc surface pairs (.S, A)> RER of finite type over k
of finite type over k plus an involution T of (D™, Diff 5. A)
that is generically fixed point free on every component.

(b) If char k = 2, then normalization gives a bijection
Le surface pairs (S, Dgal + Dins + A)
_ of finite type over k
Sle surface pairs (S, A)\ 1:1 = = A
e t 1 =5 | where Dgal, Dins and A haye no common component,
of finite type over plus an involution T of (Dgal,DiﬁDgal(A + Ding))

that is generically fixed point free on every component.

While the proof of Theorem 5.1.1.1 is a fairly easy implementation of Kollar’s strategy (see
[Koll13, §5.6-7]), I have tried to give a proof that is valid in the largest possible generality. In
particular, there are no assumption on the base field k, and we work with surfaces that are
essentially of finite type over k. The additional cases appearing in characteristic 2 are studied
extensively (see Section 4.5).

Theorem 2 gives, in theory, a complete classification of slc surface germs. Indeed, germs of
lc surface pairs with a non-empty reduced boundary are classified (see [Koll3, §3.3]), and our
theorem says that any additional data of a log involution on the boundary, determines an slc
singularity. So, at least when the characteristic is different from 2, we get a local picture that
is similar to [Kol21, 2.21]. For this reason I have not tried to write down an exhaustive list.

An interesting consequence of Theorem 2 is the existence of semi-resolutions (see Defini-
tion 5.3.4.4) of demi-normal surfaces in characteristic # 2. This is certainly a folklore result,
but I was unable to find in the literature a precise proof in positive characteristic®. Using gluing
theory for surfaces, it is not difficult to show:

Theorem 3 (Theorem 5.3.4.8 and Proposition 5.3.4.12). Let S be a demi-normal surface that
is essentially of finite type over an arbitrary field k of positive characteristic.
(a) If chark # 2, then S has an slc good semi-resolution.

(b) More generally, if S has only separable nodes, then there exists a proper birational mor-
phism f: T — S such that

(i) T is slc 2-Gorenstein with reqular conductor Dp;

(ii) f is an isomorphism over a big open subset of f;

SFor example, Kollar states the existence of two-dimensional semi-resolutions in [Kol90, 4.2], and refers to
[vS87, 1.4.3]. However the latter article deals with complex algebraic spaces. But to be fair, our gluing method
to construct semi-resolutions is very similar to the method used in [vS87].
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(iii) no component of D is f-exceptional;
(iv) each component of Exc(f) is reqular and intersects Dy transversally, and Exc(f)
has only normal crossings.

As demonstrated by Hacon and Xu in [HX16], Kollar’s theory can be used to reduce the
abundance conjecture on slc varieties, to the abundance conjecture on lc varieties. Building on
their strategy and on the abundance on lc surfaces proved in [Tan20a], we obtain abundance
on slc surfaces over arbitrary fields:

Theorem 4 (Theorem 7.1.0.1). Let (S,A) be an slc surface pair and f: S — B a projective
morphism where B is quasi-projective over a field of positive characteristic. Assume that Kg+A
is f-nef; then it is f-semi-ample.

1.6.3 Geometry of threefolds in positive and mixed characteristics

I was able to extend Kollar’s gluing theory to threefolds in positive characteristic, granted
the characteristic is not too small:

Theorem 5 (Theorem 5.4.3.6). Let k be a perfect field of characteristic > 5. Then normaliza-
tion gives a bijection

Proper lc threefold pairs (X, D + A)
plus an involution T of (D™, Diff 5. A)
that is generically fized point free on each component
such that K¢ + D + A is ample.

Proper slc threefold pairs
(X, A) such that
Kx + A is ample

In comparison to Theorem 5.1.1.1, there are additional hypothesis about the base field and
the projectivity of the threefolds. We cannot expect a local gluing theory in dimensions three
and bigger, so the projectivity hypothesis is forced on us. The restrictions on the base field
come from the MMP theorems that are currently available.

The implication of Theorem 5 for the moduli space of stable surfaces in mixed characteristic
is the following:

Theorem 6 (Theorem 5.1.2.5). Let k be an algebraically closed field of characteristic > 5 and
v a rational number. Let N' C ﬂg}wk be a closed sub-Artin-stack parametrizing families of
stable surfaces for which slc adjunction and semi-stable reduction hold. Then N is proper (and
furthermore projective by [Pat17]).

The proof of Theorem 5 follows once again Kollar’s strategy, but it is much more involved
than the two-dimensional case. The conceptual hearth of the proof is the theory of sources and
springs, developed in [Koll3, §4.4-5] for varieties in characteristic zero. We recover this theory
in positive characteristic for threefolds:

Theorem 7 (Theorem 5.1.1.2). Let f: (Y, Ay) — (X, A = AL+ A<Y) be crepant Q-factorial
dlt blow-up of a quasi-projective lc threefold pair over a perfect field of characteristic > 5. Let
Z C X be a lc center contained in AT! with normalization Z"™ — Z.
Let (S,Ag := DiffgAy) C Y be a minimal lc center over Z, with Stein factorization
f&: 8 —Zg— Z". Then:
(a) The crepant birational equivalence class of (S,Ag) over Z does not depend on the choice
of S orY. We call it the source of Z, and denote it by Src(Z, X, A).
(b) The isomorphism class of Zg over Z does not depend on the choice of S or'Y. We call
it the spring of Z, and denote it by Spr(Z, X, A).
(¢) (S,Ag) is dit, Kg+ Ag ~q.z 0 and (S, Ag) is kit on the generic fiber above Z.
(d) The field extension k(Z) C k(Zg) is Galois and Bir%(S,Ag) — Gal(Zs/Z).
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(e) For m > 0 divisible enough, there are well-defined Poincaré isomorphisms

[m] ~ M

wy (MAy)|s 2 wg ' (MmAg).

(f) IfW C (A=Y is an irreducible closed subvariety such that n(W) = Z, wheren: (A=)" —
A=1 is the normalization, then

Sre(W, (A=H", Diff o=1yn A< R Sre(Z, X, A)

and

Spr(W, (A=Y, Diff a-1yn A<!) 2 Spr(Z, X, A).
The theory of sources and springs has some consequences for the topology of lc centers:

Theorem 8 (Theorem 5.1.2.4). Let (X,A) be a quasi-projective slc threefold over a perfect
field of characteristic > 5. Then:
(a) Intersections of lc centers are union of lc centers.

(b) Minimal lc centers are normal up to universal homeomorphism.
An interesting consequence of Theorem 4 for threefolds over arbitrary fields is the following:

Theorem 9 (Theorem 7.1.1.2). Let (X,A) be a projective Q-factorial dit threefold over an
arbitrary field k of characteristic p > 5. Assume that Kx + A is nef. Then (Kx + A)|a=1 is
semi-ample.

Motivated by the recent progresses in the geometry of threefolds in mixed characteristic
[Wit20, Wit21, TY21, BMP*21], T also studied the gluing technique and its consequences for
families of surfaces over a mixed characteristic base. Theorem 5 extends with few changes to
mixed characteristic:

Theorem 10 (Theorem 6.1.0.1). Let R be a DVR of mized characteristic with mazimal ideal
wR. Then normalization gives a bijection

Threefold pairs (X, D + A)

Threefold pairs (X, A) flat and proper over R

flat and proper over R 11 | such that (X,D+ A+ X;) is lc
such that (X, A+ X;) is slc — and Kg + D + A is ample

and Kx + A is ample plus a generically fixed point free

R-involution T of (D™, Diff 5. A).
I also obtained abundance on mixed characteristic families of surfaces:

Theorem 11 (Theorem 7.4.0.1). Let S be an excellent regular one-dimensional scheme of mized
characteristic, f: (X,A) — S a dominant flat projective morphism of relative dimension two.
Assume that (X, A + X;) is slc for every closed point s € S, and that every fiber X is Ss.
Then if Kx + A is f-nef, it is f-semi-ample.

Finally, let me mention a result that I find quite satisfying: in the context of Theorem 10,
the fibers of X — Spec R are the quotients of the fibers of X — Spec R. More precisely:

Theorem 12 (Theorem 6.1.0.4). Let (S,A) — Spec R be a projective family of surfaces over
a DVR with residue characteristic > 7, with normalization S. Assume that (S, A + Sr) is slc.
Then the fibers of S are the quotients of the fibers of S.

Further considerations about the properties of fibers of quotients are contained in Sec-
tion 6.4.
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Chapter 2

Notations and preliminaries

In this chapter I collect some notations and results that will be used through this thesis. I have
tried to be consistent with the terminology across the different chapters. However, since the
set-up varies from one chapter to another, I will recall at the beginning of each of them what
the current assumptions are.

2.1 BIBLIOGRAPHIC REFERENCES

Whenever quoting a result or an argument from an article or a book, I have tried to indicate
the precise reference within that article or that book. There are a few exceptions: when I quote
the main result of an article, or when I give bibliographic details in the introduction.

I use the following convention, best explained by an example: [Kol13, §4.1] refers to chapter
4.1 in [Kol13], while [Kol13, 4.1] refers to the definition/lemma/proposition/theorem/etc 4.1
in [Koll3].

2.2 VARIETIES

Let k be the spectrum of a field or a discrete valuation ring (DVR). We work with schemes
and morphisms over k.

A variety over k is a reduced equidimensional scheme that is separated of finite type
over k. The varieties that appear in Chapter 3 are irreducible, but the ones appearing in
the subsequent chapters might be reducible or even disconnected!. A curve (respectively a
surface, respectively a threefold) is a variety of dimension one (respectively two, respectively
three).

Fix a Noetherian k-scheme X. An open subset U C X is big if it contains every codimension
one point of X. More generally, if f: X — T is a morphism, then U is relatively big over T
if Uy C X; is big for every t € T

Given a point z € X we denote by k(z) the residue field at . If Z C X is an irreducible
reduced closed subscheme, we denote by k(Z) its function field: by definition it is the residue
field at the generic point of Z.

The normalization of X is defined to be its relative normalization along the structural
morphism [ |, Spec(k(n)) — X where 7 runs through the generic points of X. We usually
denote by X or X* the normalization of X. If X is excellent, then the normalization morphism
v: X — X is finite. We say that X is normal if v is an isomorphism (in which case X is
necessarily reduced).

An étale morphism of pointed schemes (Y,y) — (X, z) is called elementary if it induces
an isomorphism k(y) = k(z).

'This is to include objects such are the normalization of Spec k[, y, 2]/(xyz) in our discussion.

18



2.3 SHEAVES

We fix a variety X (in the sense given above) and F a coherent Ox-module.

