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A mon frère.

Caliban:
Be not afraid: the isle is full of noises,
Sounds, and sweet airs, that give delight,
and hurt not.
Sometimes a thousand twangling
instruments
Will hum about mine ears; and
sometimes voices,
That, if I then had waked after long
sleep,
Will make me sleep again: and then, in
dreaming,
The clouds methought would open and
show riches
Ready to drop upon me; that, when I
waked,
I cried to dream again.

Shakespeare
The Tempest, Acte III Scene 2.



Abstract

This thesis is constituted of the article [Pos22] and the preprints [Pos21c, Pos21b, Pos21a].
Their common theme is the moduli theory of algebraic varieties. In the first article I study
the Chow–Mumford line bundle for families of uniformly K-stable Fano pairs, and I show it is
ample when the family has maximal variation. The three preprints deal with a generalization
to positive characteristic of Kollár’s gluing theory for stable varieties. I generalize this theory
to surfaces and threefolds. Then I apply it to study the abundance conjecture for surfaces,
the topology of lc centers on threefolds, existence of semi-resolutions for surfaces, and gluing
theory for families of surfaces in mixed characteristic.
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Résumé

Cette thèse de doctorat est constituée de l’article [Pos22] et des pré-publications [Pos21c,
Pos21b, Pos21a]. Le thème commun est la théorie des modules des variétés algébriques. Dans
le premier article, j’étudie le fibré en droites de Chow–Mumford pour les familles de variétés de
Fano logarithmiques uniformément K-stables, et je montre que ce fibré est ample si la famille
est de variation maximale. Les trois pré-publications sont consacrées à une généralisation
en caractéristique positive de la théorie de recollement de Kollár pour les variétés stables.
Je développe une telle généralisation pour les surfaces et les solides; puis je l’applique à la
conjecture d’abondance pour les surfaces, à la topologie des centres log canoniques sur les
solides, à l’existence de semi-résolutions pour les surfaces, et à la théorie de recollement pour
les familles de surfaces en caractéristique mixte.

MOTS CLÉS

Géométrie algébrique, variété algébrique, géométrie birationnelle, théorie des modules,
variété de Fano, K-stabilité, fibré de Chow–Mumford, théorie de recollement de Kollár, variété
stable, nœud, surfaces, solides, abondance, centre log canonique, semi-résolution, caractéristique
positive, caractéristique mixte.
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J’éprouve de la fierté à parcourir les pages qui constituent cette thèse. Elles sont comme des
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miraculeuses. Je finirai moi-même par oublier ces aléas, pour tout ordrer sous le prisme de
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votre générosité et vos magnifiques sourires.
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finalement un doux baiser à Alexandra, pour le bonheur inattendu que tu m’as offert.

5



Contents

1 Introduction 9
1.1 Moduli theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 GIT approach to moduli theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Functorial approach to moduli theory . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Moduli of KSBA stable varieties . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Moduli of K-stable Fano varieties . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.1 Projectivity of moduli spaces . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6.1 Ampleness of the CM line bundle . . . . . . . . . . . . . . . . . . . . . . 14
1.6.2 Geometry of surfaces in positive characteristic . . . . . . . . . . . . . . 15
1.6.3 Geometry of threefolds in positive and mixed characteristics . . . . . . . 16

2 Notations and preliminaries 18
2.1 Bibliographic references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Birational Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Quotients by finite equivalence relations . . . . . . . . . . . . . . . . . . . . . . 19

3 Positivity of the Chow–Mumford line bundle for families of log Fano varieties 22
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Overview of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Notations and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 K-stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Base-change of divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.4 The CM line bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Ampleness lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 About the Knudsen–Mumford expansion . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Perturbation of families of K-stable log Fanos . . . . . . . . . . . . . . . . . . . 33
3.6 Proof of the main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.1 General notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6.2 Application of the ampleness lemma . . . . . . . . . . . . . . . . . . . . 37
3.6.3 Estimation of the derivatives . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6.4 Variation of the boundary . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6.5 Proof of Theorem 3.1.0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6



4 Nodes on algebraic varieties 52
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Demi-normal schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Characterization of nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Normalization of nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Being nodal is an étale-local property . . . . . . . . . . . . . . . . . . . 58
4.3.2 Demi-normality, seminormality and weak normality . . . . . . . . . . . 59
4.3.3 Structure of the normalization morphism . . . . . . . . . . . . . . . . . 61

4.4 Construction of separable nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Construction of inseparable nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6 Application: Embeddings of demi-normal varieties . . . . . . . . . . . . . . . . 66

5 Gluing theory for slc surfaces and threefolds in positive characteristic 68
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.1 Gluing theory for slc varieties . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Introduction to Kollár’s gluing theory . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Gluing theory for surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Gluing theory for surfaces in characteristic > 2 . . . . . . . . . . . . . . 73
5.3.2 Gluing theory for surfaces in characteristic 2 . . . . . . . . . . . . . . . 74
5.3.3 Gluing theory for germs of surfaces . . . . . . . . . . . . . . . . . . . . . 75
5.3.4 Application: Semi-resolutions of demi-normal surfaces . . . . . . . . . . 76

5.4 Gluing theory for threefolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.2 Sources of lc centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4.3 Gluing theorems for threefolds in characteristic > 5 . . . . . . . . . . . 99

5.5 Application to the moduli theory of stable surfaces . . . . . . . . . . . . . . . . 103

6 Gluing theory for families of slc surfaces in mixed characteristic 107
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3 Gluing for families of surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.1 Existence of the quotient . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.2 Descent of the log canonical sheaf . . . . . . . . . . . . . . . . . . . . . 112

6.4 Fibers of the quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4.1 Commutativity of fibers and quotients . . . . . . . . . . . . . . . . . . . 113
6.4.2 Serre properties of the fibers . . . . . . . . . . . . . . . . . . . . . . . . 122

7 Abundance for slc surfaces 127
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.3 Abundance in positive characteristic . . . . . . . . . . . . . . . . . . . . . . . . 132

7.3.1 Absolute case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.3.2 Relative case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3.3 Applications to threefolds . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.4 Abundance for surfaces in mixed characteristic . . . . . . . . . . . . . . . . . . 141

8 Future work 142
8.1 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.2 Further developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7



9 Bibliography 144

10 Curriculum Vitae 153

8



Chapter 1

Introduction

It seems that I must bid the Muse go
pack,
Choose Plato and Plotinus for a friend
Until imagination, ear and eye,
Can be content with argument and deal
In abstract things; or be derided by
A sort of battered kettle at the heel.

W. B. Yeats
The Tower.

This PhD thesis consists of four articles [Pos22, Pos21c, Pos21b, Pos21a] that I wrote
during my doctoral studies at EPFL, between February 2018 and May 2022. The first article
[Pos22] has been accepted for publication by the Transactions of the AMS, and the three other
have been submitted to peer-reviewed journals. Compared to the versions available on the
arXiv, I have made few changes: the common notations and terminology have been gathered in
Chapter 2 and the technical background of [Pos21c, Pos21b, Pos21a] is presented in Chapter 4.
The first article [Pos22] has little in common with the three other ones — with the exception
of their author. My goal for the present introduction is therefore to sketch the mathematical
theory from which they all sprouted, and then give an overview of the new results contained in
this thesis. The reader will find more specific informations about each article in their original
introduction at the beginning of the corresponding chapters.

1.1 MODULI THEORY

The motivation of these four articles can be traced back to moduli theory. This theory is
a central theme of algebraic geometry: given a set of algebraic objects F sharing some common
properties, is there a geometric space MF whose points are in bijection with the elements of
F, and whose geometry reflects the way these elements may vary?

A classical instance of this question is the moduli theory of Riemann surfaces. Riemann
proved, already in the middle of the XIXth century, that the parameter space Mg of compact
complex surfaces of genus g ≥ 2 depends on 3g− 3 parameters. The Italian school of algebraic
geometry studied degenerating families of curves and rational properties ofMg in the first half
of the XXth century. Modern methods to study Mg were introduced by Mumford [Mum65]
and latter by Deligne–Mumford [DM69], and the Kodaira dimension and topological invariants
of Mg remain an active topic of research nowadays.

Depending on the nature of the objects in F, there might exist different and non-equivalent
approaches to construct and study MF. In the case of Riemann surfaces, one can use either
Teichmüller theory or Hodge theory to construct Mg (see [HM98, 2.C]). These two methods
rely in an essential way on the analytic structure that a Riemann surface carries. But (com-
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pact) Riemann surfaces can be seen as complex algebraic curves, and one might rightfully insist
to develop a moduli theory that relies only on algebraic tools. As a by-product, such a theory
would apply to a broader class of curves, for example curves that are defined over finite fields,
for which the help of complex analysis is not available. A purely algebraic approach to moduli
theory was pioneered by Mumford with his Geometric Invariant Theory (GIT), first ex-
posed in [Mum65] (see [MFK94] for the most recent edition). This approach has been extremely
successful in several cases, including moduli of curves, of surfaces of general type [Gie77a], of
canonically polarized manifolds [Vie95] and of vector bundles [NS64, Gie77b]. Although GIT
is not discussed in this thesis, it has a fundamental feature that I want to highlight.

1.2 GIT APPROACH TO MODULI THEORY

A typical situation for a GIT moduli is the following. Assume that F is a set of isomorphism
class of pairs (X,L), where X is a variety of fixed dimension and L a line bundle on X of
fixed Hilbert polynomial h(t), with the property that the linear system |L| embeds X into
PN for N = N(h(t)) independent of X. According to a theorem of Grothendieck, there is a
proper space H = H(N,h(t)) that parametrizes in the strongest possible sense the embedded
subschemes X ⊂ PN for which the Hilbert polynomial of O(1)|X is h(t). Amongst those X
are the varieties X ∈ F embedded using a basis of the linear system |L|. Usually the locus
HF of H corresponding to these embeddings is locally closed. Moreover the multiple choices
of embeddings X ⊂ PN corresponding to the many basis of |L|, are recovered as the orbit
of one embedding under the action of Aut(PN ,O(1)) = PGL(N + 1) on H. Therefore the
quotient space HF/PGL(n + 1), should it exist, would give a good notion of parameter space
for F. However taking quotients by infinite groups is a delicate matter: GIT was designed to
understand to which extent quotients exist in these situations. After a polarization is chosen
on H, the general theory identifies a subset Hss ⊂ H, called the locus of semi-stable points,
for which a categorical quotient morphism

πss : Hss −→ H � PGL(N + 1)

exists. It also identifies an open subset Hs ⊂ Hss, called the locus of stable points, for which
the restriction πs = πss|Hs has all the properties one can reasonably expect from a quotient (for
example, its fibers are exactly the orbits). In favourable cases it holds that HF ⊆ Hs, and by
restricting πs accordingly we obtain a parameter space for F. In fact, we usually enlarge the
collection F so that we have an equality HF = Hs.

Now let me explain the special feature given by GIT. It follows from the general theory
that the quotient MF = H � PGL(N + 1) is projective: it is therefore a compactification of
MF = Hs/PGL(N + 1), which sits inside MF as an open subset. This compactification has a
modular interpretation: while points of MF correspond bijectively to elements of F, points in
the boundary ∂MF =MF \MF can be interpreted as one-parameter semi-stable degenerations
of elements of F.

The existence of a modular compactification MF ⊂ MF is the best situation we can hope
for in moduli theory. Tools from cohomology, intersection theory and birational geometry can
be used to understand the geometry of (MF, ∂MF): see for example [Has03, HH09, HH13].
Furthermore, the mere existence of a modular compactification implies that any one-parameter
family of objects in F can be filled-in uniquely (up to finite base-change) with semi-stable
objects.

Unfortunately, while the GIT approach is successful for constructing the moduli space of
curves (see [MFK94]), in many other situations it has serious shortcomings:
◦ If we use it to construct a moduli space of canonically polarized smooth varieties, then the

choice of different pluricanonical polarizations (X,L = ω⊗rX ) lead to an infinite collection
of modular compactifications [WX14].
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◦ The geometric meaning of GIT (semi-)stability is not easy to understand: consequently
the points on the boundary usually correspond to objects that are singular and difficult
to tell apart from unstable objects using only geometric criterions.

◦ In addition, If our collection F contains varieties that are singular, it is not even clear
that we can use the GIT approach! For surfaces already, it turns out that (asymptotic)
GIT stability imposes strong restrictions on the multiplicity of the local rings [Sha81]:
hence many interesting yet mildly singular surfaces violate these restrictions.

Therefore different methods are needed to construct moduli spaces of varieties in higher di-
mensions. They should be powerful enough to provide modular compactifications, and provide
a good description of the objects at the boundary. Depending on the varieties we want to
parametrize, we can devise various strategies: below I present the KSBA approach to the mod-
uli of varieties of general type, and the K-stability approach to moduli of Fano varieties. These
are the two moduli theories that I study in the articles forming this thesis.

1.3 FUNCTORIAL APPROACH TO MODULI THEORY

Both approaches have a common theoretical framework, which goes back to the article of
Deligne and Mumford about the moduli space of curves [DM69]. Given a collection F for which
there is a meaningful notion of families of objects in F over a base scheme, one considers the
pseudo-functor

MF : (Schemes)op −→ (Groupoids)

sending a scheme S to the groupoid category of families of objects in F over S. We call MF the
moduli functor of F.

At first glance it seems difficult to think about MF as an actual space. However by the
Yoneda lemma, any scheme X induces a pseudo-functor hX = Hom(•, X), and many properties
of X – such as separatedness, properness, smoothness, irreducibility – can be read from the
pseudo-functor hX . By analogy, we think of MF as a space in a generalized sense, and investigate
whether such scheme-like properties hold for MF. In practice, this means proving properties
about families of objects in F: for example, properness of MF amounts to show that, up to finite
base-change, a one-parameter family of objects in F has one and only one limit in F (about
valuative criterions for stacks, see [LMB00, §7]). Therefore the choice of elements we allow in F
is critical for the properness of MF: if we want F to contain a certain class of smooth varieties,
then we have to identify the correct class of singular degenerations of these varieties, so that
MF will be a proper pseudo-functor.

1.4 MODULI OF KSBA STABLE VARIETIES

Following this functorial approach, let me first focus on the case of canonically polarized
varieties: these are the smooth varieties X for which the canonical line bundle ωX = (detTX)∗

is ample. What is a good notion of degenerations for these varieties? The curve case was settled
in the article of Deligne and Mumford, who identified the so-called stable curves as the correct
class of degenerations, and showed that the associated moduli functor is proper. This definition
was generalized in [KSB88], where stable surfaces were introduced. Shortly after it was shown
that the moduli functor of stable complex surfaces is proper [Kol90, Ale94]. Similarly, KSBA
stable varieties can be defined in any dimension. It is now a theorem that in characteristic
zero their moduli functor MKSBA is a proper Deligne–Mumford stack [Kol21]1.

Now that we know that (KSBA) stability is a successful notion, you might rightfully ask for
its definition. It contains three parts. The first one is a purely algebraic restriction on the type

1Using the method that I will describe in Section 1.5.1, one can show in addition that the coarse moduli
space of MKSBA (in the sense of Keel–Mori) is a projective variety [Fuj18, KP17, PX17]. Since I will not discuss
the projectivity of the moduli space of stable varieties in this thesis, I will not elaborate on this topic.
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of singularities (they should be at worst demi-normal, see Definition 4.2.0.2): it is important
to notice that a stable variety is not necessarily normal. The second part is that the canonical
sheaf should be ample. The third part is a geometric restriction on the singularities, in the
spirit of the Minimal Model Program (MMP): a stable variety is at worst semi-log canonical
(see Definition 4.2.0.4).

Let us pause for a second: why should the MMP be relevant in moduli theory? In the case
of stable varieties, it was quickly realized that the log canonical condition on the singularities
implies that the moduli functor is separated (see [Kol21, 1.27, 2.47-48]; but a truly illuminating
proof is given in [Ben20, §3.1]). Thus it makes sense to restrict our attention to log canonical
varieties, for which the tools of MMP and birational geometry are available. In fact, it turns out
that the MMP is an extremely powerful tool: the recent breakthroughs in the moduli theory
of stable varieties and of Fano varieties (see Section 1.5 below) would not have been possible
without these techniques.

While it is now clear that log canonical varieties are interesting to consider, the attentive
reader may have noticed that I defined stable varieties to be semi-log canonical. There is no
mistake: we are forced to work with non-normal varieties to obtain a proper moduli space, and
accordingly semi-log canonical is the non-normal version of log canonical. This creates serious
technical challenges, because techniques of the MMP are usually not available on non-normal
varieties (see [Kol11]). A solution is given by Kollár’s gluing theory [Kol13, §5], which
establishes a dictionary between semi-log canonical singularities and their normalizations. This
dictionary is an essential tool to prove the properness of MKSBA.

We have so far considered stable varieties in characteristic zero, but the definition is also
valid in positive characteristic. So what about the moduli functor of stable varieties in charac-
teristic p > 0? For curves the theory of [DM69] is general enough to encompass stable curves
in positive characteristic2. But already for surfaces, much less is known: the current state
of our knowledge is summarized in [Pat17]. Many techniques from characteristic zero break
down, and potential replacements were only developed recently. The article [Pos21c] is my
attempt to adapt Kollár’s gluing theory in positive characteristic, and [Pos21b, Pos21a] consist
of applications to the geometry of surfaces in positive and mixed characteristics. My results
will be presented in Section 1.6 below.

1.5 MODULI OF K-STABLE FANO VARIETIES

Let us now consider the moduli of Fano varieties over the complex numbers. Fano varieties
are smooth complex projective varieties X with the property that their canonical line bundle
(detTX)∗ is anti-ample. If F contains the class of Fano varieties, which degenerations should
we allow so that MF is proper? General deformation theory together with the Kodaira–Nakano
vanishing theorem imply that the infinitesimal deformations of Fano varieties are very well-
behaved. However their one-parameter deformations are much more complicated to understand,
and for a long time the moduli theory of Fano varieties seemed out of reach.

Inspiration came from analytic complex geometry. Tian and Donaldson [Tia97, Don02]
introduced the notion of K-(semi)stability in their work about Kähler–Einstein metrics on
Fano manifolds. It turned out that K-stability provides a good stability notion to construct
proper moduli spaces of Fano manifolds, as demonstrated by [OSS16] and [LWX18]. In parallel,
the definition of K-stability had been translated into purely algebraic terms [Fuj19, FO18],
sparking hope for the construction of algebraic moduli spaces of Fano varieties3.

2Actually the moduli theory of stable curves à la Deligne–Mumford works over Z, in other words in the
broadest possible generality.

3The algebraic definition of K-semistability is given in Section 3.2.2. Since we discussed the GIT approach
to moduli theory in this introduction, we should remark that the original definition of K-semistability is an
infinite dimensional generalisation of the Hilbert–Mumford criterion, which characterizes GIT semistability. In
general K-semistability cannot be recovered as a limit of GIT semistability: counterexamples exist Fano varieties
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This program was successfully completed very recently, in a series of articles culminating
in [LXZ21] and [Xu20] (see Section 3.1 for a detailed bibliography, and [Xu21] for a complete
survey). The moduli functor MKss of K-semistable Fano varieties is not proper, but it can be
approximated by a so-called good moduli space MKps which is a projective algebraic space4.

When I starting working on [Pos22], the properness and projectivity of MKps were still
conjectures. I studied the question of projectivity: my results will be stated in Section 1.6. To
motivate it, I will now explain what it concretely means to show that MKps is projective.

1.5.1 Projectivity of moduli spaces

Let me take a step back, and consider anew a moduli functor MF, represented by an algebraic
space MF (either a coarse moduli space in the sense of Keel–Mori, either a good moduli space
in the sense of Alper). Assume that MF is proper. To establish projectivity, we need to exhibit
an ample line bundle. The general theory tells us that every family f : X → T of objects in F
is equipped with a moduli morphism MF(f) : T → MF, sending a point t to the moduli point
of f−1(t). Hence a line L bundle on MF gives, for every such family f : X → T , a functorial
line bundle L(f) on T . But the converse is not true: a functorial family {L(f) | f : X → T}
descends to a line bundle on MF if and only if, for every object X of F, the automorphism group
of X acts trivially on L(X) [Alp13, 10.3]. Nonetheless, assume that we are able to construct
such a family L = {L(f)}. How do we prove it is ample?

We present a strategy that was developed by Kollár in [Kol90]. It relies on the Nakai–
Moishezon criterion: L is ample if and only if, for every irreducible and proper sub-algebraic
space V ⊂MF, the self-intersection LdimV is strictly positive. If we manage to find a surjective
and (generically) finite cover V ′ → V that supports a family f : X → V ′ of objects in F
for which L(f)dimV ′ > 0, then we are done. The difficulty is of course to find such families
f : X → V ′ for which L(f)dimV ′ > 0.

Kollár’s key observation is the following. Assume that the family f : X → V ′ has maximal
variation, in the sense that (generically) distinct points v, v′ ∈ V ′ parametrize non-isomorphic
objects Xv 6∼= Xv′ . Furthermore, let L be a relative ample line bundle on X, and assume
that the pushforward vector bundles f∗L

j on V ′ are semipositive for j sufficiently large. Then
det f∗L

l is ample for l large enough: this is the content of Kollár’s ampleness lemma [Kol90,
§3]. If det f∗L

l = L(f) then we have obtained that L is ample on MF.
Kollár’s strategy was successfully applied in several situations: Kollár considered the cases

of the compactified Picard functor and of stable surfaces in [Kol90], and the method was
generalized to stable varieties of any dimension in [Fuj18, KP17].

Now we specialize to the case where MF = MKss is the moduli functor of K-semistable

[OSY12]. But there are several cases where the K-stable moduli space is the same as the GIT moduli space, or
is closely related to it: see for example [LX19, Liu22, ADL21a, ADL21b].

4Let me give a short explanation. One defines several flavours of stability for Fano varieties: K-semistability,
K-polystability and K-stability. K-semistability is the weaker notion, and we consider its moduli functor MKss.
Unfortunately MKss is not even separated: a given K-semistable variety can degenerate to several non-isomorphic
K-semistable varieties. This corresponds to the existence of non-closed rational points on MKss. One would need
to somehow collapse the degeneration equivalence classes to achieve separatedness.

There is a strong parallel with GIT. Indeed, using the notations of Section 1.2, the GIT quotient Hss →
H � PGL(V ) identifies the non-closed orbits whose closures intersect (the non-closed orbits are precisely those
of strictly GIT semistable points). However no GIT interpretation of the moduli functor of K-semistable Fano
varieties is known.

A solution was recently given by the powerful framework of good moduli spaces developed by Alper [Alp13].
We say that an Artin stack X admits a good moduli space if there exists a morphism to an algebraic space
X → X with properties that emulate those of GIT quotients. In particular, the existence of a proper good
moduli space for MKss would be a satisfactory replacement for the properness of the moduli functor.

The existence of a separated good moduli space (in characteristic zero) is guaranteed by two technical con-
ditions on the stack, called S-completeness and Θ-reductivity [AHLH19]. It is proved in [ABHLX20] that these
properties hold for MKss. By construction the points of its good moduli space MKps parametrize K-polystable
Fano varieties. The properness and projectivity of MKss were subsequently proved in [LXZ21, Xu20].
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Fano varieties. A candidate for the polarization is given by the so-called Chow–Mumford
(CM) line bundle. It was first considered in [Tia97] in connection to the stability of Fano
manifolds. In the smooth case, curvature calculations with the Weil–Petersson metric show
that the CM line bundle is ample [Sch12]: therefore the CM line bundle is expected to provide
a polarization on the good moduli space MKps. This was recently confirmed in [XZ20, LXZ21].
But at the beginning of my PhD it was still a conjecture: the only available purely algebraic
results were those of [CP21], where ampleness of the CM line bundle was established for the
special class of uniformly K-stable Fano varieties5. My goal in [Pos22] was to generalize the
main result of [CP21] to a more general set-up, as I will explain in Section 1.6.

Let me say a word about the method of [CP21]. It follows Kollár’s strategy, but some
twists are necessary. The reason is the following: given a family of Fano varieties f : X → T ,
the natural relative polarization is given by relative anti-canonical sheaf ω−1

X/T . But f∗ω
−j
X/T is

usually not semi-positive! Furthermore, the CM line bundle is not equal to det f∗ω
−j
X/T : rather,

the CM line bundle corresponds (up to a sign) to the leading coefficient of the Knudsen–
Mumford expansion of this determinant (see Section 3.4). Fortunately some controlled twist of
f∗ω

−j
X/T is semipositive, the ampleness lemma still applies and gives the positivity of some twist

of det f∗ω
−1
X/T , and the product trick of Viehweg can be used to deduce positivity of the CM

line bundle: see [CP21, §1.7.3] for more precisions. The other parts of the strategy (descent
of the CM line bundle to MKps, existence of families with maximal variation) also hold for
K-semistable Fano varieties [CP21, §10].

1.6 MAIN RESULTS

It is high time to state the results of my thesis. I have chosen to give the precise statements,
even though some of them are technical. Most of them are phrased in the language of pairs,
that is commonly used in birational geometry. This notion appears naturally when we perform
adjunction, when we use inductive arguments on the dimension, or when we consider families
over a curve with the data of a special fiber. See Section 2.4 for our conventions.

1.6.1 Ampleness of the CM line bundle

The following results can be found in Chapter 3, which corresponds to [Pos22]. As hinted
above, it concerns the Chow–Mumford line bundle of a family of Fano varieties. It can be
defined as follows: let f : (X,D)→ T be a morphism for which each fiber (Xt, Dt) is a log Fano
variety of dimension n. Then the CM line bundle is defined by

λf,D = −f∗((−KX/T −D)n+1).

By definition it is an element of the Chow group of codimension one cycles on T , and one can
show that it is actually a Q-Cartier divisor (see Section 3.2.4). The main result of [Pos22] is
the following:

Theorem 1 (Theorem 3.1.0.2). Let f : (X,D) → T be a flat morphism of relative dimension
n with connected fibers from a normal projective pair to a normal projective variety, such that
−(KX/T +D) is Q-Cartier and f -ample. Assume that D does not contain any fibers.

(a) Bigness: If each fiber (Xt, Dt) is klt, the general geometric fibers (Xt̄, Dt̄) are uniformly
K-stable, and the variation of f is maximal, then λf,D is big.

(b) Ampleness: If all the geometric fibers (Xt̄, Dt̄) are uniformly K-stable, and the variation
of f is maximal, then λf,D is ample.

5The definition is given in Section 3.2.2. It is a priori stronger than the other forms of stability, but it was
conjectured that uniform K-stability is actually equivalent to K-stability. This has been confirmed (for Fano
varieties) in [LXZ21, Theorem 1.6].
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This generalizes [CP21, 1.9] to the logarithmic case, that is when ∆ 6= 0. The implication for
moduli theory is the following: the CM line bundle gives a polarization on the normalization of
any proper subspace of MKps parametrizing uniformly K-stable log Fano varieties. This result
has been superseded since by [LXZ21, 1.3].

1.6.2 Geometry of surfaces in positive characteristic

Next I will state the main results about the geometry of surfaces and threefolds obtained in
[Pos21c, Pos21a, Pos21a], which you can read in Chapter 5, Chapter 6 and Chapter 7. I begin
with surfaces.

The first result generalizes Kollár’s gluing theory to surfaces in positive characteristic:

Theorem 2 (Theorem 5.1.1.1). Let k be a field of positive characteristic.
(a) If char k > 2, then normalization gives a bijection

(
Slc surface pairs (S,∆)

of finite type over k

)
1:1−→


Lc surface pairs (S̄, D̄ + ∆̄)

of finite type over k
plus an involution τ of (D̄n,DiffD̄n ∆̄)

that is generically fixed point free on every component.


(b) If char k = 2, then normalization gives a bijection

(
Slc surface pairs (S,∆)

of finite type over k

)
1:1−→


Lc surface pairs (S̄, D̄Gal + D̄ins + ∆̄)

of finite type over k
where D̄Gal, D̄ins and ∆̄ have no common component,

plus an involution τ of (D̄n
Gal,DiffD̄nGal

(∆̄ + D̄ins))

that is generically fixed point free on every component.


While the proof of Theorem 5.1.1.1 is a fairly easy implementation of Kollár’s strategy (see

[Kol13, §5.6-7]), I have tried to give a proof that is valid in the largest possible generality. In
particular, there are no assumption on the base field k, and we work with surfaces that are
essentially of finite type over k. The additional cases appearing in characteristic 2 are studied
extensively (see Section 4.5).

Theorem 2 gives, in theory, a complete classification of slc surface germs. Indeed, germs of
lc surface pairs with a non-empty reduced boundary are classified (see [Kol13, §3.3]), and our
theorem says that any additional data of a log involution on the boundary, determines an slc
singularity. So, at least when the characteristic is different from 2, we get a local picture that
is similar to [Kol21, 2.21]. For this reason I have not tried to write down an exhaustive list.

An interesting consequence of Theorem 2 is the existence of semi-resolutions (see Defini-
tion 5.3.4.4) of demi-normal surfaces in characteristic 6= 2. This is certainly a folklore result,
but I was unable to find in the literature a precise proof in positive characteristic6. Using gluing
theory for surfaces, it is not difficult to show:

Theorem 3 (Theorem 5.3.4.8 and Proposition 5.3.4.12). Let S be a demi-normal surface that
is essentially of finite type over an arbitrary field k of positive characteristic.

(a) If char k 6= 2, then S has an slc good semi-resolution.

(b) More generally, if S has only separable nodes, then there exists a proper birational mor-
phism f : T → S such that

(i) T is slc 2-Gorenstein with regular conductor DT ;

(ii) f is an isomorphism over a big open subset of f ;

6For example, Kollár states the existence of two-dimensional semi-resolutions in [Kol90, 4.2], and refers to
[vS87, 1.4.3]. However the latter article deals with complex algebraic spaces. But to be fair, our gluing method
to construct semi-resolutions is very similar to the method used in [vS87].
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(iii) no component of DT is f -exceptional;

(iv) each component of Exc(f) is regular and intersects DT transversally, and Exc(f)
has only normal crossings.

As demonstrated by Hacon and Xu in [HX16], Kollár’s theory can be used to reduce the
abundance conjecture on slc varieties, to the abundance conjecture on lc varieties. Building on
their strategy and on the abundance on lc surfaces proved in [Tan20a], we obtain abundance
on slc surfaces over arbitrary fields:

Theorem 4 (Theorem 7.1.0.1). Let (S,∆) be an slc surface pair and f : S → B a projective
morphism where B is quasi-projective over a field of positive characteristic. Assume that KS+∆
is f -nef; then it is f -semi-ample.

1.6.3 Geometry of threefolds in positive and mixed characteristics

I was able to extend Kollár’s gluing theory to threefolds in positive characteristic, granted
the characteristic is not too small:

Theorem 5 (Theorem 5.4.3.6). Let k be a perfect field of characteristic > 5. Then normaliza-
tion gives a bijection

Proper slc threefold pairs
(X,∆) such that
KX + ∆ is ample

 1:1−→


Proper lc threefold pairs (X̄, D̄ + ∆̄)

plus an involution τ of (D̄n,DiffD̄n ∆̄)
that is generically fixed point free on each component

such that KX̄ + D̄ + ∆̄ is ample.


In comparison to Theorem 5.1.1.1, there are additional hypothesis about the base field and

the projectivity of the threefolds. We cannot expect a local gluing theory in dimensions three
and bigger, so the projectivity hypothesis is forced on us. The restrictions on the base field
come from the MMP theorems that are currently available.

The implication of Theorem 5 for the moduli space of stable surfaces in mixed characteristic
is the following:

Theorem 6 (Theorem 5.1.2.5). Let k be an algebraically closed field of characteristic > 5 and
v a rational number. Let N ⊂ M2,v,k be a closed sub-Artin-stack parametrizing families of
stable surfaces for which slc adjunction and semi-stable reduction hold. Then N is proper (and
furthermore projective by [Pat17]).

The proof of Theorem 5 follows once again Kollár’s strategy, but it is much more involved
than the two-dimensional case. The conceptual hearth of the proof is the theory of sources and
springs, developed in [Kol13, §4.4-5] for varieties in characteristic zero. We recover this theory
in positive characteristic for threefolds:

Theorem 7 (Theorem 5.1.1.2). Let f : (Y,∆Y )→ (X,∆ = ∆=1 + ∆<1) be crepant Q-factorial
dlt blow-up of a quasi-projective lc threefold pair over a perfect field of characteristic > 5. Let
Z ⊂ X be a lc center contained in ∆=1 with normalization Zn → Z.

Let (S,∆S := Diff∗S ∆Y ) ⊂ Y be a minimal lc center over Z, with Stein factorization
fnS : S → ZS → Zn. Then:

(a) The crepant birational equivalence class of (S,∆S) over Z does not depend on the choice
of S or Y . We call it the source of Z, and denote it by Src(Z,X,∆).

(b) The isomorphism class of ZS over Z does not depend on the choice of S or Y . We call
it the spring of Z, and denote it by Spr(Z,X,∆).

(c) (S,∆S) is dlt, KS + ∆S ∼Q,Z 0 and (S,∆S) is klt on the generic fiber above Z.

(d) The field extension k(Z) ⊂ k(ZS) is Galois and BircZ(S,∆S)� Gal(ZS/Z).
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(e) For m > 0 divisible enough, there are well-defined Poincaré isomorphisms

ω
[m]
Y (m∆Y )|S ∼= ω

[m]
S (m∆S).

(f) If W ⊂ (∆=1)n is an irreducible closed subvariety such that n(W ) = Z, where n : (∆=1)n →
∆=1 is the normalization, then

Src(W, (∆=1)n,Diff(∆=1)n ∆<1)
cbir∼ Src(Z,X,∆)

and
Spr(W, (∆=1)n,Diff(∆=1)n ∆<1) ∼= Spr(Z,X,∆).

The theory of sources and springs has some consequences for the topology of lc centers:

Theorem 8 (Theorem 5.1.2.4). Let (X,∆) be a quasi-projective slc threefold over a perfect
field of characteristic > 5. Then:

(a) Intersections of lc centers are union of lc centers.

(b) Minimal lc centers are normal up to universal homeomorphism.

An interesting consequence of Theorem 4 for threefolds over arbitrary fields is the following:

Theorem 9 (Theorem 7.1.1.2). Let (X,∆) be a projective Q-factorial dlt threefold over an
arbitrary field k of characteristic p > 5. Assume that KX + ∆ is nef. Then (KX + ∆)|∆=1 is
semi-ample.

Motivated by the recent progresses in the geometry of threefolds in mixed characteristic
[Wit20, Wit21, TY21, BMP+21], I also studied the gluing technique and its consequences for
families of surfaces over a mixed characteristic base. Theorem 5 extends with few changes to
mixed characteristic:

Theorem 10 (Theorem 6.1.0.1). Let R be a DVR of mixed characteristic with maximal ideal
πR. Then normalization gives a bijection


Threefold pairs (X,∆)
flat and proper over R

such that (X,∆ +Xπ) is slc
and KX + ∆ is ample

 1:1−→



Threefold pairs (X̄, D̄ + ∆̄)
flat and proper over R

such that (X̄, D̄ + ∆̄ + X̄π) is lc
and KX̄ + D̄ + ∆̄ is ample

plus a generically fixed point free
R-involution τ of (D̄n,DiffD̄n ∆̄).


I also obtained abundance on mixed characteristic families of surfaces:

Theorem 11 (Theorem 7.4.0.1). Let S be an excellent regular one-dimensional scheme of mixed
characteristic, f : (X,∆) → S a dominant flat projective morphism of relative dimension two.
Assume that (X,∆ + Xs) is slc for every closed point s ∈ S, and that every fiber Xs is S2.
Then if KX + ∆ is f -nef, it is f -semi-ample.

Finally, let me mention a result that I find quite satisfying: in the context of Theorem 10,
the fibers of X → SpecR are the quotients of the fibers of X̄ → SpecR. More precisely:

Theorem 12 (Theorem 6.1.0.4). Let (S,∆) → SpecR be a projective family of surfaces over
a DVR with residue characteristic ≥ 7, with normalization S̄. Assume that (S,∆ + Sπ) is slc.
Then the fibers of S are the quotients of the fibers of S̄.

Further considerations about the properties of fibers of quotients are contained in Sec-
tion 6.4.
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Chapter 2

Notations and preliminaries

In this chapter I collect some notations and results that will be used through this thesis. I have
tried to be consistent with the terminology across the different chapters. However, since the
set-up varies from one chapter to another, I will recall at the beginning of each of them what
the current assumptions are.

2.1 BIBLIOGRAPHIC REFERENCES

Whenever quoting a result or an argument from an article or a book, I have tried to indicate
the precise reference within that article or that book. There are a few exceptions: when I quote
the main result of an article, or when I give bibliographic details in the introduction.

I use the following convention, best explained by an example: [Kol13, §4.1] refers to chapter
4.1 in [Kol13], while [Kol13, 4.1] refers to the definition/lemma/proposition/theorem/etc 4.1
in [Kol13].

2.2 VARIETIES

Let k be the spectrum of a field or a discrete valuation ring (DVR). We work with schemes
and morphisms over k.

A variety over k is a reduced equidimensional scheme that is separated of finite type
over k. The varieties that appear in Chapter 3 are irreducible, but the ones appearing in
the subsequent chapters might be reducible or even disconnected1. A curve (respectively a
surface, respectively a threefold) is a variety of dimension one (respectively two, respectively
three).

Fix a Noetherian k-scheme X. An open subset U ⊂ X is big if it contains every codimension
one point of X. More generally, if f : X → T is a morphism, then U is relatively big over T
if Ut ⊂ Xt is big for every t ∈ T .

Given a point x ∈ X we denote by k(x) the residue field at x. If Z ⊂ X is an irreducible
reduced closed subscheme, we denote by k(Z) its function field: by definition it is the residue
field at the generic point of Z.

The normalization of X is defined to be its relative normalization along the structural
morphism

⊔
η Spec(k(η)) → X where η runs through the generic points of X. We usually

denote by X̄ or Xν the normalization of X. If X is excellent, then the normalization morphism
ν : X̄ → X is finite. We say that X is normal if ν is an isomorphism (in which case X is
necessarily reduced).

An étale morphism of pointed schemes (Y, y) → (X,x) is called elementary if it induces
an isomorphism k(y) ∼= k(x).

1This is to include objects such are the normalization of Spec k[x, y, z]/(xyz) in our discussion.
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2.3 SHEAVES

We fix a variety X (in the sense given above) and F a coherent OX -module.
We say that F satisfies Serre’s condition Si, for i ≥ 0, if the inequality depthOX,x Fx ≥

min{i,dimFx} holds at all x ∈ X. Recall that X is normal if and only if it is regular in
codimension one and OX is S2; and that X is Cohen–Macaulay if and only if OX is SdimX .

We define the dual of F by F∗ = Hom(F ,OX). There is a natural map F → F∗∗; we say
that F is reflexive if it is an isomorphism. Any reflexive sheaf on X is automatically S1 [Sta,
0AV5].

Assume that F is S1. Then it is S2 if and only if F = j∗j
∗F for a big open subset j : U ↪→ X

[Har07, 1.8].
If X is normal and F torsion-free, then the following are equivalent: F is reflexive, F is S2,

and F = j∗j
∗F for j as above.

2.4 BIRATIONAL GEOMETRY

Let X be a normal variety. We use the language of Q-divisors on X, as presented in [KM98,
0.4]. We denote by KX any Z-Weil divisor on X associated to the invertible sheaf ωXreg .

A pair structure (X,∆) on X is the additional data of a Q-Weil divisor ∆ whose coefficients
belongs to [0; 1], such that KX + ∆ is Q-Cartier. The divisor ∆ is sometimes called the
boundary of the pair. Given ∆, we often consider the following divisors:

∆=1 = b∆c :=
∑

E : coeffE ∆=1

E, ∆<1 := ∆−∆=1.

We follow the standard terminology of [Kol13, §2.1] for the birational geometry of pairs
(X,∆). In particular, we refer the reader to loc. cit. for the notions of discrepancy a(•;X,D)
of divisors, and for those of log canonical (lc), Kawamata log terminal (klt), divisorial
log terminal (dlt), canonical and terminal pairs.

In dimension two, there is a (seemingly) more general notion of numerically lc surface
pair, defined in [Kol13, 2.27].

Let (X,∆) be a pair. An lc center of (X,∆) is a closed subset Z ⊂ X that is the image
of a divisor of discrepancy −1 with respect to (X,∆). More precisely, there exists a proper
birational morphism from a normal variety f : Y → X and a prime divisor E ⊂ Y such that
a(E;X,∆) = −1 and f(E) = Z. It is convenient to allow X itself to be considered as a lc
center.

Let (X,∆ + D) be a pair, where D is a reduced divisor with normalisation Dn. Then
there is a canonically-defined Q-divisor DiffDn ∆ on Dn such that restriction on Dn induces

an isomorphism ω
[m]
X (m∆ +mD)|Dn ∼= ωDn(mDiffDn ∆) for m divisible enough. Singularities

of (X,∆ +D) along D and singularities of (Dn,DiffDn ∆) are related by so-called adjunction
theorems. We refer to [Kol13, §4.1] for fundamental theorems of adjunction theory.

2.5 QUOTIENTS BY FINITE EQUIVALENCE RELATIONS

Quotients by equivalence relations are useful for studying non-normal varieties: we will use
this technique extensively in Chapter 5, Chapter 6 and Chapter 7. The theory of quotients by
finite equivalence relations is developped in [Kol12] and [Kol13, §9]. For convenience, we recall
the basic definitions and constructions that we will need.

Let S be a base scheme, andX,R two reduced S-schemes. An S-morphism σ = (σ1, σ2) : R→
X ×S X is a set theoretic equivalence relation if, for every geometric point SpecK → S,
the induced map

σ(SpecK) : HomS(SpecK,R)→ HomS(SpecK,X)×HomS(SpecK,X)

19



is injective and an equivalence relation of the set HomS(SpecK,X). We say in addition that
σ : R→ X ×S X is finite if both σi : R→ X are finite morphisms.

Assume that G is a groupoid, that is a category where all the arrows are isomorphisms.
An action of G on X over S is a functor F : G → ∗AutS X , where the target is the groupoid
with one element induced by the abstract group AutS X. Given such an action, for each
g ∈ Arrow(G) we let Γ(g) ⊂ X ×S X be the graph of the S-automorphism F (g). Then the
union

⋃
g Γ(g) ⊂ X ×S X is a set theoretic equivalence relation. Conversely, a set theoretic

equivalence relation R ⊂ X ×S X is called a groupoid if it is of this form.
Suppose that σ : R ↪→ X ×S X is a reduced closed subscheme. Then there is a minimal

set theoretic equivalence relation generated by R: see [Kol13, 9.3]. Even if both σi : R → X
are finite morphisms, the resulting relation may not be finite: achieving transitivity can create
infinite equivalence classes.

A case we will frequently consider is the following: X is a normal variety , D ⊂ X a reduced
divisor with normalization n : Dn → D and τ : Dn ∼= Dn an involution. The equivalence
relation induced by τ is the smallest set theoretic equivalence relation R(τ) → X ×k X
induced by the closure of the set of those (x, y) ∈ X ×k X such that

∃x′, y′ ∈ Dn such that n(x′) = x, n(y′) = y, τ(x′) = y′.

A central task will be to identify conditions on (X,D, τ) that guarantee that R(τ) is a finite
equivalence relation.

Let (σ1, σ2) : R → X ×S X be a finite set theoretic equivalence relation. A geometric
quotient of this relation is an S-morphism q : X → Y such that

(a) q ◦ σ1 = q ◦ σ2,

(b) (Y, q : X → Y ) is initial in the category of algebraic spaces for the property above: if
p : X → Z is such that p◦σ1 = p◦σ2 there exists a unique φ : Y → Z such that p = φ◦ q;
and

(c) q is finite.
Clearly the quotient (Y, q) is unique (up to unique isomorphism) if it exists. It may happen
that Y exists only as an algebraic space.

Remark 2.5.0.1. It is standard to add an extra condition in the definition of a geometric
quotient q : X → Y that the geometric fibers are the R-equivalence classes: more precisely
that, for every geometric point SpecK → S, the fibers of qK : XK(K) → YK(K) are the
σ(RK(K))-equivalence classes of XK(K). But this condition turns out to be a consequence of
the three other ones, see the proof of [Kol12, Lemma 17].

The most important result for us is that quotients by finite equivalence relation usually
exist in positive characteristic:

Theorem 2.5.0.2 ([Kol12, Theorem 6, Corollary 48]). If X is essentially of finite type over a
field k of positive characteristic and R ⇒ X is a finite set theoretic equivalence relation, then
the geometric quotient X/R exists and is a k-scheme.

In Chapter 6 we will also consider equivalence relations in mixed characteristic. The ques-
tion of the existence of geometric quotients in this situation is studied in [Wit20], see in par-
ticular [Wit20, 1.4].

We also record the following lemma:

Lemma 2.5.0.3. Let X be a reduced Noetherian pure-dimensional scheme, R ⇒ X a finite
equivalence relation for which there exists a finite quotient q : X → Y := X/R(τ). Let L be a
line bundle on Y , with pullback LX = q∗L. Then L is equal to the subsheaf of q∗LX formed
those sections which are R-invariant.
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Proof. Denote by σ1, σ2 : R⇒ X the two projection morphisms. By [Kol13, 9.10] we have

OY = ker

[
q∗OX

σ∗1−σ∗2
−−−−−→ (q ◦ σi)∗OR

]
.

Tensor this expression by L and use the projection formula to obtain the result.
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Chapter 3

Positivity of the Chow–Mumford
line bundle for families of log Fano
varieties

This chapter corresponds to the article [Pos22]1.

Convention 3.0.0.1. We work over an algebraically closed field k of characteristic zero. Varieties
over k are supposed to be irreducible.

3.1 INTRODUCTION

The notion of K-stability originates from complex analytic geometry. It was first formulated
by Tian in [Tia97] to study the existence of Kähler–Einstein metrics on Fano manifolds, and
later expressed in algebraic terms by Donaldson in [Don02]. The connection between K-stability
and birational geometry, and in particular with the Minimal Model program (MMP), was first
noticed several years later: Odaka showed in [Oda13] that K-stable Fano varieties are log
terminal, and Li and Xu used methods from the MMP to approach questions related to K-
stability [LX14]. These were the first steps of a purely algebraic K-stability theory of polarized
varieties, with a particular emphasis on the study of K-stability of Fano varieties. Equivalent
definitions of K-stability were afterwards formulated in terms of Ding invariant in [Ber16] and
of valuation theory [Fuj19, FO18]. This established a solid ground to study K-stable Fano
varieties with methods of birational geometry.

The algebraic geometers’ interest for K-stable Fano varieties comes, amongst other reasons,
from the possibility of constructing well-behaved moduli spaces. Indeed, after the work of
several authors, K-stability appeared to be an adequate global stability condition to obtain
compact coarse moduli spaces of Fano varieties. To wit, several compact moduli spaces of del
Pezzo K-stable surfaces were constructed [OSS16], as well as the moduli space of smoothable
K-polystable Fano varieties [LWX18]. These constructions however rely heavily on techniques
from analytic geometry, and it was desirable to find purely algebraic constructions. This pro-
gram became reality by combining the progress in the algebraic theory of K-stability mentioned
above, with the recent breakthroughs in birational geometry (e.g. [BCHM10], [HMX14] and
[Bir19]) and in abstract moduli theory ([Alp13] and [AHLH19]). Thanks to several recent
works [Jia20, BX19, ABHLX20, BLX19, Xu20, CP21, XZ20, LXZ21], we have now a good un-
derstanding of the algebraic moduli functor of K-stable Fano varieties. This chapter contributes
to the study of its compactness properties.

We shall now explain in more details what is known about the moduli functor of K-stable

1First published electronically in Transactions of the American Mathematical Society (Volume 375, Number
7, July 2022, DOI: https://doi.org/10.1090/tran/8640), published by American Mathematical Society.
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Fano varieties, and what is our contribution. We refer to Section 3.2 for the relevant definitions
regarding K-stability and birational geometry.

We consider the moduli functor MKss
n,v,c, where c ∈ Q+, sending a k-scheme S to the set

MKss
n,v,c(S) =


Families (X, c∆)→ S where (X,∆)→ S is a

family of log pairs, and for every t ∈ T the log
fiber (Xt, c∆t) is a K-semistable log Fano pair

of dimension n and volume v.


It was conjectured that this functor is represented by an Artin stack of finite type over k and
admits a projective good moduli space MKps

n,v,c (in the sense of [Alp13]), whose closed points are
in bijection with n-dimensional K-polystable Q-Fano varieties of volume v. As hinted above,
this conjecture is now verified, thanks to the work of several authors:

Theorem 3.1.0.1 ([Jia20, BX19, ABHLX20, BLX19, Xu20, XZ20, LXZ21]). The moduli func-
tor MKss

n,v,c is an Artin stack of finite type over k and admits a projective good moduli space

MKps
n,v,c whose k-points parametrize K-polystable Q-Fano varieties of dimension n and volume v.

At the time the first version of the present chapter was written, the above theorem was not
yet proved entirely: the missing parts were the properness and projectivity of MKps

n,v,c, which
were latter settled through the proof of Finite Generation Conjecture in [LXZ21]. It was also
conjectured, and has been verified in full generality in op.cit., that the polarization on the
moduli space is given by the so-called Chow–Mumford (CM) line bundle. Our work was part
of the effort, together with [CP21] and [XZ20], to show that the CM line bundle is indeed a
good candidate.

Before stating our result, let us define the CM line bundle (see also Section 3.2.4). We
consider f : (X,D) → T a flat family of log pairs of relative dimension n, such that X and T
are projective and normal, and −(KX/T + ∆) is f -ample. We let

λf,D := −f∗((−(KX/T +D))n+1),

where f∗ is the cycle-pushforward. Then λf,D is a Q-Cartier divisor on T , called the CM line
bundle of the family f : (X,D)→ T . It has a good functorial behaviour (see Proposition 3.2.4.1)
and therefore defines a Q-line bundle λ onMKss

n,v,c. Better still, it descends to the good moduli

space MKps
n,v,c in the sense that there exists a Q-line bundle L on MKps

n,v,c whose pullback toMKss
n,v,c

is λ [CP21, Lemma 10.2].
Our main result, which is a step towards the ampleness of λ, reads as follows:

Theorem 3.1.0.2. Let f : (X,D) → T be a flat morphism of relative dimension n with con-
nected fibers from a normal projective pair to a normal projective variety, such that −(KX/T+D)
is Q-Cartier and f -ample. Assume that D does not contain any fibers.

(a) Bigness: If each fiber (Xt, Dt) is klt, the general geometric fibers (Xt̄, Dt̄) are uniformly
K-stable, and the variation of f is maximal, then λf,D is big.

(b) Ampleness: If all the geometric fibers (Xt̄, Dt̄) are uniformly K-stable, and the variation
of f is maximal, then λf,D is ample.

(Here a general geometric fiber denotes the fiber along a geometric point Spec Ω → U ⊆ X,
where U ⊆ X is a dense open subset and Ω some algebraically closed field.)

The case D = 0 of Theorem 3.1.0.2 was proved previously in [CP21, Theorem 1.9]. However
that proof does not generalize to the case D 6= 0. The difficulty lies in that there exist non-
isomorphic log Fano pairs whose underlying varieties are isomorphic, so a family of log Fano
pairs (X,D) → T can be of maximal variation while the underlying family X → T is not.
Thus special attention to the geometry of the boundary D is required. Our strategy of proof
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of Theorem 3.1.0.2 is explained in Section 3.1.1: it relies on a perturbative argument on the
boundary.

After the first version of this chapter was put on ArXiv, new positivity results for the CM line
bundle were proved in [XZ20]. The authors introduce the notion of reduced uniform K-stability,
which generalise that of uniform K-stability, and they proved the analogue of Theorem 3.1.0.2
for families of reduced uniform K-stable log Fano pairs, see [XZ20, §7]. Their strategy to deal
with the case D 6= 0 was inspired by ours.

Remark 3.1.0.3. In Theorem 3.1.0.2, one of our assumptions is that each fiber (Xt, Dt) of the
family is a klt pair. This hypothesis is natural for applications to moduli space of K-stable
Fano varieties, where the families we consider have klt fibers (see Theorem 3.2.2.3). However
it might not be necessary, since in the case D = 0 we only need the general log fiber to be klt
[CP21, Theorem 1.9.a].

3.1.1 Overview of the proof

The proof of the bigness statement is based on the following idea. Let (X,D) → T be a
Q-Gorenstein family of log Fano pairs of maximal variation with uniformly K-stable general
geometric fibers. By [CP21, Theorem 1.8], we know that λf,D is a pseudo-effective divisor.
Assume that the components of D are Q-Cartier. Then for a small perturbation Dε of D,
the perturbed family (X,Dε) → T has the same properties as the original one. Hence the
perturbed CM line bundle λf,Dε remains pseudo-effective. By understanding the variation of
λf,D into λf,Dε , we will deduce that λf,D belongs to the interior of the pseudo-effective cone. If
the components of D are not Q-Cartier, we use techniques from the Minimal Model Program
(MMP) to run a similar analysis.

Curve base and Q-Cartier coefficients.

The variation of λf,D is easy to analyse when the base T is a smooth curve, and all the reduced
components Di of D are Q-Cartier. It follows from the definition of the CM line bundle that

−deg λf,D = (−KX/T −D)n+1, n+ 1 = dimX.

Let Dε = D −
∑

i εiD
i be a perturbed boundary. As explained above, the divisor λf,Dε is

pseudo-effective for small values of ε, which means deg λf,Dε ≥ 0. We calculate this degree as
above:

−deg λf,Dε =

(
−KX/T −D +

∑
i

εiD
i

)n+1

= (−KX/T −D)n+1 + (n+ 1)
∑
i

εi(−KX/T −D)n ·Di +O(ε2)

= −deg λf,D + (n+ 1)
∑
i

εi(−KX/T −D)n ·Di +O(ε2)

Hence for small values of ε, the function ε 7→ −deg λf,Dε can be approximated by an affine
polynomial with linear coefficients (−KX/T −D)n ·Di. Assume that these first order derivatives
(−KX/T −D)n ·Di are all positive. Then deg λf,D cannot be too small in comparison to them,
for otherwise deg λf,Dε < 0 for a small value of ε.

We estimate these first order derivatives using the so-called product trick, pioneered in the
work of Viehweg [Vie83]. For positive integers r0, . . . , rN , let

D(r•) = X(r0) ×T
(
D1
)(r1) ×T · · · ×T

(
DN

)(rN )

and let L be the Cartier divisor on D(r•) given by the sum of the pullbacks of −KX/T − D
restricted to the different factors. Then the self-intersection of L depends only on (−KX/T −
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D)n+1, (−KX/T − D)n · Di and ri. On the other hand, if r• is suitably chosen, we can infer
some positivity of L from the positivity of the sheaf

det

(
f∗OX(−KX/T −D)⊗

⊗
i

f∗ODi(−KX/T −D)

)
.

The positivity of this determinant sheaf is a consequence of the maximal variation assumption
via Kollár’s ampleness lemma. From the positivity of L, we deduce a positive lower bound for
the first-order derivatives (−KX/T −D)n ·Di.

It is useful in the argument to twist −KX/T −D with a sufficient multiple of f∗λf,D, since
we obtain a nef divisor [CP21, Theorem 1.20]. This replacement has technical significance, but
does not affect the strategy.

General case.

