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Abstract

The accurate investigation of many geophysical phenomena via direct numerical simulations
is computationally not possible nowadays due to the huge range of spatial and temporal scales
to be resolved. Therefore advances in this field rely on the development of new theoretical
tools and numerical algorithms.
In this work we investigate a new mathematical formalism that exploits the property of quasi-
linear systems to self-tune towards marginally stable states. The inspiration for this study
comes from the asymptotic analysis of strongly stratified flows, performed by Chini et al.. The
application of multi-scale analysis to this problem, mathematically justified by the presence of
scale separation, yields to a simplified quasi-linear model. In this reduced description small-
scale instabilities evolve linearly about a large-scale hydrostatic field (whose evolution is fully
non-linear) and modify it via a feedback term. From the only assumption of scale separation,
physically caused by the presence of a strong stable stratification, two extremely interesting
features of this model arise. First the presence of the coupling term between the two dynamics
and second the quasi-linearity of the dynamics. The first aspect, generally not present in the
hydrostatic approximation, can capture the non-local energy transfer between the small scales
and the large ones, which is key for the quantification of the mixing efficiency in the deep
ocean. The second aspect, namely the quasi-linearity, together with the multi-scale nature of
the model is suggestive of the self-organisation of the dynamics about marginally-stable states,
as it is observed for many other quasi-linear systems. This results in a coupled evolution
where the supposedly fast dynamics adapts, or better is slaved, to the mean field, maintaining
the marginal stability of the latter. The low-dimensional evolution that arises, enables the
integration of the reduced system on temporal scales comparable to the characteristic time
scale of the slow dynamics. These ingredients collectively make this novel approach highly
suited to the investigation of the stratified flow problem.
Building upon the results obtained by Chini et al. in the present work we extend this method-
ology addressing three different aspects of the reduced model.
As a first case we investigate the twofold nature of the fluctuation feedback, which is not
sign-definite and might lead to intense bursting events where the fluctuations exhibit positive
growth rates on a fast time scale. In this scenario the scale separation is temporarily lost
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Abstract

and the two dynamics have to be co-evolved until a new marginally stable manifold can be
approached. Here we propose three different co-evolution techniques and test their efficacy
on a carefully constructed one-dimensional model problem.
The second aspect we address is the presence of a finite, yet large, scale separation between
the two dynamics. In these case we develop an algorithm that carefully identifies the validity
regions of the quasi-linear reduction and determines the relevance of the fluctuation feedback
with respect to the characteristic time scale of the slow dynamics and the growth rate of the
fluctuations.
As a third case we derive an efficient extension of the original methodology to two-dimensional
model problems. The introduction of the additional spatial dimension now requires the
marginally stable condition to be satisfied not only in time but also by the fastest growing
mode. Moreover, due to the time variability of the wavenumber associated to this mode, its
identification has to be carried out at each time step. In this regard we derive an evolution
equation for the wavenumber of the fastest growing mode in both stable and marginally-stable
conditions.
Eventually the methodologies derived in the context of the two model problems are applied
and discussed for the strongly stratified flow problem.
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Sommario

Lo studio di una gran parte dei fenomeni geofisici tramite simulazioni numeriche dirette
(DNS), rappresenta ad oggi una delle piú grandi sfide della fluidodinamica computazionale, a
causa dell’enorme range di scale spaziotemporali caratterizzanti questa categoria di fenomeni.
Pertanto, i progressi in questo campo, dallo studio della turbolenza in oceano e atmosfera
alla modellistica climatologica, sono necessariamente legati allo sviluppo di nuovi strumenti
teorici e algoritmi numerici. Il presente lavoro si propone di analizzare e presentare un nuovo
formalismo matematico per lo studio di questa classe di problemi, basato sulla proprietà
dei sistemi quasi-lineari di evolvere spontaneamente verso stati marginalmente stabili. Tale
metodologia, inizialmente proposta da Chini et al. nel contesto di flussi fortemente stratificati
in oceano, consiste nello sfruttare la natura multi-scala del fenomeno fisico in esame al fine di
derivare un modello ridotto computazionalmente capace di simulare i regimi fisici di interesse
per la turbolenza in oceano e atmosfera. Nel caso di flussi fortemente stratificati, l’analisi
asintotica delle equazioni primitive rivela l’evoluzione del sistema su diverse scale spaziotem-
porali dando origine ad un sistema accoppiato di equazioni differenziali (PDE) classificabile
come quasi-lineare. In tale sistema ridotto le instabilità di piccola scala evolvono linearmente
rispetto ad un flusso medio idrostatico (la cui evoluzione al contrario è non-lineare) e interagi-
scono con esso attraverso un meccanismo di retroazione e avvezione.
Come conseguenza della sola assunzione di separazione di scale, fisicamente imposta dalla
presenza di una forte stratificazione stabile, il sistema risultante presenta due caratteristiche di
notevole interesse: l’accoppiamento tra le due dinamiche di piccola e grande scala, e la natura
quasi-lineare del sistema congiunto. Il primo aspetto, normalmente non presente nei modelli
idrostatici adoperati per la modellizzazione climatica, è di fondamentale importanza nel
catturare i trasferimenti energetici (non locali) tra le due scale spaziotemporali e conseguente-
mente, nel caratterizzare i fenomeni di mixing in sistemi come oceano e atmosfera, ad oggi
non ancora pienamente compresi. Il secondo aspetto, ossia la quasi-linearità, insieme alla na-
tura multi-scala del modello, suggerisce invece un’auto-organizzazione della dinamica verso
stati marginalmente stabili, come si osserva per molti altri sistemi quasi-lineari. L’evoluzione
risultante del sistema complessivo mostra un adattamento della dinamica (presumibilmente
veloce) delle fluttuazioni al campo medio (lento), al fine di mantenere la stabilità marginale di
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Sommario

quest’ultimo. La ridotta dimensionalità della dinamica che ne deriva consente l’integrazione
di tale modello su scale temporali paragonabili a quella sulla quale il campo medio evolve.
L’insieme delle suddette caratteristiche, dall’accoppiamento delle dinamiche di piccola e
grande scala alla ridotta dimensionalità del modello asintotico, rende questo nuovo approccio
particolarmente adatto allo studio di flussi stratificati in oceano.
Con il fine ultimo di ottenere una struttura algoritmica capace di catturare i fenomeni fisici
rilevanti in turbolenza oceanica, l’intento di questo lavoro è di ampliare la metodologia pro-
posta da Chini et al. focalizzando l’attenzione su tre aspetti fondamentali.
In primo luogo, verrà analizzata la duplice natura del meccanismo di retrazione tra le due
dinamiche. Tale accoppiamento, responsabile per l’adattamento della dinamica delle fluttua-
zioni alla dinamica del flusso medio in condizioni di stabilità marginale, può altresì spingere il
sistema verso condizioni instabili qualora le fluttuazioni esibissero growth rates positivi. Il
verificarsi di una crescita esponenziale delle fluttuazioni porterebbe ad una risposta del flusso
medio su tempi scala veloci, invalidando temporaneamente la separazione di scale alla base
della metodologia proposta, e richiedendo la coevoluzione del sistema fino al ristabilimento
della stabilità marginale. A tal riguardo, due metodologie di coevoluzione, alternative alle
equazioni primitive, verranno proposte e la loro efficacia testata su un modello unidimensio-
nale attentamente costruito.
In secondo luogo, verrà affrontata la presenza di una separazione di scale finita (sebbene
ampia) tra le due dinamiche. In tal caso l’algoritmo verrà modificato al fine di identificare
le regioni di validità del modello quasi-lineare e determinare la rilevanza della retroazione
sulla base della scala temporale caratteristica del flusso medio e del tasso di crescita delle
fluttuazioni.
Successivamente, la metodologia proposta verrà estesa allo studio di sistemi bidimensionali.
L’aggiunta di un’ulteriore dimensione spaziale richiederà in tal caso che la condizione di
stabilità marginale sia non solo preservata nel tempo, ma che questo si verifichi per il modo
avente il growth rate più elevato. A causa della variabilità temporale della relazione di disper-
sione, l’identificazione del modo a crescita più rapida deve essere in principio effettuato ad
ogni iterazione temporale. A tal proposito verranno presentati diversi approcci per derivare
un’equazione di evoluzione per il numero d’onda associato al modo con crescita più rapida,
sia in condizioni di stabilità, sia in condizioni di stabilità marginale.
In ultimo le metodologie sopra elencate, e sviluppate in un contesto semplificato con l’aiuto di
diversi toy models verranno applicate e discusse nel caso d’interesse di turbolenza stratificata.
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Résumé

L’investigation détaillée d’une grande partie des phénomènes géophysiques par le biais de
simulations numériques directes (DNS) reste hors de portée de la puissance de calcul actuelle,
dû à l’éventail immense d’échelles spatiales et temporelles qui doivent être adéquatement
résolues. C’est pourquoi les progrès dans ce domaine dépendent à la fois du développement de
nouveaux outils théoriques, ainsi que d’algorithmes numériques spécialisés. Au cours de cette
thèse, nous investiguons un nouveau formalisme mathématique qui exploite la propriété des
systèmes quasi-linéaires de s’auto-ajuster vers un état marginalement stable. Cette étude a été
inspirée de l’analyse asymptotique des écoulements fortement stratifiés, effectuée par Chini
et al.. L’application de l’analyse multiscalaire à ce problème, mathématiquement justifiée par
la présence d’une séparation des échelles, résulte en un modèle quasi-linéaire simplifié. Dans
cette description réduite, les instabilités de petite échelle évoluent linéairement autour d’un
champ hydrostatique de grande échelle (dont l�évolution est entièrement non linéaire) tout
en le modifiant au travers d’un terme de rétroaction.Simplement par cette hypothèse d’une
séparation des échelles, physiquement due à la présence d’une forte stratification stable, deux
caractéristiques extrêmement intéressante de ce modèle émergent, à savoir la présence d’un
terme de couplage entre les deux dynamiques (rapides et lentes) ainsi que la quasi-linéarité
de la dynamique.
La première caractéristique, généralement absente dans l’approximation hydrostatique, peut
rendre compte du transfert non-local d’énergie des petites aux grandes échelles, qui est
fondamental pour la quantification de l’efficacité de mélange dans l’océan profond. Le second
aspect, à savoir la quasi-linéarité, ajouté à la nature multiscalaire du modèle suggère une auto-
organisation de la dynamique autour d’états marginalement stables, comme cela est observé
dans beaucoup d’autres systèmes quasi-linéaires. Cela résulte en une évolution couplée au
cours de laquelle la dynamique supposément rapide s’adapte, voire se plie au champ moyen,
maintenant ainsi la stabilité marginale de ce dernier. L’évolution dimensionnellement petite
qui en découle permet d’intégrer le système réduit sur des échelles temporelles comparables
à l’échelle de temps caractéristique de la dynamique lente. Tous ces ingrédients font de cette
nouvelle approche un outil hautement approprié à l’analyse des problèmes d’écoulements
stratifiés.
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Résumé

En se basant sur les résultats obtenus par Chini et al. et les poursuivant, nous étendons dans
cet ouvrage la méthodologie en considérant trois différents aspects du modèle réduit. Comme
premier aspect, nous investiguons la nature duale de la rétroaction des fluctuations, qui
n’est pas de signe définie et peut résulter en une flambée intense au cours de laquelle les
fluctuations présentent un taux de croissance positif sur une échelle de temps rapide. Dans
ce scénario, la séparation des échelles est temporairement perdue et les deux dynamiques
doivent alors être coévoluées jusqu�à ce qu’une nouvelle variété marginalement stable puisse
être approchée. Ici, nous proposons trois différentes techniques de coévolution et testons leur
efficacité à l’aide d’un modèle unidimensionnel soigneusement construit.
Le deuxième aspect sur lequel nous nous penchons est la présence d’une séparation des
échelles entre les deux dynamiques, aussi grande soit-elle, mais finie. Dans ce cas nous
développons un algorithme capable d’identifier avec soin les régions de validité de la réduction
quasi-linéaire et de déterminer la pertinence de la rétroaction des fluctuations vis à vis de
l’échelle de temps caractéristique de la dynamique lente ainsi que du taux de croissance
des fluctuations. Enfin, pour le troisième aspect nous dérivons une extension efficiente de
la méthodologie originale pour les modèles de problèmes bidimensionnels. L’ajout d’une
dimension spatiale supplémentaire requiert que la condition de stabilité marginale ne soit
pas uniquement satisfaite par rapport au temps, mais également par le mode croissant le
plus rapidement. De plus, du fait de la variabilité temporelle du nombre d’onde associé à ce
mode, son identification doit être effectuée à chaque stade temporel lors de l’intégration. À
cet égard, nous dérivons une équation d’évolution pour le nombre d’onde du mode croissant
le plus rapidement dans le cas de conditions stables, ainsi que dans le cas de conditions
marginalement stables.
Finalement, les méthodologies dérivées dans le contexte des deux modèles sont appliquées et
débattues dans le cas des écoulements fortement stratifiés.
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1 Introduction

Most of the processes surrounding us fall under the category of complex systems. No precise
and unique definition of this categorization exits though. In its broadest meaning this termi-
nology refers to systems consisting of many different (deceptively) simple elements that are
highly interconnected to each other [Newman (2011)]. The behaviour of the single parts, or
agents, is often describable by classical models (not complex), but the collective, resulting
from the many-body interaction is not, and can not be inferred from the evolution of the single
elements. This feature is referred to as emergent behaviour. Moreover, different emergent be-
haviours can characterise the same system at different scales, or levels of interaction, resulting
in the presence of critical thresholds. Therefore the modeling of these systems represents a
huge challenge and is often as complex as the system itself. From a mathematical point of view,
models that attempt to capture the whole dynamics of a complex system are highly non-linear,
due to the high degree of interaction, sensitive to the initial conditions, as a consequence of the
non-linearity, and often heterogeneous or multi-scale as a consequence of the different levels
of interaction. Countless are the systems that require these types of modeling, from neural
interactions, to protein folding, to biological ecosystems, to the stock market, to condensed
matter and many many others. However one of the most important, at least in the context
of this work, is without any doubt the turbulent motion of fluids. The largest fluid systems
on the Earth are represented by the ocean and the atmosphere, both complex on its own and
mutually interacting. The coupling of these two dynamics, together with the Earth’s rotation,
gives rise, among many other phenomena, to the global overturning circulation which consists
in the downwelling and upwelling of fluid masses in the ocean’s basins. This phenomenon, of
crucial importance for the distribution of heat, nutrients and carbon over the planet, is still
poorly understood. While it is clear that wind-driven currents are responsible for the transport
of warm surface water from the equatorial latitudes to the poles, where the downwelling of
these masses occurs, the mechanisms that causes the upwelling of deep cold water is still not
fully identified [Wunsch and Ferrari (2004), Ferrari (2014)].

Turbulence in geophysical flows is characterised by the presence of two important effects: the
Earth’s rotation and the stratification, due to density variations in the fluid. The first one intro-
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Chapter 1. Introduction

duces in the fluid motion the Coriolis force, while the second one buoyancy forces due to the
effect of gravity. In the ocean, as well as in the atmosphere, the relative importance of one or
the other effect results in very different types of turbulent motion. At large spatial scales (above
10km) the combined effect of rotation and strong stable stratification stirs the flow mainly on
quasi-horizontal planes, while at the so-called microscale, O(1°100)m, three-dimensional
turbulence is observed. The latter scenario occurs when the shear forces among large layers
of fluid, characterised by different density, provide enough kinetic energy to overcome the
energetic barrier imposed by gravity. This triggers shear instabilities that cause an overturning
of the fluid and therefore mixing events. Mixing events in turn increase the potential energy of
the flow and generate vertical velocity gradients, whose cumulative effect might play a key role
in closing the global circulation. The scale at which these instabilities develop is considerably
smaller then the characteristic horizontal length scale of the structures that generate them
and on which they feed back. The multi-scale nature of this system, caused by the non-local
interaction in space of the small isotropic disturbances with the large anisotropic flow, makes
the modelling of this dynamics particularly challenging. More quantitatively, the spatial scales
relevant for this phenomenon span from scales L that are small enough not to be affected
by the Coriolis force to the Ozmidov scale LO = (≤h/N 3)1/2, the largest horizontal flow scale
not to be influenced by stratification [Riley and Lindborg (2008)]. Here ≤h is the turbulent
energy dissipation rate (≤h ªU 3/L), U is the characteristic horizontal velocity, and N is the
buoyancy frequency from which a measure of the stratification can be defined via the inverse
of the Froude number F r =U /N L. Then the range of spatial scales to be resolved, expressed
as the ratio L/LO =O(F r°3/2), would require a numerical resolution of about 106 grid points
just in the vertical direction, when F r < 10°3 (a typical value in the strongly stratified oceanic
regime)[Bartello and Tobias (2013)]. Such a computational cost is far beyond today’s super-
computers.

Due to the impossibility of employing direct numerical simulations of the governing equations,
the collective effect of the described small-scale processes has been estimated and introduced
in general large-scale circulation models in the form of a mixing coefficient, resulting from
specific parametrisation choices. Among the oldest, yet still used currently, is the approxima-
tion of a constant value of the mixing efficiency °ª 0.2 of Osborn and Cox [Osborn and Cox
(1972), Osborn (1980)]. Although based on reasonable physical assumptions, this quantifica-
tion of mixing has been proven to be considerably inaccurate in many circumstances, both
numerically and experimentally [Barry et al. (2001), Shih et al. (2005), Davis and Monismith
(2011)].

Since fully-resolved DNS capturing all dynamical scales is impossible, and parametrisations of
small-scale effects are uncontrollable and inaccurate, many different intermediate-complexity
modelling approaches have been developed in the past years. Julien and Knobloch [Julien and
Knobloch (2007)] show how the emergence of scale separation in many fluid flows is related to
presence of strong constraint, such as strong rotation or intense magnetic fields. Moreover
their work shows how this scale separation, which represents an insurmountable obstacle for
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DNS, can actually be exploited to derive reduced models via asymptotic techniques. In the
same spirit, the application of multi-scale analysis yielded, for example, a simplified model
for spatially-extended Langmuir circulation [Malecha et al. (2014)], and very recently to an
asymptotic reduction of the strongly stratified flow system [Chini et al. (2022)]. In the latter
work, Chini et al. show how multi-scale analysis of the governing equations, in the limit of
small Froude number and large Reynolds number, reveals two disparate spatiotemporal scales
and yields a set of coupled equations for the large anisotropic dynamics and the small-scale
disturbances. The reduced coupled equations are reported below for illustration purposes
only, and will be fully derived and analysed in § 5. These two different spatiotemporal scales
are indicated in equations (1.1)-(1.8) below by T , x for the slow dynamics and by ø = T /",
¬= x/" for the fast dynamics, where "=

p
F r is the small parameter in the multi-scale expan-

sion. Denoting by u, w , b, the horizontal velocity vector, the vertical velocity and the buoyancy
deviation from a linear background profile, respectively, (1.1)-(1.4) show that in this specific
limit the slowly varying fields (denoted by the overbar) obey the hydrostatic primitive equa-
tions and their dynamics is modified by the cumulative effect of the small-scale fluctuations
(denoted by the prime) via the eddy momentum and the buoyancy fluxes highlighted in red.
The evolution of the fast dynamical modes ((1.5)-(1.8)) instead, is described by a linear and ho-
mogeneous system coupled to the slow dynamics via the mean-field coefficients highlighted
in blue. An interesting feature of this reduced system is the two-way coupling between the
slow and the fast dynamics: the feedback produced by the fluctuations on the mean variable
is not sign-definite meaning that its effect may be stabilizing or destabilizing in nature.
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rx ·u
0+ @w 0

@z
= 0 (1.8)

The reduced set of equations, obtained by Chini et al., falls under the category of generalised
quasi-linear models (GQL), characterised by a linear evolution of the fast variable about a
slowly spatially-varying mean field which conversely evolves fully non-linearly due to the
presence of the fluctuation-fluctuation non-linearity. The remarkable aspect of this result
is that the quasi-linearity is not enforced as an approximation but naturally arises from the
multi-scale nature of the dynamics.

The evolution of the two fields on different temporal and spatial scales, together with the
linearity of the fast dynamics, poses the question in the first place on the choice of an ap-
propriate integration method that can stably, accurately and efficiently evolve the coupled
dynamics. Possible choices, widely used in similar cases, are represented by the co-evolution
of the reduced system via the re-introduction of the scale separation parameter, or by the
application of heterogeneous multi-scale algorithms [E et al. (2007), Abdulle and E (2003)].
However none of the two classes of integration methodologies simultaneously satisfies the
requirements of accuracy and efficiency required by the stratified flow problem (as it will be
discussed in § 2).
Based on the observation that many slow-fast QL systems have the tendency of self-organize
around marginally stable states, Michel and Chini [Michel and Chini (2019)] have recently
proposed a new integration strategy that exploits a marginal stability constraint. Intuitively,
the linear evolution of the fast dynamics can be described by modal solutions that exponen-
tially grow or decay over the fast temporal scale, on which the mean dynamics is considered
as steady. While a decay of the fluctuations would produce a zero feedback on the mean
dynamics, their growth would compromise the convergence of this coupling term, causing
the response of the "mean" variable over fast temporal scales. The first case results in a
non-coupled system where the mean field evolves without any effect from the fluctuations
(under the hydrostatic approximation in the case of the stratified flow problem). The second
invalidates the entire quasi-linear approximation, nullifying the scale separation between the
two dynamics. It follows that the coupling between the fluctuation an the mean field is only
possible in condition on marginal stability. The key idea at the basis of this approach can be
quickly summarised as the slaving of the fluctuation dynamics to the mean field such that
marginally-stable conditions (and therefore the coupling) can be maintained in time.
The promising results obtained on simple model problems [Michel and Chini (2019)] and
the later successful application to the two-dimensional stratified flow problem [Chini et al.
(2022)], makes this novel methodology highly promising for the investigation of many com-
plex geophysical flows. However, as pointed out by the authors, further development of this
formalism is needed before simulations of the extreme parameter regimes that characterise
real stratified turbulence in the ocean are possible.
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The aim of this work is to proceed in that direction, extending the framework of the original
QL methodology to enable the investigation of a wider range of physical phenomenon charac-
terising the stratified flow problem.
Specifically we will focus on the following three topics:

• Occurrence of bursting events
The collective effect of the fast fluctuations on the mean dynamics has been shown have
a twofold nature. Namely the sign of the "Reynolds-like" stresses and buoyancy flux
terms (highlighted in red in (1.1)-(1.4)) is not a priori defined, allowing for scenarios
in which the fluctuations drive the marginally stable mean fields towards unstable
states. This results in a bursting event in which scale separation is transiently lost,
requiring some sort of co-evolution of the two dynamics until a new neutrally-stable
state can be approached. These events, observed in the simulations of Chini et al.
[Chini et al. (2022)], might be representative of strong mixing events and are therefore of
fundamental importance in the stratified flow dynamics.

• Presence of a finite scale separation
In this case we will account for more realistic values of the scale separation parameter
", which are normally finite yet small. With the aim of developing a robust methodol-
ogy, we will explicitly re-define the validity ranges of the QL reduction, based on the
characteristic temporal scale of the two dynamics and the stability condition of the
system. We will then relax the strict constraint of marginal stability for exactly zero
growth rates by including physically understandable (therefore controllable) tolerances
on the fluctuation evolution near this region. This will result in a compounded algo-
rithmic structure which coherently connects different approximations valid in different
stability/parameter conditions.

• Identification of the marginally stable mode in two-dimensional problems
The spatial variability of the coupled dynamics (1.1)-(1.8) upon two spatial coordinates
(a vertical one z and an horizontal one x) translates, in terms of marginal stability
constraint, into the presence of a time-varying dispersion relation and therefore in
a time-varying spatial variability (or wavenumber variability) of the fast mode that
first become marginally stable. Leaving the details to Chapter § 4, in this scenario,
the QL algorithm essentially requires the additional (costly) step of identifying the
marginally stable mode that then will be slaved to the mean dynamics. In this regard
we will overcome the problem by deriving an additional evolution equation for the
identification of the neutral mode (precisely of its wavenumber) based on differential
geometry considerations.

The first two scenarios will be investigated and tested in chapter 3 making use of a one-
dimensional model problem. The third one will be first presented in chapter 4 in the context of
a two dimensional model problem and then applied to the stratified flow problem in chapter
5.
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2 Analytical and Numerical Tools for
Slow-Fast QL Systems
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Chapter summary

In this chapter we introduce the general concept of quasi-linear systems, providing a brief
overview of their features and common techniques to handle them. We will mainly focus on
the scenarios in which this systems result from more a complex dynamics in presence of scale
separation, manifesting a multi-scale nature. In this regard we will remark the technical issues
that need to be faced to numerically integrate them and we will introduce the core idea of
the new integration methodology proposed by Michel and Chini [Michel and Chini (2019)]
at the basis of this work. These ideas and concepts will be the common thread of the next
chapters where they will find a specific applications to different problems. After outlining
the general analytical framework in which we will operate, we introduce the numerical tools
that will be used to handle the investigation of QL systems, providing a brief synopsis of the
Dedalus software [Burns et al. (2020)].
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Chapter 2. Analytical and Numerical Tools for Slow-Fast QL Systems

2.1 Introduction to QL systems and their integration

We start by considering a non-linear dynamical system defined by the temporal evolution of
the state-space vector q 2H , with H an infinite-dimensional function space,

@t q =F (q) =L (q)+N (q) (2.1)

where F is an evolution function consisting of a linear part L and a non-linear one N .

The quasi-linear (QL) formulation of the evolution equation (2.1) can be obtained by decom-
posing the state-space vector into a suitable (to be defined) mean component and fluctuations
with respect to the mean

q = q +q
0 with q = q and q 0 = 0 (2.2)

and then neglecting the fluctuation-fluctuation non-linearities except when they feed back on
the mean variable

@t q =
√
@t q

@t q
0

!
=

√
f QL(q , q

0)
g QL(q , q

0)

!
=

√
L (q)+N (q

0)
L (q

0)+N
0(q

0, q)

!
. (2.3)

A generalisation of (2.3), falls under the name of generalised quasi-linear formulation (GQL)
[Marston et al. (2016)] and differs from the QL model by the presence of the mean-mean
non-linearities N (q) and consequently by the linearisation of the fast dynamics around a
spatially modulated mean.
The resulting reduced systems of equations, often used as an ad hoc approximation for sim-
plification, naturally arise in many physical systems in the presence of scale separation.
Considering a scenario where scale separation is present in time, different temporal scales can
be formally introduced. Denoting with fTs the dimensional temporal scale over which slow
processes occur (e.g. measured in years) and with fT f the dimensional characteristic time for
the fast processes (e.g. measured in seconds ), such that et = øfT f = T fTs , the scale separation
between the two dynamics yields the small non-dimensional parameter "

"=
fT f

fTs
= T
ø

(2.4)

which can be exploited to derive reduced equations via asymptotic techniques.
When this is the case, re-interpreting the averaging procedure as an average over the fast
coordinate (q is frozen in fast time), the multi-scale analysis automatically leads to a QL
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2.1. Introduction to QL systems and their integration

formulation (or GQL depending on the specific evolution function),

@t q =
√
@t q

"@t q
0

!
=

√
f QL(q , q

0)
g QL(q , q

0)

!
=

√
L (q)+N (q

0)
L (q

0)+Lq (q
0)

!
. (2.5)

The evolution of the fluctuation is order O("°1) faster then the one of the mean variable, is
linear and homogeneous in the fluctuations and is coupled to the mean dynamics via two
mechanisms: first the parametric dependence on the mean dynamics q (e.g. an advection
term) and second the feedback that in turn the fluctuations exert on the mean field via N (q 0).
Because of the multi-scale nature of the problem, a key issue to be addressed concerns the
choice of a numerical integration method. The commonly used techniques are

• The single-scale (or single-time) integration method [ Marston et al. (2016),Malecha et al.
(2014)] which re-introduces the small parameter " into the equations (2.5), discards the
fast-time average, and integrates both dynamics on the same temporal scale.

• Multi-scale integration methods, like the heterogeneous multi-scale method [E et al.
(2007), Abdulle and E (2003)], super-parametrisation [Grabowski (2004), Gear et al.
(2003)], and various adaptations of them [Malecha et al. (2014)]. In this case the fast
dynamics is integrated on a fast time scale with a constant mean field, until a steady
state is reached (if this happens), and the collective effect of the fluctuations is then
computed to update the slow variable with a larger time step.

Both methodologies come with advantages and disadvantages. The first approach does not
take advantage of the multi-scale nature of the reduced system, still requiring a time-step small
enough to resolve the fast dynamics (about "dT ) and it is normally stiff due to the presence of
the scale-separation parameter. In some cases the single-time QL might results even stiffer
than the fully non-linear original dynamics depending on the form of the non-linearity that
has been suppressed during the QL approximation. However it is normally accurate (within
the approximation) and has an advantage over the full dynamics in the fact that implicit
numerical schemes can be used to integrate the fluctuation dynamics (linear in the reduced
model). Conversely, the second approach is normally more efficient but at the expense of the
loss of accuracy. After any update of the coarse-grained dynamics the fluctuations dynamics
needs to be re-initialised and integrated for a certain amount of time until a steady state is
approached, but neither of these steps is well defined. More importantly, the steady state
might even not exist if the fast fluctuations blow up while the mean field is frozen, requiring in
this case again the co-evolution of the two dynamics on the same temporal scale.

A third option that has the accuracy of the single-scale integration method and leverages,
at the same time, the multi-scale nature of the system is however possible. This approach
is the central topic of investigation of this work. A new methodology for the integration of
slow-fast quasi-linear systems has been recently proposed by Michel and Chini [Michel and
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Chapter 2. Analytical and Numerical Tools for Slow-Fast QL Systems

Chini (2019)], based on the observation that most of the dynamics that asymptotically reduce
to QL-type systems have the tendency to self-tune towards marginally stable states.

Owing to the linearity and homogeneity of the fast dynamics, its solutions can be expressed as
a superposition of modal solutions

q
0(ø,T ) =

X
i Ai (T )q̂i (T )eæiø (2.6)

with A(T ) an amplitude to be determined, q̂ a structure function and Re{æ} a growth rate.

Substituting this ansatz into (2.5) yields an initial value problem for the mean dynamics and
an eigenvalue problem for the evolution of the fluctuations

@t q =
√
@t q

"@t q
0

!
=

√
@t q

æq̂

!
=

√
L (q)+|A|n |q̂ |nenæø

L (q̂)+Lq (q̂)

!
. (2.7)

with n, the degree of the non-linearity.
By inspection of (2.7) it is immediate that for the feedback term not to diverge the growth rate
has to be non-positive. When Re{æ} < 0, N (q

0) converges to zero and the mean dynamics
evolves without any effect from the fluctuations. When Re{æ} = 0, the feedback N (q

0) becomes
finite, and the two dynamics are coupled via the fluctuation amplitude

N (q
0) = |A(T )|n |q̂ |n (2.8)

The key idea at the core of the novel integration methodology is to determine the, a priori
unknown, amplitude A such that the marginal stability of the mean variable can be maintained
in time. In other words once zero growth rates are realised, the amplitude A plays the role
of a "control knob" that can be turned to ensure the evolution of the two dynamics on the
marginally stable manifold. The details of this new methodology, together with its validity
conditions and extensions will be subject of the next chapters, where applications to different
specific problems of increasing complexity will be discussed.

2.2 The Dedalus software – A sparse ø-method

The integration methodology introduced in the previous section requires to solve the coupled
system of equations (2.7) consisting of an initial value problem for the slow dynamics and an
eigenvalue problem for the fast fluctuations. Further extensions of this method, presented
in the next chapters, will additionally require the solution of boundary value problems, and
more specifically of singular boundary value problems due to the marginal stability constraint
at the basis of this approach.
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2.2. The Dedalus software – A sparse ø-method

To handle all of this tasks we will make use of the open-source software Dedalus [Burns et al.
(2020)], designed to solve a wide range of PDEs, written in python with an object-oriented and
high performance design.
The advantageous feature of this software is to provide a sparse representation of spectrally
discretised differential operators from a symbolic input. These discretised operators can then
be used to solve initial, eigenvalue and boundary value problems. The sparseness of the
representation is achieved via a first-order formulation of the problems together with the
implementation of a modified spectral ø-method.