We say that F satisfies Serre’s condition 5;, for ¢ > 0, if the inequality depthox,x Fz >
min{s,dim F,} holds at all x € X. Recall that X is normal if and only if it is regular in
codimension one and Ox is So; and that X is Cohen—Macaulay if and only if Ox is Sqim x-

We define the dual of F by F* = Hom(F,Ox). There is a natural map F — F**; we say
that F is reflexive if it is an isomorphism. Any reflexive sheaf on X is automatically S; [Sta,
0AV5].

Assume that F is S1. Then it is Sy if and only if F = j,j*F for a big open subset j: U — X
[Har07, 1.8].

If X is normal and F torsion-free, then the following are equivalent: F is reflexive, F is Ss,
and F = j,5*F for j as above.

2.4 BIRATIONAL GEOMETRY

Let X be a normal variety. We use the language of Q-divisors on X, as presented in [KKM98,
0.4]. We denote by Kx any Z-Weil divisor on X associated to the invertible sheaf wx,.,.

A pair structure (X, A) on X is the additional data of a Q-Weil divisor A whose coefficients
belongs to [0;1], such that Kx + A is Q-Cartier. The divisor A is sometimes called the
boundary of the pair. Given A, we often consider the following divisors:

ATl =A== > B, AT=A-AT
FE : coeffp A=1

We follow the standard terminology of [Koll3, §2.1] for the birational geometry of pairs
(X, A). In particular, we refer the reader to loc. cit. for the notions of discrepancy a(e; X, D)
of divisors, and for those of log canonical (Ic), Kawamata log terminal (klt), divisorial
log terminal (dlt), canonical and terminal pairs.

In dimension two, there is a (seemingly) more general notion of numerically lc surface
pair, defined in [Koll13, 2.27].

Let (X, A) be a pair. An lc center of (X, A) is a closed subset Z C X that is the image
of a divisor of discrepancy —1 with respect to (X,A). More precisely, there exists a proper
birational morphism from a normal variety f: ¥ — X and a prime divisor £ C Y such that
a(E; X,A) = —1 and f(F) = Z. It is convenient to allow X itself to be considered as a lc
center.

Let (X,A + D) be a pair, where D is a reduced divisor with normalisation D"™. Then
there is a canonically-defined Q-divisor Diff p» A on D™ such that restriction on D" induces
an isomorphism wg(n} (mA +mD)|pn = wpn(m Diff pn A) for m divisible enough. Singularities
of (X, A+ D) along D and singularities of (D", Diff p» A) are related by so-called adjunction
theorems. We refer to [Kol13, §4.1] for fundamental theorems of adjunction theory.

2.5 QUOTIENTS BY FINITE EQUIVALENCE RELATIONS

Quotients by equivalence relations are useful for studying non-normal varieties: we will use
this technique extensively in Chapter 5, Chapter 6 and Chapter 7. The theory of quotients by
finite equivalence relations is developped in [Kol12] and [Kol13, §9]. For convenience, we recall
the basic definitions and constructions that we will need.

Let S be a base scheme, and X, R two reduced S-schemes. An S-morphism o = (01,02): R —
X xg X is a set theoretic equivalence relation if, for every geometric point Spec K — S,
the induced map

o(Spec K): Homg(Spec K, R) — Homg(Spec K, X) x Homg(Spec K, X)
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is injective and an equivalence relation of the set Homg(Spec K, X). We say in addition that
0: R — X xg X is finite if both ¢;: R — X are finite morphisms.

Assume that G is a groupoid, that is a category where all the arrows are isomorphisms.
An action of G on X over S is a functor F': G — *autq x, Where the target is the groupoid
with one element induced by the abstract group Autg X. Given such an action, for each
g € Arrow(G) we let I'(g) € X xg X be the graph of the S-automorphism F'(g). Then the
union | J gF(g) C X xg X is a set theoretic equivalence relation. Conversely, a set theoretic
equivalence relation R C X xg X is called a groupoid if it is of this form.

Suppose that 0: R < X xg X is a reduced closed subscheme. Then there is a minimal
set theoretic equivalence relation generated by R: see [Koll3, 9.3]. Even if both 0;: R — X
are finite morphisms, the resulting relation may not be finite: achieving transitivity can create
infinite equivalence classes.

A case we will frequently consider is the following: X is a normal variety , D C X a reduced
divisor with normalization n: D" — D and 7: D™ = D" an involution. The equivalence
relation induced by 7 is the smallest set theoretic equivalence relation R(7) — X xj X
induced by the closure of the set of those (z,y) € X xj X such that

J2’,y’ € D™ such that n(z') =z, n(y') =y, 7(a') =

A central task will be to identify conditions on (X, D, 7) that guarantee that R(7) is a finite
equivalence relation.

Let (01,02): R — X xg X be a finite set theoretic equivalence relation. A geometric
quotient of this relation is an S-morphism ¢: X — Y such that

(a) goop =qooy,

(b) (Y,q: X — Y) is initial in the category of algebraic spaces for the property above: if
p: X — Z is such that poo; = po oy there exists a unique ¢: Y — Z such that p = ¢ogq;
and

(c) q is finite.

Clearly the quotient (Y, q) is unique (up to unique isomorphism) if it exists. It may happen
that Y exists only as an algebraic space.

Remark 2.5.0.1. It is standard to add an extra condition in the definition of a geometric
quotient q: X — Y that the geometric fibers are the R-equivalence classes: more precisely
that, for every geometric point Spec K — S, the fibers of qx: Xg(K) — Yg(K) are the
o(Rk(K))-equivalence classes of X (K). But this condition turns out to be a consequence of
the three other ones, see the proof of [Kol12, Lemma 17].

The most important result for us is that quotients by finite equivalence relation usually
exist in positive characteristic:

Theorem 2.5.0.2 ([Koll2, Theorem 6, Corollary 48)). If X is essentially of finite type over a
field k of positive characteristic and R = X is a finite set theoretic equivalence relation, then
the geometric quotient X/R exists and is a k-scheme.

In Chapter 6 we will also consider equivalence relations in mixed characteristic. The ques-
tion of the existence of geometric quotients in this situation is studied in [Wit20], see in par-
ticular [Wit20, 1.4].

We also record the following lemma:

Lemma 2.5.0.3. Let X be a reduced Noetherian pure-dimensional scheme, R = X a finite
equivalence relation for which there exists a finite quotient qg: X — Y := X/R(7). Let L be a
line bundle on Y, with pullback Lx = q*L. Then L is equal to the subsheaf of q.Lx formed
those sections which are R-invariant.
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Proof. Denote by o1,02: R = X the two projection morphisms. By [Kol13, 9.10] we have
oi—o3

Oy = ker q*(’)X E— (q o UZ‘)*OR

Tensor this expression by L and use the projection formula to obtain the result.
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Chapter 3

Positivity of the Chow—Mumford
line bundle for families of log Fano
varieties

This chapter corresponds to the article [Pos22]!.

Convention 3.0.0.1. We work over an algebraically closed field k of characteristic zero. Varieties
over k are supposed to be irreducible.

3.1 INTRODUCTION

The notion of K-stability originates from complex analytic geometry. It was first formulated
by Tian in [Tia97] to study the existence of Kdhler—Einstein metrics on Fano manifolds, and
later expressed in algebraic terms by Donaldson in [Don02]. The connection between K-stability
and birational geometry, and in particular with the Minimal Model program (MMP), was first
noticed several years later: Odaka showed in [Odal3] that K-stable Fano varieties are log
terminal, and Li and Xu used methods from the MMP to approach questions related to K-
stability [LX14]. These were the first steps of a purely algebraic K-stability theory of polarized
varieties, with a particular emphasis on the study of K-stability of Fano varieties. Equivalent
definitions of K-stability were afterwards formulated in terms of Ding invariant in [Ber16] and
of valuation theory [Fujl19, FO18]. This established a solid ground to study K-stable Fano
varieties with methods of birational geometry.

The algebraic geometers’ interest for K-stable Fano varieties comes, amongst other reasons,
from the possibility of constructing well-behaved moduli spaces. Indeed, after the work of
several authors, K-stability appeared to be an adequate global stability condition to obtain
compact coarse moduli spaces of Fano varieties. To wit, several compact moduli spaces of del
Pezzo K-stable surfaces were constructed [OSS16], as well as the moduli space of smoothable
K-polystable Fano varieties [LWX18]. These constructions however rely heavily on techniques
from analytic geometry, and it was desirable to find purely algebraic constructions. This pro-
gram became reality by combining the progress in the algebraic theory of K-stability mentioned
above, with the recent breakthroughs in birational geometry (e.g. [BCHMI10], [HMX14] and
[Bir19]) and in abstract moduli theory ([Alpl3] and [AHLH19]). Thanks to several recent
works [Jia20, BX19, ABHLX20, BLX19, Xu20, CP21, X720, .LXZ21], we have now a good un-
derstanding of the algebraic moduli functor of K-stable Fano varieties. This chapter contributes
to the study of its compactness properties.

We shall now explain in more details what is known about the moduli functor of K-stable

'First published electronically in Transactions of the American Mathematical Society (Volume 375, Number
7, July 2022, DOI: https://doi.org/10.1090/tran/8640), published by American Mathematical Society.
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Fano varieties, and what is our contribution. We refer to Section 3.2 for the relevant definitions
regarding K-stability and birational geometry.
We consider the moduli functor ME% _ where ¢ € Q. , sending a k-scheme S to the set

n,v,c’

Families (X, cA) — S where (X,A) — Sisa

family of log pairs, and for every t € T' the log

fiber (X, cA;) is a K-semistable log Fano pair
of dimension n and volume v.

MKss (S) _

n,v,c

It was conjectured that this functor is represented by an Artin stack of finite type over k and
admits a projective good moduli space ME be (in the sense of [Alp13]), whose closed points are
in bijection with n-dimensional K-polystable Q-Fano varieties of volume v. As hinted above,
this conjecture is now verified, thanks to the work of several authors:

Theorem 3.1.0.1 ([Jia20, BX19, ABHLX20, BLX19, Xu20, X720, LXZ21]). The moduli func-
tor Mffﬁ;fc is an Artin stack of finite type over k and admits a projective good moduli space

Mfgfc whose k-points parametrize K-polystable Q-Fano varieties of dimension n and volume v.

At the time the first version of the present chapter was written, the above theorem was not
yet proved entirely: the missing parts were the properness and projectivity of Mpbs., which
were latter settled through the proof of Finite Generation Conjecture in [LXZ21]. It was also
conjectured, and has been verified in full generality in op.cit., that the polarization on the
moduli space is given by the so-called Chow-Mumford (CM) line bundle. Our work was part
of the effort, together with [CP21] and [XZ20], to show that the CM line bundle is indeed a
good candidate.