The CM line bundle behaves well with respect to base-change (Proposition 3.2.4.1). In par-
ticular, it holds that λf,D · C = deg λfC ,DC for a smooth curve C mapping to T . Hence if T
has higher dimension, we can base-change over a general curve C, apply the previous case and
obtain λf,D ·C > 0. However, this does not suffice to prove that λf,D is big, as the boundary of
the cone of movable curves of T need not be spanned by classes of movable irreducible curves.
Nevertheless, this strategy still works if we keep a precise track of the positivity.

(a) First we need to estimate the derivatives (−KXC/C −DC)n ·Di
C . We can construct D(r•)

and L as before, conclude to some positivity of L and base-change to C. However the
base-change D(r•)×T C might not be flat over a general curve C, which creates difficulties.
Thus we construct the product from a suitable birational model of X (Notation 3.6.3.2).
Then we use the ampleness lemma and the product trick to estimate the derivatives
(Proposition 3.6.2.1 and Proposition 3.6.3.5).

(b) We can garantee that these derivatives do not simultaneously go to zero when the class
[C] gets closer to the boundary of the movable cone (Lemma 3.6.3.6). This is done using
the theory of Knudsen–Mumford expansion, which is recalled in Section 3.4.

(c) Once we have a uniform control on the derivatives, we would like to perturb the boundary
D. However the components Di might not be Q-Cartier. Using the techniques of the
MMP, we produce a birational model W of X on which some components become Q-
Cartier, and such that the morphism W → T has good properties (see Proposition 3.5.0.4
for the precise statement). Then we are in position to perform the perturbation argument
on W (Section 3.6.4) and conclude.

3.2 PRELIMINARIES

3.2.1 Notations and conventions

A pair (X,D) is Fano if X is projective and −KX −D is ample. A pair (X,D) is weak log
Fano if it is a klt projective pair such that −KX −D is big and nef. A pair (X,D) is log Fano
if it is a klt Fano pair. We say that X is Q-Fano if (X, 0) is log Fano.

A birational proper morphism π : Y → X between projective varieties is called small if the
exceptional locus of π has codimension at least 2.

Definition 3.2.1.1 (General movable curves). Let X be a projective variety. A smooth curve
C → X is a non-constant morphism (not necessarily an embedding) from a projective smooth
curve C to X. We say that a smooth curve C → X is a general movable curve if it is the
normalization of a general curve in a family of curves covering X.

Let Z ( X be a proper closed subset. When fixing a general movable curve, we can always
assume that it is not contained in Z. By [Laz04b, 11.4.C], a Q-Cartier divisor D on X is big
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(resp. pseudo-effective) if and only if D · C > 0 (resp. D · C ≥ 0) for every general movable
curve C → X.

Definition 3.2.1.2 (Families of log Fano pairs). A Q-Gorenstein family of log Fano pairs
f : (X,D)→ T is the data of a flat projective morphism f : X → T between normal projective
varieties, and of an effective Weil Q-divisor D, such that

(a) the fibers of f are irreducible and normal,

(b) the support of D does not contain any fiber,

(c) (Xt, Dt) is klt for each t ∈ T (the definition of the restricted divisor Dt is given in
Section 3.2.3), and

(d) −KX/T −D is an f -ample Q-Cartier divisor.

Definition 3.2.1.3 (Maximal variation). Let f : (X,D)→ T be a Q-Gorenstein family of log
Fano pairs. Then f has maximal variation if there is a non-empty dense open subset V ⊂ T
such that for every point t ∈ V , the set {t′ ∈ V | (Xt, Dt) ∼= (Xt′ , Dt′)} is finite.

Notation 3.2.1.4 (Coefficient parts). Let X be a normal variety and D a Weil Q-divisor on
X. For c ∈ Q, the part of coefficient c of D is defined to be

D=c :=
∑

coeffED=c

E

where the sum runs through the set of prime Weil divisors E of X. We have D =
∑

c∈Q cD
=c.

For simplicity, if {c ∈ Q | D=c 6= 0} = {c1, . . . , cm}, we let Di := D=ci so that D =
∑m

i=1 ciD
i.

We will also denote by Di the corresponding reduced closed subscheme.

Notation 3.2.1.5 (Volumes). Let D be a Q-Cartier divisor on a proper scheme X. We denote
its volume by Vol(D). We refer to [Laz04a, §2.2.C] for the definition and the properties of the
volume.

Notation 3.2.1.6 (Intersection numbers). Let D be a Q-Cartier divisor on a proper equidi-
mensional scheme X of dimension n. We denote by Dn = (D · · ·D) its self-intersection. If D
is ample, it holds that Vol(D) = Dn.

If X is also reduced and L is a line bundle on X, by abuse of notation we denote by L
the associated linear equivalence class of Cartier divisors (see [Liu02, Corollary 1.19]). Then it
makes sense to write

Lm ·Dn−m = (L · · · L︸ ︷︷ ︸
m times

· D · · ·D︸ ︷︷ ︸
n−m times

).

If f : C → X is a morphism from a smooth proper curve, we write

D · C =
1

r
degC f

∗OX(rD),

where r > 0 is such that rD is Cartier.

Notation 3.2.1.7 (m-fold products). Let f : X → T be a morphism of proper schemes. We
denote by X(m) the m-times fiber product of X with itself over T . It comes with projection
morphisms pi : X

(m) → X for i = 1, . . . ,m and the structural morphism f (m) : X(m) → T .
Given a line bundle L on X, or a Cartier divisor D on X, we write

L(m) :=

m⊗
i=1

p∗iL, D(m) :=
m∑
i=1

p∗iD.
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3.2.2 K-stability

In this section, we recall briefly one characterization of the δ-invariant for log Fano pairs,
and its relation with K-stability. We refer to [Fuj19] for the algebraic definition of K-stability
in terms of test configurations.

Consider a n-dimensional weak log Fano pair (X,D). Let E be a prime divisor over X, and
π : Y → X be a smooth birational model on which E appears. We can write

KY ≡num π∗(KX +D) +
∑
F

aX,D(F )F

where F runs through the prime divisors of Y . The log discrepancy of E with respect to (X,D)
is

AX,D(E) := aX,D(E) + 1.

We also define the quantity

SX,D(E) :=
1

(−KX −D)n

∫ +∞

0
Vol(π∗(−KX −D)− xE)dx.

Definition 3.2.2.1 (Delta invariant). Let (X,D) be a log Fano pair. The δ-invariant of (X,D)
is given by

δ(X,D) := inf
E

AX,D(E)

SX,D(E)
,

where E runs through the prime divisors over X.

Remark 3.2.2.2. The original definition of the delta invariant in [FO18] is formulated in terms
of basis-type divisors of the anti-log-canonical linear system. However, the above one is more
convenient for our purpose. The equivalence between the two definitions is proved in [BJ20,
Theorem 4.4] in the case D = 0, and [CP21, Theorem 4.6] in the general logarithmic case.

The relation between the delta invariant and K-stability of log Fano pairs is given by the
following theorem. In this article, we use this characterization as the definition of uniform K-
stability. See [FO18, Theorems 1.1 and 2.1] and [BJ20, Theorem B] for the proof of equivalence.

Theorem 3.2.2.3. Let (X,D) be a Fano pair.
(a) (X,D) is K-semistable if and only if (X,D) is klt and δ(X,D) ≥ 1.

(b) (X,D) is uniformly K-stable if and only if (X,D) is klt and δ(X,D) > 1.

The next result will be useful in Section 3.5.

Proposition 3.2.2.4. Let (X,D) be a weak log Fano pair, and Γ an effective Q-Cartier divisor
supported on Supp(D). Assume that

inf
E

AX,D(E)

SX,D(E)
> 1,

where E runs through the divisors over X. Then for all rational ε > 0 small enough,

inf
E

AX,D−εΓ(E)

SX,D−εΓ(E)
> 1.

Proof. Replacing Γ by a small multiple, we may assume that there is an effective Q-Cartier
divisor Γ′ on X such that Γ + Γ′ ∈ | −KX −D|Q. By assumption, there is an a > 0 such that
AX,D(E) ≥ (1 + a)SX,D(E) for all divisors E. Choose a′ ∈ (0, a) and define the function

f(ε) := (1 + a′)(1 + ε)n+1 (−KX −D)n

(−KX −D + εΓ)n
, ε ∈ R.
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Since limε→0 f(ε) = 1 + a′, we can fix ε0 = ε0(a′) > 0 such that for all ε ∈ (0, ε0), we have
f(ε) < 1 + a. Since we assumed Supp(Γ) ⊂ Supp(D), we can also arrange that D − ε0Γ is
effective.

Now let E be a divisor over X, appearing on a birational model π : Y → X. For any ε > 0
and any x ∈ R+, observe that

Vol(π∗(−KX −D + εΓ)− xE) ≤ Vol(π∗(−KX −D + ε(Γ + Γ′))− xE)

= Vol((1 + ε)π∗(−KX −D)− xE).

Integrating over x, we obtain∫ ∞
0

Vol(π∗(−KX −D + εΓ)− xE)dx ≤
∫ ∞

0
Vol((1 + ε)π∗(−KX −D)− xE)dx

y=(1+ε)x
= (1 + ε)n+1

∫ ∞
0

Vol(π∗(−KX −D)− yE)dy.

Together with the definition of the functional SX,•, the above inequality implies

SX,D−εΓ(E) ≤ (1 + ε)n+1 (−KX −D)n

(−KX −D + εΓ)n
SX,D(E).

Now take ε < ε0 and assume that AX,D−εΓ(E) ≤ (1 + a′)SX,D−εΓ(E). Then we have

AX,D(E) ≤ AX,D(E) + ε · ordE(Γ) = AX,D−εΓ(E) ≤ (1 + a′)SX,D−εΓ(E)

≤ f(ε)SX,D(E)

< (1 + a)SX,D(E),

and we have obtained a contradiction with the hypothesis. Thus AX,D−εΓ(E) > (1+a′)SX,D−εΓ
for all ε < ε0. Since ε0 does not depend on E, the proof is complete.

3.2.3 Base-change of divisors

Notation 3.2.3.1. In this subsection, we consider a flat morphism f : X → T between normal
projective varieties, and an effective Weil Q-divisor D on X, such that

(a) the fibers of f are connected and normal,

(b) the support of D does not contain any fiber.

Remark 3.2.3.2. If (X,D)→ T is as in Notation 3.2.3.1, then cD is a Mumford divisor in the
sense of [Kol19, Definition 1] for c > 0 divisible enough. Since T is reduced, cD is automatically
K-flat over T [Kol19, Definition 2 and paragraph 6]. Thus (X,D = 1

c · cD) → T is a K-flat
family in the sense of Kollár.

Lemma 3.2.3.3. In the situation of Notation 3.2.3.1, each component of D dominates T .

Proof. We may assume that D is irreducible. Since D does not contain any component of any
fiber, the scheme-theoretic restriction D∩Xt has dimension at most dim f −1 for any t ∈ T . If
D does not dominate T , then dim f(D) < dimT . But in this case, for a general point t ∈ f(D)
we have

dimX − 1 = dimD = dimD ∩Xt + dim f(D) < dim f − 1 + dimT = dimX − 1,

which is a contradiction.

Definition 3.2.3.4 (Divisorial pullbacks). Let U ⊂ X be the smooth locus of f . By assumption
U is relatively big over T , thus f(U) = T and U is a big open subset of X. By [Kol21, Theorem
4.21], every Weil divisor on X not containing any component of a fiber is Cartier over U .
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Let u : S → T be a morphism from a normal variety S. We define the divisorial pullback
of D along u as follows. The open set US = U ×T S is big in XS = X ×S T . Since D|U is
Q-Cartier, it pullbacks to a Q-Cartier divisor D|US on US . We let the divisorial pullback DXS

of D along u be the unique Weil Q-divisor extending the Q-Cartier divisor D|US .
In particular, if t ∈ T is a closed point, then DXt is the unique Weil Q-divisor of Xt

extending the Q-Cartier divisor D|U∩Xt . For ease of notation, we will mostly write Dt := DXt .
It follows from this definition that there is a Q-linear equivalence

KXS/S +DXS ∼Q v
∗(KX/T +D) (2.3.4.a)

where v : XS → X is the induced morphism, see [CP21, §2.4.1].

Lemma 3.2.3.5. In the situation of Notation 3.2.3.1, let S → T be a morphism from a normal
projective variety. If D is Cartier, then the divisorial pullback of D and the pullback of D as
Cartier divisor along σ : XS → X agree.

Proof. If U is the smooth locus of X → T , then σ∗D represents DXS on US by definition. A
Cartier divisor on a normal variety is determined in codimension one, and US is big. Thus σ∗D
represent the Weil divisor DXS .

Lemma 3.2.3.6. In the situation of Notation 3.2.3.1, there is a dense big open set U ⊆ T
over which all the possible unions of components of D (with the reduced structure) are flat.

Proof. Let E be a union of components of D with the reduced structure. By generic flatness,
the locus of T over which E is flat, say UE , is dense open. Pick a codimension one point t ∈ T ,
and any x ∈ E such that f(x) = t. The morphism OT,t → OE,x is flat if and only if the
uniformizer π of OT,t is sent to a non-zero-divisor of OE,x. Now if π is a zero-divisor in OE,x,
then the components of Xt passing through x are contained in E. But by assumption Xt is
irreducible and E does not contain any fiber, so this cannot happen. Thus E → T is flat at x.
Since x is arbitrary, we conclude that t ∈ UE . Therefore U =

⋂
E UE is big.

Lemma 3.2.3.7. In the situation of Lemma 3.2.3.6, there is a dense open set V ⊆ U such
that:

(a) for any v ∈ V and c ∈ Q, the divisorial restriction (D=c)v is equal to the coefficient part
(Dv)

=c.

(b) for any v ∈ V and c ∈ Q, the scheme-theoretic fiber D=c × k(v) is equal to the divisorial
restriction (D=c)v with the reduced structure.

Proof. Base-changing if necessary, we may assume that U = T . Given a reduced Weil divisor
E not containing any fiber, we claim that the divisorial restriction Et is reduced for a general
t ∈ T . In view of Definition 3.2.3.4, we may assume that E is Cartier. Since the claim is local
on X, we may assume that E is actually principal, say cut out by s ∈ O(X). Then OX/(s) is
reduced and flat over T ; thus its fiber OX/(s) ⊗ k(t) over a general t ∈ T is reduced [Gro66,
12.2.1]. This means exactly that the divisor Et is reduced. If E′ is another reduced divisor not
containing any fiber, such that E and E′ have no common components, by applying the claim
to E + E′ we see that the divisorial restrictions Et and E′t have no common component for a
general t ∈ T . Let E run through the coefficient parts D=c of D to obtain the first assertion.

If we consider E as a reduced closed subscheme, the scheme-theoretic fiber E×k(t) has pure
codimension one for all t ∈ T [Har77, III.9.6] and is reduced for a general t ∈ T . Combining
this and the first assertion, we obtain the second assertion.

Corollary 3.2.3.8. In the situation of Lemma 3.2.3.7, let C → T be a smooth curve whose
image intersect V . Let Z := X ×T C and DZ =

∑
c∈Q c(DZ)=c be the divisorial pullback of D.

Then (DZ)=c is the divisorial pullback of D=c for all c ∈ Q.
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Proof. We have to check that the divisorial pullbacks of any two distinct coefficient parts D=c

and D=c′ , have no component in common. Since these divisorial pullbacks are horizontal over
C, this can be checked on a general fiber of Z → C. Since C meets V , the result follows from
Lemma 3.2.3.7.

3.2.4 The CM line bundle

Let f : X → T be a flat projective morphism of relative dimension n between normal
projective varieties, let D be an effective Q-divisor on X such that −(KX/T +D) is Q-Cartier
and f -ample. Assume also that the fibers of f are irreducible and normal, and that Supp(D)
does not contain any fiber. Then the Chow–Mumford line bundle of f : (X,D)→ T is defined
to be

λf,D := −f∗((−KX/T −D)n+1)

where f∗ denotes the pushforward of cycles. By [CP21, Proposition 3.7], λf,D is a Q-Cartier
Q-Weil divisor. It is compatible with base-change in the following sense:

Proposition 3.2.4.1. In the above situation, let τ : S → T be a morphism from a normal
variety S. Let fS : XS → S be the induced morphism and DS be the divisorial pullback in the
sense of Section 3.2.3. Then τ∗λf,D = λfS ,DS .

We refer to [CP21, §3] for the proof and more background.

3.3 AMPLENESS LEMMA

The next theorem, which is an elaboration of [Kol90, 3.9], will be useful to establish posi-
tivity properties of line bundles.

Let us fix our notations for the Grassmannians and the general linear groups over k. Given
integers w ≥ q, we let Grk(w, q) be the Grassmannian of q-dimensional quotients of a w-
dimensional k-vector space. Given an integer n, we let GLk(n) be the general linear group over
k of degree n.

Theorem 3.3.0.1. Let U be a normal variety that can be embedded as a big open subset of a
projective variety. Let W,Q1, . . . , Qs be vector bundles on U of respective ranks w, q1, . . . , qs.
Assume that there exist morphisms φi : W → Qi for i = 1, . . . , s which are generically surjective.
Assume also that the classifying map

U(k)→

(
s∏
i=1

Grk(w, qi)

)/
GLk(w)

is finite-to-one on a dense subset of U . Then for any ample Cartier divisor B on U , there
exists a positive integer m > 0 and a non-zero morphism

Symmq

s2w⊕
i=1

W

 −→ OU (−B)⊗

(
s⊗
i=1

detQi

)⊗m

where q =
∑s

i=1 qi.

Proof. The proof is contained in [KP17, §5]. More precisely, let Q′i be the image of φi : W → Qi,
with corestricted morphisms φ′i : W � Q′i. There is a big open subset U ′ ⊂ U over which Q′i is
locally free of rank qi, for each i. Since the statement is about the existence of a non-zero map
between two locally free sheaves, by reflexivity we may replace U by U ′ and assume that all Q′i
are locally free. Now let W ′ = ⊕si=1W , Q′ = ⊕si=1Q

′
i and φ′ = ⊕si=1φ

′
i. As explained in [KP17,

Lemma 5.6], φ′ is surjective over U , and there is a dense open set of U where the classifying map
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corresponding to φ′ has finite fibers. Now we follow the proof of [KP17, Theorem 5.5] applied
to φ′ : W ′ → Q′. In this proof, the assumption of weak positivity is only used in the last three
lines of proof; in particular, the equation (5.5.5) and the subsequent displayed isomorphisms
hold without this assumption. Thus they apply to our setting: for some m > 0, there exists a
non-zero morphism

Symm·rk(Q′)

rk(W ′)⊕
i=1

W ′

 −→ OU (−B)⊗
(
detQ′

)⊗m
.

Moreover, it follows from Lemma 3.3.0.2 below that we have an inclusion

OU (−B)⊗ (detQ′)⊗m ↪→ OU (−B)⊗

(
s⊗
i=1

detQi

)⊗m
.

The result follows by composing the two morphisms.

Lemma 3.3.0.2. Let U be a normal variety and α : Q′ ↪→ Q an inclusion of locally free sheaves.
Assume that α is generically surjective. Then det(Q′) ↪→ det(Q).

Proof. Let F be the cokernel of α. Then F is torsion, and the determinant sheaf det(F) =
det(Q) ⊗ det(Q′)−1 is of the form OU (E) for an effective divisor E. It follows that det(Q′) ∼=
OU (−E)⊗ det(Q) embeds into OU ⊗ det(Q) ∼= det(Q).

3.4 ABOUT THE KNUDSEN–MUMFORD EXPANSION

In this section, we give an alternative description of the CM line bundle, that will be useful
to study its positivity properties.

To begin with, we recall a special case of [KM76, Theorem 4]. Let f : X → T be a projective
morphism between Noetherian schemes of relative dimension n. We do not require that f is
flat. Let A be an f -very ample Cartier divisor. Then there exist Mi ∈ Pic(T ) such that for
every q � 0, there is an isomorphism

det f∗OX(qA) ∼= detRf∗OX(qA) ∼=
n+1⊗
i=0

M⊗(qi)
i

We call this expression the Knudsen-Mumford expansion of OX(A), and refer to theMi as the
coefficients of the expansion. This isomorphism is moreover functorial: if S → T is a morphism
from a Noetherian scheme and AS the pullback of A to X ×T S, then it holds that

det(fS)∗OXS (qAS) ∼=
n+1⊗
i=0

(Mi)
⊗(qi)
S , q � 0.

Now consider the particular case where f : (X,D)→ T is a Q-Gorenstein family of log Fano
pairs. Let s be such that s(−KX/T −D) is very ample over T . Then one can show that

−sn+1λf,D =Mn+1,

where Mn+1 is the leading coefficient of the Knudsen-Mumford expansion of s(−KX/T −D).
See [CP21, Proposition 3.7] for a proof.

The following proposition characterizes the numerical class of Mn+1 in several situations:
when A is nef, or when the morphism f has pleasant properties.
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Proposition 3.4.0.1. Let f : X → T be an equidimensional projective morphism of relative
dimension n between Noetherian proper schemes (we do not require f to be flat). Let A be an f -
very ample Cartier divisor on X, andMn+1 be the leading coefficient of the Knudsen-Mumford
expansion of OX(A).

(a) Assume that A is nef. For any smooth curve C → T , it holds that Mn+1 · C = An+1
C .

(b) Assume that A is nef and X is generically reduced. Let X ′ → X be the normalization
morphism, f ′ : X → T be the induced morphism and A′ be the pullback of A. Then
Mn+1 · C = f ′∗((A

′)n+1) · C for a general movable curve C → T .

(c) Assume that T is normal and f is flat with normal fibers. Then for any smooth curve
C → T , we have Mn+1 · C = f∗(A

n+1) · C = An+1
C .

Proof. Fix a smooth curve C → T . In any case, since both qA and qAC are relatively very
ample for q � 0, both sheaves f∗OX(qA) and (fC)∗OXC (qAC) are locally free with vanishing
Ri, i > 0. It follows from the functoriality of the Knudsen-Mumford expansion that

det [f∗OX(qA)] · C = deg det [(fC)∗OXC (qAC)] , q � 0. (4.0.1.b)

With this set-up:
(a) Assume that A is nef. The left-hand side of equation (4.0.1.b) is given by

n+1∑
i=0

(
q

i

)
Mi · C =

qn+1

(n+ 1)!
Mn+1 · C +O(qn),

whereMi are the Knudsen-Mumford coefficients of OX(A). Now consider the right-hand
side of the same equation. By Riemann-Roch, for q large enough we have

h0(X,OXC (qAC)) = deg det [(fC)∗OXC (qAC)] + χ(C,OC) · rk (fC)∗OXC (qAC).

Since AC is nef, we have

h0(X,OXC (qAC)) =
qn+1

(n+ 1)!
An+1
C +O(qn)

by [Kol96, VI.2.15]. Since the fibers of f are n-dimensional, the function

q 7→ rk (fC)∗OXC (qAC)

is a polynomial in q of degree at most n. Hence

deg det [(fC)∗OXC (qAC)] =
qn+1

(n+ 1)!
An+1
C +O(qn).

It follows by comparing the leading coefficients in (4.0.1.b) that An+1
C =Mn+1 · C.

(b) Assume that A is nef and X generically reduced. The normalization morphism X ′ → X
is finite, so A′ is nef and relatively ample over T . Say that sA′ is relatively very ample for
some s > 0, and letM′n+1 be the leading coefficient of the Knudsen-Mumford polynomial
ofOX′(sA′). Since X is generically reduced, the normalization X ′ → X is an isomorphism
away from a closed subset Z ( X. If C → T is a smooth curve which intersects f(X−Z),
the pullback morphism (X ′)C → XC is birational. Using the first assertion, we obtain
that

Mn+1 · C = An+1
C = (A′)n+1

C = s−n−1M′n+1 · C.

By [CP21, Lemma A.2] it holds thatM′n+1 = f ′∗(sA
′)n+1, so the second assertion follows.
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(c) Assume that T is normal and f is flat with normal fibers. Then both X and XC are
normal. It follows from [CP21, Lemma A.2] that for q � 0

det f∗OX(qA) =
qn+1

(n+ 1)!
f∗(A

n+1) +O(qn)

and

det(fC)∗OXC (qAC) =
qn+1

(n+ 1)!
(fC)∗(A

n+1
C ) +O(qn)

in the Chow groups of T and C respectively. It follows that Mn+1 = f∗(A
n+1), and by

intersecting with C that

Mn+1 · C = f∗(A
n+1) · C = deg(fC)∗(A

n+1
C ) = An+1

C

as claimed.

3.5 PERTURBATION OF FAMILIES OF K-STABLE LOG FANOS

Consider a Q-Gorenstein family (X,D) → T of log Fano pairs of maximal variation, with
uniformly K-stable general fibers. We show in Proposition 3.5.0.4 below that we can find
a model of (X,D) with the same properties over T , and on which some components of the
boundary D become Q-Cartier.

We need a few preliminary lemmas. For the first one, we use the terminology of [BCHM10].

Lemma 3.5.0.1. Let f : X → T be a projective morphism between quasi-projective normal
varieties. Let D be an effective Q-Cartier Q-divisor on X such that (X,D) is (klt) weak log
Fano over T . Assume that D1, . . . , Dm are effective Q-Cartier Q-divisors on X with supports
contained in the support of D. Then there exists a full-dimensional closed polytope P ⊂ (R≥0)m

with the following properties:
(a) P contains the origin, and its interior int(P ) is contained in (R>0)m; and

(b) for every rational vector (ε1, . . . , εm) ∈ int(P ), the log canonical models of (−KX −D +∑
i εiDi) over T have isomorphic underlying varieties.

Proof. Fix a general very ample divisor A on X, which has no component in common with
D. Since X is of Fano type over T , there is a Q-boundary ∆ such that (X,∆) is klt, ∆ is big
over T and a(−KX −D − A) ∼Q,T KX + ∆ for some small rational a > 0. Replacing A by a
general member of its linear system, we may assume that (X,∆ + aA) is also klt [KM98, 5.17].
We have KX + ∆ + aA +

∑
i εiDi ∼Q,T a(−KX −D) +

∑
i εiDi. So a log canonical model of

(X,∆ +aA+
∑

i εiDi) over T is also a (−KX −D+
∑

i
εi
aDi)-log canonical model of X over T .

Therefore it is equivalent to prove that: there is a full-dimensional closed polytope P ⊂ (R>0)m

containing the origin, such that for all (ε1, . . . , εm) ∈ int(P ), the pairs (X,∆ + aA +
∑

i εiDi)
have a log canonical model over T with isomorphic underlying varieties.

Let us write A′ := aA and define the affine cone V := ∆ +
∑

iR+Di in Weil(X)R. Since
(X,∆+A′) is klt, there is an open Euclidean neighborhood U of ∆ ∈ V such that for all Γ ∈ U ,
the pair (X,Γ +A′) is klt. Also, since KX + ∆ +A′ ∼Q,T a(−KX −D) is big over T , we may
shrink U so that KX + Γ + A′ is big over T for all Γ ∈ U . With the notations of [BCHM10,
1.1.4], this implies that U ⊂ EA′,f (V ).

It follows from [BCHM10, Corollary 1.1.5 and Theorem E] that there are finitely birational
contractions ψi : X 99K Zi over T , i = 1, . . . , n, and a decomposition

EA′,f (V ) =
n⋃
i=1

Wi
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where each Wi =Wψi,A′,f (V ) is a rational polytope, such that for each Γ ∈ Wi, the underlying
variety of a weak log canonical model of (X,Γ +A′) over T is isomorphic to Zi.

By [BCHM10, Theorem 1.2], for every Γ ∈ U the pair (X,Γ+A′) has a log canonical model
over T . Relative log canonical models are in particular relative weak log canonical models. So
we obtain that for any Γ ∈ U∩Wi, the underlying variety of a log canonical model of (X,Γ+A′)
is isomorphic to Zi.

Since EA′,f (V ) contains the open neighborhood of the origin of V , there must be a polytope
Wi which is of full dimension in V and whose closure contains the origin of V . Thus we may
find a closed full-dimensional polytope P ⊂ (R≥0)m containing the origin, with non-empty
interior int(P ) ⊂ (R>0)m such that ⋃

(ε1,...,εm)∈int(P )

∆ +
∑
i

εiDi

 ⊂ U ∩Wi for some i.

This finishes the proof.

Lemma 3.5.0.2. Let (X,D) → T be a Q-Gorenstein family (X,D) → T of log Fano pairs
of maximal variation. Write D =

∑
i ciD

i as in Notation 3.2.1.4. Then there is a rational
number r > 0 such that for all i such that Di is Q-Cartier, and for all rational ε ∈ (−r; r), the
family (X,D + εDi)→ T has maximal variation.

Proof. Take r = mini 6=j{1
2 |ci − cj |}.

Lemma 3.5.0.3. Let f : (X,D)→ T be a flat equidimensional proper morphism from a normal
pair to a smooth variety. Assume that every fiber (Xt, Dt) is klt. Then:

(a) (X,D) is klt, and

(b) for any closed point t ∈ T , if H1, . . . ,Hd (d = dimT ) are general Cartier divisors in a
base-point free linear system such that in a neighbourhood of t we have

⋂
iHi = {t}, then

(X,D +
∑

i f
∗Hi) is dlt in a neighborhood of Xt.

Proof. Let t ∈ T be a closed point, and let H1, . . . ,Hd (d = dimT ) be general Cartier divisors
on T such that

⋂
iHi = {t}.

To begin with, we prove that (X,D) is klt. Indeed, we can choose the H1, . . . ,Hd−1 in a
general linear system, so the iterated hyperplane sections Xm :=

⋂m
i=1 f

∗Hi are normal varieties
for m ≤ d−1 [Sei50]. By inversion of adjunction, since (Xt, Dt) is assumed to be klt, we obtain
that (Xd−1, D|Xd−1 + f∗Hd) is plt along Xt [KM98, Theorem 5.50]. Hence (Xd−1, D|Xd−1) is
klt along Xt. We repeat this argument to obtain that (X,D) is klt along Xt. The choice of t
was arbitrary, so we conclude that (X,D) is klt.

Now we think of t ∈ T as a fixed point and claim that if the Hi are suitably chosen, then
the pair (X,D +

∑d
i=1 f

∗Hi) is dlt in a neighborhood of Xt. Indeed, we can choose the Hm

inductively with the property that

for each I ⊆ {1, . . . ,m}, the intersection XI :=
⋂
i∈I

f∗Hi is irreducible and normal.

Each of these conditions is satisfied for a general Hm passing through t, except for the condition
on Hd that

⋂d
i=1 f

∗Hi = Xt is irreducible and normal. But this is satisfied for any choice of
Hd, since Xt is assumed to be irreducible and normal.

It follows from the choices of these Hi that (X,D+
∑d

i=1 f
∗Hi) is snc at every generic point

of the XI . If E is an exceptional divisor over X whose center cX(E) belongs to Xt but does
not belong to the snc locus of (X,D +

∑
i f
∗Hi), then cX(E) defines a point of codimension

≥ 1 in Xt, and by adjunction we obtain that (Xt, Dt) is not klt, which is a contradiction.
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Proposition 3.5.0.4. Let f : (X,D) → T be a Q-Gorenstein family of log Fano pairs of
maximal variation with uniformly K-stable general geometric fiber. Assume that T is smooth.
Then there exists a positive number rX,D > 0 with the following property. For every coefficient
part Γ := Di of D (as in Notation 3.2.1.4), there exists a small proper birational morphism
ν : W → X such that:

(a) the strict transform ΓW of Γ is Q-Cartier, and

(b) for any rational 0 < ε < rX,D, the family (W,DW − εΓW )→ T is a Q-Gorenstein family
of log Fano pairs of maximal variation with uniformly K-stable general geometric fibers.
(Here DW denotes the strict transform of D.)

Proof. Since there are finitely many coefficient part of D, we only need to prove the result for
a fixed Γ. First we construct ν : W → X.
◦ The pair (X,D) is klt by Lemma 3.5.0.3, so by [Kol13, Corollary 1.37] there is a small

proper birational morphism µ : Y → X where Y is a Q-factorial projective variety. Denote
by DY the strict transform of D, and ΓY the strict transform of Γ. We have

µ∗(KX +D) ∼Q KY +DY .

◦ For ε > 0, run a (−KY − DY + εΓY )-MMP over X to obtain a relative log canonical
model. By Lemma 3.5.0.1, this model W is the same for all 0 < ε � 1. Denote by
p : Y 99KW the induced morphism and DW := p∗DY ,ΓW := p∗ΓY .

Our construction is pictured by the following diagram:

(Y,DY ,ΓY ) (W,DW ,ΓW )

(X,D,Γ)

T

µ

p

ν

gf

We must show that for smal rationall ε > 0, the morphism (W,DW − εΓW )→ T is flat between
normal projective varieties, of maximal variation, with (klt) log Fano fibers and uniformly
K-stable general geometric fibers, and that ΓW is Q-Cartier. First we establish the global
properties of W and ΓW .
◦ The morphism ν : W → X is small. Indeed, µ is small and p extracts no divisors. Notice

that DW is equal to the strict transform of D.

◦ Since W is the end product of an MMP, it is normal. Moreover, since ν is small and
(X,D) is klt by Lemma 3.5.0.3, (W,DW ) is klt and hence W is Cohen-Macaulay.

◦ The Q-divisor ΓW is Q-Cartier. Indeed, p∗(−KY −DY + εΓY ) = −KW −DW + εΓW is
Q-Cartier by construction. It holds that ν∗(−KX−D) = −KW−DW , and so −KW−DW

is also Q-Cartier. Therefore ΓW is Q-Cartier.

◦ We have
εΓY ≡X −KY − (DY − εΓY )

and thus
εΓW ≡X −KW − (DW − εΓW ) is ample over X.

Hence ΓW is a Q-Cartier Q-divisor which is ample over X. Furthermore,

−KW − (DW − εΓW ) = p∗(−KY − (DY − εΓY ))

= p∗(p
∗ν∗(−KX −D) + εΓY )

= ν∗(−KX −D) + εΓW .
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Now by [Pat15, Lemma 2.4],

−KW + g∗KT = −KW/T , −KX + f∗KT = −KX/T .

Hence
−KW/T − (DW − εΓW ) = ν∗(−KX/T −D) + εΓW

and therefore −KW/T −DW + εΓW is ample over T for 0 < ε� 1.
To study the properties of a fiber Wt, we may shrink T and work in a neighborhood of Wt. Let
H1, . . . ,Hd be general Cartier divisors such that

⋂
iHi = {t}.

◦ The fibers of ν are connected by construction. Since the fibers of f are irreducible, we
deduce that g has connected fibers.

◦ Since ν is small, it gives a crepant morphism from (W,DW +
∑d

i=1 g
∗Hi) to (X,D +∑d

i=1 f
∗Hi). Moreover ν is an isomorphism above the snc locus of (X,D +

∑
i f
∗Hi)

[Deb01, 1.40]. By Lemma 3.5.0.3 the pair (X,D +
∑

i f
∗Hi) is dlt. Thus (W,DW +∑d

i=1 g
∗Hi) is lc, and every lc center is contained in the locus where ν is an isomorphism.

It follows that (W,DW +
∑d

i=1 g
∗Hi) is also dlt.

◦ From [Kol13, 4.16] we deduce that every irreducible component of Wt =
⋂d
i=1 g

∗Hi is

normal of codimension d, and an lc center of (W,DW +
∑d

i=1 g
∗Hi). Assume that Wt

has at least two different components; by connectedness of the fibers of W → T , the
two components must intersect, and the intersection is a union of lc centers of (W,DW +∑d

i=1 g
∗Hi) [Kol13, 4.20.2]. Since (X,D) is klt by Lemma 3.5.0.3, we have bDc = 0 and

thus bDW c = 0. So by [Kol13, 4.16.1] the components of Wt are minimal lc centers, and
we have reached a contradiction. Hence Wt is irreducible and normal of codimension d.

◦ Since W is Cohen-Macaulay, T smooth and the fibers Wt equidimensional, the morphism
g : W → T is flat [Mat89, Theorem 23.1].

◦ Assume that some fiber Wt is contained in the support of DW . Since Wt dominates Xt

and DW dominates D, we obtain that Xt is contained in the support of D, which is
impossible. Thus Supp(DW ) contains no fibers of W → T .

Finally we study the pairs (Wt, (DW − εΓW )t).
◦ We know that (W,DW +

∑
i g
∗Hi) is dlt with reduced boundary

∑
i g
∗Hi. Combin-

ing adjunction and [Kol13, 4.16], we obtain that the pair (Wt, (DW )t) is klt. Hence
(Wt, (DW − εΓW )t) is klt for every 0 < ε < coeffΓW DW [KM98, 2.27].

◦ Since µ is small, for a general t ∈ T the morphism Wt → Xt is small and (DW )t is the
strict transform of Dt. Fix one such t for which (Xt, Dt) is uniformly K-stable. Then for
every prime divisor E over Wt, we have

AWt,(DW )t(E) = AXt,Dt(E), SWt,(DW )t(E) = SXt,Dt(E),

so by Theorem 3.2.2.3 we have

inf
E

AWt,(DW )t(E)

SWt,(DW )t(E)
= inf

E

AXt,Dt(E)

SXt,Dt(E)
= δ(Xt, Dt) > 1.

Moreover (Wt, (DW )t) is a weak log Fano pair. Thus we may apply Proposition 3.2.2.4
to obtain that

δ(Wt, (DW )t − εΓt) = inf
E

AWt,(DW )t−εΓt(E)

SWt,(DW )t−εΓt(E)
> 1,

for all ε > 0 small enough depending on t. Since (Wt, (DW )t − εΓt) is a log Fano pair,
we conclude by Theorem 3.2.2.3 that (Wt, (DW )t − εΓt) is uniformly K-stable for all
ε = ε(t) > 0 small enough.
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◦ By openness of the uniform K-stable locus [BL18, Theorem 6.8], we conclude that: for
all rational 0 < ε � 1, the general fiber of the family (W,DW − εΓW ) → T is uniformly
K-stable.

◦ For a general t ∈ T , the pair (Xt, Dt) is a log canonical model of (Wt, (DW )t). Thus
(Wt, (DW )t) ∼= (Wu, (DW )u) implies that (Xt, Dt) ∼= (Xu, Du). Moreover by Lemma 3.5.0.2,
for ε small enough, (Wt, (DW−εΓW )t) ∼= (Wu, (DW−εΓW )u) if and only if (Wt, (DW )t) ∼=
(Wu, (DW )u). Therefore (W,DW − εΓW )→ T has maximal variation for 0 < ε� 1.

This shows that (W,DW − εΓW ) → T has the required properties for all rational numbers
0 < ε� 1.

3.6 PROOF OF THE MAIN RESULT

This section is devoted to the proof of Theorem 3.1.0.2, which we divide into several steps.
See Section 3.1.1 for an overview of the strategy. In Section 3.6.1, we set-up the notational
framework of the proof. We use the ampleness lemma in Section 3.6.2 to obtain the positivity
of some relevant sheaf. The estimates of the derivatives using the product trick is obtained in
Section 3.6.3, and the perturbation argument is given in Section 3.6.4.

3.6.1 General notations

Notation 3.6.1.1. Let T be a smooth variety and f : (X,D =
∑N

i=1 ciD
i) → T be a Q-

Gorenstein family of log Fano pairs of maximal variation with uniformly K-stable general
geometric fibers. Here Di is the part of coefficient ci, see Notation 3.2.1.4. We introduce the
following additional notations, and shall use them for the rest of this section.

(a) Let n := dimX − dimT and v := ((−KX/T −D)|Xt)n. We write δ := δ(Xη̄, Dη̄) where η
is the generic point of T . Then δ is the value of δ(Xt, Dt) for a very general point t ∈ T
[CP21, Proposition 4.15].

(b) We let λf,D := −f∗((−KX/T − D)n+1) be the CM line bundle provided by the family
f : (X,D)→ T .

(c) The restrictions of the morphism f to the support of the Di (with the reduced structure)
are denoted fi : D

i → T . We also write D0 = X and f0 = f . By Lemma 3.2.3.3, each fi
is surjective.

(d) We fix a rational number α > max{1, δ
(δ−1)v(n+1)}. Notice that by [CP21, Theorems 1.8

and 1.20], for any α′ ≥ α the Q-Cartier divisor −KX/T −D + α′f∗λf,D is nef.

Notation 3.6.1.2. In the situation of Notation 3.6.1.1, let ι : C → T be a smooth curve. Form
the Cartesian square

Z X

C T

σ

h f

ι

Note that Z is normal because h is flat and its fibers are normal. Let DZ be the divisorial
pullback of D (see Definition 3.2.3.4), with coefficient parts Di

Z . According to (2.3.4.a) and to
Proposition 3.2.4.1, we have

KZ/C +DZ ∼Q σ
∗(KX/T +D), ι∗λf,D = λh,DZ . (6.1.2.c)

3.6.2 Application of the ampleness lemma

Proposition 3.6.2.1. In the situation of Notation 3.6.1.1, for q divisible enough, the line
bundle ⊗

i≥0

det(fi)∗ODi(q(−KX/T −D + 2αf∗λf,D))

is big on T .

37



The argument of the proof is inspired by [CP21, §9.4] and by [KP17, Theorem 7.1.1].

Proof. We let V ⊆ U be the open subsets of T given by Lemma 3.2.3.6 and Lemma 3.2.3.7.
By the maximal variation assumption, shrinking V if necessary, we may assume that for any
t ∈ V , there are only finitely many t′ ∈ V such that (Xt, Dt) ∼= (Xt′ , Dt′).

If r is a fixed integer divisible by the Cartier index of −KX/T − D + 2αf∗λf,D, for an
arbitrary d ∈ Z we write

Md := OX(dr(−KX/T −D + 2αf∗λf,D)), MDi

d :=Md|Di .

We choose an integer r ≥ 2 such that for every d > 0:
(a) −dr(KX/T +D) and drα · λf,D are Cartier;

(b) Md is f -very ample;

(c) Rjf∗Md = 0 for all j ≥ 1;

(d) for each i ≥ 1: (Rj(fi)∗MDi

d )|V = 0 for all j ≥ 1;

(e) for each i ≥ 1: f∗M1 → (fi)∗MDi
1 is surjective on the open set V .

These conditions imply that f∗M1 and ((fi)∗MDi
1 )|V are locally free and compatible with

base-change. In particular,
(e) if s := rk f∗M1, then s = h0(Xt,M1|Xt) for all t ∈ T .

We may also assume that:
(f) the multiplication maps

Symdf∗M1 → f∗Md and Symd(f∗M1)|V → ((fi)∗MDi
d )|V

are surjective.
Now that r is chosen, we can find d > 0 such that:

(g) For all t ∈ T , the kernel

Kt := ker
[
SymdH0(M1|Xt) −→ H0(Md|Xt)

]
generates It(d), where It is the ideal sheaf of Xt for the embedding

ϕM1|Xt : Xt ↪→ Ps−1.

Here ϕM1|Xt is only defined up to the action of GLk(s) on the target. Hence, writing

w := rk Symdf∗M1 and q0 := rk f∗Md, we see that the orbit of Kt in Grk(w, q0)/GLk(s)
determines the projective embedding ϕM1|Xt of Xt up to linear automorphisms of Ps−1.

(h) Similarly, for all v ∈ V and i ≥ 1, the kernel

KDi

v := ker
[
SymdH0(M1|Xv) −→ H0(MDi

d |(Di)v)
]

generates Iv,i(d), where Iv,i is the ideal sheaf of (Di)v for the embedding

ϕMDi
1 |(Di)v

: (Di)v ↪→ Xv

ϕM1|Xv
−−−−−−−→ Ps−1,

Here ϕMDi
1 |(Di)v

is only defined up to the action of GLk(s) on the target. Hence, writing

qi := rk (fi)∗MDi

d , we see that the orbit of KDi
v in Grk(w, qi)/GLk(s) determines the

projective embedding of (Di)v up to linear automorphisms of Ps−1.
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Having choosen r and d with these properties, we let

W := Symd(f∗M1)|U , Q0 := (f∗Md)|U , Qi :=
(

(fi)∗MDi

d

) ∣∣∣
U

(i ≥ 1).

The sheaves W and Q0 are locally free over U by construction. Since Di is reduced the
invertible sheaf MDi

d satisfies the Serre condition S1, thus its sections are supported on entire
components, and each component of Di dominates T by Lemma 3.2.3.3. It follows that for
i ≥ 1, the OT -modules (fi)∗MDi

d are torsion-free. Since T is normal, the (fi)∗MDi

d are therefore
locally free at codimension one points of T . Since they are also locally free over V , we may
restrict U , but keeping it a big open set, so that the Qi become locally free for all i ≥ 0.

By construction there are morphisms W → Qi for i ≥ 0, defined over U , which are surjective
over V . We claim that the corresponding classifying map

ξ : U(k) −→

∏
i≥0

Grk(w, qi)

/GLk(s) (here GLk(s) acts diagonally)

is finite-to-one over V (k). Fix t ∈ V (k). The discussion in points (g) and (h) above shows
the following. For t′ ∈ V (k), the equality ξ(t) = ξ(t′) holds if and only if: Xt and Xt′ have
isomorphic embeddings into Ps−1, and under this isomorphism (Di)t is sent to (Di)t′ for every
i ≥ 1. As explained at the beginning of the proof, there are only finitely many such t′. Thus ξ
is finite-to-one on V (k). Hence by Theorem 3.3.0.1, given an ample line bundle B on T , there
is a non-zero morphism

Symmq

 l⊕
j=1

Symd(f∗M1)

∣∣∣
U
−→ OU (−BU )⊗

⊗
i≥0

(
det(fi)∗MDi

d

)⊗m∣∣∣
U

for some integers l,m > 0 (the precise value of l is given in Theorem 3.3.0.1, but it is not
important for our purpose). Since U is a big dense open subset of T , and since both sides are
restrictions of locally free sheaves, by reflexivity this map extends to a non-zero morphism

Symmq

 l⊕
j=1

Symd(f∗M1)

 −→ OT (−B)⊗

⊗
i≥0

(
det(fi)∗MDi

d

)⊗m (6.2.1.d)

As the right-hand side is a line bundle, this map is generically surjective.
Now let ι : C → T be a general smooth curve. We use the notations of Notation 3.6.1.2. As

f∗M1 is compatible with base-change (see the beginning of the proof), we obtain

ι∗f∗M1
∼= h∗OZ(σ∗rM) ∼= h∗OZ(r(−KZ/C −DZ + 2αh∗λh,DZ )).

As C is general, the general geometric fiber of (Z,DZ) → C is uniformly K-stable. Thus by
[CP21, Theorem 1.20], the divisor −KZ/C − DZ + 2αh∗λh,DZ is h-ample and nef. Moreover,
since we can write

r(−KZ/C−DZ+2αh∗λh,DZ ) = KZ/C+DZ+(r + 1)(−KZ/C −DZ + αh∗λh,DZ ) + (r − 1)αh∗λh,DZ ,︸ ︷︷ ︸
nef and h-ample

we may apply [CP21, Proposition 6.4] to obtain that ι∗f∗M1 is nef. Hence the pullback

of Symmq
(⊕l

j=1 Symd(f∗M1)
)

to C is also nef. By generality of C, the restriction of the

morphism (6.2.1.d) to C is generically surjective, so we obtain that

OT (−B)
∣∣∣
C
⊗

⊗
i≥0

(
det(fi)∗MDi

d

)⊗m∣∣∣
C

is nef for a general movable C → T.

This shows that the line bundle OT (−B) ⊗
(⊗

i≥0

(
det(fi)∗MDi

d

)⊗m)
is pseudo-effective.

Thus
⊗

i≥0 det(fi)∗MDi

d is big, and we conclude by letting q = rd.
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3.6.3 Estimation of the derivatives

Notation 3.6.3.1. In the situation of Notation 3.6.1.1:
(a) We fix a positive integer q such that the divisor q(−KX/T − D + 2αf∗λf,D) is Cartier,

and write
N = OX(q(−KX/T −D + 2αf∗λf,D)) and NDi = N|Di .

(b) According to Proposition 3.6.2.1, we may and will choose q such that⊗
i≥0

det(fi)∗NDi is a big line bundle.

(c) If C → T is a smooth curve and Z = X ×T C as in Notation 3.6.1.2, then we let
NZ := σ∗N . Recall from (6.1.2.c) that NZ ∼= OZ(q(−KZ/C−DZ +2αh∗λf,DZ )), and this
line bundle is nef if C meets the open locus of uniformly K-stable fibers [CP21, Theorem
1.20].

We aim to give a lower bound to the intersection numbers (NZ)dimDiZ ·Di
Z . As explained

in Section 3.1.1, the idea is to construct a product D(r•) over T and then base-change over a
general curve. In view of Lemma 3.7.0.5, we want the pullback of D(r•) to be flat over that
curve. Hence it would be convenient that the restricted morphisms Di → T are flat already.
To achieve this, we pass to a birational model of X. Unfortunately this makes the notation
quite cumbersome.

Notation 3.6.3.2. In the situation of Notation 3.6.3.1. Let ri be the generic rank of (fi)∗NDi

(i = 0, . . . , N).
(a) We let

D(r•) :=
(
D0
)(r0) ×T · · · ×T

(
DN

)(rN )
.

The projection morphism from D(r•) to the ith Dj-factor is denoted by pij : D(r•) → Dj .
We denote

D
(r•)
red :=

(
D(r•)

)
red
, D(r•)

norm := normalization of D
(r•)
red .

We denote by g : D(r•) → T , gred : D
(r•)
red → T and gnorm : D

(r•)
norm → T the structural

morphisms.

We define the line bundles
N (r•) =

⊗
i,j

(
pij
)∗NDj

and

N (r•)
red := pullback of N (r•) to D

(r•)
red , N (r•)

norm := pullback of N (r•) to D(r•)
norm.

(b) Next we fix a small Q-factorial proper model µ : Y → X. There exists one since X has a
klt structure, see [Kol13, 1.37]. Denote by DY =

∑N
i=1 ciD

i
Y the strict transform of D.

Let µi : Di
Y → Di be the induced birational morphisms, with µ0 = µ. We write

D
(r•)
Y :=

(
D0
Y

)(r0) ×T · · · ×T
(
DN
Y

)(rN )
.

The projection morphism from D
(r•)
Y to the ith Dj

Y -factor is denoted by pijY : D
(r•)
Y → Dj

Y .

We define the line bundles

NDi

Y := (µi)∗NDi and N (r•)
Y =

⊗
i,j

(
pijY

)∗
NDjY
Y .
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(c) If ι : C → T is a smooth curve, we denote by YC , respectively Di
YC
, D

(r•)
YC

,N (r•)
YC

, µiC , p
ij
YC
,

the scheme-theoretic pullbacks along ι of Y , respectively Di
Y , D

(r•)
Y ,N (r•)

Y , µi, pijY . Notice
that

D
(r•)
YC

= D
(r•)
Y ×T C =

(
D0
YC

)(r0) ×C · · · ×C
(
DN
YC

)(rN )

and that the projection morphisms D
(r•)
YC
→ Dj

YC
are exactly the pijYC . Notice also that if

NDjYC is the pullback of NDjY along Dj
YC
→ Dj

Y , then

N (r•)
YC
∼=
⊗
i,j

(
pijYC

)∗
NDjYC .

The construction of parts (a) and (b) is summarized by the following diagram, where the arrow

D
(r•)
Y → D

(r•)
red exists by Lemma 3.6.3.3(c) given below.

(
Dj
Y ,NDjY

) (
D

(r•)
Y ,N (r•)

Y

) (
D

(r•)
norm,N (r•)

norm

)
(
D

(r•)
red ,N

(r•)
red

)
(
Dj ,NDj

) (
D(r•),N (r•)

)
µj

pijY

µ(r•)

pij

Next we establish some properties of these product varieties and these product line bundles.

Lemma 3.6.3.3. In the situation of Notation 3.6.3.2:
(a) D(r•) is equidimensional over T , and every component dominates T ; moreover there is a

big open set of T over which D(r•) is flat and reduced;

(b) D
(r•)
Y is reduced, flat and equidimensional over T , and every components dominates T ;

(c) µ(r•) : D
(r•)
Y → D(r•) factors through D

(r•)
red ;

(d) µ(r•) is an isomorphism over each generic point of D(r•), and every component of D
(r•)
Y

dominates a component of D(r•);

(e) D
(r•)
YC

is flat equidimensional over C, and it is reduced if C is general movable.

Proof. Assertion (a) is proved in [KP17, Lemma 7.11], and assertion (c) will follow immediately
from assertion (b).

The pair (X,D) is klt by Lemma 3.5.0.3, so (Y,DY ) is klt and hence Y is Cohen-Macaulay.
The divisors Di

Y are Q-Cartier because Y is Q-factorial, so each Di
Y is also Cohen-Macaulay

[KM98, 5.25]. Hence all the morphisms Di
Y → T are flat [Mat89, Theorem 23.1]. This implies

that the morphism D
(r•)
Y → T is flat. The fibers of D

(r•)
Y → T have the same dimension, so the

morphism is equidimensional. If one component of D
(r•)
Y does not dominate T , then it belongs

to the non-flat locus, which is empty. The generic fiber if reduced, so Lemma 3.7.0.3 implies

that D
(r•)
Y is reduced. This proves the assertion (b), and assertion (e) is proved similarly.

To conclude, we must prove assertion (d). Let V ⊆ X be the open subset over which
µ : Y → X is an isomorphism. Since X is normal, V is big. Thus Vi := V ∩Di is dense in Di for

all i, and µ(r•) is an isomorphism over the open set V := V (r0)×T V (r1)
1 ×T · · ·×T V (rN )

N ⊂ D(r•).
Assume that a generic point η of D(r•) does not belong to V. Then η belongs to a product

of the form
(
D0
)(r0) ×T · · · ×T

(
DN

)(rN )
with one factor Di replaced by Di − Vi. Such a
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product has dimension strictly smaller thanD(r•) and so dim {η} < dimD(r•), which contradicts

equidimensionality. Thus η ∈ V. Similarly, a component of D
(r•)
Y that is contracted by µ(r•)

must belong to a product of the form
(
D0
Y

)(r0)×T · · ·×T
(
DN
Y

)(rN )
with one factor Di

Y replaced

by Di
Y − f

−1
i Vi. Such a product has dimension strictly smaller than D

(r•)
Y , which contradicts

the equidimensionality of D
(r•)
Y . So assertion (d) follows.

Lemma 3.6.3.4. In the situation of Notation 3.6.3.2,

(a) N (r•)
norm is relatively ample over T and pseudo-effective;

(b) for a general movable curve C → T , the line bundle N (r•)
YC

is nef.

Proof. Let U ⊂ T be a non-empty open subset with the property that for all t ∈ T , the pair
(Xt, Dt) is uniformly K-stable. Let C → T be a smooth curve whose image intersects U . Denote
by NZ the pullback of N on Z = X×T C, and DiC = Di×C T . Then by [CP21, Theorem 1.20],

NZ and NDiC = NZ |DiC are nef. Thus the product line bundle

N (r•)
Z =

⊗
i,j

(
pijC

)∗
NDiC on D(r•) ×T C

is nef. By definition N (r•)
YC

is a pullback of N (r•)
Z , so it is also nef. This proves the second

assertion.
By construction, the line bundle N (r•) is relatively ample over T . Let C̃ → D(r•) be a

smooth curve that meets g−1U (recall that g : D(r•) → T is the structural morphism). If C̃
is contracted by g, then N (r•) · C̃ > 0 by relative ampleness. Otherwise, let C → T be the
normalization of g(C̃). Then C̃ → D(r•) factors through D(r•) ×T C, on which the pullback of

N (r•) is nef. Thus C̃ · N (r•) ≥ 0. This shows that N (r•) is pseudo-effective. Since N (r•)
norm is the

pullback of N (r•) through the finite morphism D
(r•)
norm → D(r•), the first assertion follows.