When considering a generic problem with boundary conditions

Lu(x) = f (x)x 2 A ΩRd

Bu(x̃) = 0x̃ 2 @A
(2.9)

with L and B first-order differential operators, u the solution to be found and f a right hand
side, spectral methods generally expand u and f in terms of a complete orthogonal basis ¡,
named trial functions, with a truncation at the order N °1

u =
N°1X

n=0
ûn¡n(x) (2.10)

leading to a set of equations for the spectral coefficients ûn . Due to the impossibility of
finding an exact solution satisfying simultaneously the PDE and its boundary conditions when
considering a finite-dimensional sub-space of the trial functions (truncation at order N °1),
spectral methods in general seek for an approximate solution u§ that minimizes the residual
R = Lu§ ° f with respect to the inner product against a specified test function √ (hence a
weighted residual)

N°1X

n=0
ûn

≠
√ j

ØØL¡n
Æ
°

N°1X

n=0
f̂n

≠
√ j

ØØ¡n
Æ
= 0 (2.11)

with j = 0,1,2, ...N °1.
The choice of the trial function discriminates the different spectral methods. For instance in
the case of the collocation method √ is chosen to be a Dirac delta at the collocation points,
and in the Galerkin method a smooth function satisfying the boundary conditions chosen
identical to the trial functions. An improvement of this method is represented by the ø-method
, which modifies the problem (2.9) such that the truncated solution is an exact solution of the
modified problem. That is to say, a truncation in the expansion of the solution produces a
perturbation in the original problem, and vice versa for any perturbation of the initial problem
we can find an exact solution within a finite dimensional subspace. The original problem (2.9)
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is then replaced by

Lu(x)+øP (x) = f (x) x 2 A ΩRd (2.12)

where ø is a parameter to satisfy the boundary conditions and P (x) a specified polynomial.
When using the same basis for both the test and the trial functions, √ = ¡, and setting the
polynomial P (x) =¡N°1, the last row of (2.12) (for j = N °1), known as the ø-equation ensures
that ûn = 0 for n > N °1. Because the expansion is already truncated at order N °1 by con-
struction, this equation does not carry extra information and can be conveniently replaced by
the boundary conditions.

The same choice for test and trial functions, however, is not ideal when using non-trigonometric
functions to discretise a problem that involves differential operators. For problems with wall
bounded domains a common choice for the expansion basis is normally the Chebyshev
polynomials of the first kind Tn(x) = cos

°
n cos°1(x)

¢
. Although their relation with the cosine-

transform allows for the usage of the Fast Fourier Transform, these polynomials produce dense
differentiation matrices when projected against the same basis, due to the recursive relation

T 0
n(x) = n

µ
2Tn°1 +

T 0
n°2

(n °2)

∂
=

N°1X

i=0
= Ti

2n[(n ° i )mod2]
1+±i ,0

. (2.13)

The solution to this problem is achieved in the Dedalus software by expanding the differential
operator of the first kind Chebyshev polynomials T 0

n , with respect to the second kind Chebyshev
polynomials

Un = sin[(n °1)cos°1(x)]

sin
°
cos°1(x)

¢ (2.14)

making use of the relation between the two basis

Tn(x) = 1
2

[Un(x)°Un°2(x)] and T 0
n(x) = nUn°1(x) . (2.15)

This results in a diagonal representation of the differential operator

N°1X

n=0
ûn

≠
U j

ØØ@x Tn
Æ

| {z }
n± j ,n°1

+ø
≠
U j

ØØTN°1
Æ

| {z }
P L

j ,N°1

=
N°1X

n=0
f̂n

≠
U j

ØØTn
Æ

| {z }
P L

j ,n

(2.16)

where Pi , j =
≠
Ui

ØØT j
Æ

is the T-to-U operator, referred in Dedalus as a left preconditioning P L .

However with this choice of trial and test functions the boundary conditions remain dense.
Once again this issue is overcome in Dedalus exploiting relations and re-combinations of
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the Chebyshev polynomials. Noticing that with a first order formulation all the boundary
conditions reduce to Dirichlet-type, and that Tn(±1) =±1, the following choice for the trial
function

DT
n (x) =

8
<
:

Tn(x) n = 0,1

Tn(x)°Tn°2(x) n ∏ 2
! DT

n (±1) =

8
<
:
±1 n = 0,1

0 n ∏ 2
(2.17)

together with its projection on the basis T j , allows to condense the boundary condition row to
only two modes, given that

≠
Ti

ØØD j
Æ
= ±i , j °±i , j°2. Dedalus refers to this projection as right

preconditioning P R , and combined with the left preconditioning P L leads to the following
sparse representation of the original problem

P LLP R
| {z }

L

(P R )°1u = P L f|{z}
M

. (2.18)

Figure 2.1 summarises the main steps taken in the Dedalus software to construct the operators
L and M in the case of an eigenvalue problem resulting from the one dimensional diffusion
equation with Neumann boundary conditions, expressed in the first-order formulation as

@2
x u =æu !

8
<
:
@x ux =æu

@x u °ux = 0

ux |0 = 0

ux |L = 0
. (2.19)
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Figure 2.1 – Construction of the sparse representation of the spectrally discretised operators
in the Dedalus software, for the one dimensional eigenvalue problem (2.19), with Neumann
boundary conditions. From a symbolic entry of the equations (expressed with a first-order
formulation), a generalised ø-method with appropriate transformations between Chebyshev
polynomial basis (of the first and second kind) is used to obtain the final sparse form of the
operators describing the problem.
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Chapter summary

In this chapter we present and extend the quasi-linear reduction proposed in Michel and
Chini [Michel and Chini (2019)] for systems that evolve on different spatiotemporal scales and
self-adjust to marginally stable states. This type of reduction is characterised by the coupling
between a non-linear slow dynamics and a linear fast dynamics (hence the quasi-linear
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categorisation) via a feedback produced by the fast field on the slow one and the advection of
the fast field by the slow one. The nature of the fluctuation-induced feedback on the mean
dynamics is, however, for many systems twofold: it is responsible for the marginally-stable
evolution of the coupled system in certain cases and conversely for the realisation of unstable
scenarios in others. The latter case being represented by bursting events where the formally
slow and fast dynamics respond on the same temporal scale. Owning to the occurrence of
these events in many physically relevant systems, including the stratified flow problem, here
we discuss an extension of the QL methodology to capture and deal with the departure of
the dynamics from the marginally-stable condition, proposing different possible techniques.
Finally we present a modification of the original algorithm developed to account for finite
scale separation.

3.1 Introduction

Systems characterized by an evolution that occurs over a large range of spatial and temporal
scales are commonplace in the study of complex systems. Their fully-resolved simulation
would normally require computational resources at the limit of the existing technology, or be-
yond. Many emblematic instances of such a type of systems can be found in geophysical and
astrophysical flows where scale separation is the often the result of the interaction between
different phenomena (e.g. Quasi-biennial oscillations [Lindzen and Holton (1968)]) and/or
the presence of strong dominant effects, like rotation or stratification [Julien and Knobloch
(2007)]. Strongly stratified flows in oceanic turbulence, for example, are characterized by
Reynolds numbers around 108 and Froude numbers of the order of 10°3 (where the Reynolds
number is the ratio between the inertial forces and the viscous ones, and the Froude number
an inverse measurement of the stratification). In such a regime the strong stratification is
responsible for the spontaneous emergency of large horizontal flow-structures whose relative
motion triggers shear instabilities with a considerably smaller characteristic size [Fincham
et al. (1996), Herring and Métais (1989), Métais and Herring (1989), Riley et al. (1981)]. Owing
the impossibility of fully numerically resolving all the dynamically relevant scales for the
real oceanographic phenomena [Brethouwer et al. (2007), Bartello and Tobias (2013)], much
progress has been made in the past years in developing simplified models and reductions
[Fitzgerald and Farrell (2014), Fitzgerald and Farrell (2018), Constantinou et al. (2014), Tobias
et al. (2011), Tobias and Marston (2013), Srinivasan and Young (2012), Farrell et al. (2016)]. In
the specific case of the strongly stratified flow problem, scale separation can be exploited to
obtain reduced models by means of asymptotic techniques [Chini et al. (2022)]. Accounting
for different temporal and spatial scales, the multi-scale analysis of this system automatically
yields a quasilinear (QL) coupled system of PDEs for a slowly varying mean field and the fast
varying small-scale instabilities. The (now) linear evolution of the fast field remains coupled
to the slow dynamics (fully non-linear) feeding back on it and being advected by it. Due to
the linearity of the fast dynamics, the numerical integration of this type of systems requires a
carefully constructed procedure to avoid an exponential growth of the instabilities, while the
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mean field is frozen. In this regard Michel and Chini [Michel and Chini (2019)] have recently
proposed a new algorithmic procedure that leverages the tendency of many QL system, as well
as of stratified flows, to evolve towards marginally-stable states. Heuristically, the condition
of marginal stability, once realized, is maintained by the slaving of the fast dynamics to the
mean field which produces a stabilizing effect on the latter. The successful application of this
algorithm to the two-dimensional strongly stratified flow problem [Chini et al. (2022)] has been
however limited to cases where Reb = ReF r 2 < 10 (with a F r = 0.01) due to the stability loss of
the marginal state. In these scenarios, describable as a bursting event, the fast fluctuations
becomes linearly unstable and their growth induces a response of the "slow" dynamics on the
fast time scale, invalidating the scale separation at the basis of the QL reduction.
The aim of this chapter is to illustrate an algorithmic extension to the QL methodology pro-
posed by Michel and Chini [Michel and Chini (2019), Chini et al. (2022)], able to efficiently
cope with this type of bursting phenomena in which marginal-stability is transiently lost and
the two dynamics have to be integrated on the same temporal scale. For this purpose we
make use of a deceptively simple one-dimensional model problem, proposed in [Michel and
Chini (2019)], to limit the complexity of the investigation of the unstable events. Moreover we
propose a modification of the algorithm to account for finite (yet large) scale separations, as is
normally the case in real systems, which also has the advantage of providing a more systematic
and precise control on the numerical approximations.
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3.2 Governing equations and multi-scale analysis

In this first example, from [Michel and Chini (2019)], the slow field U (z, t ) and the fast fluctua-
tions ¥(z, t ) evolve according to

@U
@t

= F °∫U °¥2e°U 2
(3.1)

"
@¥

@t
=U¥e°U 2 + @2¥

@z2 °≤¥3 , (3.2)

where F (z, t) is a space and time dependent forcing and ∫U is a linear damping. As in the
stratified flow problem the slow variable feels the effect of the fluctuations via a quadratic feed-
back, here multiplied by the exponential term in (3.1), ¥2e°U 2

; and the fluctuations in turn are
"advected" by the mean flow via the term U¥e°U 2

. The scale separation is set by the small pa-
rameter " in (3.2) (analogous of the F r number in the reduced Boussinesq equations (1.5)-(1.7).

Explicitly taking into account the temporal scale separation by introducing two time scales
t ! (T,ø), with T = t and ø= T /" and positing the following asymptotic expansions for U and
¥

U =U0 +"U1 +"2U2 +O("3) (3.3)

¥= ¥0 +"¥1 +"2¥2 +O("3) (3.4)

a two-scale reduced system governing the leading-order dynamics ( O(1) for the mean variable
and O(1/") for the fluctuations) can be obtained [Michel and Chini (2019)]:

@U0

@T
= F °∫U0 °¥2

0e°U 2
0 (3.5)

@¥0

@ø
=U0e°U 2

0¥0 +
@2

@z2¥0 (3.6)

where U0 =U0(z,T ) depends on slow time only. The overbar (·) indicates an average over the
fast time ø, that for a generic function √ reads

√(z,ø) = √̃(z) = lim
ø f !1

1
ø f

Zø f

0
√(z,ø)dø (3.7)

and ø f represents the limiting process time scale, considerable fast compared to T but slow
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compared to ø, over which the function √ evolves.

Because the evolution equation for the fluctuations is linear and homogeneous in the fluctua-
tion field and autonomous in the fast time ø, it is not restrictive to assume modal solutions of
the form ¥0 = A(T )¥̂0(z,T )eæ(T )ø where A(T ) is a slowly varying amplitude; ¥̂0(z,T ) is a vertical
structure function; and Re{æ(T )} is a growth rate. Substituting this ansatz into (3.5)-(3.6), it is
immediately clear that for the feedback term to be physically meaningful the fast-time average
of the fluctuations

¥2
0 = |A|2|¥̂0|2 lim

ø f !1
1
ø f

Zø f

0
eæødø (3.8)

has to converge, excluding then the possibility for positive growth rates if A(T ) 6= 0. In the limit
of infinite scale separation "! 0 (ø!1), if Re{æ} < 0 there is an exponential decay of the
fluctuations on the fast time scale and, hence, a zero feedback on the slow dynamics, leading
to the simplified dynamics

@U0

@T
= F °∫U0. (3.9)

If Re{æ} > 0, however, the fluctuation field could grow without bound while the mean field
U0 remains "frozen", invalidating the asymptotic scaling. This observation suggests that
the system naturally selects a zero growth rate by self-adjusting to a marginally stable state.
Correspondingly the asymptotic analysis must attempt to enforce the condition Re{æ} ∑ 0.

Therefore, the simplified equations for the leading-order dynamics can be reduced to an
initial-value problem for the evolution of U0 and to an eigenvalue problem for the fluctuations
¥̂0 being the vertical eigenfunction associated with the zero real parts of the eigenvalue æ:

@U0

@T
= F °∫U0 ° |A|2|¥̂0|2e°U 2

0 , (3.10)

æ¥̂0 =
µ
U0e°U 2

0 + @2

@z2

∂
¥̂0, (3.11)

where the linear operator is given by

L =U0e°U 2
0 + @2

@z2 . (3.12)
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Although the eigenvalue problem (3.11) is well defined for any eigenvalue æ, the reduced
dynamics (3.10)-(3.11) is valid only when zero growth-rates are attained, making the operator
L a singular operator. Moreover defining the L2 inner product for two generic functions √1

and √2 as

≠
√1(z)

ØØ√2(z)
Æ
=

ZL

0
√1(z)§√2(z)d z , (3.13)

we can notice that for this specific problem the linear operator is also self-adjoint; conse-
quently the spectrum will be real (Re{æ} =æ) and so will the eigenfunction ¥̂0.

3.3 QL algorithm and slaving of the fast dynamics

The fast and slow dynamics are now coupled by the presence of an unknown amplitude
for which an evolution equation has to be derived. As shown in Michel and Chini [Michel
and Chini (2019)], the standard procedure of imposing a solvability condition on the higher-
order terms in the expansion of ¥ does not yield a closed set of equations, and an alternative
constraint has to be found. The key idea of this new approach is to exploit the natural tendency
of the slow dynamics to evolve near to a state of marginal stability, as noted above, in order to
prescribe the fluctuation amplitude required to maintain that state. Consequently the slow
time derivative of the growth rate has to be zero whenever the growth rate æ= 0. To derive the
necessary condition, we use perturbation analysis at the first order. By expanding in series the
eigenvalue problem (3.11) around a point M (and dropping the subscript 0 for both ¥̂0 and
U0)

æ(TM +¢T ) ªæM + @æ

@T

ØØØØ
M
¢T (3.14)

L(TM +¢T ) ª LM + @L
@T

ØØØØ
M
¢T (3.15)

¥̂(TM +¢T ) ª ¥̂M + @¥̂

@T

ØØØØ
M
¢T (3.16)

we obtain at order O(¢T ) the following boundary value problem for the first order correction
of the eigenfunction

LM
@¥̂

@T

ØØØØ
M

=° @L
@T

ØØØØ
M
¥̂M + dæ

dT

ØØØØ
M
¥̂M (3.17)

and setting the marginal stability condition æM = 0.

Due to the singular nature of the operator L in condition of marginal stability, the boundary
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value problem (3.17) requires a solvability condition. Considering a general operator L with
adjoint L

† with respect to the inner product (3.13) and a generic boundary value problem
L u = f , only one of the following affirmations is true:

1. the inhomogeneous problem L u = f has a unique solution

2. the homogeneous adjoint problem L
†√† = 0 has a non-trivial solution

While the first case is verified when the adjoint operator is not singular, the second one implies
that the direct problem, L u = f , has either no solutions or infinitly many. Whenever the
nullspace of the adjoint operator L

†, ker (L †), has a non-zero dimension, the Fredholm
Alternative theorem determines the solvability of the direct problem depending on the pro-
jection of the right-hand-side f onto the onto the nullspace of L

†. Denoting with √† the
eigenfunctions of L

† associated to the zero eigenvalue, if
≠

f
ØØ√†Æ= 0 the problem L u = f has

infinite many solutions, and it is not solvable otherwise.

Imposing the solvability condition to the problem (3.17), and recalling that the operator L is in
this specific case self-adjoint, we obtain

ø
° @L
@T

ØØØØ
M
¥̂M + dæ

dT

ØØØØ
M
¥̂M

ØØØØ¥̂M

¿
= 0 , (3.18)

which results in an expression for the derivative of the growth rate, after using the normaliza-
tion condition

R
Lz
|¥̂|2d z = 1:

dæ
dT

ØØØØ
M

=
ZLz

0

@L
@T

ØØØØ
M
|¥̂M |2d z

=
ZLz

0
(1°2U 2)(F °∫U )e°U 2 |¥̂M |2d z ° |A|2

ZLz

0
(1°2U 2)e°2U 2 |¥̂M |4d z

(3.19)

Renaming the two integrals in (3.19) as

Æ=
ZLz

0
(1°2U 2

0 )(F °∫U0)e°U 2
0 |¥̂0|2d z, Ø=

ZLz

0
(1°2U 2

0 )e°2U 2
0 |¥̂0|4d z (3.20)

yields

dæ
dT

=Æ° |A|2Ø. (3.21)

Imposing the marginal stability condition dTæ= 0 when æ(T ) = 0, yields an expression for the
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amplitude that ensures the slow dynamics remains tangent to the marginally stable manifold

A =
q
Æ/Ø (3.22)

provided that the ratio Æ/Ø is non-negative.

3.4 Approaching and leaving the marginally-stable manifold

The reduced dynamics in condition of marginal stability (3.10)-(3.11) as well as the simplified
one for negative growth rates (3.9), are derived based on the central assumption of infinite
scale separation between the evolution of the mean field and the fluctuations. In this section
we aim at analysing the two different scenarios in which this assumption is not strictly satisfied:
first the case in which the posited scaling is temporarily lost during the evolution of the system
due to intermittent bursting events, and second the case in which a finite scale separation, yet
large, is set from the beginning.

3.4.1 Destabilizing effect of the fluctuations – Bursting events

It is straightforward to notice that the amplitude expression (3.22) is only defined for positive
ratios of Æ and Ø. In this example, as in the stratified flow problem, however neither Æ nor Ø
is sign-definite disallowing for the determination of A whenever ÆØ< 0. In this case, while
negative values of Æ increase the stability of the system, eventually leading to a zero amplitude
for the fluctuations ( as is clear from (3.21)), negative values of Ø necessarily drive the system
away from the marginally stable condition. In the latter scenario, the marginally stable
manifold ceases to exist and the fluctuations quickly attain an asymptotically large magnitude
due to the linear instability mechanism. This inevitably causes the slow variable U to respond
on the fast time scale, resulting in a bursting dynamics, that eliminates the scale separation at
the basis of the multi-scale analysis. In order to accommodate turbulent events associated
to positive growth rates the two fields must be co-evolved on the fast time scale until the
marginal-stability condition is satisfied again, i.e. until æ= 0. From a dynamical system point
of view, these bursting events can be considered as "homoclinic" or "heteroclinic" connections
between marginally stable manifolds.

As pointed out in [Michel and Chini (2019)], the integration of the initial finite-" set of equa-
tions (3.1)-(3.2) is not the only co-evolution strategy that is appropriate for this fast dynamical
regime. Instead, by positing the modified asymptotic expansions
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U =U0 +"U1 +"2U2 +O("3),

¥= 1
p
"
¥0 +

p
"¥1 +"

p
"¥2 +O("2p"), (3.23)

which incorporate the asymptotic amplification of ¥, the following modified reduced system
is obtained:

@U0

@ø
=°¥2

0e°U 2
0 (3.24)

@¥0

@ø
=U0¥0e°U 2

0 + @2¥0

@z2 °¥3
0 (3.25)

Equation (3.25) retains the cubic non-linearity present in the original set of equations, mech-
anism responsible for the saturation of the exponentially growing instabilities, and thus
(3.24)-(3.25) is not of QL form. Nevertheless, the system (3.24)-(3.25) has the great compu-
tational advantage of not including the small parameter " (being the asymptotic expansion
valid for "! 0) and the forcing term F (z, t ) in the slow dynamics. The first aspect in principle
allows for a larger numerical t-step, and the second one reduces the time needed to restore
the marginally-stable manifold.
We refer to this co-evolution strategy as "-free DNS. A further option to integrate the reduced
system (3.10)-(3.11) when bursting events occur and no fluctuation amplitude can be deter-
mined, is inspired by gradient descent techniques. Because of the fast and abrupt growth of the
fluctuations in this regime it is reasonable to assume they dominate the evolution equation of
the mean variable U , making the forcing F and the damping ∫U negligible (as also confirmed
by the asymptotic analysis above). Then, although A(T ) is unknown, the mean variable U can
be updated in the direction that minimizes dTæ making use of the eigenfunction ¥̂ resulting
from the linear eigenvalue problem (3.11):

@U
@T

=C |¥̂|2e°U 2
(3.26)

where C is an arbitrary constant.

Although these two co-evolution techniques might be computationally advantageous they
might not lead to the same statistically-averaged representation of the long term dynamics.
Because of the chaotic nature of the system any approximation (including the QL model) will
produce a different trajectory in the state-space. Imagining a single realisation as a walk in the
state-space around the building blocks of the dynamics (invariant solutions and more general
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manifolds) biased by the stability of these blocks, the long term dynamics is then defined by
the time spent by the trajectory in proximity of each structure. The alteration of this structures
landscape, or of their stability features, might preclude some states from being reached and
therefore from being represented in the final statistical ensemble/temporal average. The
proof of this statement is in general not trivial, and not a topic of investigation in this work,
but rather a warning for feature implementations and further developments of co-evolution
techniques.

3.4.2 Beyond spherical cows – QL algorithm for finite scale separation

After having discussed the validity of the reduced dynamics when positive growth rates are
realized, in this section we want to analyze the validity of the two QL filtered dynamics (3.10)-
(3.9) defined for æ∑ 0, in presence of finite scale separation and how to smoothly connect
them. By inspection of the feedback term (3.8), rewritten here for convenience,

¥2
0 = |A|2|¥̂0|2 lim

ø f !1
1
ø f

Zø f

0
e2æødø (3.27)

the cumulative effect of the fluctuations has been set to zero for any negative growth rate and
a finite amplitude has been allowed only in the case of exactly zero growth rates, leading to the
two dynamics (3.9) and (3.10) respectively. However this is no longer true when considering
finite ø f (namely finite scale separation). Expressing the fast variable ø using a characteristic
time-scale for the evolution of the slow dynamics ø f = T f /", expression (3.27) provides the
boundaries of applicability for the QL reduction when " is finite for the given (fixed) T f . The
fluctuation effects on the slow dynamics are negligible when the growth rate is such that the
exponential decay occurs in a time comparable or smaller than the characteristic time scale of
the slow evolution, namely

ØØØØ
"

T f

ZT f /"

0
e2æødø

ØØØØ' 0 (3.28)

and analogously, the fluctuation dynamics is slaved to mean field when

ØØØØ
"

T f

ZT f /"

0
e2æødø°1

ØØØØ' 0. (3.29)

Analytically solving the integral and re-writing (3.28) as

ØØØØ
"

2T f æ

µ
e2æT f /"°1

∂ØØØØ' 0 (3.30)

we can notice that the zero is only approached asymptotically for æ going to infinitely negative
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values,in principle invalidating the simplified dynamics (3.9) whenever the scale separation
is not infinite. However, from the practical point of view, where the root of a function can be
computationally determined only up to machine precision (in the best case), this problem
can be solved by introducing a finite tolerance ± and finding the values of æ for which the
following inequalities are satisfied

ØØØØ
"

2T f æ

µ
eæ2T f /"°1

∂ØØØØ< ± !

8
>><
>>:

"

2T f æ

µ
e2æT f /"°1

∂
< ± 8æ<æ1

"

2T f æ

≥
e2æT f /"°1

∂
>°± 8æ 2R

(3.31)

ØØØØ
"

2T f æ

µ
e2æT f /"°1

∂
°1

ØØØØ< ± !

8
>><
>>:

"

2T f æ

µ
e2æT f /"°1

∂
°1 < ± 8æ<æ2

"

2T f æ

≥
e2æT f /"°1

∂
°1 >°± 8æ>æ3.

(3.32)

where æ1 <æ2 < 0 and æ3 > 0.

When growth rates smaller than æ1 are realized the mean field evolves only under the effect
of the damping and the external forcing F , and the fluctuation feedback is restored when
æ2 <æ<æ3. Moreover, the introduction of a non-zero tolerance ±, while necessary for solving
(3.28), weakens the exact constraint æ= 0, allowing for a marginal growth/decay of the fluctua-

tions close to marginal stability. The behaviour of the integral f = 1
ø f

Rø f

0 e2æødø as a function

of æ is shown in figure 3.1 for both the infinite and finite scale separation case (assuming T f

fixed), highlighting in the latter case the two validity regions of the QL reductions in grey.
Moreover the presence of an extended æ-range close to marginal stability, in which the fluctua-
tion dynamics is slaved to the mean field, might in principle allow for the presence of multiple
"marginally-stable" modes (i.e. modes with a growth rate æ2 <æ<æ3). This case, not treated
in the present work, would require the computation of multiple amplitudes, as many as the
modes close to marginal stability each of them contributing to the fluctuation feedback in the
mean field evolution.

It directly follows from solving (3.28) and (3.29) that none of the two reduced systems is suited
to describe the real dynamics when the growth rate falls in the range æ1 <æ<æ2 or is beyond
æ3, in which cases the two fields need to be co-evolved on the same time scale. The latter case
is only verified in the context of bursting events as previously discussed, while the first one
is necessarily encountered when approaching the marginally stable manifold from a stable
initial condition, or when leaving it due to Æ switching sign in (3.21).
We remark here that the two co-evolution regions, although serving the same purpose of
bringing the system to a marginally stable state (from above or below the marginally-stable
region), have a structurally different nature and find their justification in different arguments.
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The co-evolution caused by a bursting event aims at stabilizing a dynamics otherwise tending
towards unstable states, and its existence is independent of the value of ". The finite scale
separation assumption only shifts the æ-threshold above which it is triggered from æ= 0 (for
"! 0) to æ=æ3 (for "> 0). On the contrary the co-evolution region identified by æ1 <æ<æ2,
independently of whether it is approached from more stable states (æ growing from negative
values smaller than æ1) or from marginally stable states due to Æ< 0 (whenever the feedback
produces over-stabilizing effects) is meant to "destabilise" the dynamics (remember that
æ2 < 0) and it only exists in the case of finite scale separation. Tending ø f to infinity in the
infinite scale separation scenario, the convergence of the integral expression in (3.27) is indeed
guaranteed for any negative growth rate regardless its magnitude, extending the validity region
of the QL dynamics with zero fluctuation feedback (3.9) up to the marginally stable region (in
this case represented by a single value æ= 0).

In § 3.4.1 three different co-evolution techniques have been presented to cope with the
realization of positive growth rates, the first one being the fully non-linear dynamics (3.1)-(3.2),
the second one the "-free non-linear dynamics (3.24)-(3.25) and the third one the gradient
descent-inspired evolution (3.26). Although computationally more advantageous due to
absence of the small parameter " (which allows for the implementation of a larger time-step),
the last two do not include the external forcing term F , whose role might be relevant in
destabilising the dynamics whenever the co-evolution is performed in the region æ1 <æ<æ2.
For this reason, while the "-free DNS is preferable to co-evolve the mean and the fluctuation
dynamics when positive growth rates are realized, the fully non-linear "-finite DNS must be
employed for the co-evolution in stable conditions.

3.4.3 On the (non-)smoothness of the algorithm

In the limit of infinite scale separation the definition of the fluctuations feedback via the aver-
age over fast time scales (3.27) makes the QL algorithm evidently non-smooth: the feedback
is finite in condition of marginal stability (provided that the integrals Æ and Ø have positive
values), and it is set to zero otherwise. In contrast, the procedure developed in the previ-
ous section by taking into account a finite scale separation, allows in principle for a smooth
connection among the different algorithms implemented for different stability conditions,
although not ensuring it for any system.
Imagining a scenario where the system is initially placed in stable conditions, with a corre-
sponding growth rate æ < æ1, the mean dynamics evolves without any effect from the fast
modes due to their exponentially fast decay, accordingly to (3.9). Because of the external
forcing the slow field U progressively loses stability and the growth rate approaches the first
co-evolution region between æ1 <æ<æ2. Here, by evolving the system via the fully non linear
equations (3.1)-(3.2), the fast fluctuations slowly start playing a role that becomes more rele-
vant the closer the system gets to the marginally-stable region. At the entrance of this region
the fast dynamics resulting from the co-evolution is in principle close to the QL approximation
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Figure 3.1 – Schematic for the finite scale separation QL methodology, as a function of the
fluctuations growth rate æ, for two different values of " and fixed T f = 0.1. For values of æ
smaller than æ1 the mean field U evolves without fluctuation feedback as a consequence of
the exponentially fast damping of the fast modes. The fluctuation feedback is restored close to
marginal stability in the regionæ2 <æ<æ1. The co-evolution of the two dynamics is otherwise
required: either in the case of positive growth rates (æ>æ3 or Ø< 0) or in the case of negative
ones between æ1 and æ2 (namely when the marginally-stable manifold is approached from
below or when is left due to negative values of Æ.

(3.10)-(3.11) (namely ¥ª A¥̂eæT f /" with æªæ2) and the slaving procedure of the amplitude
can eventually start without any abrupt jump in magnitude of the fluctuations (characteristic
of the infinite scale separation case where the fluctuation amplitude is either zero or finite).
However, remarking that this procedure has been derived just by inspection of the feedback
term (3.27), identical for any system, it does not take into account the peculiar features of the
fully non-linear dynamics.

As is the case for many other QL reductions, the problem analysed in this chapter is char-
acterized by an non-linear evolution equation of the fast field (3.2) that is homogeneous in
the fluctuation field and autonomous in time, allowing for a zero solution that is linearly
stable for negative growth rates. Therefore when initializing the system with a stable initial
condition (i.e. with U (t = 0) which leads to negative fluctuation growth rates æ < æ2), fluc-
tuations will generally approach zero during the co-evolution prior marginal stability (if not
already zero when starting from æ < æ1, in which case the fluctuations will also not grow
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during the co-evolution) and they will instantaneously be finite after the marginally stable
region is approached. Moreover, by examination of the non-linear dynamics in this specific
problem (3.1)-(3.2) and its QL formulation for negative growth-rates (3.9), it is possible to
notice that the two dynamics are identical in the case of zero fluctuations. This observation
allows for the implementation of the QL reduction without feedback (in principle valid for
æ < æ1) even in the region æ1 < æ < æ2, with the computational advantage of a larger time
step. However, this is in general no longer possible whenever the non-linear evolution of the
slow field differs from the QL reduction, in which case even in the absence of the fluctuations
the full DNS has to be performed. Differently a smooth scenario would be expected in the
case of a non-homogeneous evolution of the fluctuations, where the fast non-linear dynamics
would include, for example, an external forcing at order O(") such that the zero solution would
not be present, while leaving the QL reduction unchanged. However, independently of its
smoothness properties, the methodology developed in the case of finite scale separations
remains formally valid, legitimizing the co-evolution regions, although non-smooth, as the
only possible evolution when the QL formalism is mathematically not justifiable.

3.4.4 Tertium non datur – A conjecture on the computation of the amplitude

The slaving of the fast dynamics to the mean field represents the core of the QL methodology
discussed in this work. This is pursued setting the fluctuation amplitude via (3.22) such that,
once the marginal stability condition is satisfied it is maintained in time. It is straightforward
to notice that the computation of A is not only conditioned on the realisation of a zero growth
rate, but also on positive ratios of the integral quantities Æ and Ø. Although the real-valued
amplitude is mathematically well defined when both Æ and Ø are either positive or negative,
we hypothesise that only the first case yields a stable evolution of the system. This insight
comes from the investigation of the intermediate-time processes, whose behaviour might com-
promise the convergence of the fluctuation-induced feedback in (3.10). When performing the
multi-scale analysis of the original system for infinite scale separations (3.1)-(3.2) introducing
three time scales, T , √= T /

p
" and ø=√/

p
" (slow,intermediate and fast time respectively),

asymptotics leads to an evolution equation for the amplitude on the intermediate time-scale
√ which allows for unstable solutions when both Æ and Ø are negative. The mathematical
confirmation of this postulation has not been achieved (yet) in the context of this specific
model problem due to the non-linearity in U of the feedback term in (3.10) and of the advec-
tion term in (3.11), but it can be proved for a slightly modified model problem, specifically the
one investigated by Michel and Chini [Michel and Chini (2019)]. The calculation for this case
is presented for the sake of completeness in appendix A.
Moreover we conjecture that when considering a finite scale separation between the two
dynamics the effect of the intermediate-time processes might be twofold in the marginally
stable range: they explode when the scenario Æ< 0 and Ø< 0 occurs for "marginally-stable"
yet positive growth rates (namely 0 <æ<æ3) and they decay when the same scenario Æ< 0
and Ø < 0 is realised for negative ones (æ2 < æ < 0). The first case would drive the system
towards more unstable states while the second one towards more stable conditions, requiring
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either ways the co-evolution of the two fields on the same temporal scale. In view of the above,
we conclude that the only possible scenario for the computation of an amplitude requires the
simultaneous realisation of marginal growth rates and positive values of the integrals Æ and Ø,
while any other case would lead to the co-evolution of the two dynamics.