Before stating our result, let us define the CM line bundle (see also Section 3.2.4). We
consider f: (X, D) — T a flat family of log pairs of relative dimension n, such that X and T
are projective and normal, and —(Kx/r + A) is f-ample. We let

App = —fu((—(Kx/r + D))",

where f is the cycle-pushforward. Then Ay p is a Q-Cartier divisor on T, called the CM line
bundle of the family f: (X, D) — T'. It has a good functorial behaviour (see Proposition 3.2.4.1)
and therefore defines a Q-line bundle A on Mgi}sc Better still, it descends to the good moduli
space Myb% in the sense that there exists a Q-line bundle L on M5 whose pullback to M
is A [CP21, Lemma 10.2].

Our main result, which is a step towards the ampleness of A, reads as follows:

Theorem 3.1.0.2. Let f: (X,D) — T be a flat morphism of relative dimension n with con-
nected fibers from a normal projective pair to a normal projective variety, such that —(Kx p+D)
is Q-Cartier and f-ample. Assume that D does not contain any fibers.
(a) BIGNESS: If each fiber (X, Dy) is klt, the general geometric fibers (Xz, Di) are uniformly
K-stable, and the variation of f is maximal, then \f p is big.
(b) AMPLENESS: If all the geometric fibers (X3, Di) are uniformly K-stable, and the variation
of f is maximal, then Ay p is ample.
(Here a general geometric fiber denotes the fiber along a geometric point SpecQ — U C X,
where U C X is a dense open subset and Q some algebraically closed field.)

The case D = 0 of Theorem 3.1.0.2 was proved previously in [CP21, Theorem 1.9]. However
that proof does not generalize to the case D # 0. The difficulty lies in that there exist non-
isomorphic log Fano pairs whose underlying varieties are isomorphic, so a family of log Fano
pairs (X, D) — T can be of maximal variation while the underlying family X — T is not.
Thus special attention to the geometry of the boundary D is required. Our strategy of proof
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of Theorem 3.1.0.2 is explained in Section 3.1.1: it relies on a perturbative argument on the
boundary.

After the first version of this chapter was put on ArXiv, new positivity results for the CM line
bundle were proved in [XZ20]. The authors introduce the notion of reduced uniform K-stability,
which generalise that of uniform K-stability, and they proved the analogue of Theorem 3.1.0.2
for families of reduced uniform K-stable log Fano pairs, see [XZ20, §7]. Their strategy to deal
with the case D # 0 was inspired by ours.

Remark 3.1.0.3. In Theorem 3.1.0.2, one of our assumptions is that each fiber (Xy, D;) of the
family is a klt pair. This hypothesis is natural for applications to moduli space of K-stable
Fano varieties, where the families we consider have klt fibers (see Theorem 3.2.2.3). However

it might not be necessary, since in the case D = 0 we only need the general log fiber to be klt
[CP21, Theorem 1.9.a].

3.1.1 Overview of the proof

The proof of the bigness statement is based on the following idea. Let (X, D) — T be a
Q-Gorenstein family of log Fano pairs of maximal variation with uniformly K-stable general
geometric fibers. By [CP21, Theorem 1.8, we know that A;p is a pseudo-effective divisor.
Assume that the components of D are Q-Cartier. Then for a small perturbation D¢ of D,
the perturbed family (X, D) — T has the same properties as the original one. Hence the
perturbed CM line bundle A pe remains pseudo-effective. By understanding the variation of
Ap,p into A¢ pe, we will deduce that Ay p belongs to the interior of the pseudo-effective cone. If
the components of D are not Q-Cartier, we use techniques from the Minimal Model Program
(MMP) to run a similar analysis.

Curve base and Q-Cartier coefficients.

The variation of Ay p is easy to analyse when the base 1" is a smooth curve, and all the reduced
components D’ of D are Q-Cartier. It follows from the definition of the CM line bundle that

—degA\;p = (—Kx/r — D)""', n+1=dimX.

Let D° =D -3, e;D' be a perturbed boundary. As explained above, the divisor A f,De s
pseudo-effective for small values of €, which means deg Ay pe > 0. We calculate this degree as
above:

n+1
—deg\fpe = <—KX/T ~D+> eiDi>
7

= (~Kx7—D)"™ + (n+1) Z ei(—Kx/r — D)"- D' + O(?)

7
= —degArp+(n+1) Z &(—Kx/r — D)" - D'+ O(€)
(2

Hence for small values of €, the function € — —degA; pe can be approximated by an affine
polynomial with linear coefficients (—Kx,7—D)"- D'. Assume that these first order derivatives
(-K X/T — D)™ - D" are all positive. Then deg Af p cannot be too small in comparison to them,
for otherwise deg Ay pe < 0 for a small value of e.

We estimate these first order derivatives using the so-called product trick, pioneered in the
work of Viehweg [Vie83]. For positive integers ro, ..., 7y, let

D(T‘.) — X(T‘o) X (Dl)(rl) X X (DN)(TN)

and let L be the Cartier divisor on D("*) given by the sum of the pullbacks of —K x7— D
restricted to the different factors. Then the self-intersection of L depends only on (—Kyx 7 —
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D)t (=Kx/r — D)"- D and r;. On the other hand, if r is suitably chosen, we can infer
some positivity of L from the positivity of the sheaf

det (f*OX(_KX/T -D)® ® [+Opi(—Kx)r — D)) :

The positivity of this determinant sheaf is a consequence of the maximal variation assumption
via Kollar’s ampleness lemma. From the positivity of L, we deduce a positive lower bound for
the first-order derivatives (—Kx /7 — D)™ - D"

It is useful in the argument to twist —Kx,7 — D with a sufficient multiple of f*As p, since
we obtain a nef divisor [CP21, Theorem 1.20]. This replacement has technical significance, but
does not affect the strategy.

General case.

The CM line bundle behaves well with respect to base-change (Proposition 3.2.4.1). In par-
ticular, it holds that Ay p - C' = deg As, p. for a smooth curve C' mapping to 7T". Hence if T’
has higher dimension, we can base-change over a general curve C', apply the previous case and
obtain Ay p-C > 0. However, this does not suffice to prove that Ay p is big, as the boundary of
the cone of movable curves of T need not be spanned by classes of movable irreducible curves.
Nevertheless, this strategy still works if we keep a precise track of the positivity.

(a) First we need to estimate the derivatives (—Kx, /o — D¢)" - D;. We can construct D(re)
and L as before, conclude to some positivity of L and base-change to C. However the
base-change D("*) xC might not be flat over a general curve C, which creates difficulties.
Thus we construct the product from a suitable birational model of X (Notation 3.6.3.2).
Then we use the ampleness lemma and the product trick to estimate the derivatives
(Proposition 3.6.2.1 and Proposition 3.6.3.5).

(b) We can garantee that these derivatives do not simultaneously go to zero when the class
[C] gets closer to the boundary of the movable cone (Lemma 3.6.3.6). This is done using
the theory of Knudsen—-Mumford expansion, which is recalled in Section 3.4.

(¢) Once we have a uniform control on the derivatives, we would like to perturb the boundary
D. However the components D’ might not be Q-Cartier. Using the techniques of the
MMP, we produce a birational model W of X on which some components become Q-
Cartier, and such that the morphism W — T has good properties (see Proposition 3.5.0.4
for the precise statement). Then we are in position to perform the perturbation argument
on W (Section 3.6.4) and conclude.

3.2 PRELIMINARIES

3.2.1 Notations and conventions

A pair (X, D) is Fano if X is projective and —Kx — D is ample. A pair (X, D) is weak log
Fano if it is a klt projective pair such that —Kx — D is big and nef. A pair (X, D) is log Fano
if it is a klt Fano pair. We say that X is Q-Fano if (X, 0) is log Fano.

A birational proper morphism 7: Y — X between projective varieties is called small if the
exceptional locus of 7 has codimension at least 2.

Definition 3.2.1.1 (General movable curves). Let X be a projective variety. A smooth curve
C — X is a non-constant morphism (not necessarily an embedding) from a projective smooth
curve C to X. We say that a smooth curve C — X is a general movable curve if it is the
normalization of a general curve in a family of curves covering X.

Let Z C X be a proper closed subset. When fixing a general movable curve, we can always
assume that it is not contained in Z. By [Laz04b, 11.4.C], a Q-Cartier divisor D on X is big
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(resp. pseudo-effective) if and only if D -C > 0 (resp. D -C > 0) for every general movable
curve C' — X.

Definition 3.2.1.2 (Families of log Fano pairs). A Q-Gorenstein family of log Fano pairs
f:(X,D) — T is the data of a flat projective morphism f: X — T between normal projective
varieties, and of an effective Weil Q-divisor D, such that

(a) the fibers of f are irreducible and normal,

(b) the support of D does not contain any fiber,

(¢) (Xt,Dy) is kit for each ¢ € T (the definition of the restricted divisor D; is given in
Section 3.2.3), and

(d) —Kx/r — D is an f-ample Q-Cartier divisor.

Definition 3.2.1.3 (Maximal variation). Let f: (X, D) — T be a Q-Gorenstein family of log
Fano pairs. Then f has mazimal variation if there is a non-empty dense open subset V C T
such that for every point t € V, the set {t' € V' | (Xy, Dy) = (Xy, Dyp)} is finite.

Notation 3.2.1.4 (Coefficient parts). Let X be a normal variety and D a Weil Q-divisor on
X. For c € Q, the part of coefficient ¢ of D is defined to be

D=¢ = Z E

coeffg D=c

where the sum runs through the set of prime Weil divisors £ of X. We have D =3 . cD™.
For simplicity, if {c € Q | D¢ # 0} = {c1,...,cm}, we let D' := D= so that D =Y ", ¢;D".
We will also denote by D’ the corresponding reduced closed subscheme.

Notation 3.2.1.5 (Volumes). Let D be a Q-Cartier divisor on a proper scheme X. We denote
its volume by Vol(D). We refer to [Laz04a, §2.2.C] for the definition and the properties of the
volume.

Notation 3.2.1.6 (Intersection numbers). Let D be a Q-Cartier divisor on a proper equidi-
mensional scheme X of dimension n. We denote by D" = (D --- D) its self-intersection. If D
is ample, it holds that Vol(D) = D™.

If X is also reduced and L is a line bundle on X, by abuse of notation we denote by L
the associated linear equivalence class of Cartier divisors (see [Liu02, Corollary 1.19]). Then it
makes sense to write

Lr-DV ™= (L---L-D---D).

m times n—m times

If f: C — X is a morphism from a smooth proper curve, we write
1 *
D -C = —degs f*Ox(rD),
r

where 7 > 0 is such that rD is Cartier.

Notation 3.2.1.7 (m-fold products). Let f: X — T be a morphism of proper schemes. We
denote by X (™) the m-times fiber product of X with itself over T. It comes with projection
morphisms p;: X™ — X for i = 1,...,m and the structural morphism f(m): x(m) 7,
Given a line bundle £ on X, or a Cartier divisor D on X, we write

£ .= épfﬁ, D™ .= ip;‘D.
i=1 i=1
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3.2.2 K-stability

In this section, we recall briefly one characterization of the d-invariant for log Fano pairs,
and its relation with K-stability. We refer to [Fuj19] for the algebraic definition of K-stability
in terms of test configurations.