We are now ready to estimate the intersection numbers (NZ)dimDiZ ·Di
Z (where Z = X×TC).

The first part of the proof is similar to the proof of [KP17, 7.1.1].

Proposition 3.6.3.5. In the situation of Notation 3.6.3.2, there are an ample Cartier divisor

A on some irreducible component P of D
(r•)
Y and a rational number e = e(X,D, q) > 0 with

the following property: for every general movable curve C → T , letting AC be the pullback of
A to P ×T C, it holds that

e(N + 1) ·Vol(AC) ≤
N∑
j=0

(NZ)dimDjZ ·Dj
Z .

In particular, for every general movable curve C → T ,

∃ j = j(C) ≥ 0 : (NZ)dimDjZ ·Dj
Z ≥ e ·Vol(AC). (6.3.5.e)

Proof. By Lemma 3.6.3.3, the morphism g : D(r•) → T is equidimensional and every compo-

nent dominates T . Thus gred : D
(r•)
red → T and gnorm : D

(r•)
norm → T are also equidimensional

morphisms, and any components of D
(r•)
red or D

(r•)
norm dominates T .

By Lemma 3.6.3.3 and by the proof of Proposition 3.6.2.1, there is a big open subset U ⊆ T
over which D(r•) is flat and reduced, and the sheaves (fi)∗

(
NDi

)
|U are locally free. Let

U0 := g−1U . Since U0 is reduced, it embeds as an open subset of D
(r•)
red . Therefore the open

set U0 is big in D
(r•)
red and meets every component, and so the preimage of U0 in D

(r•)
norm is big

and meets every component.
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(D
(r•)
norm,N (r•)

norm)

(D
(r•)
red ,N

(r•)
red )

U0 (D(r•),N (r•))

U T

g

Let us write L :=
⊗

i≥0 det(fi)∗NDi . On U , there is an embedding

L|U ↪→
⊗
i≥0

ri⊗
j=1

(fi)∗

(
NDi |U

)
∼= (g|U0)∗

(
N (r•)|U0

)
where the first arrow is given by the natural embedding of det into the appropriate tensor
power, and the isomorphism is given by [KP17, Lemma 3.6]. By adjunction, we obtain a
morphism

(gred|U0)∗L|U = (g|U0)∗L|U −→ N (r•)|U0 = N (r•)
red |U0 . (6.3.5.f)

Since U0 dominates T , the map (6.3.5.f) is non-zero. We may pull back this map to the

normalization D
(r•)
norm. Since the preimage U0 in D

(r•)
norm is big, by reflexivity this pullback

morphism extends to a non-zero morphism

(gnorm)∗L −→ N (r•)
norm

which induces a non-zero map

N (r•)
norm ⊗ (gnorm)∗L −→

(
N (r•)

norm

)⊗2
. (6.3.5.g)

The line bundle N (r•)
norm is relatively ample over T and pseudo-effective by Lemma 3.6.3.4. More-

over (gnorm)∗L is the pullback of a big divisor by Proposition 3.6.2.1. Thus the left-hand side

of (6.3.5.g) is big on every component by Lemma 3.7.0.2. Hence N (r•)
norm is big on at least one

component. This implies that N (r•)
red is big on at least one component.

By Lemma 3.6.3.3, µ(r•) : D
(r•)
Y → D(r•) is an isomorphism in codimension zero and factors

through D
(r•)
red . Hence we obtain that N (r•)

Y is big on one component P of D
(r•)
Y . So we may

write (
N (r•)
Y |P

)⊗m ∼= OP (mA+mE)

where A is ample and E is effective on P , for some m > 0.
Now we fix a general movable curve C → T with the following properties. Firstly, no

component of its preimage in P is contained in the support of E. Secondly, the line bundles

NZ and N (r•)
YC

are nef (see Lemma 3.6.3.4). Thirdly, the induced morphisms µjC : Dj
YC
→

DjZ := Dj ×T C are birational for all j; this is acheviable since all µj : Dj
Y → Dj are birational.

Fourthly, for all j the product DjZ agrees with the j-coefficient part Dj
Z of DZ in codimension

one; this is achievable by combining Lemma 3.2.3.5 and Corollary 3.2.3.8. Finally, D
(r•)
YC

is
equidimensional and reduced (Lemma 3.6.3.3.(e)).

With such a curve C → T fixed, we write

OPC (mAC +mEC) ∼=
(
N (r•)
YC

∣∣∣
PC

)⊗m
∼=

⊗
i,j

(
pijYC

)∗
NDjYC

∣∣∣⊗m
PC

.
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Since A is ample, its pullback AC is also ample. By our choice of C, the divisor EC is effective.
Thus

Vol(AC) ≤ Vol(AC + EC) =

(
N (r•)
YC

∣∣∣
PC

)dimPC

.

It holds by equidimensionality that dimPC = dimD
(r•)
YC

. Using [Kol96, VI.2.7.3], we see that(
N (r•)
YC

)dimD
(r•)
YC =

(
N (r•)
YC

∣∣∣
PC

)dimD
(r•)
YC

+
∑
P ′

(
N (r•)
YC

∣∣∣
P ′

)dimD
(r•)
YC

where P ′ runs through the component of D
(r•)
YC

not contained in PC . Since N (r•)
YC

is nef, the
sum over P ′ is non-negative, and therefore we obtain

Vol(AC) ≤
(
N (r•)
YC

)dimD
(r•)
YC (6.3.5.h)

On the other hand, by Lemma 3.7.0.5 we have:(
N (r•)
YC

)dimD
(r•)
YC =

N∑
i=0

di

(
NDjYC

)dimDjYC ∏
j 6=i

(
N
DjYC
t

)dimDjYC
−1

(6.3.5.i)

for some rational numbers di = di(X,D, q) > 0 and any closed point t ∈ C. The right-hand
side of (6.3.5.i) can be simplified: observe that(

NDjYC

)dimDjYC
=
(
ND

j
Z

)dimDjZ
=
(
NDjZ

)dimDjZ
= (NZ)dimDjZ ·Dj

Z .

Indeed, the first equality holds because µiC is birational, while the second equality holds because

DjZ and Dj
Z are equal in codimension 1 and N has full support (see [Kol96, VI.2.7.3]). Similarly

to the previous displayed equalities, we also have(
N
DjYC
t

)dimDjYC
−1

= (NDjYC )
dimDjYC

−1 · (DYC )t = (NZ)dimDjZ−1 · (Dj
Z)t

for t ∈ C closed. Since NZ is the pullback of a relatively ample line bundle over T , the

(NZ)dimDjZ−1 · (Dj
Z)t are positive. Moreover NZ is nef so the quantities (NZ)dimDjZ · Dj

Z are

non-negative. Therefore, setting a = maxj

{
(NZ)dimDjZ−1 · (Dj

Z)t

}
and b = maxi{di}, it follows

from (6.3.5.h) and (6.3.5.i) that

Vol(AC) ≤
(
N (r•)
YC

)dimD
(r•)
YC ≤ ab

N∑
i=0

(NZ)dimDiZ ·Di
Z .

Notice that ab depends only on (X,D) and q, so we put e = (ab(N + 1))−1 to conclude.

We have now a lower bound on the derivatives (NZ)dimDiZ ·Di
Z in terms of the volume of

the pullback divisor AC . Of course, this depends on the curve C → T , but it is possible to
obtain some kind of uniformity. Indeed, the next lemma shows that Vol(AC) cannot converge
to zero when [C] gets close to the boundary of the movable cone.

Lemma 3.6.3.6. Let A be the ample Q-Cartier divisor on the component P of D
(r•)
Y given by

Proposition 3.6.3.5. Then there exists a big Q-Cartier divisor Ψ on T such that for a general
movable curve C → T , we have Vol(AC) = Ψ · C.

Proof. By Lemma 3.6.3.3 the scheme P is reduced and the morphism P → T is equidimensional,
say of relative dimension d. So we may apply Proposition 3.4.0.1 to (P,A) → T . Namely, let
A′ be the pullback of A to the normalization P ′ of P , and let f ′ : P ′ → T be the induced
morphism. Then for a general smooth curve C → T , we have Vol(AC) = Ad+1

C = f ′∗(A
′)d+1 ·C.

By Lemma 3.7.0.1, f ′∗(A
′)d+1 is big. We take Ψ = f ′∗(A

′)d+1.
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3.6.4 Variation of the boundary

Notation 3.6.4.1. In this subsection, we follow Notation 3.6.3.1 and let Ψ be the big Q-Cartier
divisor on T obtained in Lemma 3.6.3.6.

Given a general smooth curve C → T , the inequality (6.3.5.e) gives a lower bound for some

intersection number (NZ)dimDjZ ·Dj
Z . As explained in Section 3.1.1, we wish to derive a lower

bound on λf,D · C. The case j = 0, corresponding to D0 = X, is the easiest.

Proposition 3.6.4.2 (Case j = 0). Let C → T be a smooth curve. Assume that (NZ)n+1 ≥
e · (Ψ · C) for some e > 0. Then λf,D · C ≥ e0 · (Ψ · C) for some rational number e0 =
e0(X,D, q, e) > 0.

Proof. Recall the fact that NZ ∼= OZ(q(−KZ/C−DZ +2αh∗λf,DZ )) (see Notation 3.6.3.1). We
have

1

qn+1
(NZ)n+1 = (−KZ/C −DZ)n+1 + (n+ 1)2α(h∗λh,DZ · (−KZ/C −DZ)n)

= degC h∗((−KZ/C −DZ)n+1) + (n+ 1)2α · deg λh,DZ · ((−KZ/C −DZ)t)
n)

= degC λh,DZ · [−1 + 2αv(n+ 1)]

= (λf,D · C) ·

−1 + 2αv(n+ 1)︸ ︷︷ ︸
>0 by choice of α


We let e0 = e(qn+1[2αv(n+ 1)− 1])−1 to obtain the desired inequality.

If j > 0, we wish to relate (NZ)dimDjZ · Dj
Z to the a first-order derivative of λf,D · C as

the component Dj
Z is perturbed. Since Dj

Z might not be Q-Cartier, we introduce a birational
model where it is Q-Cartier.

Notation 3.6.4.3. In the situation of Notation 3.6.4.1. By Proposition 3.5.0.4, we may fix
rX,D ∈ (0; 1) with the property that for every coefficient part Di of D, there is a small bira-
tional proper morphism Wi → X such that for all rational numbers ε ∈ (0; rX,D), the family
(Wi, DWi − εDi

Wi
) → T is a Q-Gorenstein family of log Fano pairs of maximal variation with

uniformly K-stable general geometric fibers.
Fix an index j > 0 and any smooth curve ι : C → T . Write ν : W := Wj → X and Γ := Dj .

We let
V := W ×X Z ∼= W ×T C.

Together with the notations of Notation 3.6.1.2 we obtain the diagram

(V,DV ,ΓV ) (W,DW ,ΓW )

(Z,DZ , D
j
Z) (X,D,Γ)

C T

g

τ

µ ν

f ′

σ

h f

ι

where DZ is the divisorial base-change of D, Dj
Z the cj-coefficient part of DZ , and where the

other Q-divisors are defined as follows:
(a) let DW and ΓW be the ν-strict transforms of respectively D and Γ;

(b) let DV be defined on V by the equality KV/C +DV = τ∗(KW/T +DW );

(c) let ΓV be defined on V by ΓV = τ∗ΓW . In particular, it is Q-Cartier.
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Define the polynomial F (C, j) ∈ R[t] by

F (C, j)(t) := (−KV/C −DV + tΓV )dimV = (−KV/C −DV + tΓV )n+1.

We will also use the ad hoc notation

m2

(
r∑
l=0

alt
l

)
:= max

l≥2
{|al|} where

∑
l

alt
l ∈ R[t].

Lemma 3.6.4.4. In the situation of Notation 3.6.4.3. If C → T is general movable, then for
every 0 < ε < rX,D, the family (V,DV − εΓV ) → C is a Q-Gorenstein family of log Fanos of
maximal variation with uniformly K-stable general general geometric fibers.

Proof. For all rational 0 < ε < rX,D, the family (W,DW − εΓW )→ T is a Q-Gorenstein family
of log Fanos of maximal variation with uniformly K-stable general geometric fibers. Since the
fibers are normal and C is normal, V is also normal. If C meets the open locus where the fibers
are uniformly K-stable and of maximal variation, then the statement holds.

We need to relate the intersection products one can do on V , to the intersection products
one can do on Z and on T . This is the purpose of the next three lemmas.

Lemma 3.6.4.5. In the situation of Notation 3.6.4.3,
(a) µ∗(KZ/C +DZ) ∼Q KV/C +DV .

Moreover, if C → T is a general movable curve, then
(b) µ : V → Z is small birational;

(c) DV ,ΓV are the strict transforms of DZ and Dj
Z respectively;

(d) ΓV is the divisorial pullback of ΓW and the cj-coefficient part of DV .

Proof. By (6.1.2.c) we have σ∗(KX/T + D) ∼Q KZ/C + DZ , and since ν : W → X is small we
have KW/T + DW ∼Q ν∗(KX/T + D). By definition of DV , we obtain that KV/C + DV ∼Q
µ∗(KZ/C +DZ). This proves part (a).

By Proposition 3.5.0.4, the morphism Wt → Xt is small birational for a general t ∈ T . So
if C meets the open locus of such t ∈ T , the morphism µ : V → Z is birational and small as
well. In this case DV ,ΓV are the strict transforms of DZ and Dj

Z . By Corollary 3.2.3.8, if C is

general movable then Dj
Z is the divisorial pullback of Γ, and the cj-coefficient part of DZ . So

ΓV is the cj-coefficient part of DV and the divisorial pullback of ΓW . This proves parts (b), (c)
and (d).

Lemma 3.6.4.6. In the situation of Notation 3.6.4.3, if C → T is general movable, we have

(−KV/C −DV )n+1 = (−KZ/C −DZ)n+1 and (−KV/C −DV )n ·ΓV = (−KZ/C −DZ)n ·Dj
Z .

Proof. We use Lemma 3.6.4.5. By part (a), it holds that KV/C + DV ∼Q µ∗(KZ/C + DZ). If
C → T is general movable, µ is birational by part (b). So the first equality follows. By part (c),
the morphism µ restricts to a birational morphism µ|ΓV : ΓV → Dj

Z , and the second equality
follows.

Lemma 3.6.4.7. In the situation of Notation 3.6.4.3, for each j > 0 there is a non-empty
finite collection of Q-Cartier divisors {Υj,l}n+1

l=2 on T such that m2(F (C, j)) = maxl≥2{|Υj,l ·C|}
for any smooth curve C → T .

Proof. Fix an index j > 0 and let (f ′ : W → T,DW ,ΓW ) be as in Notation 3.6.4.3. The fibers
of f ′ are normal, and for small positive values of ε, the Q-Cartier divisor −KW/T −DW + εΓW
is relatively ample over T . Thus by Proposition 3.4.0.1, for any smooth curve C → T we have:

f ′∗(−KW/T −DW + εΓW )n+1 · C = (−KV/C −DV + εΓV )n+1 = F (C, j)(ε).

46



Write f ′∗(−KW/T −DW + εΓW )n+1 =
∑n+1

l=0 ε
lΥj,l in the Chow ring of T . By linearity of the

intersection product and of f ′∗, one can describe Υj,l as a multiple of the pushforwards along
f ′ of the intersection (−KW/T −DW )n+1−l · ΓlW . We obtain

m2(F (C, j)) = max
l≥2
{|Υj,l · C|}

as claimed. Notice that the family {Υj,l}n+1
l=2 is non-empty since n ≥ 1.

We are now able to treat the case j > 0.

Proposition 3.6.4.8 (Case j > 0). Let C → T be a general movable smooth curve. Assume
that (NZ)n ·Dj

Z ≥ e · (Ψ · C) for some j > 0 and e > 0. Then there exists a rational number
e1 = e1(X,D, q, e) > 0 such that λf,D · C ≥ e1 · (Ψ · C).

Proof. By generality C → T , we may and will assume that the results of Lemma 3.6.4.4,
Lemma 3.6.4.5 and Lemma 3.6.4.6 hold. Thus we have

F (C, j)(0) = (−KZ/C −DZ)n+1 = −degC λh,DZ (6.4.8.j)

and
F ′(C, j)(0) = (n+ 1)(−KZ/C −DZ)n ·Dj

Z . (6.4.8.k)

A direct calculation gives

(NZ)n ·Dj
Z = qn(−KZ/C −DZ)n ·Dj

Z + 2nα · degC λh,DZ ·
(
NDj

t

)n−1
(6.4.8.l)

Combining (6.4.8.k), (6.4.8.l) and the hypothesis on (NZ)n ·Dj
Z , we obtain that

F ′(C, j)(0) ≥ (n+ 1)e

qn
(Ψ · C)− 2n(n+ 1)α

qn

(
NDj

t

)n−1
degC λh,DZ . (6.4.8.m)

On the other hand, for any rational 0 < ε < rX,D, the family (V,DV − εΓV ) → C is a
Q-Gorenstein family of log Fano pairs of maximal variation with uniformly K-stable general
geometric fibers. Thus

−degC λh,DV −εΓV = F (C, i)(ε) ≤ 0 ∀ ε ∈ (0, rX,D) (6.4.8.n)

by [CP21, Theorem 1.8.a]. To conclude the proof, we are going to combine (6.4.8.m) and
(6.4.8.n) to get a negativity condition on F (C, i)(0) = deg λh,DZ .

For convenience, let us write

β0 = sup

{(
NDi

t

)n−1
| i > 0, t ∈ C(k)

}
, w = Ψ.C, a =

(n+ 1)e

qn
, b =

2n(n+ 1)α

qn
β0

(notice that, by generic flatness and Noetherianity, β0 is finite and actually a maximum).
Therefore (6.4.8.m) implies that

F ′(C, j)(0) ≥ aw − bdegC λh,DZ (6.4.8.o)

Assume that
degC λh,DZ ≤

a

2b
w. (6.4.8.p)

Then the estimate (6.4.8.o) implies

F ′(C, j)(0) ≥ a

2
w > 0.
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To summarize, we know by (6.4.8.n) that F (C, j)(t) must be negative in a neighborhood of
t = 0, and if F (C, j)(0) is small we have a positive lower bound on its first derivative. This
gives an upper bound on F (C, j)(0). Indeed, we apply Lemma 3.7.0.6 with

G =
a

2
w, H = m2(F (C, j)), l = rX,D, d = n+ 1 ≥ 2,

and we obtain that F (C, j) takes a strictly positive value on [0; rX,D/2) if

F (C, j)(0) > max

{
−
arX,D

2
w,− a

2

4n

w2

m2(F (C, j))

}
, (6.4.8.q)

where we set 1
m2(F (C,j)) = +∞ if m2(F (C, j)) = 0. But if (6.4.8.q) holds, then we get a

contradiction with (6.4.8.n). Thus either (6.4.8.p) fails, or (6.4.8.p) holds and (6.4.8.q) fails.
This can be synthetized as

degC λh,DZ = −F (C, j)(0) ≥ min

{
a

2b
w,
arX,D

2
w,

a2

4n

w2

m2(F (C, j))

}
. (6.4.8.r)

To conclude, we need to modify the right-hand side of (6.4.8.r) so that the only quantity that

depends on C is w = (Ψ.C). The only problematic term is w2

m2(F (C,j)) : it can be dealt with
using Lemma 3.6.4.7, as we explain now.

Let {Υr,s}r,s be the collection of Q-Cartier divisors on T given by Lemma 3.6.4.7 when
considering every index r > 0. Consider the function

Mov(T )R − {0} → R, γ 7→ maxr,s |Υr,s · γ|
Ψ · γ

.

This function is well-defined since Ψ is big and hence defines a strictly positive functional on
Mov(T )R − {0}. It is also continuous and invariant under R∗+-scaling of its argument. So it
admits a maximum which is strictly positive, since the numerator is not zero for all movable
curves. Thus there exists β1 > 0 such that

m2(F (C, j))

w
=

maxs |Υj,s · C|
Ψ · C

≤ maxr,s |Υr,s · C|
Ψ · C

< β1

for all general movable curve C and j > 0. So (6.4.8.r) implies that

degC λh,DZ = −F (C, j)(0) ≥ min

{
a

2b
,
arX,D

2
,
a2

4nβ1

}
· w.

The quantity e1 = min
{
a
2b ,

arX,D
2 , a2

4nβ1

}
depends only on X,D, q and e. Therefore the proof is

complete.

3.6.5 Proof of Theorem 3.1.0.2

Proof of point (c) of Theorem 3.1.0.2. Let τ : T ′ → T be a resolution of singularities. Then
the induced family fT ′ : (XT ′ , DT ′) → T ′ is again a Q-Gorenstein family of log Fano pairs
of maximal variation with general geometric uniformly K-stable fibers. The morphism τ is
birational and τ∗λf,D = λfT ′ ,DT ′ by Proposition 3.2.4.1. So λf,D is big if and only if λfT ′ ,DT ′
is big. Thus we may assume that T is smooth to begin with. Let C → T be a general movable
curve. By Proposition 3.6.3.5 and Lemma 3.6.3.6, the hypothesis of either Proposition 3.6.4.2
or Proposition 3.6.4.8 is fullfilled, with a constant e that depends only on X,D and q. Thus
there is a constant c = c(X,D, q) > 0 such that λf,D · C ≥ c · (Ψ · C). As Ψ is big, the result
follows.
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Proof of point (d) of Theorem 3.1.0.2. By the Nakai-Moishezon theorem it is enough to prove
that for all normal varieties V mapping finitely to T , we have (λf,D|V )dimV > 0. Let V ′ → V
be a resolution of singularities. By (6.1.2.c) and since (λf,D|V )dimV = (λf,D|V ′)dimV ′ , we may
replace f : (X,D) → T by fV ′ : (XV ′ , DV ′) → V ′. By assumption all the closed fibers of fV ′

are uniformly K-stable, hence klt. So all the fibers of fV ′ are klt. Therefore we are in position
to apply point (c) of Theorem 3.1.0.2.

3.7 APPENDIX

We gather some technical results that were used in the chapter.

Lemma 3.7.0.1. Let f : X → T be an equidimensional proper morphism of relative dimension
n between projective schemes. Assume that T is smooth. Let A be an ample Q-Cartier divisor
on X. Then the cycle f∗A

n+1 is Q-Cartier and big. (Here f∗ denotes the cycle-theoretic
pushforward.)

Proof. Since f∗ is linear, we may replace A by a multiple and assume it is very ample. If
H1, . . . ,Hn+1 ∈ |A| are general elements, then f∗(H1 ∩ · · · ∩Hn+1) is a divisor on T , and it is
Cartier as T is smooth. Since f∗ preserves rational equivalence, we have f∗(H1 ∩ · · · ∩Hn+1) ∈
|f∗An+1|. It follows that this linear system is base-point free and separates points. The result
now follows from [KM98, 2.60].

Lemma 3.7.0.2. Let f : X → T be proper morphism between normal projective k-schemes.
Let A be a pseudo-effective relatively ample Q-Cartier divisor on X, and B a big Q-Cartier
divisor on T . Then A+ f∗B is big on every component of X.

Proof. We may assume that X is integral. Write B ∼Q C+E where C is ample and E effective.
Fix an ample divisor H on X. Choose ε′ ∈ Q∗+ small enough such that ε′A+ f∗C is ample on
X. Then choose ε ∈ Q∗+ small enough such that A+ εH is effective, and ε′A+f∗C− (1− ε′)εH
is still ample. We write

A+ f∗B ∼Q f
∗E + (1− ε′)(A+ εH) + (ε′A+ f∗C − (1− ε′)εH)

so A+ f∗B is the sum of an effective and an ample Q-divisors. By [KM98, 2.60], it is big.

Lemma 3.7.0.3. Let f : X → T be a flat morphism between Noetherian schemes. Assume that
T is integral, and that the generic fiber of f is reduced. Then X is reduced.

Proof. Let x be an associated point of X. By assumption, the local morphism OT,f(x) → OX,x
is flat. If f(x) is not the generic point η of T , then OT,f(x) has dimension at least one, and
so its maximal ideal contains a non-zero divisor. By flatness, the image of this element is
also a non-zero divisor in the maximal ideal of OX,x. This contradicts the fact that x is an
associated point, so f(x) = η. Now Xη is reduced, so x cannot be an embedded associated
point. Therefore X is reduced.

Lemma 3.7.0.4. Let Xi be proper schemes of dimensions ni (i = 1, . . . , r). Set X :=
X1 ×k · · · ×k Xr, with projections pi onto its factors. There is a positive rational number c =
c(n1, . . . , nr) with the following property: if Li are Cartier divisors on Xi and L :=

∑r
i=1 p

∗
iLi,

then

LdimX = c

r∏
i=1

Lnii .

Proof. By induction on r, it suffices to consider the case r = 2. In this case we have

Ln1+n2 =

(
n1 + n2

n1

)
· (p∗1L1)n1 · (p∗2L2)n2 =

(
n1 + n2

n1

)
· Ln1

1 · L
n2
2 ,

as claimed. In the general case, the precise form of the constant is c =
∏r
i=1

(∑
k≥i nk
ni

)
.
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Lemma 3.7.0.5. Let Xi → T be flat morphisms from proper schemes of dimension 1 + ni to
a common smooth curve (i = 1, . . . , r). Set X := X1 ×T · · · ×T Xr with projections pi onto its
factors. Then there are positive rational numbers di = d(n1, . . . , nr) with the following property:
if Li are Cartier divisors on Xi and L :=

∑r
i=1 p

∗
iLi, then

LdimX =

r∑
i=1

diL
ni+1
i

∏
j 6=i

(Lj)
nj
t

for any closed t ∈ T .

Proof. Notice that dimX = 1 +
∑

j nj . Hence LdimX is a weighted sum of (p∗1L1)i1 · · · (p∗rLr)ir
with

∑
j ij = 1 +

∑
j nj . Such a term is zero as soon as ij > 1 + nj for some j. On the other

hand, by the pigeon-hole principle, at least one ij is greater or equal to 1 + nj . Thus:

L1+
∑
j nj =

r∑
i=1

(
1 +

∑
j nj

1 + ni

)
(p∗iLi)

1+ni ·

∑
j 6=i

p∗jLj


∑
j 6=i nj

=

r∑
i=1

(
1 +

∑
j nj

1 + ni

)
L1+ni
i ·

∑
j 6=i

p∗jLj
∣∣
p−1
i (xi)


∑
j 6=i nj

where the second equality holds for any xi ∈ Xi by flatness of pi. Notice that the fiber
of pi : X → Xi above xi is naturally isomorphic to the fiber product×j 6=i(Xj)ti taken over
Spec k, where ti is the image of xi through Xi → T . By flatness of Xi → T , the intersection
number (Li)

ni
ti

does not depend on ti. Applying Lemma 3.7.0.4, we get

LdimX =
r∑
i=1

(
1 +

∑
j nj

1 + ni

)
L1+ni
i c(n1, . . . , n̂i, . . . , nr)

∏
j 6=i

(Lj)
nj
t

where t ∈ T is any closed point. Put di(n1, . . . , nr) :=
(1+

∑
j nj

1+ni

)
c(n1, . . . , n̂i, . . . , nr) to con-

clude.

Lemma 3.7.0.6. Let G > 0, H ≥ 0 and l ∈ (0; 1) be positive real numbers, and d ≥ 2 be an
integer. Then for every choice of real numbers a0, . . . , ad satisfying

max

{
−Gl

4
,− G2

4H(d− 1)

}
< a0 ≤ 0, a1 ≥ G, and |ai| ≤ H ∀i ≥ 2,

the polynomial p(t) =
∑d

i=0 ait
i takes a strictly positive value in the interval (0; l/2). (If H = 0

we set G2

4H(d−1) = +∞).

Proof. Let a0, . . . , ad be real numbers satisfying the prescribed conditions. We have, for 0 <
t < 1:

p(t) = a0 + a1t+
∑
i≥2

ait
i

≥ a0 +Gt−H(d− 1)t2.

So it it enough to prove that q(t) := a0 +Gt−H ′t2 takes a strictly positive value on (0, l/2),
with H ′ := H(d − 1). First consider the special case where H = 0. Then a0 > −Gl/4, so
q(l/3) > Gl/12 > 0. From now we assume that H > 0. We have to show that q(t) has a real
positive root t0 ∈ (0, l/2) such that q′(t0) > 0. Real roots exist if

a0 >
−G2

4H ′
.
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which holds by assumption on a0. Then the smallest positive root of q(t) is

t0 =
G−

√
G2 + 4a0H ′

2H ′
.

Note that
q′(t0) = G− 2H ′t0 =

√
G2 + 4a0H ′ > 0.

Hence we just have to verify that t0 < l/2. This condition is equivalent to

G− lH ′ <
√
G2 + 4a0H ′.

This inequality is trivially satisfied if G− lH ′ < 0. If G− lH ′ ≥ 0, then it is equivalent to

l(lH ′ −G)

4
− Gl

4
< a0,

which holds because l(lH ′ −G)/4 < 0 and −Gl/4 < a0 by assumption. Therefore q(t) takes a
strictly positive value in (0, l/2), as desired.
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Chapter 4

Nodes on algebraic varieties

This chapter corresponds to the preprint [Pos21c, §3].

Convention 4.0.0.1. In this chapter we work with excellent reduced schemes. For the applica-
tions given in Section 5.3.4 and Section 4.6, we work over a field of positive characteristic.

4.1 INTRODUCTION

This chapter is a technical prelude to the following ones. It introduces the class of demi-
normal schemes: they are higher-dimensional analogues of nodal curves, and appear naturally
in the moduli theory of canonically polarised varieties. There are more difficult to handle than
normal varieties: in particular the tools from the MMP are usually not available (see [Kol11]).
The technical solution that is proposed in [Kol13] is to establish a dictionary between a demi-
normal singularity and its normalization, and to work with the latter. This strategy works best
in the global setting, as we will see in Chapter 5. For now, we establish the local theory of
demi-normal schemes and their normalizations.

This chapter is organized as follows. In Section 4.2 we give several characterizations and
basic properties of demi-normal schemes. Their normalization is studied in Section 4.3: we
distinguish between separable and inseparable nodes, and we give a precise structure the-
orem for the normalization morphism (Proposition 4.3.3.1). In Section 4.4 we give a method to
construct demi-normal schemes, while in Section 4.5 we give a complete classification of insep-
arable nodes. Finally, we give an application of these methods to the geometry of demi-normal
schemes in positive characteristic: in Section 4.6 we prove a demi-normal compactification
theorem.

4.2 DEMI-NORMAL SCHEMES

Let us define right away the singularities we will study in this chapter:

Definition 4.2.0.1 ([Kol13, 1.41]). A one-dimensional Noetherian local ring (R,m) is called a
node if there exists a ring isomorphism R ∼= S/(f), where (S, n) is a regular two-dimensional
local ring and f ∈ n2 is an element that is not a square in n2/n3.

Definition 4.2.0.2. A locally Noetherian reduced scheme (or ring) is called nodal if its codi-
mension one local rings are regular or nodal. It is called demi-normal if it is S2 and nodal.

Let X be a reduced scheme with normalization π : X̄ → X. The conductor ideal of the
normalization is defined as

I := HomX(π∗OX̄ ,OX).

It is an ideal in both OX and OX̄ . We let

D := SpecX OX/I, D̄ := SpecX̄ OX̄/I,
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and call them the conductor subschemes.

Lemma 4.2.0.3. Notations as above. Assume that X is demi-normal with a dualizing sheaf.
Then:

(a) D and D̄ are reduced of pure codimension 1.

(b) If η ∈ D is a generic point such that char k(η) 6= 2, the morphism D̄ → D is étale of
degree 2 in a neighborhood of η. If char k(η) = 2, then D̄ → D might be purely inseparable.

(c) The dualizing sheaf of X is invertible in codimension one. In particular, X has a well-
defined canonical divisor class KX .

(d) Let ∆ be a Q-divisor on X with no component supported on D, and such that KX+∆ is Q-
Cartier. If ∆̄ denotes the divisorial part of π−1(∆), then there is a canonical isomorphism

π∗ω
[m]
X (m∆) ∼= ω

[m]

X̄
(mD̄ +m∆̄)

for m divisible enough.

Proof. Lemma 4.2.1.4 below shows that the dualizing sheaf of X is invertible in codimension
one. The rest follows from [Kol13, 5.2,5.7].

The language of Q-divisors and divisorial sheaves can be extended to demi-normal schemes,
if we insist that no component of the divisors belong to the singular locus. We refer the reader
to [Kol13, 5.6] for more precisions. This allow us to define a non-normal version of log canonical
singularities as follows.

Definition 4.2.0.4. We say that (X,∆) is a semi-log canonical (slc) pair if: X is demi-
normal, ∆ is a Q-divisor with no components along D, KX + ∆ is Q-Cartier, and the normal-
ization (X̄, D̄ + ∆̄) is an lc pair.

In most cases the conductor D̄ ⊂ X̄ comes with an additional structure that remembers
the morphism D̄ → D:

Lemma 4.2.0.5. Let X be a demi-normal scheme with normalization π : X̄ → X. Assume
that the morphism of conductors D̄ → D is étale over every generic point. Then:

(a) the induced morphism of normalizations D̄n → Dn is the geometric quotient by a Galois
involution τ ;

(b) if KX + ∆ is Q-Cartier, then τ is a log involution of (D̄n,DiffD̄n ∆̄).

Proof. Since D̄ → D is generically étale, the field extension k(D) ⊂ k(D̄) is separable of degree
2, hence Galois. The non-trivial field automorphism gives a well-defined morphism τ on D̄n,
and it is easy to see that Dn = D̄n/τ (see also Corollary 5.4.2.5 below). This proves the first
point.

Assume that KX+∆ is Cartier. Since τ : D̄n → D̄n commutes with the projection to D, the
pullback of KX+∆ to D̄n is τ -invariant. We conclude using Lemma 4.2.0.3 and adjunction.

4.2.1 Characterization of nodes

Nodal singularities have been defined in Definition 4.2.0.1. We will need some equivalent
formulations.

Lemma 4.2.1.1. Let (R,m, k) be a one-dimensional reduced local ring that is a quotient of a
regular ring. Let T be its normalization, and n ⊂ T be its Jacobson radical. Then R is nodal
if and only if dimk T/n = 2 and n ⊂ R.

Proof. The only difference with [Kol13, 1.41.1] is that we assume that R is the quotient of a
regular ring that is not necessarily local. But the two conditions are equivalent: for if π : B � A
is a surjective map of rings and A is local, then p := π−1(mA) is a prime ideal, π factors through
Bp by the universal property of localization, and Bp is regular if B is regular.
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Another characterization of nodes can be given in terms of semi-normality, which we define
below. See [Kol13, §10.2] for more details.

Definition 4.2.1.2. Let X be an excellent scheme with normalization ν : Xν → X. For a
point x ∈ X, let xν := ν−1(x)red. The sections s ∈ ν∗OXν that satisfy

s|xν ∈ im[ν∗ : k(x)→ H0(xν ,Oxν )] ∀x ∈ X

form a finite OX -algebra O′. We say that X is semi-normal if O′ = OX .

Observation 4.2.1.3. Since O′ is finite over OX , the locus where the map OX → O′ is an
isomorphism, is open. Thus the semi-normal locus of an excellent scheme is open.

We will compare demi-normality and seminormality in Section 4.3.2, and show in Corol-
lary 4.3.2.4 that demi-normality implies semi-normality.

Lemma 4.2.1.4. Let (R,m, k) be a one-dimensional excellent reduced semi-normal local ring
that is a quotient of a regular ring. Then R is nodal if and only if it is Gorenstein.

Proof. We elaborate [Kol13, 5.9.3]. Write X = SpecR and let X̄ be the normalization. Then
X̄ is a regular scheme and X̄ → X is finite. Let D ⊂ X and D̄ ⊂ X̄ be the conductors
subschemes. Then SuppD is the closed point x ∈ X, and Supp D̄ is its preimage in X̄. By
[LV81, Corollary 1.5.1], thanks to the semi-normality assumption, the conductor ideal is radical
in OX̄ , hence also in OX , and therefore D and D̄ are reduced.

Since R is S1 and the quotient of a regular ring, X has a canonical sheaf ωX . The 0-
dimensional reduced schemes D and D̄ also have canonical sheaves, which are invertible. The
calculations of [Kol13, 9.3] show that there is an isomorphism of k(x)-vector spaces

ωX ⊗ k(x) ∼= ker[Tr: ωD̄ → ωD]

where Tr the Grothendieck trace map.
Suppose that R is nodal. Then explicit computations show ker(Tr) is one-dimensional,

see Lemma 4.3.0.5 below. By Nakayama’s lemma, it follows that ωX is generated by a single
element. Since a canonical sheaf has full support, we see that ωX is free of rank one, so R is
Gorenstein.

Conversely, suppose that ωX is invertible. Then ker(Tr) is one-dimensional, and as D̄ is
Gorenstein we obtain that dimk(x) ωD̄ = dimk(x)H

0(D̄,OD̄) = 2. In particular we have the
following dichotomy:

(a) D̄ is a single point. Thus X̄ is local, and its maximal ideal is the conductor ideal, which
is contained in R.

(b) D̄ is supported on two distinct closed points, corresponding to two maximal ideals m1

and m2. Therefore m1 ∩m2 =
√
m1 ∩m2 is the conductor ideal, contained in R.

In both cases we apply Lemma 4.2.1.1 to see that R is nodal.

4.3 NORMALIZATION OF NODES

We take a look at the normalization of nodes, following [Tan16, §3]. Let (R,m) be a nodal
Noetherian local ring, and pick a presentation R ∼= S/(f) as in Definition 4.2.0.1. We can
choose a set of local parameters n = (x, y) for S such that

f = ax2 + bxy + cy2 + g

for a, b ∈ S, c ∈ S× and g ∈ n3 [Tan16, 3.2, 3.3]. Denote by x̄, ȳ the images of x, y in R.

Proposition 4.3.0.1. Notations as above. Assume that (R,m) is not an integral domain.
Then:
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(a) the normalization of R is a product T1 × T2 of local regular one-dimensional rings;

(b) m is the conductor of the normalization;

(c) R ↪→ T1 × T2 induces the diagonal embedding

k(m) ↪→ (T1/mT1)× (T2/mT2) ∼= k(m)× k(m).

Assume now that (R,m) is an integral domain. Then:
(a) the normalization of (R,m) is given by

R ↪→ R
[ ȳ
x̄

]
=: T.

Moreover we have T = R+R · ȳx̄ .

(b) the conductor of the normalization is m, and mT = x̄T .

(c) We have

T/mT ∼=
k(m)[Z]

(ā+ b̄Z + c̄Z2)

where ā, b̄, c̄ are the image of a, b, c through S → k(m) = R/m, and Z is the image of ȳ
x̄ .

In particular T is local with maximal ideal mT as soon as ā+ b̄Z + c̄Z2 is irreducible in
k(m)[Z].

Proof. These results are contained in the statements and the proofs of [Tan16, 3.4, 3.5].

Corollary 4.3.0.2. Let (R,m) be a non-integral nodal ring and T be its normalization. Denote
the conductors by D := V (m) ⊂ SpecR and D̄ := V (mT ) ⊂ SpecT . Then OD is recovered as
the fixed sub-ring of an involution on OD̄.

Proof. By Proposition 4.3.0.1, OD ↪→ OD̄ ∼= OD ⊕ OD is the diagonal embedding, so the
involution is given by the permutation of direct summands.

Corollary 4.3.0.3. Let (R,m) be an integral nodal ring and T be its normalization. Denote
the conductors by D := V (m) ⊂ SpecR and D̄ := V (mT ) ⊂ SpecT . Then:

(a) D̄ → D is two-to-one if and only if ā+ b̄Z + c̄Z2 splits in k(m)[Z].

(b) D̄ → D is bijective and Galois if and only if ā + b̄Z + c̄Z2 is irreducible and separable
over k(m).

(c) D̄ → D is bijective and purely inseparable if and only if ā + b̄Z + c̄Z2 is irreducible and
inseparable over k(m).

Moreover exactly one of these cases occurs. In the first two cases, OD is recovered as the fixed
sub-ring of an involution on OD̄.

Proof. We need to show that ā+ b̄Z + c̄Z2 cannot be a square in k(m)[Z]. If this was the case,
then OD̄ = T/mT would not be reduced, which contradicts Lemma 4.2.0.3.

In the first case we have T/mT ∼= k(m) ⊕ k(m) in which k(m) embeds diagonally, and the
involution is given by exchanging the direct summands.

In the second case T/mT is a Galois extension of k(m) of degree 2, and the involution is
the unique non-trivial element of the Galois group.

Definition 4.3.0.4. A nodal Noetherian local ring (R,m) is an inseparable node if the
condition of Corollary 4.3.0.3.(c) is satisfied. In the other cases, we call it a separable node.

We study the pluricanonical sections that descend the normalization morphism, aiming to
give a slight generalization of [Kol13, 5.8, 5.18].

Lemma 4.3.0.5. Notations as in Corollary 4.3.0.2 and Corollary 4.3.0.3. Then:
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(a) The kernel of the Grothendieck trace map ωD̄ → ωD is one-dimensional over k(m).

(b) Assume D̄ → D is separable with induced involution τ on D̄. Then the kernel of the
Grothendieck trace map is the sub-module of τ -anti-invariant sections. (If char k(m) = 2,
we interpret τ -anti-invariant sections as the τ -invariant ones.)

Proof. In any case, since we can take OD and OD̄ as the dualizing sheaves of D and D̄, the
Grothendieck trace map is obtained by applying HomOD(•,OD) to the map ι : OD → OD̄. We
distinguish the possible cases, according to Corollary 4.3.0.2 and Corollary 4.3.0.3. For ease of
notation, we write k := k(m) = OD.

(a) The morphism D̄ → D is two-to-one. Then OD̄ = k ⊕ k, the involution τ exchanges the
two summands, and D̄ → D corresponds to the diagonal embedding ι : k → k ⊕ k. The
Grothendieck trace is given by

Hom(ι) : Homk(k ⊕ k, k)→ Homk(k, k), φa,b 7→ µa+b

where φa,b(x, y) = ax + by and µa+b(z) = (a + b)z. Thus ker Hom(ι) = {φa,−a | a ∈ k}.
Since τ acts on Homk(k ⊕ k, k) by pre-composition, we see that ker Hom(ι) is the sub-
module of τ -anti-invariant sections.

(b) The map D̄ → D is bijective and Galois. Then ι : k → L := OD̄ is a Galois field extension
of degree 2, and τ is the non-trivial element of Gal(L/k). As above, the Grothendieck
trace map is given by

Hom(ι) : Homk(L, k)→ Homk(k, k), φ 7→ φ ◦ ι.

We distinguish two cases:

(i) If char k 6= 2, then we can find an element d ∈ k such that L = k(
√
d). Taking

{1,
√
d} as a k-basis of L, we see that ker Hom(ι) = {φ0,a | a ∈ k}. Since τ(

√
d) =

−
√
d, we see that ker Hom(ι) is the sub-module of τ -anti-invariant elements.

(ii) Assume that char k = 2 and consider the k-linear map

t : L→ k, t(x) = x+ τ(x).

Since Lτ = k, it holds k · t ⊆ ker Hom(ι). Since Hom(ι) is surjective and dimk L = 2,
we have dimk ker Hom(ι) = 1 and therefore k · t = ker Hom(ι).

Since t is τ -invariant, we obtain that ker Hom(ι) is included in the τ -invariant sub-
module of Homk(L, k). By counting dimensions, it remains to show that there exists
elements of Homk(L, k) that are not τ -invariant.

Let us exhibit such linear maps. We can write L = k(α). If τ(α) = cα with c ∈ k,
then (1 + c)α ∈ k, so either c = 1 and τ is the identity, either α ∈ k. So {α, τ(α)} is
a k-basis of L. In this basis, if a, b are distinct elements of k, the k-linear map φa,b
is not τ -invariant.

(c) The morphism D̄ → D̄ is purely inseparable. Then ι : k → L := OD̄ is a purely insep-
arable field extension of degree 2. Thus we can write L = k(

√
d) for some d ∈ k \ k2.

Taking {1,
√
d} as a k-basis of L, we see that ker Hom(ι) = {φ0,a | a ∈ k}, which is

one-dimensional over k.
The proof is complete.

Proposition 4.3.0.6. Let X be an excellent demi-normal scheme with only separable nodes
and normalization (X̄, D̄, τ), and ∆ a Q-divisor on X that has no common component with

Sing(X). Then a section of ω
[m]

X̄
(mD̄+m∆̄) descends to ω

[m]
X (m∆) if and only if its Poincaré

residue at generic points of D̄, taking values in ω
[m]

D̄
(mDiffD̄ ∆̄), is τ -invariant and m is even,

or is τ -anti-invariant and m is odd.
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Proof. We are dealing with reflexive sheaves, and the morphism π : X̄ → X is an isomorphism
above X \D. Thus the only question is above the generic points of D. In particular we may
assume that ∆ = 0, that X is Cohen–Macaulay, semi-normal (see Observation 4.2.1.3) and
that X̄ is regular. Then according to [Kol13, 5.9], there is an exact sequence

0→ ωX → π∗ωX̄(D̄)
∂→ ωD → 0

with
∂ =

(
ωX̄(D̄)

R−→ ωD̄
Tr−→ ωD

)
where R is the Poincaré residue map, and Tr the Grothendieck trace map. Hence the result
follows from Lemma 4.3.0.5.

Corollary 4.3.0.7. Let (X,∆) be as in Proposition 4.3.0.6, with normalization (X̄, D̄+∆̄, τ).
Then the following are equivalent:

(a) DiffD̄n ∆̄ is τ -invariant, and

(b) (X,∆) is slc outside a closed subset of codimension at least 3.

Proof. The only difference between our statement and the statement of [Kol13, 5.18] is that
we do not assume that 2 ∈ OX is invertible. This assumption is only needed in order to use
[Kol13, 5.8], which is generalized to our setting by Proposition 4.3.0.6.

Next we study inseparable nodes.

Example 4.3.0.8. Let k be any field of characteristic 2. Consider the ringA := k[u, v, w]/(wv2−
u2). We claim that A has only nodal singularities in codimension one. Indeed, the singular
locus of A is defined by (u = v = 0), so the prime ideal p := (u, v) is the only height one prime
such that Ap is not regular. Now

Ap
∼=
k[u, v, w](u,v)

(wv2 − u2)

is nodal according to Definition 4.2.0.1 since wv2 − u2 does not have a square root modulo
p3Ap.

The normalization of A is given by the regular two-dimensional ring B := k
[
t = u

v , v
]
.

Hence the normalization of Ap is given by B(v,tv) = Bp̄, with p̄ = vB. The conductor of the
normalization is generated by the element v.

Denote D = V (p) ⊂ SpecA and D̄ = V (p̄) ⊂ SpecB. Then π : SpecB → SpecA is an
isomorphism above the complement of D. Moreover D̄ → D is given by the k-algebra morphism

A/p = k[w] −→ k[t] = B/p̄, w 7→ t2.

Since k has characteristic 2, we obtain that Ap is an inseparable node.
In view of the gluing theory we want to develop, we should answer the following question:

how to reconstruct the nodal surface A from its normalization B? Looking a the commutative
diagram

A B

Ap Bp̄

k(Ap) = k(w) k(t) = k(Bp̄)

v 7→v
u7→tv, w 7→t2

w 7→t2

we see that A is the preimage of k(t2) ⊂ k(t) under the canonical map B → k(Bp̄). Hence the
data of A ⊂ B is equivalent to the data of B together with the degree 2 purely inseparable
extension k(w) ⊂ k(t).
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Example 4.3.0.9. The calculations of Example 4.3.0.8 can be generalized to the case of A′ :=
k[u, v, w](u,v)/(f(w)v2 − u2), where f(w) ∈ k(w) is not a square. In this case the data of A′ is
also recovered from its normalization B′ = k[t = u/v, v](v) and the purely inseparable degree 2
extension

k(w) ↪→ k(t) ∼= k
(√

f(w)
)
, w 7→ t2 = f(w).

Remark 4.3.0.10. Keeping the notations of Proposition 4.3.0.1, (R,m) is an inseparable node
if and only if R is a domain, k(m) has characteristic 2, b̄ = 0 and ā/c̄ /∈ k(m)2. In particular
the residue field of (R,m) is not perfect. This implies that a nodal curve over a perfect field of
characteristic 2, does not have any inseparable nodes.

On the other hand, there exist curves with inseparable nodes over imperfect fields. The
calculations of Example 4.3.0.8 show that k(w)[u, v]/(wv2 − u2) is one such.

While separable nodes can be reconstructed from their normalization using the induced
involution, the following proposition shows that inseparable nodes can be reconstructed from
their normalization using a method generalizing Example 4.3.0.8.

Proposition 4.3.0.11. Let (R,m) be a Noetherian local ring which is an inseparable node. Let
(T,mT = mT ) be its normalization. Then R is the preimage in T of the subfield k(m) ↪→ k(mT ).

Proof. We use the notations and results of Proposition 4.3.0.1. Then T = R[ȳ/x̄] = R+R · ȳ/x̄,
and k(m) ↪→ k(mT ) is given explicitly by the inclusion of constants

k(m) ⊂ k(m)[Z]

(ā+ c̄Z2)
= k(mT ),

where Z is the image of ȳ/x̄. An element α + β · ȳ/x̄ ∈ T , with α, β ∈ R, reduces modulo mT

to an element of k(m) if and only if β ∈ mT = mT . But mT = x̄T , so we see that R is equal to
the preimage of k(m) in T .

4.3.1 Being nodal is an étale-local property

For varieties over a field of characteristic different from 2, one can show that a local ring
OX,x is nodal if and only if

ÔX,x ⊗k k̄ ∼= k̄[[X,Y ]]/(XY ),

where k = k(x) and k̄ is an algebraic closure, see for example [Kol13, 1.41.2]. In particular, by
Artin approximation, the property of being nodal is étale-local. In this subsection, we show
that being an inseparable node is also an étale-local property.

Lemma 4.3.1.1. Let (R,m) be a Noetherian local ring, with strict henselization (Rsh,msh).
Then

(a) R is Gorenstein if and only if Rsh is Gorenstein, and

(b) R is semi-normal if and only if Rsh is semi-normal.

(c) If R is the quotient of a regular ring, then so is Rsh.

(d) The square

Spec(Rsh)ν SpecRsh

SpecRν SpecR

is Cartesian, where (·)ν denotes normalization.

Proof. Recall that mRsh = msh and that R → Rsh is faithfully flat. So by [Mat89, 23.4] we
obtain the first equivalence, and the second one follows from [GT80, 1.8, 5.2, 5.3].

Assume that R ∼= Q/I, where Q is a regular local ring and I ⊂ Q an ideal. Then Rsh ∼=
Qsh/IQsh by [Sta, 05WS]. Moreover Qsh is regular because Q→ Qsh is étale.

The property of the square is proved in [Sta, 0CBM].
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Corollary 4.3.1.2 (Being nodal is étale-local). Let (R,m) be an excellent reduced one-dimensional
local ring that is a quotient of a regular ring, with strict henselization (Rsh,msh). Then (R,m)
is a node if and only if (Rsh,msh) is a node.

Proof. Combine Lemma 4.2.1.4 and Lemma 4.3.1.1.

Corollary 4.3.1.3 (Being an inseparable node is étale-local). Let (R,m) be an excellent re-
duced one-dimensional local ring that is a quotient of a regular ring, with strict henselization
(Rsh,msh). Then (R,m) is an inseparable node if and only if (Rsh,msh) is an inseparable node.

Proof. The local ring (R,m) is an inseparable node if and only if it is semi-normal Gorenstein,
its normalization Rν is local and R/m → Rν/mRν is a purely inseparable extension of degree
2. We know by Lemma 4.3.1.1 that R is semi-normal Gorenstein if and only if Rsh is, so we
may assume R is a node and consider the other conditions.

Now consider the Cartesian diagram given in Lemma 4.3.1.1. Prime ideals of (Rsh)ν cor-
responds to pairs (p ∈ SpecRsh, q ∈ SpecRν) with the property that p ∩ R = q ∩ R. Now let
m′ be a maximal ideal of (Rsh)ν . Since R is excellent, the normalization R→ Rν is finite, and
therefore the pullback Rsh → (Rsh)ν is also finite. Hence m′ ∩ Rsh is maximal and therefore
equal to msh. Since msh is the unique prime ideal of Rsh lying above m, we see that maximal
ideals of (Rsh)ν corresponds to pairs (msh, q) with q ∩ R = m. Thefore (Rsh)ν is local if and
only if Rν is local.

Assume this is the case, and base-change along R → R/m. As mRsh = msh, we obtain the
push-out square

A := (Rsh)ν/msh(Rsh)ν ksh := Rsh/msh

k′ := Rν/mRν k := R/m

Since Rν is local, by Proposition 4.3.0.1 we have that k′ is a field of the form

k′ = k[Z]/p(Z),

where p(Z) ∈ k[Z] has degree 2. Thus

A ∼= ksh[Z]/p(Z).

Assume that k′ is purely inseparable over k. Then the roots of p(Z) belongs to a purely
inseparable extension of k. Since ksh a separable closure of k, we obtain that p(Z) ∈ ksh[Z] is
irreducible and inseparable, and so ksh ⊂ A is a purely inseparable field extension of degree 2.
Conversely, if A is a degree 2 inseparable field extension of ksh, then p(Z) is inseparable over
k and therefore k ⊂ k′ is purely inseparable of degree 2.

Remark 4.3.1.4. All the results of this section hold with the Henselization instead of the strict
Henselization, and the proofs are the same.

4.3.2 Demi-normality, seminormality and weak normality

In this subsection we compare the definition of demi-normality, seminormality and weak
normality. For the definitions of seminormal and weakly normal factorizations, we refer to
[Kol96, Appendix I.7.2] (in the case of seminormality, this generalises Definition 4.2.1.2). For us,
the relevant property is the following: a finite surjective morphism of reduced schemes Z → X
is seminormal (resp. weakly normal) if, given a factorization Z → X ′ → X where X ′ → X is an
homeomorphism inducing isomorphisms on residues fields (resp. an homeomorphism inducing
purely inseparable extension of residue fields), it holds that X ′ = X.
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Lemma 4.3.2.1. Consider a pushout diagram of reduced Fp-schemes

X1 X2

X3 Y

q p

where the horizontal arrows are closed embeddings, p is finite surjective and an isomorphism
over every generic point of X, and q is finite surjective. Then Y is weakly normal in X2 if and
only X3 is weakly normal in X1.

Proof. We may assume that all schemes are affine. We use the following characterization of
weak normality for Fp-schemes: a finite surjective morphism Z → Z ′ is weakly normal if and
only if OZ′ is p-closed in OZ [Yan83, Corollary to Theorem 1].

Assume that Y is weakly normal in X2. Pick an element s ∈ OX1 such that sp ∈ OX3 .
Choose any lift u ∈ OX2 of s. Then the pair (up, sp) ∈ OX2 ×OX3 glues to an element of OY
that is a p-th power of u. Therefore u ∈ OY , and its restriction to X3 is precisely s.

Conversely, assume that X3 is weakly normal in X1. Pick an element v ∈ OX2 such that
vp ∈ OY . If t ∈ OX1 is the restriction of v to X1, then tp ∈ OX3 . Thus t ∈ OX3 already.
Therefore the pair (v, t) ∈ OX2 ×OX3 glues to v ∈ OY .