In figure 3.2 we provide a schematic summarizing all the possible scenarios discussed in
this chapter for the different validity regions of the QL reduction, and the values of Æ and
Ø, including the speculation regarding the case Æ < 0, Ø < 0, discussed above. We remark
once more that the latter case remains a conjecture due to the lack of a formal prof and of a
numerical evidence at this stage of the investigation.

Figure 3.2 – Schematic for the finite scale separation QL methodology, conditional to the
fluctuations growth rate æ and the the values of Æ and Ø. For values of æ smaller than æ1 the
mean field U evolves without fluctuation feedback as a consequence of the exponentially fast
damping of the fast modes. In systems with an homogeneous and autonomous evolution
of the fast modes this region can be extended up to æ = æ2 due to the presence of a stable
zero solution. The fluctuation feedback is restored closed to marginal stability in the region
æ2 <æ<æ3 provided that Æ and Ø are positive and the co-evolution of the two dynamics is
otherwise required. When positive growth rates are realised [in one of these cases: a)æ>æ3; b)
(æ2 <æ<æ3)^ (Ø< 0^Æ> 0); c)(0 <æ<æ3)^ (Ø< 0^Æ< 0) ] the co-evolution is performed
via the "-free DNS (3.24)-(3.25) and conversely the finite-" DNS is used when negative growth
rates are realised [ cases: d)æ1 <æ<æ2; e)(æ2 <æ<æ3)^ (Æ< 0^Ø> 0); f)(æ2 <æ< 0)^ (Ø<
0^Æ< 0) ].
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3.5 Numerical implementation and results

In this section we test the accuracy of the reduced QL algorithm presented above when
a finite scale separation is taken into account and when bursting events, associated with
positive growth rate of the fluctuations are realized, where in the letter case two co-evolution
techniques, the finite-" and the "-free DNS, are compared. The results obtained from the
reduced QL model are compared to the results obtained from the simulations of the fully
non-linear dynamics (3.1)-(3.2).

3.5.1 Numerical set-up

For the simulations of the three different algorithms presented in this section, the QL algorithm,
the finite " DNS and the "-free DNS, a Python code was written in-house and implemented
within the open-source framework Dedalus [Burns et al. (2020)]. The original set of equations
(3.1)-(3.2) and the corresponding reduced model (3.10)-(3.11) are solved in a periodic domain
with Lz = 2º using a Fourier and Chebyshev discretisation scheme respectively, with 64
grid points in each case. The use of a Chebyshev spectral method, although not optimal
for problems with periodic boundary conditions, is dictated by the necessity of solving the
eigenvalue problem with non-constant coefficients (3.11) within the Dedalus framework,
which is presently only possible using Chebyshev polynomials.
For all the simulations the damping coefficient is set to ∫= 1, the scale separation parameter
to "= 10°2 and a second-order Runge Kutta time-stepping scheme has been used. We remark
that while the original QL reduction is derived in the case "! 0, its modification in the case
of finite scale separation depends on " for the determination of the regions where different
algorithms are implemented (namely æ1,æ2,æ3). Fixing the time-step for the slow dynamics U
in the QL algorithm to d t = 10°2 and owing the scale separation ", resolving the fast dynamics
in the finite-" DNS requires a time step that is at least d t = 10°4 (in order to keep d t/"= 10°2)

@U
@t

= U n+1 °U n

d t
"
@¥

@t
= "

¥n+1 °¥n

d t
= ¥n+1 °¥n

d t/"
. (3.33)

Such a small time-step is no longer necessary for the simulation of the "-free dynamics (3.24)-
(3.25), where both fields evolve on the fast time scale ø, and therefore the time-step can be set
identical to the one for the QL dynamics d t = 10°2.
All the numerical parameters are summarised in table 3.1

Finally, in all of the cases presented here (both for QL simulations and the finite "-DNS ), the
external forcing term F is represented by the Chini force

F = 1+0.5cos(t )cos(x)+0.5sin(0.6t )cos(2x) (3.34)

whose time-dependency makes the system non-autonomous.

30



3.5. Numerical implementation and results

Lz Nz d T d t "

D N S 2º 64 - 10°4 10°2

QL 2º 64 10°2 10°4 10°2

Table 3.1 – Numerical parameters used in this study. Lz is the domain size, Nz the number of
collocation points, dT the "slow" time-step for the QL dynamics and the "-free co-evolution,
d t the time-step for the DNS and the "-finite co-evolution, and " the scale separation.

The algorithmic procedure developed in § 3.4, requires the communication between the QL
algorithm and the non-linear dynamics whenever a co-evolution is needed. Indicating with
T § the moment at which the co-evolution is triggered, the QL solver passes the mean field
UQL(T §) and the fluctuation field ¥QL to the DNS solver, in the form of ¥QL = A¥̂(T §)+ c.c.
when an amplitude is available and initialized with Gaussian noise otherwise, and once the
co-evolution is over (after a time ¢T ) it receives back the updated mean field UDN S(T §+¢T )
and the fluctuation feedback ¥2

DN Se°U 2
DN S (T §+¢T ). The global times T § and T §+¢T are also

exchanged between the solvers to properly initialise the external forcing.

3.5.2 QL dynamics with finite scale separation

We start presenting the investigation of the QL dynamics in a scenario where a finite scale
separation is considered but no bursting events are observed. Fixing "= 0.01 and T f = 10 ·dT ,
we choose here two values for the tolerance ±= 10°1 and ±= 2·10°1 to compare the differences
in the QL procedure when allowing for a larger/smaller variations of the fluctuations near
marginal stability. Solving the inequalities (3.28)-(3.29) yields the following values of æ1, æ2

and æ3

±1 = 10°1 ! æ1,1 =°0.4999, æ1,2 =°0.0107, æ1,3 = 0.0094

±2 = 2 ·10°1 ! æ2,1 =°0.2482, æ2,2 =°0.0232, æ2,3 = 0.0177
(3.35)

representing the validity boundaries of the QL dynamics (3.10)-(3.11) and (3.9) in the two
different cases as shown in figure 3.3. An increase in the tolerance, for fixed ", widens the
validity regions of both the two reduced dynamics (grey regions), and a decrease in ", for fixed
tolerances, while increasing the æ-range for the QL dynamics (3.9) (grey textured regions) it
constricts the slaving of the fluctuation dynamics (3.10)-(3.11) in a narrower region close to
æ= 0 (plane grey regions).

The initialisation of the QL dynamics with a uniform mean field U (z, t = 0) = °1, yields a
fluctuations growth rate æ(t = 0) =°0.3678, which immediately triggers a co-evolution in the
simulation with a smaller tolerance (æ1,1 < æ(t = 0) < æ1,2) and the QL evolution with zero
feedback in the one with a larger tolerance (æ(t = 0) <æ2,1). The evolution of the growth rate is
shown for both simulations in figure 3.4, over slow time T and over fast time ø (top) and over

31



Chapter 3. 1D Model Problem
Approaching, Leaving and Evolving on the Marginally-Stable Manifold

Figure 3.3 – Behaviour of the integral expression f , defining the fast average over ø of the
fluctuations feedback, as a function of the growth rate æ and the scale separation parameter
" ( red line for an infinite scale separation and blue one for " = 0.01 ). Fixing T f to 0.1 and
the two different values for the tolerance ± used to solve the inequalities (here ±1 and ±2), the
intersection of the horizontal dashed lines with the blue curve provides the graphic solutions
of the equations associated with the inequalities (3.28)-(3.29) æi j , marked by the vertical lines.
The regions between this solutions æi j (where the first subscript indicates the tolerance they
refer to) represent the validity of the different algorithms in the QL methodology: grey textured
regions (æ < æ1,1 and æ < æ2,1) for the the QL dynamics with ¥2 (3.9), plane grey regions
(æ1,2 < æ < æ1,3 and æ2,2 < æ < æ2,3) for the QL algorithm near marginal stability (3.10-3.11)
and white regions for the co-evolution algorithms. the different shades of grey refer to the
different tolerances ±1 (dark grey) and ±2 (light grey).

global time t = T +ø/" (bottom). Solid lines represent the evolution of the growth rate over
slow time in the QL system (obtained from solving (3.11)), and the dashed lines the evolution
of the growth rate when the co-evolution of the two dynamics is required, corresponding to
the evolution of the eigenvalue of the linearised form of the full dynamics. Namely, during
a co-evolution event, performed in both test cases via (3.1)-(3.2), the two fields evolve fully
non-linearly and additionally the mean field U is used to solve the linear eigenvalue problem
(3.11) in order to capture the moment at which the linearised system becomes marginally
stable, and the QL procedure can be employed.
In the first scenario, associated to ±= 10°1, the condition of marginal stability is satisfied at
time t = 0.67 with a growth rate æ=°0.0008, while in the second one (±= 2 ·10°1) it occurs
earlier, due to the narrower co-evolution region (red dashed line) with æ=°0.0132. In both
realizations the slaving of the fluctuations dynamics via the determination of the amplitude
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(3.22) maintains the evolution of the system constrained to the marginally stable manifold
until the end of the simulation time.

Figure 3.4 – (Top) Evolution of the growth rate æ over slow time T (solid lines) and fast time
ø (dashed lines) and (Bottom) over global time t = T + ø/" from the QL simulations with
tolerances ±= 10°1 (blue lines) and ±= 2 ·10°1(red lines). For both simulations the finite scale
separation is set to "= 0.01 and T f = 0.1. Capital letters marks the connections between the
different algorithms in the two different simulations: the test case with ± = 1e°1 performs
a co-evolution from A to B1 at which a zero growth rate is realised, while the test case with
± = 2 ·10°1, first performs a QL evolution with zero feedback, from A to B2, and then a co-
evolution to approach the marginally stable manifold from B2 to C2.

The results obtained from the QL model for ±= 2 ·10°1 are compared to those obtained from
the simulation of the fully non-linear dynamics (3.1)-(3.2) (where fluctuations have been
initialised with ¥= cos(x)) in figures 3.5 and 3.6, where the time-evolution of the energy and
the space-time diagrams of the slow variable U (z, t ) and of the fluctuations ¥(z, t ), respectively,
are presented. As is clearly evident, the reduced model not only qualitatively captures the long
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term dynamics of the full system but also the detailed quantitative features of the structures
underlying it, from the wavelength to the amplitude and the phase, are reproduced. This
agreement between the QL model and the DNS is remarkable given the finite value of " chosen
to set the scale separation in the full system, and the non-exactly zero growth rate realized
by the QL system due to the finite tolerance ±2. The only significant observable difference
in the two dynamics relates to the initial transient, as shown in figure 3.5. After an initial
decay of the fluctuations field in both dynamics (as a result of the linear stability of the zero
solution) the full system (continuous lines, red for the fluctuations and blue for the mean
field) exhibits fast bursting events before relaxing onto the marginally stable manifold, while
it occurs instantaneously in the reduced system (dashed lines) because of the slaving of the
amplitude.
Although in the finite scale separation case the marginal stability condition is identified by
the QL algorithm for slightly negative growth rates (given that æ2 < 0) and therefore earlier
in time if compared to the DNS, a similar shift in time would persists even with the original
QL formulation for "! 0, due to the necessity for the DNS to realise positive growth rates in
order to grow the almost zero fluctuations. However, owing to the chaotic nature of the full
system, we remark that the QL reduction, as any approximation, can not aim at reproducing
point-wise in time the original dynamics but should rather aim at capturing its long term
structural features in a statistical sense.
Moreover, from the algorithmic point of view, the decay of the fluctuations for negative growth
rates (and hence a zero feedback on the mean dynamics) in the full systems leads to an evolu-
tion equation for the mean field that is, for this specific problem, identical to its QL reduction
(3.9), valid for æ < æ1. This consideration practically allows for the extension of the region
delimited by æ1 to growth rates up to æ2, avoiding the necessity for a co-evolution to approach
marginal stability in the QL simulations.

Figure 3.5 – Temporal evolution of the mean field energy (blue lines) and fluctuation energy
(red lines) from the DNS (solid lines) and the QL simulation with tolerance ±= 2 ·10°1 and
finite scale separation parameter "= 0.01 (dashed lines).
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Figure 3.6 – Space-time evolution of the mean field U (top row) and of the fluctuations ¥
(bottom row) from the DNS (left column) and from the QL simulation with tolerance±= 2·10°1,
T f = 0.1 and finite scale separation parameter "= 0.01 (right column) .

3.5.3 QL dynamics with bursting events - connecting marginally-stable manifolds

To assess the efficacy of the strategies presented in section 3.4.1, for coping with fluctuation
events associated either with an initial positive growth rate or with subsequent occurrences
of positive feedback (i.e. Ø< 0) for æ= 0, the second test case has been initialized with the
initial condition U0(z,0) = 1.3tanh(8cos(z)), corresponding to a stable state within the range
æ1 < æ< æ2. After a short evolution of the mean field without effects from the fluctuations
feedback (QL algorithm (3.9)), the marginally-stable condition is satisfied and the fast dynam-
ics adjusted to maintain it. Unlike the scenario previously discussed, where a zero growth
rate was persisting in time, in this case it is quickly lost due to a bursting event detected by
the QL algorithm as a change in sign of the integral quantity Ø in (3.21) which precludes
the computation of an amplitude, driving the system towards unstable states. That is, the
fluctuation-induced feedback has a destabilizing effect on the mean field and the co-evolution
of the two fields is necessary until a neutral growth rate is re-established. The evolution of the
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growth rate over time is shown in this case in figure 3.7: blue dashed line for the QL dynamics
without fluctuation feedback, blue solid line for the QL dynamics in condition of marginal
stability and red curve for the co-evolution (Ø< 0) event.

Figure 3.7 – Evolution of the growth rate æ over slow time T (blue lines) and fast time ø (red
lines) from the QL simulations with tolerance ±= 2 ·10°1 in the case of finite scale separation
("= 0.01, and T f = 0.1). Capital letters mark the connections between the different algorithms:
the QL algorithm with zero fluctuation feedback (3.9) is performed from A to B for growth
ratesæ<æ2 (blue dashed line); the QL algorithm in condition of marginal stability (3.10)-(3.11)
is executed when æ2 <æ<æ3 in B °C and in D (solid blue lines); the finite-" DNS (3.1)-(3.2)
is simulated from C to D in the region æ2 <æ<æ3 with Ø< 0 (solid red line).

As visible in figure 3.8, showing the evolution of the energy of both the fast and the slow
dynamics, the cessation of the marginally-stable manifold in the QL dynamics corresponds to
a bursting event in the full dynamics where the fluctuation field exponentially grows causing
a response on the fast time scale of the mean dynamics. Although seemingly similar to the
bursting event observed in the initial transient of the previous test case (fig. 3.5), here the mean
field from the non-linear dynamics (blue solid curve) is clearly approaching a neutrally-stable
state, even if for short time, prior to the fluctuations exponential growth. The inset region of
figure (fig. 3.5), where the energy of both fields is shown during the co-evolution event (black
dashed curve for the fluctuation energy and black solid line for the mean field energy), clearly
shows the saturation of the instability due to the restoring effect of the cubic non linearity and
the re-establishment of the marginally stable condition in the QL dynamics. In this specific
scenario the bursting event is responsible for bringing the system from the initial marginally-
stable state, (B °C ) in fig. 3.7, to a new one, (D) in fig. 3.7, with different features, serving as
"heteroclinic connection" between distinct marginally-stable manifolds. Already visible from
the evolution of the energy (fig. 3.5)), this transition between marginally-stable manifolds
is directly noticeable in the evolution of the vertical profile of the mean field U (z) through
the co-evolution event, shown in figure 3.9. Once again, we point out that the occurrence
of the bursting event (as for the detection of the marginally-stable manifold) at a different
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time in the QL dynamics, compared to the DNS, is a consequence of the chaotic behavior
of the original dynamics, by definition sensitive to small variations in the initial conditions
and in the governing equations. Moreover, because the system is non-autonomous due to
the presence of the time-dependent force F (z, t ), a time difference in the occurrence of these
events will necessarily drive the systems to different states on the short term dynamics, making
a point-wise comparison of the two dynamics useless. The remarkable feature of the reduced
dynamics, in this case, is rather its capability of capturing the transition between the two
marginally stable manifolds, an event that clearly takes place in the full dynamics even if at a
different time and therefore through different "states".

Figure 3.8 – Temporal evolution of the mean field energy (blue lines) and fluctuations energy
(red lines) from the DNS (solid lines) and the QL simulation with tolerance ±= 2·10°1, T f = 0.1,
and finite scale separation parameter "= 0.01 (dashed lines). Black lines in the zoomed inset
region represent the energy of the fluctuations (dashed line) and of the mean field (solid
line) during the co-evolution event (performed with the finite-" full dynamics (3.1)-(3.2) and
highlighted in grey) triggered by the occurrence of Ø< 0 in the QL dynamics.

Differently from the co-evolution used to approach marginal stability (discussed in the pre-
vious section and not implemented for this test case) whose aim was to smoothly connect
the QL dynamics valid æ<æ1 and the one in marginally-stable condition, the co-evolution
triggered by the termination of the marginally-stable manifold (specifically due to Ø< 0) is
meant to re-stabilize the dynamics otherwise exploding in the quasi-linear reduction. For this
reason the destabilising effect of the external force F (z, t ) (useful to reach marginally-stable
growth rates from stable conditions) can be ruled out, performing the co-evolution via the
re-scaled equations (3.24)-(3.25), as discussed in § 3.4. In addition to the absence of the
external forcing, these equation have the great advantage of evolving the two dynamics on
the same temporal scale, allowing for the implementation of a time-step that is two orders
of magnitude larger then the one used in presence of the small parameter ". This represents
a key feature for systems (like the stratified flow problem) where the full DNS has extremely
high computational costs.
Figure 3.10 shows the evolution of the growth rate over global time, t = T +ø/", (top figure) and
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the evolution of the corresponding quantities Æ and Ø for two QL simulations (with ±= 2 ·10°1

and "= 0.01) where the bursting event is treated using the different co-evolution dynamics:
finite-" DNS (3.1)-(3.2) ( blue dashed curve for æ, grey solid curve for Ø and grey dashed curve
for Æ) and "-free DNS (3.24)-(3.25) (red dashed curve for æ, black solid curve for Ø and black
dashed curve forÆ). In this specific case, the usage of the re-scaled non-linear dynamics yields
a much longer co-evolution event, due to the persistence of a negative value of the integral
Ø together with a negative value of Æ. While negative values of Ø reflect an increase of the
growth rate, delaying the moment at which the grow rate reaches again the marginally-stable
region (the system starts gaining stability after Ø crosses again zero and becomes positive),
negative values of Æ impede the co-evolution from ceasing when the marginally-stable region
is again approached (point F in fig. 3.10), due to the impossibility of computing an amplitude.
Therefore the co-evolution is prolonged until the growth rate reaches æ2 (point G) where the
QL approximation without fluctuations feedback is used (therefore independently of the sign
of Æ and Ø) to reach again the marginally stable manifold (point H). The seemingly more
cumbersome scenario obtained when using the "-free DNS to cope with positive growth rate,
it is not related to any structural feature of the re-scaled dynamics but it is just a specific
trajectory in its state space, realised for the given initial condition (at point C ) and numerical
parameters. Figure 3.11 shows the different evolution of æ obtained applying the same co-
evolution technique on a slightly different QL system where the tolerance has been lowered to
±= 10°1 (red line). As evident, the resulting behaviour in this case is qualitatively much closer
to one obtained from the finite-" co-evolution technique (blue curve).
Moreover, although the duration (in global time units) of the bursting events is longer when
co-evolving the two fields with the re-scaled non-linear dynamics (for both scenarios with
±= 2 ·10°1 and ±= 10°1 ), this technique is computationally far more efficient than the full
DNS, as visible in figure 3.12. The zero growth rate is reached, with the "°free DNS, in about
20 solver iterations in the test-case with ± = 10°1, and after 150 iterations in the case with
(±= 2 ·10°1), respectively 2 orders of magnitude fewer when compared to the full DNS in the
first case (QL with ±= 10°1) and one order of magnitude fewer in the second one (QL with
± = 2 ·10°1). Regardless of the different paths followed by the three numerical simulations
(DNS and QL dynamics with different co-evolution techniques) to transition between the two
marginally-stable manifolds, the same long term dynamics is eventually approached in the
three cases. This is clearly visible in figure 3.13 and 3.14, where the space-time evolution of
the mean field U and the fluctuations ¥ are visualized, and in figure 3.15, showing the vertical
profiles of the two fields at time t = 18 (far from the initial transient) for the same three test
cases (top row) and for a QL scenario with a smaller tolerance ± (bottom row).

We conclude by testing the last co-evolution strategy, namely the gradient descent-like tech-
nique (3.26) (indicated from now on as GD co-evolution), against the the "-finite co-evolution
and the "-free co-evolution. Figure 3.16 shows the evolution of the growth rate for three QL
simulations (all performed with a tolerance ±= 0.1 and "= 0.01) over global time (left) and
compares the number of solver iterations required to re-establish the marginally-stable condi-
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tion with the three different techniques. The number of iterations for the GD co-evolution
is comparable to the one for the "-free co-evolution, therefore representing a more efficient
choice with respect to the "-finite co-evolution. This technique has also an other remarkable
advantage, that makes it preferable even to the "-free co-evolution: it updates the mean field
only using the eigenfunction resulting from solving the eigenvalue problem, and therefore
it does not require any additional information other than the one already present in the QL
simulation. This advantage will become crucial in the next chapters (and specifically in § 5)
when extending this methodology to higher dimensions.

The entire QL algorithmic structure proposed and tested in this chapter, including both the
extension for finite scale separation and for bursting events is shown by the flowchart in figure
3.17, where all the logical and computational steps are summarised.

3.6 Conclusions

Starting from the approach of Michel and Chini [Michel and Chini (2019)] we have developed
a numerical procedure that can properly accommodate finite scale separation and bursting
events associated with positive fluctuation growth rates.
When a finite scale separation is considered the algorithmic procedure we have derived con-
sists of different algorithms, simulated in different stability conditions, coherently connected
to each other. The main difference compared to the infinite scale separation algorithm is the
emergence/modification of three regions: the marginally stable region, the stable region and
the region in between. While in the case "! 0, the marginally stable condition is verified at
æ exactly zero, the finite " case allows for the identification of an extended region compre-
hensive of positive and negative values of æ (after a certain tolerance is set). In this æ-range
the growth/decay of the fluctuations is close enough to zero (according to the tolerance) to
compute an amplitude. Similarly the algorithm identifies the region where the growth rate is,
this time, negative enough to ensure the decay of the fast modes over slow time and therefore
set the fluctuations feedback to zero. This latter region, also present in the infinite scale
separation scenario, is now separated from the marginally-stable one by the appearance of
a new region where the fluctuation growth rate is neither close enough nor far enough from
zero to simulate one of the two QL dynamics. Therefore the co-evolution of the two fields has
to be performed here.
This QL methodology has then been further extended to handle bursting scenarios where
the scale separation is temporarily lost due to the realisation of positive fluctuations growth
rates, requiring again the co-evolution of the coupled system. In this regard three different
co-evolution methods were tested: finite-" DNS (the full non-linear system), "-free DNS (the
re-scaled non-linear system for the bursting regime) and a gradient descent technique. The
first two methods explicitly reintroduce the fluctuation non-linearities in the dynamics, which
generally are not negligible when fluctuation amplitudes are large and which may be crucial
for the saturation of instabilities. The third method exploits information from the eigenvalue
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problem by shooting in the direction provided by its linear eigenfunctions. Although all the
techniques successfully drive the dynamics to a new marginally-stable manifold, the compu-
tational expense of the last two approaches, "-free DNS and the gradient descent technique, is
shown to be one order of magnitude smaller than that of the full DNS. Moreover the gradient
descent technique, although crude, has the advantage in many cases (as remarked in § 5)
of not requiring further information or arbitrary choices, like the domain size and initial
conditions for the fast field, other then the ones already present in the QL approximation.
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Figure 3.9 – Space-time evolution of the mean field U (z, t) during the bursting event from
the DNS simulation (top) and the QL algorithm (center), and corresponding evolution of the
linear growth rate æ over global time t = T +ø/" (bottom) from the QL simulation. Capital
letters mark the connections between the different algorithms: the QL algorithm with zero
fluctuation feedback (3.9) is performed from A to B for growth rates æ<æ2 (blue dashed line);
the QL algorithm in condition of marginal stability (3.10)-(3.11) is executed when æ2 <æ<æ3

in B °C and in E (solid blue lines); the finite-" DNS (3.1)-(3.2) is simulated from C to D in the
region æ2 <æ<æ3 with Ø< 0 (solid red line). 41
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Figure 3.10 – Top: Temporal evolution of the growth rate for two QL simulations (with ± =
2·10°1 ,T f = 0.1, and "= 0.01) employing different co-evolution techniques during the bursting
event: full DNS (3.1)-(3.2) for the simulation (a) (blue line) and "-free DNS (3.24)-(3.25) for the
simulation (b) (red line). Bottom: Temporal evolution of the integral quantities Æ (dashed line)
and Ø (solid line) corresponding to the QL simulation (a) (grey lines) and to the QL simulation
(b) (black lines). Capital letters mark the connections between the different algorithms in
time: the QL algorithm with zero fluctuation feedback (3.9) is performed from A to B for
growth rates æ < æ2 in both simulations (blue and red solid lines) and again from G to H
for the simulation (b) (red solid line); the QL algorithm in condition of marginal stability
(3.10)-(3.11) is executed when æ2 <æ<æ3 in B °C for both simulations and again in E for the
QL simulation (a) (solid blue lines) and in H for the simulation (b) (solid red line); the finite-"
DNS (3.1)-(3.2) is simulated for the case (a) from C to D during the bursting event with Ø< 0
(dashed blue line) while the "-free DNS is used in the case (b) to co-evolve the two fields from
C to G (red dashed line).
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Figure 3.11 – Temporal evolution of the growth rate for two QL simulations (with ± = 10°1,
T f = 0.1 and "= 0.01) employing different co-evolution techniques during the bursting event:
full DNS (3.1)-(3.2) for the simulation (a) (blue line) and "-free DNS (3.24)-(3.25) for the
simulation (b) (red line).

Figure 3.12 – Evolution of the growth rate in solver iteration units during a bursting events
(Ø< 0) for QL simulations with±= 2·10°1 (left) and±= 10°1 (right) using different co-evolution
techniques: full DNS (3.1)-(3.2) in the case (a) (blue line) and "-free DNS (3.24)-(3.25) in the
case (b) (red line).
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Figure 3.13 – Comparison of the space-time evolution of the slow dynamics resulting from the
DNS (3.1)-(3.2)(top), from the QL simulation with finite-" DNS as a co-evolution technique
(center) and from the QL simulation with "-free DNS (3.24)-(3.25) as a co-evolution technique
(bottom). "= 0.01 in all simulations and the tolerance ±= 2 ·10°1 and T f = 0.1 are fixed for the
two QL dynamics.
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Figure 3.14 – Comparison of the space-time evolution of the fast dynamics resulting from the
DNS (3.1)-(3.2)(top), from the QL simulation with finite-" DNS as a co-evolution technique
(center) and from the QL simulation with "-free DNS (3.24)-(3.25) as a co-evolution technique
(bottom). "= 0.01 in all simulations and the tolerance ±= 2 ·10°1 and T f = 0.1 are fixed for the
two QL dynamics.
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Figure 3.15 – Vertical profiles of the mean field U (z) (left) and the fluctuation field ¥(z) (rigth)
at global time t = 18 from the DNS simulation (black curve) and from the QL simulations with
±= 2 ·10°1 (top row) and ±= 10°1 (bottom row) where different co-evolution techniques are
used during the bursting event: full DNS (3.1)-(3.2) for the QL simulation (a) (blue line) and
"-free DNS (3.24)-(3.25) for the QL simulation (b) (red line).
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Figure 3.16 – Temporal evolution of the growth rate for three QL simulations (with ±= 10°1,
T f = 0.1 and "= 0.01) employing different co-evolution techniques during the bursting event:
full DNS (3.1)-(3.2) for the simulation (a) (blue line), "-free DNS (3.24)-(3.25) for the simulation
(b) (red line), and gradient descent for the simulation (c) (black line). The plot on the left
shows the evolution over global time t = T +ø/", while the right plot shows the evolution
during the bursting event in terms of solver iterations.
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Figure 3.17 – Flowchart of the 1D QL algorithm. Rectangular boxes indicate actions, the white
ones for generic actions and the grey ones for actions related to the fluctuation feedback.
if -statements are represented by yellow diamond-shaped boxes, and their outcome by a
continuous arrow-connection when the if -condition is meet and with a dashed one otherwise.
The loop is started by solving the linear eigenvalue problem for the maximum growth rate æ
and the corresponding eigenfunction ¥̂. When negative growth rates below æ1 characterize
the state of the system, the slowly-varying amplitude of the fluctuation is set to zero and
the mean field is updated on the slow time scale without any feedback term (block 1). Once
the destabilising effect of the forcing F brings the system in the stability region æ1 <æ<æ2

the co-evolution to approach the marginally-stable region is performed simulating the eq.
(3.1)-(3.2) (block 2). At the realisation of neutrally-stable growth rates the system enters the
block 3, where a fluctuation amplitude is computed in the case (Æ> 0^Ø> 0). Any scenario in
this region different from (Æ> 0^Ø> 0) will cause the termination of the marginally-stable
manifold either towards more unstable states (block 4) or towards more stable ones (block
2) causing in any case the co-evolution of the two dynamics. Co-evolutions in block 2 are
performed via the full DNS, while co-evolution in block 4 via the re-scaled "-free DNS. In
both cases after a "fast integration"-step the EVP corresponding to the linearised problem
is solved and the conditions to exit the co-evolution blocks are checked: the fast integration
terminates when the marginally-stable region is approached again with (Æ> 0^Ø> 0) or when
æ<æ1, if the previous condition is never verified. In the first case the slaving of the fluctuation
dynamics continues, and a zero feedback is enforced in the second case.
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Chapter summary

A 2-dimensional extension of the QL formalism developed in § 3 for quasi-linear systems that
self-tune towards marginally stable states, has been derived. With the final aim of developing
a quasi-linear algorithm for the investigation of the strongly stratified flow problem, suited
to access extreme parameter regimes, we take one step further in that direction considering
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the spatial variability of the fast fluctuations. Such a dependency, appearing in the QL formal-
ism as a wavenumber, introduces the need for an additional evolution equation to identify
the wavenumber of the fastest growing mode that then gets slaved to the mean dynamics.
Here we illustrate, in the context of a 2-dimensional model problem, the modified QL proce-
dure for the slaving of the fluctuation amplitude and the prediction of the wavenumber of
the neutral mode in condition of marginal stability, presenting in the latter case two differ-
ent but equivalent derivation approaches. An evolution equation for the wavenumber has
also been derived for the stable scenario with the purpose of tracking the fastest growing mode.