Consider a n-dimensional weak log Fano pair (X, D). Let E be a prime divisor over X, and
m:Y — X be a smooth birational model on which E appears. We can write

Ky =num W*(KX + D) -+ ZGX,D(F)F
F

where F' runs through the prime divisors of Y. The log discrepancy of E with respect to (X, D)
is
Ax p(E):=axp(E)+ 1

We also define the quantity

1 +oo
S E)=——7—+ Vol(n*(—=Kx — D) — xE)dz.
Definition 3.2.2.1 (Delta invariant). Let (X, D) be a log Fano pair. The §-invariant of (X, D)
is given by

. Axp(E)
§(X, D) = inf ZXD\E)
(X, D) := in Sx.0(E)

where E runs through the prime divisors over X.

Remark 3.2.2.2. The original definition of the delta invariant in [FO18] is formulated in terms
of basis-type divisors of the anti-log-canonical linear system. However, the above one is more
convenient for our purpose. The equivalence between the two definitions is proved in [BJ20,
Theorem 4.4] in the case D = 0, and [CP21, Theorem 4.6] in the general logarithmic case.

The relation between the delta invariant and K-stability of log Fano pairs is given by the
following theorem. In this article, we use this characterization as the definition of uniform K-
stability. See [FO18, Theorems 1.1 and 2.1] and [BJ20, Theorem B| for the proof of equivalence.

Theorem 3.2.2.3. Let (X, D) be a Fano pair.
(a) (X, D) is K-semistable if and only if (X, D) is kit and 6(X,D) > 1.
(b) (X, D) is uniformly K-stable if and only if (X, D) is kit and 6(X, D) > 1.

The next result will be useful in Section 3.5.

Proposition 3.2.2.4. Let (X, D) be a weak log Fano pair, and T an effective Q-Cartier divisor
supported on Supp(D). Assume that

A FE
inf X0l )

/< > 1,
E SX’D(E)

where E runs through the divisors over X. Then for all rational € > 0 small enough,

nf Ax p—r(E)
E Sx p—e(E)

Proof. Replacing ' by a small multiple, we may assume that there is an effective Q-Cartier
divisor IV on X such that I' + IV € | — Kx — D|g. By assumption, there is an a > 0 such that
Ax p(E) > (14 a)Sx p(E) for all divisors E. Choose ¢’ € (0,a) and define the function

> 1.

(=Kx - D)"

R.
(CKx Dt €

fle)=0+d)1+ €)n+1
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Since lime_o f(€) = 1 4 a/, we can fix ¢ = €y(a’) > 0 such that for all € € (0,¢p), we have
f(e) < 1+ a. Since we assumed Supp(I') C Supp(D), we can also arrange that D — ¢l is
effective.
Now let E be a divisor over X, appearing on a birational model 7: Y — X. For any ¢ > 0
and any x € R, observe that
Vol(r*(—=Kx — D+ el') —zE) < Vol(n*(=Kx — D+ ¢(T + 1)) — 2E)
Vol((1 + e)7*(—=Kx — D) — zE).

Integrating over x, we obtain

/ Vol(n*(—=Kx — D+ €l') — xE)dx < / Vol((1 + e)n*(=Kx — D) — zE)dx
0

y=(Lte)e (1+e"+1/ Vol(1*(~Kx — D) — yE)dy.

Together with the definition of the functional Sx ., the above inequality implies

(-Kx —-D)"
(“Kx — D )

SX,D—eF(E) < (1+ 6)n+1 SX,D(E)~

Now take € < € and assume that Ax p_r(E) < (1+a')Sx p—r(E). Then we have

Axp(E) < Axp(E)+e-ordp(l) = Ax p_(E) < (1+4d)Sxp_r(E)
< f(e)Sx,p(E)
<

(1 + a)Sx,D(E),

and we have obtained a contradiction with the hypothesis. Thus Ax p_r(E) > (14+d’)Sx,p—er
for all € < €y. Since ¢y does not depend on E, the proof is complete. ]

3.2.3 Base-change of divisors

Notation 3.2.3.1. In this subsection, we consider a flat morphism f: X — T between normal
projective varieties, and an effective Weil Q-divisor D on X, such that
(a) the fibers of f are connected and normal,

(b) the support of D does not contain any fiber.

Remark 3.2.3.2. If (X, D) — T is as in Notation 3.2.3.1, then ¢D is a Mumford divisor in the
sense of [Kol19, Definition 1] for ¢ > 0 divisible enough. Since T is reduced, ¢D is automatically
K-flat over T' [Kol19, Definition 2 and paragraph 6]. Thus (X,D = 1.¢D) — T is a K-flat
family in the sense of Kollar.

Lemma 3.2.3.3. In the situation of Notation 3.2.5.1, each component of D dominates T'.

Proof. We may assume that D is irreducible. Since D does not contain any component of any
fiber, the scheme-theoretic restriction D N X; has dimension at most dim f —1 for any t € T'. If
D does not dominate 7', then dim f(D) < dim 7. But in this case, for a general point t € f(D)
we have

dmX —1=dimD =dimD N X; +dim f(D) <dim f — 14+ dim7 = dim X — 1,
which is a contradiction. O

Definition 3.2.3.4 (Divisorial pullbacks). Let U C X be the smooth locus of f. By assumption
U is relatively big over T', thus f(U) = T and U is a big open subset of X. By [Kol21, Theorem
4.21], every Weil divisor on X not containing any component of a fiber is Cartier over U.
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Let u: S — T be a morphism from a normal variety S. We define the divisorial pullback
of D along u as follows. The open set Ug = U xp S is big in Xg = X xgT. Since D|y is
Q-Cartier, it pullbacks to a Q-Cartier divisor D|yg on Ug. We let the divisorial pullback Dy
of D along u be the unique Weil Q-divisor extending the Q-Cartier divisor D|y.

In particular, if ¢ € T is a closed point, then Dy, is the unique Weil Q-divisor of X;
extending the Q-Cartier divisor D|ynx,. For ease of notation, we will mostly write D, := Dy,.

It follows from this definition that there is a Q-linear equivalence

Kxg/s + Dxs ~o v (Kx/r + D) (2.3.4.a)
where v: Xg — X is the induced morphism, see [CP21, §2.4.1].

Lemma 3.2.3.5. In the situation of Notation 3.2.5.1, let S — T be a morphism from a normal
projective variety. If D is Cartier, then the divisorial pullback of D and the pullback of D as
Cartier divisor along o: Xg — X agree.

Proof. If U is the smooth locus of X — T', then 0*D represents Dx, on Ug by definition. A
Cartier divisor on a normal variety is determined in codimension one, and Ug is big. Thus ¢*D
represent the Weil divisor Dx,. ]

Lemma 3.2.3.6. In the situation of Notation 3.2.3.1, there is a dense big open set U C T
over which all the possible unions of components of D (with the reduced structure) are flat.

Proof. Let E be a union of components of D with the reduced structure. By generic flatness,
the locus of T" over which E is flat, say Ug, is dense open. Pick a codimension one point ¢t € T,
and any x € E such that f(x) = t. The morphism Or; — Opg, is flat if and only if the
uniformizer 7 of Or; is sent to a non-zero-divisor of Og ;. Now if 7 is a zero-divisor in Og 4,
then the components of X; passing through x are contained in £. But by assumption X; is
irreducible and E does not contain any fiber, so this cannot happen. Thus £ — T is flat at x.
Since z is arbitrary, we conclude that t € Ug. Therefore U = [ Ug is big. O

Lemma 3.2.3.7. In the situation of Lemma 3.2.5.6, there is a dense open set V. C U such
that:
(a) for anyv € V and c € Q, the divisorial restriction (D=°), is equal to the coefficient part
(Dw)=*.
(b) for anyv €V and ¢ € Q, the scheme-theoretic fiber D=¢ x k(v) is equal to the divisorial
restriction (D=°), with the reduced structure.

Proof. Base-changing if necessary, we may assume that U = T. Given a reduced Weil divisor
FE not containing any fiber, we claim that the divisorial restriction E; is reduced for a general
t € T. In view of Definition 3.2.3.4, we may assume that E is Cartier. Since the claim is local
on X, we may assume that F is actually principal, say cut out by s € O(X). Then Ox/(s) is
reduced and flat over T'; thus its fiber Ox/(s) ® k(t) over a general ¢t € T is reduced [Gro66,
12.2.1]. This means exactly that the divisor F; is reduced. If E’ is another reduced divisor not
containing any fiber, such that £ and E’ have no common components, by applying the claim
to E + E’ we see that the divisorial restrictions F; and E; have no common component for a
general t € T. Let E run through the coefficient parts D=° of D to obtain the first assertion.
If we consider E as a reduced closed subscheme, the scheme-theoretic fiber E x k(t) has pure
codimension one for all ¢ € T' [Har77, I111.9.6] and is reduced for a general ¢ € T. Combining
this and the first assertion, we obtain the second assertion. ]

Corollary 3.2.3.8. In the situation of Lemma 3.2.5.7, let C — T be a smooth curve whose
image intersect V. Let Z := X xp C and Dz =} .o c(Dz)~¢ be the divisorial pullback of D.
Then (Dz)=¢ is the divisorial pullback of D=¢ for all c € Q.
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Proof. We have to check that the divisorial pullbacks of any two distinct coefficient parts D=¢
and D=, have no component in common. Since these divisorial pullbacks are horizontal over
C, this can be checked on a general fiber of Z — C. Since C meets V, the result follows from
Lemma 3.2.3.7. O

3.2.4 The CM line bundle

Let f: X — T be a flat projective morphism of relative dimension n between normal
projective varieties, let D be an effective Q-divisor on X such that —(Kxr + D) is Q-Cartier
and f-ample. Assume also that the fibers of f are irreducible and normal, and that Supp(D)
does not contain any fiber. Then the Chow—-Mumford line bundle of f: (X, D) — T is defined
to be

A = —fi((—Kx/r — D)")

where f, denotes the pushforward of cycles. By [CP21, Proposition 3.7], A¢ p is a Q-Cartier
@Q-WEeil divisor. It is compatible with base-change in the following sense:

Proposition 3.2.4.1. In the above situation, let 7: S — T be a morphism from a mormal
variety S. Let fg: Xg — S be the induced morphism and Dg be the divisorial pullback in the
sense of Section 3.2.3. Then 7"\t p = Afg Dg-

We refer to [CP21, §3] for the proof and more background.

3.3 AMPLENESS LEMMA

The next theorem, which is an elaboration of [K0l90, 3.9], will be useful to establish posi-
tivity properties of line bundles.