Next let us recall the structure theorems for seminormal and weakly normal ring extensions,
given in [Tra70] and [Yan83]. Let A ⊂ B be a finite extension of rings, p be a prime ideal of
A and p1, . . . , pn the prime ideals of B lying over p. We have a natural map k(p) →

∏
i k(pi).

Consider the pullback diagram of rings

A+ B

k(p)
∏n
i=1 k(pi).

We call A+ the gluing of B over p ⊂ A. It is an intermediate extension of A ⊂ B, with a
unique prime ideal p+ over p ⊂ A whose residue field is k(p+) = k(p).

Furthermore, let k′ be the largest subfield of
∏
i k(pi) which is a purely inseparable extension

of k(p). Consider the pullback diagram

A∗ B

k′
∏n
i=1 k(pi).

We call A∗ the weak gluing of B over p ⊂ A. It is an intermediate extension of A ⊂ B, with
a unique prime ideal p∗ over p ⊂ A whose residue field is k(p∗) = k′.

Theorem 4.3.2.2 ([Tra70, Theorem 2.1] and [Yan83, Theorem 3]). Let A ⊂ B be a finite
extension of Noetherian rings. Then A is seminormal (resp. weakly normal) in B if and only
if then there exists a finite sequence of finite extensions

A = A0 ⊂ A1 ⊂ · · · ⊂ An = B

where Ai is the gluing (resp. the weak gluing) of Ai+1 over a prime ideal of Ai.

Lemma 4.3.2.3. Let (R,m) be a nodal ring. Then R is seminormal in its normalization Rν ,
and R is the gluing of Rν over m ⊂ R. Furthermore, R is weakly normal in Rν if and only if
R is a separable node.
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Proof. By Lemma 4.2.0.3 the conductor of R ⊂ Rν is a radical ideal of Rν . Thus by [Kol96,
Appendix I.7.2.5] we obtain that R is seminormal in Rν if and only if k(m) is seminormal in
Rν/mRν . The latter is trivially true.

Let R+ be the gluing of Rν over m ⊂ R. By construction R ⊂ R+ induces an homeomor-
phism of spectra and isomorphisms on residue fields. Thus R = R+ by seminormality.

In particular we have a pullback diagram

R Rν

k(m) R/mR.

(3.2.3.a)

By Proposition 4.3.0.1, R/mR is a two-dimensional k(m)-vector space, and a purely inseparable
field extension if and only if R is an inseparable node. Thus R is the weak gluing of Rν above
m ⊂ R if and only if R is a separable node.

Corollary 4.3.2.4. Let X be a demi-normal scheme with normalization π : X̄ → X. Then π
is seminormal. It is weakly normal if and only if X has only separable nodes.

Proof. SinceX is reduced and satisfies the condition S2, this follows at once from Lemma 4.3.2.3
and from the characterization of seminormality and weak normality in terms of functions ex-
plained in [Yan83, §1].

Corollary 4.3.2.5. Let X be a demi-normal scheme with normalization π : X̄ → X. A section
s ∈ π∗OX̄ belongs to OX if and only if, for all codimension one point η ∈ X, we have

s|X̄η ∈ im
[
k(η)→ H0(X̄η,OX̄η)

]
.

Proof. Let s ∈ π∗OX̄ be a section satisfying the restriction condition of the statement. Looking
at the pullback diagram (3.2.3.a), with R = OX,η, we deduce that s ∈ OX,η. Since X is S2 and
η is arbitrary, we obtain that s ∈ OX . The converse is clear.

4.3.3 Structure of the normalization morphism

Using the constructions to be described in the next two sections, we can now give a precise
structure result for the normalization of demi-normal schemes:

Proposition 4.3.3.1. Let X be a demi-normal variety and π : X̄ → X its normalization. Then
we have a factorization

π =
(
X̄

ν−→ X̃
F−→ X

)
where

(a) ν is the geometric quotient of X̄ by the finite set-theoretic equivalence relation induced by
the separable nodes of X (see Section 4.4);

(b) F is the purely inseparable gluing induced by the inseparable nodes of X (see Section 4.5),
and F = id if 2 ∈ O∗X .

Moreover ν is weakly normal, and F is seminormal but not weakly normal.

Proof. Let D = DG + DI ⊂ X be the conductor where DG is the divisor corresponding to
separable nodes and DI is the divisor corresponding to inseparable nodes. Write accordingly
D̄ = D̄G + D̄I the conductor in X̄. By Lemma 4.2.0.5 the morphism D̄n

G → D̄G is Galois with
involution τ . The morphism π is finite and τ -invariant, so the quotient ν : X̄ → X̄/R(τ) =: X̃
exists and factors π. The scheme X̃ is a demi-normal variety with normalization X̄ (see
Proposition 4.4.0.1).
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The purely inseparable morphism D̄I → DI gives a collection of degree 2 purely inseparable
field extensions k(ηi) ⊂ k(η̄i), where ηi runs through the generic points of DI and η̄i through
the corresponding generic points of D̄I . Since ν is an isomorphism at the generic points of D̄I ,
we may apply Construction 4.5.0.2 to these field extensions to obtain the purely inseparable
F : X̃ → X ′. Notice that OX′ ⊂ OX̃ is an equality at every codimension one point of X ′ that
is not a generic point of ν(D̄I).

We claim that X ′ = X. By the universal property of the quotient the morphism π : X̄ → X
factors through X̃, say

X̄ X

X̃

ν

π

r

Both π and ν are finite, so by [Sta, 01YQ] and [AT51, Theorem 1] we see that r is also finite.
By the proof of [Kol13, 5.3] the morphism r is an isomorphism above every codimension one
point of X that is not a generic point of DI = r(ν(D̄I)). Combining with Proposition 4.3.0.11
we obtain that for every codimension one point η of X, we have OX,η = (r∗OX′)η as subrings
of (r∗OX̃)η. Since OX and r∗OX′ are S2 [KM98, 5.4] we deduce that OX = r∗OX′ . In other

words (r : X̃ → X) = (F : X̃ → X ′).

4.4 CONSTRUCTION OF SEPARABLE NODES

In this subsection we show how separable nodes appear when quotienting by finite equiva-
lence relations.

Proposition 4.4.0.1. Let X be a Noetherian scheme with disjoint and normal irreducible com-
ponents of finite type over a scheme k, D ⊂ X a reduced divisor with normalization n : Dn → D
and a generically fixed point free involution τ : Dn → Dn. Let R ⊂ X ×X be the equivalence
relation induced by τ . Assume that either
◦ k is a field of positive characteristic and R is finite, or

◦ there exists a finite morphism X → X ′ which is R-invariant.
Then:

(a) the finite geometric quotient π : X → X/R exists;

(b) X/R is demi-normal of finite type over k, π(D) is its conductor subscheme, π is the
normalization morphism and is étale over the codimension one points of X/R;

(c) if X is proper over k, then so is X/R;

(d) the involution on Dn induced by D → π(D) is precisely τ .

Proof. It follows from Theorem 2.5.0.2 (in case k is a field of positive characteristic) or from
[Kol13, 9.10] (in case a finite R-invariant morphism exists) that the geometric quotient π : X →
X/R =: Y exists and the quotient morphism is finite, see Section 2.5. Since R restricts to the
identity on X \D, the restriction π|X\D is an isomorphism onto its image. Since π is finite, it
must therefore be the normalization morphism. If X is of finite type over k, then so is Y by
[Kol12, Theorem 41.2].

If X is proper over k, then Y is also proper over k by [Sta, 09MQ,03GN].
For the rest of the proof, let us remark that taking the quotient commutes with flat base-

change [Kol13, 9.11], thus we are free to localize on Y to perform our arguments.
Next we to show that Y is demi-normal. First of all, since Y is of finite type over k, it is

excellent and each local ring of Y is a quotient of a regular ring. We claim that Y is reduced.
Indeed, since X is reduced then the two compositions

R⇒ X
π−→ Y
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factor uniquely through Yred, and by the universal property of categorical quotients [Kol12,
Definition 4] it follows that Y = Yred. (A similar argument shows that π must be dominant, so
Y is irreducible if and only if X is).

We show that Y is nodal. For this we may localize at a codimension one point of Y . Then
the set-up is the following: Y = SpecA is local with maximal ideal n, X = SpecB is semi-local
with maximal ideals mi, the map D → π(D) corresponds to A/n ↪→

⊕
iB/mi, and since D is

normal the involution τ becomes a non-trivial involution of
⊕

iB/mi. Notice that the natural
map π : B →

⊕
iB/mi is surjective by the Chinese remainder theorem. Now consider the

commutative square

A B

K := A/n L :=
⊕

iB/mi

π

According to [Kol13, 9.10], a section s ∈ B belongs to A if and only if π(s) = τ(π(s)). So we
deduce that the fixed subring L〈τ〉 is equal to K, and that the Jacobson radical of B belongs
to A. We claim that dimK L = 2. Since the fibers of X → Y are the R-equivalence classes, we
see that B has at most two maximal ideals, and we consider these two cases separately:

(a) B is local. Then K ⊂ L is a field extension. Since L〈τ〉 = K, we deduce that the extension
is Galois of degree 2.

(b) B has two maximal ideals. Then L = L1 ⊕ L2, in which K embedds diagonally, and τ
exchanges the two components via an isomorphism L1

∼= L2. Identifying L2 with L1 via
this isomorphism, we see that τ acts on L1 ⊕ L1 via (x, y) 7→ (y, x). In particular the
diagonal is fixed, so it must be equal to (the diagonal embedding) of K. Since L1⊕L1 is
of dimension 2 over its diagonal, we have dimK L = 2.

By Lemma 4.2.1.1 it follows that Y is nodal. This also proves that the extension of function
fields given by π : D → π(D) is precisely k(D)〈τ〉 ⊂ k(D), so the last statement holds.

To show that Y is demi-normal, by virtue of Lemma 4.2.1.4 it remains to show that Y is
S2. This follows from Lemma 4.4.0.2 below.

Lemma 4.4.0.2. Let X be a reduced equidimensional scheme and D ⊂ X a reduced scheme
of pure codimension one. Let τ be an involution of Dn, such that R(τ) ⇒ X is a finite set
theoretic equivalence relation, and such that the geometric quotient p : X → Y := X/R(τ) exists
as a scheme. If X is S2, then so is Y .

Proof. Since X is reduced, the morphism p : X → Y factors through Yred. It follows by the
universal property of p that Yred → Y is an isomorphism, so Y is reduced and in particular
S1. Thus by [Har07, 1.8], it is sufficient to show that for every U ⊂ Y open and Z ⊂ U closed
of codimension ≥ 2, the restriction map OY (U) → OY (U \ Z) is surjective. The quotient is
Zariski-local, so we may assume that U = Y .

Take s ∈ O(Y \Z). Since X is S2 and p−1(Z) has codimension ≥ 2, the section p∗s extends
to a global section over X. By construction p∗s|Dn is τ -invariant on an open dense subset,
hence it is globally τ -invariant. Thus p∗s descends to a global section of Y [Kol13, 9.10] which
is an extension of s.

4.5 CONSTRUCTION OF INSEPARABLE NODES

The goal of this section is to characterize completely demi-normal varieties with only in-
separable nodes in terms of their normalizations. This is achieved in Theorem 4.5.0.6 below.
The main ingredient is a construction of inseparable nodes which we present now. It can be
seen as a global equivalent of the weak gluing of rings described in [Yan83, §3], that we recalled
in Section 4.3.2: it is however more convenient for us to give a complete treatment of the
construction.
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Convention 4.5.0.1. In this subsection, we let X be a Noetherian equidimensional reduced
scheme defined over a field k of characteristic 2.

Construction 4.5.0.2. Let D =
∑n

i=1Di be a reduced Weil divisor on X. Let ki := k(Di) be
the function field Di. Assume that for each i, we have an intermediate extension k ⊂ k′i ( ki
such that k′i ⊂ ki is purely inseparable of degree 2. We construct a subsheaf A = A(k′1, . . . , k

′
n)

of OX as follows: if U ⊂ X is open, we let

A(U) := {s ∈ OX(U) | s(ηi) ∈ k′i ∀ηi ∈ U}

where ηi is the generic point of Di, and s(ηi) denotes the image of s through the canonical map
OX(U)→ ki. This defines a presheaf, which is easily seen to be a subsheaf of OX .

Proposition 4.5.0.3. Let X,D, k′i ⊂ ki and A be as in Construction 4.5.0.2. Then:
(a) O2

X ⊂ A ⊂ OX ;

(b) A is a sheaf of k-algebras and SpecA := (|X|,A) is a reduced equidimensional scheme;

(c) SpecA is Noetherian if X is excellent or F -finite;

(d) if X is S2 and SpecA is Noetherian, then SpecA is S2;

(e) if X is excellent (resp. F -finite, resp. locally of finite type over k, resp. proper over k),
then so is SpecA;

(f) the morphism π : X → SpecA is an affine integral birational universal homeomorphism,
and it is finite if X is excellent;

(g) X and SpecA have the same normalization.

Proof. It is clear that A is a sheaf of k-sub-algebras of OX . Since ki/k
′
i is inseparable of degree

2, we have (ki)
2 ⊆ k′i for each i and it follows that O2

X ⊆ A. To show that SpecA is a scheme,
we may assume that X = SpecR is affine Noetherian. Then |SpecA| = |X|, and it is sufficient
to show that A(Xf ) = A(X)f2 for f ∈ R. The containment ⊇ is clear. For the converse one, let
s/fn ∈ A(Xf ) ⊂ Rf with s ∈ R. Then s̄/f̄n ∈ k′i, so f̄ns̄ ∈ k′i as f̄2n ∈ k′i. Hence fns ∈ A(X),
so

s

fn
=
fns

f2n
∈ A(X)f2 .

Hence SpecA is an integral scheme and the structural morphism π : SpecX → SpecA factors
the Frobenius morphism of X. In particular π is an affine integral universal homeomorphism.

It is clear that π is an isomorphism away from the support of D. Since π is integral, the
normalization of X and SpecA are the same.

Assume that X is locally of finite type over k. Then SpecA is locally of finite type over k2

by [Kol12, Theorem 41.2]. Similarly, if X is proper over k then by [Sta, 09MQ,03GN] it follows
that SpecA is proper over k.

Assume that X is S2. Since SpecA is S1 and X → SpecA is an homeomorphism, it follows
easily from the criterion given in [Har07, 1.8] that SpecA is S2, provided it is Noetherian.

Now assume that R is excellent. Since R is reduced, we have an abstract ring isomorphism
R ∼= R2, and so R2 is also excellent. An excellent ring is Nagata [Sta, 07QV], so A := A(X) ⊂
Frac(R) is a finite R2-module. Therefore A is Noetherian and excellent [Sta, 07QU]. Applying
the same argument for A ⊂ R, we obtain that R is finite over A. In particular π is finite.

If R is F -finite, then it is a finite R2-module. Since R2 is Noetherian, we get that R is a
Noetherian R-module. As A ⊂ R is an R2-submodule, we obtain that A is a finite R2-module,
and hence a Noetherian ring. Moreover R4 → R2 is a finite extension and factors through A2,
so A2 → R2 is a finite extension. Hence A2 → R2 → A is a composition of finite extensions, so
it is finite, which means that A is F -finite.

Proposition 4.5.0.4. Notations as in Proposition 4.5.0.3. Assume that X is excellent, normal
at the generic points of D and demi-normal elsewhere. Then SpecA is demi-normal with
inseparable nodes at the generic points of D.
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Proof. Let η ∈ X be a generic point of D, and k′η ⊂ kη := k(η) the inseparable degree 2
sub-extension fixed at the beginning. By assumption OX,η is a DVR. We know that

O2
X,η ⊂ Aη ⊂ OX,η

and since X is excellent, the extension O2
X,η ⊂ Aη is finite. In particular there is a sujective

map of rings
O2
X,η[x1, . . . , xn]� Aη

and O2
X,η[x1, . . . , xn] is a regular ring. This shows that Aη is a quotient of a regular ring.

Moreover Aη → OX,η is the normalization. By construction mX,η = mA,η ⊂ Aη and Aη/mA,η =
k′η, so

dimAη/mA,η OX,η/mX,η = dimk′η kη = 2.

Therefore η ∈ SpecA is nodal by Lemma 4.2.1.1, and it is an inseparable node by definition.
On the other hand, SpecA is demi-normal at codimension one points that are not in the image
of D, since π is an isomorphism in a neighborhood of such points. Since the S2 property of X
descends to SpecA, we obtain that SpecA is demi-normal.

Proposition 4.5.0.5. Notations as in Proposition 4.5.0.3. Assume that X is excellent, normal
at the codimension one points of D and demi-normal elsewhere. Let ∆ be a Q-Weil divisor on
X that shares no common component with D. Assume that KX +D + ∆ is Q-Cartier. Then:

(a) if ∆A := π∗∆, then KSpecA + ∆A is Q-Cartier;

(b) KX +D + ∆ = π∗(KSpecA + ∆A).

Proof. The Gorenstein locus j : U ⊂ SpecA is open [GM78, 1.5], and by Proposition 4.5.0.4 and
Lemma 4.2.1.4 it contains every codimension one point. By [Kol13, 5.7], we have π∗KSpecA =
KX + D above every codimension one point of SpecA. Since ∆ and D have no common
components, we may shrink U (but keeping it a big open subset) and assume that π−1(U) ∩
D ∩ Supp ∆ is empty. As π is an isomorphism outside D, we obtain that KSpecA + ∆A is
Q-Cartier over U and

π∗U (KSpecA + ∆A)|U ∼Q (KX +D + ∆)|π−1U .

By [Kee99, Lemma 1.4.3], the pullback map π∗ : Pic(SpecA)[1/2] → Pic(X)[1/2] is an iso-
morphism, and this statement localizes on X. Since KX + D + ∆ is Q-Cartier, for m di-
visible enough there is a Cartier divisor L on SpecA, unique up to isomorphism, such that
π∗L = m(KX +D + ∆). By uniqueness over U we have

LU ∼Q m(KSpecA + ∆A)|U .

Since O(L) and O(m(KSpecA + ∆A)) are reflexive and U is big, we obtain that

L ∼Q m(KSpecA + ∆A)

which proves that KSpecA+ ∆A is Q-Cartier and pullbacks (as Q-divisor) to KX +D+ ∆.

Theorem 4.5.0.6. Let k be a field of characteristic 2. Let P be any (or none) of the following
properties: F -finite, locally of finite type over k, proper over k.

Then normalization gives a one-to-one correspondence

(char k = 2)


Demi-normal excellent reduced

equidimensional schemes Y over k
with only inseparable nodes

satisfying P

 1:1−→



Triples
(
X,
∑

iDi, k ⊂ k′i ⊂ k(Di)
)

where X is a normal excellent
scheme over k satisfying P,∑
iDi is a reduced Weil divisor,
k′i ⊂ k(Di) are degree 2

inseparable extensions over k


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whose inverse is given by Construction 4.5.0.2. This correspondence specializes to

(char k = 2)

 Demi-normal surface
pairs (S,∆) over k

with only inseparable nodes

 1:1−→
(

Normal surface

pairs (S̃, D̃ + ∆̃) over k

)

where S is proper if and only if S̃ is proper, and KS + ∆ is ample if and only if KS̃ + D̃ + ∆̃
is ample.

Proof. Given
(
X,
∑

iDi, k ⊂ k′i ⊂ k(Di)
)

as in the right-hand side, Construction 4.5.0.2 gives a
k-scheme Y . By Proposition 4.5.0.3 and Proposition 4.5.0.4, Y satisfies the claimed properties.
This gives a map Φ: {(X,

∑
iDi, k

′
i ⊂ k(Di))} → {Y }.

Conversely, let Y be as in the left-hand side with conductor D ⊂ Y . Let Y ν → Y be
its normalization with conductor Dν ⊂ Y ν . Since the normalization is finite, the finiteness
properties of Y ascend to Y ν . Then (Y ν , Dν , k(D) ⊂ k(Dν)) is a triplet as in the right-hand
side. This gives a map ν : {Y } → {(X,

∑
iDi, k

′
i ⊂ k(Di))}.

The composition ν ◦ Φ is the identity by Proposition 4.5.0.3 and Proposition 4.5.0.4. To
check that Φ ◦ ν(Y ) = Y , observe that both sides can be described by their structural sheaves
on the topological space |Y |, and that both OΦ◦ν(Y ) and OY are S2 subsheaves of OY ν . Thus
it suffices to show that OΦ◦ν(Y ) = OY at codimension one points. Equality is obvious on the
normal locus. On the demi-normal locus, it follows from Proposition 4.3.0.11.

Now let us consider the surface case. We claim that if S̃ is a normal surface over k and D̃ ⊂ S̃
is a prime Weil divisor, then there is a unique purely inseparable degree 2 sub-extension k′ ⊂
k(D̃) containing k. Since trdegk k(D̃) = 1, there is indeed a unique such sub-extension, given
by the relative Frobenius of k(D) over k: see the proof of [Sta, 0CCY]. By Proposition 4.5.0.5,
KS + ∆ is Q-Cartier if and only if KS̃ + D̃+ ∆̃ is Q-Cartier, and the first one pullbacks to the

second one. Since the normalization S̃ → S is finite, the ampleness statement is immediate.

4.6 APPLICATION: EMBEDDINGS OF DEMI-NORMAL VARIETIES

Let us prove the following theorem, which is a positive characteristic analog of the main
result of [Ber14].

Theorem 4.6.0.1. Let U be a demi-normal scheme that is separated and of finite type over a
scheme B that is of finite type and separated over an arbitrary field of positive characteristic.
Then there exists a demi-normal U that is proper over B, and a commutative diagram

U U

B

j

where j is a dominant open embedding. In addition:
(a) We can arrange so that the singular codimension one points of U are all contained in U .

(b) If U is quasi-projective over B, then we can arrange so that U is projective over B.

Proof. By Nagata compactification [Sta, 0F41] we can find a proper V over B such that U
embeds as a dense open B-subscheme of V . Let n : V n → V be the normalization. Let D̄ be
the closure of the conductor DUn ⊂ Un. Since U is demi-normal we can write D̄ = D̄G + D̄I ,
we have an involution τ of D̄n

G over V , and for every generic point η ∈ D̄I the data of a purely
inseparable degree 2 sub-extension of k(η). Notice that R(τ)⇒ V n is finite, since it arises from
a normalization. Thus we may apply Proposition 4.4.0.1 and Theorem 4.5.0.6 to obtain a finite
morphism V n → U where U is demi-normal. The image of Un is open dense and isomorphic
to U , and the codimension one singular points of U are contained in U by construction.
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We show that U is proper over B. By Proposition 4.3.3.1, the morphism V n → U can be
decomposed as

V n q1−→ Ũ
q2−→ U

where q1 is the quotient by R(τ), and q2 factors the Frobenius. Since τ commutes with the
projection to V on the dense open subset Dn

Un , it does globally, and so V n → V factors as

V n → Ũ
h→ V . The construction of OU ⊂ OŨ is given by Construction 4.5.0.2 and it is easy

to verify that OV ⊂ h∗OŨ . Thus Ũ → V factors through U . Since V n → V and V n → U are
finite, by [Sta, 01YQ] and [AT51, Theorem 1] we see that U → V is finite. In particular U is
proper over B.

Finally, assume that U is quasi-projective over B. Then instead of an arbitrary proper
compactification, we can simply take V to be a projective closure of U over B. Let H be a
Cartier divisor on V that is ample over B. Its pullback HU is also ample over B, thus U is
projective over B.
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Chapter 5

Gluing theory for slc surfaces and
threefolds in positive characteristic

This chapter corresponds to the preprint [Pos21c, §4-5].

Convention 5.0.0.1. We work over a field k of positive characteristic. The assumptions on k
vary through the chapter, and will be precised at the appropriate places.

5.1 INTRODUCTION

Semi-log canonical (slc) varieties were first introduced by Kollár and Shepherd-Barron in
[KSB88] to study the moduli functor of surfaces of general type over the complex numbers.
They showed that slc singularities appear on the special fibers of stable degenerations of smooth
surfaces of general type, and that the moduli functor of complex slc surfaces of general type is
coarsely represented by a separated algebraic space. It was proved a few years later that this
coarse moduli space is in fact projective [Kol90, Ale94]. These results showed the importance
of canonically polarized slc varieties (also called stable varieties) for the compactification of
the moduli functor of smooth varieties of general type. Indeed, it has been shown that the
moduli functor Mn,v of stable varieties (of any fixed dimension n and volume v) over a field
of characteristic zero, is coarsely represented by a projective algebraic space of finite type over
that field [Vie95, HK04, Kar00, AH11, Kol13, Fuj18, HMX18, KP17]. See the forthcoming
book [Kol21] for an exposition of the proof and of many related results.

The study of slc singularities and the construction of the compact coarse moduli space of
Mn,v owe much to the recent development of the Minimal Model Program (MMP), see e.g.
[Kar00, HMX18, Kol13]. Here a technical issue seems to arise: the methods of the MMP work
best for normal varieties while they might fail for normal crossing singularities [Kol11], and slc
singularities are not normal as they might have nodes in codimension one. An effective way to
solve this issue is to study the normalization, which has lc singularities, and then descend the
information along the normalization morphism. This idea is exploited to prove the valuative
criterion of properness of Mn,v, see Section 5.5 for details, and has been fruitful to study
abundance of stable varieties, [Fli92, §12] and [HX13, HX16, FG14]. These results rely on a
theory that allows one to go back and forth between slc varieties and their normalization in
a systematic way. The main goal of this article is to establish such a theory for surfaces and
threefolds in positive characteristic.

5.1.1 Gluing theory for slc varieties

Let X be an slc variety, with normalization ν : X̄ → X, and conductor divisors D ⊂ X and
D̄ ⊂ X̄. The morphism D̄ → D generically looks like the normalization of the node, hence it is
generically Galois of degree 2 (at least in characteristic 6= 2). This induces a Galois involution
τ on the normalization of D̄. Then one should be able to reconstruct X by gluing together
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the points that belong to the same τ -equivalence classes. This is rather easy to accomplish
with the theory of quotients by finite equivalence relations. What is difficult is to decide which
triplets (X̄, D̄, τ) arise as normalization of slc varieties. In the case of stable varieties over a
field of characteristic zero, the answer is given by Kollár’s gluing theory, developed in [Kol13].
An overview of this theory is given in Section 5.2.

In this article, we establish a gluing theory for slc surfaces and threefolds in positive char-
acteristic. As the case of surfaces and the case of threefolds are quite different, with respect to
both methods and results, we shall present them separately.

Gluing for surfaces.

For surfaces we prove the following theorem:

Theorem 5.1.1.1 (Theorem 5.3.1.1 and Theorem 5.3.2.1, see also Theorem 5.3.3.1). Let k be
a field of positive characteristic.

(a) If char k > 2, then normalization gives a bijection

(
Slc surface pairs (S,∆)

of finite type over k

)
1:1−→


Lc surface pairs (S̄, D̄ + ∆̄)

of finite type over k
plus an involutionτ of (D̄n,DiffD̄n ∆̄)

that is generically fixed point free on every component .


(b) If char k = 2, then normalization gives a bijection

(
Slc surface pairs (S,∆)

of finite type over k

)
1:1−→


Lc surface pairs (S̄, D̄Gal + D̄ins + ∆̄)

of finite type over k
where D̄Gal, D̄ins and ∆̄ have no common component,

plus an involutionτ of (D̄n
Gal,DiffD̄nGal

(∆̄ + D̄ins))

that is generically fixed point free on every component.


Here it is understood that the divisors D̄, D̄Gal, D̄ins are reduced and that the divisors ∆̄ have
rational coefficients in (0; 1].

We emphasize that the surface pairs in the above theorem are not assumed to be proper
over the base field. Actually, we also prove a semi-local version of the above theorem in
Theorem 5.3.3.1. This seems to be a special feature of the lc surface case: compare with
[Kol13, 5.13] and the counterexamples in [Kol13, §9.4].

If char k > 2 the proof follows from the results of [Kol13, §5.3] and the observation that
the equivalence relation on S̄ generated by τ is finite by adjunction and dimensional reasons
— with the caveat that in the semi-local situation, the construction of the inverse map to the
normalization process is slightly indirect. The case char k = 2 is more interesting, as a special
case of normalization appears: the morphism between the conductors D̄ → D might be purely
inseparable, see Example 4.3.0.8. To analyse these cases, we build on Theorem 4.5.0.6 that we
proved in the previous chapter.

Gluing for threefolds.

Gluing theory for threefold pairs (X,∆) is more challenging. We follow the strategy of Kollár.
As the proof of the two-dimensional case hints at, we would like to have a theory of adjunction
for lc centers that have codimension greater than one (see Remark 5.3.1.2). Instead of looking
directly at an lc center Z ⊂ X, Kollár’s idea is to consider a crepant Q-factorial dlt blow-up
(Y,∆Y ), and a strata of ∆=1

Y that is minimal over Z. The following theorem shows that the
crepant birational class of that strata serves as an higher codimension version of adjunction:
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Theorem 5.1.1.2 (Theorem 5.4.2.18 and Corollary 5.4.2.25). Let f : (Y,∆Y ) → (X,∆ =
∆=1 + ∆<1) be crepant Q-factorial dlt blow-up of a quasi-projective lc threefold pair over a
perfect field of characteristic > 5. Let Z ⊂ X be a lc center contained in ∆=1 with normalization
Zn → Z.

Let (S,∆S := Diff∗S ∆Y ) ⊂ Y be a minimal lc center over Z, with Stein factorization
fnS : S → ZS → Zn. Then:

(a) The crepant birational equivalence class of (S,∆S) over Z does not depend on the choice
of S or Y . We call it the source of Z, and denote it by Src(Z,X,∆).

(b) The isomorphism class of ZS over Z does not depend on the choice of S or Y . We call
it the spring of Z, and denote it by Spr(Z,X,∆).

(c) (S,∆S) is dlt, KS + ∆S ∼Q,Z 0 and (S,∆S) is klt on the generic fiber above Z.

(d) The field extension k(Z) ⊂ k(ZS) is Galois and BircZ(S,∆S)� Gal(ZS/Z).

(e) For m > 0 divisible enough, there are well-defined Poincaré isomorphisms

ω
[m]
Y (m∆Y )|S ∼= ω

[m]
S (m∆S).

(f) If W ⊂ (∆=1)n is an irreducible closed subvariety such that n(W ) = Z, where n : (∆=1)n →
∆=1 is the normalization, then

Src(W, (∆=1)n,Diff(∆=1)n ∆<1)
cbir∼ Src(Z,X,∆)

and
Spr(W, (∆=1)n,Diff(∆=1)n ∆<1) ∼= Spr(Z,X,∆).

This theorem is analog to [Kol13, 4.45] and indeed our proof is similar to Kollár’s one.
Notice however that we only consider lc centers that are contained in the reduced boundary:
see Remark 5.4.2.26 for what we can say about the other lc centers. The main step of the proof
is to study the relation between the lc centers of (Y,∆Y ) that are minimal above Z. This is
done in Section 5.4.2, using the notion of weak P1-links (see Definition 5.4.2.6), which is a slight
generalization of [Kol13, 4.36]. The proofs are once again similar to those of Kollár, but some
complications arise: for example the analog of [Kol13, 4.37] in positive characteristic requires
some thought, since the torsion-freeness of some higher pushforward is not available. This is
bypassed in the proof of Proposition 5.4.2.12 using MMP and connectedness theorems.

Once the theory of higher codimension adjunction is established, we apply it to the gluing
problems for lc threefolds. We obtain:

Theorem 5.1.1.3 (Theorem 5.4.3.6). Let k be a perfect field of characteristic > 5. Then
normalization gives a bijection

Proper slc threefold pairs
(X,∆) such that
KX + ∆ is ample

 1:1−→


Proper lc threefold pairs (X̄, D̄ + ∆̄)

plus an involution τ of (D̄n,DiffD̄n ∆̄)
that is generically fixed point free on each component

such that KX̄ + D̄ + ∆̄ is ample.


The method of proof is similar to [Kol13, 5.33, 5.37, 5.38]. Let us emphasize that quotients

are actually easier to construct in positive characteristic than in characteristic zero, thanks to
[Kol12, Theorem 6]: one only has to prove that the gluing relation is finite. The theory of
sources and springs gives an appropriate set-up to study the gluing problem, but contrarily to
the surface case, finiteness is non-trivial. In characteristic zero, the proof of finiteness relies on
the theory of pluricanonical representations (also called B-representations by some authors), see
[Kol13, §10.5]. This is well-understood in characteristic zero, but to my knowledge completely
open in general over a field of positive characteristic. Fortunately the gluing problem for
threefolds involves only simple cases, which are discussed in Section 5.4.1.

70



Before presenting some applications of this theory, let us say a word about the generalization
to higher dimensions. The theory of sources and springs for threefolds (except for the Galois
property) ultimately relies on existence of crepant Q-factorial blow-up for threefolds and on
the MMP for surfaces: recent developments in birational geometry, e.g. [Wal18, HW19, BK21],
make us confident that these tools will soon be available in one dimension higher at least.
Two other aspects of the proof are more problematic: the Galois property and pluricanonical
representations. For threefolds, we prove the Galois property using the classification of surface
lc singularities to make sure that inseparable extensions do not appear (see Step 3 in the proof
of Theorem 5.4.2.18). A finer approach is needed in higher dimension. As for pluricanonical
representations, already the case of surfaces of intermediate Kodaira dimension is challenging.

5.1.2 Applications

Let us present some applications of our theorems.

Geometry of demi-normal varieties

The study of nodal singularities leads to several interesting consequence for the geometry of
demi-normal schemes.

In characteristic 2, the normalization of a demi-normal scheme X̄ → X might create a
conductor morphism D̄ → D that is purely inseparable. To understand these cases, which we
baptise inseparable nodes, we analyse in detail the normalization theory of nodes in Section 4.3.
It turns out that inseparable nodes in any dimension are completely determined by the extension
of functions fields given by D̄ → D, namely:

Theorem 5.1.2.1 (Theorem 4.5.0.6). Let k be a field of characteristic 2. Then normalization
gives a bijection

(
Demi-normal varieties over k

with only inseparable nodes

)
1:1−→


Triples

(
X,
∑

iDi, k ⊂ k′i ⊂ k(Di)
)

where X is a normal variety over k,∑
iDi is a reduced Weil divisor,
k′i ⊂ k(Di) are degree 2

inseparable extensions over k


whose inverse is given by Construction 4.5.0.2.

We also study the étale theory of inseparable nodes in Section 4.3.1 and show that the
distinction between separable and inseparable nodes holds étale-locally.

The study of the gluing formalism in Section 4.4 and Section 4.5 can be applied to the
following compactification property:

Theorem 5.1.2.2 (Theorem 4.6.0.1). Let X be a demi-normal scheme that is separated and
of finite type over a field k of positive characteristic. Then X embedds as an open subset of a
demi-normal scheme that is proper over k.

This is a positive characteristic analog of the main result of [Ber14], and the proof is similar
in spirit.

It is possible to study slc surfaces by means of partial resolutions, as it is done in [KSB88,
§4] for complex surfaces. While we do not use this approach, we record that gluing theory can
be used to prove the existence of partial resolutions in positive characteristic 6= 2:

Theorem 5.1.2.3 (Theorem 5.3.4.8). Let S be a demi-normal surface over an arbitrary field
of characteristic 6= 2. Then S has an slc good semi-resolution (see Definition 5.3.4.4).

See Remark 5.3.4.11 and Proposition 5.3.4.12 for some partial results in characteristic 2.
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Lc centers of threefolds.

The theory of sources and springs has the following consequence for the topology of lc centers:

Theorem 5.1.2.4 (Corollary 5.4.2.16 and Corollary 5.4.2.17). Let (X,∆) be a quasi-projective
slc threefold over a perfect field of characteristic > 5. Then:

(a) Intersections of lc centers are union of lc centers.

(b) Minimal lc centers are normal up to universal homeomorphism.

Let us mention that the question of normality of plt centers has been studied extensively.
There are examples of non-normal plt centers on threefolds in characteristic 2 [CT19]. More
generally, if the characteristic is too small compared to the dimension, there are examples of
non-normal plt centers in arbitrary big dimensions [Ber19, Theorem 1.1]. On the positive side,
plt centers on threefolds are normal in characteristic > 5 [HX15, Theorem 3.11, Proposition
4.1] and normal up to universal homeomorphism in general [HW19, Theorem 1.2] (see also
[GNT19, §3.2]).

Moduli space of stable surfaces.

We also give an application of the gluing theory of threefolds, to the moduli theory of stable
surfaces in positive characteristic. By contrast to the characteristic zero theory, not much is
known about the moduli functor of stable varieties in positive characteristic beyond the classical
case of stable curves. For example, the existence of a coarse moduli space in arbitrary dimension
is not known. Nevertheless, the moduli functor M2,v,k of stable surfaces over an algebraically
closed field k of characteristic > 5 is known to be represented by a separated algebraic space of
finite type over k [Pat17, Corollary 9.8]. Modulo a weak version of semi-stable reduction and
a technical adjunction condition (denoted respectively by (SSR) and (S2), see Section 5.5 for
details), we prove the valuative criterion of properness for M2,v,k. Combining with the main
result of [Pat17] we obtain:

Theorem 5.1.2.5 ([Pat17] and Theorem 5.5.0.5). Let k be an algebraically closed field of
characteristic > 5 and v a rational number. Assume that conditions (S2) and (SSR) hold.
Then M2,v,k admits a projective coarse moduli space.

5.2 INTRODUCTION TO KOLLÁR’S GLUING THEORY

We give a short introduction to Kollár’s gluing theory. Let X be a demi-normal variety
defined over a field k of arbitrary characteristic, with normalization π : X̄ → X. Let D ⊂ X
and D̄ ⊂ X̄ be as in Section 4.2. If char k 6= 2, we have seen in Lemma 4.2.0.5 that D̄n comes
with an involution τ and that the different DiffD̄n(0) is τ -invariant. Hence normalization gives
a map

(char k 6= 2)

(
X demi-normal and

proper over k

)
−→

(
Proper normal pair (X̄, D̄) with

an involution τ of (D̄n,DiffD̄n(0))

)
(2.0.0.a)

Kollár’s gluing theory constructs, under additional assumptions, an inverse map to (2.0.0.a).
More precisely, Kollár shows [Kol13, 5.13] that normalization of demi-normal proper varieties
induces a bijection

(char k = 0)

 Proper slc pairs
(X,∆) such that
KX + ∆ is ample

 1:1−→


Proper lc pairs (X̄, D̄ + ∆̄) plus

a generically fixed point free
involution τ of (D̄n,DiffD̄n ∆̄)

such that KX̄ + D̄ + ∆̄ is ample.

 (2.0.0.b)

We sketch how the inverse map is constructed. Let (X̄, D̄, τ) be a triplet such as in the right-
hand side of (2.0.0.b) (we take ∆̄ = 0 for simplicity). There are two questions to solve: how to
construct X, and how to show that KX is Q-Cartier.
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(a) Construction of X. Similarly to a nodal curve that can be reconstructed from its
normalization by gluing two points, the variety X should be obtained by identifying the
points of D̄ that are conjugate under τ . Since the normalization X̄ → X ought to be
finite, the induced equivalence relation R(τ) ⊂ X̄ × X̄ should be finite. However τ is
defined on D̄n and it is not clear that the equivalence classes on D̄ ⊂ X̄ are finite.
Indeed, they need not be if one drops the hypothesis that (X̄, D̄) is log canonical or that
τ respects the log canonical stratification of (D̄n,DiffD̄n 0) (see [Kol13, 5.17]).

Kollár’s solution is to take advantage of the log canonical stratification and to proceed
by induction on the lc centers of (X̄, D̄). While the singularities of the lc centers Z ⊂ X̄
of high codimension can be complicated, the picture is more transparent if we take a dlt
crepant blow-up (Y,DY )→ (X̄, D̄). Then the lc centers of (X̄, D̄) are images of the strata
of D=1

Y , and one shows [Kol13, 4.45] that the crepant birational class of a minimal stratum
(S,DS) above a fixed lc center Z of (X̄, D̄), is independant of the choice of the resolution
Y and of the choice of S. Then one observes [Kol13, 5.36–37] that the equivalence classes
generated by τ on Z are governed by the group of birational crepant self-maps of (S,DS),
more precisely by the representation of this group on the global sections of the invertible
sheaf associated to KS + ∆S . Then one uses the theory of pluricanonical representations
[Kol13, §10.5] to obtain finiteness.

The relation between (S,DS) and the Stein factorization ZS of S → Z is subtle. One can
think of (S,DS) as a higher codimension version of adjunction for divisors. Kollár coined
the term source for the crepant birational class of (S,DS) and the term spring for the
isomorphism class of ZS , and studied them extensively in [Kol13].

In characteristic zero, finiteness of R(τ) is not sufficient to guarantee the existence of the
quotient X̄/R(τ). However it is sufficient in positive characteristic [Kol12, Theorem 6],
so we will not elaborate on this issue.

(b) Descent of KX̄ + D̄. Once X is constructed, we would like to descend the Q-Cartier
divisor KX̄ + D̄. Kollár’s strategy is to descend the total space T of KX̄ + D̄. Indeed,
the equivalence relation R(τ) lifts to an equivalence relation RT on T , which is shown to
be finite using a strategy similar to the one explained above [Kol13, 5.38].

5.3 GLUING THEORY FOR SURFACES

5.3.1 Gluing theory for surfaces in characteristic > 2

In this section we prove the analog of [Kol13, 5.13] for surfaces in positive characteristic
different from 2.

Theorem 5.3.1.1. Let k be a field of characteristic > 2. Then normalization gives a one-to-
one correspondence

(char k > 2)

(
Slc surface pairs (S,∆)

of finite type over k

)
1:1−→


Lc surface pairs (S̄, D̄ + ∆̄)

of finite type over k
plus an involution τ of (D̄n,DiffD̄n ∆̄) that is

generically fixed point free on every component.


Moreover, S is proper if and only if S̄ is proper, and KS+∆ is ample if and only if KS̄+D̄+∆̄
is ample.

Proof. Given (S̄, D̄ + ∆̄, τ), we claim that the equivalence relation R(τ) ⊂ S̄ ×k S̄ is finite. It
suffices to show that the equivalence classes of the points on D̄ are finite. By [Kol13, 2.35],
the closed subset Σ = Supp DiffD̄n ∆̄ is equal to the preimage through D̄n → D̄ of the set of
points s ∈ D̄ such that: s ∈ D ∩ Supp(∆̄), or D̄ is singular at s, or S̄ is singular at s. Since τ
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is an involution of the pair (D̄n,DiffD̄n D̄), we have τ(Σ) = Σ. Moreover n−1(n(Σ)) = Σ and
n : D̄n − Σ −→ D̄ − n(Σ) is an isomorphism. Therefore:

(a) if s ∈ D̄ − n(Σ), then the equivalence class of s is equal to {s, (n ◦ τ)(s′)} where s′ ∈ D̄n

is the unique point above s;

(b) if s ∈ n(Σ) then the equivalence class of s is contained in n(Σ), which is finite.
This proves our claim. By Proposition 4.4.0.1, the geometric quotient π : S̄ → S̄/R(τ) =: S
exists. It is a demi-normal surface over k, and is proper if and only if S̄ is proper.

Set ∆ := π∗∆̄. Lemma 4.3.0.5 shows that the proof of [Kol12, 5.18] is also valid over
imperfect fields. Thus KS+∆ is Q-Cartier. Since π is an isomorphism from S̄−D̄ onto S−π(D̄)
and ∆ has no components along π(D̄), it follows from Lemma 4.2.0.3 that π∗(KS + ∆) ∼Q
KS̄ + D̄ + ∆̄.

This gives a map Φ: {(S̄, D̄ + ∆̄, τ)} → {(S,∆)}, while the nornalization gives a map
ν in the other direction. We have ν ◦ Φ = Id by Proposition 4.4.0.1, and Φ ◦ ν = Id by
Proposition 4.3.3.1. Therefore the theorem is proved.

Remark 5.3.1.2. The key point of the proof of Theorem 5.3.1.1 is to find the τ -invariant proper
subset Σ ⊂ D̄n with the property that Dn − Σ −→ D̄ − n(Σ) is an isomorphism. Its existence
is given by the fact that τ preserves the lc stratification of (D̄n,DiffD̄n ∆̄). The fact that
dim S̄ = 2 then implies that n(Σ) is finite, from which we deduce finiteness of the equivalence
relation. In particular we do not need any positivity assumption on KS̄ + D̄ + ∆̄ to conclude.

If dim S̄ > 2 then the proof hints at an inductive process on the strata of (D̄n,DiffD̄n ∆̄).
This seems dubious at first, since we have no control on the singularities of the higher codimen-
sion strata. In characteristic zero, the theory of source and springs of lc centers [Kol13, §4.5]
provides a well-behaved replacement for the strata. In Section 5.4.2, we will develop a similar
theory for threefolds in positive characteristic. However, it seems that positivity assumptions
are needed to ensure that finiteness holds in higher codimension.

Claim 5.3.1.3. The map Φ: {(S̄, D̄+∆̄, τ)} → {(S,∆)} in the proof of Theorem 5.3.1.1 is also
defined if char k = 2. Indeed, [Kol13, 2.35] and Proposition 4.4.0.1 hold in every positive char-
acteristic, and descent of the log canonical divisor holds in dimension two by Corollary 4.3.0.7.
♦

5.3.2 Gluing theory for surfaces in characteristic 2

We prove the analog of [Kol13, 5.13] for surfaces in characteristic 2. It is given by a
combination of Theorem 4.5.0.6 and the method of Theorem 5.3.1.1.

Theorem 5.3.2.1. Let k be a field of characteristic 2. Then normalization gives a one-to-one
correspondence

(char k = 2)

(
Slc surface pairs (S,∆)

of finite type over k

)
1:1−→



Lc surface pairs (S̄, D̄Gal + D̄ins + ∆̄)
of finite type over k

plus a generically fixed point free
component, plus an involution

τ of (D̄n
Gal,DiffD̄nGal

(∆̄ + D̄ins)) that is

generically fixed point free on every component.


Moreover, S is proper if and only if S̄ is proper, and KS + ∆ is ample if and only if KS̄ +
D̄Gal + D̄ins + ∆̄ is ample.

Proof. We construct an inverse map in two steps. First of all, thanks to Claim 5.3.1.3 we can
apply the method of Theorem 5.3.1.1 to the triplet (S̄, D̄Gal + Γ̄, τ) where Γ̄ := D̄ins + ∆̄. We
obtain an slc pair (S̃, Γ̃ = D̃ins + ∆̃). Then, we can apply Theorem 4.5.0.6 to it and obtain a

74



slc pair (S,∆). This gives a map

(S̄, D̄Gal + D̄ins + ∆̄, τ)
ΦGal

−−−−−−−→ (S̃, D̃ins + ∆̃)
Φins

−−−−−−−→ (S,∆).

It follows from Proposition 4.3.3.1 that Φins ◦ ΦGal is an inverse map to the normalization.
The statements about properness and ampleness follow from the corresponding statement in
Theorem 4.5.0.6 and Claim 5.3.1.3.

5.3.3 Gluing theory for germs of surfaces

Our gluing theorems for surfaces, Theorem 5.3.1.1 and Theorem 5.3.2.1, are formulated
for surfaces that are quasi-projective. It is natural to ask whether similar statements hold for
germs of surfaces. If (S̄, D̄+ ∆̄) is a germ of lc surface with a log involution τ on (D̄n,Diff ∆̄),
then the argument in the proof of Theorem 5.3.1.1 applies verbatim to show that R(τ) ⇒ S̄
is a finite equivalence relation, and [Kol12, Theorem 6] applies to schemes that are essentially
of finite type over k. So we obtain a quotient S̄/R(τ). However I am not aware of an Eakin–
Nagata type theorem for rings that are essentially of finite type over k, so it is unclear what
type of algebraic space the quotient S̄/R(τ) is. It turns out that it is a germ of variety, but
our proof is somewhat roundabout. The details are given in the next theorem.

Theorem 5.3.3.1. Let k be a field of positive characteristic. Then:
(a) If char k > 2, then normalization gives a one-to-one correspondence

 Slc semi-local affine
surface pairs (S,∆)

essentially of finite type over k

 1:1−→


Lc semi-local affine

surface pairs (S̄, D̄ + ∆̄)
essentially of finite type over k

plus an involution τ of (D̄n,DiffD̄n ∆̄) that is
generically fixed point free on every component.


(b) If char k = 2, then normalization gives a one-to-one correspondence

 Slc semi-local affine
surface pairs (S,∆)

essentially of finite type over k

 1:1−→


Lc semi-local affine

surface pairs (S̄, D̄Gal + D̄ins + ∆̄)
essentially of finite type over k, plus an involution

τ of (D̄n
Gal,DiffD̄nGal

(∆̄ + D̄ins)) that is

generically fixed point free on every component.


Moreover, in both cases S is local if and only if all closed points of S̄ belong to the same
R(τ)-equivalence class.

Proof. We show that, starting with an lc semi-local affine pair (SpecO, DO + ∆O) essen-
tially of finite type over k with an involution τ , we can produce an slc semi-local affine pair
(SpecO′,∆O′) essentially of finite type over k and a finite morphism SpecO → SpecO′ that is
the quotient by R(τ). Then we show that Construction 4.5.0.2 preserves the property of being
essentially of finite type over k. The proof that the combination of these operations is the
inverse of the normalization is exactly the same as in Theorem 5.3.1.1 and Theorem 5.3.2.1.

Hence let O be a semi-local ring of equi-dimension two that is essentially of finite type
over k, DO a reduced divisor and ∆O an effective Q-divisor on SpecO, with no component in
common. Since O is essentially of finite type over k, there exists a scheme S̄ of finite type over
k, such that SpecO is a subscheme of S̄. Replacing S̄ by the closure of SpecO, we may assume
that S̄ is two-dimensional.

Assume furthermore that (SpecO, DO + ∆O) is lc. Then SpecO belongs to the normal
locus of S̄, so taking the normalization we may assume that S̄ is normal. Taking an open
subset, we may actually assume that S̄ is regular away from the closed points of SpecO.
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Let D̄ and ∆̄ be the closures (as Q-divisors) of DO and ∆O in S̄. We may shrink S̄ until D̄
is regular away from the closed points of SpecO, and D̄ ∩ ∆̄ is supported on the closed points
of SpecO. Then KS̄ + D̄ + ∆̄ is Q-Cartier, (S̄, D̄ + ∆̄) is lc and DiffD̄n ∆̄ = DiffDnO ∆O by
[Kol13, 2.35].

Let τ be a generically fixed point free involution of (Dn
O,DiffDnO ∆O). Then τ extends to

an involution τ̄ on the projective regular model D of Dn
O. Since D̄n is a dense open subset of

D, the set D− D̄n is finite. As τ̄ is an involution and Dn
O is τ -stable, we can find finitely many

closed points x1, . . . , xn ∈ D̄n−Dn
O such that D̄n−{x1, . . . , xn} is τ̄ -stable. Since D̄ is regular

away from DO, the xi correspond to unique closed points of S̄. Therefore after shrinking S̄,
we may assume that τ̄ gives an involution of D̄n. Moreover, since DiffDnO ∆O = DiffD̄n ∆̄, we
see that τ̄ is a generically fixed point free involution of the pair (D̄n,DiffD̄n ∆̄).

Thus we may apply Theorem 5.3.1.1 and Claim 5.3.1.3 to obtain a finite quotient q : S̄ →
S̄/R(τ̄) =: S. Moreover the pair (S,∆ := q∗∆̄) is an slc surface pair of finite type over k and
q is the normalization morphism.

To simplify the rest of the discussion, we reduce to the case where S and S̄ are affine.
Let Σ ⊂ S be the finite reduced subscheme supported on the image of the closed points of
SpecO. There exists an affine open subscheme S′ ⊂ S containing Σ (because S satisfies the
Chevalley–Kleiman property, see [Kol13, 9.28]). Then q−1S′ is affine open and contains SpecO,
and q−1S′ → S′ is the quotient by the induced equivalence relation on q−1S′ [Kol13, 9.11].

So say S = SpecA, S̄ = Spec Ā and Σ = V (m1) ∪ · · · ∪ V (mn). Then T := A −
⋃
imi is

a multiplicatively closed set, T−1A is a semi-local ring essentially of finite type over k with
maximal ideals mi and T−1Ā is the normalization of T−1Ā inside FracA = Frac Ā. On the
other hand, O is a fraction ring of Ā, say O = U−1Ā. Since the maximal ideals of U−1Ā are
precisely those above the mi’s, we see that U−1Ā is a further localization of T−1Ā and that
these two rings have the same maximal ideals. But this implies that T−1Ā = U−1Ā already.
Applying [Kol13, 9.11] once again we obtain that SpecO → SpecT−1A is the quotient by the
finite equivalence relation R(τ), and by construction (SpecT−1A,∆T−1A) is a semi-local slc
surface pair essentially of finite type over k.

It remains to show that Construction 4.5.0.2 applied to a semi-local ring O essentially of
finite type over k, produces a semi-local ring essentially of finite type over k. The construction
output is a ring A and successive finite extensions O2 ⊂ A ⊂ O which shows that A is semi-
local. Since O is essentially of finite type over k, so is O2, and as O2 ⊂ A is a finite extension
we obtain that A is essentially of finite type over k. This completes the proof.

5.3.4 Application: Semi-resolutions of demi-normal surfaces

It might be difficult to study some aspects of a demi-normal scheme X in terms of its
normalization ν : X̄ → X, since ν∗OX̄ 6= OX and ν is not an isomorphism in codimension one.
Instead, one may try to resolve singularities in codimension two only. In characteristic zero,
there is a good notion of such partial resolutions for demi-normal surfaces [vS87, KSB88]. We
work out the case of demi-normal surfaces in positive characteristic.

Definition 5.3.4.1. A germ of surface (s ∈ S) is called a normal crossing point, respectively

a pinch point, if there is a finite étale morphism ÔS,s → O′ such that O′ ∼= k[[x, y, z]]/(xy),
respectively O′ ∼= k[[x, y, z]]/(x2 − zy2), where k is some field.

A surface (essentially of finite type over a field) is called semi-smooth if every closed point
is either regular, normal crossing or a pinch point.

Remark 5.3.4.2. The étale base-change OS,s → O′ may be non-elementary (that is, it may

not induce an isomorphism of residue fields). But if k(s) is algebraically closed, ÔS,s → O′ is

necessarily elementary. Since ÔS,s is Henselian and O′ is assumed to be local, we deduce that

O′ ∼= ÔS,s. In other words, we can omit the base-change in the definition if we work over an
algebraically closed field.
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Lemma 5.3.4.3. Let S be a semi-smooth surface. Then:
(a) S is a local complete intersection scheme (that is, every completed local ring ÔS,s is the

quotient of a regular ring by a regular sequence), and in particular S is Cohen–Macaulay
and Gorenstein;

(b) S is demi-normal;

(c) Sing(S) (with its reduced structure) is the conductor subscheme, and it is regular and of
pure dimension one;

(d) the normalization of S is regular with regular conductor.

Proof. For the first property, since the local complete intersection locus is open by [GM78,
3.3], it is sufficient to show the local rings of S at closed points are local complete intersections.
This property descends and ascends étale morphisms [Sta, 09Q7]. Thus it suffices to show that
the models k[x, y, z]/(xy) and k[x, y, z]/(x2 − zy2) are local complete intersections (near the
origin), which is clear.