4.1 Introduction

The evolution of various dynamical systems is characterized by the presence of different tem-
poral and spatial scales. A great example is represented by geophysical and astrophysical flows
where often the presence of strong constraints, such as strong rotation, strong stratification or
intense magnetic field, gives rise to large anisotropic structures and small scale instabilities
[Julien and Knobloch (2007)].
Because of the huge range of spatial and temporal scales to be resolved, accessing these sys-
tems via numerical simulations is especially challenging if not impossible when considering
the parameter regimes describing the ocean and and the atmosphere dynamics [Bartello
and Tobias (2013), Brethouwer et al. (2007)]. Nevertheless in the past several years has been
widely proven that by formally taking into account the scale separation, asymptotic techniques
leads to reduced systems which are considerably more treatable, from the analytical and the
numerical point of view, yet non-linear and capable of capturing the main features of the full
dynamics [Julien and Knobloch (2007), Michel and Chini (2019), Malecha et al. (2014), Chini
et al. (2022)]. In the case of the strongly stratified flow problem, specifically, the multi-scale
analysis for F r ! 0 yields a reduced description where small-scale instabilities evolve linearly
about a large-scale hydrostatic field (whose evolution is fully non-linear), they modify it via a
feedback term and are advected by it. The resulting problem, described by a coupled system
of quasi-linear (QL) PDEs, still gives rise to a rich dynamics thanks to the presence of the
two-way coupling between the mean field and the fluctuations, while limiting the range of
spatiotemporal scales to be resolved due to the presence of the fluctuation-fluctuation non-
linearities in the mean dynamics-only.
Because of its linearity and homogeneity, the evolution of the fast modes allows for modal
solutions that are exponentially dependent on the fast timescale (√= A√̂exp{æø}), making
the integration of such a reduced system on multiple temporal scales non-trivial: fluctua-
tions might blow up on the fast time scale, while the mean field remains frozen, causing the
divergence of the feedback term on the latter. Nevertheless a solution to this problems, that
leverages on the natural tendency of QL systems of self-tuning towards marginally stable
states, has been proposed by Michel and Chini in the context of a one-dimensional model
problem [Michel and Chini (2019) and later successfully applied to the stratified flow problem
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[Chini et al. (2022)]. The novel idea at the basis of this approach consists in ensuring the
convergence of the fluctuation feedback either by slaving the fast dynamics to the slow field,
whenever zero growth rates are realized (with the aim of maintaining the marginal stability
of the slow dynamics), or setting it to zero otherwise. The zero-feedback scenario naturally
results from the exponentially fast decay of the fluctuations on the fast time scale for negative
growth rates, and is a necessarily imposed for positive ones, due to the divergence of the fast
dynamics. The latter case invalidates the QL reduction requiring the co-evolution of the two
fields on the same temporal scale (as discussed in detail in § 3.4).
While the previous chapter has been dedicated to the investigation of the positive growth rate
scenario, together with the effect of finite scale separation, here we present a new method-
ology to efficiently extend the QL algorithm to a two-dimensional case. When considering
a strict QL formulation, the two-dimensional version of the reduced dynamics includes the
horizontal spatial variability of the fast field, now √ = A√̂exp{æø}exp{°i k¬} (with ¬ being
the characteristic spatial scale of the fast dynamics ). This extra spatial dependency, non
constant in time, requires an additional (computationally expensive) step in the QL algorithm
to first identify the mode/modes that become unstable to then slave it/them to the mean
dynamics. In this chapter we illustrate how to cost-effectively address this issue, developing an
algorithmic structure that enables the prediction of the wavenumber associated to the fastest
growing mode. This will be done making use of a two dimensional model problem, specifically
designed to reproduce the main features of the stratified flow problem under investigation,
while keeping the overall complexity limited. Following the logical structure of the previous
chapter, we will start introducing the fully non-linear governing equations and their reduced
version, obtained via multi-scale analysis. We will then re-trace the fundamental steps of
the QL procedure for the slaving of the fluctuations (described in [Michel and Chini (2019)])
highlighting the conceptual differences with the one-dimensional case, and present the novel
methodology for the prediction of the wavenumber, both in the stable and marginally-stable
scenarios. Moreover in condition of marginal stability we will demonstrate how the evolution
equation for the wavenumber can be formally obtained from two mathematically different,
but equivalent, approaches, confirming the correctness of the result. We finally conclude
showing the numerical results of the new QL procedure and its validation against the direct
numerical simulations of the fully non-linear system.
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4.2 Governing Equations and Multi-Scale Analysis

The slow-evolving field U (x, z, t ) and the fast fluctuations ¥(x, z, t ) satisfy the following set of
equations

@U
@t

+U
@U
@x

= F (x, z, t )°∫U °"2
≥@¥
@x

¥2
+D

≥ @2

@x2 + @2

@z2

¥
U (4.1)

"
@¥

@t
=°¥°"2U

@2¥

@x2 °"4 @
4¥

@x4 + @2¥

@z2 °"¥3 (4.2)

In addition to the one-dimensional case (discussed in § 3), where the dynamics of the mean
field was controlled by an external forcing , a linear damping and the cumulative effect of the
fast modes, here we introduce a diffusive and an inertial term, like in the Boussinesq equation
(1.1). The fluctuation feedback in 4.1, also has been replaced by a flux-type term, suggestive of
the eddy flux and buoyancy flux in the real system. As regards the fluctuations the evolution
equation is a modified version of the Swift-Hohenberg equation @t√= r√°(1+r2)2√+N (√)
where, instead of a bifurcation parameter r that multiplies the first term on the right-hand
side we have the mean field U (x, z, t ) that multiplies the second-order horizontal derivative.
The reason behind this choice is to provide a playground as near to reality as possible but
relatively more controllable and comparable to known cases.

Owing the scale separation due to the small parameter ", we apply multi-scale analysis, this
time introducing a slow-fast time scale and a large-small spatial scale.

t ! (T,ø) T = t and ø= T /"
x ! (X ,¬) X = x and ¬= X /"

U =U0 +"U1 +"2U2 +O("3)

¥= ¥0 +"¥1 +"2¥2 +O("3)

F = F0 +"F1 +"2F2 +O("3)

(4.3)

Solving the first equation (4.1) order by order in ", the independence of U of the fast time ø is
obtained at order O("°1) (being @øU0 = 0) and the reduced dynamics at O(1)
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. (4.4)

We then introduce the average over fast time ø and space ¬ defined for a generic function √ as
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√(x, z, t ,") = lim
ø f ,L¬ f !1

1
ø f

1
L¬ f

Zø f

0
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0
√(¬, x, z,ø, t ,")død¬ (4.5)

where L¬ f and ø f are the spatial and the temporal scales over which intermediate processes
evolve, and can be considered small/fast compared to x and T , yet big/slow with respect to ¬
and ø.

After fast-averaging (4.4), the final evolution equation for the mean variable U0(¬, x, z, t ,")
reads
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. (4.6)

As for the fluctuation field, the dynamics at the leading order O("°1) is given by

@¥0

@ø
=°¥0 °U0

@2¥0

@¬2 ° @4¥0

@¬4 + @2¥0

@z2 . (4.7)

Not surprisingly the evolution equation for the fast modes is again linear and homogeneous
and the general solution is given by the superposition of modal solutions of the type

¥0 = A(x,T )¥̂0(x, z,T )eæ(x,T,k)øei k(x,T )¬+ c.c. (4.8)

where A(x,T ) is a real amplitude, the real part of æ(x,T,k) is the growth rate and k(x,T ) the
horizontal wave number.

The final reduced dynamics (4.6)-(4.7) results in a coupled system where two temporal and
two spatial scales are involved: the slow field U0 only evolves (fully non-linearly) on the slow
time scale T and large space x, and it is modified by the cumulative effect of fluctuations ¥0,
which conversely linearly evolve only on the fast time ø and small space ¬ and are advected by
the slow field.
It is crucial to notice that, due to the absence of an explicit saturation mechanism in the
fast dynamics, now linear, the existence of the flux-type fluctuations feedback in (4.6) in
the limit of infinite scale separation "! 0, is only possible in condition of marginal stability.
Any negative growth rate would cause an exponentially fast damping of the fluctuations
on the fast time scale, corresponding to their instantaneous decay on the slow time scale,
and conversely any positive growth rate would preclude the convergence of the fluctuation
feedback, breaking the posited scale separation. While the first case, Re{æ} < 0, does not
invalidate the QL assumptions, allowing for a filtered dynamics where the slow field evolves
without the collective effect of fluctuations, the second case, Re{æ} > 0, requires the restoration
of the non-linear terms in the fast dynamics and the co-evolution of the two fields until a
marginally-stable state is approached again.
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Dropping the subscript 0 to simplify the notation and substituting the ansatz (4.8) into (4.6)-
(4.7), the coupled dynamics is described by an initial value problem for the mean field U and
an eigenvalue problem for the fast modes ¥̂:

@U
@T

+U
@U
@x

= F (z,T )°∫U °2k2|A|2|'̂|2 +D
@2U
@z2 , (4.9)

æ¥̂=
µ
°1+k2U °k4 + @2

@z2

∂
¥̂¥ L¥̂ . (4.10)

For clarity purposes, we have denoted with ¥̂ the eigenfunctions associated with the eigenvalue
problem (4.24), in principle defined for any growth rate, and with '̂ the neutrally stable fast
mode that feeds back on the slow field only in condition of marginal stability. Thus '̂¥ ¥̂when
Re{æ} = 0.

The backbone of the model, consisting of an initial value problem for the slow variable and an
eigenvalue problem for the fast one, reoccurs in this 2D example with the major differences
from the 1D model problem being the k-structure of the fluctuations and the dependence of
the mean field on slow x. The latter feature, introduced by the convective term in (4.9), allows
for the interaction between low Fourier modes, turning the strict mean U in a slowly spatially
varying mean (hence the categorization under Generalized Quasi Linear model).

Although of fundamental importance in the real stratified flow system, for purposes of simpli-
fications, the dependence of U on the slow coordinate x (and thus the presence of convective
term) will be from now on neglected, postponing its investigation to future work.
The elimination of the slow spatial coordinate x from (4.9)-(4.10) leads to the following strict
QL system:
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= F (z,T )°∫U °2k2|A|2|'̂|2 +D
@2U
@z2 (4.11)

æ¥̂=
µ
°1+k2U °k4 + @2
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∂
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where the average over the fast spatial coordinate ¬ in (4.5) is now interpreted as a strict

streamwise average.
We point out that the marginal stability requirement (i.e. Re{æ} = 0), necessary for the feedback
term in (4.23) not to blow up (see § 3.3), has been already taken in to account substituting a
zero growth rate while fast averaging over ø and ¬.

Similarly to the scenario presented in the previous chapter for the 1D model problem, the
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coupling of the system in condition of marginal stability occurs via the modal amplitude A(T )
which is a priori unknown. The impossibility of deriving an amplitude equation enforcing
the solvability of the higher order terms in (4.3), due to the lack of a closure in the system,
requires a different constraint to be imposed. Michel and Chini have shown that in such a type
of slow-fast quasilinear systems, it is possible to determine the amplitude A(T ) leveraging the
self-tuning of the slow dynamics towards a marginally stable state [Michel and Chini (2019)].
In other words, when a zero growth rate is attained, the fluctuation dynamics is slaved to the
mean field in order to maintain its marginal stability.

Retracing the main logical steps of this approach (illustrated in detail in § 3.3), an expression
for the slow evolution of the growth rate, Re{@Tæ}, can be obtained as a first order correction
of the time-perturbed eigenvalue problem (4.24). However the presence of the new spatial
coordinate ¬ introduces the dependency of the eigenvalue problem on the wavenumber k,
requiring an additional constraint in order to ensure the marginal stability condition in time.
Not only the time derivative of the growth rate but also its partial derivative with respect to k
must vanish when marginal stability is satisfied. More simply, the tangency condition to the
marginal-stability manifold in time has to be satisfied by the fastest growing mode, implying

@T Re{æ}
ØØØØ
kmax ,T

= 0 ^ @k Re{æ}
ØØØØ
kmax ,T

= 0 (4.13)

Figure 4.1 – Schematic of the time dependent dispersion relation æ(T,k). Black dashed lines
represent the growth rate of the of the fastest growing mode at a fixed time T for which @kæ= 0.

Pragmatically the eigenvalue problem (4.24) must be solved multiple times, i.e. for varying k,
to find the mode that first undergoes an instability. Moreover the number of marginally stable
modes and the wavenumbers associated with each of them can change in time, requiring for
the last step to be repeated, in principle, at each time iteration. Since the eigenvalue problem
is the core of the slow-fast QL systems presented in this work, as well as the computational
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bottleneck, it is of fundamental importance to develop an algorithmic procedure for the
prediction of the wavenumber k in the condition of marginal stability.

4.3 Algorithm for Strict QL Models

In the remainder of this section we present an algorithmic structure for the slaving of the
fluctuation amplitude to the mean field in condition of marginal stability as well as a new
methodology to predict the wavenumber k associated fastest growing mode, respectively in
condition of marginal stability and below it. For the moment the we will limit the complexity
to one marginally stable/growing mode.

4.3.1 Slaving of the amplitude and prediction of the wavenumber of the marginally-
stable mode

From a geometrical point of view the real part of the time-dependent dispersion relation
æ(T,k), pictured in figure 4.2, is represented by a three-dimensional landscape that can
be described as a continuous parametrised surface in R3. Defining a continuous mapping
function ° : A !R3, where A µR2, a generic parametrisation of a surface is given by

°(T,k) = (°1(T,k),°2(T,k),°3(T,k)) (4.14)

However, being ° a locally injective map by construction, the specific choice for the parametric
equations °1(T,k) = T , °2(T,k) = k can be made and the surface can be described as a graph

°(T,k) = (T,k,Re{æ(T,k)}) (4.15)

For reasons of simplification, the real and the imaginary part of æ and its derivatives will be
denoted, from now on, making use of the subscript r and i respectively:

@nær = @n Re{æ} and @næi = @n Im{æ} (4.16)

The requirements of marginal stability to be satisfied by the fastest growing mode at each time
results in the presence of a ridge (curve in R3) on the surface °, that lies in the horizontal plane
(T,k,ær = 0), and it is characterized by rær = 0 at each point.

Formally, a parametrised curve ∞ on a surface ° is described as a pair of smooth curves µ and
∞ satisfying ∞= °±µ. The plane curve µ is said to be the coordinate curve of the pair and in
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this case it is the projection of ∞ onto the bi-dimensional space spanned by T,k

µ(T ) = (T, g (T )) (4.17)

where µ : I !R2, with I µR and g (T ) is a smooth function g : I !R.

The function ∞, describing the ridge, is then uniquely determined by the composition ∞= °±µ

∞(T ) = (T, g (T ),æ(T, g (T ))) = (T, g (T ),0) (4.18)

given that the ridge is the intersection between the three-dimensional landscape and the
plane at ær = 0.

It follows that, at each time T , the function g provides the k-coordinate kM = g (T ) of the
saddle point M on the ridge ∞ that satisfies

ær (T,kM ) = 0,

@kær |(T,kM ) = 0,

@Tær |(T,kM ) = 0 .

(4.19)

Figure 4.2 – Schematic of the time dependent dispersion relation æ(T,k) as a continuous
surface in R3. The black lines represents the curve ∞, obtained from the intersection between
the surface ° and the horizontal k °T plane at Re{æ} = 0.

Within this framework the prediction of the wavenumber k in condition of marginal stability
translates into deriving an evolution equation for the function g (T ) enforcing the propagation
in time of the saddle point properties (4.19) along ∞.
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Indicating with M = (TM ,kM ) a point on the ridge and with ±̄ the tangent vector to the curve ∞

±̄= ∞0 =
µ
1,

d g (T )
dT

∂
(4.20)

the Taylor expansion of the growth rate around M along the ridge reads
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where the marginal stability condition at M and the saddle point conditions (4.19) have been
imposed in the last line of (4.21). Requiring then the preservation of marginal stability along ∞
in (4.21), i.e. ær ((T,k)M +¢±̄) = 0, or equivalently a zero Gaussian curvature of the surface ° at
the point M , yields an evolution equation for g (T )
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Consistently with this notation the coupled evolution of the slow and the fast variables,
described by (4.23) and (4.24) can be re-written as
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= F (z,T )°∫U °2g (T )2|A|2|'̂|2 +D
@2U
@z2 (4.23)
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with the main difference being the explicit lack of any k-dependency of the slow dynamics.
While the eigenvalue problem for the fast modes is well defined at any point on the surface °
and therefore for any wavenumber k, the fluctuation feedback on the slow dynamics is given
only by the neutrally stable eigenmodes on the ridge ∞, for which the wavenumber is defined
as a function of time, g (T ), yielding

@L
@k

ØØØØ
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=
µ
2kU °4k3

∂ØØØØ
M

= 2g (T )U °4g (T )3 . (4.25)
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It follows that the neutral eigenfunctions '̂ are only a function of space and time and do not
depend on the wavenumber k, '̂= '̂(z,T ). We stress the point that while the evaluation of the
generic eigenfunction ¥̂ at a point M on the ridge is exactly '̂

¥̂M = ¥̂(z,T,k = g (T )) = '̂(z,T ) , (4.26)

their derivatives are different

@'̂
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= d ¥̂
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= @¥̂
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@k
d g (T )
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. (4.27)

The determination of a fluctuation amplitude able to maintain the marginal stability of the
slow dynamics in time (@Tær |M = 0 and @kær |M = 0), and the prediction of the corresponding
wave number via (4.22), both require to access the first and second derivatives of the growth
rate ær (k,T ). In order to construct these derivatives we make use of perturbation analysis. In-
finitesimally perturbing the eigenvalue problem (4.24) in k and T such that it can be expanded
in series
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and collecting terms order by order the following boundary values problems are obtained
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where the operator L is defined as L = L°æ.

Because L is a singular operator by construction, the existence of the solutions of these
boundary value problems has to be ensured imposing a solvability condition.
Defining the L2 inner product for two functions √1(x) and √2(x) as

≠
√1(z)

ØØ√2(z)
Æ
=

ZL

0
√1(z)§√2(z)d z , (4.36)

the Fredholm Alternative theorem states, in the context of singular boundary value problems,
that for the generic problem L u = f (plus boundary conditions) to be solvable the right-
hand-side f has to be orthogonal to the null space of the adjoint operator L

†. In other words,
denoting with √n and √†

n the eigenvectors of the direct and adjoint operators respectively
associated with the the eigenvalues ∏n , the solvability of L u = f requires

D
f
ØØØ√†

0

E
=

D
L u

ØØØ√†
0

E
=

D
u

ØØØL †√†
0

E
= 0 (4.37)
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in which case the direct problem has infinitely many solutions

u =C√0 +
1X

n=1

D
f
ØØØ√†

n

E

∏n

D
√n

ØØØ√†
n

E√n . (4.38)

By inspection of (4.24) we notice that the linear operator L is again singular and self-adjoint
as in the 1-dimensional case, meaning that its eigenvalues are real and the corresponding
eigenvectors can be chosen real.

Imposing then the solvability condition (4.37) to the boundary value problem at order O(¢T )
(4.31) ø

LM
@¥̂

@T

ØØØØ
M

ØØØØ¥̂
†
M

¿
=

ø
@¥̂

@T

ØØØØ
M

ØØØØL
†
M ¥̂†

M

¿
= 0 (4.39)

and making use of the self-adjoint nature of the operator L in this specific problem, we obtain

ø
LM

@¥̂

@T

ØØØØ
M

ØØØØ¥̂M

¿
=°

ZLz

0

µ
@L
@T

ØØØØ
M

∂
|¥̂M |2d z + @æ

@T

ØØØØ
M

ZLz

0
|¥̂M |2d z = 0 (4.40)

where
@L
@T

= k2 @U
@T

= k2
µ
F °∫U +D

@2U
@z2

∂
°2k2|A|2g 2|'̂|2 (4.41)

and
@L
@T

ØØØØ
M

= g 2
µ
F °∫U +D

@2U
@z2

∂
°2|A|2g 4|'̂|2 (4.42)

given that kM = g (T ).
Making the following choice for the normalization of the eigenfunctions

≠
¥̂
ØØ¥̂

Æ
=

ZLz

0
|¥̂|2d z = 1 (4.43)

the solvability condition directly yields an evolution equation for æ on slow time

@æ

@T

ØØØØ
M

= g 2
ZLz

0

µ
@U
@T

∂
|¥̂M |2d z . (4.44)

Substituting

@æ

@T

ØØØØ
M

= g 2
ZLz

0

µ
F °∫U +D

@2U
@z2

∂
|¥̂M |2d z °2g 4|A|2

ZLz

0
|¥̂M |2|'̂|2d z . (4.45)

from which an expression for the fluctuation amplitude can be derived imposing the marginal
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stability constraint @Tær |M = @Tæ|M = 0 when æ= 0,

|A(T )| =
s

Æ

2g 2Ø
(4.46)

with

Æ=
ZLz

0
(F °∫U °D@2

zU )|'̂|2d z , (4.47)

Ø=
ZLz

0
|'̂|4d z . (4.48)

Analogously to the 1D model problem presented in the previous chapter, the evolution equa-
tion of the growth rate has the form

@æ

@T
= g 2Æ°2g 4|A|2Ø (4.49)

where the sign of the integrals Æ and Ø is responsible for the existence of an amplitude A,
even when marginal stability is attained, as discussed in § 3.4: negative values of Æ bring the
system towards more stable states (@Tæ< 0), while negative values of Ø cause bursting events
(@Tæ> 0). However, differently from the 1D case, here Ø is positively definite disallowing for
the latter scenario.

The need for the computation of the second derivatives of the growth rate @2
Tæ and @k@Tæ

requires to solve for the first order correction of the eigenfunction @T ¥̂|M as well.
When dealing with a generic singular boundary value problem L u = f , as in this case, this can
be done by means of the generalized inverse obtained through applying a QR decomposition,
which practically solves

L up = f °
D

f
ØØØ√†

0

E
√†

0 (4.50)

where√†
0 2 ker (L †) and up is a particular solution of L u = f that minimizes the least squares

error ∞∞L u ° f
∞∞2 . (4.51)

The general solution of the system is then defined up to an arbitrary multiple of the null
eigenfunction √0 (L√0 = 0)

u =C√0 +up (4.52)

from which a specific solution can be selected imposing the orthogonality of u with respect to
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√0,
≠

u
ØØ√0

Æ
= 0, yielding

C =°
≠

up
ØØ√0

Æ
≠
√0

ØØ√0
Æ . (4.53)

Returning to the boundary value problem (4.31) at order ¢T , we obtain for the first order
correction of the eigenfunction

@¥̂

@T

ØØØØ
M

=C1¥̂M +
µ
@¥̂

@T

∂

p

ØØØØ
M

(4.54)

and for the multiplicative constant C1

C1 =°
*µ

@¥̂

@T

∂

p

ØØØØ
M

ØØØØØ¥̂M

+
(4.55)

where the normalisation choice (4.43) has been substituted. The orthogonality between the
homogeneous solution ¥M and the solution @T ¥̂|M is, in this case, equivalent to enforcing the
preservation of the norm

@

@T

≠
¥̂M

ØØ¥̂M
Æ
= 2

ZLz

0

@¥̂

@T

ØØØØ
M
¥̂M d z = 0 . (4.56)

By applying the same conceptual steps, just exposed for the boundary value problem (4.31),
namely

1. determination of the derivative of the growth rate via Fredholm Alternative

2. imposing the saddle-point properties in condition of marginal stability

3. computation of the correction of the eigenfunction via the generalized inverse algorithm
and conservation of the norm

to the problem at order O(¢k), and only the first step to the boundary value problems at
second order (4.33)-(4.35),we obtain the following expressions:

O(¢k)
@æ

@k

ØØØØ
M

= 2g
ZLz

0
U |¥̂M |2d z °4g 3 (4.57)

which leads, after imposing the marginal stability constraint @kæ|M = 0, to the integral relation

2g 2 =
ZLz

0
U |¥̂M |2d z , (4.58)
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and solving for @k ¥̂|M
@¥̂

@k

ØØØØ
M

=C2¥̂M +
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∂
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ØØØØ
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(4.59)

with
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(4.60)
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(4.61)

O(¢k)2

@2æ

@k2

ØØØØ
M

=°8g 2 +4g
ZLz

0
U ¥̂M

@¥̂

@k

ØØØØ
M

d z (4.62)
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ØØØØ
M

d z
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(4.63)

where Æ and Ø are defined in (4.47) and (4.48) respectively, and the corrections of the eigen-
function by (4.59) and (4.54).

The conceptual distinction between the eigenfunctions ¥̂ and '̂ and their dependencies is of
fundamental importance for the computation of the latter derivative (4.63). The construction
of @2

Tæ|M indeed requires to take the second derivative in time of the operator L on the ridge

LM
@2¥̂

@T 2

ØØØØ
M

=° @2L
@T 2

ØØØØ
M
¥̂M °2

@L
@T

ØØØØ
M

@¥̂

@T

ØØØØ
M
+ @2æ

@T 2

ØØØØ
M
¥̂M (4.64)

and consequently the time derivative of the evolution equation of the slow field U

@2U
@T 2 = @

@T
(F °∫U +D

@2U
@z2 )°4g

d g
dT

|A|2|'̂|2 °4g 2|A|d A
dT

|'̂|2 °4g 2|A|2'̂ @'̂
@T

(4.65)

where the time derivative of the eigenfunction '̂ is given by (4.27). Once the derivative @T '̂

has been taken correctly, the eigenfunction '̂ can be replaced by ¥̂M yielding the result in
(4.63).
Substituting the second derivatives of the growth rate into (4.22), the final evolution equation
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for the wavenumber of the neutrally-stable mode reads

d g
dT

=°
RLz

0 U '̂@T ¥̂|M d z

8g 2 °
RLz

0 U '̂@k ¥̂|M d z
. (4.66)

4.3.2 Prediction of k from differential geometry considerations

An alternative approach to derive an evolution equation for the wavenumber of the marginally-
stable mode is based on using differential geometry considerations to express curvature prop-
erties of the æ(T,k)-landscape, given by (4.15), along the ridge ∞ (4.18). In this section we aim
to show how the propagation of the saddle point properties along a direction constraints the
shape of the parametrised surface ° along that direction and how an equivalent expression to
(??) can be derived just from the intrinsic properties of the surface itself.

Considering the parametrised surface (4.15), describing the time-varying dispersion relation
æ(T,k), re-written here for convenience,

(T,k) ! °(T,k) = (T,k,ær (T,k)) (4.67)

and its derivatives
°0T = (@T°1,@T°2,@T°3) = (1,0,@Tær ) (4.68)

°0k = (@k°1,@k°2,@k°3) = (0,1,@kær ) (4.69)

at any coordinate point P = (T,k) 2 A the tangent space Tp° to the surface in p is defined as
the vectorial space spanned by °0T and °0k evaluated at the point p. The tangent space is then
uniquely identified by the normal vector N

N =
°0T £££°0k

||°0T £££°0k ||
(4.70)

whose derivatives N
0
T and N

0
k lie in the tangent space Tp° (since N is normalized @ j |N |2 =

2
≠
@ j N

ØØN
Æ
= 0) and carry information about the curvature properties of °. However in order

to have a formulation that is invariant under re-parametrisation, the curvature of a surface
is often described making use of the concept of shape operator, rather than via the normal
vector N .
Defining the shape operator, or Weingarten mapping, as the endomorphism mapping elements
within the tangent space TP° onto the directional derivative of the (normalized) surface
normal vector N

W =W : TP°! TP° , (4.71)
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W (°0T ) =°N
0
T and W (°0k ) =°N

0
k (4.72)

its matrix representation with respect to the basis °0T , °0k is given by

W =
√

a c
b d

!
, (4.73)

where W (°0T ) = a°0T +c°0k and W (°0k ) = b°0T +d°0k , and the coefficients are given in terms of
first and second partial derivatives of ær with respect to k and T , as shown below.

Re-calling the definition of the first fundamental form of a parametrisation as the linear map
that restricts the inner product canonically induced in R3 to the tangent space Tp°

Ip : Tp°!R (4.74)

Ip (u, w) = Ip (e°0T + f °0k , g°0T +h°0k )

= eg
≠
°0T

ØØ°0T
Æ
+ (eh + f g )

≠
°0T

ØØ°0k
Æ
+ f h

≠
°0k

ØØ°0k
Æ

= eg E + (eh + f g )F + f hG

(4.75)

and the definition of the second fundamental form as the linear map

I Ip (u, w) = hW (u)|wi=
≠
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ØØm°0T +n°0k

Æ
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≠
°0T

ØØW (°0T )
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≠
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ØØW (°0T )
Æ
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≠
°0T

ØØW (°0k )
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≠
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ØØW (°0k )
Æ
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≠
°00T T

ØØN )
Æ
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≠
°00T k

ØØN
Æ
+nl

≠
°00kk

ØØN
Æ

= mi L+ (ni +ml )M +nl N

(4.76)

(here expressed with respect to the basis °0T , °0k ), the explicit form of the shape operator W
can be constructed from the matrix representations of the these fundamental forms as

W =
√

a c
b d

!
=

√
E F
F G

!°1 √
L M
M N

!
. (4.77)

Defining the eigenvectors vi of the shape operator W as principal directions of the tangent
space Tp°, and the corresponding eigenvalues ∏i as principal curvatures (whose product
defines the Gaussian curvature of °), an expression for the normal curvature, ∑n , of ° in the
direction vi , follows from (4.76)

∑n = I Ip (vi ) = vi W (vi ) =∏i (4.78)
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which actually corresponds to the normal curvature of all the curves on the surface °, with
tangent vector vi in p, and a definition

When considering a specific point p = M on the ridge ∞, where all the points are saddle points,
the conditions (4.19) enforce zero first derivatives of the growth rate and the tangent plane
TM° is represented by an horizontal plane spanned by the tangent vectors °0T = (1,0,0) and
°0k = (0,1,0) and with normal N = (0,0,1), therefore the shape operator W at M simplifies to

W =
√
@2

Tær @T @kær

@T @kær @2
kær

!
(4.79)

Re-writing the tangent vector ∞0 to the ridge ∞ in M

∞0 =
µ
1,

d g (T )
dT

,0
∂
= °0T + d g (T )

dT
°0k (4.80)

the propagation the saddle-point properties (4.19) along the curve ∞ then requires from a
geometrical point of view to enforce a zero normal curvature ∑n in the direction of tangent
vector ∞0

W ∞0 =
√
@2

Tær @T @kær

@T @kær @2
kær

!µ
1,

d g (T )
dT

∂
= (0,0) (4.81)

which automatically implies that one of the eigenvalues of the shape operator W vanishes and
so will the Gaussian curvature along the curve ∞. In other words this is equivalent to state that
the operator W is singular and that the tangent vector ∞0 lies in the nullspace of W .

While enforcing the condition of a zero eigenvalue of W , after the explicit diagonalisation of
the operator, yields the following relation between the second derivatives of ær

°
@2

kær
¢°
@2

Tær
¢
= (@T @kær )2 . (4.82)

the constraint of zero normal curvature in the direction ∞0 (4.81) yields the two following
conditions

@T @kær
d g (T )

dT
+@2

Tær = 0,

@2
kær

d g (T )
dT

+@T @kær = 0
(4.83)
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which become identical when substituting (4.82) providing a single ordinary differential
equation for the evolution of g (T ).

@2
kær

d g (T )
dT

+@T @kær = 0 (4.84)

The linear ordinary equation derived here from differential geometry considerations appears
to differ from the formally nonlinear condition (4.22) derived by second-order Taylor expan-
sion along the ridge. However, squaring condition (4.84), dividing by @2

kær and using (4.82) to
replace the squared mixed derivative exactly yields (4.22). Consequently, the evolution equa-
tions derived by Taylor expansion at quadratic order and by differential geometry arguments
are consistent with the former being essentially the square of the later. This reflects the fact
that both approaches capture curvature information, either via including the quadratic terms
in the Taylor expansion or via the shape operator. Nevertheless, there appear to be possible
practical advantages of using the more abstract machinery of differential geometry:

1. The evolution equation for g (T ) is linear. In this specific model problem only after
computing the expressions for all second derivatives and after simplifications, the
(dT g (T ))2 terms in (4.22) drops out and a linear form is recovered.

2. The analytical calculations and numerical evaluations necessary to access all three
second derivatives may vastly differ in complexity. Computation of @2

Tær is in general
significantly more involved than accessing @2

kær and the mixed term @T @kær due to the
computation of the time-derivative of the fluctuations feedback (induced by @2

T U ) which
requires the differentiation of the eigenfunction '̂ along the ridge and of the amplitude
expression (namely of Æ and Ø which also involves U and '̂). The determination of
@2

Tæ in condition of marginal stability, already fairly in the case of a 2D model problem,
as shown in § 4.3.1, will highly increase in complexity for a system like the stratified
flow problem where the linear operator is not self-adjoint and the eigenfunctions can
not be chosen real. Here, the relation between second derivatives (4.82) allows for
the elimination of @2

Tær and thereby for a substantial simplification of the algorithm.
Alternatively, the relation can be used to test calculations and accuracy of numerical
implementations.