Let us fix our notations for the Grassmannians and the general linear groups over k. Given
integers w > ¢, we let Grg(w,q) be the Grassmannian of g-dimensional quotients of a w-
dimensional k-vector space. Given an integer n, we let GLg(n) be the general linear group over
k of degree n.

Theorem 3.3.0.1. Let U be a normal variety that can be embedded as a big open subset of a
projective variety. Let W, Q1,...,Qs be vector bundles on U of respective ranks w,qi,...,qs.
Assume that there exist morphisms ¢;: W — @Q; fori = 1,..., s which are generically surjective.
Assume also that the classifying map

U(k) — (H Grk(%%)) / GLg(w)
i1

is finite-to-one on a dense subset of U. Then for any ample Cartier divisor B on U, there
exists a positive integer m > 0 and a non-zero morphism

s2w s Xm
Sym™ | W | — Oy(-B) ® ((X) det Qi>
i=1 =1

where ¢ =7 ¢;.

Proof. The proof is contained in [KP17, §5]. More precisely, let @ be the image of ¢;: W — Q;,
with corestricted morphisms ¢;: W — Q. There is a big open subset U’ C U over which @ is
locally free of rank ¢;, for each ¢. Since the statement is about the existence of a non-zero map
between two locally free sheaves, by reflexivity we may replace U by U’ and assume that all Q)
are locally free. Now let W/ = @5 W, Q' = &{_,Q) and ¢/ = &7_,¢}. As explained in [KP17,
Lemma 5.6], ¢’ is surjective over U, and there is a dense open set of U where the classifying map
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corresponding to ¢ has finite fibers. Now we follow the proof of [KP17, Theorem 5.5] applied
to ¢': W’ — @'. In this proof, the assumption of weak positivity is only used in the last three
lines of proof; in particular, the equation (5.5.5) and the subsequent displayed isomorphisms
hold without this assumption. Thus they apply to our setting: for some m > 0, there exists a
non-zero morphism

rk(W’)
Sym™ ™ @) [ P W' | — Oy(-B) @ (det Q")
=1

Moreover, it follows from Lemma 3.3.0.2 below that we have an inclusion

s @m
OU(—B) & (det Q,)®m — OU(—B) ® <® det QZ> .
=1

The result follows by composing the two morphisms. O

Lemma 3.3.0.2. Let U be a normal variety and o: Q' — Q an inclusion of locally free sheaves.
Assume that a is generically surjective. Then det(Q') — det(Q).

Proof. Let F be the cokernel of a. Then F is torsion, and the determinant sheaf det(F)
det(Q) @ det(Q')~! is of the form O (E) for an effective divisor E. It follows that det(Q’)
Ou(—FE) ® det(Q) embeds into Oy ® det(Q) = det(Q).

O

3.4 ABOUT THE KNUDSEN—MUMFORD EXPANSION

In this section, we give an alternative description of the CM line bundle, that will be useful
to study its positivity properties.

To begin with, we recall a special case of [KM76, Theorem 4]. Let f: X — T be a projective
morphism between Noetherian schemes of relative dimension n. We do not require that f is
flat. Let A be an f-very ample Cartier divisor. Then there exist M; € Pic(T") such that for
every q > 0, there is an isomorphism

n+1 q
det £,0x(qA) = det Rf,Ox(qA) = ®M§®(i)
=0

We call this expression the Knudsen-Mumford expansion of Ox(A), and refer to the M, as the
coefficients of the expansion. This isomorphism is moreover functorial: if S — T is a morphism
from a Noetherian scheme and Ag the pullback of A to X x7 S, then it holds that

det(f5):Ox, (a4s) = @MIS. g0,

=0

n+1
)

Now consider the particular case where f: (X, D) — T is a Q-Gorenstein family of log Fano
pairs. Let s be such that s(—Kx/r — D) is very ample over 7. Then one can show that

1
_Sn+ A‘ﬂD = Mn+1,

where M, 1 is the leading coefficient of the Knudsen-Mumford expansion of s(—Kx/r — D).
See [CP21, Proposition 3.7] for a proof.

The following proposition characterizes the numerical class of M, in several situations:
when A is nef, or when the morphism f has pleasant properties.
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Proposition 3.4.0.1. Let f: X — T be an equidimensional projective morphism of relative
dimension n between Noetherian proper schemes (we do not require f to be flat). Let A be an f-
very ample Cartier divisor on X, and M,,11 be the leading coefficient of the Knudsen-Mumford
expansion of Ox(A).

(a) Assume that A is nef. For any smooth curve C — T, it holds that M4 - C = A’g‘l.

(b) Assume that A is nef and X is generically reduced. Let X' — X be the normalization
morphism, f': X — T be the induced morphism and A’ be the pullback of A. Then
My - C = FL((A)Y) . C for a general movable curve C — T.

(c) Assume that T is normal and f is flat with normal fibers. Then for any smooth curve

C — T, we have My 11 -C = f. (A1) . C = A’C‘JH.

Proof. Fix a smooth curve C — T. In any case, since both ¢gA and gA¢ are relatively very
ample for ¢ > 0, both sheaves f,Ox(qA) and (fc)«Ox.(qAc) are locally free with vanishing
R', i > 0. It follows from the functoriality of the Knudsen-Mumford expansion that

det [fsOx(qA)] - C = degdet [(fc)+Ox,(¢Ac)], q>0. (4.0.1.b)

With this set-up:
(a) Assume that A is nef. The left-hand side of equation (4.0.1.b) is given by

ntl q qn+1
Z <1>Mz O = mMn—s-l -C+ O(q )7

=0

where M; are the Knudsen-Mumford coefficients of Ox(A). Now consider the right-hand
side of the same equation. By Riemann-Roch, for ¢ large enough we have

W(X, Oxc(qAc)) = degdet [(fo):Oxq(gAc)] + x(C, Oc) - 1k (fo)«Oxc(9Ac).
Since A is nef, we have

n+1
(n+1)!

I (X, Ox.(¢Ac)) = AET +0(")

by [Kol96, VI.2.15]. Since the fibers of f are n-dimensional, the function

q 1k (fo)«Ox.(qAc)

is a polynomial in ¢ of degree at most n. Hence
n+1

q n n
o 1)!AC+1 +0(q™).

deg det [(fc)«Ox(¢Ac)] =

It follows by comparing the leading coefficients in (4.0.1.b) that A’gfl =M, -C.

(b) Assume that A is nef and X generically reduced. The normalization morphism X' — X
is finite, so A’ is nef and relatively ample over T'. Say that sA’ is relatively very ample for
some s > 0, and let M, | be the leading coefficient of the Knudsen-Mumford polynomial
of Ox/(sA’). Since X is generically reduced, the normalization X’ — X is an isomorphism
away from a closed subset Z C X. If C' — T is a smooth curve which intersects f(X —Z2),
the pullback morphism (X')c — X¢ is birational. Using the first assertion, we obtain
that

Mups1-C = A = (A ="M, - C.
By [CP21, Lemma A.2] it holds that M/, ., = fi(sA’)"*!, so the second assertion follows.
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(c) Assume that 7" is normal and f is flat with normal fibers. Then both X and X¢ are
normal. It follows from [CP21, Lemma A.2] that for ¢ > 0

n+1

det £,0x (qA) = 2

AT + 0

and
n+1

det(fc)«Ox.(qAc) = !(fc)*(AgH) + O(q")

(n+1)

in the Chow groups of 7' and C respectively. It follows that M, 11 = f.(A"!), and by
intersecting with C' that

Moi1-C = fu(A"™) - O = deg(fe).(AL) = ARH

as claimed.

3.5 PERTURBATION OF FAMILIES OF K-STABLE LOG FANOS

Consider a Q-Gorenstein family (X, D) — T of log Fano pairs of maximal variation, with
uniformly K-stable general fibers. We show in Proposition 3.5.0.4 below that we can find
a model of (X, D) with the same properties over 7', and on which some components of the
boundary D become Q-Cartier.

We need a few preliminary lemmas. For the first one, we use the terminology of [BCHM10].

Lemma 3.5.0.1. Let f: X — T be a projective morphism between quasi-projective normal
varieties. Let D be an effective Q-Cartier Q-divisor on X such that (X, D) is (klt) weak log
Fano over T. Assume that D1, ..., Dy, are effective Q-Cartier Q-divisors on X with supports
contained in the support of D. Then there exists a full-dimensional closed polytope P C (R>)™
with the following properties:

(a) P contains the origin, and its interior int(P) is contained in (Rso)™; and

(b) for every rational vector (e1,...,€n) € int(P), the log canonical models of (—Kx — D +

>, €D;) over T have isomorphic underlying varieties.

Proof. Fix a general very ample divisor A on X, which has no component in common with
D. Since X is of Fano type over T, there is a Q-boundary A such that (X, A) is klt, A is big
over T and a(—Kx — D — A) ~gr Kx + A for some small rational a > 0. Replacing A by a
general member of its linear system, we may assume that (X, A+ aA) is also klt [IKKM9IS8, 5.17].
We have Kx + A+aA+ Y . D; ~gr a(—Kx — D)+ Y . €¢D;. So a log canonical model of
(X, A4aA+); eD;) over T'is also a (—Kx — D+ ), % D;)-log canonical model of X over T'.
Therefore it is equivalent to prove that: there is a full-dimensional closed polytope P C (Rso)™
containing the origin, such that for all (e, ..., €y) € int(P), the pairs (X, A +aAd+ > . &D;)
have a log canonical model over T" with isomorphic underlying varieties.

Let us write A’ := aA and define the affine cone V := A+ 3. R D; in Weil(X)g. Since
(X, A+ A’) is klt, there is an open Euclidean neighborhood U of A € V such that for all T € U,
the pair (X,T'+ A’) is klt. Also, since Kx + A + A’ ~qr a(—Kx — D) is big over T, we may
shrink U so that Kx +T' + A’ is big over T for all ' € U. With the notations of [BCHM10,
1.1.4], this implies that U C E4/ (V).

It follows from [BCHM10, Corollary 1.1.5 and Theorem E] that there are finitely birational
contractions ¢;: X --+ Z; over T, 1 = 1,...,n, and a decomposition

Ea (V) = U Wi
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where each W; = Wy, ar #(V') is a rational polytope, such that for each I' € W;, the underlying
variety of a weak log canonical model of (X,T"+ A’) over T is isomorphic to Z;.

By [BCHM10, Theorem 1.2], for every I" € U the pair (X,I'+ A’) has a log canonical model
over T'. Relative log canonical models are in particular relative weak log canonical models. So
we obtain that for any I' € UNW;, the underlying variety of a log canonical model of (X, T'+ A")
is isomorphic to Z;.