We claim that S is also semi-normal. Since the semi-normal locus is open (Observa-
tion 4.2.1.3), it is sufficient to check that the closed points belong to it. Combining [GT80,
Theorem 1.6] and [Gro65, 7.8.3.vii], it is sufficient to check that condition on the local models
k[x, y, z]/(xy) and k[x, y, z]/(x2− zy2). This is easily seen, e.g. using [GT80, Corollary 2.7.vii].
Now it follows by Lemma 4.2.1.4 that S is demi-normal.

If f : X → Y is an étale or a regular morphism of Noetherian schemes, then OX,x is regular
if and only if OY,f(x) is regular [Mat89, 23.7], and the completion of an excellent local ring
is a regular morphism [Gro65, 7.8.3.v]. Moreover the regular locus is open [Gro65, 7.8.3.iv],
and the normalization commutes with the completion [Gro65, 7.8.3.vii]. Thus it is sufficient to
prove the last two properties for the spectra of k[x, y, z]/(xy) and k[x, y, z]/(x2− zy2) near the
origin. This is clear in both cases (see Example 4.3.0.8 for a study of the second singularity in
characteristic 2).

Definition 5.3.4.4. A proper birational morphism of demi-normal surfaces f : T → S is called
a semi-resolution if:

(a) T is semi-smooth;

(b) no component of DT , the conductor divisor of T , is f -exceptional;

(c) f is an isomorphism over a big open subset of S.
We say that f is a good semi-resolution if in addition

(d) Exc(f) has regular components which intersect with only double points, and Exc(f)∪DT

has at most triple points.

In characteristic zero, it is well-known that demi-normal surfaces admit good semi-resolutions.
We prove that it is also true for demi-normal surfaces in characteristic 6= 2. Our proof is similar
in spirit to [vS87, §1.4].

Lemma 5.3.4.5. Let K be a field of characteristic 6= 2 and τ a non-trivial non-necessarily
K-linear involution of K[[t]] such that τ(K) = K. Then there exists a uniformizer s ∈ (t)\ (t2)
such that τ(s) = −s.

Proof. We have τ(t) = λt with λ ∈ K[[t]]×. If the constant term of λ is not equal to 1, then
1−λ ∈ K[[t]]× and so the K-linear ring map defined by t 7→ t− τ(t) is an automorphism, thus
we may take s = t− τ(t).

From now on assume that the constant term of λ is 1. If τ does not act as the identity on
K, choose α ∈ K \Kτ . If α = τ(α)+1 then α = τ(τ(α)) = τ(α−1) = τ(α)−1, a contradiction
since the characteristic is different from 2. Therefore α−τ(α)λ is invertible with constant term
different from 1. Thus we apply the argument of the previous paragraph with αt in place of t.

Finally assume that τ is K-linear. By the current assumption on λ we have τ(t) = t+O(t2),
and so τ(tk) = tk +O(tk+1). We define a Cauchy sequence (tn) such that tn− τ(tn) ∈ O(tn+1).
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Take t1 := t. If tn − τ(tn) = atn+1 + O(tn+2) with a ∈ K, the element tn+1 := tn − a
2 t
n+1 is

a valid choice. Then t∞ := limn tn is a uniformizer that satisfies t∞ = τ(t∞). Hence τ is the
identity, and we excluded this case in the hypothesis. Thus the proof is complete.

Lemma 5.3.4.6. Let S be a regular surface of finite type over an arbitrary field k of positive
characteristic 6= 2, D ⊂ S a reduced divisor with regular support and τ : D ∼= D a non-trivial
involution. Then S/R(τ) exists and is a semi-smooth surface whose conductor subscheme is
the image of D.

Proof. We elaborate the last paragraph of [Kol13, 1.43]. First of all, it is clear that R(τ)
is finite, thus U := S/R(τ) exists as a scheme of finite type over k and π : S → U is the
normalization. By Proposition 4.4.0.1, U is demi-normal with conductor π(D). By [Kol13,
9.13, 9.30] the square

D S

D/〈τ〉 U

q π

is a push-out. Geometric quotients by finite group actions preserve normality, so π(D) is
normal, therefore a regular curve.

To study the singularities of U , we may localize at a closed point u ∈ U that belongs to
π(D). Then we may assume that U = SpecO is local and that S = SpecA. Since D → π(D)
is a Z/2Z-quotient, only two cases can happen.

(a) A has exactly two maximal ideals. Since Ô ∼= Ôh [Sta, 06LJ], we might without loss
of generality base-change along an elementary étale morphism SpecO′ → SpecO and
assume that A = A1 ⊕ A2, where both Ai are local. Let fi ∈ Ai be the local equation
of D, and τ : A1/(f1) ∼= A2/(f2) be the involution. Since A1/(f1) is regular local of
dimension one, there exists g1 ∈ A1 such that (f1, g1) = mA1 . Let g2 ∈ A2 be any lift of
τ(g1 + (f1)), it also holds that (f2, g2) = mA2 .

The push-out description of O ⊂ A1 ⊕A2 shows that mO = O ∩ (mA1 ⊕mA2). Hence we
see that x := (f1, 0), y := (0, f2), z := (g1, g2) generate mO, with relation xy = 0. Thus
Ô ∼= k[[x, y, z]]/(xy), where k is the residue field of O.

(b) A is local, in other words u is the image of a τ -fixed point. Let f ∈ A be the local equation
of D, and τ : A/(f) ∼= A/(f) be the involution. We may work with the completions, as
Ô is the preimage in Â of the τ -invariant elements of Â/(f).

The action of τ descends to the residue field K of A, and extends to the completion of
A/(f). Notice that the restriction of τ on the coefficient field K ⊂ Â/(f) is precisely the
action of τ on the residue field. The residue field of O is the fixed subfield K ′ := Kτ . If
K ′ is algebraically closed, notice that necessarily K = K ′.

The completion Â/(f) is isomorphic to K[[t]]. By Lemma 5.3.4.5 we may assume that
τ(t) = −t.
If K ′ = K, then Ô = K[[f, fg, g2]] ∼= K[[x, y, z]]/(x2z − y2), where g ∈ Â is any lift of
t ∈ Â/(f). This is a pinch point.

If K ′ ( K then K = K ′(γ) where γ2 = c ∈ K and τ(γ) = −γ. A monomial (a + bγ)ti,
with a, b ∈ K ′, is τ -invariant if and only if i is even and b = 0, or i is odd and a = 0.
Thus if g ∈ Â is any lift of t, we have

Ô = K ′[[f, fg, g2]] + γg ·K ′[[g2]] + γ ·K ′[[f, fg, fg2, fg3, . . . ]].

Let
x := g2, y := γg, z := f, v := fg, w := γf,
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then we have the presentation

Ô ∼=
K ′[[x, y, z, v, w]]

(y2 + cx, yw + cv, cz2 + w2, xz2 − v2)
∼=
K ′[[y, z, w]]

(cz2 + w2)
.

The finite étale extension Ô ⊂ Ô[T ]/(T 2 + c) shows that O is a normal crossing point.
This completes the proof.

Remark 5.3.4.7. In the situation of Lemma 5.3.4.6, notice that if the base field k is algebraically
closed, then the normal crossing points of U are the image of the non-τ -fixed points of D, and
the pinch points of U are the images of the τ -fixed points of D.

Theorem 5.3.4.8. Let S be a demi-normal surface that is essentially of finite type over an
arbitrary field k of positive characteristic 6= 2. Then S has an slc good semi-resolution.

Proof. It follows from Lemma 4.2.1.4, Observation 4.2.1.3, [Gro65, 7.8.3.iv] and [GM78, 1.5]
that the demi-normal locus is open on excellent schemes, thus we can realize S as the localization
of a demi-normal surface of finite type over k. Hence we may assume that S is of finite type
over k to begin with.

Let ν : (S̄,DS̄)→ S be the normalization morphism. By [Kol13, 2.25] there exists a proper
birational morphism f̄ : T̄ → S̄, where T̄ is regular, DT̄ := f̄−1

∗ DS̄ is regular, the components
of Exc(f̄) are regular and Exc(f̄) ∪DT̄ has normal crossings.

The normalization S̄ → S induces an involution τ on Dn
S̄

= DT̄ . So we get a finite
equivalence relation R(τ)⇒ T̄ . We can blow-up a few more points to ensure that the restriction
of R(τ) to each irreducible component of E = Exc(f̄) is the identity. There is a minimal way
to do so: let us call T̄ → (S̄,DS̄) the minimal τ-log resolution. Now let q : T̄ → T be the
quotient morphism. By the universal property of the quotient, there is a unique morphism
f : T → S such that the square

T̄ S̄

T S

q

f̄

ν

f

commutes. Combining Proposition 4.4.0.1 and [Sta, 09MQ, 03GN] we see that f is proper, and
clearly it is birational.

By Lemma 5.3.4.6 the surface T is semi-smooth. As ωT pullbacks to ωT̄ (DT̄ ), we see that
T is slc. Moreover each component of q(E) = Exc(f) is still regular. Since we glue along an
involution, q(E) ∪DT are at worst triple points and q(E) has at most double points.

Finally there is a big open subset U ⊂ S such that both ν−1(U) and DS̄ ∩ ν−1(U) are
regular, and f(Exc(f)) ∩ U is empty. Then f is an isomorphism over U .

Example 5.3.4.9. Let us illustrate this semi-resolution procedure with the triple point S =
(xyz = 0) ⊂ A3. The normalization S̄ is a disjoint union of three planes, and the conductor is
the union of the coordinate axis on each plane. Let T̄ =

⊔2
i=0 T̄i be the blow-up of S̄ at the three

origins, and L1
i , L

2
i ⊂ T̄i be the transforms of the coordinate axis. Then the semi-resolution

T → S is obtained by gluing L1
i along L2

i+1, where the index is taken modulo 3.

Proposition 5.3.4.10. Let S be as in Theorem 5.3.4.8.
(a) If f : T → S is a semi-resolution then f∗OT ∼= OS,

(b) Grauert–Riemenschneider vanishing holds: R1f∗ωT = 0.

(c) There exists a minimal good semi-resolution of S.

Proof. By definition f is an isomorphism over a big open subset of S, thus the inclusion
OS ⊆ f∗OT is an equality in codimension one. Since OS is S2, equality holds everywhere.
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Let π : T̄ → T be the normalization. The trace map π∗ωT̄ → ωT is given by the evaluation
at 1

π∗ωT̄ = HomT (π∗OT̄ , ωT )
ev1−→ ωT .

Since the characteristic is different from 2, the normalization is étale over codimension one
points by Lemma 4.2.0.3. Thus the trace map is injective in codimension one. The pushforward
π∗ωT̄ is S2 and ωT is torsion-free, so the trace map is injective. Thus we obtain an exact sequence

0→ π∗ωT̄ → ωT → Q→ 0,

where Q is supported on the divisor DT = Sing(T ). Pushing forward along f : T → S and
using that π is finite, we obtain the exact sequence

R1(f ◦ π)∗ωT̄
∼= R1f∗(π∗ωT̄ )→ R1f∗ωT → R1f∗Q ∼= R1(f |DT )∗Q.

We have R1(f ◦ π)∗ωT̄ = 0 by [Kol13, 10.4] and R1(f |DT )∗Q = 0 since f |DT is finite on its
image by assumption on f . Thus R1f∗ωT = 0.

Finally, let S̄ → S be the normalization, T̄m → S̄ the minimal τ -log resolution of (S̄,DS̄)
and fm : Tm → S be the semi-resolution obtained from T̄m, as in the proof of Theorem 5.3.4.8.
If f : T → S is a good semi-resolution, then using Lemma 5.3.4.3 we see that T̄ → (S̄,DS̄)
is a τ -log resolution. By minimality of T̄m the morphism T̄ → S̄ factors through T̄m. Since
π : T̄ → T is a quotient, it is easy to see that we obtain a commutative diagram

T̄ T̄m S̄

T Tm S

π

h fm

So both fm ◦ h and f give a factorization of T̄ → S̄ → S through T . Using again that
T̄ → T is a quotient, we deduce that fm ◦ h = f . This shows minimality of Tm amongst good
semi-resolutions.

Remark 5.3.4.11. There are two obstacles to extend Theorem 5.3.4.8 in characteristic 2. First
of all we must choose whether or not the semi-resolution T → S is an isomorphism over the
inseparable nodes of S. If we want a local isomorphism, we must apply Construction 4.5.0.2 to
a regular curve on T̄ . Then it seems difficult to provide a formal description of the local rings
at the closed points of the inseparable-nodal locus of T .

The second difficulty stems from the failure of Lemma 5.3.4.5 in characteristic 2, as demon-
strated by the F2-linear involution of F2[[t]] given by t 7→ (1+t2 +t3 +. . . )t. Thus the treatment
of τ -fixed points in the proof of Lemma 5.3.4.6 becomes problematic. In principle one could
use Artin–Schreier theory to classify involutions on one-dimensional power series, see e.g. the
example at the end of [Art75] for the linear cases. This leads to surface singularities that are
not normal crossing or pinch points, for example (x2 + zy2 + xyzr = 0) ⊂ A3 for r ≥ 1.

We can nonetheless prove a weaker semi-resolution statement for surfaces with only sepa-
rable nodes:

Proposition 5.3.4.12. Let S be a demi-normal surface with only separable nodes over an
arbitrary field. Then there exists a proper birational morphism f : T → S such that

(a) T is slc 2-Gorenstein with regular conductor DT = Sing(T );

(b) f is an isomorphism over a big open subset of S;

(c) no component of DT is f -exceptional;

(d) each component of Exc(f) is regular, Exc(f) has at worst double points and Exc(f)∪DT

at worst triple points.
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Proof. We repeat the construction of Theorem 5.3.4.8. The only part of the proof of that
does not extend in our generality is the study of the ring-theoretic singularities of T . By
Proposition 4.4.0.1, T is a demi-normal surface. Moreover (T̄ , DT̄ ) is lc and ωT̄ (DT̄ )|DT̄ = ωDT̄
is τ -invariant. Hence we may apply the proof of [Kol13, 5.38], which works over any field

as explained in Corollary 4.3.0.7, and get that ω
[2]
T is invertible. Thus T is 2-Gorenstein and

slc.

5.4 GLUING THEORY FOR THREEFOLDS

5.4.1 Preliminary results

In this first section some results that will be needed for the proof of the gluing theorem for
threefolds. While most of them are well-known, we include proofs to conveniently reference
them.

Some results about surfaces and threefolds.

We gather some facts about the geometry of surface and threefold pairs.

Fact 5.4.1.1 (Birational Geometry of excellent surfaces). Resolutions of singularities (resp. log
resolutions) exist for excellent surfaces (resp. excellent surface pairs) [Kol13, 2.25]. Moreover,
the MMP works for quasi-projective lc surface pairs over an arbitrary field [Tan18].

Fact 5.4.1.2 (Resolutions for threefolds). Resolutions of singularities exist for quasi-projective
threefolds over a perfect field [CP08, 2.1]. Moreover, if (X,∆) is a quasi-projective threefold
pair, then there exists a snc log resolution (X ′,∆′)→ (X,∆) that is an isomorphism above the
snc locus of (X,∆) [CP08, 2.1,4.1].

Corollary 5.4.1.3. If (S,∆) is a numerically dlt (resp. numerically terminal) surface pair
over an arbitrary field, then S is Q-factorial (resp. regular).

Proof. The numerically terminal case is shown in [Kol13, 2.29]. To prove the numerically dlt
case, we can apply [KM98, 4.11] once we know that [KM98, 4.10] applies as well. It is the case,
since log resolutions are available, negative-definiteness of contracted curves holds by [Kol13,
10.1] and the Base-point freeness theorem is established with a sufficient level of generality in
[Tan18, 4.2].

Fact 5.4.1.4 (Inversion of adjunction for threefolds). Log canonical inversion of adjunction
holds for quasi-projective threefold pairs over a perfect field of characteristic > 5 [Pat17, Lemma
3.3] (the proof there is given for an algebraically closed field, but extends easily to the case of a
perfect field).

Next we gather some results about fibrations of surfaces.

Lemma 5.4.1.5. Let f : S → T be a proper flat morphism from a normal surface onto a
normal curve with connected fibers, over a arbitrary field. Let E be a Q-divisor on S that is
vertical over T . Then E2 ≤ 0, with equality if and only if E is a weighted sum of fibers of f .

Proof. By [B0̆1, 2.6], the result holds if S is regular. It is assumed there that the base field
k is algebraically closed, but this is not necessary: the Néron–Severi theorem holds over any
field [SGA71, Exp. XIII, Théorème 5.1], the Grothendieck–Riemann–Roch formula [SGA71,
Exp. VIII, Théorème 3.6] holds for S since S → k is a complete intersection morphism, and it
reduces to the usual formula by the arguments of [Har77, Appendix A, 4.1.2]. The rest of the
proof in [B0̆1] is linear algebra.

In general, let π : S′ → S be a (minimal) resolution of singularities. Then f ◦ π : S′ → T
has connected fibers and (π∗E)2 = E2. Moreover E is a weighted sum of fibers if and only if
E is, so the lemma is proved.
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Lemma 5.4.1.6. Let f : S → T be a proper flat morphism from a normal surface onto a normal
curve, such that −KS is f -ample and f∗OS = OT , over an arbitrary field of characteristic p > 2.
Then the general geometric fiber of f is normal.

Proof. To begin with, we show that the generic fiber of f is geometrically normal, assuming it
is geometrically integral. Let η ∈ T be the generic point, then Sη is a normal scheme of finite
type over k(η). Since f∗OS = OT , the field k(η) is algebraically closed in k(Sη). Then if Y
is the normalization of the reduced structure of Sη, with canonical morphism π : Y → Sη, by
[PW18, Theorem 1.1] there is an effective Z-Weil divisor C on Y such that

KSη + (p− 1)C ∼ π∗KSη . (4.1.6.c)

Since Sη is reduced by the assumption we made, by [PW18, Theorem 1.2] we may choose C
so that (p− 1)C is equal to the divisorial part of the conductor of the normalization Y → Sη.
Notice that Sη satisfies the property S2, since it is preserved by field-extension [Gro65, 6.4.2]
and Sη satisfies it. Thus Sη is normal if and only if it is R1, so we can choose C = 0 if and
only if Sη is normal.

Suppose Sη is not normal. Then we may assume that C > 0. Since −KSη is ample over

k(η), its pullback −π∗KSη is ample over k(η). By (4.1.6.c) we deduce that −KSη − (p− 1)C is
ample. Since C > 0, we deduce that −KSη is already ample, and therefore Sη ∼= P

k(η)
. Looking

again at the equation (4.1.6.c) and taking degrees, we see that deg(p− 1)C < 2. Since C > 0,
this condition is satisfied only if p = 2.

Now we show that Sη is geometrically integral. Since f∗OS = OT , the field k(η) is alge-
braically closed in k(Sη). Therefore the function field of T is separable over the function field
of S [B0̆1, 7.2]. It follows from [Gro65, 4.5.9, 4.6.1] that Sη is geometrically integral.

Finally, by [Gro66, 12.2.4] the set of points t ∈ T such that the fiber St is geometrically
normal, is open.

Lemma 5.4.1.7. Let f : S → T be a proper flat morphism from an integral surface to an
integral curve. Let D be a prime Q-Cartier divisor such that degk(t)D|St = 1 for every t ∈ T .
Assume that S is normal, or more generally that the Cartier locus of D dominates T . Then
f |D : D → T is a birational morphism, and an isomorphism if T is normal.

Proof. Notice that St is proper for every t ∈ T , so the intersection product D.St is well-defined
(see [Kol96, Appendix A.2]). Let us assume first that D is Cartier. Then by [Kol96, A.2.8]
(applied with X = St and F = OSt) we have

1 = degk(t)D|St =
∑

x∈D∩St

lengthk(t) (OSt,x/(ξx))

where ξx is the restriction to St of the local equation of D at x. This implies that D meets St
at a single point, and that the canonical map OT → (f |D)∗OD is surjective after tensoring by
k(t). So f |D is proper and quasi-finite, therefore finite, and (f |D)∗OD is a finite OT -module.
By Nakayama’s lemma, we obtain that OT → (f |D)∗OD is surjective. But it is also injective,
so it is an isomorphism. So f |D is an isomorphism.

If D is only Cartier over a dense open subset of T , we obtain that f |D : D → T is birational.
Assume that T is normal: then the composition Dn → D → T is a birational morphism of
normal curves, hence an isomorphism, so actually Dn = D ∼= T .

Lemma 5.4.1.8. Let (S,∆) be a dlt surface pair and g : S → T be a birational proper morphism
onto a (non-necessarily normal) surface, over a perfect field. Assume that KS+∆ ∼Q,g 0. Then
R1g∗OS(−∆=1) = 0.
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Proof. By flat base-change we may assume that the base-field is algebraically closed. Since S
is normal, there is a factorization gν : S → T ν through the normalization ν : T ν → T . Since ν
is finite, for any coherent sheaf F on S we have R1(ν ◦ g)∗F ∼= ν∗R

1gν∗F . Therefore we may
assume that T is normal.

Let ϕ : S′ → (S,∆) is a minimal log resolution. Since (S,∆<1) is klt, we can write ϕ∗(KS +
∆<1) = KS′ + ∆′ where ∆′ ≥ 0 and b∆′c = 0.

We notice that since S is smooth in a neighborhood of ∆=1, the projection formula yields
ϕ∗OS′(−ϕ∗∆=1) = OS(−∆=1) (such projection formula holds in greater generality, see for
example [Sak84, 2.1, 2.4]).

By assumption, there is a Q-Cartier divisor N on T such that −∆=1 ∼Q KS + ∆<1 + g∗N .
It follows that

−ϕ∗∆=1 ∼Q KS′ + ∆′ + ϕ∗(g∗N).

We can write ∆′ = Vϕ + Hϕ, where Vϕ is ϕ-exceptional and Hϕ has no ϕ-exceptional compo-
nents. Then Hϕ is ϕ-nef and bVϕc = 0. So by [KK, 2.2.5], we obtain that Riϕ∗OS′(−ϕ∗∆=1) =
0 for i > 0. A similar argument with the composition g′ = g ◦ ϕ : S′ → T in place of ϕ shows
that R1g′∗OS′(−ϕ∗∆=1) = 0. As ϕ∗OS′(−ϕ∗∆=1) = OS(−∆=1), the Leray spectral sequence
for g′ = g ◦ ϕ gives that

0 = R1g′∗OS′(−ϕ∗∆=1) ∼= R1g∗OS(−∆=1)

and the proof is complete.

Crepant birational maps.

Definition 5.4.1.9. Let f : (X ′,∆′) → (X,∆) be a birational proper morphism of pairs. We
say that f is crepant if KX′ + ∆′ = f∗(KX + ∆).

Definition 5.4.1.10. Let (X,∆) be a pair. A crepant dlt blow-up of (X,∆) is a projective
birational morphism f : Y → X such that

(a) Y is Q-factorial, and

(b) (Y, f−1
∗ ∆+E) is a dlt pair, where E is the sum of all f -exceptional divisors with coefficients

1, and

(c) KY + f−1
∗ ∆ + E ∼Q f

∗(KX + ∆).

The following fact will be crucial for our study of lc centers on threefolds.

Fact 5.4.1.11. Crepant dlt blow-ups exist for lc surface pairs over an arbitrary field (see
Fact 5.4.1.1), and for quasi-projective lc threefold pairs over a perfect field of characteristic
> 5 [HNT20, 3.6].

Definition 5.4.1.12. More generally, a birational map f : (X ′,∆′) 99K (X,∆) of pairs is
crepant if there is a normal variety Y , a (non-necessarily effective) Q-divisor ∆Y and a com-
mutative diagram

(Y,∆Y )

(X ′,∆′) (X,∆)

v′ v

f

where v, v′ are proper, such that

(v′)∗(KX′ + ∆′) = KY + ∆Y = v∗(KX + ∆).

The set of crepant birational self-map of (X,∆) with the composition forms a group, denoted
Birc(X,∆).

If X is endowed with a morphism X → Z, we let BircZ(X,∆) be the subgroup of crepant
birational self-maps over Z.
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Lemma 5.4.1.13. Let φ : (S,∆) 99K (S′,∆′) be a crepant birational map between two excellent
surface pairs over an arbitrary field. Then:

(a) (S,∆) is klt if and only if (S′,∆′) is klt;

(b) more generally, there is a bijection between the connected components of Nklt(S,∆) and
those of Nklt(S′,∆′).

Proof. An equivalent definition of being crepant is that a(E;S,∆) = a(E;S′,∆′) for every
prime divisor E of k(S) = k(S′) [Kol13, 2.32.2] so the first statement holds. To prove the other
one, let (Y,∆Y ) be a crepant snc resolution of φ. Then Nklt(S,∆), respectively Nklt(S′,∆′), is
the image of b∆>0

Y c through Y → S, respectively through Y → S′. By [Kol13, 2.36], the fibers
of

b∆>0
Y c → Nklt(S,∆), b∆>0

Y c → Nklt(S′,∆′)

are connected, thus each morphism induces a bijection between the connected components of
the target and those of the source. The result follows.

We will frequently encounter pairs (X,∆) together with a proper morphism onto a normal
variety X → Z, satisfying the condition KX + ∆ ∼Q,Z 0. It will be useful to understand the
crepant birational Z-maps of such pairs.

Lemma 5.4.1.14. Let (X,∆) be a pair, f : X → Z a proper surjective morphism onto a
normal variety such that KX + ∆ ∼Q,f 0. Let X ′ be a normal variety with a proper surjective
morphism f ′ : X ′ → Z, and φ : X 99K X ′ a birational Z-map. Then:

(a) There exists a unique Q-divisor ∆′ on X ′ such that (X ′,∆′) is a pair and φ : (X,∆) 99K
(X ′,∆′) is crepant;

(b) KX′ + ∆′ ∼Q,f ′ 0;

(c) If φ−1 does not extract divisors, then ∆′ = φ∗∆.

Proof. Uniqueness of ∆′ is clear, we prove its existence. We can find a commutative diagram

Y

X X ′

Z

u v

φ

f f ′

where Y is normal, u and v are birational, u∗OY = OX and v∗OY = OX′ . Write KY + Γ =
u∗(KX + ∆). We claim that ∆′ := v∗Γ is a valid choice. By commutativity of the diagram,
there is a Q-Cartier divisor N on Z such that (f ′ ◦ v)∗N ∼Q KY + Γ. Fix a canonical divisor
KX′ on X ′ such that v∗KY = KX′ . We have:

(f ′)∗N ∼Q v∗(f
′ ◦ v)∗N ∼Q v∗(KY + Γ) = KX′ + ∆′

which shows that KX′+∆′ is Q-Cartier. Now ±((KY +Γ)−v∗(KX′+∆′)) are v-exceptional and
Q-linearly trivial over Z. In particular both are v-nef, and by the negativity lemma [KM98,
3.39] we deduce that KY + Γ = v∗(KX′ + ∆′). This shows that φ : (X,∆) 99K (X ′,∆′) is
crepant.

If φ−1 does not extract divisors, then any u-exceptional divisor is also v-exceptional, so
v∗Γ = φ∗∆.
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Pluricanonical representations in low dimensions.

The key to the gluing theorems in Section 5.4.3 is a finiteness result in the theory of pluri-
canonical representations. See [Kol16, Theorem 7] and [Kol13, §10.5] for what is known in
characteristic 0. I am not aware of similar general results in positive characteristic. Fortu-
nately, for the gluing of threefolds there are only a few easy cases to consider, which we discuss
below. The results are probably well-known, we give proofs for convenience.

Proposition 5.4.1.15. Let (C,E) be a proper dlt curve over a perfect field k such that KC +
E ∼Q 0. Then im

[
Birck(C,E)→ AutkH

0(C,ωmC (mE))
]

is finite, for m divisible enough.

Proof. We may extend the scalars along an algebraic closure of k, and assume it is alge-
braically closed. By assumption on E, the curve C is smooth proper of genus 0 or 1. Moreover
Birck(C,E) = Autk(C,E).

(a) If C has genus 1, then ωC ∼ 0 and so E = 0. Fix a closed point o ∈ C, and consider
the elliptic curve (C, o). The 1-dimensional k-vector space H0(C,ωC) is generated by a
differential δ with the property that t∗cδ = δ for any c ∈ C, where tc : C → C is the
translation by C [Sil09, III.5.1]. Thus for any τ ∈ Aut(C) we have

τ∗δ = τ∗t∗−τ(o)δ

and t−τ(o) ◦ τ ∈ Aut(C, o). Thus we only need to show that Aut(C, o) acts as a finite
group on H0(C,ωC). But Aut(C, o) is already a finite group [Sil09, III.10.1].

(b) If C has genus 0, then C ∼= P1
k. If Supp(E) contains at least three points, then Aut(P1

k, E)
is finite. If E is the sum of two distinct reduced points, we may choose coordinates x, y
such that E = [0; 1] + [1; 0]. Then Autk(P1, E) sits in an exact sequence

1→ Autk(A1
k, 0)→ Autk(P1, E)→ Bij(E)→ 1

so it suffices to show that Aut(A1
k, 0) = {x 7→ ax | a ∈ k∗} acts finitely on the 1-

dimensional k-vector space H0(P1
k, ωP1

k
(E)). This vector space is generated by dx/x,

which is invariant through x 7→ ax, thus the action of Autk(A1
k, 0) is actually trivial.

Proposition 5.4.1.16. Let (C,E) be a dlt curve over a perfect field k. Assume that KC + E
is ample. Then Autk(C,E) is finite.

Proof. As above, we may assume that k is algebraically closed. If C ∼= P1
k then Supp(E) contains

at least three points, so the log automorphism group is finite. If g(C) = 1 then Supp(E) contains
at least one point, so the log automorphism group is finite. Finally if g(C) ≥ 2 then Autk(C)
is already finite.

Lemma 5.4.1.17. Let (S,∆) be a projective lc surface pair over an algebraically closed field
k. Assume that KS + ∆ is big. Then Autk(S,OS(KS + ∆)) is finite.

Proof. This actually holds in any dimension. The argument follows the proof of [PZ20, 10.1],
with the following modifications: the inequality in (10.1.b) becomes strict (by our bigness
assumption); the first sentence after (10.1.c) reads as (X,∆) is lc, all coefficients of Γ are
smaller or equal to 1; and the inequality in the last displayed equation is not strict.

Proposition 5.4.1.18. Let f : (S,∆) → T be a proper morphism with f∗OS = OT between
normal projective surfaces over a perfect field k. Assume that (S,∆) is a dlt pair and that
KS + ∆ ∼Q f

∗L, where L is ample on T . Then for m divisible enough,

im
[
Birck(S,∆)→ AutkH

0(T, L⊗m)
]

is finite.
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Proof. We may extend to the algebraic closure of k, and assume it is algebraically closed. Since
L is ample, we may assume that L⊗m is very ample and thus AutkH

0(T, L⊗m) ⊆ Autk(T ).
It follows from the assumptions that f : S → T is a birational morphism. So KS + ∆ is big

and nef. Therefore the canonical model (Scan,∆can) of (S,∆) exists, and it is given by

ψ : S 99K Scan := Proj
∑
r

H0(S, rm(KS + ∆)), ∆can := ψ∗∆

wherem is sufficiently divisible. Since f∗OS = OT , we haveH0(S, rm(KS+∆)) = H0(T, L⊗rm).
As L is ample, we deduce that T ∼= Scan and that we can identify ψ with f . Writing ∆T = f∗∆,
we have that KT + ∆T is Q-Cartier and (T,∆T ) is lc.

We claim that f : (S,∆)→ (T,∆T ) is crepant. Indeed, we have KT +∆T ∼Q f∗f
∗L = L, so

(KS + ∆)− f∗(KT + ∆T ) is Q-linearly equivalent to 0 and exceptional over T . The negativity
lemma then implies that KS + ∆ = f∗(KT + ∆T ).

Take τ ∈ Birc(S,∆) and let β(τ) ∈ Aut(T ) be the induced automorphism. Then we have a
have a commutative diagram

S S

T T

τ

f f

β(τ)

and therefore β(τ)∗OT (KT + ∆T ) ∼= OT (KT + ∆T ). Thus Birck(S,∆) → Autk(T ) factorizes
through Autk(T,OT (KT + ∆T )), which is finite by Lemma 5.4.1.17.

Some remarks on fields of definition.

Let k be a (not necessarily perfect) field, ks a separable closure and X a k-scheme. We say
that a ks-sub-scheme W ⊂ Xks is defined over k if there exists a sub-k-scheme W ⊂ X such
that W =Wks (as sub-schemes of Xks).

Lemma 5.4.1.19. If Y is a proper reduced connected k-scheme, then H0(Y,OY) is a finite
field extension of k.

Proof. The structure morphism f : Y → k is proper, so f∗OY is a coherent k-module. Hence
H0(Y,OY) is a finite k-algebra. In particular it is Artinian. It is reduced by hypothesis, thus
it is a finite direct product of field extensions of k. By considering the Stein factorization of
f , we see that there is a bijection between these direct factors and the connected components
of Y. Since Y is connected, there can be only one direct summand. Therefore H0(Y,OY) is a
field.

Lemma 5.4.1.20. Let Y be a proper connected k-scheme, and assume that H0(Y,OY) = k.
Then Y is geometrically connected.

Proof. It is sufficient to show that Yks is connected. By flat base-change we haveH0(Yks ,OYks ) =

H0(Y,OY)⊗k ks = ks. If Yks =
⊔d
i=1 Y

i is the decomposition into connected components, then

H0(Yks ,OYks ) =
d⊕
i=1

H0(Y i,OY i)

where each H0(Y i,OY i) is a finite ks-vector space. Considering the dimensions as ks-vector
spaces, we see that d = 1.

Lemma 5.4.1.21. Let X be a k-scheme and Y ⊂ X an connected reduced proper sub-k-scheme.
Assume that H0(Y,OY) is separable over k. Then every connected component of Yks is defined
over the Galois closure of H0(Y,OY)/k.
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Proof. Let us write l := H0(Y,OY), which by assumption and Lemma 5.4.1.19 we can consider
as a subfield of ks. Let L ⊂ ks be the Galois closure of l/k and let YL =

⊔
i Y iL be the

decomposition into connected components. By separability H0(YL,OYL) = l⊗k L is a reduced
Artinian L-algebra, thus a direct product of finitely many field extensions of L. By considering
the Stein factorization of YL → L, we see that in fact these field extensions are the H0(Y iL,OYiL).
On the other hand, we have an inclusion l⊗k L ↪→ L⊗k L, and since L is Galois over k we have
an L-algebra isomorphism L ⊗k L ∼=

⊕
Gal(L/k) L. This induces inclusions H0(Y iL,OYiL) ⊆ L.

Hence H0(Y iL,OYiL) = L for every i. By Lemma 5.4.1.20 the proof is complete.

Corollary 5.4.1.22. Let Y ⊂ X be a connected reduced proper k-sub-scheme. Assume that
H0(Y,OY) is separable over k. Then the number of connected components of Yks is equal to
dimkH

0(Y,OY).

Proof. By Lemma 5.4.1.21 and its proof, there is a finite Galois extension L/k with the fol-
lowing property: if YL =

⊔d
i=1 Y

i is the decomposition into connected components, then

H0(YL,OYL) =
⊕d

i=1H
0(Y i,OY i) andH0(Y i,OY i) = L for each i. It follows from Lemma 5.4.1.20

that the number of connected components of Yks is equal to d. On the other hand

d = dimLH
0(YL,OYL) = dimLH

0(Y,OY)⊗k L = dimkH
0(Y,OY)

so the result follows.

Lemma 5.4.1.23. Let X be quasi-projective k-scheme, K/k a Galois extension and W ⊂ XK

a closed reduced sub-k-scheme. Assume that W is stable under the action of a non-trivial
subgroup H of G := Gal(K/k) � XK . Then W is defined over the sub-field KH .

Proof. By Artin’s lemma, the extension KH ⊂ K is Galois with Galois group H. Replacing
k by KH , we may assume that W is stable under the action of G. The canonical morphism
π : XK → X is the quotient by G. Let Y := π(W ) be the reduced closed image of W . Since W
is G-invariant and the fibers of π are the G-orbits, we see that Supp(W ) = Supp(YK). Since
W and YK are reduced, we deduce that W = YK .

5.4.2 Sources of lc centers

In this section we develop the theory of sources for lc centers of lc threefold pairs over a
perfect field of characteristic > 5. Our approach follows closely Kollár’s original one [Kol13,
§4].

Notation 5.4.2.1. Let (X,∆) be a quasi-projective lc threefold pair defined over a perfect
field k of characteristic > 5, and (Y,∆Y )→ (X,∆) be a crepant dlt Q-factorial blow-up (which
exists by Fact 5.4.1.11).

Our program is the following:
(a) In Section 5.4.2, we observe that the lc centers of dlt Q-factorial pairs (Y,∆Y ) are the

strata of the reduced boundary, analogously to the characteristic 0 case. This allows us
to define higher codimension adjunction for dlt pairs.

(b) In Section 5.4.2, we compare the fibrations between lc centers obtained from (Y,∆Y )→
(X,∆).

(c) In Section 5.4.2, we define springs and sources for lc centers on the reduced boundary of
threefold pairs.
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Higher Poincaré residues.

In characteristic 0, the use of crepant blow-ups is motivated by the very simple structure of
lc centers on a dlt pair [Kol13, 4.16]. Using the recent results of [ABL20], we can extend
this result to positive characteristic. The same result was obtained in [DH16, 2.2] with other
methods.

Proposition 5.4.2.2. Let (Y,∆) be a Q-factorial dlt pair of dimension ≤ 3 over a perfect field
of characteristic p > 5. Write ∆ = ∆<1 +

∑
iDi with each Di prime. Then

(a) The lc centers of (Y,∆) are exactly the irreducible components of the intersections of the
Di’s.

(b) Every irreducible component of such an intersection is normal of the expected codimen-
sion.

(c) Let Z ⊂ Y be an lc center of (Y,∆). If Di is Q-Cartier and does not contain Z, then
every irreducible component of Di|Z is Q-Cartier.

(d) Each (Di,DiffDi(∆−Di)) is dlt.

Proof. Since Y is Q-factorial, the pair (Y, (1−ε)∆=1 +∆<1) is klt. Hence by [ABL20, Corollary
1.3], if D is any Weil divisor on Y then OY (D) is CM. Thus the proof of [Kol13, 4.16] applies
verbatim.

This implies the existence of higher-dimensional Poincaré residue maps as in [Kol13, 4.18-
19].

Corollary 5.4.2.3. Let (Y,∆) be as above and Z an lc center of (Y,∆). Then there exists a
canonically-defined Q-Cartier divisor Diff∗Z ∆ on Z such that:

(a) (Z,Diff∗Z ∆) is dlt;

(b) If m is even and m(KY + ∆) is Cartier, there is a canonical isomorphism

RmY,Z : ω
[m]
Y (m∆)|Z ∼= ω

[m]
Z (mDiff∗Z ∆).

(c) If W ⊂ Z is a lc center of (Y,∆), then W is also a lc center of (Z,Diff∗Z ∆) and

Diff∗W ∆ = Diff∗W (Diff∗Z ∆).

Remark 5.4.2.4. If Z ⊂ ∆=1 is a prime divisor then we have Diff∗Z ∆ = DiffZ(∆−Z), which is
arguably a conflict of notations. When working on dlt pairs we will only use the Diff∗-notation,
hence no confusion should arise.

Corollary 5.4.2.5. Let (Y1,∆1), (Y2,∆2) be surface pairs over an arbitrary field, or threefold
pairs over a perfect field of characteristic > 5. Assume that (Y1,∆1) is Q-factorial dlt.

Let φ : (Y1,∆1) 99K (Y2,∆2) be a crepant birational map. Assume that S1 ⊂ Y1 is an lc cen-
ter of (Y1,∆1) and that φ is a local log isomorphism at the generic point of S1. Then S2 := φ∗S1

is an lc center of (Y2,∆2), and φ restricts to a crepant birational map φ|S1 : (S1,Diff∗S1
∆1) 99K

(Sn2 ,DiffSn2 ∆2).

Proof. By induction on the strata of ∆=1
1 , we may assume that S1 is a divisor. Since φ is a

log isomorphism at the generic point of S1, we obtain that S2 is a component of ∆=1
2 and a lc

center of (Y2,∆2).
Consider a resolution

W

Y1 Y2

u v

φ
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Let SW ⊂W be the strict transform of S1, with normalization n : SnW → SW . Since φ is a local
isomorphism at the generic point of S1, v maps SnW to Sn2 and we have a commutative diagram
of birational maps

SnW

S1 Sn2

v|Sn
W

u|Sn
W

φ|S1

Since φ is crepant and a local log isomorphism at S1, we can write

u∗(KY1 + ∆1) = KW + SW + Γ = v∗(KY2 + ∆2)

where coeffSW Γ = 0. Thus by adjunction

(u|SnW )∗(KS1 + Diff∗S1
∆1) = n∗u∗(KY1 + ∆1)

= n∗(KW + SW + Γ)

= KSnW
+ DiffSnW Γ

and similarly (v|SnW )∗(KSn2
+ DiffSn2 ∆2) = KSnW

+ DiffSnW Γ. This implies that the birational
map φ|S1 : (S1,Diff∗S1

∆1) 99K (Sn2 ,DiffSn2 ∆2) is crepant.

Geometry of lc lcenters.

Let (Y,∆Y ) → (X,∆) be as in Notation 5.4.2.1, Z ⊂ X an lc center of (X,∆) and S, S′ ⊂ Y
lc centers of (Y,∆Y ) that are minimal for the property of dominating Z. In characteristic 0, a
crucial observation due to Kollár [Kol16] is that S and S′ are birational, and that the birational
map arises from a special structure which he calls a standard P1-link. In this section, we prove
some analogous statements in positive characteristic.

We begin by defining the P1-links.

Definition 5.4.2.6 (Weak standard P1-link). A weak standard P1-link is a Q-factorial pair
(T,W1 +W2 + E) together with a proper morphism π : T →W such that

(a) KT +W1 +W2 + E ∼Q,π 0,

(b) W1 and W2 are disjoint and normal,

(c) both π : Wi →W are isomorphisms, and

(d) red(Tw) ∼= P1
k(w) for every w ∈W .

Remark 5.4.2.7. In Kollár’s definition of standard P1-link [Kol13, 4.36], it is assumed that
(T,W1 +W2 +E) is plt. Let us justify our deviation. The use of (weak) P1-links is motivated
by Proposition 5.4.2.9 below, which is analogous to [Kol13, 4.37]. In both cases, during the
proof we find a weak P1-link (T,W1 +W2 +E)→W such that (T,E) is klt. Using cyclic covers,
we can see that (T,W1 + W2 + E) is locally the quotient of a product (W̃ × P1, W̃ × [0; 1] +
W̃ × [1; 0] +EW̃ × P1). By inversion of adjunction, this product is plt. In characteristic 0 this
implies that the quotient is plt, but this is not necessarily the case in positive characteristic.

However, our weaker assumption on standard links is sufficient for our purpose, as we shall
see.

Lemma 5.4.2.8. Let π : (T,W1 + W2 + E) → W be a weak standard P1-link over a field
of characteristic > 2. Then Supp(E) is a union of fibers and there is a log isomorphism
(W1,DiffW1 E) ∼= (W2,DiffW2 E) that commutes with the projections onto W .

Proof. A general geometric fiber F is normal by Lemma 5.4.1.6, and by assumption KF is
anti-ample. In particular 2 = −KT · F = (W1 + W2 + E) · F . Since Wi · F = 1, we deduce
that the support of E is a union of fibers. Since Wi → W are isomorphisms, the projections
provide an isomorphism φ : W1

∼= W2 that commutes with the projections πi : Wi → W . The
morphism φ : (W1,DiffW1 E)→ (W2,DiffW2 E) is crepant by Lemma 5.4.1.14.
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Proposition 5.4.2.9. Let (S,∆) be a quasi-projective klt surface pair defined over a field of
characteristic > 2, with a projective morphism f : S → Z. Let D be an effective Z-divisor that
dominates Z, such that KS + ∆ + D ∼Q,f 0 and (S,D + ∆) is dlt. Pick a point z ∈ Z such
that f−1(z) is connected but f−1(z) ∩D is disconnected.

Then there exists an elementary étale morphism (z′ ∈ Z ′)→ (z ∈ Z) and a proper morphism
W → Z ′ such that (S,∆ + D) ×Z Z ′ = (S′,∆′ + D′) is birational to a weak standard P1-link
over W .

Proof. Given an elementary étale neighborhood (z′ ∈ Z ′) → (z ∈ Z), we form the Cartesian
diagram

(S′, D′ + ∆′) (S,D + ∆)

Z ′ Z

f ′ f

We can choose Z ′ → Z such that the different connected components of (f ′)−1(z′) ∩ D′ are
contained in different connected components of D′. Notice that (S′,∆′) is klt, (S′, D′ + ∆′) is
dlt, KS′ +D′ + ∆′ ∼Q,f ′ 0 and (f ′)−1(z′) is connected.

By [Tan18, Theorem 1.1], we may run an MMP for (S′,∆′) over Z ′. Since KS′ + ∆′ ∼Q,f ′

−D′ is not pseudo-effective on the generic fiber of f ′, the MMP terminates with a Fano con-
traction p : (S∗,∆∗)→W over Z ′. We picture our construction as follows:

(S′, D′ + ∆′) (S∗, D∗ + ∆∗)

Z ′ W

ϕ

f ′ p
g

where D∗ = ϕ∗D and ∆∗ = ϕ∗∆. (Since S′ is a surface, ϕ is actually a morphism.)
By construction we have KS∗ + D∗ + ∆∗ ∼Q,g 0, so in particular KS∗ + D∗ + ∆∗ ∼Q,p 0.

Moreover ϕ : (S′, D′+ ∆′) 99K (S∗, D∗+ ∆∗) is crepant, so it follows from Lemma 5.4.1.13 that
g−1(z′) ∩D∗ is still disconnected.

Since p is a Fano contraction, there is a component D∗1 ⊂ D∗ that has positive intersection
with the contracted ray inducing p : S∗ → W . Thus D∗1 is p-ample. Now there is another
component D∗2 ⊂ D∗ that is disjoint from D∗1. Take a curve C which intersects D∗2 and is
contained in a fiber of p. The intersection C ·D∗2 cannot be negative, otherwise the fiber would
be included in D∗2, and D∗1 and D∗2 would not be disjoint. So D∗2 also has positive intersection
with the contracted ray, and is also p-ample.

So D∗1 and D∗2 are disjoint and have positive intersection with every curve contracted by p.
Assume that a fiber F of p has dimension at least 2: then F∩D∗1 must be at least 1-dimensional,
hence it intersects D∗2, contradiction. Thus the fibers of p have dimension 1. Since (S∗,∆∗) is a
klt surface, it is Q-factorial and KS∗ is Q-Cartier. As KS∗ + ∆∗ is p-anti-ample, it follows that
KS∗ is p-anti-ample. By Lemma 5.4.1.6, a general geometric fiber F of p is smooth rational.
As

F · (∆∗ +D∗) = −KS∗ · F = 2,

we deduce via Lemma 5.4.1.7 that D∗1 and D∗2 are sections of p and that the other components
of ∆∗ + D∗ are vertical over W . If there was another component of D∗ whose image under g
contained z′, then that component would also contain g−1(z), and thus g−1(z)∩D∗ would not
be disconnected. Thus we can shrink Z ′ and assume that D∗ = D∗1 +D∗2.

By [Tan18, Theorem 1.3], we have R1p∗OS∗ = 0, and thus every reduced fiber is a tree of
P1. By intersecting with the D∗i we see these trees must be irreducible.

Since S∗ is a normal surface, W is a normal curve, and as D∗i are sections of p we deduce
that they are normal.
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Thus p : (S∗, D∗1 +D∗2 + ∆∗)→W is a weak standard P1-link. This proves the proposition.

Definition 5.4.2.10 (Weak P1-links). Let f : (Y,∆Y )→ (X,∆) be as in Notation 5.4.2.1, and
let Z1, Z2 ⊂ Y be two lc centers. We say that Z1 and Z2 are directly weakly P1-linked if
there exists an lc center W ⊆ Y (we allow W = Y ) such that f(Z1) = f(Z2) = f(W ) and
(W,Diff∗W ∆Y ) is crepant birational to a P1-link with the Zi as the two sections, and the base
of the P1-link factorizes the morphism to X.

We say that Z1 and Z2 are weakly P1-linked if there is a sequence of lc centers Z ′1, . . . , Z
′
m

with Z1 = Z ′1 and Z2 = Z ′m, such that Z ′i and Z ′i+1 are directly weakly P1-linked.

Lemma 5.4.2.11. Let f : (Y,∆Y ) → (X,∆) be as in Notation 5.4.2.1, and let S1, S2 ⊂ Y be
two weakly P1-linked lc centers. Then:

(a) (S1,Diff∗S1
∆Y ) and (S2,Diff∗S2

∆Y ) are crepant birational over X, and

(b) (S1,Diff∗S1
∆Y ) is klt if and only if (S2,Diff∗S2

∆Y ) is klt.

Proof. We may assume that S1 and S2 are directly weakly P1-linked. Then there is a lc center
T ⊂ Y containing both Si’s, a weak standard P1-link (T ′,W1 + W2 + E) → W and a crepant
birational map φ : (T,Diff∗T ∆Y ) 99K (T ′,W1 + W2 + E) such that the map T 99K T ′ → W
factors the morphism T → X, and such that φ maps birationally Si to Wi.

By Corollary 5.4.2.5, φ induces crepant birationalX-maps (Si,Diff∗Si ∆Y ) 99K (Wi,DiffWi E).
Composing these maps with the log isomorphism (W1,DiffW1 E) ∼= (W2,DiffW2 E) overW given
by Lemma 5.4.2.8, we obtain that the (Si,Diff∗Si ∆Y ) are crepant birational over X.

The second assertion follows immediately from the first one.

Proposition 5.4.2.12. Let f : (Y,∆Y )→ (X,∆) be as in Notation 5.4.2.1. Fix T ⊂ X an lc
center of (X,∆). Then the lc centers of (Y,∆Y ) that are minimal for dominating T , are weakly
P1-linked to each other.

Proof. We prove the following more precise result:

Claim 5.4.2.13. Given a point x ∈ X, an lc center Z ⊂ Y of (Y,∆Y ) that is minimal for the
property x ∈ f(Z), an lc center W ⊂ Y such that x ∈ f(W ), then there exists an lc center
ZW ⊂W such that Z and ZW are weakly P1-linked.

By Lemma 5.4.2.11 this claim implies the result, taking x to be the generic point of T .
First we prove our claim holds after passing to an elementary étale neighborhood of (x ∈ X).

Then we will show that the weak P1-link descends along the étale base-change.
By [NT20, 1.2], the fibers of

Supp ∆=1
Y = Nklt(Y,∆Y ) −→ X

are geometrically connected. After passing to an elementary étale neighborhood of (x ∈ X),
we may assume that ∆=1

Y =
∑

i ∆i, that each ∆i has a connected fiber above x and that
every lc center of (Y,∆Y ) intersects f−1(x). Relabelling the ∆i is necessary, we assume that
Z ⊂ ∆1,W ⊂ ∆r and ∆i ∩∆i+1 ∩ f−1(x) 6= ∅ for all i = 1, . . . , r − 1.

Now we prove that Z ⊂ ∆1 is P1-linked (after the étale base-change) to an lc center
contained in ∆1 ∩ ∆2. For ease of notation, we let S := ∆1, D := Diff∗S ∆Y , E := ∆1 ∩ ∆2.
Then (S,D) is dlt, admits a projective morphism g = f |S : S → X with connected fibers such
that KS + D ∼Q,g 0. Notice that E ⊂ SuppD=1 and that Z ⊂ SuppD=1 ∩ g−1(x). We
distinguish a few cases according to the dimension of g(S).

(a) Suppose that dim g(S) = 2. Then R1g∗OS(−D=1) = 0 by Lemma 5.4.1.8, so the natural
map g∗OS → g∗OD=1 is surjective. If D=1 ∩ g−1(x) was disconnected, then we would
get a section of g∗OS that vanishes on one connected component of g−1(x)∩D=1, and is
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identically 1 on another. But g−1(x) is connected and sections of Og−1(x)red
are supported

on entire components, so we get a contradiction. Thus D=1 ∩ g−1(x) is connected.

The scheme D=1 ∩ g−1(x) is either 0-dimensional or 1-dimensional. If it is 0-dimensional
then D=1 ∩ g−1(x) = Z and we are done.

Assume that D=1 ∩ g−1(x) is 1-dimensional. Then Z is an intersection point of two
components of D=1 above g−1(x). If Z is the only such point, then we are done. If not,
then by adjunction we easily see that each component of D=1 ∩ g−1(x) must support two
such points. In particular these points are k(x)-points, and the components of D=1 ∩
g−1(x) are isomorphic to P1

k(x).

(b) Suppose that dim g(S) = 1. First we consider the case where x is the generic point of
C := g(S). Then D=1∩g−1(x) is the set of generic points of those components of D=1 that
dominate C. If it is connected, then D=1∩g−1(x) = Z and we are done. If D=1∩g−1(x) is
not connected, then since D=1 dominates C we may use Proposition 5.4.2.9 to obtain that,
after possibly a further elementary étale base-change, D=1 ∩ g−1(x) has two connected
components that are P1-linked to each other.

Now assume that x ∈ C is a closed point. If D=1 ∩ g−1(x) is connected, we can apply
the same analysis as in the previous point. If D=1 ∩ g−1(x) is disconnected and D=1

dominates C, then we can use Proposition 5.4.2.9.

Finally, if D=1 does not dominate C, we show that D=1 ∩ g−1(x) is connected, hence all
cases have been covered. Indeed, if D=1 does not dominate C then it is supported on
fibers, and KS + D<1 ∼Q,g −D=1 is pseudo-effective on the generic one. By [Tan18] we
can run a (KS + D<1)-MMP over C, which terminates with a birational model S′ of S,
say

(S,D<1, D=1) (S′,∆′ := ϕ∗D
<1,Γ′ := ϕ∗D

=1)

C
g

ϕ

g′

such that KS′+∆′ ∼Q,g′ −Γ′ is g′-nef. (The map ϕ is actually a morphism.) Notice that:

◦ By Lemma 5.4.1.14 the map ϕ : (S,D) 99K (S′,∆′ + Γ′) is crepant;

◦ SinceKS′+∆′+Γ′ ∼Q,g′ 0 and Γ′ is vertical over C, we see that (KS′+∆′)·(g′)∗M = 0
for any Q-Cartier divisor M on C;

◦ Γ′ 6= 0. For if ϕ would contract D=1, then looking at in intermediate step of the
MMP we may assume that D=1 is irreducible. But then (KS+D<1)·D=1 = −(D=1)2

is non-negative by Lemma 5.4.1.5, which is a contradiction.

Now we claim that Γ′∩ (g′)−1(x) is connected for any x ∈ C ′. By Lemma 5.4.1.5 we have
(Γ′)2 ≤ 0, with equality if and only if Γ′ is a weighted sum of fibers. In any case we can
write

−Γ′ ∼Q (g′)∗N + E

where N is Q-Cartier on C and E is an effective Q-divisor supported on the fibers. Hence
we have

0 ≥ (Γ′)2 = (KS′ + ∆′) · (−Γ′) = (KS′ + ∆′) · ((g′)∗N + E) ≥ 0,

thus (Γ′)2 = 0. Since g′ : S′ → C has connected fibers, we deduce that every Γ′∩(g′)−1(x)
is connected.