4.3.3 Prediction of the wavenumber of the fastest growing mode below marginal
stability

The linear evolution of the fluctuations together with the infinite scale separation make the
coupling between the fast and the slow dynamics relevant only when marginal stability is
reached. The convergence of the feedback term is indeed not realized for positive growth
rates and equals zero for negative ones. The first case lies outside the (asymptotically justified)
QL approximation due to the lack of scale separation, and the second one corresponds to
an instantaneous decay of the fast modes on the slow time scale leading to the simplified
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dynamics

@U
@T

= F (z,T )°∫U +D
@2U
@z2 (4.85)

æ¥̂=
µ
°1+k2U °k4 + @2

@z2

∂
¥̂¥ L¥̂ . (4.86)

Considering a scenario where the fluctuations are initially stable, their growth rate æ will
gradually increase due to their advection by the mean field (on which an external force is
acting), until the marginal stability condition is eventually met by the fastest growing mode
and the coupled QL dynamics is recovered. Although the cumulative effect of the fast modes
does not affect the slow dynamics it is of fundamental importance to track their evolution in
order to detect the mode that first approaches the marginally-stable manifold and gets slaved
to the mean field. In the remainder of this section we derive an algorithm for the prediction of
the wavenumber of the fastest growing mode below marginal stability under the assumption
of infinite scale separation.

Referring again to the time-varying dispersion relation as a three-dimensional surface, we
indicate with Q = (TQ ,kQ ) a point on the landscape for which æQ < 0 and the maximum
condition in k, @kæ|Q = 0, is satisfied. The prediction of the wavenumber k for the fastest
stable growing mode then only requires the propagation of the maximum property in time.
Expanding in a Taylor series at the first order the derivative of the growth rate @kæ around the
point Q

@æ

@k
(TQ +¢T,kQ +¢k) ' @æ

@k

ØØØØ
Q
+ @2æ

@k2

ØØØØ
Q
¢k + @2æ

@T@k

ØØØØ
Q
¢T (4.87)

and enforcing the maximum condition in k, an evolution equation for the wavenumber is
obtained

¢k
¢T

=°
@T (@kæ)|Q
@2

kæ|Q
. (4.88)

From the geometrical point of view this case substantially differs from the marginally-stable
one presented in the previous section. While the maintenance of the marginal stability
condition imposes constraints on æ and on both its first derivatives (hence the second-order
Taylor expansion of the growth rate) generating the existence of a flat ridge on the landscape,
the propagation of the maximum property only constraints the first derivative of the growth
rate allowing for a ridge with a non-zero Gaussian curvature.

Nevertheless, similarly to the previous case, the prediction of the wavenumber requires the de-
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termination of the second derivatives of the growth rate. The computation of these derivatives
can be done either using perturbation analysis and solvability condition at the second order,
as detailed in the previous section, or alternatively with the following procedure:

• taking the first derivative of the eigenvalue problem (4.86)

• applying the solvability condition on the parameter dependent boundary value problem,
resulting from the previous step, to obtain the first derivative of the growth rate

• differentiating the first derivative of the growth rate and evaluating it at the specific
point Q.

with the main difference being the order of differentiation, evaluation and projection onto the
null-space of L (Fredholm alternative).

While both procedures, explicitly leads to the same result for the second derivative with respect
to wavenumber k,

@2æ

@k2

ØØØØ
Q
=°8k2 +4k

ZLz

0
U ¥̂Q

@¥̂

@k

ØØØØ
Q

d z , (4.89)

they seemingly do not for the mixed derivative @k (@Tæ)|Q .

The first methodology, which requires the second order differentiation of the eigenvalue
problem (4.86) in k and T evaluated at the point Q and then the application of the solvability
condition, gives
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ØØØØ
Q
= 2k

ZLz
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(4.90)

while the second approach yields the two following results, depending on whether the first
derivative is taken with respect to k or T ,
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∂ØØØØ
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and
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∂ØØØØ
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Although apparently different, the three expression (4.90)-(4.92) can be proven to be identical
confirming the interchangeability of the two approaches. The analytical proof in the case of a
self-adjoint operator is provided in § B, and the numerical one can be obtained showing that
the following relation among the derivatives of the eigenfunction is satisfied

2
ZLz

0
U ¥̂Q

@¥̂
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ØØØØ
Q

d z = k
ZLz

0

µ
F °∫U +D

@2U
@z2

∂
¥̂Q

@¥̂

@k

ØØØØ
Q

d z . (4.93)

Substituting the expressions (4.89) and (4.91) into (4.88) the final evolution equation for the
wavenumber of the fastest growing mode reads

¢k
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RLz
0 (F °∫U +D@2

zU )|¥̂Q |d z +2k2 RLz
0 (F °∫U +D@2

zU )¥̂Q@k ¥̂|Q d z

°8k2 +4k
RLz

0 U ¥̂Q@k ¥̂|Q d z
. (4.94)

4.3.4 On the finite scale separation and smoothness of the algorithm

The algorithmic structure presented in this chapter for the slaving of the fluctuations ampli-
tude in condition of marginal stability and for the prediction of the wavenumber associated
with the fastest growing mode (both for zero and negative growth rates) assumes the presence
of an infinite scale separation between the fluctuations and the mean field dynamics. This
fundamental assumption naturally gives rise to a non-smooth algorithm characterized by
a discontinuous fluctuation feedback on the slow dynamics for smoothly-varying values of
the growth rate: the fast modes do not affect the mean field whenever æ< 0, and they have a
finite amplitude when æ= 0. As shown in the previous chapter in the case of a 1-dimensional
model problem (§3.4.2), a smooth version of the QL algorithm can be derived when taking
into account a finite scale separation and allowing for a marginal growth/decay of the fast
fluctuations near marginal stability. In such a case, by inspection of the feedback term (),
re-written here with a finite yet large ø f = T f /",

µ
@¥

@¬

∂2

= 2k2|A|2|¥̂|2 "

T f

ZT f /"

0
e2æødø= 2k2|A|2|¥̂|2 f (æ) (4.95)

it is possible to identify the values of æ for which the function f (æ) is negligible (below a
certain threshold value ±) or finite (within an interval 1°± and 1+±) by solving the inequalities
(3.28) and (3.29). The resulting values of the growth rate, æ1,æ2 and æ3(with æ1 <æ2 < 0 <æ3),
bound the validity regions of the QL reduction for finite scale separation: the mean field U
evolves without fluctuation feedback when æ<æ1, and a fluctuation amplitude is determined
when æ2 < æ < æ3. The remaining connecting region, represented by values of the growth
rate æ1 <æ<æ2 for which none of the QL approximation is suitable, finally requires the fully
non-linear co-evolution of the two dynamics on the same temporal scale, described by (4.1)
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and (4.2), until the marginally stable region is reached (namelyæ2 <æ<æ3). Similarly it should
be treated the case in which positive growth rates æ>æ3 are realized, here only possible for
unstable initial conditions due to the positive definiteness of the term Ø (4.48), whose sign is
responsible for bursting events.

However, although in principle possible, the implementation of a smooth variation of the
QL algorithm in the context of this specific model problem would require to address some
practical issues arising from the simplification choices made in the derivation of QL algorithm.
The elimination of the slow spatial coordinate x, via a stream-wise horizontal average, from
(4.9) in order to get a strict QL formulation of the original system leads indeed to a reduced
system characterized by a stream-wise invariant mean field and by k-structured-only fluc-
tuations, which is in contrast with the full two-dimensionality of the original system, where
both U and ¥ depend on x and z. The implementation of a co-evolution technique within
the QL framework will then require either the reintroduction of the convective term in (4.23)
(resulting in a GQL formulation) or an ad-hoc modification of the original equations that
drops the x-dependent terms in the evolution of the slow variable only. Consequently, here
we focus on the infinite scale separation case, only considering scenarios with either stable or
marginally stable fluctuations.
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4.4 Numerical Implementation and Results

In this section we investigate the dynamics of the reduced system, described by (4.9)-(4.24),
and show the effectiveness of the algorithmic structure proposed for the prediction of the
wavenumber of the fastest growing mode. This will be done comparing the results from two
different versions of the QL algorithm, where the first one performs a rudimentary update of
the wavenumber solving the eigenvalue problem multiple times for different k (which it will
be referred to as k-search algorithm), while the second one predicts it solving the evolution
equations (4.66),(4.88) derived in the previous sections (k-prediction algorithm). We eventually
compare the reduced QL dynamics against the fully non-linear one obtained from the finite-"
direct numerical simulations of (4.1) and (4.2).

4.4.1 Numerical Setup

The implementation of the three different algorithms, the two QL schemes and the DNS, has
been carried out with an in-house Python code based on the open-source software Dedalus (),
which provides a flexible framework for the integration of partial differential equations and for
solving various type of eigenvalue and boundary value problems with spectral discretisation
in space. All the simulations are performed in a periodic domain of length Lx £Lz for the
DNS and Lz for the QL scheme. We remark that the reduced QL dynamics (4.23)-(4.24), after
discarding the convective term in (4.9), is streamwise invariant for the slow field and only
allows for a k-structure in the fast modes. In order to capture the variations of the fast modes,
the minimum size of the domain length Lx for the DNS is set by the scale separation " between
the slow and the fast dynamics and by the wavenumber of the mode the first becomes unstable,
namely Lx ∏ (2º/g (T ))". The discretisation is done using Fourier modes in both directions
(Nx , Nz ) for the DNS and Chebyshev modes (Nz ) for the QL model. Although not optimal
in the case of a periodic domain, the latter choice has been dictated by the need of solving
eigenvalue problems with non-constant coefficient within the Dedalus framework, at the
moment only possible with a Chebyshev discretisation.
For all the simulations a 4th-order Runge-Kutta scheme has been used for the time-integration
with time-step d t = 10°3 for the DNS and dT = 5 ·10°3 for the QL. Ultimately, for the sim-
ulations of the QL dynamics without the k-prediction, a k-resolution for the update of the
fastest growing mode has been set to dk = 5 ·10°4. The numerical details and parameters are
summarized for the different numerical schemes in table 4.1.

Lx Lz Nx Nz d t d k "

D N S 2º 2º 128 64 10°4 – 10°2

QL – 2º – 64 5 ·10°3 5 ·10°4 –

Table 4.1 – Numerical parameters used in this study. Lx and Lz being the domain sizes, Nx

and Nz the number of collocation points, d t the t-step, dk the accuracy for the update of the
wavenumber and " the scale separation.
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The singular eigenvalue problem (4.24) at the basis of the QL algorithm is solved using the
Dedalus build-in sparse solver, based on the scipy.sparse.linalg.eig function which
computes a set of eigenvalues close to a given target value (æ= 0, in this specific case) using
Arnoldi iterations.

While the simplified version of the QL scheme, where the wavenumber of the fastest growing
mode is updated searching over k, only requires to solve multiple eigenvalue problems for
different k, the algorithm for the prediction of k requires an additional numerical procedure
to solve the singular boundary value problems (4.32) and (4.31). This has been done extending
the Dedalus solvers interface to use the SuiteSparse QR solver. Regarding the solvability of
a singular boundary value problem we would like to stress that, although the generalized
inverse method, mentioned in section 4.3.1, automatically imposes the Fredholm alternative
solving the least square problem (4.50), this is practically done numerically with respect
to an euclidean inner product (matrix product). However we aim at imposing a solvability
condition defined via the inner product on the functional space L2 which differs from the
inner product induced by the euclidean inner product of the vector of expansion coefficients
passed to the SPQR solver. Therefore the Fredholm alternative has to be explicitly imposed to
the right-hand-side of the problem before numerically solving it.

A complete overview of the QL algorithm proposed in this work, with and without the predic-
tion of the wavenumber k, is described in figure4.10.

4.4.2 Simulations of the QL dynamics and prediction of the wavenumber

In this study we focus specifically on the dynamics obtained when a space-and-time varying
external force is driving the mean field

F (z,T ) = 2.5+0.5cos(t )cos(z)+0.5sin(0.6t )cos(2z) (4.96)

and when the diffusive and viscous coefficients are chosen to be unit, D = 1 and∫= 1.

We set an initial condition from which the marginally-stable state can be reached, specifically

U (z,T = 0) = 1.9, ¥̂(z,T = 0) = 0, F (z,T = 0) = 2.5+0.5cos(z), (4.97)

where U has been chosen to be close enough to a condition of marginal stability for the
specific choice of the forcing term and of the parameters D and ∫. In this case the maximum
fluctuations growth rate, associated with the mode k = 0.975, is initially negative, æ=°0.094,
and the slow field U gets updated without any feedback from the fast modes, accordingly to
(4.85). Due to the external forcing F acting on U , the fluctuations get more and more unstable
until the marginal-stability condition is satisfied by the mode k = 1.0012 at time T = 0.18.
Starting from this moment the amplitude A of the marginally stable mode is set according
to (4.46) producing a restoring force on the slow field that maintains the growth rate at zero.
Figures 4.3 and 4.4 show the evolution over (slow) time of the locally maximum growth rate æ
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and the evolution of the corresponding wavenumber k, obtained from the elementary k-search
QL algorithm.
Practically, due to a finite time step d t , the growth rate approaches a finite value slightly larger
than zero. However as suggested by Chini et al. [Chini et al. (2022)], a d t-independent result
can be obtained correcting the fluctuation amplitude (4.46) by means of a damping factor ∏,
when æ is above a certain tolerance æ̃= 5 ·10°5.
Considering the variation of the growth rate between two time steps Tn+1 and Tn , and enforc-
ing an exponential decay with a factor ∏

æn+1 °æn = (Æ̃° Ø̃|A|2)dT =°æ
n

∏
(4.98)

(with Æ̃= g 2Æ and Ø̃= 2g 4Ø), the corrected amplitude results

|A|2 = Æ̃

Ø̃
+ æ

∏Ø̃dT
. (4.99)

Due to the absence of a symmetric marginally-stable region in this problem, as a result of
the infinite scale separation assumption, the choice of the tolerance æ̃ and of the damping
factor ∏ has to be carefully made. The combination of a too low threshold æ̃ together with a
too small ∏ would push the growth rate too close to zero with the risk for the realization of
slightly negative values, which would instantaneously set the fluctuation feedback to zero,
causing artificial discontinuities in the dynamics.

Figure 4.3 – Evolution of the growth rate æ over slow time T . The zoom region inset shows the
effect of the amplitude correction on the growth rate for 2 different damping factors ∏ (dashed
lines) against the uncorrected one (solid line).
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Figure 4.4 – Evolution of the of the wavenumber g (T ) associated to the fastest growing mode
obtained from the k-search algorithm for different discretisation values dk

The marginally-stable state reached by the system, shown in figure 4.6 , although not an
invariant solution of the full system from a dynamical system point of view, can be seen as a
non-linear state with a simplified evolution, where the collapse of the fast modes, now slaved
to the marginally stable mean field, gives rise to a low-dimensional dynamics.

As evident from figure 4.4 and 4.5, the wavenumber of the marginally-stable mode is, as ex-
pected in this model problem, varying in time, oscillating around 1. This requires to solve at
each time different eigenvalue problems for different k to identify the peak of the dispersion
relation æ(k), the more numerous the smaller the dk. Moreover we remark that being the
QL dynamics stream-wise invariant, the search has to be performed over a wide range of
wavenumbers k (theoretically infinite) highly impacting the wall-clock time of the simulation.
This limitation of the k-search algorithm becomes of fundamental importance for systems
whit a more complex dispersion relation, where different local maxima exist and evolve, and
for systems where multiple modes can become marginally-stable at the same time, making
the development of the k-prediction algorithm a necessity.

The efficacy of the new methodology developed in section 4.3.1 and 4.3.3 for the prediction
of the wavenumber in condition of marginal stability and below it, is shown in figure 4.7,
where the two QL algorithm are compared. The results presented below are obtained without
any amplitude correction (4.99), i.e. in the case ∏, æ̃!1, to highlight the robustness of the
k-prediction algorithm for non-zero values of the growth rate. The total number of eigenvalue
problems solved during the same simulation time, summing up to about 105 for the k-search
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Figure 4.5 – Time-dependent dispersion relation æ(T,k) obtained from the k-search QL algo-
rithm. The blue surface represents the evolution over slow time of æ(k) while the red curve
represents the ridge ∞ given by the evolution in time of the wavenumber of the neutral mode,
calculated by (4.66).

algorithm, (about 60 per time iteration when dk = 10°4) is lowered by the k-prediction pro-
cedure down to about 2 · 103. In the latter case one eigenvalue problem is solved at each
time iteration for the maximum wavenumber g (T ) and only two wide searches over k are
performed: the first one at time T = 0 to initialise the wavenumber given the initial condition,
and the second one when the marginally-stable manifold is approached, to smoothly connect
the two different prediction algorithms (4.94) and (4.66), valid for æ< 0 and æ= 0 respectively.
The evident agreement between the evolution of k (fig. 4.7) and the evolution of the mean
field resulting from the two different algorithms is even more remarkable considering the
modest variations of the wavenumber in this model problem (about 3%) and the fact that a
forward Euler scheme has been used to update k.

4.4.3 Validation of the QL dynamics against direct numerical simulations

In this section we aim to compare the dynamics resulting from the simulation of the fully
non-linear system (4.1)-(4.2) for which the final scale separation is set to "= 2 ·10°2 against
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Figure 4.6 – Spece-time evolution of the mean field U (z,T ) (left) and fluctuations ¥(z,T ) =
A(T )¥̂(z,T )+ c.c (right), obtained from the k-search QL algorithm.

the QL reduced dynamics presented in the previous section.

As explained in § 4.3.4, the strict QL formulation of the original system is obtained via a stream-
wise horizontal averaging procedure yielding an x-independent evolution equation for the
mean field U (z) and a ¬-varying dynamics for the fluctuations ¥(z,¬) which results in a varying
k within the eigenvalue problem formulation. On the contrary the fully non-linear system
spatially evolves in both the vertical and the horizontal directions, making the comparison of
the two dynamics non-trivial.
In order to overcome this difficulty, at least for validation and visualisation purposes, a fixed-
time comparison between the two systems can be obtained a posteriori reducing the domain
size Lx in the DNS the full system such that any x-variation of the mean field is suppressed (as
proposed by [Chini et al. (2022)]). Practically, once the QL dynamics is known, the wavenumber
g (T §) = 1.0033 of the most unstable mode at a specific time T § = 3 (when the system has
already approached the marginally-stable manifold) is chosen and a DNS is then performed
in a domain Lx = "2º/g (T §), small enough to disallow for x-variations of the mean field but
large enough to accommodate the fluctuation structure. Finally the 2-dimensional fields
UQL(x, z,T = T §) and ¥QL(x, z,T = T §) are re-constructed from the QL simulation via

U (z, x,T §) =U (z,T §) (4.100)

¥(z, x,T §) = A(T §)e(i g (T §)x) + c.c. (4.101)

Despite the finite value of " used for the simulation of the full system and the absence of
an amplitude correction in the QL simulation (translating in a æ= 0.001) the agreement be-
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Figure 4.7 – Comparison between the evolution of the wavenumber k associated to the fastest
growing mode obtained from the k-search algorithm (red and grey lines) and the k-prediction
algorithm (black line). The zoom region inset on the top figure shows the comparison in
condition of marginal stability where the wavenumber is updated accordingly to eq. (4.66),
while the inset in the bottom figure shows the comparison for negative growth rates, in which
case eq. (4.94) has been solved.

tween the results, visible in figure 4.8, confirms the great potential of the QL methodology in
capturing the dynamics of systems that self-tune towards marginally stable states. The only
difference, noticeable in the comparison of the fast modes (fig. 4.8 bottom row) is due to the
translation invariance of the system (4.1)-(4.2) along the x-direction that in combination with
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periodic boundary conditions allows for the x-shift of the fluctuations. Moreover, we point
out that unlike in [Chini et al. (2022)], where a steady state was approached in condition of
marginal stability, here, being the system non-autonomous, the marginally-stable dynamics is
represented by a non-linear evolution, making the results comparison at fixed time even more
noteworthy.

However, while the "-rescaling of the DNS domain size in the x-direction removes the x-
variability of the mean field, it also disallows for any k-variation in the neutrally-stable fluctua-
tions which remains fixed at g (T §). Figure 4.9 shows an attempt in comparing the temporal
evolution of the two systems when the evolution of the wavenumber of the most unstable
mode is allowed. In this case the DNS has been run in a x-domain "°1 times larger, Lx = 2ºwith
Nx = 128 grid points, which practically can accommodate about 50 copies of the marginally-
stable mode (being g (T ) order O(1)) allowing for k-variations of the latter. The x-dependency
of the mean field has then been averaged out in order to compare its space-time evolution, in
z-only, against the one from the QL simulation.

4.5 Conclusions

With the more ambitious goal of accessing in the future the fully three-dimensional stratified
flow dynamics, here we have taken a step forward in that direction increasing the dimension-
ality of the problem to two-dimensions. This modification introduces the horizontal spatial
variability of the dynamics, which appears in the QL formulation as a dependency on the
wavenumber of the eigenvalue problem describing the evolution of the fast dynamics. This
results in a temporal variation of the dispersion relation æ(T,k) and consequently in the tem-
poral variation of the wavenumber associated to the fastest growing mode. The enforcement
of the marginal stability constraint now requires to first identify the fastest growing mode
and then to determine its amplitude such that marginal stability can be maintained in time.
Practically the eigenvalue problem has to be solved for multiple k (and multiple is not a priori
defined due to the continuous variation of k) at each time iteration, considerably increasing
the computational costs of the QL simulation. The solution to this problem has been achieved
by deriving an evolution equation for the wavenumber of the marginally-stable mode. In
chapter 4 we presented and discussed, making use of a two-dimensional model problem, two
alternative (but equivalent) derivations in condition of marginal stability. Within a geomet-
rical description the evolution of the dynamics on the marginally stable manifold is strictly
connected to the curvature properties of the æ(T,k) landscape. The maintenance of zero
growth rates in time, automatically results in a zero Gaussian curvature of this landscape in a
specific k-direction, and the evolution of this direction yields at each time the wavenumber
associated to the marginally-stable mode. Starting from different considerations, an evolution
equation for the wavenumber of the fastest growing mode below marginal stability has also
been derived. Although for negative values of the growth rate the fluctuation feedback is
set to zero, this algorithm provides a feasible way to track the evolution of the maximum of
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Figure 4.8 – Comparison between the mean field U (z, x) (top) and the fluctuations ¥(z, x)
(bottom) obtained from the QL simulation (left) against DNS (right) for fixed time. The QL
simulation is performed in a domain Lz = 2ºwith Nz = 64 modes and the 2-dimensional fields
are re-constructed at time T§= 3 with a constant x-dependency for the mean field U (z, x) =
U (z) and via ¥(z, x,T §) = A(T §)exp(i g (T §)x)+c.c. for the fluctuations (with g (T §) = 1.0033).
As for the DNS the domain in the z-direction is identical to the QL while in the x-direction is set
to Lx = "2º/g (T §), with a resolution of Nx = 4 modes (with a Fourier transform interpolation).

the dispersion relation, allowing for a more precise detection of the time at which marginal
stability is satisfied.
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Figure 4.9 – Spatiotemporal evolution of the mean field U (z obtained from the QL simulation
(right) against the spatial average of U (z, x) resulting from DNS (left). Both simulations are
performed in a domain Lz = 2º with Nz = 64 modes.
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Figure 4.10 – Flowchart of the 2D QL algorithm with and without the prediction of the
wavenumber associated to the fastest growing mode.
Rectangular boxes indicate processes, the white ones for generic QL actions and the grey
ones for actions related to the update of the wavenumber k. if -statements are represented by
yellow diamond-shaped boxes, and their outcome by a continuous arrow-connection when
the if -condition is meet and with a dashed one otherwise.
The simulation starts with an initial wide k-search to identify the fastest growing mode
for the chosen initial condition U (z,T = 0). Specifically the eigenvalue problem (4.24)
is solved Nk times for varying k with a resolution dk, covering a range of wavenumbers
[k§ °dkNk /2,k§+dkNk /2] if the initial guess k§ is greater then dkNk /2 or [0,k§ °dkNk /2]
otherwise. Once the locally maximum growth rate has been singled out (together with the
corresponding wavenumber and eigenfunction ¥̂) its sign determines which QL reduction
is used to compute the fluctuation feedback in (4.23): the feedback is set to 0 when either
æ< 0 or (0 <æ<æ§ ^Æ< 0), the simulation breaks for æ>æ§, and an amplitude is computed
otherwise. Although when starting from stable initial conditions is not possible for this specific
system to leave the marginally-stable manifold due to bursting events (Ø is positive-definite)
the positive threshold æ§ has been introduced to detect initially-unstable states. After the
determination of the feedback the QL procedure bifurcates depending on whether the k-search
or the k-prediction algorithm is used. The former case simply proceeds updating the mean
field on slow time and re-starting a new search over k to find the æ-pick for the updated U ,
while the latter case enters the one of the two blocks (depending on the sign of æ) for the
computation of the wavenumber k associated to the mode that next will be the most unstable.
After the computation of k, via (4.94) or (4.66), which requires to solve one or two boundary
value problems for the corrections of the eigenfunction, the k-prediction algorithm sets Nk = 1,
updates U and goes back to the eigenvalue problem which this time will be solved only once
for the predicted k.
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Chapter summary

This chapter is dedicated to the application to the stratified flow problem of the integration
methodology developed for QL slow-fast systems in the previous chapters. After re-deriving
and discussing the asymptotically reduced system and its main features, we will re-trace the
fundamental steps of the QL procedure that lead to the slaving of the fluctuations dynamics in
condition of marginal stability [Chini et al. (2022)]. We will then further proceed presenting
the two dimensional extension of the QL algorithm for the identification of the marginally-
stable mode when a spatial variability of the fast dynamics is considered. This methodology
(discussed in § 4) will be applied to the reduced stratified flow system under two main approx-
imations: independence of the slow mean fields of the horizontal spatial coordinate (strict
QL formulation of the problem), and limitation to one single marginally-stable mode. We will
then discuss the algorithmic procedure to handle the termination of the marginally-stable
manifold and the presence of a finite scale separation (presented in § 3) together with its
limitations under the strict QL formulation.
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5.1 Introduction

Turbulence is ubiquitous in most of the geophysical flows relevant for the climate of the Earth,
particularly in the oceans and the atmosphere. Turbulence involves the interaction of a vast
range of spatiotemporal scales, as well as the coexistence of many physical phenomena. In
the oceans, where energy is injected at global scales, O(103 °104)km, and dissipation occurs
at the Kolmogorov scale, O(10)cm many different form of turbulence are manifest. At the
larger scales the combined effect of rotation and strong density stratification stirs the flow
mainly on quasi-horizontal planes coincident with isopycnals. At the so-called microscale,
O(1°100)m, turbulence is fully 3D and erodes the stable stratification. At this scale, the flow
naturally develops an anisotropic layer structure, characterized by a vertical length scale h that
is considerably smaller than the horizontal one (L) [Fincham et al. (1996),Herring and Métais
(1989), Métais and Herring (1989),Riley et al. (1981),Billant and Chomaz (2001)]. The relative
motion of these layers, gives rise to strong shear that can trigger small-scale instabilities, of
Kelvin-Helmholtz and Holmboe type, introducing into the system an horizontal characteristic
length scale comparable to the layer thickness h. These small isotropic disturbances, although
not resolved in numerical regional circulation and global climate models, play a fundamental
role in the overall global circulation controlling the vertical mixing of denser water from the
deep oceans.

Nevertheless several fundamental questions related to the strongly stratified turbulent regime
remain unanswered, (e.g the relative importance of spectrally local and non-local energy
transfer and the importance of the initial stratification or the forcing mechanism on mixing
[Oglethorpe et al. (2013),Venaille et al. (2017),Tang et al. (2009),Portwood et al. (2016)]) making
the parametrisation of the small-scale processes a challenging task. The major obstacle in the
investigation of the physical processes is the enormous range of scales that must be resolved
in order to capture them. More precisely, the microscale spans from scales L that are small
enough not to be affected by the Coriolis force to the Ozmidov scale LO = (≤h/N 3)1/2, the
largest horizontal flow scale not influenced by stratification. Denoting by N the Brunt-Väisälä
frequency, by ≤h ªU 3/L the horizontal turbulent energy dissipation rate and by the horizontal
Froude number F rh = U /N L the inverse measure of the stratification strength, this range
of scales is then fixed by the Froude number, as the ratio L/LO =O(F r°3/2

h ). Thus, owing to
the strong stratification (F rh < 10°3) and the considerably high Reynolds number (Re > 109)
required to achieve the strongly stratified turbulence regime, a full 3D direct simulation (DNS)
would require a resolution of the order of 1018 grid points, far beyond current computational
capabilities, as shown in figure 5.1 [Brethouwer et al. (2007),Bartello and Tobias (2013),Zhou
and Diamessis (2019)]. The development of new theoretical tools is therefore a prerequisite for
further advancements in this subject. A better understanding of strongly stratified turbulence
would not only provide a deeper insight on the role of the microscale in the global overturning
circulation but it would also facilitate the development of new flow-control techniques.

Scale separation in geophysical flows is very often related to the presence of a strong external
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Figure 5.1 – Stratified flow regime diagram as a function of the Re ynold s number Re and
the F r oude number F r a) from [Brethouwer et al. (2007) ] and b) from [Zhou and Diamessis
(2019)]. Despite the huge increase of computational power over the past 12 years both dia-
grams show the gap in parameter space between the parameter regime numerically accessible
and the one of interest for geophysical applications.

constraint that is responsible for the coexistence of large-scale anisotropic and small-scale
isotropic structures. This translates into the emergence of a dominant balance in the govern-
ing equations that can be mathematically exploited to derive simplified equations by means of
multi-scale and asymptotic analysis. This approach has been successfully used by Julien and
Knobloch to derive reduced models when rapid rotation or a strong magnetic field is applied
to a flow system [Sprague et al. (2006),Julien and Knobloch (2007)] and by Chini et al. for
flows subjected to strong stratification [Chini et al. (2022)]. In the latter work, the multi-scale
analysis of the Boussinesq equations in the limit of small F rh number and large Re reveals two
disparate spatiotemporal scales and yields a set of coupled equations for the large anisotropic
dynamics and the small-scale disturbances.
The resulting system may be viewed as a generalized quasi-linear model (GQL), in that the evo-
lution of the fast variables is linearised around slowly varying mean fields and the fluctuation-
fluctuation interactions are retained only when they feed back onto the mean flow. Although
the quasi-linear (QL) approximation has been used in the past to enable the investigation of
simplified flow systems [Tobias and Marston (2017)], here it should be emphasized that the
quasi-linearity is an intrinsic feature of the asymptotic behaviour of the strongly-stratified
dynamical system and not the result of an ad hoc approximation. Owing to the linearised
evolution of the fluctuations, the first issue concerning slow-fast QL systems is related to the
choice of a suitable integration method. Although co-evolution of the mean and fluctuation
dynamics on the same fast temporal scale (i.e. the single-time QL algorithm in [Chini et al.
(2022)], consisting in a DNS of the simplified system) may ensure accuracy, it does not take
computational advantage of the multi-scale nature of the system. On the other hand, the
application of the heterogeneous multi-scale algorithm, although more efficient, introduces
many arbitrary choices for the initialisation and the duration of the fast-time integration.

Based on the observation that many slow-fast QL systems have the tendency of self-organize
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around marginally stable states, Michel & Chini [Michel and Chini (2019)] have recently pro-
posed a new integration strategy that exploits a marginal stability constraint. Due to the
linearity of the fluctuations evolution, the fast fields can be expanded in modal solutions and
the mode that first realises a zero growth rate get slaved to the mean dynamics to maintain its
marginal stability via the feedback coupling. This results in a low dimensional evolution of the
two fields on the marginally stable manifold for as long as it exists.

Building up on theirs work, we have developed new extensions to the QL procedure with
the final aim of designing an algorithm capable of accessing the extreme parameter regime
relevant for stratified flows in ocean and atmosphere. In chapter 3 we have presented a
methodology to deal with the termination of the marginally stable manifold and with the
presence of a finite scale separation, while in chapter 4 we developed an algorithm to efficiently
extend the QL algorithm to more than one spatial dimension. As a natural next step, in this
chapter we will discuss the application of these extensions to the strongly stratified flow
problem. We will start with a detailed derivation of the reduced set of equations for the
system under analysis, showing its key features and its potential for the description of relevant
geophysical problems. We will proceed applying the QL integration methodology based on
the marginal stability constraint, underlying the main differences with respect to the other
problems analysed in this work. Both these two calculations are discussed in Chini et al.
(2022) and re-derived here for clarity purposes with the intention of developing a coherent
notation and a complete framework. We will then illustrate the mathematical derivation of
an evolution equation for the wavenumber associated to the marginally-stable mode which
allows to efficiently identify the component of the fast dynamics that needs to be slaved to
ensure the evolution of the slow-fast system on the marginally-stable manifold.