Since €47, ¢ (V') contains the open neighborhood of the origin of V', there must be a polytope
W; which is of full dimension in V' and whose closure contains the origin of V. Thus we may
find a closed full-dimensional polytope P C (R>0)™ containing the origin, with non-empty
interior int(P) C (Rxo)™ such that

U A—i—ZeiDi cuUnNW; for some i.
(€15..-,€m ) EInt(P) i

This finishes the proof. O

Lemma 3.5.0.2. Let (X,D) — T be a Q-Gorenstein family (X,D) — T of log Fano pairs
of mazimal variation. Write D = Y, ¢;D* as in Notation 3.2.1.4. Then there is a rational
number v > 0 such that for all i such that D' is Q-Cartier, and for all rational € € (—r;1), the
family (X, D + eD") — T has mazimal variation.

Proof. Take r = min¢¢j{%|0i — ¢} -

Lemma 3.5.0.3. Let f: (X, D) — T be a flat equidimensional proper morphism from a normal
pair to a smooth variety. Assume that every fiber (X, D) is kit. Then:
(a) (X, D) is klt, and
(b) for any closed point t € T, if Hy,...,Hyg (d = dimT) are general Cartier divisors in a
base-point free linear system such that in a neighbourhood of t we have [, H; = {t}, then
(X,D+ >, f*H;) ts dlt in a neighborhood of X;.

Proof. Let t € T be a closed point, and let Hy,...,Hy (d = dimT') be general Cartier divisors
on T such that (), H; = {t}.

To begin with, we prove that (X, D) is klt. Indeed, we can choose the Hy,...,Hy_1 in a
general linear system, so the iterated hyperplane sections X" := ()", f*H; are normal varieties
for m < d—1 [Sei50]. By inversion of adjunction, since (X, D;) is assumed to be klt, we obtain
that (X971, D|ya—1 + f*Hy) is plt along X; [KM98, Theorem 5.50]. Hence (X1, D|ya-1) is
klt along X;. We repeat this argument to obtain that (X, D) is klt along X;. The choice of ¢
was arbitrary, so we conclude that (X, D) is klt.

Now we think of t € T' as a fixed point and claim that if the H; are suitably chosen, then
the pair (X, D + Zgzl f*H;) is dlt in a neighborhood of X;. Indeed, we can choose the H,,
inductively with the property that

for each I C {1,...,m}, the intersection X' := ﬂ f*H; is irreducible and normal.
i€l
Each of these conditions is satisfied for a general H,, passing through ¢, except for the condition
on H, that ﬂle f*H; = X, is irreducible and normal. But this is satisfied for any choice of
H,, since X; is assumed to be irreducible and normal.

It follows from the choices of these H; that (X, D—i—Zf:l f*H;) is snc at every generic point
of the XI. If E is an exceptional divisor over X whose center cx(E) belongs to X; but does
not belong to the snc locus of (X, D + >, f*H;), then cx(F) defines a point of codimension
> 1in Xy, and by adjunction we obtain that (X, D¢) is not klt, which is a contradiction. [
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Proposition 3.5.0.4. Let f: (X,D) — T be a Q-Gorenstein family of log Fano pairs of
mazimal variation with uniformly K-stable general geometric fiber. Assume that T is smooth.
Then there exists a positive number rx p > 0 with the following property. For every coefficient
part T := D' of D (as in Notation 3.2.1.4), there exists a small proper birational morphism
v: W — X such that:
(a) the strict transform Ty of T is Q-Cartier, and
(b) for any rational 0 < € < rx p, the family (W, Dy — el'w) — T is a Q-Gorenstein family
of log Fano pairs of maximal variation with uniformly K-stable general geometric fibers.
(Here Dy denotes the strict transform of D.)

Proof. Since there are finitely many coefficient part of D, we only need to prove the result for
a fixed I'. First we construct v: W — X.
o The pair (X, D) is klt by Lemma 3.5.0.3, so by [Kol13, Corollary 1.37] there is a small
proper birational morphism p: Y — X where Y is a Q-factorial projective variety. Denote
by Dy the strict transform of D, and 'y the strict transform of I'. We have

,U,*(KX + D) ~Q Ky + Dy.

o For € > 0, run a (—Ky — Dy + e['y)-MMP over X to obtain a relative log canonical
model. By Lemma 3.5.0.1, this model W is the same for all 0 < ¢ < 1. Denote by
p: Y --» W the induced morphism and Dy := p, Dy, 'y := pIy.
Our construction is pictured by the following diagram:

We must show that for smal rationall € > 0, the morphism (W, Dy —el'yy) — T is flat between
normal projective varieties, of maximal variation, with (klt) log Fano fibers and uniformly
K-stable general geometric fibers, and that I'yy is Q-Cartier. First we establish the global
properties of W and 'y .
o The morphism v: W — X is small. Indeed, u is small and p extracts no divisors. Notice
that Dy is equal to the strict transform of D.

o Since W is the end product of an MMP, it is normal. Moreover, since v is small and
(X, D) is klt by Lemma 3.5.0.3, (W, Dyy) is klt and hence W is Cohen-Macaulay.

o The Q-divisor I'yy is Q-Cartier. Indeed, p.(—Ky — Dy + €el'y) = —Kw — Dy + el'wy is
Q-Cartier by construction. It holds that v*(—Kx — D) = —Kw — Dy, and so — Ky — Dy
is also Q-Cartier. Therefore 'y is Q-Cartier.

o We have
6Fy =X —Ky — (Dy — EFy)

and thus
el'w =x —Kw — (Dw — el'y) is ample over X.

Hence I'yy is a Q-Cartier Q-divisor which is ample over X. Furthermore,
—Kw — (Dw —el'w) = p«(—Ky — (Dy — €l'y))

= p«(PV'(—~Kx — D) +el'y)
= V*(*KX — D) + Erw.
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Now by [Pat15, Lemma 2.4],
~Kw+ g Kr = —Kwr, —Kx+ fKr=-Kxp.

Hence
— Ky — (Dw — el'w) = v (=Kx/r — D) + el'w

and therefore —Kyr — Dw + el'y is ample over T' for 0 < e < 1.
To study the properties of a fiber W;, we may shrink 7" and work in a neighborhood of W;. Let
Hy,...,Hy be general Cartier divisors such that (), H; = {t}.
o The fibers of v are connected by construction. Since the fibers of f are irreducible, we
deduce that g has connected fibers.

o Since v is small, it gives a crepant morphism from (W, Dy + Z?Zl g*H;) to (X,D +
Zle [*H;). Moreover v is an isomorphism above the snc locus of (X, D + >, f*H;)
[Deb01, 1.40]. By Lemma 3.5.0.3 the pair (X,D + ), f*H;) is dlt. Thus (W, Dw +
2?21 g*H;) is lc, and every lc center is contained in the locus where v is an isomorphism.
It follows that (W, Dy + Z?:l g*H;) is also dlt.

o From [Koll3, 4.16] we deduce that every irreducible component of W; = ﬂle g*H; is
normal of codimension d, and an lc center of (W, Dy + Zle g*H;). Assume that W,
has at least two different components; by connectedness of the fibers of W — T, the
two components must intersect, and the intersection is a union of lc centers of (W, Dy +
Z‘Ll g*H;) [Koll3, 4.20.2]. Since (X, D) is klt by Lemma 3.5.0.3, we have | D] = 0 and
thus [Dw | = 0. So by [Koll13, 4.16.1] the components of W; are minimal lc centers, and
we have reached a contradiction. Hence W; is irreducible and normal of codimension d.

o Since W is Cohen-Macaulay, T' smooth and the fibers W; equidimensional, the morphism
g: W — T is flat [Mat89, Theorem 23.1].

o Assume that some fiber W; is contained in the support of Dy,. Since W; dominates X
and Dy dominates D, we obtain that X; is contained in the support of D, which is
impossible. Thus Supp(Dyy) contains no fibers of W — T.

Finally we study the pairs (W, (Dw — el'w)¢).

o We know that (W,Dw + ), ¢"H;) is dlt with reduced boundary ), ¢*H;. Combin-
ing adjunction and [Koll3, 4.16], we obtain that the pair (W, (Dw)¢) is klt. Hence
(W, (Dw — el'w)y) is klt for every 0 < € < coeffr,, Dy [KMI8, 2.27].

o Since p is small, for a general ¢t € T the morphism W; — X; is small and (Dy); is the
strict transform of D;. Fix one such ¢ for which (X, D;) is uniformly K-stable. Then for
every prime divisor E over Wy, we have

AWt,(DW)t (E) - AXt,Dt (E)a SWt,(DW)t (E) - SXnDt (E)?
so by Theorem 3.2.2.3 we have

it Ao (E) _y o Axi,p,(B)

W (Dw)e ) — §(X,,D;) > 1.
E Sw,(pw).(E) E Sx,p,(E) (X, Dr)

Moreover (Wi, (Dw)¢) is a weak log Fano pair. Thus we may apply Proposition 3.2.2.4
to obtain that

AW (D ) —el” (E)
S(Wy, (Dw )¢ — ely) = inf —>— 1
(Ve (D) = 8y = gt Gt

> 1,
for all € > 0 small enough depending on t. Since (Wi, (Dw): — €l'}) is a log Fano pair,

we conclude by Theorem 3.2.2.3 that (Wi, (Dw)¢ — €I'y) is uniformly K-stable for all
€ = €(t) > 0 small enough.
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o By openness of the uniform K-stable locus [BL18, Theorem 6.8], we conclude that: for
all rational 0 < € < 1, the general fiber of the family (W, Dy — el'yy) — T is uniformly
K-stable.

o For a general ¢t € T, the pair (X, D;) is a log canonical model of (Wy, (Dw):). Thus
(Wi, (Dw)t) = (W, (Dw )y) implies that (X¢, Dy) = (X4, Dy,). Moreover by Lemma 3.5.0.2,
for € small enough, (Wi, (Dw —el'w)¢) = (W, (Dw —el'w),,) if and only if (Wi, (Dw):) =
(Wu, (Dw)y). Therefore (W, Dy — el'yy) — T has maximal variation for 0 < e < 1.

This shows that (W, Dy — el'yy) — T has the required properties for all rational numbers
0<ex 1. O

3.6 PROOF OF THE MAIN RESULT

This section is devoted to the proof of Theorem 3.1.0.2, which we divide into several steps.
See Section 3.1.1 for an overview of the strategy. In Section 3.6.1, we set-up the notational
framework of the proof. We use the ampleness lemma in Section 3.6.2 to obtain the positivity
of some relevant sheaf. The estimates of the derivatives using the product trick is obtained in
Section 3.6.3, and the perturbation argument is given in Section 3.6.4.