Since (S,D<1) is klt and ϕ is a (KS+D<1)-MMP, the pair (S′,∆′) is also klt. In particular
Nklt(S′,∆′+ Γ′) = Γ′. On the other hand, since (S,D) is dlt we have Nklt(S,D) = D=1.
Therefore, since ϕ : (S,D) 99K (S′,∆′ + Γ′) is a crepant C-map, by Lemma 5.4.1.13 we
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have a bijection between the connected components of D=1 ∩ g−1(x) and the connected
components of Γ′ ∩ (g′)−1(x). In particular D=1 ∩ g−1(x) is connected.

(c) Finally, suppose that dim g(S) = 0. If D=1∩g−1(x) is connected, we apply the same anal-
ysis as in the first point. If D=1 ∩ g−1(x) is disconnected, we can use Proposition 5.4.2.9.

It remains to show that the weak P1-link descends the étale base-change. More precisely,
let Zi ⊂ Y be the lc centers that are minimal for the property x ∈ f(Zi). We have proved that
after an elementary étale base-change (x′ ∈ X ′) → (x ∈ X), the Z ′i := Zi ×X X ′ are weakly
P1-linked. In particular they have the same image in X ′, and thus the Zi have the same image
in X, say V . Let v ∈ X be the generic point of V . Notice that the lc centers of (Y,∆Y ) that
are minimal above v are exactly the Zi’s. Thus we can refine the earlier statement: there is a
elementary étale neighborhood (ṽ ∈ X̃)→ (v ∈ X) such that the Z̃i := Zi×X X̃ are P1-linked.
Since k(ṽ) = k(v), the morphisms Z̃i → Zi are generical isomorphisms. Thus the weak P1-links
between the Z̃i’s descend to weak P1-links between the Zi’s.

Remark 5.4.2.14. The same argument shows that Proposition 5.4.2.12 also holds for an arbitrary
quasi-projective lc surface pair (S,∆) over a field and a crepant dlt blow-up (S′,∆′)→ (S,∆).
This can also be shown by considering the minimal resolution of (S,∆).

Corollary 5.4.2.15. Let f : (Y,∆Y ) → (X,∆) be as in Notation 5.4.2.1, and S ⊂ Y a lc
center of (Y,∆Y ). Denote by

S
fS−→ XS

π−→ X

the Stein factorization of f |S. If Z ⊂ X is an lc center of (X,∆), then every irreducible
component of π−1Z ⊂ XS is the image of an lc center of (S,∆S := Diff∗S ∆Y ).

Proof. Choose a minimal lc center V ⊂ Y above Z. By Claim 5.4.2.13, there is a minimal
lc center V ′ ⊆ Y that dominates Z and that is contained in S. By adjunction for dlt pairs,
(V ′,Diff∗V ′ ∆Y ) is an lc center of (S,∆S). Then fS(V ′) ⊂ XS is one of the irreducible compo-
nents of π−1Z.

Now let η ∈ X be the generic point of Z. After passing to an elementary étale neighborhood
of (η ∈ X), we can assume that S is the union of irreducible components Sj where each
f−1(η) ∩ Sj is connected. The previous argument show that the irreducible components of
π−1Z are images of lc centers of the Sj , and these lc centers descend to S by [Kol13, 2.15].

Corollary 5.4.2.16. Let (X,∆) be a quasi-projective slc threefold pair over a perfect field of
characteristic > 5. Then any intersection of lc centers is a union of lc centers.

Proof. The normalization (X̄, D̄ + ∆̄) → (X,∆) is crepant and (X̄, D̄ + ∆̄) is lc. Thus we
may assume that (X,∆) is lc. Let Z,Z ′ ⊂ X be lc centers, and pick a point x ∈ Z ∩ Z ′. If
f : (Y,∆Y ) → (X,∆) is a crepant dlt blow-up, then by Claim 5.4.2.13 we can find a minimal
lc center W of (Y,∆Y ) above x whose image f(W ) is contained in Z ∩Z ′. Since f(W ) is an lc
center of (X,∆), the result is proved.

Corollary 5.4.2.17. Let (X,∆) be a quasi-projective slc threefold pair over a perfect field
of characteristic > 5. Then the minimal lc centers of (X,∆) are normal up to universal
homeomorphism.

Proof. Let Z ⊂ X be a minimal lc center of (X,∆), and z ∈ Z be any point. Choose an étale
neighborhood (z′ ∈ Z ′) → (z ∈ Z). After shrinking it if necessary, we may assume that it
is a standard étale neighborhood [Sta, 02GI, 02GU] and thus there is an étale neighborhood
(z′ ∈ X ′) → (z ∈ X) such that Z ′ = Z ×X X ′. Hence Z ′ is an lc center of (X ′,∆′) and it
is connected. If it was reducible, then the intersection of its components would be a union of
lc centers by Corollary 5.4.2.16, and their images in X would also be lc centers [Kol13, 2.15].
This contradicts the minimality of Z. Thus (z′ ∈ Z ′) is irreducible.
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By [Sta, 0BQ4] we obtain that Z is geometrically unibranch. So the normalization morphism
Zn → Z is universally bijective [Sta, 0C1S]. Since it is surjective and universally closed, we
obtain that that Zn → Z is a universal homeomorphism.

Springs and sources for the reduced boundary.

We are now able to define sources of lc centers, analogously to [Kol13, §4.5]. The theory of
sources should be thought of as higher codimension version of adjunction for divisors. How-
ever we only define sources for lc centers that are contained in the reduced boundary: see
Remark 5.4.2.26 below.

Theorem 5.4.2.18. Let f : (Y,∆Y ) → (X,∆) be as in Notation 5.4.2.1. Let Z ⊂ X be a lc
center contained in ∆=1 with normalization n : Zn → Z.

Let (S,∆S := Diff∗S ∆Y ) ⊂ Y be a minimal lc center above Z, with Stein factorization
fnS : S → ZS → Zn. Then:

(a) Uniqueness of sources. The crepant birational class of (S,∆S) over Z does not depend
on the choice of S. We call it the source of Z, and denote it by Src(Z, Y,∆Y ).

(b) Uniqueness of springs. The isomorphism class of ZS over Z does not depend on the
choice of S. We call it the spring of Z, and denote it by Spr(Z, Y,∆Y ).

(c) Crepant log structure. (S,∆S) is dlt, KS + ∆S ∼Q,Z 0 and (S,∆S) is klt on the
generic fiber above Z.

(d) Galois property. The field extension k(Z) ⊂ k(ZS) is Galois and the morphism
BircZ(S,∆S)→ Gal(ZS/Z) is surjective.

(e) Poincaré residue map. For m > 0 divisible enough, there are well-defined isomor-
phisms

ω
[m]
Y (m∆Y )|S ∼= ω

[m]
S (m∆S)

and
n∗(f∗(ω

[m]
Y (m∆Y ))) ∼= ((fnS )∗ω

[m]
S (m∆S))BircZ(S,∆S).

(f) Birational invariance. Let (Y ′,∆Y ′) be another crepant dlt blow-up of (X,∆). Then

Src(Z, Y,∆Y )
cbir∼= Src(Z, Y ′,∆Y ′),

Spr(Z, Y,∆Y ) ∼= Spr(Z, Y ′,∆Y ′)

over Z. In particular, we may write Src(Z,X,∆) for the source, and Spr(Z,X,∆) for
the spring of Z ⊂ X.

Proof. For clarity, we divide the proof into four steps and several claims.

Step 1: Sources, springs and invariance. If S′ ⊂ Y is another minimal lc center
above Z, then by Proposition 5.4.2.9 and Lemma 5.4.2.11 there is a crepant birational map
(S,∆S) 99K (S′,∆S′) over Z given by a composition of weak direct P1-links. Since ZS =
SpecZn f∗OS , we obtain a Z-isomorphism ZS ∼= ZS′ . This shows the uniqueness of (S,∆S) up
to crepant birational maps over Z, and the uniqueness of ZS up to isomorphisms over Z.

The fact that (S,∆S) is dlt follows from Corollary 5.4.2.3, and that fact that it is klt on
the generic fiber above Z holds by Proposition 5.4.2.2 and the fact that S is minimal.

To obtain birational invariance, we apply [Kol13, 4.44] to a common log resolution of
(Y,∆Y ) and (Y ′,∆Y ′). (The proof of [Kol13, 4.44] uses [Kol13, 10.45.2], which we replace
by Fact 5.4.1.2).

The following observation will be crucial for the rest of the proof:

Claim 5.4.2.19. If dimZ = 2 then dim Src(Z, Y,∆Y ) = 2. If dimZ ≤ 1 then dim Src(Z, Y,∆Y ) ≤
1.
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Proof. Indeed, if Z is a divisor, then S can be chosen to be the strict transform ZY of Z. If Z
is a curve or a single point, contained in a component Γ of ∆=1, then by Corollary 5.4.2.15 we
can choose S to be contained in ΓY . Since ΓY is 2-dimensional and not f -exceptional, S is at
most 1-dimensional. Since the dimension of S depends only on Z, our claim is proved. ♦

Step 2: Poincaré residue. To obtain the Poincaré residue map, let m > 0 be even

and sufficiently divisible such that ω
[m]
Y (m∆Y ) ∼ f∗L for some line bundle L on X. By

Corollary 5.4.2.3 we have isomorphisms

RmY,S : f∗L|S ∼= ω
[m]
Y (m∆Y )

∼−→ ω
[m]
S (m∆S).

However the choice of S is in general not unique. The following claim shows how the maps
RmY,S relate for different choices of S.

Claim 5.4.2.20. Let (S′,∆S′) be another minimal lc center above Z. Then there is a crepant
birational map φ : (S,∆S) 99K (S′,∆S′) such the diagram

ω
[m]
Y (m∆Y ) f∗L ω

[m]
Y (m∆Y )

ω
[m]
S (m∆S) ω

[m]
S′ (m∆S′)

∼

RmY,S

∼

Rm
Y,S′

φ∗

(4.2.20.d)

is commutative.

Proof. Indeed, we may assume that S and S′ are directly weakly P1-linked. Then there is a
lc center T ⊂ Y containing both S and S′, which is birational to the total space of a weak
standard P1-link T ′ → W whose sections map birationally to S and S′. Moreover, the map
T 99K W factors the morphism T → f(T ). The induced projections S 99K W L99 S′ are
birational, and induce a birational map φ : S 99K S′, which we claim is the map we are looking
for.

Since φ is obtained from a P1-link, by Lemma 5.4.2.11 it is crepant.
To prove the commutativity of the diagram, since RmT,S ◦ RmY,T = RmY,S , we may assume

that Y = T . In this case, note that S, S′ ⊂ ∆=1
Y . Moreover we are dealing with torsion-free

sheaves, so it is enough to check commutativity generically. Thus we may assume that we
have a standard weak P1-link X →W factorizing f , with sections S and S′. Localizing at the
generic point of W , we may furthermore assume that W is the spectrum of a field L and that
X = P1

L [Har10, 25.3]. In this case ∆Y = S+S′ and we may choose coordinates x, y on X such
that S = [0; 1] and S′ = [1; 0]. Then a generator of H0(P1

L, ωP1
L
(S + S′)) is dx/x, and

R1
Y,S(dx/x) = 1, R1

Y,S′(dx/x) = −1

while φ∗ is the identity map on L. Thus (4.2.20.d) indeed commutes for m even. ♦

If we think about (S,∆S) as a crepant birational class, then Claim 5.4.2.20 shows that we

can define a Poincaré residue map RmY,S : ω
[m]
Y (m∆Y ) → ω

[m]
S (m∆S), up to the action of the

group BircZ(S,∆S) on the target. We can remedy to this ambiguity using the following claim.

Claim 5.4.2.21. The group BircZ(S,∆S) acts on ω
[m]
S (m∆S) as a finite group of roots of unity

in k(Z).
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Proof. We are dealing with torsion-free sheaves and with a group action that commutes with
the projection to Z. So to understand the action, we can localize over the generic point of

Z. Then we obtain a proper k(Z)-pair (Sk(Z),∆Sk(Z)
) such that ω

[m]
Sk(Z)

(m∆Sk(Z)
) is trivial, and

we must show that the action of Birck(Z)(Sk(Z),∆Sk(Z)
) on the 1-dimensional k(Z)-vector space

H0(Sk(Z), ω
[m]
Sk(Z)

(m∆Sk(Z)
))is finite. If dimS = dimZ then Sk(Z) is the spectrum of a finite

field extension of k(Z), and so Autk(Z)(Sk(Z)) is finite. By Claim 5.4.2.19, the only case left is
when Z = {x} is a closed point of X and (S,∆S) is a proper 1-dimensional klt pair over k(x)

such that ω
[m]
S (m∆S) is trivial. Since k(x) is a perfect field, it follows from Proposition 5.4.1.15

that Birck(x)(S,∆S) acts finitely on the 1-dimensional vector space H0(S, ω
[m]
S (m∆S)).

So in every case BircZ(S,∆S) acts finitely on the generic stalk of ω
[m]
S (m∆S), hence through

the multiplication with some rth-root of unity in k(Z). ♦

Replacing m by mr, the action becomes trivial and the ambiguity about the Poincaré
residue map disappears.

Step 3: the Galois property. We wish to prove that the field extension k(ZS)/k(Z) is
Galois.

The case where Z is a divisor is the easiest, we treat it first. By [NT20, 1.2] there is a unique
lc center S above Z (namely, its strict transform) and the morphism S → Z has connected
fibers in a neighborhood of the generic point of Z. Thus S → Z is birational, BircZ(S,∆S) is
trivial and k(ZS) = k(Z).

From now on, we assume that dimZ ≤ 1. To prove that the finite morphism ZS → Z
induces a Galois extension on the function fields, we may localize at the generic point of
Z. Then the situation is the following: (x ∈ X,∆) is a local lc pair of dimension 2 or 3,
(Y,∆Y ) → (X,∆) is a crepant dlt blow-up and (S,∆S) ⊂ Y is an lc center of dimension ≤ 1
such that the morphism S → X factorizes through the closed point, and S is minimal for this
property.

Claim 5.4.2.22. In this set-up, the fields of definition of the geometric connected components
of S are the same, and it is a Galois extension of k(x).

Proof. Indeed, let Ks be a separable closure of k(x). Then (Y,∆Y )×k(x)K
s is a dlt Q-factorial

pair, and every component of SKs is an lc center that is minimal. Let W be one of them, with
field of definition F . Then every lc center containing W is also defined over F [Kol13, 4.17], and
so any lc center that is weakly P1-linked to W is also defined over F . By Proposition 5.4.2.12
(see Remark 5.4.2.14) we obtain that all the components of SKs are defined over F . If σ is an
element of the Galois group of the Galois closure of k(x) ⊂ F , then W σ is a minimal lc center
defined over the conjugate field F σ. Therefore F σ = F , so we see that k(x) ⊂ F is Galois. ♦

Claim 5.4.2.23. H0(S,OS) is a separable field extension of k(x).

Proof. If (x ∈ X) has dimension 3, this holds because k(x) is perfect (since in this case we
localized at a closed point). If (x ∈ X) has dimension 2, then (x ∈ X,∆) is a local lc surface
singularity with the property that ∆=1 6= 0. (By [Kol13, 2.28], these (x ∈ X) are rational
surface singularities.) The possible dual graphs of the minimal resolutions (T,Γ) of such pairs
are classified, see for example [Kol13, 3.31]. Inspecting them, we see that if C ⊂ T is an
exceptional proper curve above x, then dimk(x)H

0(C,OC) ≤ 4, and if C ′ is another exceptional
proper curve, then C · C ′ = lengthk(x)C ∩ C ′ ≤ 4. Hence if E ⊂ T is a lc place of (x ∈ X,∆)

then H0(E,OE) is a separable extension of k(x) provided that char k(x) ≥ 5. ♦

Claim 5.4.2.24. H0(S,OS) is a Galois extension of k(x).
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Proof. By Lemma 5.4.1.21 and Claim 5.4.2.23, every connected component of SKs is already
defined over the Galois closure K of k(x) ⊂ H0(S,OS). On the other hand, the field of definition
of these components is a Galois extension of k(x) by Claim 5.4.2.22. So we deduce that K is
the field of definition of every connected component of SKs .

It remains to show that H0(S,OS) = K. Consider the Cartesian diagram

S SK =
⋃
i S

(i)
K

k(x) K

where the S
(i)
K are the irreducible components of SK . As before, (Y,∆Y )×k(x) K is a dlt pair

above K, and each S
(i)
K is an lc center. Thus the intersection of the S

(i)
K are also lc centers.

By minimality of S, we obtain that the S
(i)
K are disjoint. So the S

(i)
K are also the connected

components of SK . Since K is Galois over k(x), the Galois group G = Gal(K/k(x)) acts on

SK . Assume that some S
(j)
K is stable under the action of a non-trivial subgroup of G. Then

by Lemma 5.4.1.23, S
(j)
K would be defined over a proper sub-extension K ′ of k(x) ⊂ K. Then

every S
(i)
K would be defined over K ′, which is a contradiction with the previous paragraph.

Thus G acts freely on the set of S
(i)
K ’s. The action is also transitive, since SK → S is the

geometric quotient by G.
By flat base-change, we have

H0(SK ,OSK ) = H0(S,OS)⊗k(x) K

and the G-action is given by the action on K. On the other hand, since SK is the disjoint

union of the S
(i)
K and G permutes them freely, we also have

H0(SK ,OSK ) =
∏
σ∈G

K

where G acts by permuting the factors. Taking G-invariants, we obtain

H0(S,OS) = H0(S,OS)⊗k(x) K
G =

(
H0(S,OS)⊗k(x) K

)G
=

(∏
σ∈G

K

)G
= K

as desired. ♦

Step 4: Galois group and crepant birational maps. It remains to show that every
element of the Galois group Gal(ZS/Z) is induced by a crepant birational self-map of (S,∆S).

There is nothing to prove if dimZ = 2, as noticed at the beginning of the previous step.
From now on assume that dimZ ≤ 1. We have proved in the previous step that K := k(ZS)

is Galois over k(Z). Let W be a component of S ×k(Z) K and pick σ ∈ Gal(K/k(Z)). The
proof of Claim 5.4.2.24 shows that W is defined over K, so it has a conjugate W σ ⊂ S×k(Z)K.
Fix a weak P1-link between W and W σ inside Y ×X K: then the Gal(K/k(Z))-orbit of this
link descends to an element of Birck(Z)((S,∆S) ×Z k(Z)), and in turn this crepant birational

map induces σ on H0(S ×k(Z) K,O) = K.
This proves that Galois automorphisms of k(Z) ⊂ k(ZS) are induced by birational self-

maps of S which are generically (KS + ∆S)-crepant over Z. We need to show that these
maps are crepant, not only generically crepant. If dimZ = 0 there is nothing to show, so
assume dimZ = 1. Then we make the following observation: Z is contained in a component
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D of ∆=1 and by adjunction any preimage of Z in Dn is a codimension one lc center of
(Dn,DiffDn(∆ − D)). By the classification of lc surface singularities [Kol13, 2.31], we see
that D is regular at the generic point of Z. Hence the strict transform of Z must appear
in bDiffDn(∆ − D)c, and by adjunction we get a natural boundary Γ on Zn. Moreover the
equality dimS = dimZ implies S = ZS , so fnS : S → Zn is a finite morphism. By the definition
of (S,∆S) we must have

(fnS )∗(KZn + Γ) = KS + ∆S . (4.2.24.e)

On the other hand, the fact that S = ZS shows that the birational self-maps of S we found are
just the Galois automorphisms of ZS over Zn. Since ∆S can be defined by (4.2.24.e), we see
that Galois automorphisms are crepant.

The proof is complete.

Corollary 5.4.2.25 (Adjunction). Let (X,D+∆) be a quasi-projective lc threefold pair above a
perfect field of characteristic > 5, where D is a reduced divisor with normalization n : Dn → D.
Let Z ⊂ D be an lc center of (X,D + ∆), and ZD ⊂ Dn be an irreducible variety such that
n(ZD) = Z. Then:

(a) ZD is an lc center of (Dn,DiffDn ∆),

(b) there is a commutative diagram

Src(ZD, D
n,Diff∗Dn ∆) Src(Z,X,D + ∆)

Dn D

cbir

n

(c) There is an isomorphism Spr(ZD, D
n,Diff∗Dn ∆) ∼= Spr(Z,X,D + ∆).

Proof. By enlarging ∆, we may assume that D is irreducible. Choose a Q-factorial dlt crepant
blow-up (Y,∆Y ) of (X,D+∆) and let DY be the strict transform of D. The morphism DY → D
is birational, so its Stein factorization is precisely

DY
∼−→ Dn → D,

which implies that (DY ,Diff∗DY ∆Y ) = (Dn,DiffDn ∆). By Corollary 5.4.2.15 there is a lc center
W ⊂ DY of (Y,∆Y ) that dominates (actually is equal to) ZD ⊂ Dn. By Proposition 5.4.2.2
W is also an lc center of (DY ,Diff∗DY ∆Y ), which proves the first item. Moreover W is a
representative for both Src(ZD, D

n,DiffDn ∆) and Src(Z, Y,∆Y ), and the second item follows
by uniqueness of the source up to crepant birational map. The third item is a consequence of
the second item.

Remark 5.4.2.26. The same method gives sources, springs, crepant log structure, adjunction
and birational invariance of arbitrary lc centers of (X,∆). However:

(a) The Galois property is problematic: if Z is 1-dimensional and not contained in any
component of ∆=1, then OX,Z might by an elliptic or a cusp singularity, and the degrees
of the exceptional curves might be arbitrarily large [Kol13, 3.27.3]. For example, we can
take a product of such singularities with P1. So inseparable extensions might appear.

(b) The Poincaré residue map can be defined, but it is not clear how to get rid of the
BircZ(S,∆S)-ambiguity. Indeed, in constrast to Claim 5.4.2.19, one more case can show
up, namely dimS = 2 and dimZ = 1, and we were not able to show finiteness of
representations with sufficient generality in this case.
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5.4.3 Gluing theorems for threefolds in characteristic > 5

We now prove the gluing theorems for lc threefolds. Our proofs follow closely those of
Kollár [Kol13, §5].

Lemma 5.4.3.1. Let (X,∆) and (X ′,∆′) be quasi-projective lc threefold pairs over a perfect
field of characteristic > 5, and φ : (X,∆) ∼= (X ′,∆′) a log isomorphism. Let Z ⊂ X be an lc
center of (X,∆). Then:

(a) Z ′ := φ(Z) is an lc center of (X ′,∆′), and

(b) we have a commutative square

Src(Z,X,∆) Src(Z ′, X ′,∆′)

Z Z ′

cbir

φ

Proof. Since φ is a log isomorphism, Z ′ is an lc center of (X ′,∆′). The second point follows
from the birational invariance property proved in Theorem 5.4.2.18. The source is defined up
to crepant birational map over the lc center, so there is no ambiguity about the commutativity
of the diagram.

First we show that the geometric quotient exists.

Proposition 5.4.3.2. Let (X,D + ∆) be a projective lc threefold pair over a perfect field k
of characteristic > 5. Let τ : (Dn,DiffDn ∆) ∼= (Dn,DiffDn ∆) be a generically fixed point free
involution. Assume that KX+D+∆ is ample. Then the induced equivalence relation R(τ)⇒ X
is finite, the geometric quotient X/R(τ) exists, and X/R is proper over k.

Proof. By Theorem 2.5.0.2, the geometric quotient exists as soon as R := R(τ) is finite. Notice
that, by construction, a point of Supp(D) and a point of X \ Supp(D) cannot be in the same
equivalence class. Moreover, R restricts to the identity relation away from Supp(D). Thus we
only need to prove that R is finite on Supp(D).

For every lc center Z of (X,D+∆) contained inD, let Z0 := Z\(lower dimensional lc centers)
and let Spr0(Z,X,D + ∆) be the preimage of Z0 through the finite morphism Spr(Z,X,D +
∆)→ Z. Set

p : Spr0(X,D + ∆,⊆ D) :=
⊔
Z⊆D

Spr0(Z,X,D + ∆) −→ X,

it is a quasi-finite morphism mapping surjectively onto D.
The equivalence relationR⇒ D pullbacks to an equivalence relation (p×p)∗R⇒ Spr0(X,D+

∆,⊆ D) that commutes with the projections to D, and since p is surjective onto D it is suf-
ficient to show that (p × p)∗R is finite. We describe how the generators of R pullbacks to
Spr0(X,D + ∆,⊆ D). To make book-keeping easier, we let {Zj}j be the set of lc centers of
(X,D + ∆) contained in D.

By the Galois property of Theorem 5.4.2.18, over the normal locus of Z0
j the morphism

Spr0(Zj , X,D+∆)→ Z0
j is the quotient by the Galois group Gj := Gal(Spr(Zj , X,D+∆)/Zj).

Thus the preimage of the diagonal Z0
j × Z0

j under p is a union of the graphs of the Gj-action,

together with other components that do not dominate Z0
j (their images are contained in the

locus where Z0
j is not normal).

Next we understand the pullback of τ .

Claim 5.4.3.3. Let Zjh ⊂ Dn be a subvariety dominating Zj ⊂ X. Let Zl := n(τ(Zjh)). Then
Zjh is a lc center of (Dn,DiffDn ∆). Moreover
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(a) τ induces a crepant birational map

τ̃jhl : Src(Zj , X,D + ∆)
cbir∼ Src(Zl, X,D + ∆)

determined up to the left and right action of BircZj Src(Zj , X,D+∆) and BircZl Src(Zl, X,D+
∆);

(b) τ̃jhl induces an isomorphism

τjhl : Spr0(Zj , X,D + ∆) ∼= Spr0(Zl, X,D + ∆)

determined up to left and right multiplication by Gj and Gl.

Proof. By Corollary 5.4.2.25, Zjh is an lc center of (Dn,DiffDn ∆) and

Src(Zjh, D
n,DiffDn ∆)

cbir∼ Src(Zj , X,D + ∆). (4.3.3.f)

By Lemma 5.4.3.1 the automorphism τ of (Dn,DiffDn ∆) induces a crepant birational map
between Src(Zjh, D

n,DiffDn ∆) and Src(τ(Zjh), Dn,DiffDn ∆). Then by (4.3.3.f) we obtain
crepant birational maps

τ̃jkl : Src(Zj , X,D + ∆)
cbir∼ Src(Zl, X,D + ∆).

Since τ̃jhl preserves the non-klt locus and since Spr0(Zj , X,D+∆) is precisely the image of the
klt locus of Src(Zj , X,D + ∆), the τ̃jhl descend to an isomorphism

τjhl : Spr0(Zj , X,D + ∆) ∼= Spr0(Zl, X,D + ∆)

as claimed. However τjhl is not uniquely defined, since τ̃jhl is determined up to left and right
multiplication by BircZj Src(Zj , X,D + ∆) and BircZl Src(Zl, X,D + ∆). By Theorem 5.4.2.18
we obtain that τjhl is determined up to left and right multiplication by Gj and Gl. ♦

Since n(n−1Zj) =
⋃
iDi∩Zj and each Di∩Zj is a union of lc centers by Corollary 5.4.2.16,

we see that each component of n−1Zj dominates a lc center of (X,D + ∆). So, thanks to
Claim 5.4.3.3, we have found all the generators of (p× p)∗R.

To show that (p × p)∗R is finite, by [Kol13, 9.55] it is sufficient to show that it is finite
over the generic point of every Z0

j . Therefore we may assume that (p × p)∗R is the groupoid

generated by the Gj and the τjhl, and the stabilizer of Spr0(Zj , X.D + ∆) is generated by the
sets {τ−1

jh′lGlτjhl}h,h′,l.
The Galois property of Theorem 5.4.2.18 shows that Gj is a subgroup of

Autsk Spr(Zj , X,D + ∆) := im [Birck Src(Zj , X,D + ∆)→ Autk Spr(Zj , X,D + ∆)] .

By Claim 5.4.3.3, the τ−1
jh′lGlτjhl are also subgroups of Autsk Spr(Zj , X,D + ∆). To complete

the proof we will show that these groups of k-automorphisms are finite. This is where the
ampleness assumption on KX +D + ∆ will be used.

(a) If dimZj = 2 then Src(Zj , X,D+∆)→ Zj is birational and therefore Autsk(Zj , X,D+∆)
is finite by Proposition 5.4.1.18.

(b) If dimZj = 1 then dim Src(Zj , X,D+∆) = 1 by Claim 5.4.2.13. Hence Src(Zj , X,D+∆)
is a 1-dimensional pair of general type, since its log canonical divisor is the pullback of
the ample divisor KX +D + ∆ through the composition of finite morphisms

Src(Zj , X,D + ∆)→ Zj ↪→ X.

Thus Birc Src(Zj , X,D + ∆) is finite by Proposition 5.4.1.16.
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(c) If dimZj = 0 = dim Src(Zj , X,D + ∆) then finiteness is clear.

(d) The only case left, according to Claim 5.4.2.19, is dimZj = 0 and dim Src(Zj , X,D +
∆) = 1. Then Src(Zj , X,D + ∆) is a Calabi-Yau curve and finiteness follows from
Proposition 5.4.1.15.

Thus X/R exists and is a k-scheme. Since X → X/R is finite, X/R is proper over k [Sta,
09MQ,03GN]. This completes the proof.

Remark 5.4.3.4. With the notations of the proof of Proposition 5.4.3.2, let us observe that the
stabiliser of Spr(Z0

j , X,D + ∆) is not contained in the smaller group

AutZj Spr(Zj , X,D + ∆) := im
[
BircZj Src(Zj , X,D + ∆)→ AutZj Spr(Zj , X,D + ∆)

]
even though Gj belongs to it and each τjhl commutes with the projections to Zj and Zl.
Indeed the stabiliser is generated by the groups τ−1

jh′lGlτjhl where it may happen that h 6= h′.
In this case the corresponding automorphisms of Spr(Zj , X,D + ∆) may not commute with
the projection to Zj . This happens if Zj is dominated by several lc centers of (Dn,DiffDn ∆)
whose images under τ dominate the same lc center Zl ⊂ X.

Notice that AutZj Spr(Zj , X,D + ∆) is a finite group since Spr(Zj , X,D + ∆) → Zj is a
finite morphism. On the other hand, it is not clear that Autsk Spr(Zj , X,D + ∆) should be
finite, and this is where the ampleness assumption comes into the picture.

Now we show that the log canonical divisor descends to the geometric quotient.

Proposition 5.4.3.5. Let (X,D+ ∆) be a quasi-projective lc threefold pair over a perfect field
k of characteristic > 5. Let τ : (Dn,DiffDn ∆) ∼= (Dn,DiffDn ∆) be an involution. Assume that
R(τ) ⇒ X is finite, let q : X → Y := X/R(τ) be the geometric quotient, and let ∆Y := q∗∆.
Then KY + ∆Y is Q-Cartier.

Proof. By Corollary 4.3.0.7 the Q-divisor KY + ∆Y is Q-Cartier in codimension 2. Hence we
may localize over a closed point of Y , and assume that Y is local with closed point y, and that
KY + ∆Y is Q-Cartier on Y 0 := Y \ {y}. Since q : X → Y is an isomorphism above the away
from q(D), we may assume that y belongs to the nodal locus. Since an OY -module is locally
free if and only if it is locally free after an étale base-change, we may base-change along the
strict henselization of Y , and assume that k(y) is separably closed. Since k is perfect, we may
therefore assume that k(y) is algebraically closed.

We are going to descend the total space of a multiple of KX + D + ∆ to Y , and use the
theory of Seifert bundles (see [Kol13, §9.3]) to conclude that it defines a line bundle on Y .

Choose an even integer m > 0 such that m∆ is a Z-divisor, and both ω
[m]
X (mD+m∆) and

ω
[rm]
Y 0 (rm∆Y |Y 0) are invertible sheaves. We consider the A1-bundle over X given by

XL := SpecX
∑
r≥0

ω
[rm]
X (rmD + rm∆)

p−→ X.

Set DL := p−1D and ∆L := p−1∆. Clearly (XL, DL + ∆L) is lc. Since XL → X is an A1-
bundle, we see that the normalization Dn

L → DL is equal to Dn ×D DL. By adjunction and
functoriality of the relative spectrum, this gives the alternative description

Dn
L = SpecDn

∑
r≥0

ω
[rm]
Dn (rmDiffDn ∆).

The fiber product description shows that DiffDnL ∆L = p∗DiffDn ∆ and that the lc centers
of (Dn

L,DiffDnL ∆L) are the preimages of the lc centers of (Dn,DiffDn ∆). As DiffDn ∆ is τ -
invariant, the relative spectrum description shows that τ lifts to an involution τL of the pair
(Dn

L,DiffDnL ∆L).
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Now we wish to show that the induced equivalence relation RL := R(τL)⇒ XL is finite, so
that we can form the quotient XL/RL.

Denote by p′ : Y 0
L → Y 0 the total space of the invertible sheaf ω

[rm]
Y 0 (rm∆Y |Y 0), X0 := q−1Y 0

and X0
L := (p ◦ q)−1Y 0. Then we have a natural finite morphism of A1-bundles q′ : X0

L → Y 0
L

making the diagram

X0
L X0

Y 0
L Y 0

p

q′ q

q′

commutative. Since X0
L is the total space of the line bundle ω

[m]
X0 (mD|X0 + m∆|X0) which

descends to Y 0, we have that Y 0
L = X0

L/R
0
L where R0

L is the restriction of RL to X0
L [Kol13,

9.48]. Therefore R0
L is finite, and we only need to prove the finiteness of RL over the complement

of X0
L.

Let x1, . . . , xs ∈ X be the preimages of y. Since y belongs to the nodal locus of Y , we
have x1, . . . , xs ∈ D. If none of the xi are lc centers of (X,D + ∆), then every lc center of
(XL, DL + ∆L) intersects X0

L and therefore RL is finite by [Kol13, 9.55].
Assume that one of the xi is an lc center. Then every xi is an lc center: for the xi form an

equivalence class of τ , by adjunction one of them corresponds to an lc center of (Dn,DiffDn ∆)
and τ permutes these lc centers.

Since k(y) is algebraically closed, we have k(xi) = k(y) for each i. The fiber of p : XL → X
above xi is the spectrum of the symmetric algebra of the 1-dimensional k(y)-vector space

Vi := ω
[m]
X (mD +m∆)⊗OX k(xi)

and XL \X0
L =

⋃
i Vi. If x′i ∈ Dn is a preimage of xi, then the data of τ(x′i) = x′j defines an

isomorphism τijl : Vi → Vj (the index l accounts for the fact that xi might have several preimages
in Dn). The collection of isomorphisms {τijl : Vi → Vj} generates a groupoid, and RL is finite if
and only if each group Stab(Vi) ⊂ Aut(Vi) of all possible compositions τij1l1◦· · ·◦τjniln : Vi → Vi,
is finite.

To show this property, consider the sources (Si,∆i) := Src(xi, X,D+ ∆). These are proper

Calabi-Yau varieties over k(y). If we pullback ω
[m]
X (mD+m∆) to a crepant dlt blow-up, restrict

it to (a model of) Si and take global sections, we obtain Vi. Thus the Poincaré residue maps
constructed in Theorem 5.4.2.18 give canonical isomorphisms

Vi ∼= H0(Si, ω
[m]
Si

(m∆i)).

Moreover Claim 5.4.3.3 shows that each isomorphism τijl : Vi → Vj is induced by a crepant
birational map φijl : (Sj ,∆j) 99K (Si,∆i). Hence we conclude that

Stab(Vi) ⊆ im
[
Birc(Si,∆i)→ Autk(y)H

0(Si, ω
[m]
Si

(m∆i))
]
. (4.3.5.g)

Now observe that the Si are at most 1-dimensional by Claim 5.4.2.19, and therefore by Propo-
sition 5.4.1.15 the right-hand side in (4.3.5.g) is finite.

It follows that RL is finite, and thus the quotient XL/RL exists. By [Kol13, 9.48] the
complement of the zero section is a Seifert bundle over Y , and by [Kol13, 9.53] this implies

that its define a line bundle on Y . By construction this line bundle is equal to ω
[m]
Y 0 (m∆Y |Y 0)

over Y 0. Hence ω
[m]
Y (m∆Y ) is invertible, as was to be shown.
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Theorem 5.4.3.6. Let k be a perfect field of characteristic > 5. Then normalization gives a
one-to-one correspondence

(char k > 5)

Proper slc threefold pairs
(X,∆) such that
KX + ∆ is ample

 1:1−→


Proper lc threefold pairs (X̄, D̄ + ∆̄)

plus a generically fixed point free
involution τ of (D̄n,DiffD̄n ∆̄)

such that KX̄ + D̄ + ∆̄ is ample.


Proof. Given (X̄, D̄ + ∆̄, τ) as in the right-hand side, by Proposition 5.4.3.2 the equivalence
relation R(τ) is finite and we can form the geometric quotient q : X̄ → X := X̄/R(τ). Set
∆ := q∗∆̄. By Proposition 4.4.0.1 the scheme X is demi-normal, and by Proposition 5.4.3.5 the
Q-divisor KX + ∆ is Q-Cartier. Therefore (X,∆) is slc. This gives a map {(X̄, D̄ + ∆̄, τ)} →
{(X,∆)}. It is an inverse to the normalization map by Proposition 4.4.0.1 and [Kol13, 5.3].

5.5 APPLICATION TO THE MODULI THEORY OF STABLE SURFACES

In this section we apply the theory of gluing to the moduli functor of stable varieties.
Our discussion will be conditional, since some technical results are not known yet in positive
characteristic.

Let k be an algebraically closed field. We define families of stable log varieties and the
moduli functor of stable varieties following [Pat17].

Definition 5.5.0.1. A projective connected pure-dimensional k-scheme X together with a Q-
divisor is a stable log pair if (X,D) is slc and KX + D is and ample. If D = 0, we simply
say that X is a stable variety.

Let T be a k-scheme. A family of pairs over T is a flat morphism of k-schemes X → T
together with a Q-divisor D on X such that: for every t ∈ T , none of the irreducible components
ofXt is contained in SuppD, and none of the irreducible components ofXt∩SuppD is contained
in SingXt. This allows us to define a restricted divisor Dt on Xt.

Let T be a k-scheme. A family of stable log pairs over T is a family of pairs f : (X,D)→
T such that KX/T + D is Q-Cartier and the geometric fiber (Xt̄, Dt̄) is a stable log pair for
every t ∈ T .

The moduli functor Mn,v,k, where v ∈ Q+, is defined on Schk by the values

Mn,v,k(T ) =


X

T

f

1) f is a flat morphism of k-schemes,

2)
(
ω

[m]
X/T

)
S

∼= ω
[m]
XS/S

for every S → T and m ∈ N,

3) for every t ∈ T,Xt̄ is a stable variety of dimension n

with Vol(KXt̄) = v.


and for T ′ → T , the corresponding map Mn,v(T )→Mn,v(T

′) is given by pullbacks.

Remark 5.5.0.2. There are subtle differences between families of stable varieties and families
parametrized by the functor Mn,v,k:

(a) At least when n = 2, if (X → T ) ∈ M2,v,k(T ) and T is normal, then X → T is a family
of stable surfaces, see [Pat17, Lemma 2.3].

(b) If (X → T ) ∈Mn,v,k(T ), then X → T need not be a family of stable varieties, see [Pat17,
Remark 1.6].

Remark 5.5.0.3. We have only defined the moduli functor in the boundary-free case. To define
a moduli functor of stable log pairs we need a good notion of family of divisors above arbitrary
bases. A good notion, at least in characteristic 0, is developed in [Kol19]. However, to avoid
technical difficulties, we will restrict ourselves to the boundary-free case in what follows. This
way, the only pairs we will have to deal with are the one arising from the normalization of
demi-normal varieties.
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From now on we consider the case of stable surfaces (that is, n = 2) over an algebraically
closed field k of characteristic p > 5. Then it is known thatM2,v,k is a separated Artin stack of
finite type over k with finite diagonal [Pat17, Theorem 9.7]. We discuss the valuative criterion
of properness using the methods of [Kol21, §2.4].

We are interested in the following situation. Let T be an affine one-dimensional regular
scheme of finite type over k, t ∈ T a closed point and T 0 := T \ {t}. Suppose we are given a
family (f0 : X0 → T 0) ∈M2,v(T

0). Then we are looking for a finite morphism π : T ′ → T and
a family (f ′ : X ′ → T ′) ∈ M2,v(T

′) such that the pullback family f0 ×T π : X0 ×T T ′ → T ′ is
isomorphic to X ′ → T ′ over π−1T 0.

The method of [Kol21, §2.4] can be outlined as follows: establish a dictionary between the
fiberwise properties and the global properties of a family of stable varieties, and apply methods
of the MMP on X0 → T 0 to produce the desired completed family. In general, the scheme
X0 is only demi-normal, and the MMP works best for normal varieties: here the gluing theory
developed in [Kol13] is useful to go back and forth between slc varieties and their normalizations.

One must solve several problems to carry out this program in positive characteristic:
(a) The dictionary between fiberwise and global properties works well in one direction. Sup-

pose f : (X,D)→ T is a family of stable log surfaces over a one-dimensional normal base.
Since T and every fiber Xt are S2, we see that X is S2. Points of codimension one of X
that do not dominate T are regular, and those which dominate T are G1 since the generic
fiber is demi-normal. Thus X is demi-normal. Now inversion of adjunction implies that
(X,D +Xt) is slc for every t ∈ T .

Notice that if (f : X → T ) ∈ M2,v,k(T ) and (X̄, D̄) → X is the normalization, then
it follows from Remark 5.5.0.2 and Lemma 4.2.0.3 that the morphism (X̄, D̄) → T is a
family of stable log surfaces (with D̄ dominating T if X is not already normal).

Problems appear with the converse implication. Assume that (X,D + Xt) is slc. Then
the deformation theory of nodes show that Xt is G1 [Kol13, 2.33], and adjunction would
then imply that (Xt, Dt) is slc, provided that Xt is S2. That Xt is S2 in characteristic 0
follows from a non-trivial result of Alexeev (see [Kol13, 7.21]). This is not known at the
moment in positive characteristic, so let us formulate the condition

(S2) If (X,D) → T is a flat family of geometrically reduced surface pairs
over a one-dimensonal normal base such that (X,D+Xt) is slc for every
t ∈ T , then every Xt is S2.

(b) To produce the completed family, one first extends X0 → T 0 to a flat family X1 → T .
In general the central fiber is not even reduced: so one looks for a base-change along a
finite T ′ → T such that the fibers of X ′1 := X1 ×T T ′ → T ′ are reduced. If we find one
such base-change, we have to make sure that (X ′1, (X

′
1)t′) is still slc for every t′ ∈ T ′. In

positive characteristic, this is a problem if T ′ → T is wildly ramified or inseparable, see
[Kol13, 2.14.5-6]. So we formulate the following condition of semi-stable reduction:

(SSR) Let X → T is a flat morphism where X is a regular threefold and T a
one-dimensional curve. Let E be a reduced effective divisor on X such
that (X,E + redXt) is snc for every closed t ∈ T . Then there exists a
finite morphism T ′ → T such that: if Y is the normalization of X ×T T ′
and EY is the pullback divisor, then every closed fiber Yt′ is reduced and
every (Y,EY + Yt′) is lc.

Modulo these two conditions, we can prove the valuative criterion of properness for M2,v,k,
following the method of [Kol21, 2.49].

Lemma 5.5.0.4. Let (X,D + ∆) → T be a family of stable log surfaces over a normal one-
dimensional base, where D is a reduced divisor with normalization n : Dn → D. Then every
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componenent of Dn dominates T and (Dn,DiffDn ∆) → T is a (disjoint union of) families of
stable log curves.

Proof. By definition of families of pairs, every irreducible component of D dominates T . In
particular every component of Dn dominates T and Dn → T is flat. So the fibers Dn

t := (Dn)t
are of pure dimension one. By inversion of adjunction the pair (X,D+ ∆ +Xt) is slc. Passing
to the normalization (recall that X is normal at the generic points of D), we may assume it is
lc. Since Xt is Cartier we have

DiffDn(∆ +Xt) = DiffDn(∆) +Xt|Dn = DiffDn +Dn
t .

By adjunction, this implies that (Dn,DiffDn ∆+Dn
t ) is lc. Since Dn is a surface, classification of

surface lc singularities show that Dn
t is Gorenstein. Moreover, as Dn is S2 (it is normal), the Dn

t

are S1. Thus Dn
t is a demi-normal curve, and by adjunction we deduce that (Dn,DiffDn ∆)→ T

is a family of log curves. As

KDn/T + DiffDn ∆ = n∗(KX/T +D + ∆),

we obtain that KDn/T + DiffDn ∆ is ample over T .

Theorem 5.5.0.5. We work over an algebraically closed field k of characteristic > 5. Assume
that the conditions (S2) and (SSR) hold. Then M2,v,k is proper.

Proof. We consider anew an affine one-dimensional regular k-scheme of finite type T , a closed
point t ∈ T and a family (f0 : X0 → T 0 := T \ {t}) ∈ M2,v,k(T

0). Since separatedness holds,
we have to show that there exists a finite morphism π : T ′ → T such that the pullback family
f0 ×T π : X0 ×T T ′ → π−1T 0 extends to a family in M2,v,k(T

′). By Remark 5.5.0.2, we may
think of f0 as a family of stable surfaces.

Step 1: Normal case. First assume that X0 is actually normal. We can extend f0 to a
flat morphism f1 : X1 → T . Let g1 : Y1 → X1 be a log resolution with E1 := Exc(g1) such that
(Y1, E1 + red(Y1)t) is snc for every t ∈ T . Such a resolution exists for threefolds: the proof is
the same as in [Kol13, 10.46], using Fact 5.4.1.2 at the appropriate places.

By (SSR), there is a finite morphism π : T ′ → T such that: if Y2 is the normalization of
Y1 ×T T ′ with induced morphism f2 : Y2 → T ′ and E2 is the pullback divisor of E1, then every
fiber (Y2)t′ is reduced and (Y2, E2 + (Y2)t′) is lc for every closed t′ ∈ T ′.

By [Wal18], the family (Y2, E2)→ T ′ admits a relative canonical model (Xcan, Ecan)→ T ′.
Notice that the pullback familyX0×TT ′ → π−1T 0 is a relative canonical model of (Y2, E2)→ T ′

over a dense open susbset of T ′. By uniqueness of canonical models, these two families are
generically isomorphic; by separatedness, the isomorphism extends to the whole π−1T 0 (see
[Pat17, Lemma 9.4] for the technical statement), and this implies that Ecan = 0. Using [Kol13]
we see that the pair (Xcan, (Xcan)t′) is lc for every closed t′ ∈ T ′. The condition (S2) then
ensures that (Xcan → T ′) ∈M2,v,k(T

′).

Step 2: Demi-normal case. Now we consider the case where X0 is only demi-normal.
Let (X̄0, D̄0) → T 0 be the normalization, with induced involution τ0. Then we can apply the
same argument as before (all the results we used are available for log pairs). We obtain a finite
morphism π : T ′ → T and a family of surface pairs f̄can : (X̄can, D̄can)→ T ′ which extends the
pullback of (X̄0, D̄0)→ T 0 and such that (X̄can, D̄can + (X̄can)t′) is lc for every closed t′ ∈ T ′.

By Lemma 5.5.0.4, the morphism (D̄n
can,DiffD̄ncan

(0))→ T ′ is a family of stable log curves.

Hence by [Pat17, Lemma 9.4], the pullback of the involution τ0 extends to an involution τcan

on (D̄n
can,DiffD̄ncan

(0)).

By [Kol21, 2.14, 2.15.3], none of the lc centers of (X̄can, D̄can) are disjoint from X̄0 ×T T ′.
Moreover, since R(τ0) ⇒ X̄0 is a finite equivalence relation and T ′ → T is finite as well, then
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R(τcan)⇒ X̄can is finite on f̄−1
can(π−1T 0). Thus [Kol13, 9.55] implies that R(τcan) is finite. Thus

there exists a geometric quotient X̄can → Xcan. Since τ0 commutes with the projection to T ,
the involution τcan commutes with the projection to T ′, and therefore f̄can factorises through
a morphism fcan : Xcan → T ′.

By Proposition 4.4.0.1 the scheme Xcan is demi-normal, and by Proposition 5.4.3.5 the
divisor KXcan is Q-Cartier. Since (Xcan, (Xcan)t′) pullbacks to (X̄can, D̄can + (X̄can)t′), we see
that (Xcan, (Xcan)t′) is slc for every closed t′ ∈ T ′. Since X̄0 ×T T ′ → X̄0 is flat and the
formation of geometric quotient commutes with flat base-change [Kol13, 9.11], we see that the
pullback of X0 along π−1T 0 → T 0 is isomorphic to f−1

can(π−1T 0). The condition (S2) ensures
that (fcan : Xcan → T ′) ∈Mn,v,k(T

′). This finishes the proof.
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Chapter 6

Gluing theory for families of slc
surfaces in mixed characteristic

This chapter corresponds to the preprint [Pos21b].

Convention 6.0.0.1. We work with varieties over a discrete valuation ring (R,mR = (π)), and
denote by p the characteristic of the residue field k(π) = R/(π).

6.1 INTRODUCTION

Semi-log canonical (slc) singularities play a central role in the moduli theory of canonically
polarized varieties in characteristic zero: they appear at the boundary of the compact moduli
space of stable varieties [Kol21]. It is expected that slc varieties play a similar role in positive
and mixed characteristics.

Recent breakthroughs in the Minimal Model Program (MMP) for threefolds in mixed char-
acteristic [BMP+21, TY21] have led to advances in the moduli theory of stable surfaces in
mixed characteristic. The corresponding moduli stack is known to be a separated Artin stack
with finite diagonal and of finite type [BMP+21, Theorem I]. Properness is not known yet,
except for some specific subspaces [BMP+21, Theorem J].

In characteristic zero, properness of the moduli stack of stable varieties is proved through a
delicate use of semi-stable reductions and MMP methods: see [Kol21, §2.4] for a presentation
of the proof. In addition to semi-stable reduction and MMP, that proof needs a technical gluing
statement. Indeed, we consider a pointed curve (t ∈ T ) and a stable family X0 → T 0 = T \{t},
and we need to complete the family over T , possibly after a finite base-change T ′ → T . The
variety X0 is only demi-normal in general, and the MMP might fail for demi-normal varieties
[Fuj14, Example 5.4]. Thus we normalize X0 and try to complete the family (X0)n → T 0. If we
succeed, we need to de-normalize the completed family. In characteristic zero, this is achieved
through Kollár’s gluing theory [Kol13, §5], that gives a dictionary between slc stable varieties
and their normalizations.

In [Pos21c] I have extended this dictionary to surfaces and threefolds in positive character-
istic, and given applications to the properness of the moduli space of stable surfaces in positive
characteristic (see also [Pat17] for related results about this moduli space). In this paper, I
study the gluing statement necessary for the proof of properness of the moduli stack of stable
surfaces in mixed characteristic along the lines sketched above.

The tailor-made statement is our main result:

Theorem 6.1.0.1 (see Proposition 6.3.1.8 and Proposition 6.3.2.1). Let R be a DVR of mixed
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characteristic with maximal ideal πR. Then normalization gives a bijection


Threefold pairs (X,∆)
flat and proper over R

such that (X,∆ +Xπ) is slc
and KX + ∆ is ample

 1:1−→



Threefold pairs (X̄, D̄ + ∆̄)
flat and proper over R

such that (X̄, D̄ + ∆̄ + X̄π) is lc
and KX̄ + D̄ + ∆̄ is ample

plus a generically fixed point free
R-involution τ of (D̄n,DiffD̄n ∆̄).


Let us comment on the condition that (X,∆ + Xπ) is slc. Since we think of the family of

surfaces (X,∆)→ SpecR as an element in moduli stack of stable surfaces, it would be natural
to ask for each fiber to be slc. In characteristic zero, this is equivalent to (X,∆ + Xπ) being
log canonical (lc) [Kol21, Theorem 2.4]. The local-to-global direction relies on inversion of
adjunction, which is known in dimension three in positive and mixed characteristics provided
that the non-zero characteristics are > 5 ([Pat17, Lemma 3.3] and [BMP+21, Corollary 10.1]).
On the other hand, there is a difficult step in the proof of the global-to-local direction, namely
that (X,∆ + Xπ) being slc implies that Xπ is S2: in characteristic zero this follows from a
theorem of Alexeev [Kol13, 7.21]. A similar result is not yet proved in positive and mixed
characteristic, so the slc condition on (X,∆ +Xπ) is a priori weaker.

We prove our gluing statement for this weaker stability assumption. We also prove in
Proposition 6.4.2.6 that, under the assumption charR/(π) ≥ 7, if (X̄π,DiffX̄π(D̄ + ∆̄)) is slc
then the pair (Xπ,DiffXπ ∆) is also slc. However the converse statement seems more difficult
without an Alexeev-type statement (see Remark 6.4.2.8). Thus we cannot yet formulate an
analog of Theorem 6.1.0.1 for the stronger stability assumption.

Let us say a word about the proof of Theorem 6.1.0.1. We construct an inverse map to the
normalization process: X̄ should be the normalization of an slc quotient X̄/R(τ). It turns out
that the main difficulty is the existence of the quotient, for then it is easy to show that it has
an slc structure, see Proposition 6.3.2.1.

To show that the quotient exists, thanks to a result of Witaszek [Wit20, Theorem 1.4] and
to Kollár’s theory [Kol13, 5.13], we only need to show that the equivalence relations induced
by τ on the special fiber Xπ is finite. To achieve this, we relate D̄n

π to a divisor contained in the
round-down of DiffXn

π
(D̄ + ∆̄), and show that the relation on X̄π comes from a log involution

on the reduced boundary of the k(π)-pair (X̄n
π ,DiffXn

π
(D̄ + ∆̄). This is done using adjunction

and classification of codimension two lc singularities. Then we are in position to apply the
results from [Pos21c] and obtain finiteness. We also obtain a conditional finiteness result in
case dim X̄ = 4: see Proposition 6.3.1.8 for the precise statement.

We emphasize that all our results are independent of dim X̄ and of the properties of the
positive characteristic residue field k(π) — except for Proposition 6.3.1.8, which shows that the
quotient indeed exists in several situations.

In the second part of the paper, we study the fibers of X = X̄/R(τ) over SpecR. The
involution τ induces an involution on both fibers of D̄n → SpecR, and therefore we can take the
quotient of both fibers of X̄ → SpecR. We ask whether these quotients are equal to the fibers
of X. This commutativity property is always true for the generic fiber (Lemma 6.4.1.1). For the
special fiber, we first study the general case of the normalization of a demi-normal scheme over
SpecR and give some sufficient conditions (see Proposition 6.4.1.5 and Proposition 6.4.1.6). In
particular, we prove that if D̄ is normal and charR/(π) > 2 then the commutativity property
always holds.

Then we turn to the case that interests us the most, when (X,∆ +Xπ) is slc. We are able
to refine the method of Proposition 6.4.1.6 to prove that commutativity holds for families of
slc surfaces under mild hypothesis:
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Theorem 6.1.0.2 (Theorem 6.4.1.9). Suppose (X,∆ +Xπ) is slc of dimension 3, proper over
SpecR and that charR/(π) > 2. If D̄π is reduced, the special fiber of X is the quotient of the
special fiber of X̄.