5.2 Governing equations and multi-scale analysis

Variations in the density of the fluid are common in most of the geophysical flows. When
the vertical density profile is described by a decreasing function of the height , i.e. lighter
fluid is placed above heavier fluid, the flow is said to be stably stratified. The main effect of
a stable stratification is to constrain the vertical motion of the fluid due to the action of the
gravity force. Imagining the simplest scenario, characterized by an incompressible stably
stratified fluid in static equilibrium conditions, any small vertical perturbation of the system
would cause an oscillatory behaviour about the equilibrium position due to buoyancy and
inertia. The oscillation frequency N is set by the vertical density profile and is known as the
Brunt-Väisälä frequency (or buoyancy frequency),

N =

s
°g
Ω0

@Ω̃

@z̃
. (5.1)
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Here Ω0 is a constant density reference value, Ω the mean density and together with the fluctu-
ation density Ω̃ they sum up to the total density Ω̃T = Ω0 + Ω̃+ Ω̃.
Here the tilde notation (̃·) indicates dimensional quantities. However, although vertical mo-
tion and overturning are inhibited by stable stratification, turbulent dynamics and mixing
are still possible when enough energy is provided to the system to overcame the buoyancy
barrier. This is the case for many parallel shear flows where the relative motion between layers
characterized by different density triggers shear instabilities (like Kelvin-Helmholtz instability)
responsible for the mixing of the fluid and the erosion of the density stratification (at least
locally).

In a more general case, out of equilibrium, stably stratified flows in which density variations
are small compared to the mean background density are well described by the Navier-Stokes
equations under Boussinesq approximation [P. et al. (2016),Riley (2021)]. Defining with ṽ =
(ũ, ṽ , w̃) the velocity flow field in the directions x̃ = (x̃, ỹ , z̃), with Ω̃ the density and with p̃ the
pressure, the momentum conservation, the mass conservation and the density equations read

@ṽ

@t̃
+ ṽ · r̃ṽ =° 1

Ω0
r̃p̃ ° Ω̃

Ω0
g +∫r̃2

ṽ (5.2)

r̃ · ṽ = 0 (5.3)

@Ω̃

@t̃
+ ṽ · r̃Ω̃+ w̃

d Ω̃
d z̃

= ∑r̃2Ω̃ (5.4)

where g is the gravity force g ez and ez the vertical versor. In order to match the notation
used in Chini et al. (2022) (and by many other authors) and to ease the comparison among

results, equations (5.3)-(5.4) can be re-written introducing the buoyancy force b̃ =° Ω̃

Ω0
g = b̃ez

yielding

@ṽ

@t̃
+ ṽ · r̃ṽ =° 1

Ω0
r̃p̃ + b̃ +∫r̃2

ṽ (5.5)

r̃ · ṽ = 0 (5.6)

@b̃
@t̃

+ ṽ · r̃b̃ + w̃
db̃
d z̃

= ∑r̃2b̃ (5.7)

5.2.1 Anisotropic non-dimensionalisation of the Boussinesq equations

Further approximations of the equations (5.5)-(5.7), and in general the identification of the
dominant terms in the different flow regimes can be achieved via non-dimensionalisation.
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Strongly stably stratified flows has been shown to spontaneously develop anisotropic struc-
tures, consisting of large horizontal layers with a characteristic length scale that is much larger
than the vertical one (i.e. the layer thickness)[Fincham et al. (1996),Herring and Métais (1989),
Métais and Herring (1989),Billant and Chomaz (2001)]. Therefore it is reasonable, in this
case, to make a distinction between horizontal (x = (x, y)) and vertical z directions when
defining characteristic length scales. Indicating now with x̃ = (x̃, ỹ), ũ = (ũ, ṽ) the dimensional
horizontal velocity and horizontal directions respectively, and with r̃h the horizontal gradient
operator, we proceed by introducing the general non-dimensional quantities (without tilde) as

t̃ = T t , x̃ = Lx , z̃ = H z, ũ =U u, w̃ =W w

p̃ = P p, b̃ = Bb
(5.8)

Substituting (5.8) into the Boussinesq equations, discriminating between horizontal and
vertical momentum equations yields

U
T
@u

@t
+ U 2

L
(u ·rh)u + UW

H
w
@u

@z
=° P

Ω0L
rh p +∫

µ
U
L2 r

2
hu + U

H 2

@2
u

@z2

∂
(5.9)

W
T
@u

@t
+ UW

L
(u ·rh)u + W 2

H
w
@w
@z

=° P
Ω0H

rh p +Bb +∫
µ

W
L2 r

2
h w + W

H 2

@2w
@z2

∂
(5.10)

U
L

(rh ·u)+ W
H
@w
@z

= 0 (5.11)

B
T
@b
@t

+ U B
L

(u ·rh)b + W B
H

@b
@z

= ∑

µ
B
L2 r

2
hb + B

H 2

@2b
@z2

∂
. (5.12)

Imagining T is the time spent by a fluid element with velocity U to transverse an horizontal
distance L, i.e. T = L/U , we can chose H to be the vertical distance spanned in the same
amount of time H = W T = (W L)/U . The buoyancy difference resulting from the vertical
displacement of the fluid then scales with

B =
ØØØØØ

db̃
d z̃

ØØØØØH = N 2 W L
U

. (5.13)

Intuitively, from the hydrostatic balance, a variation in the buoyancy translates into a pressure
variation

P = BΩ0H = N 2W LHΩ0

U
= Ω0U 2 (5.14)
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where the pressure scale P = Ω0U 2 is obtained from the horizontal balance of forces in (5.9).

The previous expression yields both a scale for the buoyancy and a scale for the vertical velocity

B = U 2

H
(5.15)

and

W = U 3

N 2LH
. (5.16)

Defining the Froude number, representing an inverse measure of the stratification as F rh =
U /(N L) in the horizontal direction and F rv =U /(N H) in the vertical direction, the scale for
the vertical velocity can be then expressed as follow

W = F r 2
hU

L
H

= F r 2
vU

H
L

. (5.17)

Substituting (5.15), (5.16) and the pressure scale P = Ω0U 2 into (5.9)-(5.12) the final non-
dimensionalised governing equations are

@u

@t
+u ·rhu +F r 2

v w
@u

@z
=°rh p + 1

Re

µ
r2

hu + 1
Æ2

@2
u

@z2

∂
(5.18)

F r 2
h

µ
@w
@t

+u ·rh w +F r 2
v w

@w
@z

∂
=°@p

@z
°b +F r 2

h
1

Re

µ
r2

h w + 1
Æ2

@2w
@z2

∂
(5.19)

rh ·u +F r 2
v
@w
@z

= 0 (5.20)

@b
@t

+u ·rhb +F r 2
v w

@b
@z

+w = 1
Pr Re

µ
r2

hb + 1
Æ2

@2b
@z2

∂
(5.21)

where the Æ is the aspect ratio Æ= H/L, Re = LU /∫ is the Reynolds number, a measure of the
inertial forces over the viscous ones, and Pr = ∫/∑ (the ratio between momentum diffusivity
and thermal diffusivity).

The set of equations resulting from the anisotropic scaling involves two different Froude
numbers, or more specifically a Froude number and the aspect ratio Æ via F rv = F rhÆ. The
choice of the scaling for Æ in the limit of strong stratification F rh << 1, is not trivial yet it
is crucial to determine the final flow dynamics. If the vertical scale is assumed to remain
constant in the limit F rh ! 0, namely F rv ! 0, the resulting dynamics becomes vertically
decoupled and two-dimensional [Lilly (1983), Riley et al. (1981)]. On the contrary, if H is free
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to vary such that F rv =O(1) (as proposed by Billant and Chomaz (2001) and later corroborated
by Lindborg (2006), Brethouwer et al. (2007), Augier et al. (2012), Maffioli et al. (2016)) the final
dynamics is three-dimensional and governed by the hydrostatic primitive equations in the
limit F rh ! 0 and Re !1

@u

@t
+u ·rhu + @u

@z
=°rh p (5.22)

@p
@z

+b = 0 (5.23)

rh ·u +F r 2
v
@w
@z

= 0 (5.24)

@b
@t

+u ·rhb +w
@b
@z

+w = 0 . (5.25)

Equations (5.22)-(5.25) are often used to describe the large-scale flow dynamics in circulation
models, but they can not capture the smaller-scale dynamics arising from shear instabilities,
whose cumulative effects have be shown to highly impact the hydrostatic flow.

Following Chini et al. [Chini et al. (2022)], in the next section we will formally derive the
reduced set of equations for the flow dynamics in the limit of strong stratification, making use
of asymptotic analysis, leveraging on the small value of the horizontal Froude number, which
will be from now on be indicated by F r (and F rv = F rh/Æ). The limit F rh ! 0 will be taken
fixing the buoyancy Reynolds number Reb = F r 2Re and the scaling from Billant and Chomaz
(2001) for the aspect ratio Æª F rh will be assumed in this case.

5.2.2 Multi-scale analysis of the non-dimensionalised equations

Exploiting the scale separation set by the strong stratification, we can formally introduce
two temporal and two spatial scales describing the slow-and-large dynamics (T, x), and the
fast-and-small one. Formally (ø,¬), as

t ! (T,ø) : T = t , ø= (F rh)°1T, @t ! @T + (F rh)°1@ø

xh ! (x ,¬) : x = xh , ¬= (F rh)°1
x , rh !rx + (F rh)°1r¬.

(5.26)

Then, defining the small parameter "=
p

F r , asymptotic expansions of velocity, buoyancy and
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pressure fields u, w,b are postulated

u ª u0 +"u1 +"2
u2 +O("3) (5.27)

b ª b0 +"b1 +"2b2 +O("3) (5.28)

p ª p0 +"p1 +"2p2 +O("3) (5.29)

w ª "°1w°1 +w0 +"w +O("2), (5.30)

where the order "°1 in the vertical velocity expansion accounts for the dominant effect of w
on the fast scales rather then on the slow ones (where the flow will be shown to be hydrostatic
in z) as pointed out in [Brethouwer et al. (2007) and Maffioli et al. (2016)].

Introducing the fast average operator for a generic function ¡

¡(z,¬, x ,ø,T ) =¡(z, x ,T ) = lim
L¬ f ,ø f !1

1
L¬ f

1
ø f

Zø f

0

Z

≠
¡(z,¬, x ,ø,T )d¬dø (5.31)

with≠ a periodic domain, and substituting (5.27)-(5.30) into (5.18)-(5.21) the relevant results
from multi-scale analysis are summarised below for each equation.

Continuity equation (5.20)

At O("°2)
r¬ ·u0 = 0 (5.32)

from which it follows that u0 does not depend on fast time, u0 = u0(z, x,T,ø).

At O("°1)
r¬ ·u1 =°@z w°1 (5.33)

and averaging over fast time and space

@z w°1 = 0 (5.34)

therefore implying that w°1 = C w 0
°1, where the constant C must be set to zero to avoid its

linear growth on a periodic domain, yielding w = 0. As conjectured earlier in the expansion
for w , the vertical velocity contribution is negligible on the large-slow spatiotemporal scale
and it is expected to be dominant in small-fast one. Subtracting the averaged equation from
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(5.33), an equation for the mass conservation of the fluctuations is obtained

r¬ ·u
0
1 =°@z w 0

°1 (5.35)

At O(1)
rx ·u0 +r¬ ·u2 +@z w0 = 0 (5.36)

and averaging over ø and ¬ yields the continuity equation for the slow fields

rx u0 +@z w0 = 0. (5.37)

Horizontal momentum equation (5.18)

At O("°2)
@øu0 =°r¬p0 (5.38)

Since u0 is not a function of ¬, the boundedness of p0 over fast space requires to impose that
u0 does not depend on ø either. Therefore u0 = u0(z, x,T ) = u0, and p0 = p0(z, x,ø,T ).

At O("°1)
@øu1 + (u0 ·r¬)u1 +w°1@z u0 =°r¬p1, (5.39)

and decomposing all the variables in mean (fast average) and fluctuations an evolution
equation for the horizontal fluctuations velocity is found

@øu
0
1 + (u0 ·r¬)u

0
1 +w 0

°1@z u0 =°r¬p 0
1. (5.40)

At O(1)

@T u0 +@øu2 + (u0 ·rx )u0 + (u0 ·r¬)u2 + (u1 ·r¬)u1+w°1@z u1 +w0@z u0 =

°rx p0 °r¬p2 °
1

Re
r2

x
u0

(5.41)

decomposing then in mean and fluctuations

@øu
0
2 + (u0 ·r¬)u

0
2 +w 0

0@z u0 +r¬p 0
2 =

°
µ
@T u0 + (u0 ·rx )u0 +w0@z u0 + (u1 ·r¬)u

0
1 +w 0

°1@z u1 +rx p0 °
1

Reb
@2

z u0 ° f0

∂
.

(5.42)

and taking the average over fast temporal and spatial scales, the right hand side of the previous
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equation gives the horizontal momentum equation for the mean horizontal velocity

@T u0 + (u0 ·rx )u0 +w0@z u0 =°@z (w 0
°1u

0
1)°rx p0 +

1
Reb

@2
z u0 + f0, (5.43)

where r¬ ·u
0
1 =°@z w 0

°1 has been substituted.

Vertical momentum equation (5.19)

At O("°2)

°@z p0 °
1

Re
r2
¬w0 +b0 = 0 (5.44)

and fast-averaging
@z p0 =°b0, (5.45)

which confirms the reduction of the vertical momentum equation to the hydrostatic balance
obtained from (5.19) in the limit F r ! 0 and ÆªO(F r ).

At O("°1)
@øw 0

°1 + (u0 ·r¬)w 0
°1 =°@z p1 +b1 (5.46)

which leads to the evolution equation for the vertical fluctuations, after subtracting from it its
average

@øw 0
°1 + (u0 ·r¬)w 0

1 =°@z p 0
1 +b0

1. (5.47)

Buoyancy equation (5.21)

At O("°2)
@øb0 + (u0 ·r¬)b0 = 0 (5.48)

from which we can infer that, since p0 is independent of ¬ so is b0 (from hydrostatic balance),
and consequently b0 = b0(z, x,T ) = b0.

At O("°1)
@øb0

1 + (u0 ·r¬)b0
1 +w 0

°1@z b0 +w 0
°1 = 0 (5.49)

which is the evolution equation for the buoyancy fluctuations.
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At O(1)

@T b0 + (u0 ·rx )b0 +w0@z b0 +w0 =°@z (w 0
°1b0

1)+ 1
Pr Reb

@2
z b0 (5.50)

an evolution equation for the mean buoyancy field is obtained, following the same procedure
used to derive (5.43).

Simplifying the notation and dropping the subscripts indicating the asymptotic order, the
final system of equation obtained from solving (5.18)-(5.21) order by order in " eventually
yields a coupled system for the mean variables and the fluctuations. respectively,

Mean fields equations

@u

@T
+ (u ·rx )u +w

@u

@z
=°rx p ° @(w 0u0)

@z
+ 1

Reb

@2
u

@z2 + f , (5.51)

0 =°@p
@z

+b, (5.52)

@b
@T

+ (u ·rx )b +w
@b
@z

=°w ° @(w 0b0)
@z

+ 1
Pr Reb

@2b
@z2 , (5.53)

rx ·u + @w
@z

= 0. (5.54)

Fluctuation equations

@u
0

@ø
+ (u ·r¬)u

0+w 0 @u

@z
=°r¬p 0, (5.55)

@w 0

@ø
+ (u ·r¬)w 0 =°@p 0

@z
+b0, (5.56)

@b0

@ø
+ (u ·r¬)b0+w 0 @b

@z
=°w 0, (5.57)
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rx ·u
0+ @w 0

@z
= 0. (5.58)

The mean fields only evolve on the slow-large scales and the fluctuations only on the fast-small
ones, uniquely as a consequence of the scale separation between the two dynamics in the limit
of strong stratification. Differently from the hydrostatic equations (5.22)-(5.25), the evolution
equations for the slowly-varying mean fields obtained from multi-scale analysis are crucially
coupled to the fast variables via a Reynolds stress-like feedback (highlighted in red). These
terms, of fundamental importance for the understanding of mixing processes in stratified
turbulence, are normally included in circulation models via ad hoc approximations due to the
impossibility of resolving the small-scale dynamics [Gregg et al. (2018)]. The key feature of the
reduced system derived by Chini et al. [Chini et al. (2022)] lies in the fact that this system is
automatically closed, where the cumulative effect of the fast instabilities on the mean fields
are determined by the leading order equations (5.55)-(5.58), without the need for any further
assumption other than scale separation.

Noticing the linearity of (5.55)-(5.58), the final reduced system (5.51)-(5.58) is classifiable as
a GQL system: the non-hydrostatic fluctuations evolve linearly and homogeneously about
a slowly-varying (in space and time) mean field, are advected by it (blue terms) and the
fluctuations non-linearities only affect the evolution of the latter.
As done for the two-dimensional model problem in § 4, to ease the investigation we will for
the moment neglect the convective terms in the mean fields evolution, and focus on the strict
QL reduction of the original equations. This is justified by re-interpreting the average over the
fast spatial coordinate ¬ as a stream-wise average in the horizontal direction x .
We further modify the final set of equations by introducing higher-order diffusive terms in
the fluctuations evolution (5.55)-(5.58) and consequently the Froude number, as done by
Chini et al. (2022), with the purpose of regularizing the dynamics in the event of large vertical
gradients.
The final set of equations for the mean fields and the fluctuation fields eventually reads

@u

@T
=°@(w 0u0)

@z
+ 1

Reb

@2
u

@z2 + f , (5.59)

0 =°@
2p
@z2 +b, (5.60)

@b
@T

=°@(w 0b0)
@z

+ 1
Pr Reb

@2b
@z2 , (5.61)

rx ·u = 0, (5.62)
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@u
0

@ø
+ (u ·r¬)u

0+w 0 @u

@z
=°r¬p 0+ F r

Reb

µ
r2
¬u

0+ @2
u
0

@z2

∂
, (5.63)

@w 0

@ø
+ (u ·r¬)w 0 =°@p 0

@z
+b0+ F r

Reb

µ
r2
¬w 0+ @2w 0

@z2

∂
, (5.64)

@b0

@ø
+ (u ·r¬)b0+w 0 @b

@z
=°w 0 F r

Pr Reb

µ
r2
¬b0+ @2b0

@z2

∂
, (5.65)

rx ·u
0+ @w 0

@z
= 0. (5.66)

5.3 Algorithm for the strict 2D QL formulation

In this section we first discuss the application of the integration methodology, based on the
slaving of the fluctuation dynamics (proposed in Chini et al. (2022) and presented in § 3.3,
4.3), to the stratified flow problem and then illustrate its extension to efficiently deal with the
spatial horizontal variability of the fast dynamics.

As a further simplification, after the transformation of the GQL-type system into a strict QL
one, this will be done limiting the dimensionality of the problem to two dimensions, allowing
for a variability of the fields only in z, x = x and ¬=¬. Hence, due to the strict QL formulation,
only the fluctuations will have a two dimensional evolution while the mean dynamics will
solely vary in the vertical coordinate z.
Within this simplification the fluctuations velocity components can be expressed as the
derivatives of the streamfunction √0

u0 = @z√
0, w 0 =°@¬√0 and ¢√0 = (@2

¬+@2
z )√0 (5.67)

and equations (5.59)-(5.66) reduce to

@u
@T

= @

@z

µ
@√0

@z
@√0

@¬

∂
+ 1

Reb

@2u
@z2 + f , (5.68)

@b
@T

= @

@z

µ
b0 @√

0

@¬

∂
+ 1

Pr Reb

@2b
@z2 , (5.69)
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µ
@

@ø
+u

@

@¬

∂
¢√0 = @√0

@¬

@2u
@z2 ° @b0

@¬
+ F r

Reb
¢2√0, (5.70)

µ
@

@ø
+u

@

@¬

∂
b0 =

µ
1+ @b

@z

∂
@√0

@¬
+ F r

Reb
¢2b0. (5.71)

Since the mean fields do not depend on the fast spatial coordinate, the linearity and homo-
geneity of the fluctuations equations allows for modal solutions of the type

√0(z,¬,ø,T ) = A(T )√̂(z,T )eæ(T )øei k(T )¬+ c.c.

b0(z,¬,ø,T ) = A(T )b̂(z,T )eæ(T )øei k(T )¬+ c.c.
(5.72)

where √̂(z,T ) and b̂(z,T ) are two vertical structure functions, A(T ) is an amplitude, Re{æ(T )}
the growth rate, and k(T ) the associated slowly-varying wavenumber.
From substituting (5.72) into (5.68)-(5.69), it immediately follows that the convergence of
the Reynolds-stress and buoyancy flux terms is only guaranteed for non-positive values of
the growth rate Re{æ}. The slow and fast dynamics are decoupled for Re{æ} < 0, as a result of
the exponential decay of the fluctuations over fast time, and a finite feedback is established
when Re{æ} = 0. Because of this observation it is useful to make a distinction between the
fluctuations √0 and b0 in the fast evolution equations (5.70)-(5.71) and the fluctuations that
feed back on the mean fields only in condition of marginal stability. From now on we will
denote with '0 the neutrally stable mode corresponding to √0, similarly with ¥0 the one
corresponding to b0 and with g the associated wavenumber,

'0(z,¬,ø,T ) = A(T )'̂(z,T )ei g (T )¬+ c.c.

¥0(z,¬,ø,T ) = A(T )¥̂(z,T )ei g (T )¬+ c.c.
(5.73)

where '0 ¥√0, ¥0 ¥ b0 when Re{æ} = 0 and '0 = ¥̂0 = 0 when Re{æ} < 0.The importance of this
distinction will became clear in the next section § 5.3.3, when discussing the extension of the
QL methodology.

Assuming the realisation of a zero growth rate, the final system of equations reads

@u
@T

= |A|2i g
@

@z

µ
'̂
@'̂§

@z
° '̂§ @'̂

@z

∂
+ 1

Reb

@2u
@z2 = |A|2RSu + 1

Reb

@2u
@z2 + f , (5.74)

@b
@T

= |A|2i g
@

@z
('̂¥̂§ ° '̂§¥̂)+ 1

Pr Reb

@2b
@z2 = |A|2RSb +

1
Pr Reb

@2b
@z2 , (5.75)
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æ

µ
@2

@z2 °k2
∂
√̂=°i ku

µ
@2

@z2 °k2
∂
√̂+ i k

@2u
@z2 √̂° i kb̂ + F r

Reb

µ
@2

@z2 °k2
∂2

√̂, (5.76)

æb̂ =°i kub̂ + i k
µ
1+ @b

@z

∂
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where following the notation adopted by Chini et al. (2022), we have compactly indicated
the Reynolds stress-like term in (5.74) with RSu and the buoyancy flux in 5.75 with RSb . The
resulting system is described, as in the other model problems, by an initial value problem
for the evolution of the mean fields (u,b) (5.74)-(5.75), and by an eigenvalue problem for the
dynamics of the fast fluctuations (5.76)-(5.76), which can be re-written more compactly as

L ª̂= 0 (5.78)

where ª̂(z,T ) is the eigenfunction ª̂= (√̂, b̂) 2V with V = {(0,1)£R!C2; (z,T ) ! (√̂(z,T ), b̂(z,T ))}
, and L is the linear operator defined as
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Defining an inner product between two generic elements of the vector space V , û = (√̂u , b̂u)
and v̂ = (√̂v , b̂v ) as the sesquilinear form G : V £V !Cwith

hu|vi=
ZLz

0
uv

§d z =
ZLz
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§
v + b̂ub̂§

v d z (5.80)

(namely conjugate-linear in the second argument and linear in the first one), and considering
the periodic boundary conditions, we can notice that in this case the operator L is not
self-adjoint with respect to (5.80). The adjoint is

L
† =

0
BB@

(æ§ ° i ku)(@2
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F r
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1
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(5.81)

Consequently the spectrum of L is complex and its eigenfunctions can not be chosen real, as
done in the other model problems presented in this work. We then have to consider general
complex-valued eigenfunctions and allow for oscillating eigenvalues with Im{æ} 6= 0. The
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inner product (5.80) induces a norm with respect to which we connsider the eigenfunction ª̂

normalized.

5.3.1 Slaving of the fluctuation amplitude

The coupling between the fast and the slow dynamics (5.74)-(5.77) in condition of marginal
stability is realised via the collective effect of the fluctuations fields on the respective mean
dynamics, for which an amplitude has to be determined. Owing the impossibility of deriving
an expression for this amplitude via imposing a solvability condition on the higher-order terms
in the expansion (5.30), a different constraint has to be found. Inspired by the numerical and
experimental evidences that stably strongly stratified turbulence has the tendency of relaxing
towards marginally-stable states [Smyth and Moum (2013), Smyth et al. (2019), Holleman et al.
(2016), Salehipour et al. (2018)], Chini et al. (2022) have recently proposed to to exploit this
peculiar feature in order to compute a fluctuation amplitude such that the marginally-stable
condition of the mean fields is maintained. This constraint mathematically translates into
enforcing a zero temporal derivative of the growth rate Re{æ} when Re{æ} = 0, and a zero
k-derivative of the same to ensure that the marginally-stable condition is satisfied by the
fastest growing mode.
An expression for both these derivatives can be obtained as a first order correction of the
perturbed eigenvalue problem (5.78) with respect to slow time T and the wavenumber k.
Assuming the marginally-stable condition is achieved at time TM by the mode with wavenum-
ber kM , and expanding the eigenvalue problem (5.78) around a point in the T ° k space
M = (TM ,kM )
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implying
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yields the following boundary value problems at order O(¢T ) and O(¢k) respectively
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Since L is a singular operator by construction, L = L°æ , the solvability of (5.86)-(5.87) must
be enforced, as stated by the Fredholm Alternative theorem (a detailed discussion is provided
in section § 3.3 and 4.3.1 ). Such a condition requires to ensure a zero projection of the right
hand side of (5.86)-(5.87) onto the null-space of the adjoint-operator L
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which leads to the following expressions for the first derivatives of æ
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Re-writing expression (5.90) in a more compact form,

@æ
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= Æ° |A|2Ø

∞
(5.92)

and enforcing @T (Re{æ}) = 0 eventually gives an expression for the amplitude similar to the
one obtained for the model problems discussed in § 3 and 4:
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Similarly can be done with expression (5.91), where enforcing @k (Re{æ}) = 0 leads to an integral
relation between the eigenfunctions, not reported here as not useful for the purpose of this
discussion. The full calculation for this section and the next one is detailed in appendix C.

5.3.2 On the termination of the marginally-stable manifold

On the occurrence of bursting events

As visible from (5.92), the maintenance of the marginally-stable condition and consequently
the determination of the fluctuation amplitude is conditional upon the signs of the real parts of
the ratios between the integrals Æ/∞ and Ø/∞. Similarly to the 1D model problem presented in
§ 3, we expect the stratified problem to also exhibit bursting behaviour where the fluctuations
grow unbounded causing the response of the slow dynamics on the fast temporal scale. In
other words the integral quantity Re

©
Ø/∞

™
is not sign-definite and its change in sign inevitably
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produces a destabilizing effect on the mean fields. This scenario, observed by Chini et al.[Chini
et al. (2022)] for values of Reb greater than 10, causes the temporary loss of the scale separation
between two dynamics requiring the integration of the two fields on the same temporal scales.
In this case not only the QL dynamics loses any asymptotic justification, but it would also
not be able to saturate the fluctuation instability due to the lack of any form of fluctuation-
fluctuation non-linearity. In chapter § 3 we have presented, in the context of a 1D model
problem, different co-evolution techniques to handle the termination of the marginally-stable
manifold (not only during a bursting event) and shown their efficacy in re-establishing a new
marginally-stable situation. Two of these techniques, the finite-" DNS and the "-DNS, are
characterised by the reintroduction of the fluctuation-fluctuation non-linearity, while the
third one, the gradient descent technique, updates the mean variable in the direction of the
linear eigenfunction. However, although in principle all are applicable to the stratified flow
problem, the implementation of the DNS-based co-evolution techniques is not possible in
this specific case due to the strict QL formulation of the reduced problem. In analogy, this
time, with the 2D model problem discussed in § 4, the stream-wise averaging procedure over
the horizontal spatial coordinates, aimed at suppressing of the convective term in (5.51)-(5.53),
removes any x-dependency of the mean dynamics, which in contrast is present in the full
dynamics. Therefore the gradient descent technique is the only possible choice, in this specific
case, to treat bursting events allowing for a variation of the wavenumber of the neutral mode.

On the finite-scale-separation algorithm

Analogously, the stream-wise invariance of the mean dynamics also prevents from fully imple-
menting the finite-scale-separation algorithm, developed in chapter 3, until the convective
terms in the mean fields evolution are re-introduced. While it is still possible to define a
marginally-stable region, allowing for a certain (marginal) decay or growth of the fast insta-
bilities about Re{æ} = 0, the fully-non-linear dynamics in the connecting region between the
two validity range of the QL approximation (Re{æ1} < Re{æ} < Re{æ2}, refer to § 3.4.2) can not
be implemented. Since the gradient descent technique updates the mean fields only using
the linear eigenfunctions, in stable conditions this technique would lead to the zero solution
in both dynamics. Therefore the evolution of the mean fields below marginal stability has
to be replaced by the QL evolution with RSu = RSb = 0. Although in Chini et al. (2022) this
does not prevent the dynamics from reaching the same steady state observed in the DNS,
it might in different conditions and regimes due to the non-validity of the QL reduction in
that range. This caveat is furthermore motivated by the consideration that in this case the QL
evolution of the mean fields does not coincides with the fully non-linear one in absence of
the fluctuations feedback. In other words, assuming that the QL approximation shares the
same relevant state-space structures with the full dynamics, this might no longer be true in
the region Re{æ1} < Re{æ} < Re{æ2}, and simulating a dynamics different from the original one
might rule out certain states from the statistically averaged long term dynamics. However
this considerations, at this stage only conjectural, are intended to be a warning for future
investigations.
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5.3.3 Prediction of the wavenumber of the marginally-stable mode

The variability of the fluctuation dynamics over the fast horizontal coordinate ¬ unfolds in
the QL formulation as a k-dependency of the eigenvalue problem (5.78) leading to a time-
varying dispersion relation æ(T,k). Enforcing the tangency condition to the marginally-stable
manifold in presence of zero growth rates then requires at each time TM to seek for the
maximum of æ(TM ,k) to identify the wavenumber kM = g of the fastest growing mode that
will then feedback on the mean fields (5.74)-(5.75). As anticipated by our notation, the slow
dynamics is only affected by one mode, the one that first undergoes an instability, and therefore
it does not depend on k.
Moreover the peak of the dispersion relation æ(T,k) in general varies with time, hence g =
g (T ), implying that the search for the maximum has to be repeated after any update of the
mean dynamics, as done in Chini et al. (2022). From the algorithmic point of view this
requires to solve the eigenvalue problem multiple times for different k at each time iteration,
representing the computational bottleneck of the presented methodology. Furthermore the
range of wavenumbers over which the search has to be performed would escalate when
considering the possibility of multiple marginally stable modes (not done in this work) or
when considering the continuous variability of the wavenumber in such a problem (as a
consequence of an infinite domain in the x-direction).
In the light of the previous considerations, in the remaining part of this section we present the
crucial extension of the QL methodology for the prediction of the wavenumber in condition of
marginal stability.

Re-calling the geometrical description illustrated in figure 4.2 (§ 4.3.1), the real part of the time-
varying dispersion relation Re{æ(T,k)} can be represented by a three-dimensional surface in
R3 defined with a graph notation as

°(T,k) = (T,k,Re{æ(T,k)}) . (5.97)

Once the marginal stability condition is realized, enforcing its maintenance in time automati-
cally imposes, at each time TM , a zero normal curvature of this surface in one direction. Such
a direction can be identified as the tangent vector to the curve ∞ at TM resulting from the
intersection of the surface °with the plane (T,k,Re{æ} = 0). It follows that all points on ∞, are
saddle points satisfying

Re{æ(T,k)} = 0, @T (Re{æ(T,k)}) = 0 and @k (Re{æ(T,k)}) = 0 . (5.98)

Appropriately defining ∞ as a parametrised curve on the surface °

∞(T ) = °(T,k)±µ(T ) = (T, g (T ),Re
©
æ(T, g (T ))

™
)

= (T, g (T ),0)
(5.99)
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with µ :R!R2 being the plane parametrised curve µ(T ) = (T, g (T )), directly shows that the
prediction of the wavenumber k of the fastest growing mode translates into an evolution
equation for the function g (T ).

For this purpose, following the derivation discussed in § 4.3.1, we expand the growth rate
Re{æ(T,k)} around a point (TM ,kM ), at which the marginally-stable condition is satisfied,
along the direction ± tangent to the curve ∞,
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(5.100)

with ±= ∞0 = (1,dT g (T )) and ær = Re{æ}. Enforcing then the propagation of the saddle-point
properties (5.98) along ∞, we obtain the evolution equation for g (T ) (4.22), re-written here for
convenience
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Within this formalism the importance of the distinction between the eigenfunctions √̂,b̂ and
their marginally-stable counterparts '̂,¥̂ is easily understood: while their evaluation on the
curve ∞ is identical, their differentiation is not
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(5.103)

where dT '̂ and dT ¥̂ are directional derivatives.