3.6.1 General notations

Notation 3.6.1.1. Let T be a smooth variety and f: (X,D = YN D) — T be a Q-
Gorenstein family of log Fano pairs of maximal variation with uniformly K-stable general
geometric fibers. Here D' is the part of coefficient ¢;, see Notation 3.2.1.4. We introduce the
following additional notations, and shall use them for the rest of this section.

(a) Let n:=dim X —dim7T and v := ((-=Kx;7 — D)|x,)". We write ¢ := §(X5, D) where 7
is the generic point of 7. Then § is the value of §(Xy, D;) for a very general point ¢t € T
[CP21, Proposition 4.15].

(b) We let Agp := —fu((—Kx/r — D)"™!) be the CM line bundle provided by the family
f+(X,D)—>T.

(c) The restrictions of the morphism f to the support of the D? (with the reduced structure)
are denoted f;: D' — T. We also write D = X and fy = f. By Lemma 3.2.3.3, each f;
is surjective.

(d) We fix a rational number o > max{1, m}. Notice that by [CP21, Theorems 1.8
and 1.20], for any o/ > a the Q-Cartier divisor —Ky,p — D + o' f*A; p is nef.

Notation 3.6.1.2. In the situation of Notation 3.6.1.1, let ¢: C' — T be a smooth curve. Form

the Cartesian square

Z 25 X

s

C ——T
Note that Z is normal because h is flat and its fibers are normal. Let Dy be the divisorial
pullback of D (see Definition 3.2.3.4), with coefficient parts D?,. According to (2.3.4.a) and to
Proposition 3.2.4.1, we have

KZ/C+DZ ~Q U*(KX/T—i—D), L*)\f,D = A,Dy- (6.1.2.c)

3.6.2 Application of the ampleness lemma

Proposition 3.6.2.1. In the situation of Notation 3.6.1.1, for q divisible enough, the line
bundle

) det(£:)+Opi(g(—Kx/r — D+ 20f* A5 p))
>0

s big on T.

37



The argument of the proof is inspired by [CP21, §9.4] and by [KP17, Theorem 7.1.1].

Proof. We let V' C U be the open subsets of T" given by Lemma 3.2.3.6 and Lemma 3.2.3.7.
By the maximal variation assumption, shrinking V if necessary, we may assume that for any
t € V, there are only finitely many ¢’ € V such that (X, D;) = (Xy, Dy).

If  is a fixed integer divisible by the Cartier index of —Kx/7 — D + 2af*Af p, for an
arbitrary d € Z we write

My = (’)X(d?"(—KX/T — D+ 2af*Asp)), MdDi i= Malpi.

We choose an integer r > 2 such that for every d > O:
(a) —dr(Kx/r+ D) and dra - Ay p are Cartier;

(b) My is f-very ample;

(c) RIfiMgy =0 for all j > 1;

(d) for each i > 1: (RI(f;)«ME")|y =0 for all j > 1;

(e) for each i > 1: fuM; — (fz)*./\/llDl is surjective on the open set V.
These conditions imply that fiM; and ((fi)«MP")|y are locally free and compatible with
base-change. In particular,

(e) if s := 1k f.Mj, then s = h9(X;, My|x,) for all t € T
We may also assume that:

(f) the multiplication maps

Sym?f My = fMg and  Sym? (£ M)y = ((f)MP)]y

are surjective.
Now that r is chosen, we can find d > 0 such that:
(g) For all t € T, the kernel

Ky 1= ker [SymH'(My]x,) — H'(Malx,)
generates Z;(d), where Z; is the ideal sheaf of X; for the embedding
(le‘Xt : Xt — ]P)S_l.

Here @y, |, is only defined up to the action of GLg(s) on the target. Hence, writing

w :=rk Sym?f, M, and qo := rk f,My, we see that the orbit of K; in Gry(w, qo)/ GLy(s)
determines the projective embedding @4, X, of X; up to linear automorphisms of P5~1,

(h) Similarly, for all v € V and ¢ > 1, the kernel
KD = Yer [Sym?HO(Mix,) — HO(MZ'|(ps,)

generates Z, ;(d), where Z, ; is the ideal sheaf of (D%, for the embedding

. PMilx, 1
©pi, (DY) = Xy ———— P
M iy,
Here SDMf’i\(D,) is only defined up to the action of GLg(s) on the target. Hence, writing

qi = 1k (fi)*MC?i, we see that the orbit of KP' in Gry(w,q)/ GLg(s) determines the
projective embedding of (D?), up to linear automorphisms of P*~1.
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Having choosen r and d with these properties, we let
W= Sym(fMO)lo, Qo= (FMalo, Qo= ((FMP)| (= 1).

The sheaves W and @)y are locally free over U by construction. Since D' is reduced the
invertible sheaf Méy satisfies the Serre condition S7, thus its sections are supported on entire
components, and each component of D* dominates T' by Lemma 3.2.3.3. It follows that for
i > 1, the Op-modules (f;),MZE" are torsion-free. Since T is normal, the (f;).M2ZL" are therefore
locally free at codimension one points of T'. Since they are also locally free over V, we may
restrict U, but keeping it a big open set, so that the @); become locally free for all ¢ > 0.

By construction there are morphisms W — @); for i > 0, defined over U, which are surjective
over V. We claim that the corresponding classifying map

& Uk) — HGrk(w,qi) /GLg(s) (here GLg(s) acts diagonally)
i>0

is finite-to-one over V (k). Fix ¢t € V(k). The discussion in points (g) and (h) above shows
the following. For t' € V(k), the equality £(t) = £(¢') holds if and only if: X; and Xy have
isomorphic embeddings into P*~!, and under this isomorphism (D?); is sent to (D?)y for every
1 > 1. As explained at the beginning of the proof, there are only finitely many such t'. Thus &
is finite-to-one on V' (k). Hence by Theorem 3.3.0.1, given an ample line bundle B on T, there
is a non-zero morphism

l . m
Sym™? @Symd(f*/\/ll) I Ou(—Bu) ® ® <det(f")*Md l)® ‘U
j=1

>0

for some integers {,m > 0 (the precise value of [ is given in Theorem 3.3.0.1, but it is not
important for our purpose). Since U is a big dense open subset of 7', and since both sides are
restrictions of locally free sheaves, by reflexivity this map extends to a non-zero morphism

l i\ ®m
sym™ | @sym?(fMy) | — Or(-B) e (@ (det(f).MP)” (6.2.1.d)

j=1 i>0
As the right-hand side is a line bundle, this map is generically surjective.

Now let ¢: C' — T be a general smooth curve. We use the notations of Notation 3.6.1.2. As
f«M is compatible with base-change (see the beginning of the proof), we obtain

C My Z hOg(c*rM) = h*Oz(T(—KZ/C — Dy + 2ah*)\h,DZ)).

As C' is general, the general geometric fiber of (Z, D) — C' is uniformly K-stable. Thus by
[CP21, Theorem 1.20], the divisor —Kz/c — Dz + 2ah*\, p, is h-ample and nef. Moreover,
since we can write

T(_KZ/C_DZ+205h*)\h,DZ) = KZ/C""DZ“‘(T + 1)(_KZ/C — Dy + Ozh*)\h,pz) +(r— 1)ah*)‘h,Dza

nef andV h-ample
we may apply [CP21, Proposition 6.4] to obtain that ¢*f.M;j is nef. Hence the pullback
of Sym™¢ (@;:1 Sym?( f*/\/ll)) to C is also nef. By generality of C, the restriction of the

morphism (6.2.1.d) to C' is generically surjective, so we obtain that

i\ ®m
OT(—B)‘ ® ® (det( fi)s My ) ‘ is nef for a general movable C' — T.
¢ i>0 ©

i\ ®m
This shows that the line bundle Or(—B) ® <®i20 (det( fi)oME > ) is pseudo-effective.
Thus @, det(fi)*/\/ldDi is big, and we conclude by letting g = rd. O
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3.6.3 Estimation of the derivatives

Notation 3.6.3.1. In the situation of Notation 3.6.1.1:
(a) We fix a positive integer ¢ such that the divisor ¢(—=Kx 7 — D + 2af*A; p) is Cartier,

and write

N:Ox(q(—KX/T—D—F?Oéf*)\ﬁD)) and NDi:N|D¢.

(b) According to Proposition 3.6.2.1, we may and will choose ¢ such that

® det(fi)*/\/'Di is a big line bundle.
i>0

(¢) If C — T is a smooth curve and Z = X xp C as in Notation 3.6.1.2, then we let

Nz := 0*N. Recall from (6.1.2.c) that Nz = Oz(q(=Kz)c—Dz+2ah*A\;p,)), and this
line bundle is nef if C' meets the open locus of uniformly K-stable fibers [CP21, Theorem
1.20].

We aim to give a lower bound to the intersection numbers (Nz)3™ Pz . DY As explained
in Section 3.1.1, the idea is to construct a product D) over T and then base-change over a
general curve. In view of Lemma 3.7.0.5, we want the pullback of D(") to be flat over that
curve. Hence it would be convenient that the restricted morphisms D’ — T are flat already.
To achieve this, we pass to a birational model of X. Unfortunately this makes the notation
quite cumbersome.

Notation 3.6.3.2. In the situation of Notation 3.6.3.1. Let r; be the generic rank of (fi)*/\/'Di
(i=0,...,N).
(a) We let

D(T‘.) = (DO)(TO) X e X (DN)(TN) )

The projection morphism from D("*) to the i D7-factor is denoted by p: D) — DJ.
We denote
Dgc.i) = (D(r.)) q’ D) .= normalization of D)
re:

norm red °
We denote by g¢: D(re) T s Gred: DEZ(}) — T and gnorm: Dﬁl’;'rin — T the structural
morphisms.

We define the line bundles N ,
N(r.) — ® (plj)*NDJ
1,J

and

‘/\/;(63) := pullback of N to DU e pullback of (") to D{re)

red norm norm-

Next we fix a small Q-factorial proper model p: Y — X. There exists one since X has a
klt structure, see [Koll3, 1.37]. Denote by Dy = Zl]\i L ¢;:Di the strict transform of D.
Let u': DY — D' be the induced birational morphisms, with u® = p. We write

Dg;') = (Dg)/)(ro) X e X (DQ)(TN) .

The projection morphism from Dg,r‘) to the i D{,—factor is denoted by pg: Dg') — D{,.
We define the line bundles

NP = (NP and N}(/T') = ® (pg)w\/}f);

1,J
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(¢) If v: C — T is a smooth curve, we denote by Y¢, respectively DYC, Dg/:)’N}(f?)a F‘CvaCv

the scheme-theoretic pullbacks along ¢ of Y, respectively D, YT' ,Nl(/r'), ¢ w', py. Notice
that (7o) )
° ° T T
Dgﬁ g)Xchz(D%) OXC'”XC(D%J "

(re)

and that the projection morphisms DYC

DI, . DI 7 i
N 7Ye is the pullback of N7y along Dy, — Dy, then

— D{/C are exactly the pgc Notice also that if

N)(,TC') o <p§ié>*ND§c.