We remark that D̄π is the scheme-theoretic intersection of two lc centers of (X̄, D̄ + ∆̄ +
X̄π). It is a question of independent interest whether intersections of lc centers are reduced.
This is true in characteristic zero [Kol13, 7.8], but not much is known in mixed (or positive)
characteristics. Nonetheless, we can prove that the hypothesis of Theorem 6.1.0.2 holds in
relative dimension two and residue characteristic large enough:

Theorem 6.1.0.3 (Proposition 6.4.1.10). Let (X̄, D̄ + ∆̄ + X̄π) be a lc threefold pair that is
projective over SpecR. Assume that charR/(π) ≥ 7. Then D̄π is reduced.

The proof relies on the technique of [Kol13, 7.8] and on the results of [BK21]. Putting
together Theorem 6.1.0.2 and Theorem 6.1.0.3 we obtain:

Theorem 6.1.0.4. Let (S,∆) → SpecR be a projective family of surfaces over a DVR with
residue characteristic ≥ 7, with normalization S̄. Assume that (S,∆ + Sπ) is slc. Then the
fibers of S are the quotients of the fibers of S̄.

A corollary of Theorem 6.1.0.4 is the fact, already mentioned above, that (Sπ,DiffSπ ∆) is slc
if (S̄π,Diff S̄π(D̄+∆̄)) is slc. The main difficulty is to show that Sπ is S2, which follows here from
the commutativity of fibers and quotients. We take this problem as an opportunity to study the
Serre properties of a demi-normal quotient. In view of [Kol13, 10.18], it is not surprising that
there is an interplay between the Serre properties of the quotient, and those of its normalization
and of the conductor subschemes. The precise statement is given in Proposition 6.4.2.4.

6.2 PRELIMINARIES

If X is an R-scheme, we denote by Xπ the scheme-theoretic special fiber. We usually
assume that X is flat over SpecR: if in addition X is pure-dimensional, then every irreducible
component of Xπ has dimension dimX − 1 by [GW20, 14.97].

We will use many times the coarse classification of codimension two lc singularities [Kol13,
2.31]: if (X,∆) is an lc pair and x ∈ X a codimension two point, then b∆c is either regular
or nodal at x. Notice that the proof given in [Kol13, 2.31] holds in the generality of normal
excellent schemes.

We will also use the following fact about depths: if t ∈ OX is a non-invertible non-zero
divisor and x ∈ Supp(OX/tOX), then OX is Si at x if and only if OX/tOX is Si−1 at x [Bou07,
§1 n.4 Proposition 7].

6.3 GLUING FOR FAMILIES OF SURFACES

The goal of this section is the proof of Theorem 6.1.0.1. We consider the following situation
(where, compared to Theorem 6.1.0.1, we modify slightly our notations):

Notation 6.3.0.1. Let R be a DVR of mixed characteristic (0, p > 0), let X → SpecR be a
flat proper morphism with connected fibers from an equidimensional normal scheme X of any
dimension, let D be an effective reduced Weil divisor on X and ∆ an effective Q-Weil divisor,
and assume that (X,D + ∆ + Xπ) is log canonical. In particular, Xπ is reduced and has no
component contained in the support of D + ∆.

We denote by D̄ → D the normalization of D, by D̄π the special fiber of D̄ → SpecR and
by D̄n

π its normalization.
We also assume that there exists an involution τ of the log pair (D̄,DiffD̄ ∆) over SpecR.
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6.3.1 Existence of the quotient

Lemma 6.3.1.1. Let Z → SpecR be a morphism and τ an involution of Z over SpecR. Then
τ restricts to involutions of Zπ, red(Zπ) and Z ⊗R Frac(R).

Proof. The ideal of Zπ is πOZ , so by looking at the exact sequence

0→ πOZ → OZ → OZπ → 0

we see that τ restricts to an involution of Zπ if and only if τ(π) ⊆ πOZ . But τ(π) = π, so this
is immediate. So τ descends to Zπ, and thus to red(Zπ). Since τ(π) = π, it also holds that τ
descends to an involution of OZ ⊗R R[1/π] = OZ⊗RFrac(R).

Lemma 6.3.1.2. Let (X,D + ∆) → SpecR be as in Notation 6.3.0.1. If E is a divisor over
X whose center cX(E) belongs to the special fiber Xπ, then a(E;X,D + ∆) ≥ 0.

Proof. The proof is the same as [Kol21, 2.14]. Let E be a divisor over X, appearing on a proper
birational model π : Y → X. Write bE := coeffE π

∗Xπ. Since π∗Xπ is Cartier and effective, bE
is a non-negative integer. If cX(E) ⊂ Xπ then bE is actually a positive integer. Then:

−1 ≤ a(E;X,D + ∆ +Xπ) = a(E;X,D + ∆)− bE

so a(E;X,D + ∆) ≥ 0.

Lemma 6.3.1.3. In the situation of Notation 6.3.0.1, every irreducible component of D dom-
inates SpecR, and the irreducible components of D ∩Xπ have dimension dimD − 1.

Proof. Since X is flat over SpecR, every component of Xπ is a divisor by [GW20, 14.97].
Since (X,D + ∆ +Xπ) is lc, no component of the boundary has coefficient > 1. Thus D does
not contain any component of Xπ, and so every component of D dominates SpecR and so
D → SpecR is flat [Har77, III.9.7]. Applying [GW20, 14.97] again yields the result.

Lemma 6.3.1.4. The special fiber D̄π of D̄ → SpecR is reduced.

Proof. Since D̄ is normal and D̄π is an hypersurface, D̄π is S1. Thus we only need to show
that D̄π is generically reduced.

The generic points of D̄π dominates the generic points of the intersection D ∩Xπ, and by
Lemma 6.3.1.3 these points have codimension two in X. Since (X,D + ∆ + Xπ) is lc, the
classification of codimension two lc singularities [Kol13, 2.32] shows that around the generic
points of D ∩Xπ, the divisors D and Xπ are regular and meet transversally. Hence D̄ → D is
an isomorphism around those generic points, with D̄π isomorphic to the regular D ∩Xπ. This
shows that D̄π is generically reduced.

Lemma 6.3.1.5. The involution τ on (D̄,DiffD̄ ∆) induces an involution σ of the lc pair
(D̄n

π ,Γ), where Γ is defined by the adjunction formula (KD̄ + DiffD̄(∆) + D̄π)|D̄nπ = KD̄nπ
+ Γ.

Moreover, the equivalence relation RXπ(σ)⇒ Xπ is equal to the restriction of the equivalence
relation RX(τ)⇒ X to Xπ.

Proof. By Lemma 6.3.1.1 and Lemma 6.3.1.4 the involution τ preserves the Cartier divisor D̄n
π

and descends to an involution σ′ on D̄π. By the universal property of normalization, we obtain
an involution σ of the normalization D̄n

π that makes the diagram

D̄n
π D̄n

π

D̄π D̄π

σ

σ′

(3.1.5.a)
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commutative.
Since the Q-Cartier divisors KD̄ + DiffD̄ ∆ and D̄π are τ -invariant, so is their sum. Hence

the pullback of KD̄ + DiffD̄ +D̄n
π to D̄n

π is σ-invariant.
The pair (D̄n

π ,Γ) is lc by adjunction.
It is clear from the construction that R(σ′) ⇒ Xπ is equal to the restriction of RX(τ) to

Xπ, so we only need to compare RXπ(σ) and RXπ(σ′). Since (3.1.5.a) is commutative, we see
that the two equivalence relations are the same.

Lemma 6.3.1.6. The special fiber Xπ is reduced, regular at the generic points of D ∩Xπ and
at worst nodal at other codimension one points. Moreover if Xn

π → Xπ is the normalization
morphism then:

(a) it is an isomorphism over the generic points of D ∩Xπ,

(b) the pair (Xn
π ,DiffXn

π
(D + ∆)) is lc, and

(c) the strict transform of D ∩Xπ is contained in bDiffXn
π

(D + ∆)c.

Proof. The hypersurface Xπ of X is S1. It is regular at the generic points of D∩Xπ and at worst
nodal at other codimension one points by [Kol13, 2.32]. To decide whether the strict transform
of D∩Xπ appears in bDiffXn

π
(D+ ∆)c is a local question around the generic points of D∩Xπ.

So the first and third points hold. The pair (Xn
π ,DiffXn

π
(D + ∆)) is lc by adjunction.

Lemma 6.3.1.7. Denote by E ⊂ bDiffXn
π

(D + ∆)c the strict transform of D ∩ Xπ, and by
(En,Θ) the lc pair obtained from (Xn

π ,DiffXn
π

(D + ∆)) by adjunction. Then there exists a log
isomorphism f : (En,Θ) ∼= (D̄n

π ,Γ) such that the diagram

En D̄n
π

X

f

(3.1.7.b)

commutes.

Proof. As observed in Lemma 6.3.1.4 and Lemma 6.3.1.6, the two morphisms

E → D ∩Xπ ← D̄π

are birational and finite. This induces finite birational morphisms

En → (D ∩Xπ)n ← D̄n
π

of normal schemes, so these must be isomorphisms. Thus we obtain an isomorphism f : En ∼=
D̄n
π that commutes with the morphisms to X. Since the divisors Θ and Γ are defined by

adjunction, we see that f is a log isomorphism.

Proposition 6.3.1.8. In the situation of Notation 6.3.0.1, assume that X is proper over
SpecR and that KX +D + ∆ is ample over SpecR. Assume also that

(a) dimX = 3, or

(b) dimX = 4, and Xπ is S2 in a neighborhood of D∩Xπ and the residue field of R is perfect
of characteristic > 5.

Then the quotient X/R(τ) exists as a demi-normal scheme that is flat and proper over SpecR.

Proof. By [Wit20, 1.4], the geometric quotient X/R(τ) exists as an algebraic space as soon as
R(τ) is finite and the geometric quotient XQ/R(τ)Q exists. If it exists, it is a scheme by [Kol12,
Corollary 48].

Lemma 6.3.1.1 implies that τ induces an involution τQ on the generic fiber (D̄Q,DiffD̄Q
(∆Q))

and R(τQ) = R(τ)|XQ . Since KX + D + ∆ is ample over SpecR, we see that (XQ, DQ + ∆Q)
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is a projective lc pair over a field of characteristic zero with ample log canonical divisor a log
involution τQ on (D̄Q,DiffD̄Q

(∆Q)). By [Kol13, 5.13] the quotient XQ/R(τ)Q exists.
We still have to show that R(τ) is finite. Since it respects the fibration to SpecR, we

only need to show that R(τ)|Xπ is finite. By Lemma 6.3.1.5 it is equivalent to show that
RXπ(σ)⇒ Xπ is finite. By Lemma 6.3.1.7 and the commutativity of (3.1.7.b), we may transport
σ to an involution of (En,Θ). We are now in situation to apply Theorem 5.3.1.1, Claim 5.3.1.3
and Proposition 5.4.3.2, which show that RXn

π
(σ) is finite.

To go from Xn
π to Xπ, observe that the equivalence generated by σ on Xn

π , respectively on
Xπ, is trivial away from the support of E, respectively away from the support of D∩Xπ. Now
Xπ is R1 is a neigborhood of D ∩Xπ by Lemma 6.3.1.7. If it is also S2 then Xn

π → Xπ is an
isomorphism in a neighborhood of E, and we deduce that RXπ(σ) is finite.

If dimX = 3, then we do not need the fact that Xπ is S2. In this case Xπ is a reduced

surface that is regular in codimension one and such that ω
[m]
Xπ

(m(D + ∆)|Xπ)) is invertible for
m sufficiently divisible (this follows from adjunction along Xπ ⊂ X), hence we can perform
adjunction along En → Xπ even if Xπ is not normal (see [Kol13, 4.2]). The crucial point is that
En is a curve, so the points of En where En → D∩Xπ is not an isomorphism, are contained in
Supp Θ by [Kol13, 4.5.1]. Thus the the proof of Theorem 5.3.1.1 is also valid in this situation:
the finite closed subset Σ := Supp Θ is σ-invariant and En \ Σ→ E \ n(Σ) is an isomorphism.
Thus we obtain finiteness.

Flatness of X/R(τ) over SpecR follows from [Har77, III.9.7].
It remains to show that X/R(τ) is demi-normal and proper over SpecR. This follows from

Proposition 4.4.0.1.

Remark 6.3.1.9. More generally, the proof of Proposition 6.3.1.8 applies to (X,D + ∆, τ) as
soon as we have a gluing theorems for stable lc varieties of dimension dimX − 1 above the
residue field k(π) of R, and that the special fiber Xπ is S2.

6.3.2 Descent of the log canonical sheaf

We show that in the situation of Proposition 6.3.1.8, the log canonical Q-Cartier divisor
descends to the quotient. We can actually show it in any dimension, as soon as the quotient
exists:

Proposition 6.3.2.1. Let (Y,∆Y ) → SpecR be a demi-normal flat SpecR-scheme, with in-
duced normalization (X,∆ + D, τ). If (X,D + ∆ + Xπ) is lc and DiffDn(∆) is τ -invariant,
then KY + ∆Y is Q-Cartier.

Proof. First base-change over the generic point of SpecR. Then [Kol13, 5.38] shows that
KY + ∆Y is Q-Cartier on the generic fiber.

So the closed locus where KY +∆Y is not Q-Cartier, if not empty, is contained in the special
fiber Yπ. By Lemma 6.3.1.2 and the fact that (X,D + ∆) → (Y,∆Y ) is crepant, we see that
no lc center of (Y,∆Y ) is contained in Yπ. Thus we may apply the first part of the proof of
[Kol13, 5.38], which is valid in our setting, and conclude that KY + ∆Y is also Q-Cartier along
the special fiber.

Proof of Theorem 6.1.0.1. If (X,∆) is as in the left-hand side of Theorem 6.1.0.1, we claim its
normalization is a triplet (X̄, D̄+∆̄, τ) as on the right-hand side. We indeed have a generically
fixed point free involution τ : this follows from Lemma 4.2.0.5 since by Lemma 6.3.1.3 the
generic points of D̄ have characteristic zero residue fields. The other properties clearly hold.

Let (X̄, D̄ + ∆̄, τ) be as in the right-hand side of Theorem 6.1.0.1. By Proposition 6.3.1.8
the quotient X := X̄/R(τ) exists, it is a demi-normal scheme flat and proper over SpecR. By
Proposition 6.3.2.1 we obtain that (X,∆) is slc.

This defines a map in the opposite direction as the normalization. They are inverse to each
other by [Kol13, 5.3] and the fact that X̄ is the normalization of X.
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6.4 FIBERS OF THE QUOTIENT

In the previous section, we have shown that the quotient of the family exists in several
situations. In this section, we study the fibers of the quotient whenever it exists. We will use
the following notations:

Notation 6.4.0.1. Let R be a DVR of mixed characteristic (0, p), let Y → SpecR be a
flat separated morphism of finite type from a demi-normal scheme Y . (We do not assume
any properness property relatively to SpecR.) Let p : (X,D, τ) → Y be the normalization
morphism. Then D is reduced of pure codimension one and we let D̄ → D be its normalization.

Since τ is an R-involution on D̄, by Lemma 6.3.1.1 it restricts to an involution τπ of D̄π

and τQ of D̄Q. It is clear that RXπ(τπ) = RX(τ)|Xπ and that RXQ(τQ) = RX(τ)|XQ . Since
R(τ)⇒ X is finite, it follows that R(τπ)⇒ Xπ and R(τQ)⇒ XQ are finite.

We do not assume systematically that Y has an slc structure. When we do, we let ∆Y be
the boundary on Y , and ∆ its strict transform on X.

6.4.1 Commutativity of fibers and quotients

We let p : (X,D, τ) → Y → SpecR be as in Notation 6.4.0.1. We investigate to which
extent the quotients XQ/R(τQ) and Xπ/R(τπ) are comparable to the fibers YQ and Yπ.

Lemma 6.4.1.1. YQ = XQ/R(τQ).

Proof. This follows immediately from [Kol13, 9.11] since YQ → Y is flat.

Lemma 6.4.1.2. The quotient Z := Xπ/R(τπ) exists, and Xπ → Yπ factorizes through a finite
birational universal homeomorphism Z → Yπ.

Proof. The quotient exists as a scheme by [Kol12, Theorem 6, Corollary 48]. By the universal
property of the quotient, Xπ → Yπ factors through a morphism q : Z → Yπ.

Xπ X

Z

Yπ Y

p

q

(4.1.2.c)

Using [Kol13, 9.2] for Xπ → Z and X → Y , we see that q(SpecK) : Z(SpecK)→ Yπ(SpecZ)
is a bijection for every geometric point SpecK → Spec k(π). Thus q is a universal homeomor-
phism by [Gro60, 3.5.3-5]. It is finite birational since Xπ → Yπ is so.

Let us study more precisely the morphism Z → Yπ. The question is flat-local on Y by
[Kol13, 9.11], so in particular we may assume that every scheme appearing in (4.1.2.c) is affine,
and work with sections of structural sheaves as if they were global sections.

We introduce the following sub-sheaves:

O+
X := {s ∈ OX | s|D̄ is τ -invariant}, O+

D := {s ∈ OD | s|D̄ is τ -invariant}

and

O+
Xπ

:= {s ∈ OX | s|D̄π is τπ-invariant}, O+
Dπ

:= {s ∈ ODπ | s|D̄π is τπ-invariant}.

They fit into the following commutative diagram:

O+
Dπ

O+
D

O+
Xπ

O+
X

(4.1.2.d)
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Claim 6.4.1.3. The quotient W (π) := Dπ/RDπ(τπ) exists as a scheme, and OW (π) = O+
Dπ

.

Proof. The quotient exists as a scheme by [Kol13, 9.10] applied to Dπ → Yπ, and the second
assertion follows from the same reference. ♦

Claim 6.4.1.4. OZ = O+
Xπ

.

Proof. Indeed, by [Kol12, Proposition 25] the diagram

Dπ Xπ

W (π) = Dπ/RDπ(τπ) Z

is a universal push-out. This implies that

OZ = OXπ ×ODπ OW (π) = OXπ ×ODπ O
+
Dπ

= O+
Xπ

as claimed. ♦

Proposition 6.4.1.5. Z → Yπ is an isomorphism if and only if the restriction map O+
X → O

+
Xπ

appearing in (4.1.2.d) is surjective.

Proof. By [Kol13, 9.10] we have OY = O+
X . Combining this with the previous claim and the

commutative diagram (4.1.2.c) we obtain

O+
Xπ

O+
X

OZ

OYπ OY

α

=

=

It is easy to see that α is surjective if and only if OYπ ↪→ OZ is bijective.

Proposition 6.4.1.6. Assume that:
(a) τ(OD) ⊆ OD
(b) ODπ → OD̄π is injective,

(c) D → SpecR is flat, and

(d) p = charR/(π) 6= 2.
Then Z = Yπ.

Proof. We prove that O+
X → O

+
Xπ

is surjective. Take s ∈ O+
Xπ

and any lift t ∈ OX . Write
v = t|D. By hypothesis τ(v) ∈ OD and by construction τ(v) − v vanishes when restricted to
D̄π. Since ODπ → OD̄π is injective, we see that v − τ(v) belongs to the ideal IDπ = π · OD.
Thus we can write τ(v) = v + aπ for some a ∈ OD. Since τ is an R-involution,

v = τ◦2(v) = v + (a+ τ(a))π.

By flatness π is not a zero-divisor in OD, so we have a = −τ(a). Let b ∈ OX be any lift
of a. Since 2 ∈ OX is invertible we can form the element t′ := t + b

2π. Then t′ ∈ O+
X and

t′|Xπ = t|Xπ = s, as desired.
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The case of locally stable families.

We are mainly interested in the case where (Y,∆Y +Yπ) is slc for some divisor ∆Y . In this case
the conditions of Proposition 6.4.1.6 are not necessarily met. To wit, consider the following
example.

Example 6.4.1.7. Let Y = SpecR[x, y, z]/(xyz). Since Y is an hypersurface, it is Cohen–
Macaulay and Gorenstein. Then its normalization X is the union of three copies of A2

R, with
the morphism X → Y given by:

R[x, y, z]/(xyz) −→ R[u1, u2] ⊕ R[v1, v2] ⊕ R[w1, w2]
x 7→ u1 ⊕ v2 ⊕ 0
y 7→ u2 ⊕ 0 ⊕ w1

z 7→ 0 ⊕ v1 ⊕ v2

The conductor D is given by V (u1u2)tV (v1v2)tV (w1w2) ⊂ X. Notice that (Y, Yπ) is slc: for
it is easily checked using inversion of adjunction that (X,D +Xπ) is lc.

The involution τ on D̄ is given by three isomorphisms of lines, namely

τ =
[
(A1

u1
∼= A1

v2
, u1 7→ v2), (A1

v1
∼= A1

w2
, v1 7→ w2), (A1

u2
∼= A1

w1
, u2 7→ w1)

]
.

The picture on the special fiber is exactly the same, except that R is replaced with its residue
field k(π).

The involution τ does not descend to D, since otherwise the three origins would belong to
the same orbit.

On the other hand, O+
X is the set of f(s(u1, v2), s′(v1, w2), s′′(u2, w1)) where f ∈ R[X,Y, Z]

and s, s′, s′′ run through the symmetric polynomials in two variables. Similarly for O+
Xπ

, except

that we take f ∈ k(π)[X,Y, Z]. In particular we see that O+
X → O

+
Xπ

is surjective.

An easy application of Proposition 6.4.1.6 is the following:

Proposition 6.4.1.8. Suppose that p 6= 2 and that (Y,∆Y + Yπ) is slc. Then:
(a) Z → Yπ is an isomorphism in codimension one.

(b) If Yπ is S2, then Z → Yπ is an isomorphism.

(c) If D is normal, then Z → Yπ is an isomorphism.

Proof. Let (X,∆ +D+Xπ) be the normalization. By [Kol13, 2.32] we see that D is normal in
codimension one along Dπ, thus τ(OD) ⊆ OD holds in a neighbourhood of the generic points
of Dπ.

We consider the pullback morphismODπ → OD̄π . Recall that D̄π is reduced (Lemma 6.3.1.4)
and D̄π → Dπ is dominant. Thus ODπ → OD̄π is injective if and only if Dπ is reduced. By
[Kol13, 2.32], we know that Dπ is generically reduced. If D is normal, then Dπ is S1 and thus
reduced everywhere.

Hence we deduce that there is an open subset U ⊂ Y such that XU contains every codi-
mension one point of Xπ and such that the conditions of Proposition 6.4.1.6 are satisfied for
the normalization (XU , DU , τU ) → U . It follows that ZU → Yπ ∩ U is an isomorphism. This
proves the first point, and the second point follows easily. If D is normal we can take U = Y ,
thus obtaining the third point.

In the surface case, a finer analysis of the singularities of D yields a stronger statement
under mild hypothesis:

Theorem 6.4.1.9. Suppose that k(π) is perfect of characteristic p 6= 2 and that (Y,∆Y +Yπ) is
slc of dimension 3 and proper over SpecR. If the scheme-theoretic intersection Dπ is reduced,
then Z → Yπ is an isomorphism.
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Before proving this theorem, let us comment on the reducedness of Dπ. It is is the scheme-
theoretic intersection of two lc centers of (X,∆ +D+Xπ). In characteristic zero, intersections
of lc centers are reduced [Kol13, 7.8]. In mixed characteristic, we can prove the following.

Proposition 6.4.1.10. If (Y,∆Y + Yπ) is slc projective over SpecR, dimY = 3 and k(π) is
perfect of characteristic p ≥ 7, then Dπ is reduced.

Proof. First assume that (X,∆ + D + Xπ) is dlt. Then the result holds by [BK21, Theorem
19 and subsequent paragraph].

In the general case, let ϕ : (X ′,∆′ + D′ + E′ + X ′π) → (X,∆ + D + Xπ) be a Q-factorial
crepant dlt model. Such a model exists: log resolutions exist for pairs of dimension three over
the spectrum of R [BMP+21, 2.12], and combining [BMP+21, Theorem F] with the arguments
of [Kol13, 1.35-1.36] we can run a MMP to produce a model with the desired properties. We
claim that R1ϕ∗O(−D′ − X ′π) = R1ϕ∗O(−D′) ⊗ O(−Xπ) = 0 along Supp(Xπ). This follows
from [BK21, Proposition 7] applied to ϕ : X ′ → X, the dlt pair (X ′, X ′π + (∆′ + E′)) and the
Z-divisor −D′, since:

(a) −D′ ∼ϕ,Q KX′ +X ′π + E′ + ∆′,

(b) O(−D′ −mX ′π) is S3 for every m ≥ 1 by [BK21, Theorem 19],

(c) −X ′π is relatively nef over X, since it is relatively trivial,

(d) strong Grauert–Riemenschneider vanishing holds for (X ′π)n → Xπ since this is a birational
morphism of excellent surfaces (this can be deduced from [Kol13, 10.4]).

Therefore pushing forward along ϕ the exact sequence

0→ O(−D′ −X ′π)→ OX′ → OD′∪X′π → 0,

we obtain that ϕ∗OX′ = OX → ϕ∗OD′∪X′π is surjective in a neighbourhood of Xπ. This map
factors through OD∪Xπ , so we deduce that

ϕ∗OD′∪X′π = OD∪Xπ .

We are now in position to apply the argument of [Kol13, 7.8] to conclude that D ∩ Xπ is
reduced.

The following lemma will be useful for the proof of Theorem 6.4.1.9.

Lemma 6.4.1.11. Let X = SpecA be an affine demi-normal scheme with normalization X̄ =
Spec Ā. Let η ∈ X be a node, and assume that η has two preimages ξ, ξ′ ∈ X̄. Let V =
Spec Ā/pξ and V ′ = Spec Ā/pξ′. Then:

(a) The natural maps k(η) → k(ξ) and k(η) → k(ξ′) are isomorphisms. We denote by
φ : k(ξ′) ∼= k(ξ) the induced isomorphism.

(b) Let v ∈ Ā. If V is normal, then the element resξ(v) − φ(resξ′(v)) ∈ k(ξ) extends to a
regular function on V .

(c) If both V and V ′ are normal, then φ extends to an isomorphism V ∼= V ′.

Proof. The first point follows from Proposition 4.3.0.1. To prove the other two, set S =
SpecA/pη and let Γ be the main component of the fiber product V ×S V ′, equipped with its
reduced structure. Its generic point is (ξ, ξ′) and its function field is k(Γ) = k(ξ) ⊗k(η) k(ξ′).
By construction the projection pr1 : Γ → V is finite, thus closed; since its image contains the
generic point ξ of V , it is surjective. By the first point we see that pr1 induces an equality of
functions fields, so it is birational. Similarly pr2 : Γ→ V ′ is finite surjective birational.

Under the identification k(ξ)⊗k(η) k(ξ′) = k(ξ) induced by φ, we have

pr∗1(v)− pr∗2(v)|k(Γ) = resξ(v)− φ(resξ′(v)).

116



Assume that V is normal. Then by Zariski’s Main Theorem the finite surjective birational
morphism pr1 : Γ → V is an isomorphism. Thus the rational function resξ(v) − φ(resξ′(v))
extends to a regular function on V .

Finally, if V and V ′ are normal, then the composition pr2 ◦ pr−1
1 : V → V ′ gives the isomor-

phism extending φ.

Proof of Theorem 6.4.1.9. We assume from now on that Dπ is reduced. The first important
observation is that the divisor D has mild singularities:

Claim 6.4.1.12. The surface D is demi-normal with singular codimension one points mapping
to the generic point η of SpecR.

Proof. By hypothesis Dπ is S1. Since it is a hypersurface of D and since π is not a zero-divisor
in OD, we deduce that D is S2 in a neighbourhood of Dπ. Since the S2 locus is open and
D → SpecR is proper, in particular closed, we deduce that D is S2 everywhere.

Let ξ ∈ D be a codimension one point. Then ξ ∈ X is a codimension two point, and by
[Kol13, 2.31] we see that D is at worse nodal at ξ. Thus D is demi-normal. Assume that ξ
is the generic point of an irreducible component of Dπ. Then ξ belongs to the intersection
Xπ ∩D, and by [Kol13, 2.31] again we see that ξ is a regular point of D. Therefore, if ξ is a
singular point of D, it maps to the generic point of SpecR. ♦

Claim 6.4.1.13. Write bDiffD̄η(∆)c =
∑

α pα, where each pα ∈ D̄ is a codimension one point
with ideal pα ⊂ OD̄. Then:

(a) the collection {pα} contains all the preimages of the nodes of D, and

(b) the V (pα) = SpecOD̄/pα are normal and pairwise disjoint subschemes of D̄.

Proof. Recall that (D̄,DiffD̄(∆) + D̄π) is an lc surface by hypothesis. If m ∈ D̄ is a preimage
of a node of D, a local calculation shows that the divisors V (m) appear with coefficient one in
DiffD̄(∆), see for example [Kol13, 2.31.2]. If z ∈ V (pα) ∩ V (pβ) then z belongs to the special
fiber D̄π. However this contradicts [Kol13, 2.31.2]. So the V (pα) are pairwise disjoint.

By [Kol13, 2.31.2] again, the intersection V (pα) ∩ D̄π is regular. We deduce that the one-
dimensional scheme V (pα) is normal around its special fiber. It is also normal along its generic
fiber. Therefore it is normal everywhere. ♦

By [Kol12, Proposition 25] the diagram

D X

W = D/RD(τ) Y

p

is a universal pushout. Therefore the diagram

Dπ Xπ

Wπ Yπ

pπ (4.1.13.e)

is also a pushout.

Claim 6.4.1.14. Every scheme appearing in (4.1.13.e) is reduced.

Proof. By assumption Dπ is reduced, and Xπ is reduced by Lemma 6.3.1.6. Assume for the
moment that Yπ is reduced. If 0 6= s ∈ nil(OWπ), then by the pushout property (s, 0) ∈
OWπ ×OXπ gives a non-zero nilpotent element of Yπ, a contradiction. Thus Wπ is reduced.
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To show that OYπ is reduced, consider the exact sequence

0→ OY → p∗OX → Q→ 0

and tensor it by R/πR over R. If TorR1 (R/πR,Q) = 0 then OYπ embeds into (pπ)∗OXπ . Since
the latter is a sheaf of reduced algebras, this would entail that OYπ is reduced as well. Now
assume that TorR1 (R/πR,Q) 6= 0. Then there is q ∈ p∗OX such that q /∈ OY but πq ∈ OY . But
then qπ|D̄ is τ -invariant. Since π|D̄ is τ -invariant and D̄ is flat over SpecR, it must hold that
q|D̄ is τ -invariant. Therefore q ∈ OY , which is a contradiction. Hence TorR1 (R/πR,Q) = 0. ♦

We have seen in Lemma 6.4.1.2 that Z → Yπ is a finite universal homeomorphism. Hence
if Xπ → Yπ is weakly normal, then Z → Yπ is an isomorphism (see Section 4.3.2). Therefore,
by Claim 6.4.1.14 and Lemma 4.3.2.1, we obtain:

Observation 6.4.1.15. To prove Theorem 6.4.1.9 it is sufficient to prove that Dπ →Wπ is weakly
normal.

The situation can be slightly simplified:

Claim 6.4.1.16. We may (and will) assume that:
(a) k(π) is algebraically closed,

(b) any node n ∈ D has two preimages m,m′ ∈ D̄, and

(c) we have canonical equalities k(η) = k(m) = k(n) = k(m′).

Proof. We are studying whether Dπ → Wπ is weakly normal. This property descends faith-
fully flat covers [Yan83, Corollary to Proposition 1]. Moreover étale base-changes commute
with normalizations and preserve slc singularities. Thus we can base-change along the strict
henselization SpecRsh → SpecR and assume that k(π) is algebraically closed.

Let n ∈ D be a node, and let n̄ ∈ D̄ be a preimage. By Claim 6.4.1.12 both n and n̄ maps
to the generic point η of Spec(R). Then V = V (n̄) ⊂ D̄ is one-dimensional, it is normal by
Claim 6.4.1.13, and the morphism V → SpecR is flat and proper. Therefore V → SpecR is
finite, and by flatness we have

lengthk(η) Vη = lengthk(π) Vπ.

Since Vη is the spectrum of the field k(n̄), by the valuative criterion of properness we deduce
that the special fiber Vπ is connected. We have seen in the proof of Claim 6.4.1.13 that Vπ is
reduced. Therefore Vπ is the spectrum of a finite field extension of k(π). By the assumption on
k(π) we obtain that lengthk(π) Vπ = 1, and therefore Vη ∼= k(η). This implies that k(n) = k(n̄).
Now if n̄ is the unique preimage of n, then k(n) ⊂ k(n̄) is a field extension of degree 2 (see
Proposition 4.3.0.1), which is a contradiction. Thus n has two preimages m,m′ ∈ D̄, with
equalities of residue fields k(η) = k(n) = k(m) = k(m′). ♦

By [Yan83, Corollary to Theorem 1], weak normality of Dπ → Wπ is equivalent to the
following property: if x ∈ ODπ is such that xp ∈ OWπ , then x ∈ OWπ already.

Let v ∈ OD be any lift of x. Arguing as in the proof of Proposition 6.4.1.6, we find that
τ(v) = v + bπ, where b ∈ OD̄ is such that τ(b) = −b. Replacing v by v + b

2π, we may assume
that v is τ -invariant, but at the cost that v only belongs to OD̄. However we retain the property
that the reduction of v modulo π belongs to ODπ .

The strategy is now the following: building on Corollary 4.3.2.5, descend v+cπ to OD for a
well-chosen c ∈ O+

D̄
. If we manage to do so, we are done, for then v+ cπ ∈ O+

D = OW restricts
to x ∈ OWπ .

Thus we reduce to prove the following claim:

Claim 6.4.1.17. Under the assumptions of Claim 6.4.1.16, given v ∈ O+
D̄

such that v|D̄π ∈
ODπ , there exists c ∈ O+

D̄
such that v + cπ ∈ OD.
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To fix the ideas, let us consider two simple cases. We denote by η the generic point of
SpecR.

Example 6.4.1.18. Assume that (X,D + ∆) is plt on the generic fiber. Then Dη = D̄η, and
in this situation the condition of Corollary 4.3.2.5 holds automatically. So v descends to OD.

Example 6.4.1.19. Assume that Dη has a single node n and Xη is regular along Dη. This
node is not contained in the support of ∆, so let us assume for simplicity that ∆ = 0. Then
DiffD̄η(0) = m+m′.

Denote by φ : k(m′)
∼→ k(m) the isomorphism on residue fields given by Lemma 6.4.1.11.

We say that v has the same residues at m and m′ if rn(v) := resm(v)− φ(resm′(v)) = 0.
(a) If v has the same residues at m and m′ (this happens for example if τ(m) = m′, since v

is τ -invariant) then v descends to OD by Corollary 4.3.2.5.

(b) Assume that v has not the same residues at m and m′. Then rn(v) is a rational function
on V (m). As in Lemma 6.4.1.11, if Γ ⊂ V (m)×V (n) V (m′) is the main component with
reduced structure then

pr∗1(v)− pr2 = rn(v) in k(Γ) = k(m)⊗k(n) k(m′).

Since V (m) is normal by Claim 6.4.1.13, the projection pr1 : Γ→ V (m) is an isomorphism.
We deduce that rn(v) is regular on V (m). Moreover pr∗1(v)− pr∗2(v) vanishes modulo π,
since v|D̄π belongs to ODπ . So we obtain that rn(v) = c̄π for some c̄ ∈ OV (m).

Since Diff(0) is τ -invariant, we have τ(m) = m and τ(m′) = m′. The isomorphism
φ : k(m′) ∼= k(m) is τ -equivariant (this follows for example from Claim 6.4.1.16), and
since v is τ -invariant we deduce that c̄π is τ -invariant. Therefore c̄ is also τ -invariant.
Now consider the restriction map

ϕ : OD̄ −→ OV (m) ⊕OV (m′).

By Claim 6.4.1.13 and Lemma 6.4.1.20 below there is c ∈ O+
D̄

such that ϕ(c) = (c̄, 0). By
construction v − c̄π is τ -invariant and descends to OD thanks to Corollary 4.3.2.5.

In the second example we used the following lemma:

Lemma 6.4.1.20. Let A be a Noetherian ring acted on by a finite group G, such that |G| ∈ A×.
Let {p1, . . . , pn} be a G-invariant set of prime ideals, with the property that pi+pj = A for any
i 6= j. Then the natural map

ϕG : AG −→

(
n⊕
i=1

A/pi

)G
is surjective.

Proof. By the Chinese remainder theorem the natural restriction map

ϕ : A −→
n⊕
i=1

A/pi

is surjective. It is easily seen to be G-equivariant: we denote by ϕG the induced map between
the G-invariant subrings. Take any G-invariant element a ∈

⊕
iA/pi, and choose a lift a ∈ A.

Then aµ := 1
|G|
∑

g∈G g(a) is G-invariant and satisfies ϕG(aµ) = a. This shows that ϕG is also
surjective. ♦
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Now let us treat the general case. Let n1, . . . , nr ∈ Dη be the nodes of D. Notice that
Sing(Dη) = {n1, . . . , nr} since Dη is a nodal curve. Let mi,m

′
i ∈ D̄η be the two preimages of ni.

For any such preimage m, we define V (m) as in Claim 6.4.1.13. We also let φi : k(mi) ∼= k(m′i)
be the canonical isomorphism of residue fields over the node ni (see Lemma 6.4.1.11).

We can write

bDiffD̄η(∆)c =

(
r∑
i=1

mi +m′i

)
+

s∑
j=1

dj ,

where the points dj ∈ D̄η belong to the locus where D̄η → Dη is an isomorphism. Since τ
preserves DiffD̄(∆), on the generic fiber τη preserves bDiffD̄η(∆)c. Therefore the collection

P = {mi,m
′
i, dj}i,j is a τη-invariant subset of D̄η. It is also a union of equivalence classes for

the relation given by the fibers of D̄η → Dη.
The equivalence relation generated by τη and by the fibers of D̄η → Dη gives a partition

P =
⊔
l Pl into classes that are of four possible types (up to relabelling):

Type T0: d1 m1 m′1 · · · ma m′a d2

τη τη τη τη

Type T1: d1 m1 m′1 · · · ma m′a
τη τη τη

τη

Type T2: m1 m′1 · · · ma m′aτη
τη τη

τη

Type T	:

m1 m′1 · · · ma m′a

τη

τη τη

By Claim 6.4.1.16, the structural map k(η) ↪→ k(m) is an equality for any m ∈ {mi,m
′
i}.

Thus if τη(m
′
i) = mj then the induced isomorphism on residue fields τη : k(m′i)

∼= k(mj) is the
unique isomorphism that makes the diagram

k(m′i) k(mj)

k(η)

τη

∼= ∼=

commute.
Now consider v ∈ O+

D̄
. We write resp(v) for the image of v in the residue field of any p ∈ P.

As in Example 6.4.1.19, for any i we can write

resm′i(v)− φi(resmi(v)) = γiπ for some γi ∈ OV (m′i)
.

In general these differences are non-zero, and we look for a correction term that is τ -invariant.
Take an equivalence class Pl ⊂ P, and say that the preimages of nodes contained in Pl are
m1,m

′
1, . . . ,ma,m

′
a. Up to relabelling we may assume that

τη(m
′
1) = m2, τη(m

′
2) = m3, . . . τη(m

′
a−1) = ma,
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or in picture that

m1 m′1 · · · ma m′a
τη τη

so that the values τη(m1), τη(m
′
a) determine if Pl is of type T0, T1, T2 or T	. For i = 1, . . . , a

we define inductively ci ∈ OV (m′i)
by

c1 = γ1, ci+1π = φi+1(τη(ciπ))− γi+1π (i ≤ a− 1). (4.1.20.f)

We think of ci+1 as a correction term for the residue of v at the point m′i+1. Indeed, by
construction we have

φi+1(resmi+1(v) + τη(ci+1π)) = resm′i+1
(v) + ci+1π. (4.1.20.g)

Claim 6.4.1.21. These ci ∈ OV (m′i)
exist.

Proof. We check this inductively on i. It is clear for i = 1. Assuming that ci ∈ OV (m′i)
, it is

sufficient to show that

φi+1(τη(ci))− γi+1 ∈ k(mi+1) is a regular function on V (mi+1).

Since γi+1 is a regular function, we reduce to show that φi+1(τη(ci)) is a regular function
on V (mi+1). Now τη is the extension of τ : V (m′i)

∼= V (mi+1), and by Lemma 6.4.1.11 φi+1

extends to an isomorphism V (mi+1) ∼= V (m′i+1). Since ci is regular on V (m′i) we deduce that
φi+1(τη(ci)) is regular on V (m′i+1). ♦

For each Pl, we record the above previous construction using a vector that we call cPl :
(a) If Pl is of type T2 or T	 we let

cPl = (0, c1π, τ(c1π), . . . , τ(ca−1π), caπ)) ∈
a⊕
i=1

OV (mi) ⊕OV (m′i)
.

(b) If Pl is of type T1 we let

cPl = (0, 0, c1π, τ(c1π), . . . , τ(ca−1π), caπ) ∈ OV (d1) ⊕
a⊕
i=1

OV (mi) ⊕OV (m′i)
.

(c) If Pl is of type T0 we let

cPl = (0, c1π, τ(c1π), . . . , τ(ca−1π), caπ, τ(caπ)) ∈ OV (d1)⊕

(
a⊕
i=1

OV (mi) ⊕OV (m′i)

)
⊕OV (d2).

Claim 6.4.1.22. Each vector cPl is τ -invariant.

Proof. It suffices to check τη-invariance at the generic points. This is clear if Pl is of type T0, T1

or T2 (recall that, under the assumptions of Claim 6.4.1.16, τη acts trivially on the residue
field of a fixed point). If Pl is of type T	, then we only have to check that τη(caπ) = 0. For
simplicity, identify the residue field of every point of Pl with k(η). Then by construction we
have

resm1(v) = resm′1(v) + c1π

= resm2(v) + τη(c1π)

= . . .

= resm′a−1
(v) + ca−1π

= resma(v) + τη(ca−1π).
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On the other hand, since τ(m1) = m′a, by τ -invariance of v we have resm1(v) = resm′a(v). In
particular

τη(ca−1π) = resm′a(v)− resma(v) = γaπ,

and by (4.1.20.f) this implies that caπ = 0. ♦

We can finally conclude the proof of Theorem 6.4.1.9. Consider the concatenated vector
c = (cPl)l. Up to permutation of its entries, it belongs to

⊕
p∈P OV (p). By Claim 6.4.1.22

it is τ -invariant. Therefore by Claim 6.4.1.13 and Lemma 6.4.1.20, there exists c ∈ O+
D̄

that
reduces to c. The element v + cπ is τ -invariant and by (4.1.20.g) it satisfies the descent
condition of Corollary 4.3.2.5. This proves Claim 6.4.1.17, and Theorem 6.4.1.9 follows as
already observed.

6.4.2 Serre properties of the fibers

In this subsection we consider the Serre conditions Sr on the special fiber Yπ. Since we
always assume Y → SpecR to be flat, π is not a zero-divisor in OY and so

Yπ is Sr ⇐⇒ Y is Sr+1 along Yπ.

The analog equivalence holds for Xπ ⊂ X, since X is automatically flat over SpecR, by [Har77,
III.9.7] and the fact that p : X → Y is finite. Similarly, an analog equivalence holds for D and
D/RD(τ) as soon as one of them (equivalently both of them) is flat over SpecR.

Remark 6.4.2.1. By [Gro65, 7.8.6.iii] the Si loci of excellent schemes are open. If Y → SpecR is
proper (or simply a closed morphism), a closed subset that is disjoint from Yπ must be empty.
In this case the previous equivalence becomes: Yπ is Sr if and only if Y is Sr+1, and similarly
for X,D and D/RD(τ) under suitable hypothesis.

To approach the Serre properties of Y , we rely on the fact that it can be described as a
universal push-out [Kol12, Proposition 25]. The main technical tool is the following lemma.

Lemma 6.4.2.2. Consider a commutative square of complexes of abelian groups

A• B•

C• D•

α•

β• q•

p•

which is a pullback diagram at every degree. Then for every j there exists a natural map

ξj : hj(A•)→ hj(B•)×hj(D•) hj(C•)

which is surjective. If hj−1(D•) = 0 and pj−2 is surjective, then ξj is bijective.
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Proof. Let us embark for some diagram-chasing in

Aj−1

Aj

Bj−1 Bj Cj Cj−1 Cj−2

Dj

Dj−1

Dj−2

αj βj

qj−1

pj−2

We denote the differential maps of A• by djA : Aj → Aj+1, and similarly for the other complexes.

If x ∈ ker(djA), then clearly αj(x) ∈ ker(djB) and βj(x) ∈ ker(djC). This defines a map

ξj0 : ker(djA)→ ker(djB)×
ker(djD)

ker(djC).

We claim that ξj0 is surjective. Indeed, a pair (s, t) ∈ ker(djB) ×
ker(djD)

ker(djC) gives, by the

pullback property, a unique element x ∈ Aj such that αj(x) = s and βj(x) = t. Since

αj+1(djAx) = djB(αj(x)) = 0, βj+1(djAx) = djB(βj(x)) = 0

the pullback property ensures that djA(x) = 0. Thus ξj0 is surjective.
It is easy to see that ξ′j descends to a surjective map

ξj : hj(A•)→ hj(B•)×hj(D•) hj(C•).

Now let us discuss the injectivity of ξj . Let x ∈ ker(djA) be such that αj(x) = dj−1
B (y) and

βj(x) = dj−1
C (z) for some y ∈ Bj−1 and z ∈ Cj−1. We investigate whether x ∈ im(dj−1

A ). The

element ∂ := qj−1(y) − pj−1(z) is non-zero in general, but it belongs to ker(dj−1
D ). Thus if

hj−1(D•) = 0, there exists ∂′ ∈ Dj−2 such that dj−2
D (∂′) = ∂. If pj−2 is surjective, there exists

δ′ ∈ Cj−2 such that pj−2(δ′) = ∂′. Set z1 := z + dj−2
C (δ′). We have

pj−1(z1) = pj−1(z) + δ = qj−1(y),

thus by the pullback property the pair (y, z1) corresponds to a unique x′ ∈ Aj−1. Since
αj(dj−1

A (x′)) = dj−1
B (y) = αj(x) and βj(dj−1

A (x′)) = dj−1
C (z1) = dj−1

C (z) = βj(x), the pullback

property shows that x = dj−1
A (x′). This concludes the proof.

Lemma 6.4.2.3. Let A be a Noetherian semi-local ring with Jacobson ideal I = m1 ∩ · · · ∩mn.
Let M be an A-module. Then Hr

I (M) = 0 if and only if Hr
miAmi

(Mmi) = 0 for every mi.

Proof. Since the localization maps A→ Ami are flat, we have isomorphism s

Hr
I (M)⊗A Ami

∼= Hr
IAmi

(Mmi) for every i.

Since the mi are pairwise coprime, we have I = m1 · · ·mn and therefore IAmi = miAmi . Thus
the result follows from the fact that a module is trivial if and only if its localization at every
maximal ideal is trivial.
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Proposition 6.4.2.4. Let (X,D, τ)→ Y be as in Notation 6.4.0.1 (flatness of Y → SpecR is
not necessary). Assume in addition that D is Sr.

(a) If X and D/RD(τ) are Sr+1, then Y is Sr+1.

(b) If D is Sr+1, then the converse holds.

Remark 6.4.2.5. As the proof will show, the statement of Proposition 6.4.2.4 is local on Y . That
is, the statement holds if we replace adequately being Si with being Si at y ∈ Y , respectively
with being Si along p−1(y) ⊂ X.

Proof. For simplicity, we write W = D/RD(τ). Then by [Kol12, Proposition 25] the diagram

D X

W Y

p

is a universal push-out and W ↪→ Y is a closed embedding. Thus if y ∈ Y is a point with
my = (f1, . . . , fn) ⊂ Oy := OY,y, then the diagrams

(OD×Oy)fi0 ···fis (OX×Oy)fi0 ···fis

(OW,y)fi0 ···fis (Oy)fi0 ···fis
pi0,...,is

(4.2.5.h)

are pullback diagrams of semi-local rings. Notice that pi0,...,is is always surjective, sinceW ↪→ Y
is a closed embedding.

For A ∈ {Oy,OW,y,OX×Oy ,OD×Oy} we denote by Č•(f ;A) the alternating Čech complex
associated to A and to f = {f1, . . . , fn}. Recall that

Č•(f ;A) =

[
0→ A→

⊕
i

Afi →
⊕
i0<i1

Afi0fi1 → · · · → Af1···fn → 0

]

with differential defined as alternated sums of the natural localization maps. Thus it is easy to
see that the diagrams (4.2.5.h) induce a commutative square of complexes

Č•(f ;OD×Oy) Č•(f ;OX×Oy)

Č•(f ;OW,y) Č•(f ;Oy)
p•

where p• is surjective and the square is a pullback at every degree. Now the cohomology of
Č(f ;A) is equal to the local cohomology of A along myA [ILL+07, Theorem 7.13]. By the first
part of Lemma 6.4.2.2, we get a surjective map

Hj
y(Oy)� Hj

Xy
(OX×Oy)×Hj

Dy
(OD×Oy )

Hj
y(OW,y).

Now assume that D is Sr. Then Hj
z (OD,z) = 0 for every j < r and z ∈ D. If z maps to y ∈ Y ,

then OD,z is the localization of OD×Oy at some maximal ideal. Moreover myOD,z is equal (up
to taking its radical, to which the local cohomology is insensitive) to the Jacobson radical of
OD×Oy . Thus Hj

Dy
(OD×Oy) = 0 for every j < r by Lemma 6.4.2.3. Therefore by the second

part of Lemma 6.4.2.2, we have an isomorphism

Hj
y(Oy) ∼= Hj

Xy
(OX×Oy)×Hj

y(OW,y) ∀j < r. (4.2.5.i)
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Similarly to above the group Hj
Xy

(OX×Oy) is equal to the jth local cohomology group of the
semi-local ring OX×Oy along its Jacobson radical.

Thus we see that if X and W are Sr+1, then by (4.2.5.i) we have Hj
y(Oy) = 0 for every

j < r. This proves the first point. Conversely, if D and Y are Sr+1, then the isomorphisms
(4.2.5.i) hold for all j ≤ r, and thus X and W are Sr+1.

For the S2 property, we have a stronger statement in the slc surface case:

Proposition 6.4.2.6. Assume that (Y,∆Y +Yπ) is slc 3-dimensional and proper over SpecR,
Dπ is reduced and p = charR/(π) 6= 2. If (Xπ,DiffXπ(∆ + D)) if slc then (Yπ,DiffYπ ∆Y ) is
also slc.

Proof. Since Dπ is reduced, D is S2 along Dπ. By [Kol13, 2.31] it is also R1 in a neighbourhood
of Dπ. Restricting over an open subset of Y that contains its special fiber, we may assume that
D is normal.

By Theorem 6.4.1.9 the special fiber Yπ is the quotient of Xπ by the equivalence relation
generated by the involution τπ on the divisor Dπ. If Xπ is S2, then Lemma 4.4.0.2 shows that
Xπ/RXπ(τπ) is also S2.

We show that Yπ is at worst nodal in codimension one. By [Kol13, 2.31] we know that Xπ

is at worst nodal in codimension one, so it is sufficient to consider the codimension one points
of Yπ that belong to the image of Dπ. These are precisely the images of the generic points
of Dπ. By [Kol13, 2.31] again, we know that Xπ is normal in a neighbourhood of the generic
points of Dπ. Thus we may assume that Xπ is normal, and the nodal property follows from
Proposition 4.4.0.1.

Therefore Yπ is demi-normal, and we can perform adjunction along Yπ ⊂ Y (see [Kol13,
4.2]). We obtain a pair (Yπ,DiffYπ ∆Y ). From the diagram (4.1.2.c) we see that its normaliza-
tion is (Xn

π ,DiffXn
π

(∆ +D)), which is lc by assumption.

Remark 6.4.2.7. The result of Proposition 6.4.2.6 is also valid in equicharacteristic 0, without
any restriction on the dimension. The difficult part is to show that Yπ is S2: this follows from
the general result [Kol13, 7.21].

Remark 6.4.2.8. The converse direction of Proposition 6.4.2.6 seems more difficult. The ques-
tion is whether Yπ being S2 implies that Xπ is also S2. The only question is along Dπ, thus we
may localize over a point of p(Dπ).

Let W be the quotient of Xn
π by R(τπ). We have a commutative diagram

Xn
π Xπ

W Yπ

n

q p

m

where m is a finite morphism. Since Xπ is reduced it is S2 in codimension one. So there is a big
open subset U ⊂ Yπ such that nU , and therefore mU , are isomorphisms. Hence OYπ ⊂ m∗OW
is an equality over U . Since OYπ is S2 and m∗OW is torsion-free, we obtain by [Sta, 0AV9] that
OYπ = m∗OW . In other words W = Yπ in a neighbourhood of p(Dπ).

However, this equality alone does not imply that Xπ is S2 in a neighbourhood of D ∩Xπ.
Here is a counterexample. Consider Sn = A2

x,y over a field k, the two lines L0 = (y = 0), L1 =
(y = 1) and the two points s0 = (0, 0) ∈ L0, s1 = (0, 1) ∈ L1. Let S be the surface obtained
from Sn by gluing s0 and s1 together, and T be the surface obtained from Sn by gluing L0

and L1 along the involution L0 3 (x, 0) ←→ (x, 1) ∈ L1. Then T is demi-normal, it is also a
quotient of S and we have a commutative diagram

Sn S

T
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However S is R1 but not S2.
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Chapter 7

Abundance for slc surfaces

This chapter corresponds to the preprint [Pos21a].

Convention 7.0.0.1. We work with varieties over an arbitrary field k of positive characteris-
tic, except in Section 7.4 where we work over a excellent base scheme S. We use the same
terminology in both cases.

7.1 INTRODUCTION

The Minimal Model Program (MMP) predicts that a variety with mild singularities X
admits a birational model X ′ such that either KX′ is nef, or such that there is a fibration
X ′ → Y whose general fiber is a Fano variety. In the first case, the MMP is completed by the
Abundance conjecture: if KX′ is nef, then it should also be semi-ample.

In the case of surfaces, both the MMP and the Abundance conjecture are established in
many cases. For smooth surfaces over the complex numbers, this goes back to the work of the
Italian school at the beginning of the twentieth century and to the subsequent work of Kodaira,
although the results were formulated in different terms: see [Mat02, §1] for an exposition of
these results. These classical methods were extended by Mumford [Mum69] to surfaces over
algebraically closed fields of positive characteristic. Since then, MMP and Abundance were
proved more generally for log canonical surface pairs over the complex numbers by Fujino
[Fuj12] and over algebraically closed fields of positive characteristic by Tanaka [Tan14].

The work of Kollár and Shepherd-Barron on the moduli space of canonically polarized
smooth complex surfaces [KSB88] has demonstrated that in order to have a good moduli
theory of such surfaces, we should consider the larger class of so-called semi-log canonical (slc)
surfaces. Hence it is natural to ask whether the MMP and the Abundance theorem can be
extended to that class of surfaces. As a matter of fact, the usual MMP does not work (see
[Fuj14, Example 5.4] and [Kol11]). On the other hand, Abundance holds for slc surface pairs
in characteristic zero by [Fli92, §8 and §12] and over algebraically closed fields of positive
characteristic by [Tan16].

The purpose of this article is to extend the Abundance theorem to slc surfaces over any
field of positive characteristic. We prove:

Theorem 7.1.0.1. Let (S,∆) be an slc surface pair and f : S → B a projective morphism
where B is quasi-projective over a field of positive characteristic. Assume that KS + ∆ is
f -nef; then it is f -semi-ample.