Due to the constraints on the curvature properties of the landscape æ(T,k) resulting from the
propagation of the saddle point conditions, the evolution equation for the wavenumber of
the fastest growing mode requires the computation of the second derivatives of the growth
rate. Analogously to what done in the previous section these derivatives can be computed by
means of perturbation analysis extending the expansions (5.82)-(5.83) up to the second order
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in T and k
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and imposing the solvability condition on the boundary value problems resulting at the second
order

O(¢k2)

LM
@2ª̂

@k2

ØØØØ
M

=°@
2
L

@k2

ØØØØ
M
ª̂M °2

µ
@L

@k

∂ØØØØ
M

@ª̂

@k

ØØØØ
M

(5.108)

0 =
*

LM
@2ª̂

@k2

ØØØØ
M

ØØØØØª̂
†
M

+
=°

ZLz

0
ª̂†§

M
@2

L

@k2

ØØØØ
M
ª̂M d z °2

ZLz

0
ª̂†§

M

µ
@L

@k

∂ØØØØ
M

@ª̂

@k

ØØØØ
M

d z (5.109)

O(¢T 2)

LM
@2ª̂

@T 2

ØØØØ
M

=°@
2
L

@T 2

ØØØØ
M
ª̂M °2

µ
@L

@T

∂ØØØØ
M

@ª̂

@T

ØØØØ
M

(5.110)

0 =
*

LM
@2ª̂

@T 2

ØØØØ
M

ØØØØØª̂
†
M

+
=°

ZLz

0
ª̂†§

M
@2

L

@T 2

ØØØØ
M
ª̂M d z °2

ZLz

0
ª̂†§

M

µ
@L

@T

∂ØØØØ
M

@ª̂

@T

ØØØØ
M

d z (5.111)

109



Chapter 5. Towards Strongly Stratified Flows
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As clear from (5.109), (5.111) and (5.113), the enforcement of the Fredholm alternative on the
second-order BVPs requires the knowledge of the first-order corrections of the eigenfunctions
@k ª̂|M and @T ª̂|M which can be obtained by explicitly solving (5.86) and (5.87).

Because of the singular nature of the operator L the solution of (5.86)-(5.87) can be pursued
via applying a QR decomposition on L to obtain its pseudo-inverse ÇL °1 and practically
solving
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where @T ª̂
p and @k ª̂

p are the solutions that minimise the least square errors
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In the remaining of this section we summarise the final expressions for the second-order
corrections of the eigenvalue æ, obtained with the procedure explained above, and we refer

110



5.3. Algorithm for the strict 2D QL formulation

the interested reader to appendix C, where the full (and lengthy) calculation is reported.
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where the following substitutions have been made
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5.4 Conclusions and outlook

In this chapter we have provided an overview of the integration algorithm for slow-fast systems
proposed by Michel and Chini [Michel and Chini (2019)] in the context of the stratified flow
problem [Chini et al. (2022)] and analytically derived a methodology to efficiently handle the
two-dimensional spatial variability of the fast instabilities. When such a variability is consid-
ered, the original QL algorithm requires to identify the mode that first becomes unstable, via
solving the eigenvalue problem for the fast dynamics multiple times for varying wavenumber
k (at each time iteration). Contrarily the methodology discussed here overcomes this issue
deriving an evolution equation for the wavenumber associated to the marginally stable mode,
lowering the number of eigenvalue problems to be solved at each time step to one.

Based on the results obtained on the two-dimensional model problem (presented in § 4.4), we
are confident that the implementation of this extension will positively impact the simulations
of the QL dynamics, substantially lowering their computational costs and therefore opening
the way for further developments of the QL methodology. Moreover the implementation of
the co-evolution regime via the gradient descent technique will enable the characterisation of
bursting events providing some insight on their impact on the flow dynamics.
Because of the modularity of the code structure designed for the simulations of the model
problems discussed in this work, the implementation of the two extensions above will be
fairly straightforward, and will only require few minor modifications due to the change in the
functional space on which the eigenfunctions are defined.

Among many others features that one will need to include to eventually access the extreme
parameter regimes of the three-dimensional real problem, we believe that the re-introduction
of the convective term in the mean equations and the inclusion of multiple marginally stable
modes are probably the most important extensions at the current state of the investigation.
The first feature will turn the strict QL formulation into its GQL counterpart, re-introducing
the horizontal spatial variability of the mean dynamics, and therefore enabling the imple-
mentation of the co-evolution regimes should both bursting events occur or/and the scale
separation between the fast and the slow dynamics be finite.
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In the limit of small Froude and large Reynolds numbers, stratified shear flows exhibit a
strongly constrained form of turbulent dynamics. Multi-scale analysis of this phenomenon
leads to a set of reduced, quasi-linear system of equations where fields evolving on different
spatiotemporal scales are coupled [Chini et al. (2022)]. The dynamics of the fast variables,
or fluctuations, is linear around the slow-evolving mean flow, with the fluctuations being
advected by the mean flow and producing a feedback on it. Because the evolution of the
fluctuations is linear the only possible long-term dynamics requires the system to self-adjust
around a marginal-stability manifold. Michel and Chini [Michel and Chini (2019), Chini et al.
(2022)] recently have shown for a 1D model problem that this scenario can be realized in
slow-fast QL systems by appropriately slaving the fluctuations dynamics to the mean field so
that zero growth rates are ensured.

6.1 Leaving the marginally stable manifold - Bursting events

The interaction between the slow and the fast fields in stratified flows is not sign-definite,
potentially allowing for the fluctuations to intermittently prevent marginal stability from being
attained. Based on this observation, we have developed and tested different algorithmic
techniques to cope with the realisation of these events.
In chapter 3 we investigated a simplified one-dimensional dynamical system and its corre-
sponding asymptotic QL reduction, specifically addressing the two-way nature of the fluctua-
tion feedback. Inspired by the approach of Michel and Chini [Michel and Chini (2019)] we have
developed a numerical procedure that can properly accommodate bursting events associated
with positive fluctuation growth rates. The algorithm simulates the QL system, exploiting the
multi-scale nature of the problem, when marginal stability is satisfied and simulates/emulates
the full non-linear system otherwise. In the first case, the fluctuation amplitude is determined
such that zero growth rates can be maintained, while in the second one, the co-evolution of
the two fields is performed. The purpose of this co-evolution, triggered by the termination
of the marginally stable manifold, is to drive the system to a new marginally-stable manifold
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where the coupled evolution can continue. In this regard three different methods were tested:
finite-≤ DNS (the full non-linear system), ≤-free DNS (the re-scaled system for the bursting
regime) and a gradient descent technique. The first two methods explicitly reintroduce the
fluctuation non-linearities in the dynamics, which generally are not negligible when fluctu-
ation amplitudes are large and which may be crucial for the saturation of instabilities. The
third method exploits information from the eigenvalue problem by evolving in the direction
provided by its linear eigenfunctions. The numerical simulation of the the three different
dynamics show as a first remarkable result, that in all of the cases the QL dynamics captures
and successfully performs the transition between marginally stable manifolds, also observable
in the full dynamics. An efficiency comparison between the different co-evolution technique
confirms the computational advantages of the "-free co-evolution and the gradient descent
co-evolution over the full DNS. The absence of the scale separation parameter in the first two
techniques allows for an integration time-step which is O("°1) larger then the one required
by the fully non-linear dynamics, resulting in a computational advantage of two orders of
magnitude in therms of solver iterations. Moreover the observation that the gradient descent
methodology only makes use of the linear eigenfunction, already present in the QL dynamics,
might make this technique preferable to the "-free co-evolution, if not the only possible choice
certain cases. This feature is key when considering systems like the two-dimensional stratified
flow problem discussed in chapters 5. In this case the elimination of the spatial horizontal
variability of the mean fields (strict QL formalism) disables the possibility of connecting any
non-linear dynamics to the QL reduction due to the dimensions-mismatch. Therefore the
gradient descent technique remains the only one applicable to treat bursting events, should
positive growth rates be realised.

6.2 Approaching the marginally stable manifold - Finite scale sepa-
ration

The second extension of the original QL methodology concerns the presence of a finite scale
separation between the fast and slow dynamics. In this case the exponentially-fast growth
or decay of the fluctuation fields is quantified with respect to the characteristic time scale T
over which the slow mean evolves. Due to the averaging over infinite fast times ø f = T /", the
original algorithm for infinite scale separations only considers two regions (more precisely
a region and a point): the fluctuation feedback is finite for Re{æ} exactly zero and is set to
zero for any negative value of æ. Differently, when accounting for finite scale separation, the
relevance of the fluctuations effects with a given growth rate is determined with respect to
slow temporal scale. Namely, when the growth rate is negative enough to ensure the decay
of the fast mode over a time comparable or smaller then T the fluctuation contribution is
negligible. Similarly when the growth rate is close is enough to zero, to ensure that only a
marginal growth or decay of the fluctuations occurs over a time T , the amplitude is compute
and the feedback is finite. By introducing a tolerance to quantitatively define "enough" and
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"marginal", the different values of æ that bound the validity range of the QL reduction can
be found. Differently from the original algorithm, this considerations lead to an extended
marginally-stable range around æ= 0 (with a size that scales with the chosen tolerance), and
to the introduction of an intermediate region connecting the two QL filtered dynamics. Due
to the non validity of the QL reduction, in these region the coupled dynamics have to be in
principle co-evolved. Although this co-evolution can be interchanged in specific systems with
the zero-feedback QL dynamics (as detailed explained in § 3.4.3), this algorithmic structure
has the advantage of having smoother behavior around the marginally stable region (above all
when very small growth rates are enforced via an amplitude correction ) and not less important
defines thresholds and tolerances that are physically understandable and controllable.

6.3 Identification of the fastest growing mode in two-dimensional
problems

With the more ambitious goal of accessing in the future the fully three-dimensional stratified
flow dynamics, here we have taken a step forward in that direction increasing the dimension-
ality of the problem to two-dimensions. This modification introduces the horizontal spatial
variability of the dynamics, which appears in the QL formulation as a dependency on the
wavenumber of the eigenvalue problem describing the evolution of the fast dynamics. This
results in a temporal variation of the dispersion relation æ(T,k) and consequently in the tem-
poral variation of the wavenumber associated to the fastest growing mode. The enforcement
of the marginal stability constraint now requires to first identify the fastest growing mode
and then to determine its amplitude such that marginal stability can be maintained in time.
Practically the eigenvalue problem has to be solved for multiple k (and multiple is not a priori
defined due to the continuous variation of k) at each time iteration, considerably increasing
the computational costs of the QL simulation. The solution to this problem has been achieved
by deriving an evolution equation for the wavenumber of the marginally-stable mode. In
chapter 4 we presented and discussed, making use of a two-dimensional model problem, two
alternative (but equivalent) derivations in condition of marginal stability. Within a geomet-
rical description the evolution of the dynamics on the marginally stable manifold is strictly
connected to the curvature properties of the æ(T,k) landscape. The maintenance of zero
growth rates in time, automatically results in a zero Gaussian curvature of this landscape in a
specific k-direction, and the evolution of this direction yields at each time the wavenumber
associated to the marginally-stable mode. Starting from different considerations, an evolution
equation for the wavenumber of the fastest growing mode below marginal stability has also
been derived. Although for negative values of the growth rate the fluctuation feedback is
set to zero, this algorithm provides a feasible way to track the evolution of the maximum of
the dispersion relation, allowing for a more precise detection of the time at which marginal
stability is satisfied.
Both algorithms, in condition of marginal stability and below have been successfully tested,
reproducing with extreme precision the results obtained solving multiple eigenvalue problems
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for varying k.

6.4 Towards the stratified flow problem - Outlook and future work

The extensions derived in the previous chapters, for the two different model problems, have
been eventually discussed and applied to the stratify flow problem. Starting from the results
obtained by Chini et al. [Chini et al. (2022)], we have derived the evolution equation for the
prediction of the wavenumber associated to the marginally stable mode.

The obvious immediate next step will be the implementation of this methodology in the
algorithm for the stratified flow problem, to test its efficacy in that case. Not least is the
implementation of the gradient descent technique to overcome bursting events, which have
actually already been found in Chini et al. (2022). Because of the great results that both these
extension have produced in the context of model problems, and the modularity of the code
structure developed simulate those cases, we believe that tasks can be carried out in the near
future.
Further advances towards the real stratified flow problem will require the re-introduction of
the convective term in the mean fields evolution and the possibility for the marginally stable
condition to be satisfied by more than one mode at the same time. The implementation of the
other co-evolution techniques to treat both, unstable and/or finite scale separation scenarios,
will be automatically enable with the GQL model of the stratified flow problem.
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A Intermediate-time processes and in-
stability of the fluctuations amplitude

The purpose of this appendix is to provide a formal justification for the conjecture proposed
in § 3.4.4, regarding the impossibility of determining the fluctuation amplitude in a scenario
where negative values of the integrals Æ and Ø are realised. This will be pursued performing a
three-time-scale analysis, not only considering slow and fast processes but also intermediate
ones, whose evolution and instabilities might impact the slow dynamics, invalidating the scale
separation at the basis of the QL methodology. The mathematical proof is first illustrated
here for a simplified model problem (specifically the model problem presented by Michel and
Chini in section § 3 of [Michel and Chini (2019)]), and then compared to the equivalent but
inconclusive derivation for the original model problem discussed in § 3. We remark that the
calculation presented in the following section is largely inspired by a fruitful discussion with
Prof. Chini and Dr. Michel and their previous calculations on the topic.

A.1 Multi-scale analysis with three time scales for a simplified model
problem

The slow-fast dynamics for the mean field U (z, t) and the fluctuation ¥(z, t) is described in
this case by the following set of equations

@U
@t

= F °∫U °¥2 (A.1)

"
@¥

@t
=U¥+ @2¥

@z2 °"¥3 (A.2)

where " is the small parameter setting the scale separation (ideally "! 0), F (z, t ) is an external
forcing and ∫ the damping coefficient. Differently from the model problem presented in §
3, the evolution equation of the mean field is linear in U as well as the advection term in
the evolution equation of the fast modes. Owing to the small parameter ", we can perform
multi-scale analysis to obtain a set of quasi-linear PDEs. In addition to what done in § 3.2,
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where only a slow and a fast time where introduced, here we also consider an intermediate
time √

t ! (T,√,ø) : T = t , √= T
p
"

, ø= √
p
"

(A.3)

yielding the evolution equations
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.

Assuming the following asymptotic expansion for the variables U and ¥

U (z,T,√,ø) =U0 +
p
"U1 +"U2 +O("3/2)

¥(z,T,√,ø) = ¥0 +
p
"¥1 +"¥2 +O("3/2)

(A.6)

and solving (A.4)-(A.5) order by order the following results are obtained

Order O(1)

From the evolution equation of the mean field U (A.4)

@U0

@ø
= 0 (A.7)

confirming that at leading order the slow field does not depend on the fast time ø, U0 =
U0(z,T,√) (as in § 3.2), and from the evolution of the fast dynamics (A.5)

°@¥
@ø

+U0¥0 +
@2¥0

@z2 = 0 (A.8)

.

Noticing that in the latter equation, only ¥0 depends on ø we can set @ø¥0 =æ¥0 assuming a
modal solution of the type

¥0(z,T,√,ø) = A(T,√)¥̂0(z,T√)eæø (A.9)

where A is an amplitude, ¥̂0 a vertical structure function and Re{æ} a growth rate.
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Substituting the ansatz (A.9) into eq. (A.8) leads to the linear eigenvalue problem

L¥̂0 = (U0 +@2
z )¥̂0 =æ¥̂0 (A.10)

which can be perturbed with respect to slow time T and intermediate time √ to obtain two
evolution equations for the growth rate ( via enforcing a solvability condition as explained in
details in § 3.3)
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d z (A.12)

where the normalization condition
≠
¥̂0

ØØ¥̂0
Æ
= 1, with respect to the inner product (3.13) has

been used.

Order O(
p
")

From eq. (A.4), given that U0 =U0(z,T,√), we obtain

@U1

@ø
+ @U0

@√
= 0 (A.13)

from which it follows that, in order to ensure the boundedness of U1 in ø, @√U0 = 0 must
be set. Therefore U0 = U0(z,T ) only and U1 = U1(z,T,√) on slow and intermediate time.
Consequently neither does the growth rate æ depend on the intermediate time, on account of
A.12, nor the eigenfunction ¥̂0, as a solution of the eigenvalue problem (A.10).

As for the fluctuation field at order O(
p
") eq. (A.5) reads

°@¥1

@ø
+U0¥1 +

@2¥1

@z2 = @¥0

@√
°U1¥0 (A.14)

from which we can again conclude @ø¥1 =æ¥1 and

¥1(z,T,√,ø) = B(T,√)¥̂1(z,T√)eæø (A.15)

(where B is now the amplitude), due to fact that the right hand side of(A.14) only depends on
ø exponentially through ¥0.
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Substituting the ansatz (A.9) and (A.15) into (A.14), and defining the operator L = L°æ, yields
to the following singular boundary value problem

B(L ¥̂1) =°AU1¥̂0 + ¥̂0
@A
@√

(A.16)

for which the enforcement of the Fredholm alternative, leads to an evolution equation for the
amplitude A on the intermediate time √

@A
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= A
ZLz

0
U1|¥̂0|2d z . (A.17)

Order O(")

At this order from the evolution equation of the slow dynamics (A.4) we obtain
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0 . (A.18)

Re-calling the definition of the average over fast time-scale ø (3.8), introduced in § 3.2, and
applying it to the previous expression
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0 (A.19)

where the fluctuations-induced feedback defined for the infinite scale separation case as

¥2
0 = A2|¥̂0|2e2æø = A2|¥̂0|2 lim

ø f !1
1
ø f

Zø f

0
eæødø (A.20)

is a finite only provided that æ= 0. This will be assumed for the rest of the calculation.

Defining an intermediate-time average e(·) for a generic function ' similarly to what done for
the fast-time average

'(z,T,ø) = „'(z,T,√,ø) = lim
√ f !1

1
√ f

Z√ f

0
'd√ (A.21)

and further averaging (A.19) over intermediate time (reminding that ¥̂0 is independent of √)
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we obtain

@U0

@T
= F °∫U0 ° fA2|¥̂0|2 (A.22)

which can be substituted in the slow evolution equation of the growth rate (A.11) to obtain an
expression for the slowly-varying amplitude slaved to the mean field in condition of marginal
stability (enforcing @Tæ= 0)

eA =
q
Æ/Ø (A.23)

with
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Considering now the difference between (A.19) and (A.22) an evolution equation for the
correction U1 to the mean field can be obtained
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and used in the evolution equation of the amplitude (A.17). We remark that the amplitude
here noted as eA is only a function of slow time T , and has the same role that A has in the
model problem discussed in § 3 (based on a two time-scale analysis), while the amplitude A,
in this context, additionally depends on the intermediate time scale.

Noticing that the evolution equation (A.17) is derived for A, while the evolution equation for
U1 contains A2, to ease the calculation we will consider the following variation of (A.17)

1
2

@2 ln
°

A2¢

@√2 = @2 ln(A)
@√2 = @

@√

µ
1
A
@A
@√

∂

= @

@√

µZLz

0
U1|¥̂0|2d z

∂
=

ZLz

0

@U1

@√
|¥̂0|2d z

(A.26)

obtained by dividing (A.17) by A and taking the derivative w.r.t. √. Substituting the evolution
equation for U1 (A.25) leads to

1
2

@2 ln
°

A2¢

@√2 =
µ
Æ

Ø
° A2

∂ZLz

0
|¥̂0|4d z

| {z }
Ø

=Æ°Ø(A2) (A.27)
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Appendix A. Intermediate-time processes and instability of the fluctuations amplitude

which can be re-written as

A2 @
2 A2

@√2 °
µ

pd A2√

∂
= (A2)2(Æ° A2Ø) . (A.28)

Making the ansatz A2 = Æ

Ø
e#(√) the previous expression provides an evolution equation for

the variable #(√)

d 2#

d√2 = 2Æ(1°e#) (A.29)

and after multiplying both sides by # and integrating by parts, eventually yields the following
ODE

1
2

d#
d√

+2Æ(e#°#) =C . (A.30)

It is straightforward to notice from (A.30), that the behaviour of the amplitude on the inter-
mediate time scale is controlled by the integral Æ (A.24), whose negative sign would cause an
unbounded growth of the fluctuations. Although in this specific model problem the integral Ø
is positive definite (A.24), the result derived here would provide a mathematical explanation
for the supposedly unstable scenario characterized by Æ< 0 and Ø< 0 in problems where Ø
can realise negative values (as conjectured in § 3.4.4).

A.2 Comparison to the original model problem

When introducing the intermediate time scale √ in the multi-scale analysis of the original
model problem (3.1)-(3.2) presented in § 3 we obtain the following set of equations

@U
@ø

+
p
"
@U
@√

+"@U
@T

= "(F °∫U °¥2e°U 2
) (A.31)

@¥

@ø
+
p
"
@¥

@√
+ @¥

@T
=U¥e°U 2 + @2¥

@z2 °"¥3 (A.32)

with the main difference from (A.4)-(A.5) being the exponential dependency of the two equa-
tions from U 2. Positing the same expansion for the variables U and ¥ (A.6) the asymptotic
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A.2. Comparison to the original model problem

expansion of the exponential term

e°U 2 ª 1°U 2 ° 1
2

U 4 +O(U 6)

= 1° (U0 +
p
"U1 +"U2)2 ° 1

2
(U0 +

p
"U1 +"U2)4 +O(U 6)

(A.33)

introduces an additional term (highlighted in red) in the evolution equation for the fluctuations
at order O(

p
"))

°@¥1

@ø
+¥1U0e°U 2

0 = @¥0

@√
°¥0U1e°U 2

0 °¥0U0e°U0U1 (A.34)

and consequently in the evolution equation of the amplitude

@A
@√

= A
µZLz

0
|¥̂0|2U1e°U 2

0 d z +
ZLz

0
|¥̂0|2U0e°U0U1 d z

∂
(A.35)

Further taking the √ derivative of the previous expression divided by A, as done in (A.26) will
now yield

1
2

@2 ln
°

A2¢

@√2 =
ZLz

0
|¥̂0|2

@U1

@√
e°U 2

0 d z °
ZLz

0
|¥̂0|2U0

@U1

@√
e°U0U1 d z. (A.36)

An evolution equation over intermediate time for the correction U1 at order ", is obtained via
the same procedure illustrated in the previous section (namely subtracting the the ø-and-√-
averaged equation for U from the ø-averaged one )

@U1

@√
= (fA2 ° A2)|¥̂0|2U0e°U 2

0 (A.37)

where in this case the integrals Æ and Ø defining the slowly-varying amplitude eA =
p
Æ/Ø are

given by

Æ=
ZLz

0
(F °∫U )|¥̂0|2d z and Ø=

ZLz

0
(1°2U 2

0 )e°2U 2
0 |¥̂0|4d z (A.38)

identical to those derived in § 3.3, since they results from the solvability condition of the
T -perturbed eigenvalue problem at order O(1) (A.11).

As clearly visible the substitution of (A.37) into (A.36) does not lead in this case to any simplifi-
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Appendix A. Intermediate-time processes and instability of the fluctuations amplitude

cation, due to the more complex form of Ø

1
2

@2 ln
°

A2¢

@√2 = (fA2 ° A2)
µZLz

0
|¥̂0|4U0e°2U 2

0 d z
| {z }

∞1

°
ZLz

0
|¥0|4U 2

0 e°U 2
0°U0U1 d z

| {z }
∞2

∂

=
µ
Æ

Ø
° A2

∂
(∞1 °∞2).

(A.39)

Consequently we can not draw direct conclusions on the behaviour of the amplitude at
intermediate time scales, based on the sign of Æ (or any other parameter).
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B Mixed derivatives of singular eigen-
value problems

Considering a vector space V : [0,1]xR!Rwith inner product h·|·i : V £V !R, we introduce
a generic operator L acting on its elements v , L(a,b) : V !V dependent on two parameters a
and b with a,b 2R. This operator is defined self-adjoint, or symmetric, if hLv1|v2i= hv1|Lv2i,
namely if it is identical to its adjoint L†. Denoting with ¥̂ the eigenfunction of L (with nor-
malisation

≠
¥̂
ØØ¥̂

Æ
= 1)associated to the eigenvalue æ the following eigenvalue problem is well

defined for any a,b 2R

L(a,b)¥̂(a,b) =æ(a,b)¥̂(a,b) . (B.1)

The perturbation of this eigenvalue problem with respect to one or both the parameters a
and b allows to derive expressions for the corresponding correction of the eigenvalue æ, via
ensuring the solvability of the resulting singular boundary value problem, as detailed in § 3.3
and § 4.3. When seeking for the second-order correction of æ with respect to a and b, namely
@a(@bæ), the order of the two differentiations and the imposition of the solvability condition
can be exchanged, yielding apparently different expressions.

Denoting the partial derivatives of L and æ with the more compact notation @i (@ j L) = Li j and
@i (@ jæ) =æi j , the three different derivations are summarised below.

Differentiation w.r.t a and b followed by solvability condition

Taking the second derivative of (B.1) with respect to both parameters a and b

L¥̂ab =°Lab ¥̂°La¥b °Lb¥a +æ¥̂ab +æa¥b +æb¥a +æab ¥̂ (B.2)

and defining the operator L as L = L°æ, singular by definition, yields

L ¥̂ab =°Lab ¥̂°La¥b °Lb¥a +æa¥b +æb¥a +æab ¥̂ (B.3)
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Appendix B. Mixed derivatives of singular eigenvalue problems

for which the solvability condition (3.18) has to be enforced taking the inner product with ¥̂

æab =
≠

Lab ¥̂
ØØ¥̂

Æ
+

≠
La ¥̂b

ØØ¥̂
Æ
+

≠
Lb ¥̂a

ØØ¥̂
Æ

(B.4)

where æa
≠
¥b

ØØ¥̂
Æ
=æb

≠
¥a

ØØ¥̂
Æ
= 0 due to the preservation of the norm

≠
¥̂¡

ØØ¥̂
Æ
= 1

2

≠
¥̂
ØØ¥̂

Æ
¡ = 0.

Differentiation w.r.t a, followed by solvability condition and further differentiation w.r.t b

Taking now the first derivative of (B.1) with respect to the parameter a

L ¥̂a =°La ¥̂+æa ¥̂ (B.5)

and projecting the previous expression onto the null-space of L we obtain

æa =
≠

La ¥̂
ØØ¥̂

Æ
. (B.6)

Taking then the derivative with respect to the second parameter b a second expression for the
mixed derivative of the eigenvalue is obtained

æab =
≠

Lab ¥̂+La ¥̂b
ØØ¥̂

Æ
+

≠
La ¥̂

ØØ¥̂b
Æ

(B.7)

which in the case of a self-adjoint operator becomes

æab =
≠

Lab ¥̂+2La ¥̂b
ØØ¥̂

Æ
(B.8)

owing to
≠

La ¥̂
ØØ¥̂b

Æ
=

≠
La ¥̂b

ØØ¥̂
Æ

.

Differentiation w.r.t b, followed by solvability condition and further differentiation w.r.t a

Re-taking the same steps as in the previous case switching the order of the differentiation with
respect to a and the one with respect to b leads to

L ¥̂b =°Lb ¥̂+æb ¥̂ (B.9)

and
æb =

≠
Lb ¥̂

ØØ¥̂
Æ

. (B.10)

after imposing the Fredholm alternative.
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Differentiating then (B.10) w.r.t. b, the third expression for the second mixed derivative of
æ(a,b) reads

æab =
≠

Lab ¥̂+2Lb ¥̂a
ØØ¥̂

Æ
(B.11)

.