/[:7j

The construction of parts (a) and (b) is summarized by the following diagram, where the arrow
D(r') — D( d) exists by Lemma 3.6.3.3(c) given below.

(Dhoartt) 2 (005 (P
\\\\\\\\\\g k////////’/
w plre) (Dred)er(ed )

/

(DijDj) pY (D(r.) Nr.)

(re) (r. )
norms, norrn

Next we establish some properties of these product varieties and these product line bundles.

Lemma 3.6.3.3. In the situation of Notation 3.6.5.2:
(a) D) s equidimensional over T, and every component dominates T'; moreover there is a
big open set of T over which D) is flat and reduced;

(b) Dg') 1s reduced, flat and equidimensional over T, and every components dominates T';

(c) plre): D( ) pre) factors through D).

red ’
(re)

(d) p7®) is an isomorphism over each generic point of D), and every component of Dy
dominates a component of D) ;

(e) Dg{;) 18 flat equidimensional over C, and it is reduced if C is general movable.

Proof. Assertion (a) is proved in [KP17, Lemma 7.11], and assertion (c) will follow immediately
from assertion (b).

The pair (X, D) is klt by Lemma 3.5.0.3, so (Y, Dy) is klt and hence Y is Cohen-Macaulay.
The divisors Dg'/ are (Q-Cartier because Y is Q-factorial, so each Dg/ is also Cohen-Macaulay
[KM98, 5.25]. Hence all the morphisms DY — T are flat [Mat89, Theorem 23.1]. This implies
that the morphism ng — T is flat. The fibers of Dgf') — T have the same dimension, so the
morphism is equidimensional. If one component of Dg') does not dominate 7', then it belongs
to the non-flat locus, which is empty. The generic fiber if reduced, so Lemma 3.7.0.3 implies
that Dgf') is reduced. This proves the assertion (b), and assertion (e) is proved similarly.

To conclude, we must prove assertion (d). Let V' C X be the open subset over which
p:Y — X is an isomorphism. Since X is normal, V is big. Thus V; := VN D? is dense in D' for
all 4, and u(“) is an isomorphism over the open set V := V{10) x . Vl(rl) X X V]S,TN) C D),
Assume that a generic point 1 of D("*) does not belong to V. Then 1 belongs to a product
of the form (DO)(TO) X oo X (DN)(TN) with one factor D’ replaced by D' — V;. Such a
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product has dimension strictly smaller than D("*) and so dim {1} < dim D("*) which contradicts

.)

equidimensionality. Thus 1 € V. Similarly, a component of Dgr that is contracted by ,u(’”')

must belong to a product of the form (D%)(TO) X+ X (Dy )(TN ) with one factor D}, replaced

by Di — fi_IX/;. Such a product has dimension strictly smaller than Dg,r'), which contradicts
(re)

the equidimensionality of Dy.*’. So assertion (d) follows. O

Lemma 3.6.3.4. In the situation of Notation 3.6.5.2,
(a) Nnorm is relatively ample over T and pseudo-effective;

(b) for a general movable curve C — T, the line bundle /\/'1(/2') is nef.

Proof. Let U C T be a non-empty open subset with the property that for all t € T, the pair
(Xt, Dy) is uniformly K-stable. Let C' — T be a smooth curve whose image intersects &. Denote
by Nz the pullback of N on Z = X x7 C, and D&, = D' x¢T. Then by [CP21, Theorem 1.20],
Nz and NPe = N, Z|Dic are nef. Thus the product line bundle

N =@ (1) M7 on D g

Y]

is nef. By definition N}(%') is a pullback of N, é“), so it is also nef. This proves the second
assertion.

By construction, the line bundle N is relatively ample over T. Let C — D() be a
smooth curve that meets g~ U (recall that g: D("*) — T is the structural morphism). If C
is contracted by g, then A" . C' > 0 by relative ampleness. Otherwise, let C — T be the
normalization of g(C). Then C' — D) factors through D) x C, on which the pullback of
N(e) is nef. Thus C' - N("*) > (. This shows that N(") is pseudo-effective. Since NrEZ;Bn is the
pullback of N/ (re) through the finite morphism Dfl’;}Zn — D(T‘), the first assertion follows. [

We are now ready to estimate the intersection numbers (A7 )4 Pz -D%, (where Z = X x7C).
The first part of the proof is similar to the proof of [KP17, 7.1.1].

Proposition 3.6.3.5. In the situation of Notation 3.6.3.2, there are an ample Cartier divisor
A on some irreducible component P of D(r') and a rational number e = e(X,D,q) > 0 with

the following property: for every general movable curve C — T, letting Ac be the pullback of
A to P xp C, it holds that

N )
e(N +1)-Vol(Ac) < Y (Nz) ™™ P2 . D,
7=0
In particular, for every general movable curve C — T,
Jj=4(C)>0 : (N)™PZ.Di > e Vol(Ag). (6.3.5.¢)

Proof. By Lemma 3.6.3.3, the morphism g: D"*) — T is equidimensional and every compo-

nent dominates T'. Thus gpeq: Dﬁ;’i) — T and gnorm: DIS’;}ZH — T are also equidimensional

morphisms, and any components of DEZA) or Dg)})m dominates T'.

By Lemma 3.6.3.3 and by the proof of Proposition 3.6.2.1, there is a big open subset U C T
over which D("*) is flat and reduced, and the sheaves (f;), (/\/ b Z) |u are locally free. Let

)

U° := ¢g7'U. Since UV is reduced, it embeds as an open subset of DE;} . Therefore the open

set UY is big in Df;’i) and meets every component, and so the preimage of U° in Dr(lf)‘r)m is big

and meets every component.
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(DSl el

(D), NI

T

U0 —— (Do) N(re))

| ’

U————T

Let us write £ := &), det(f;)«NP". On U, there is an embedding

£l = Q@& (- (W10 = (glow). (A ¥uo)

i>0 j=1

where the first arrow is given by the natural embedding of det into the appropriate tensor
power, and the isomorphism is given by [KP17, Lemma 3.6]. By adjunction, we obtain a
morphism

(grealt0)* Ll = (glo)* Ll — N |go = N[0, (6.3.5.1)
Since UY dominates T, the map (6.3.5.f) is non-zero. We may pull back this map to the

normalization D&}zn. Since the preimage U 0 in DI(L}%H is big, by reflexivity this pullback

morphism extends to a non-zero morphism
(gnorm )" L — Nng;m

which induces a non-zero map
®2
N, @ (gnorm) "L — (Nég;)n) . (6.3.5.¢)

The line bundle Nnorm is relatively ample over T' and pseudo-effective by Lemma 3.6.3.4. More-
over (gnorm)*L is the pullback of a big divisor by Proposition 3.6.2.1. Thus the left-hand side

of (6.3.5.g) is big on every component by Lemma 3.7.0.2. Hence NISQ;QH is big on at least one
component. This implies that J\frr') is big on at least one component.
By Lemma 3.6.3.3, (") D§, ) D) is an isomorphism in codimension zero and factors

through DE;]). Hence we obtain that ./\/')(/r') is big on one component P of Dg‘). So we may
write

(N}(f°)|p> o >~ Op(mA+mE)

where A is ample and E is effective on P, for some m > 0.

Now we fix a general movable curve C' — T with the following properties. Firstly, no
component of its preimage in P is contained in the support of E. Secondly, the line bundles
Nz and /\/ (re) are nef (see Lemma 3.6.3.4). Thirdly, the induced morphisms ujc D{,C —
Dj = DJ ><T C are birational for all j; this is acheviable since all z7 D] — D7 are birational.
Fourthly, for all j the product D] agrees with the j-coefficient part DJ of Dz in codimension
one; this is achievable by combining Lemma 3.2.3.5 and Corollary 3.2.3.8. Finally, D(T') is
equidimensional and reduced (Lemma 3.6.3.3.(¢)).

With such a curve C' — T fixed, we write

T (@)
Po - Pye

i’j

m

Op. (mAc +mE¢) = <N}</Tc') P
c
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Since A is ample, its pullback A¢ is also ample. By our choice of C, the divisor E¢ is effective.

Thus
dim Pg

Pc> ’

It holds by equidimensionality that dim P = dim D(r'). Using [Kol96, V1.2.7.3], we see that

o (re) dim D7) :
(re) dim DYC B (re) Yo (re) dim DYC
(NYC > o (NYC PC) * Z (NYC P’)
(re)

where P’ runs through the component of Dy Y. not contained in Pg. Since N}(,g') is nef, the
sum over P’ is non-negative, and therefore we obtain

Vol(A¢) < Vol(Ac + Ec) = <N;;->

(re)

dim D{/*)
) © (6.3.5.h)

Vol(Ac) < (A
On the other hand, by Lemma 3.7.0.5 we have:

im D) N , dlmD i \dimDJ -1
(Nxﬁc )d Dot _ Zd < ) “1I </\/tDYC> YC (6.3.5.1)
J#i
for some rational numbers d; = d;(X, D,q) > 0 and any closed point ¢ € C. The right-hand
side of (6.3.5.1) can be simplified: observe that

1\ dim D,  \ dim D} i \ dim D g ,
<,/\/'D{’c) c _ (/\/'D]z) z _ (NDJZ> 7 _ (N-Z)chmDJZ 'D]Z‘

Indeed, the first equality holds because /ﬁo is birational, while the second equality holds because
D}, and D7, are equal in codimension 1 and A has full support (see [Ko0l96, VI1.2.7.3]). Similarly
to the previous displayed equalities, we also have

oy \ 4 Pve ! DI \dimDJ —1 im D ]
(Nt ) = (N T7e) T Ve T Dy )y = (W)W P21 (D),

for t € C closed. Since Ny is the pullback of a relatively ample line bundle over T, the
(Nz)dimDz—1. (DJ,); are positive. Moreover Ny is nef so the quantities (N, ) dim Dz . DY, are
non-negative. Therefore, setting a = max; {(N ) dim D Ll (D]Z)t} and b = max;{d;}, it follows
from (6.3.5.h) and (6.3.5.1) that

(re) dlng/T‘) d D .
Vol(A¢) < (NYC- ) ¢ < abz mPz . DY,

Notice that ab depends only on (X, D) and ¢, so we put e = (ab(N + 1))~! to conclude. [

We have now a lower bound on the derivatives (Nz)"™ "z . D, in terms of the volume of
the pullback divisor Ac. Of course, this depends on the curve C — T, but it is possible to
obtain some kind of uniformity. Indeed, the next lemma shows that Vol(A¢) cannot converge
to zero when [C] gets close to the boundary of the movable cone.

Lemma 3.6.3.6. Let A be the ample Q-Cartier divisor on the component P of Dg/r') g