Let us sketch the proof in the case B is the spectrum of a field. Abundance holds over
arbitrary fields for lc surface pairs by the work of Tanaka [Tan20a]. Thus if (S̄, D̄ + ∆̄) is the
normalization of (S,∆), since KS + ∆ pullbacks to KS̄ + D̄ + ∆̄ the latter is semi-ample. We
have to find a way to descend semi-ampleness along the normalization.
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Our strategy is similar to the one of [HX16]. Let τ be the involution of D̄n induced by
the normalization, and let ϕ : S̄ → T̄ be the fibration given by a sufficiently divisible multiple
of KS̄ + D̄ + ∆̄. One shows that the set theoretic equivalence relation on T̄ induced by
(ϕ,ϕ ◦ τ) : D̄n ⇒ T̄ is finite using finiteness of B-representations. It follows that the quotient
T := T̄ /(D̄n ⇒ T̄ ) exists and similar arguments show that the hyperplane divisor of T̄ descends
to T . Then it is not difficult to show that the composition S̄ → T̄ → T factors through S and
that a multiple of KS + ∆ is the pullback of the hyperplane divisor of T .

In [HX16] the authors use the theory of sources and springs of a crepant log structure
developed by Kollár (see [Kol13, §4.3]) to prove finiteness of the equivalence relation and
descent of the hyperplane divisor. We have not placed our proof on such axiomatic ground,
since the few cases of crepant log structures S̄ → T̄ that arise in our situation can be quite
explicitly described. However our proof is an illustration of Kollár’s theory: the technical details
are easier, yet we encounter its main steps and subtleties. We highlight the correspondences in
Remark 7.3.1.15.

There is another approach to slc abundance, developed in characteristic zero by Fujino
[Fuj99, Fuj00] and used by Tanaka to prove slc abundance for surfaces over algebraically closed
fields of positive characteristic [Tan16]. This approach is actually closely related to that of Ha-
con and Xu, and to Kollár’s theory of crepant log structures: the finiteness of B-representations
plays a crucial role (see [Fuj99, Conjecture 4.2]), and the geometric properties of S̄ → T̄ that
are relevant in Fujino’s approach (see [Fuj99, Proposition 3.1]) can be understood in terms of
sources, springs and P1-links (see [Kol13, §4.3]).

The set-up of [HX16] may also be applied to the relative setting f : S → B. However,
instead of adapting all the previous steps to this relative setting, we choose to reduce to the
absolute case as in [Tan20a]. The main step is to compactify both S and B while preserving
the properties of S and f . This is achieved using a carefully chosen MMP and some gluing
theory.

7.1.1 Applications

We give two applications of Theorem 7.1.0.1. The first one is about families of slc surfaces
in mixed characteristic. In positive characteristic, relative semi-ampleness is a property of
fibers by [CT20]. Recent work of Witaszek [Wit21] shows that a similar statement holds for
relative semi-ampleness in mixed characteristic. Combining our main result with abundance
for threefolds in characteristic zero, we therefore obtain:

Theorem 7.1.1.1 (Theorem 7.4.0.1). Let S be an excellent regular one-dimensional scheme of
mixed characteristic, f : (X,∆)→ S a dominant flat projective morphism of relative dimension
two. Assume that (X,∆ + Xs) is slc for every closed point s ∈ S, and that every fiber Xs is
S2.

Then if KX + ∆ is f -nef, it is f -semi-ample.

The second application is about dlt threefolds of general type over arbitrary fields:

Theorem 7.1.1.2 (Theorem 7.3.3.4). Let (X,∆) be a projective Q-factorial dlt threefold over
an arbitrary field k of characteristic p > 5. Assume that KX + ∆ is nef. Then (KX + ∆)|∆=1

is semi-ample.

This theorem is a generalization of [Wal18, Theorem 1.3], which is a key step for the exis-
tence of good minimal models for lc threefolds over algebraically closed fields of characteristic
p > 5 [Wal18, Theorem 1.1]. In a forthcoming note, I plan to combine Theorem 7.3.3.4, the
techniques of [Wal18] and the tools of [DW19], to obtain the existence of good minimal models
for lc threefolds over imperfect fields.
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7.2 PRELIMINARIES

Let X be a k-variety and D be a Q-divisor. We denote by Autk(X,D) the group of k-
automorphisms σ of X with the property that σ(D) = D. Similarly, if L is a line bundle then
Autk(X,L) is the group of k-automorphisms σ of X such that σ∗L ∼= L.

Let C ⊂ X be a proper k-curve and L be a Cartier divisor on X. Then the intersection
number L · C can be calculated with respect to k or to K = H0(C,OC). If necessary we
distinguish between the two numbers by writing L ·k C and L ·K C.

If a scheme fails to be satisfy the property S2, in many cases it has a finite alteration that
is S2:

Proposition 7.2.0.1. Let X be a reduced equidimensional excellent scheme. Then the locus
U where X is S2 is an open subset with codimX(X \ U) ≥ 2, and there exists a morphism
g : X ′ → X such that

(a) X ′ is S2 and reduced,

(b) g is finite and an isomorphism precisely above U , and

(c) the normalization Xn → X factorizes through g.
We call g : X ′ → X, the S2-fication of X.

Proof. The morphism g : X ′ → X is the one given by [Gro65, 5.10.16] (see [Gro65, 5.10.13]
for the definition of the Z(2) appearing there). The first two items also follow from [Gro65,
5.10.16] granted that g is finite, which holds by [Gro65, 5.11.1]. The fact that g factors the
normalization follows from finiteness of g and from [Sta, 035Q].

7.2.1 Preliminary results

Proposition 7.2.1.1. Let C be a regular projective curve over k, and D a boundary such that
KC +D is ample. Then Autk(C,D) is finite.

Proof. We may replace D by dDe =
∑m

i=1 pi. Since KC + D is ample and preserved by the
elements of Autk(C,D), we can describe the latter group as the group of k-points of the linear
algebraic group

G :=
{

Φ ∈ PGLkH
0(C,m(KC +D)) | Φ(D) = D

}
, m divisible enough.

The tangent space of G at the identity morphism is given by H0(C, TC ⊗ ID) [Deb01, §2.9],
which is trivial since TC ⊗ ID = O(−KC −D) is anti-ample. It follows that G is a finite group
scheme, and thus Autk(C,D) is a finite group.

Lemma 7.2.1.2. Let (S,∆) be a dlt surface. Then S is Q-factorial and the irreducible com-
ponents of b∆c are normal.

Proof. The Q-factorial property is proved in [Tan18, 4.11]. Hence to show that the components
of b∆c are normal, we may assume that ∆ = b∆c is irreducible. Then we can repeat the proof
of [KM98, 5.51], using [Tan18, 3.2] instead of [KM98, 2.68].

The next two results study the pluricanonical representations on regular curves of genus
zero.

Lemma 7.2.1.3. Let X be a proper variety over k and L a line bundle on X. Write K :=
H0(X,OX). If the natural representation ρK : AutK(X,L)→ GLK H

0(X,L) has finite image,
then so does ρk : Autk(X,L)→ GLkH

0(X,L).
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Proof. If ϕ ∈ Autk(X), then ϕ∗ = ρk(ϕ) : K → K is a k-linear field automorphism. This gives
a partition

Autk(X,L) =
⊔

σ∈Autk(K)

Autσk(X,L)

which is finite since k ⊂ K is a finite field extension. Notice that if ϕ ∈ Autσk(X,L), then

ϕ−1 ∈ Autσ
−1

k (X,L).
For each σ, fix an element ϕσ ∈ Autσk(X,L) (if that subset is not empty). If we have another

element ψ ∈ Autσk(X,L) then the automorphism

ρk(ϕ
−1
σ ◦ ψ) : H0(X,L)→ H0(X,L)

is K-linear. Therefore we get a map

ισ : Autσk(X,L)→ GLK H
0(X,L), ψ 7→ ρk(ϕ

−1
σ ◦ ψ).

Since ϕ−1
σ ◦ ψ ∈ AutK(X,L), we see that im(ισ) ⊆ im(ρK). Thus im(ισ) is finite. Moreover

| im(ισ)| = |ρk(ϕ−1
σ ) ◦ im(ρk|Autσk (X,L))| = | im(ρk|Autσk (X,L))|

so ρk|Autσk (X,L) has finite image. Since

im(ρk) =
⋃

σ∈Autk(K)

im(ρk|Autσk (X,L))

the lemma is proved.

Proposition 7.2.1.4. Let C be a regular proper curve of genus zero over an arbitrary field k,
and E an effective Q-divisor such that KC +E ∼Q 0. Then for m divisible enough, the natural
representation Autk(C,mE)→ GLk(H

0(C,ωmC (mE)) has finite image.

Proof. By Lemma 7.2.1.3 we may replace k by H0(C,OC) to prove the result. If C is smooth
over k, then we may assume that k is algebraically closed and the result was proved in Proposi-
tion 5.4.1.15. So for the rest of the proof, we assume that C is non-smooth over k. By [Tan20b,
9.8, 9.10] it holds that char k = 2 and we can find degree 2 purely inseparable extensions
k ⊂ l ⊂ k′ such that Cl = C ⊗k l is integral with non-isomorphic normalization B ∼= P1

k′ :

B

Cl C

ν
g

f

Moreover there is P ∈ B(k′) such that KB + P ∼ g∗KC . Thus if m > 0 is such that mE
is a Z-divisor, then mKB + mP + g∗(mE) ∼ g∗(KC + mE). Since Cl is reduced we have an
inclusion OCl ⊂ ν∗OB. Tensoring with f∗ωmC (mE) and using the projection formula, we obtain
an inclusion f∗ωmC (mE) ⊂ ν∗g∗ωmC (mE). Taking global section, we get a sequence of inclusions

H0(C,ωmC (mE)) ⊂ H0(C,ωmC (mE))⊗k l ⊂ H0(B,ωmB (mP +mg−1(E))). (2.1.4.a)

On the other hand, extending scalars along k ⊂ l gives a natural map

f∗ : Autk(C,mE)→ Autl(B,mP +mg−1(E)),

whose image respects the flag (2.1.4.a). Therefore it is sufficient to show that the action of
Autl(B,mP + mg−1(E)) on H0(B,ωmB (mP + mg−1(E))) is finite. By Lemma 7.2.1.3, it is
sufficient to prove finiteness after replacing l by k′. By [Tan20b, 9.8] we may choose the
extensions k ⊂ l ⊂ k′ so that P does not belong to the support of g−1(E). Thus the support
of mP + mg−1(E) contains at least two points, and we may apply the usual argument (see
Proposition 5.4.1.15).
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The next proposition summarized useful results contained in the proofs of Proposition 5.4.2.9
and Proposition 5.4.2.12.

Proposition 7.2.1.5. Let ϕ : S → T be a projective morphism from a surface S to a variety
T of dimension ≤ 1, with ϕ∗OS = OT . Let Θ,Υ be divisors such that (S,Θ + Υ) is dlt,
(Θ + Υ)=1 = Θ and KS + Θ + Υ ∼Q,ϕ 0. Let z ∈ T be a closed point and W,W ′ be lc centers
of (S,Θ + Υ) that are minimal for the property that their image through ϕ is equal to z. Then:

(a) There exists a log isomorphism (W,Diff∗(Θ + Υ)) ∼= (W ′,Diff∗(Θ + Υ)).

(b) If moreover dimT = 1 and W is a genus one curve, then W = W ′.

Proof. Since (S,Θ + Υ) is dlt its lc centers are the strata of Θ and we can perform adjunction
in any codimension. In this situation we write the different with Diff∗ (see Corollary 5.4.2.3).
Thus we are interested in the strata of Θ that are contained in Θ ∩ ϕ−1(z).

First we prove the existence of the log isomorphisms. First assume that Θ ∩ ϕ−1(z) is
connected. There is nothing to show if it is 0-dimensional. If it is 1-dimensional, it is a chain
of regular proper curves, and the minimal lc centers are the intersections of these curves. If
there is more that one minimal lc center, then by adjunction it is easy to verify that they are
k(z) points.

We show that if Θ does not dominate T , then Θ ∩ ϕ−1(z) is connected. We follow the
method of the last part of the proof of Proposition 5.4.2.12, so we only sketch the argument.
Notice that dimT = 1. We run a (KS + Υ)-MMP over T , which ends with a birational model
[Tan18]:

(S,Θ + Υ) (S′,Θ′ + Υ′)

T

g

ϕ ϕ′

Then g is crepant by Lemma 5.4.1.14, KS′ + Θ′+ Υ′ is ϕ′-nef, (Θ′)2 ≤ 0 by Lemma 5.4.1.5 and
we can write Θ′ = (ϕ′)∗N + E for E > 0 vertical and a Q-divisor N on T . Taking in account
that KS′ + Υ′ is numerically equivalent to the vertical divisor −Θ′, we obtain

0 ≥ (Θ′)2 = (KS′ + Υ′) · ((ϕ′)∗N + E) ≥ 0

and thus Θ′ is a reduced fiber by Lemma 5.4.1.5. Therefore Θ′ ∩ (ϕ′)−1(z) is connected, and
since g is crepant it follows that Θ ∩ ϕ−1(z) is also connected by Lemma 5.4.1.13.

To conclude the first point, we need to produce log isomorphisms in the case Θ∩ϕ−1(z) is
not connected and Θ does dominate T . We follow the method of Proposition 5.4.2.9; once again
we only sketch the argument. Base-changing along an étale morphism (z′ ∈ T ′)→ (z ∈ T ) with
k(z) = k(z′), we may assume that the different components of Θ ∩ ϕ−1(z) belong to different
components of Θ, and that they are all horizontal over T . We run a (KS + Υ)-MMP over T ,
it terminates with a Fano contraction [Tan18]:

(S,Θ + Υ) (S′′,Θ′′ + Υ′′)

T B

f

ϕ p

Notice that f is crepant by Lemma 5.4.1.14. By Lemma 5.4.1.13 the morphism f induces a
bijection between connected components of Θ and Θ′′. There is a component D1 ⊂ Θ′′ that
is p-ample. By assumption there is another component D2 ⊂ Θ′′ that is disjoint from D1.
Take a curve C that intersects D2 and is contracted by p: then D2 ·C < 0 cannot happen, for
otherwise D1 ∩D2 6= ∅. Thus D2 is also p-ample. A similar argument shows that the fibers of
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p are one-dimensional. Hence if η is the generic point of B, then S′′η is a regular proper curve
with k(η) = H0(S′′η ,OS′′η ). Since

0 = (KS′′ + Θ′′ + Υ′′)|S′′η ,

we see that D1|S′′η and D2|S′′η are k(η)-points, and therefore D1 → B and D2 → B are isomor-
phisms. We also deduce from the equality that, up to shrink T around z, we have Θ′′ = D1+D2.
Therefore we obtain log isomorphisms on S′′, and since f is crepant we get log isomorphisms
on S (see for example Corollary 5.4.2.5).

Let us now prove the second point. If Θ does not dominate T then we have seen that
Θ∩ϕ−1(z) is connected, and by adjunction it must be equal to W . Assume that Θ dominates
T . We run a few steps of the (KS+Υ)-MMP over T , and stop when the transform of Θ intersects
the transform of W . This does happen eventually, since W is contained in ϕ−1(z) and that
KS + Υ ∼Q,ϕ −Θ. Since each step of the MMP is crepant for (S,Θ + Υ) Lemma 5.4.1.14, it
follows that Diff∗W (Θ + Υ) 6= 0, which contradicts adjunction. Thus Θ ∩ ϕ−1(z) actually does
not contain a genus one curve.

7.3 ABUNDANCE IN POSITIVE CHARACTERISTIC

7.3.1 Absolute case

We begin with abundance in the absolute case:

Theorem 7.3.1.1. Let (S0,∆0) be a projective slc surface pair over an arbitrary field k of
positive characteristic. Assume that KS0 + ∆0 is nef; then it is semi-ample.

For the duration of the proof we fix (S0,∆0) and let (S,D+ ∆) be its normalization. Write
D = DG +DI , where DG is the preimage of the separable nodes of S0, and DI is the preimage
of the inseparable ones. Let τ be the induced log involution of (Dn

G,DiffDnG(∆ +DI)).

We emphasize that S0 is not assumed to be irreducible. Thus (S,∆+D) =
⊔N
i=1(Si,∆i+Di)

is the disjoint union of its normal irreducible components.

We divide the proof in several steps.

Reduction to separable nodes.

This step is only necessary if char k = 2. Applying Proposition 4.3.3.1, we get a factorization

(S,D + ∆) −→ (S′, D′I + ∆′)
µ−→ (S0,∆0)

where µ is finite purely inseparable and (S′, D′I + ∆′) is slc with only separable nodes. By
[CT20, 2.11.3], if KS′ +D′I + ∆′ = µ∗(KS0 + ∆0) is semi-ample then so is KS0 + ∆0. Thus it
suffices to study (S′, D′I + ∆′) and so we may assume that S0 has only separable nodes.

Quotienting the fibration.

The pullback KS +D+∆ is nef by assumption, so it is semi-ample by [Tan20a]. Choose m > 0
even such that m(KS + D + ∆) is base-point free, and let ϕ : S → T be the corresponding
fibration onto a normal projective variety. We let H be the hyperplane Cartier divisor on T
with the property that ϕ∗O(H) = O(m(KS +D + ∆)).

Since S0 has only separable nodes, it is the geometric quotient of its normalization S by
the finite equivalence relation induced by the involution τ on (Dn,DiffDn ∆). This equivalence
relation is generated by the two morphisms (ι, ι′ = ι ◦ τ) : Dn ⇒ S. Let ψ : Dn → E be the
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fibration corresponding to the base-point free divisor m(KS + D + ∆)|Dn . Then we have a
diagram

Dn S

E T

ι

ι′
ψ ϕ

j

j′

(3.1.1.b)

where (ψ, j) (resp. (ψ, j′)) is the Stein factorization of ϕ◦ι (resp. of ϕ◦ι′). The two morphisms
(j, j′) : E ⇒ T are finite, and they generate a pro-finite equivalence relation on T . (We only
care about the reduced image of this relation in T ×k T : see the comment after [Kol13, 9.1].)

We claim that this relation is actually finite (so that the quotient exists by Theorem 2.5.0.2),
and that H descends to the quotient. We prove both claims below: for the moment assume
they hold. Let q : T → T0 := T/(E ⇒ T ) be the quotient. Since the two compositions q ◦ ϕ ◦ ι
and q ◦ ϕ ◦ ι′ are equal, we obtain a morphism ϕ0 : S0 → T0 such that the diagram

S T

S0 T0

n

ϕ

q

ϕ0

(3.1.1.c)

commutes. Moreover there is an ample Cartier divisor H0 on T0 such that q∗H0 = H.

Claim 7.3.1.2. ϕ∗0O(H0) = O(m(KS0 + ∆0)). In particular KS0 + ∆0 is semi-ample.

Proof. Tensoring the inclusion OS0 ⊂ n∗OS by ϕ∗0O(H0) and using the projection formula, we
obtain

ϕ∗0OT0(H0) ⊂ n∗OS(m(KS +D + ∆)).

By commutativity of (3.1.1.c) and the definition of ϕ and q, for s ∈ O(H0) we see that its
pullback ϕ∗0s ∈ n∗O(m(KS + D + ∆)) is a log pluricanonical section whose restriction to Dn

is τ -invariant. Thus ϕ∗0O(H0) ⊆ O(m(KS0 + ∆0)) by Proposition 4.3.0.6. Conversely, by
Lemma 2.5.0.3 a section t of q∗O(H) belongs to O(H0) if and only if j∗t = (j′)∗t. Looking at
the diagram (3.1.1.b), we see that this condition is equivalent to ι∗ϕ∗t = (ι′)∗ϕ∗t, which by
Proposition 4.3.0.6 means that ϕ∗t ∈ O(m(KS0 +∆0)). We have obtained the inverse inclusion
O(m(KS0 + ∆0)) ⊆ ϕ∗0O(H0), which concludes the proof. ♦

Remark 7.3.1.3. In the diagram (3.1.1.c), the Stein factorisation of S0 → T0 need not be
demi-normal.

For example, consider the product T := E × P1 of an elliptic curve with a rational smooth
curve over an algebraically closed field, with projection morphisms pP1 and pE onto its factors.
Let ∆T be the sum of one section of pP1 and of three distinct sections of pE . Then KT + ∆T

is ample and (T,∆T ) is dlt. Let ϕ : S → T be the blow-up of two distinct points p and q
that are 0-dimensional strata of ∆, and let Ep, Eq be the corresponding ϕ-exceptional divisors.
Then ϕ∗(KT + ∆T ) = KS + ∆S + Ep + Eq. So ϕ : S → T is the ample model of (S,∆S +
Ep + Eq). Let τ : Ep ∼= Eq be an isomorphism that sends ∆S |Ep to ∆S |Eq . Then the quotient
r : S → S0 := S/R(τ) exists, (S0,∆S0 + F ) is slc with normalization (S,∆S +Ep +Eq), where
F = r(Ep) = r(Eq). On the other hand, the induced involution E ⇒ T is given by p ∼ q, and
so the fibration given by |m(KS0 + ∆S0 + F )| is S0 → T0 := T/(p ∼ q). However, T0 is not
demi-normal since it is not S2.

Finiteness.

It remains to show finiteness and descent, and we begin by the former. It is convenient to
reduce to the case where (each component) of (S,∆ +D) is dlt:
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Claim 7.3.1.4. In order to show that the equivalence relation induced by E ⇒ T is finite, we
may assume that (S,D + ∆) is dlt.

Proof. Indeed, let φ : (Sdlt, Ddlt + ∆dlt + E) → (S,D + ∆) be a crepant dlt blow-up where
Ddlt = φ−1

∗ D and E = Exc(φ) [Tan18, 4.7, 4.8]. Then KSdlt
+ Ddlt + ∆dlt + E is semi-ample,

and the corresponding fibration is just ϕ ◦ φ : Sdlt → S → T . Moreover (Dn,DiffDn ∆) =
(Dn

dlt,DiffDndlt
(∆dlt +E)), so we recover the involution τ on the dlt model. Notice that Dn

dlt is
just the disjoint union of its irreducible components by Lemma 7.2.1.2. ♦

Now let us write T =
⊔
i≥1 Ti and ϕ =

∏
i ϕi where ϕi : Si → Ti is the fibration given by

m(KSi + ∆i +Di). Let κi := κ(Si,∆i +Di) ≥ 0 be the respective Kodaira dimensions, it holds
that dimTi = κi. We let C be the collection of irreducible components of Dn. For Γ ∈ C we
write ∆Γ := DiffΓ(∆ +D − Γ).

The following claim follows immediately from the construction.

Claim 7.3.1.5. The two morphisms (j, j′) : E ⇒ T come from an involution Bτ on E defined as
follows: if τ(Γ) = Γ′, then Bτ : ψ(Γ) ∼= ψ(Γ′) is induced by the isomorphism τ∗ : H0(Γ′,m(KΓ′+
∆Γ′)) ∼= H0(Γ,m(KΓ + ∆Γ)). ♦

It is possible that two components of Dn are conjugated under τ but do not belong to the
same irreducible component of S. However we have the following:

Claim 7.3.1.6. A component Γ of Dn is ϕ-vertical if and only if τ(Γ) is. Moreover, Γ is
non-ϕ-vertical if and only if KΓ + ∆Γ is ample.

Proof. The one-dimensional component Γ is ϕ-vertical if and only if ψ(Γ) is a point. Moreover
ψ(Γ) is a point if and only if KΓ + ∆Γ has Kodaira dimension zero. Since τ sends KΓ + ∆Γ to
Kτ(Γ) + ∆τ(Γ), we obtain the result. ♦

We need to understand the non-ϕ-vertical components of Dn, and how they relate. The
informations we need are given by the next three claims.

Claim 7.3.1.7. Let (Si,∆i + Di) be such that κi = 2. Then (Ti, (ϕi)∗(∆i + Di)) is the log
canonical model of (Si,∆i +Di). If Γ is a non-ϕi-vertical irreducible component of Di, then Γ
is the normalization of a component of (ϕi)∗Di. ♦

Claim 7.3.1.8. Let (Si,∆i +Di) be such that κi = 1 and assume the non-ϕ-vertical sub-curve
Θ of Di + ∆=1

i is non-empty. Then either:
(a) Θ is irreducible and ϕi|Θ is an isomorphism;

(b) Θ is irreducible and ϕi|Θ has degree 2;

(c) Θ = Γ1 + Γ2 and each ϕi|Γj is an isomorphism.

Proof. For simplicity, we drop the index i for the duration of the proof. Let η be the generic
point of T . Then the generic fiber F = Sη is a regular curve. Since ϕ∗OS = OT we obtain
H0(F,OF ) = k(η). We have

degk(η)KF = degk(η)(−∆−D)|F ≤ −Θ|F < 0.

Thus h0(F, ωF ) = h1(F,OF ) = 0. By [Kol13, 10.6] we deduce that degk(η)KF = −2. Hence
degk(η) Θ|F ≤ 2, which means that Θ has at most two irreducible components. If Γi is an
irreducible component such that degk(η)K|F = 1, then ϕ|Γi : Γi → T is a finite birational
morphism of normal curves, hence an isomorphism. ♦

Claim 7.3.1.9. In the situation of Claim 7.3.1.8, if Θ→ Ti is separable of degree 2, then there
exists a non-trivial log involution of (Θn,DiffΘn(∆ +D −Θ)) over Ti.
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Proof. Assume first that Θ = Θn is irreducible. Then ϕi|Θ is Galois of degree 2 and induces an
involution ξ : Θ ∼= Θ over Ti. We claim that ξ preserves the line bundleO(m(KΘ+∆Θ)). Indeed,
fix any global meromorphic form ω ∈ H0(Si,O(m(KSi +Di + ∆i)) and take s ∈ H0(Ti,O(H))
such that ϕ∗i s = ω. Then since ξ commutes with ϕi|Θ we have

ω|Θ = (ϕi|Θ)∗ s = (ϕi|Θ ◦ ξ)∗ s = ξ∗ω|Θ.

Since the global sections of O(m(KS +D + ∆)) generate, our claim is proved.
Now assume that Θ = Γ1 + Γ2 and that both ϕ|Γi are isomorphisms. Then one proves as

above that
ξ := ϕi|−1

Γ2
◦ ϕi|Γ1 : (Γ1,∆Γ1) −→ (Γ2,∆Γ2)

is a log isomorphism. ♦

We are ready to show finiteness of the relation generated by E ⇒ T .

Claim 7.3.1.10. The equivalence relation defined by (j, j′) : E ⇒ T is finite.

Proof. We study the pullback of the equivalence relation R(Bτ )⇒ T through the finite struc-
tural morphism j : E → T . If we can show that this equivalence relation on E is finite, it
will follow that the equivalence relation R(Bτ )⇒ T is finite. This pullback is the equivalence
relation generated by two types of pre-relations on E:

(a) the isomorphism Bτ : E ∼= E;

(b) the fibers of j : E → T .
Outside a 0-dimensional closed subset Z ⊂ j(E), the fibers of j are either singletons or of order
2. In that second case they are the fibers of the separable degree 2 morphisms Θ → Ti, as in
Claim 7.3.1.9. These fibers are the orbits of the log involutions ξ : Θn ∼= Θn described in that
same claim. Under the identification ψ(Θn) = SpecH0(Θn,m(KΘn + ∆Θn)), we can describe
this involution as follows: ξ induces an automorphism ξ∗ of H0(Θn,m(KΘn + DiffΘn(∆ +D−
Θ))), inducing in turn an automorphism Bξ of ψ(Θn). We can extend Bξ to an automorphism
of the whole E by declaring it to be the identity on the other components.

Let us study first the relation generated by the group of automorphisms G = 〈Bτ , {Bξ}〉 of
E. We claim that G :=≤ Autk(E) is finite. Actually, since the map

G′ = 〈τ, {ξ}〉 −→ G, φ 7→ Bφ

satisfies Bφ ◦Bφ′ = Bφ◦φ′ , it suffices to show that G′ ⊂ Autk(D
n,DiffDn ∆) is finite. Further-

more, it is enough to show that the G′-stabilizer of each Γ ∈ C is finite. Recall that the ξ’s
are isomorphisms between non-ϕ-vertical curves. Thus by Claim 7.3.1.8 the G′-stabilizer of a
ϕ-vertical Γ is of order at most two. On the other hand, the G′-stabilizer of a non-ϕ-vertical Γ
is contained in Autk(Γ,∆Γ), which is finite by Proposition 7.2.1.1 since KΓ + ∆Γ is ample.

Now we must also declare to be equivalent those points that belong to the fiber above the
points of Z: this means merging some G-orbits together. For the moment it is sufficient to
know that the set Z is finite (we will describe it more precisely in Observation 7.3.1.11 below).
Since the new relations we must add on E are supported on G · j−1(Z)×k G · j−1(Z), which is
finite over k, we obtain that the pullback of R(Bτ ) on E is finite. ♦

Analysis of the special set.

Before proceeding to the descent of the line bundle H, we study the special set Z considered
during the proof of Claim 7.3.1.10. Recall that it is the finite set of those z ∈ j(E) such that
j−1(z) is not contained in a single G-orbit.

Observation 7.3.1.11. The z ∈ Z are of three types:
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(a) z ∈ Ti with dimTi = 2. By Claim 7.3.1.7 z is a singular point of (ϕi)∗Di. Thus by [Kol13,
2.31.1] it is a node of (ϕi)∗Di, with two preimages p and q in Di.

(b) z ∈ Ti with dimTi = 1. By Claim 7.3.1.8 it follows that z is the contraction of a ϕ-vertical
component of Di.

(c) z ∈ Ti with dimTi = 0. Then z is the contraction of a ϕ-vertical component of Di.
We note that in any case z is the image of an lc center Wz of (S,∆ +D).

Claim 7.3.1.12. For each z as above, let Wz and W ′z be two lc centers of (S,∆ + D) that
are minimal for the property that ϕ(Wz) = z = ϕ(W ′z). Then there is a log isomorphism
(Wz,Diff∗Wz

(∆ +D)) ∼= (W ′z,Diff∗W ′z(∆ +D)).

Proof. If z ∈ Ti with dimTi = 2, then by Claim 7.3.1.7 there is a proper curve C passing
through p and q that is contracted by ϕi. By [Kol13, 2.31.2], the curve C belongs to the
reduced boundary ∆=1

i +Di. Since (KSi +∆i+Di) ·C = 0 it follows by the adjunction formula
that k(p) = H0(C,OC) = k(q).

If z ∈ Ti with dimTi ≤ 1 we apply Proposition 7.2.1.5 with Θ = Di+∆=1
i and Υ = ∆<1

i . ♦

Claim 7.3.1.13. Moreover, in the case z ∈ Ti with dimTi = 1, if one minimal Wz above z is
a curve of genus one, then it is the unique minimal center over z.

Proof. This follows immediately from Proposition 7.2.1.5 with Θ = Di+∆=1
i and Υ = ∆<1

i . ♦

Descent.

To conclude we must show that the Cartier divisor H descends along the quotient q : T → T0 =
T/R(Bτ ). There is a useful reduction step we will make:

Claim 7.3.1.14. To descend H, we may assume that dimTi ≥ 1 for all i.

Proof. Assume that we have found a line bundle H0 on T0 such that (q∗H0)|Ti ∼= H|Ti for every
i ≥ 1 such that dimTi ≥ 1. If dimTj = 0, then we trivially have (q∗H0)|Tj ∼= OTj ∼= H|Ti . So
H0 is the line bundle we are looking for.

For the rest of the proof, we use the method of [Kol13, 5.38], and keep the notations of
Claim 7.3.1.10.

Let TH := SpecT
∑

r≥0H
0(T, rH) be the total space of H, and similarly

EH := TH ×T E =
⊔
Γ∈C

SpecT
∑
r≥0

H0(Γ, rm(KΓ + ∆Γ))
jH−→ TH .

Since τ is a log isomorphism of (Dn,DiffDn ∆), the involution Bτ : E ∼= E lifts to an involution
Bτ
H : EH ∼= EH . The Cartier divisor H descends to the quotient T/R(Bτ ) if the equivalence

relation R(Bτ
H)⇒ TH is finite (see [Kol13, 9.48, 9.53]).

As in the proof of Claim 7.3.1.10, we consider the pullback of R(Bτ
H) ⇒ TH to EH . It is

generated by two types of pre-relations:
(a) the fibers of the structural morphism jH : EH → TH , and

(b) the isomorphisms Bφ
H : EH ∼= EH induced by the Bφ : E ∼= E, where φ ∈ G ⊂ Autk(E).

More precisely, each φ : E ∼= E induce an automorphism of the graded section ring⊕
Γ∈C

∑
r≥0H

0(Γ, rm(KΓ + ∆Γ)), inducing in turn the automorphism Bφ
H of EH .

We have seen in Claim 7.3.1.10 that the group G = 〈Bτ , {Bξ}〉 ⊂ Autk(E) is finite. Therefore

GH := 〈Bτ
H , {B

ξ
H}〉 is also finite, and so the GH -orbits on TH are finite.

Now we must take in account the fibers of jH : EH → TH which are not single GH -orbits.
The new relations we get are supported on the fibers of EH → T over the closed finite subset
Z ⊂ j(E). By Claim 7.3.1.12 we see that the new relations come from some isomorphisms
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between the Wz’s, inducing isomorphisms between the section rings of the Cartier divisors
m(KS + ∆ + D)|Wz , where Wz runs through the minimal lc centers of (S,∆ + D) over the
points z of Z. As in [Kol13, 5.38], it suffices to show that the pluricanonical representations

Autk(Wz,Diff∗Wz
(∆ +D)) −→ GLkH

0(Wz,m(KWz + Diff∗Wz
(∆ +D)) (3.1.14.d)

are finite.
If a minimal lc center Wz above z is a genus one curve, then by Claim 7.3.1.14 and Obser-

vation 7.3.1.11 we may assume that Wz ⊂ Si with κi = 1. Then by Claim 7.3.1.13 we see that
j−1(z) is contained in a G-orbit. Thus we may assume that the minimal lc centers Wz above
z are either 0-dimensional, or genus zero curves.

If Wz is 0-dimensional then it is the spectrum of a finite field extension of k, and thus
Autk(Wz) is finite. If Wz is a genus zero curve then finiteness of pluricanonical representations
(3.1.14.d) is proved in Proposition 7.2.1.4. This concludes the proof.

Remark 7.3.1.15. The discussion above is a simple illustration of some key features of Kollár’s
theory of sources and springs for crepant log structures:

(a) In Kollár’s terminology, ϕ : (S,∆ + D) → T is a crepant log structure, the components
of D are the sources (of their images in T ) and the components of E are the springs (of
their images in T ).

(b) In Claim 7.3.1.9, in case Θ = Γ1 + Γ2, the fact that (Γ1,∆Γ1) and (Γ2,∆Γ2) are log-
isomorphic to each other corresponds to the uniqueness of the source up to crepant
birational map [Kol13, 4.45.1].

(c) In Claim 7.3.1.9, in case Θ → Ti is a separable double cover, the fact that the ex-
tension of function fields is Galois and that the Galois involution can be realised by
a log-automorphisms of (Θ,∆Θ) corresponds to the Galois property of springs [Kol13,
4.45.5].

(d) In Claim 7.3.1.9, in case Θ = Γ1 + Γ2, we have that (Si,Γ1 + Γ2 + (∆i − Θ)) → T is a
weak P1-link (see Definition 5.4.2.10). Indeed, the general fiber F = ϕ−1

i (t) is an integral
Gorenstein proper curve of genus 0 over k(t) with H0(F,OF ) = k(t) and has an invertible
sheaf Γ1|F of degree Γ1 ·k(t) F = 1. Thus F ∼= P1

k(t) by [Sta, 0C6U].

(e) To show finiteness and descent, we have reduced both times to a question about repre-
sentation of a group of log automorphisms of E on the space of pluricanonical sections
of H. This corresponds to the crucial role that pluricanonical representations have in
[Kol13, 5.36-38]. Our case is easily manageable, since the groups of log automorphisms
that appear are finite to begin with, so finiteness of representations is automatic.

7.3.2 Relative case

We prove abundance in the relative setting. We deduce the relative version from the absolute
version, following the strategy of [Tan20a].

Assumption 7.3.2.1. Let (S0,∆0) be a slc surface, f0 : S0 → B0 a projective morphism where
B0 is quasi-projective over a field k of positive characteristic. We assume that KS0 + ∆0 is
f0-nef.

We aim to show that KS0 + ∆0 is f0-semi-ample.

Reduction to separable nodes.

As in Section 7.3.1, we reduce to the case where S0 has only separable nodes. The proof is
similar, so we omit it.
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Reduction to the projective case.

Next we reduce to case of a projective base. Since B0 is quasi-projective over k, it embeds as
a dense open subset of a projective k-scheme B. We look for a projective slc compactification
of (S0,∆0) over B. There is a commutative diagram

S0 S

B0 B

j

f0 f

where f is projective and j is a dense open embedding. Since S0 is already projective over B0,
we may assume that f−1(B0) = S0. Using the method of Theorem 4.6.0.1, we may furthermore
assume that the singular codimension one points of S are contained in S0. By out first reduction
step, we may and will assume that these nodes are separable.

Let ∆ be the closure in S of ∆0, and let (S̄, ∆̄ + D̄) be the normalization of (S,∆). Then
Sn0 = S̄B0 . By hypothesis on S, D̄ is the closure of the conductor divisor of Sn0 → S0. Thus
the normalization of its dense open subset D̄ ∩ Sn0 is equipped with an involution τ . Since D̄n

is a normal projective curve, τ extends uniquely to an involution of D̄n.
By repeatedly blowing-up some closed points on the complement of Sn0 and taking the strict

transforms of our divisors, we may achieve the following:
(a) the scheme S̄ is regular at the points of the boundary Z := S̄ \ Sn0 ,

(b) ∆̄ ∩ D̄ is contained in Sn0 , and

(c) if Ē is the divisorial part of Z, then Supp(∆̄) + D̄ + Ē is simple normal crossing in a
neighbourhood of Z.

In particular (S̄, ∆̄ + D̄) is lc. However KS̄ + ∆̄ + D̄ might not be nef over B. We can run a
KS̄+∆̄+D̄-MMP over B: but in order to denormalize, we ultimately want to recover an action
of τ on the log pair obtained using adjunction on the pushforward of D̄. It is not obvious that
this additional data is preserved by the MMP, so let us prove it in the next claim.

Claim 7.3.2.2. There exists a birational morphism over B

ϕ : (S̄, ∆̄ + D̄) −→ (S̄′, ∆̄′ + D̄′)

with ∆̄′ = ϕ∗∆̄ and D̄′ = ϕ∗D̄, such that
(a) (S̄′, ∆̄′ + D̄′) is lc and KS̄′ + ∆̄′ + D̄′ is nef over B;

(b) ϕ : Sn0 → ϕ(Sn0 ) is an isomorphism of open subsets;

(c) D̄n ∼= (D̄′)n, so we can transport the involution τ to (D′)n,

(d) the induced R(τ)⇒ S̄′ is a finite equivalence relation, and

(e) τ preserves the pullback of KS̄′ + ∆̄′ + D̄′ to (D̄′)n.

Proof. Consider an irreducible curve C ⊂ Z vertical overB, and assume that (KS̄+∆̄′+D̄′)·C <
0. We make the following two observations:
◦ By [Tan18] we can run a (KS̄ + ∆̄′ + D̄′)-MMP which, by the generic nefness property

of KS̄ + ∆̄′ + D̄′, ends with a birational minimal model. This MMP eventually contracts
C, so it follows that C2 < 0 [Kol13, 10.1].

◦ Since C is not a component of ∆̄ + D̄ we have KS̄ ·C < 0 (the intersection makes sense,
since S̄ is regular in a neighbourhood of C).

If we were working with a regular surface over an algebraically closed field it would follow that
C is a (−1)-curve and we would apply Castelnuovo’s theorem to contract it. It turns out that
this picture carries over to our setting. Indeed, let K = H0(C,OC). Since C is regular, by the
adjunction formula we have

−2χ(OC) = degK KC = (KS̄ + C) ·K C < 0. (3.2.2.e)
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We also claim that degK C
2 = −h0(C,OC). We have 0 > KS̄ ·K C = degK KC − C2 which

implies that degK KC < 0 and thus h1(C,OC) = 0. By [Kol13, 10.6] we obtain that degK KC =
−2. Looking again at (3.2.2.e), we find that h0(C,OC) = −1 = degK C

2, as claimed.
By a generalisation of Castelnuovo’s criterion [Lip69, 27.1], the facts that χ(OC) > 0 and

−h0(OC) = C2 imply that there exists a proper morphism ϕ : S̄ → S̄1 onto a normal surface
S̄1 that is projective over B, with the property that Exc(ϕ1) = C, and S̄1 is regular at ϕ1(C),
and ϕ1 : S̄ \ C → S̄1 \ ϕ1(C) is an isomorphism. Taking strict transforms of our divisors, we
see that (S̄1, ∆̄1 + D̄1) is lc, and snc along the boundary ϕ1(Z), and that KS̄1

+ ∆̄1 + D̄1 is nef
outside ϕ1(Z). Therefore the same analysis for negative curves on S̄1.

Continuing this way, we obtain a finite number of birational proper contractions

S̄
ϕ1−→ S̄1

ϕ2−→ . . .
ϕr−→ S̄r = S̄′

such that KS̄′ + ∆̄′ + D̄′ is nef over B. We claim that (S̄′, ∆̄′ + D̄′) has the desired properties.
Let ϕ : S̄ → S̄′ denote the composite morphism.

The first two ones are clear. Since we have not contracted any component of D̄, the
morphism D̄ → D̄′ induces an isomorphism on normalizations. Thus we can transport τ . The
relation R(τ) ⇒ S̄′ is finite over ϕ(Sn0 ) ∼= Sn0 , since it is the relation that arises from the
normalization of S0. The set D̄′∩ϕ(Sn0 ) is R(τ)-stable, and its complement D̄′ \ϕ(Sn0 ) is finite,
so we deduce that R(τ)⇒ S̄′ is finite.

To prove the last property, it is sufficient to show that the divisor Diff(∆̄′) on (D̄′)n is
contained in the preimage of ϕ(Sn0 ). This is equivalent to say that the intersection ∆̄′ ∩ D̄′
is contained in ϕ(Sn0 ), since in a neighbourhood of ϕ(Z) the curve D̄′ is regular. Actually, it
suffices to prove that every ∆̄i∩ D̄i lies above B0, and so we reduce to the case r = 1. Say that
the unique irreducible curve contracted by ϕ1 is C; then C intersects both D̄ and ∆̄. Writing
once again K = H0(C,OC), the analysis of the first paragraph gives that

(KS̄′ + ∆̄′ + D̄′) ·K C = (∆̄′ + D̄′) ·K C + degK KC − degK C
2

> 1− 2 + 1

= 0

which is a contradiction. This completes the proof. ♦

By the two last items of Claim 7.3.2.2 and by Theorem 5.1.1.1 we can de-normalize the pair
(S̄′, ∆̄′ + D̄′) along the gluing data given by R(τ)⇒ S̄′. We obtain a slc surface pair (S′,∆′),
which contains (S0,∆0) as an open subset, and such that KS′ + ∆′ is nef over B. The proof
that S′ is projective over B is similar to the analog statement in Theorem 4.6.0.1.

Claim 7.3.2.3. With the notations as above, it is sufficient to show that KS′ + ∆′ + E′ is
semi-ample over B.

Proof. More generally, consider a proper scheme morphism g : X → T , a line bundle L on X,
and open subschemes T0 ⊂ T and V ⊂ XT0 :

V XT0

T0

i

h gT0
=:m

We claim that if the functorial morphism εL : g∗g∗L→ L is surjective, then so is εLV : h∗h∗LV →
LV . Write L0 := LXT0

. We have a commutative diagram

i∗m∗m∗L0 i∗m∗m∗i∗i
∗L0

i∗L0 = LV h∗h∗LV

α

β ∼=

εLV
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where α = i∗m∗m∗(L0 → i∗i
∗L0) and β = i∗εL0 . If εL is surjective then εL0 is surjective [CT20,

2.12], so β is surjective and by commutativity of the diagram we deduce that εLV is surjective.
We apply this result to (X,T, T0, V, L) = (S′, B,B0, S0,O(r(KS′+∆′+E′))) with r divisible

enough to prove the claim. ♦

Conclusion of the proof.

We assume from now on that B0 is projective over k, and (S0,∆0) slc projective over B0 with
normalization (S̄0, ∆̄0 + D̄). Let A be an Cartier ample divisor on B0. By [Tan20a, 4.11] the
divisor KS̄0

+ ∆̄0 + D̄ + n∗f∗0 (mA) is nef for m large enough. Thus KS0 + ∆0 + f∗0 (mA) is
nef, hence semi-ample by Theorem 7.3.1.1. In particular it is f0-semi-ample, say that L :=
O(r(KS0 +∆0 +f∗0 (mA))) defines a morphism over B0. Tensoring the surjection f∗0 (f0)∗L→ L
by f∗0O(−mA) we see that KS0 + ∆0 is f0-semi-ample.

This completes the proof of Theorem 7.1.0.1.

7.3.3 Applications to threefolds

Lemma 7.3.3.1 (see [DW19, 6.17]). Let (X,B) be a plt pair defined over an arbitrary field k.
Let l ⊂ k be a subfield and (Xl, Bl) a pair such that (Xl, Bl) ⊗l k = (X,B). Then (Xl, Bl) is
plt.

Proof. Since µ : X → Xl is faithfully flat, Xl is normal [Sta, 033G]. Now let fl : Yl → Xl be a
birational proper morphism with KYl+BYl = f∗l (KXl+Bl). We must show that the coefficients
of BYl along exceptional divisors are strictly less than 1. Let (f : Y → X) := (fl : Yl → Xl)⊗lk.
As in the proof of [DW19, 6.17] one sees that Y is integral. Let Y n → Y be its normalization:

Y n

Y Yl

X Xl

n ν

f

µY

fl

µ

Then
KY n +BY n = n∗f∗(KX +B) = ν∗(KYl +BYl).

Let El be a prime divisor on Yl that is exceptional over Xl, and E the strict transform of
El ⊗l k. Then E is exceptional over X, thus coeffE BYn < 1 by the plt condition on (X,B).
Since coeffE BYn ≥ coeffEl BYl , we deduce that coeffEl BYl < 1. This shows that (Xl, Bl) is
plt.

Lemma 7.3.3.2. Let (X,∆) be a Q-factorial dlt threefold defined over an arbitrary field k of
characteristic p > 5. If E ⊂ ∆=1 is an irreducible component, then E is normal.

Proof. The first paragraph of the proof of [Kol13, 4.16] works over any field, and shows that
the lc centers of a dlt pair are amongst the strata of its reduced boundary. Therefore (X,E) is
plt in a neighbourhood of E.

Assume that k is F -finite. Then we obtain that E is normal by [DW19, 6.3].
If k is not F -finite, then we can find a subfield l ⊂ k that is finitely generated over Fp

and such that (X,E) is defined over l, say (Xl, El) ⊗l k = (X,E). By Lemma 7.3.3.1 the
pair (Xl, El) is plt, and by [DW19, 6.18] Xl is Q-factorial (it is assumed there that l must
be infinite: since k is not F -finite it is not contained in Fp, and so we may indeed choose l
infinite). Then El is normal. This implies that E is normal. Indeed, if it is not, then we can
find a finitely generated intermediate extension l ⊂ l′ ⊂ k such that El⊗l l′ is not normal. But
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l′ is still F -finite and we could have worked with (Xl, El) ⊗l l′ to begin with, thus we get a
contradiction.

Lemma 7.3.3.3. Let (X,∆) be a Q-factorial dlt threefold defined over an arbitrary field k
of characteristic p > 5. Let π : Z → ∆=1 be the S2-fication. Then π is a finite universal
homeomorphism and Z is demi-normal.

Proof. The S2-fication is characterized in Proposition 7.2.0.1. In particular π is finite and an
isomorphism above the codimension one points. Thus by [Kol13, 2.31] and the fact that Z is
S2, we obtain that Z is demi-normal.

It remains to show that π is a universal homeomorphism. It is surjective since it factors
the normalization, and universally closed since it is finite. Thus it suffices to show that π is
injective on geometric points. This is proved as in [Wal18, 5.1], using Lemma 7.3.3.2 instead
of [Wal18, 2.11].

Theorem 7.3.3.4. Let (X,∆) be a projective Q-factorial dlt threefold over an arbitrary field
k of characteristic p > 5. Assume that KX + ∆ is nef. Then (KX + ∆)|∆=1 is semi-ample.

Proof. Let π : Z → ∆=1 be the S2-fication. Then Z is demi-normal by Lemma 7.3.3.3, by
adjunction (Z,KZ + DiffZ ∆<1) is a projective slc surface and KZ + DiffZ ∆<1 = (KX + ∆)|Z
is nef. Then by Theorem 7.3.1.1 (KX + ∆)|Z is semi-ample. By Lemma 7.3.3.3 the morphism
π is a universal homeomorphism, hence it factors a k-Frobenius of Z, and we deduce that
(KX + ∆)|∆=1 is also semi-ample [CT20, 2.11.3].

7.4 ABUNDANCE FOR SURFACES IN MIXED CHARACTERISTIC

Theorem 7.4.0.1. Let S be an excellent regular one-dimensional scheme of mixed character-
istic, f : (X,∆) → S a dominant flat projective morphism of relative dimension two. Assume
that (X,∆ +Xs) is slc for every closed point s ∈ S, and that every fiber Xs is S2.

Then if KX + ∆ is f -nef, it is f -semi-ample.

Proof. By abundance for slc threefolds in characteristic 0 [Fli92, HX16], KX +∆ is semi-ample
on the generic fiber. By assumption (Xs,∆s) is slc, thus by Theorem 7.3.1.1 we see that KX+∆
is semi-ample on every closed fiber. We conclude by [Wit21, Theorem 1.2].
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Chapter 8

Future work

Et je m’étonne alors qu’il ait fallu
Ce temps, et cette peine. Car les fruits
Régnaient déjà dans l’arbre. Et le soleil
Illuminait déjà le pays du soir.
Je regarde les hauts plateaux où je puis
vivre,
Cette main qui retient une autre main
rocheuse,
Cette respiration d’absence qui soulève
Les masses d’un labour d’automne
inachevé.

Y. Bonnefoy
Pierre écrite, Le Dialogue d’Angoisse et

de Désir, I.

To conclude this thesis, I will sketch some possible developments of the results I have
obtained.

8.1 IMPROVEMENTS

Some results obtained in [Pos21c] and [Pos21b] may be improved. For example:
(a) The theory of sources and springs for threefolds obtained in Section 5.4, more precisely

in Theorem 5.4.2.18, is limited to lc centers contained in the reduced boundary ∆=1.
It would be interesting to remove this condition, or even to work more generally with
crepant log structures (of dimension ≤ 2) as Kollár does [Kol13, §4.4-5].

(b) In characteristic zero, sources and springs may be used to obtain normality of minimal
lc centers [Kol13, 4.20]. On threefolds in positive characteristic, I have only obtained
normality up to universal homeomorphisms (Theorem 5.1.2.4): the last step of Kollár’s
proof dramatically fails in positive characteristic (see [Kol13, 10.26-31]). Nonetheless
we expect normality of minimal lc centers in sufficiently large characteristic (see [HX15,
Theorem 3.11, Proposition 4.1]).

(c) I wonder whether the commutativity result Theorem 6.1.0.4 is true in higher dimensions,
and locally (that is, when S is not proper over SpecR).

◦ The proof in relative dimension two relies on the disjointness property proved in
Claim 6.4.1.13. In higher dimension this property usually fails (there are already
counter-examples for products), and so it is not clear that we can construct a cor-
rection term as in Claim 6.4.1.22.

◦ The local statement can be reduced to the global statement if we have existence of
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log canonical closures as in [HX13]. Such a result might be reachable with the MMP
tools developed in [BMP+21, TY21].

8.2 FURTHER DEVELOPMENTS

Finally, let me indicate some questions and ideas that grew out of this thesis.
(a) Moduli theory of stable varieties in characteristic zero makes important use of semi-

stable reduction [KKMSD73]. This is not known in positive characteristic, and thus it
is essential to test it on a number of examples, in particular those which are special to
positive characteristic (infinitesimal quotients, varieties with non-reduced automorphism
group, etc.).

(b) In characteristic zero, some foundational aspects of moduli theory of pairs have only been
worked out recently [Kol19]. These questions are still open in positive characteristic:
thus it is interesting to compare the competing definitions of families of surface pairs, in
particular over non-reduced bases.

(c) In characteristic zero, we have a complete picture of deformations of slc surface singular-
ities (see [Kol21, §2.2]). Difficulties arise in positive characteristic, due to inseparability
phenomenons. I hope that the tools developed in this thesis (for example Theorem 6.1.0.4)
can be useful in this context.

(d) Applications of Kollár’s theory of sources and springs to gluing statements rely heavily
on finiteness of pluricanonical representations [Kol13, §10.5]. In characteristic zero, the
proof takes a detour through topology. It is interesting – while not at all obvious – to
find a similar approach in positive characteristic, using some cohomology theory.

(e) In characteristic zero, some topological properties of lc centers are captured by the Du
Bois property [Kol13, §6]. It would be worth – but once again not obvious at all – to find
similar common cohomological properties of lc centers in positive characteristic.
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[KK] János Kollár and Sándor Kovács. Birational geometry of log surfaces. Available at
https: // sites. math. washington. edu/ ~ kovacs/ pdf/ BiratLogSurf. pdf .

[KKMSD73] G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat. Toroidal em-
beddings. I. Lecture Notes in Mathematics, Vol. 339. Springer-Verlag, Berlin-New
York, 1973.

[KM76] Finn Faye Knudsen and David Mumford. The projectivity of the moduli space
of stable curves. I. Preliminaries on “det” and “Div”. Math. Scand., 39(1):19–55,
1976.

[KM98] János Kollár and Shigefumi Mori. Birational geometry of algebraic varieties, vol-
ume 134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cam-
bridge, 1998. With the collaboration of C. H. Clemens and A. Corti, Translated
from the 1998 Japanese original.

[Kol90] János Kollár. Projectivity of complete moduli. J. Differential Geom., 32(1):235–
268, 1990.

[Kol96] János Kollár. Rational curves on algebraic varieties, volume 32 of Ergebnisse
der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in
Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of
Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 1996.

[Kol11] János Kollár. Two examples of surfaces with normal crossing singularities. Sci.
China Math., 54(8):1707–1712, 2011.

[Kol12] János Kollár. Quotients by finite equivalence relations. In Current developments
in algebraic geometry, volume 59 of Math. Sci. Res. Inst. Publ., pages 227–256.
Cambridge Univ. Press, Cambridge, 2012. With an appendix by Claudiu Raicu.

[Kol13] János Kollár. Singularities of the Minimal Model Program, volume 200 of Cam-
bridge Tracts in Mathematics. 2013.

[Kol16] János Kollár. Sources of log canonical centers. In Minimal models and extremal
rays (Kyoto, 2011), volume 70 of Adv. Stud. Pure Math., pages 29–48. Math. Soc.
Japan, [Tokyo], 2016.

148

https://sites.math.washington.edu/~kovacs/pdf/BiratLogSurf.pdf


[Kol19] János Kollár. Families of divisors. ArXiv e-print, arXiv:1910.00937v1, 2019.

[Kol21] János Kollár. Families of varieties of general type. Available at https: // web.

math. princeton. edu/ ~ kollar/ FromMyHomePage/ modbook. pdf , 2021. With
the collaboration of K. Altmann and S. Kovács.
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