The three seemingly different expressions obtained just inverting the order of differentiation
and projection onto the null-space of L can be proven identical demonstrating

≠
Lb ¥̂a

ØØ¥̂
Æ
=

≠
La ¥̂b

ØØ¥̂
Æ

. (B.12)

For this purpose we re-write (B.5) and (B.9)as

0 = L¥̂a °La ¥̂+æ¥̂a +æa ¥̂ (B.13)

0 = L¥̂b °Lb ¥̂+æ¥̂b +æb ¥̂ (B.14)

and we take the inner product of these expression against ¥b and ¥a respectively, obtaining

0 =
≠

L¥̂a
ØØ¥̂b

Æ
°

≠
La ¥̂

ØØ¥̂b
Æ
+æ

≠
¥̂a

ØØ¥̂b
Æ
+æa

≠
¥̂
ØØ¥̂b

Æ
(B.15)

0 =
≠

L¥̂b
ØØ¥̂a

Æ
°

≠
Lb ¥̂

ØØ¥̂a
Æ
+æ

≠
¥̂b

ØØ¥̂a
Æ
+æb

≠
¥̂
ØØ¥̂a

Æ
. (B.16)

Subtracting (B.16) from (B.16) and recalling that
≠
¥̂a

ØØ¥̂b
Æ
=

≠
¥̂b

ØØ¥̂a
Æ

and
≠
¥̂
ØØ¥̂a

Æ
=

≠
¥̂
ØØ¥̂b

Æ
= 0

because of the normalisation, yields

≠
La ¥̂

ØØ¥̂b
Æ
°

≠
Lb ¥̂

ØØ¥̂a
Æ
=

≠
L¥̂a

ØØ¥̂b
Æ
°

≠
L¥̂b

ØØ¥̂a
Æ

(B.17)

from which (B.12) directly follows making use of the self-adjointness of the operator L and the
symmetry of the inner product that give

≠
L¥̂a

ØØ¥̂b
Æ
=

≠
¥̂a

ØØL¥b
Æ
=

≠
L¥̂b

ØØ¥̂a
Æ

.
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C QL algorithm for the strongly strati-
fied flow problem - A lengthy calcula-
tion

In this appendix we report the full calculation to derive the evolution equation for the
wavenumber associated to the marginally stable mode, for the two-dimensional stratified flow
problem considered in § 5, and described by the following set of coupled quasi-linear PDEs

@u
@T

= |A|2i g
@

@z

µ
'̂
@'̂§

@z
° '̂§ @'̂

@z

∂
+ 1

Reb

@2u
@z2 = |A|2RSu + 1

Reb

@2u
@z2 + f , (C.1)

@b
@T

= |A|2i g
@

@z
('̂¥̂§ ° '̂§¥̂)+ 1

Pr Reb

@2b
@z2 = |A|2RSb +

1
Pr Reb

@2b
@z2 , (C.2)

æ

µ
@2

@z2 °k2
∂
√̂=°i ku

µ
@2

@z2 °k2
∂
√̂+ i k

@2u
@z2 √̂° i kb̂ + F r

Reb

µ
@2

@z2 °k2
∂2

√̂, (C.3)

æb̂ =°i kub̂ + i k
µ
1+ @b

@z

∂
√̂+ F r

Pr Reb

µ
@2

@z2 °k2
∂
b̂. (C.4)

131



GEOMETRICAL DESCRIPTION

Trlh , -1 ) a surface P : A → 1123 A EIRZ

PIT . 'h ) : ( Teh ) > ( T.hr , Re{rltih)}) as a graph

i. P injective because V-IT.tn ) F ! Train) by construct .

i
1 ridge J : I → 1133 I EIR✓ '

* .
: : i > h
l 14 : I → IRZ I EIR

MIT ) : T → ( T.gl-1 ) ) as a graph

T
-

l

141T ) is injective when considering only one91T )
mode > t mode you can have a different M

Indicating with Tr = The { or }

Taylor expansion of Trl -11h ) along the ridge y
'
= d- = 1

,

0191T)
µ ,

,
0 around a point M -

- ( TM , ha ,
5=0)

I

1

,

r

or / 1h , -11Mt AJ ) ~ Trie + { 2-19.14 + Intr µ do,? } ?It
/ £ 22ham dor 2

a ,
t 212nA µ

d 8- + £ 2ft, µ } Ah + 01A')
01T

enforcing 2hr1m = 2,qfµ=0 when Tr = Trlm = 0 ( saddle point Condit . for M ) and the

propagation of those properties . along the ridge ( Trllh , -11m + 8) = 0) we obtain

0191T) 2

+ z
2h12-1 Tr) / m 0191T)

=

2 ? TRIM
01T

2k2gr / µ 01T 2ÉTrM

Using perturbation analysis we now need to determine 2h12-1071m
,
2ÉTrlM and 2? TRIM

to determine dig
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2. DERIVATIVES OF L AND THEIR EVALUATION

Evaluation at M ( point on the ridge) > RIT}=0 R{2ns }=0 R{2ir}= O

r )
( rtiñh )( Ji - h

') - Lh2z2ñ - Y÷b( Ji - h' )
'

ik

L =

12.1 01 )
-

th (1+2-5) rtihu -

Fr Cai - h' )
Reb Pr1

,

r 7
( iT{o} + iñh )l2i - h

') - chain - Y÷b( Ji - ti )
'

ih

L
µ
=

( 2. Ib)
-

th (1+2-5) iy{o}+ihñ -

Fr lai - h' )
( Rebpr

i
/

12ns + iñ)( ai - h' ) - 2h(rtiñh) - i2Eñ + 4h Fr ( Tri - h2) i
Reb

2nd =
- i / 1+22-5) 12.201)

2hr + iñ + 2h
Fr

( Rebpr

:"

links}+iñ)( ai - h' ) - zhi /T{r}+ñh) - i2Eñ + 4h Fr ( Tri - h2) i
Reb

2nd ,y=
- i / 1+22-5)

iygzn + in + 2h
Fr 12.2-b)

( Rebpr

j

r n

12-irtih2.it/l2z-h)-ih2E2-iu 0

2T£ =

( 2.301)
- in (2+2-15) dirt ih2iñ

L J

r n

( iT{ air}+ih2iñ)l2z - ti ) - lh2E2iñ 0

2T£
,
= 12.3 b)

- in (2+2-15) IT / air}+ik2iñ
e s
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f 7

( 2nir+i2iñ)(2E - ti) - 2h12-1Gt chain ) - i2É2iñ o

2ÑtL= 12.401)

( il2z2tb ) 2m20 + idiot
,

r 7

( 2nir+i2iñ)l2z - ti) - 2h( IT / 2-10} + chain ) - is'z2iñ o

2ÑtLm= ( 2.46)

( il2t2tb ) 2m20 + idiot
,

r
7

2hr12} - h' ) - 4h / Trnrtlñ) - 2 / Ttihñ) -141=1121 - 3h2 ) o
Reb

22hL = | 12.501)

2h20 + 2
Fr

L O Rebprj

7

2ñrl2z - h' ) - 4h(iT{2nr}+iñ) - 211TH}+ihñ) -141=1121 - 3h2 ) 0

Reb
12.56)2hL =

2h20 + 2
Fr

r

Rebpr]
L O

r )

(oirtihaiñ/ ( ai - ti ) - ih2E2iñ 0

2,2L = 12.601)
- th / 2+275 ) 2-irtih2.in

L )

( 2. Gb)
2-islm-2.is
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PERTURBATION ANALYSIS

'

L - Lm t Ak 2hL / m 1- AT 2-1L / µ + 42 All 2hL / µ + Yz AT -2 ? LIM + AT Ak 2h12-1L ) / M

r - Tu t A- k 2hr1m 1- AT 2+0 / µ + 42 All 2hr1m + Yz A-122 ? TIM + AT Ak 2h12-1T) / µ

^ ^

4- 4Mt Ak 2nF In 1- AT 2-1^4 / µ + 42 All 24^4 / µ + Yz AT -2-12^4 / m + AT Ak 2h12 ,
-F) In

^ ^

b- but Ak 2nF In 1- AT 2+5 / µ + 42 All 2451m + Yz AT ' dib / m + AT Ak 2h12 ,
- b) In

indicating I = [ Ict) , "blt) ]

^ ^

✗ - ✗ µ 1- Ak 2nF / µ 1- AT 2T£ / µ + 42 All 2h21m + Yz IT ' 2T£ / m + AT Ak 2h12 ,
- F) In

3. ORDER 01 AT ) DETERMINATION OF THE AMPLITUDE AND 2-1^11

Lm 2, Ñ / µ = - 12Th ) MÑM 13.1 )

Solvability condition to find an expression for 2,0

{ Lma, Itm / Itm ) = 42,51×14%1=0

( Ln 2, Ilm / Itm ) = - fit:(2,611min 017 = 0 13.2 )

where 2-1 LIM IS given by 12.3 b) just retaining Lirr

0 = - air / Ñt*( 21 - h' )Ñdt - 1h / 4^1-12 , -u)l2i - h')Ñdt + in / if:-( ziz.ie/uioYz +

12 )

+ ih / Ñ*l2z2,b)Ñdt - 2-10 / 5¥ Bolt - in / b"* 2. a-
'

b' at

Integrate by parts the two integrals (1) and 12)

1h / Ñ¥l2z2,ñ)Ñdz = oh / 12in ) [ Ñ¥2EÑtÑ2iÑ¥ + 2122-5112+5%-11 dz

1h /
'

b'¥ 122-2-15 )Ñdz = - ch / 12,5 ) [
'

b'+* 2zÉ+ Ñ2zÑ*]dz

135



2-it I / I¥121 - ti)É + 5¥ "b dz } =

-
in 112in ) [ * ( ai - ti ) it -

'

Y'
+
* LEI - 52; *

- 212nF ) ( zzuitx ) + 5¥51 dz

- in / 12-15 ) [
'

b'+* 2zÑ + Ñ2z * I olz

Substituting now 2T ñ and Trib and rearranging to isolate the unknown

amplitude 1 A 12

2-it I / I¥121 - ti)É + 5¥ "b dz } =

-
in / Al

' { / Rsu [ * 121 - h' ) it -

'

Y'
+
* LEI - Ñ2z *

- 212nF ) ( zziptx ) + 5¥51 dz +

+ / Rsb [ * 2zÑ + Ñ2z * I olz }
13.3 )

- 1h / / ( aiñReb t f [ * 121 - h' ) it -

'

Y'
+
* LEI - Ñ2zÉ¥ - 212nF ) ( zziptx ) + 5¥51 +

Jib
+ / prrej [

'

b'+* 2-It É2z * I dz }

Naming brockets and Integrals as follow

P = [ it
+
* 12} - h2 ) it - it" jzif-uzz.io#-z(2zif)(2zIt* ) + It* ^b ] 13.4 )

Q = [ It* 2- it + Ñ2z^bt* ] 13.5)

a = - 1h / If 2inReb t f [ * ( ai - ti ) it -

'

Y'
+
* LEI - Ñ2z *

- zlzziujlzzuitx ) + 5¥51 +

Jib
+ /

p, Reg
[
'

b'+* 2zÑ t Ñ2zÑ* I dt } ( 3. 6)

=
- 1h { / ( *

ñ
+ F) p dz + / ( OtbReb Pr Rb ) Q d 2- }

13 = -
in ftp.su [ * 121 - h' ) it -

'

Y'
+
* LEI - Ñ2z *

- 212nF )(2ziut* ) + 5¥51 dz +

+ / Rsb [
'

b'+* 2zÑ + Ñ2z * I 012 } 13.7)

= - 1h { / Rsu Pdt + / Rsb Qdt }
\

7

y = / if¥121 - hi)É + 5¥ "b dz 13.8 )
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82-18 = - th IAR / / Rsu Pdt - f Rsbadt } - 1h / / (
tilt

+ fi pdz - / ( OtbReb Pr Reb
Qdt} ( 3. 9)

=/ A- 1213 + ✗

We obtain 2-10 = it 1^-1213 then imposing Re / 2-103=0 the equation for the amplitude
r

reads

Re / NO } 13.10)
1A /

2
= -

Re {13/8}

solve for 2-1^11 [BVP 13.1 )] using SPQR

- L 2-115 = - (2-12)/5 + soivabihty condition

- select one specific solution 2-115=12-115 )p + CTÑ

-
determine CT using preservation of the norm .

4. ORDER 011th ) - DETERMINATION OF 2nÑ

Ln 2nF / m = - ( 2nd )lnÑm ( 4. 1)

501 viability condition to find an expression for 2nT

ILM

2nil.nl/itm)--f2nXlmlLtnxtn7--0tLm2nxlmIxtnj---fXt*l2ns)1n/
dz = 0 14.2)

where 2h11m Is given by 12.2 b) Just retaining in this case 2ns

0 = - Int / Yt*l2z - h' )Ñdz - if it
'_
* ñ ( 2 } - he )Ñdz + zihT{or } / Ñ+*^4dz + ziti / Ñt*ñÑdz

(1)

Reb
1^4++122? - ha )Ñdz - if * Baz ++ if It* ( Itu) Yaz - 4h Fr

(2)

+ i / ^b+*Ñdz+ if It* (2+5)^4 dz - 2hr / ^bt*bdz - i^b+*ubdz - 2h
Fr

Pr Reb
fÑ*^b olz
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2ns I / It* Isi - hi )Ñ+^b+*b } =

- i fñ [ It* ( ai - h' )Ñ - 4-* 2+2^4 - Fai *
- 212+5112+5%-1 + It * 5 - 2h2 * it ] dz

- i 15 [ ^b+*2zI + Izz"bt*]dz - i / [ ^yt*^b - 5-* I ] dz + zhi Tir } / it* uidz

- 2h Fr

Reb
/ [ 25¥12 E - ti )Ñ + ¥^bt*b ] on.

where integrals (1) and 11) have been integrated by parts

Naming the new brockets

R = [ 24^1*12+2 - hi )Ñ + p÷^bt*^b ] 14.3)

it = [ ^yt*^b - It* it ] 14.4)

y 2ns = - if it [ P - 2h25+ * it ] olz + if b- Qolz - i / Holt - 2h ¥eb / Rolt ( 4.5)

+ 2ihJ{r} / I¥ipdz

Then enforcing The { Jnr } = 0 7 Differently from the 2D model
,
here it does not

give anything useful . Then don't
.

Solve for 2nF [ BVP 14.1 ) ] using SPQR and select a specific solution using the

preservation of the norm

2nF = 12nF )p + Cni
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5. ORDER 01 Ah 2) - DETERMINATION OF 2nF

La Jinx In = - 12k611m In - 2 ( 2nd )ml2nÑHM 15.1 )

501 viability condition to find an expression for 22ns

{ Lmrdñxlm / Itm ) = fair Ilm / Ltmxtm ) = 0

( Linan in / Itm ) = - / It* 12k211m Idt - 21K¥ ( 2nd) mlrdniillmdz 15.2)

where 2in LIM
,
2nd In are given by 12.2 b) 12.5 b) and 2nF has been determined

at order Ah

0 = - Jiro 1^4+1+12; - hi )Ñdz +6in / it# ñuidz -4
Fr / It* ( ai - hi )Ñdz + 8h2 Fr / if* if dz +
Reb Reb

+ 2i Tlr } + 2h7 { 2ns } / It* uidz +

- 2hr / ^b+*^bdz - 2 Fr

Pr Reb
/ Ñ+*bdz +

- zi fit" it 12£ - h' ) 2nF at +4in / Ñ¥ñ2nÑ at + zi I
*

12in) 2¥ da t

- 8h Fr f *

( ai - ti)2nÑdZ +
Rb

- 2 IT { 2hr} 14^1*121 - ti ) 2nF dz + 4 hi I { r } / It* 2nF dz - zi / Ñ¥2n^bdz

+ zi / It* (2+5) 2nF at + zi / ^b+* 2nF dz - 2 IT { 2hr} / b^t*2nbdt - zi / ^b+*ñ2nIdz +

- 4h ¥'re
,

/ Ñ*2nÑdz

2ñr I 14^+1+12: - ha )Ñ + 5*5 at } =

• in / it* ñuidz - 2
Fr /Kii# ( ai - hyip + ¥ It

"

b) Azt 8h2 1¥, / Ñ¥Ñdz +

Reb

- zi / it [ 4^+1+12+1 - h' ) 2nF - ¥-12T 2nF ) - any )l2EÑ¥ ) - 2122.5¥ ) / 2- 2nF)

+

'

b'¥25b - 2h2 4-* 2nF T.dz
- Zi / b- [ 5¥12. 2nF ) + 12nF) ( Zz * ) ] dz

- 4h Fz÷ / [24^+1+12; - hi ) 2nF + ¥ ^bt*2nb]dz - zi / ^y¥2n^b - 5¥ 2nF dz

+ zi 712ns } / [2h It* it - 5¥12? - hi) 2nF - ^b+*2n^b T.dz + 2in IT} / 1^4+1+5 + 2h it* 2nF / dz139



Naming the new brunets

ph = [ 4^+1+12+1 - h' ) 2nF - ¥-12T 2nF ) - any )l2EÑ¥ ) - 2122.5¥ ) / 2- 2nF) +
'

b'¥25b 1 ( g. 3)

Qh = [ 5+1+(2+254) + 12nF) ( Zz * ) ] ( 5. 4)

Rn = [24^+1+12; - hi )2nÑ + ¥ ^b+*2nbJ 15.5 )

pin = Ñ¥2n^b - 5¥ 2nF olz 15.6 )

where Pn
.
Qn

.
Rn are the same as P

,
Q ,
R just with 2nF instead of Ñ

( the sub he does not indicate h - derivative)

2hr = - Zi / ñ [ Pre - 2h24# 2nF - shift* if ]dz

- Zi f 5 Qndt +

-

2 Fr / ( R + 2h Rn - 4h2 Ñ+*Ñ ) dz - Li 11Th 017 +
( g. f)

8 Reb

+ 2J ] / 2ns } / [zhiutxui - 5¥12? - hi) 2nF - ^b+*2n^b T.dz +

I

\

+ 2in IT} / 14^+1+5+2hit* 2nF / dz

✓

G. ORDER 011th AT ) - DETERMINATION OF ZÑTT

Ln 2nF KIM = - 12mL) /min - ( 2-it)1ml2nÑ/ In - ( 2nd / 1m12-11511m 16.1 )

solvability condition to find an expression for JETT

( Inanity . Iit ) = tan.it . Liii:) =o

( Ln 2nd, Elm / It > = - / ✗^¥( 21mL )1mÑdz - f * 12,41m ( zniylmdz +
16.2)

- f * ( 2nd)ln (2-115) / molt = 0

where 2nd In
,

2-1 LIM
,
2in LIM are given by 12.2 b) , 12.3 b) .

12.4 b) and ZNÑIM
. ZTÉIM

have been determined at orders Ah and AT
.
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0 = - Into 1^4+1+122? - ha)Ñ at - if Ñt*2iñl2É - h')Ñdz + zing { 2.ir } 1^4*4^012
ill

(2)

+ ziti / * ziñifdz + i 1^4%-1212,ñ)Ñdz - i / 5+1+12+2,5 ) Idt - ants / It* ^bdz

- i 1^5*2, ñbolz +

(3)

- IT { air } / 4^1*12 i - ti )2nYdz - ch 1^44-2-1 -ul2i - h' ) 2nF dz + in 1^4*12+22-iñ ) 2nF dz t

(4)
+ in / 5+1+(22-2,5) 2nF at - IT { 2-is} / It* 2ND dz - th / ^b+*2iñ2nbdz +

- iJ{ one} / it* ( ai - h' )2,Ñdz - i / Ñ¥ñl2E - ti ) 2-1^4012-+2 ihT{r } / 4^+1+2 , Ñdz +

15 )

+ ziti / Ñt*ñ 2-1^4 dz + if Ñ¥l2iñ) 2-Ñdz - 4h 1^4%-12} - h2) 2,5oz - if * 2,5 dz +
Reb

+ i / 5+1+2 , uidz + i / It* 12+512,5 di
"

- in { 2ns } / ^b+*2ibdz - i 1B¥ ñrdibdz -

- 2h ¥ 'Re
,
/ ^b¥ Trib dz .

Tint (2-10) ••

into 11^4*12; - hi)Ñ+bt*^bdz } = I

- i 1 2 , -u [ 5¥12 E - h' ) it dz -4^+1+22.2^4 - it 2EÑt* - 212+4 ) ( 2z^yt* ) + ^b+*^b

- 2h25 +* if ] dz
'

+ i / 2,5 [ It* 2zÑ + it 2z^b¥ ] dz +

- 1h / Jiu [ 4¥12} - h' ) 2nF -4¥ ( 2É2nÑ ) - 12nF ) ( 2E^Y+* ) - 2122.2nF) ( 2zÑ¥)tb+*2nb ] dz

- 1h / 2-15 [ B+*2z2nÑt 12nF/ 22.5¥ ] dz

- if ñ [ ¥+12E - ti ) 2-1^4 - It* HE 2,4 ) - 12,4) ( ziÑt* ) - z (22-2-1^4) ( 2zI¥ ) +

+ It* 2,5 - 2h2 * 2,5 ] dz

+ if I [ It
* (22-2-1^4) + (2^4112+54) ] dz - 2h

Fr

/ 125¥12: - h' ) 2-1^4 + ¥ I
" aib ) dz

Reb

- i / 1^4
" zib - 5*-2,4 ) dz

- IT {2-10} / [-2h * it -1^4+1+12} - ti)2nY +

'

b'¥25b / dz - in { Onr} / [It* ( ai - h' ) 2,4^+5*2+5 / dz

+ 2ihT{r } / 4^+1+2 , it dz
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Where integrals 111 - 16 ) have been integrated by parts.

The expression boxed in red

- i 12th P dt t if 2+5 Qdt =

oiñ
- i IAI 't / (Rsu P - Rsb a) dt } - if /

Reb
+ F) P - ( £5

g-nprReb) Q dt } = V2-1T > 817121T}

since the {2-10}=0

As done before , naming the new brockets

Pt = [ ¥+12T. - hi ) 2-1^4 - It* 12+22-1^4 ) - (2-1^4) / 2iÑ+* ) - z (22-2-1^4) (2+4^17) + 5*2,5 ] 16.3)

Qt = [ It
* (22-2-1^4) + 12 > it)l2z^bt*) ] 16.4 )

( 6.5)
Rt = [2^45*12i - ti ) 2-1^4 + ÷ 5++2-15 ]

(6. 6)

IT, = [ it" gib - 5++2,4 ]

82nF r = ziti / Ñt*ñÑ dz +

- 1h / 2-iñ Pnolz - in / 2-15 Qnolt

- I / ñ [ Pt - 2h2 Ñ+*2_Ñ ] dz - i / b- QT dz - 2h ¥:b / Rid 2- - i / IT -1017

- IT {2-10} / 1- 2h * it -1^4++123
.

- hi )2nY +

'

b'
+
* anti + hit* ( ai - hyip + h^b+*^b ] d 't ti'T

- IT { Onr} / [It* ( ai - h' ) 2,4^+5*2,51 dz + ihT{r} / It * 2,5oz

substituting the evolution equations 2in . Trib

2nF r= I { ziti / Ñ+*ñÑdz +

- Lh IA 12 { / ( Rsu Pre - Rsb Qn) olz } - Lh / / (
tilt

+ F) P , - (¥¥eb Qt dz }
Reb

Reb / RT dt - I / IT -1017} ( 6. 7)
- I / ñ [ Py - 2h2 Ñ+*2-Ñ ] dz + if b- QT dz - 2h

Fr

- IT {2-10} / [ 2h * it -1^4*-123
.

- tinny +

'

b'
+
* anti - £ It* ( ai - hyui - Éb+*^b ] 017

- in { Onr} / [It* ( ai - h' ) 2,4^+5%-2+51 dz + 2ihT{r} / 4^+1+2,5 dz

I
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7. ORDER 0 / 1- 2) - DETERMINATION OF 27T

Ln 2,2 Ilm = - ( 2? d) In In - 212th)lnl2iÑ ) In 17.1 )

501 viability condition to find an expression for air

1 Ln 2-ixln / It, > = ( 2-ixl.nl Latifi ) = 0

17.2){ Ln 2,244m / It, > = - / # ( 2:L ) / µ Ñdz - 2 / Ñᵗ* (2-12) In (2-1^11) / molt

where 2 -121M
.
27h1m are given by 12.3 b) and 12.6 b) and 2-ixln has been determined

at order AT

4)

0 = - 2,20 / Ñᵗ* 122.2 - h2)Ñdz - ih / 4^+1+12-2, -4124 - h2)Ñdz + 1h / Ñᵗ*lzE2iñ)Ñdz t

+ 1h / 5+1+12+22,5 )Ñdz" - air / b^ᵗ*^bdz - ch / "b'
-

* 12in )^bdt +

- 2iT{ 2-10} / Ñᵗ* / Ji - ti ) 2-1^7012--2 uh / Ñᵗ*l2iñ ) ( 2K - h2 ) (2-1^4) at
(3)

+ 2in / Ñᵗ*l2z2tñ ) (2-1^4) at +

(4)
+ 2in /

"bᵗ* / 22-2-15 ) (2-1^4) dz - 2iY{ 2-10 } / ^bᵗ*2ibdz - 2in / ^bᵗ*l2tñ)2ibdz

Integrating by parts integrals (1) - (4)

air / / 4^4-12: - hi )Ñ + ^bᵗ*^bdz } =

-

in / 2in [ F'
-

* ( ai - ti )Ñ - Ñᵗ*2zÑ - Ñ2iÑᵗ* -212+41122-47*1 + Ñ*^b ] dz +

- in / Jib [ Bᵗ*2zÑ + 422-5++1 dzt

- 21h / 2--1 ñ [ #* ( Ji - h' ) 2-1^4 - Ñᵗ*l2i2iÑ ) - (2-1^4) / 2iÑᵗ*) t

- 212-+21^4 ) ( 2zÑ+*) + ^bᵗ*2ib ] dz t

- 21h / 2-15 [ It * 22-2-1^4 + 2-1422-5*1017 +

- 2iY{ 2-10 } / [ 4^+1+12? - ti / 2,4^+1%-2,51012 +
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y 2,20 = - th / 12in ) Paz - ch / (2-125) Qdt

- 21h / 12th) Pt dz - 21h / ( Trib ) QT 017
( 7. 3)

- 2iY{ 2-10 } / [ 4^4-12? - ti / 2,4^+1%2,51012

given 2-iu-IAIZRS.at
2ft

+ I and 2-15 = IAIZRSB t
215

we have to
Reb Pr Reb

compute

ZÉÑ = 2+(11+12) Rsut 11-1122-1 / Rsu ) +
2É2tÑ

+ 2-if 17.4)
. Reb

2%5 = 2+(11+12) RSb.tl/tl22-lRSb)t2i2tb ( 7. 5)
Pr Reb

y 2,20 = - ik 2-11:/ All) / Rsu Pdz - 1h / A 12/12-1 Rsu)Pdz - th / * *Ñ Pdz - 1h / Jtf PdzReb

17.6 )
- th 2-111 All ) / Rsb Qdz - 1h IAP ) ( 2-1125 b) Qdt - th / ( ◦ÉZTÉ Qdz

Pr Reb

- 21h / 12th) Pt dz - 21h / (2-15) QT 012--2 IT {2-10} / [ 4^+1+12? - hi / 2,4^+1%-2,51012

The integrals containing 2in and Trib require to take

- T - derivative of Reynolds stresses Rsu and Rsb

-

T - derivative of the Amplitude ( which contains Rs inside B)

since both Reynolds stresses and the Amplitude are given by the neutrally stable

eigen mode on the ridge ,
the T- derivative is a directional derivative :

if → & 2 , I = 01-1^4 = 2-11^0 + 2nÑ -010k
01T

is → if 2tÑ = 01+5 = Jib t2nbdk
01-1

where § and Ñf are not functions of h
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I

7. 1 T - DERIVATIVE OF THE REYNOLDS STRESSES Rsu , Rsb

dy
22-4*-1 & / 22-2-1 + 2- 2nÑ* 019

+
2-1 ( Rsu ) = Ih Zz ( ( 2iÑ+ 2nF 0191T)

01T

- ( 2-14*+2,3*019at ) 2+4^-4*1 2-2-14 + 2- 2nF ¥ ) ]

substituting back § → Ñ ( since I = ÑIM )

2,1 Rsu ) = eh [ ( 22-2-14 )2zÑ*t 12-1^4)2ÉÑ* + (2z2nÑ) 22-4*01-18 1- 12h4) / 2+2^4*1 dig +

+ 12+4 ) ( 2- 2-1^4*1 + 4^122-22-1^4*1 + 2zÑ(2z2nÑ*d-18) + Ñ(2z2nÑ* ) dig +

- (22-24*112+4) - 12-14*1122-24) - ( 2z2nÑ*)l2zÑ ) dig - l2nÑ* ) (22-2^4) 01-19 +

- ( 2- Ñ* ) / 2+2-1^4 ) - Ñ*( 22-22-1^4 ) - ( 2zÑ* ) ( 2t2nÑ ) 01-19 - 4*(242^4) dig ]

Rsut 1

T I

2-11 Rsu ) = ch / 12-14^122-24*-12-14*1214 + Ñl2É2tÑ* ) - Ñ*(2i 2-1^4 ) } +

1- 1h 018
a , { 12nF )l2iÑ* ) - ( 2nÑ*)l2iÑ ) + Ñl2i2nÑ* ) - ¥12 }- 2nF ) }

1 I

RSUTZ

R5ut1 = [124^122-24*-12-14*1214 + Ñ / 2£22 -1^4*1 - # (2+22-1^4)] ( 7. 7)

izsutz = [ 12nF )l2iÑ* ) - ( 2nÑ*)l2iÑ ) + Ñ / 2i2nÑ* ) - # ( 212nF ) ) ( 7. 8)

2-1 ( Rsu ) = eh R5ut1 + eh 018 Rsut2
-

. 9)
at

Analogously for Rsb

2-1 IRS b) = Ih Zz [ (2-14^+2^4019
at )Ñ* + 9^12-15*+2n^b*% ) +

- ( at# + 2nÑ*%¥)Ñ - 5*12-15 + anti %, ? / 1

substituting back I → Ñ and Ñ→b and taking the 2- - derivative 145



2+1 Rsb ) = ih [ 122-2-iÑ)b* 1-12-14)l2z^b* ) + ( 2z2nÑ)b* dig + 12nF) / 2+5*1 dig +

+ (22-4) / 2tb* ) + Ñ( 22.2b¥ t (22-4) / 2n^b* ) dig + Ñ ( 2z2n^b* ) dig +

- ( 2- 2-1^4*15 - 12-1^4*1122-5 ) - ( 2z2nÑ*)b dig - ( 2nÑ*) ( Trib ) dig +

- (22-4*112-15) - 4*12+2-15) - ( 2-Ñ*)l2nb ) dig - Ñ*l2z2nb) dig

2 , / Rsb ) = ih { I2z2tÑ)5*_l2z2iÑ*)b+l2iÉ)l2ib*)↑↑É%*)l2zb)+tszÑ)(2ib
- 12T¥) / aib) + 4^122-2-ib*) - Ñ* / 22-2-15 ) } +

+ 1h 019 { ( 2z2nÑ)b^* - ( 2t2nÑ*)b + 12nF ) / 22-5*1 - ( 2nÑ*)l2zb ) +

"

"

01T

+ (22-4) / 2nb^* ) - ( 2zÑ* ) 12nF ) + Ñl2t2n^b* ) - 4*122-2 rib ) }
I

Rsbt 2

Rsbtl = [ ( 22-2-14 )Ñ* -122-2^4*15 + (2-1^4) / 22-5*1 - (2-14*1122-5) + ( 2-F)Taib" ) + ( 7. to)

- 12T¥) / Lib) + 4^122-2,5*1 - 4*122-2-15 ) ]

Rsbe 2 = [ ( 2z2nÑ)b^* - ( 2t2nÑ*)b + 12nF ) / 22-5*1 - (24*112+5) +

17.11 )

+ (22-4) / 2nb^* ) - ( 2zÑ* / 12nF ) + Ñl2z2n^b* ) - 4*122-2 rib ) 1

2 , ( Rgb ) = ih Rsbtl + th °/% RSbᵗ2 17.12 )
01T

-
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7. 2 T - DERIVATIVE OF THE AMPLITUDE

Re / No }
Imposing Re {2-10}=0 at 01 AT ) we found 1A /

2
= - where

Re { 1318 }

a = - in { / ( 2iñReb + F) P 012-+1 ( 2ÉbPr Rb ) Q dz }
I

= - 1h / / I 2iñReb + f [ #* 12: - ti )Ñ - Ñᵗ*2zÑ - Ñ2zÉ* _ 212nF )(2zÑᵗ* ) +
'

b'¥51 +

+ / Trib
[
'

b'+* 2zÑ + Ñ2zÑ*1 OH }
Pr Reti

13 = - th { / Rsu Pdt t / Rsb Qdt }

=
_
in / / Rsu [ #* ( ai - ti )Ñ - Ñᵗ*2iÑ - Ñ2zÑ¥ - 212nF )(2zÉᵗ* ) +

'

b'¥51 dz +

+ / Rsb [
'

b'+* 2zÑ + Ñ2zÑ* -1012-1

8 = / Ñ¥( 21 - ti )Ñ +

"bᵗ*"b dz

P = [ Ñᵗ* ( ai - ti )Ñ - Ñᵗ*IzÑ - Ñ2zÑ¥ -212^4 ) ( 2zÑ¥)tbᵗ*b ]

Q = [ 5+1+2+4 + Ñ2zbt* ]

2,11A / 2) =
_

Re { 1318 } 2T Re { ✗ to } - Re { ✗ 18 } 2, Re { 1318 }

Re { 1318 }
2

Re {2-111} = 2+1 Rel })

Re { 1318 } Re {2+1%1} - Re { ✗ 18 } Re {2-111%7}
2-11 / A / 2) =

-

Re { 1318 }
2

Re {2-11%1} the { ✗ to } Re {2-111%1} 17.13)
= - +

Re { 131g } Re { 131832

#

Atl At2
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COMPUTE TERM AT 1

Re {2-11%1} 1

AH =
- =

pre { pyg }
Re {_ 2¥ +

✗28 } where

Re { 131g } 82

2-18 = / 2-17^+1+12 : - ti )Ñ + Ñᵗ*l2z - ti ) 2,4 + 2,51-1+5 + 5*2,51 dz
17-14)

( 7.15 )
Re {13/8} = - the { % / Rsu Pdt + ¥ / Rsb Qdt } =

2. a = - 1h / / ( * " ñ 1-2-15) [ #* ( ai - ti )Ñ - ¥+2:& _ uizz *
- 212nF )(2zÉᵗ* ) +

'

b'¥51013
Reb

+ / ( 2-22-15prreb ) [
'

b'+* 2-Ñ + Ñ2z'bᵗ*1 dz +

/ / ññReb + F) [ 2-1^4*12: - ti )Ñ + Ñᵗ*lai - h' )2+Ñ -2,4*2:& - ¥-222,4 - zig,#* if +

- ziipk-z.io - 2122-2-1^7 ) / 22.4¥ ) - 212+4^1122-2,#* ) + 2,5*5+5++2,51 dz +

* / ( Tribprize, ) [ 2-15*22-4 + 5*22-2 -1^4 t 2-1^422-5" + 4^22-2,5*1 dz }
att at 2

=r

2.a =
- th { / ( 02-22-15Reb

+ ° ' f Pdt + / ( ZÉZ -15 adz
Pr Reb 17.15)

+ / ( 2Éñ + f [ Ptt PFI.dz + / ( Jib [Qtt QFI 017 }Reb Pr Reb

I. IF

=
- th att - that2 - that} - that4

Where 2T P = Pit PF and JTQ = QT + QÉ

Pit = [2,4¥ ( ai - ti)Ñ - 2.Ñᵗ*2zÑ - (zig,Ñᵗ*)Ñ - 2122.2-1^4+7122.4) + (2,5+1+151 17.16)

QF = f2ibᵗ*2zÑ + ( Zzz ,̂ bᵗ*)Ñ / 17.17)
- -

similarly to what done for Pt and QT
,

PF and QF have the same structure but

with the time deriv .

On the dagger - eigenfunction .148



1

A -11 = Re { ¥ / ( ◦ÉZTÑ + 2-if Pdz + ¥ / ( ZÉZ -15 Qdz +

Re {13/8} Reb Pr Reb

+ ¥ / ( 2Éñ + f [ Ptt P-FI.dz + thy / ( 2Éb [QTTQFI 017 t 17.18)
Reb Pr Reb

- - ¥, 2-1-81 / 2iñ + f) P dz-ltg-2.ir/(2ibReb Prreb ) Q dᵗ }

In 17.18) we could group term in the 2nd and 3rd lines however the last line Is multiplied

by 2¥, that are integral's ( so it would get messy)

Re - writing ( 7.18) In short ( useful later )

A -11 = I
pre 1h/

g-
att * %- ✗ t2 + that 's + ¥ att + ¥-2 '8)✗ } 17.19)

The / 1318 } I

COMPUTE TERM A-112

Re { ✗18 } Re {2-111%1} Re {48 }
A -12 = t

.

=

g
-

132-18

Re { ply }2
Re / °" "

ya } where

Re{ 131832

Re { Mr } = - the / % / ( ◦it + F) Pdztih / I #E.) Qdz }Reb 8

Re { 1318 } is given by 17.14 ) ,
2-18 by 17.13)

2-113 = - th / / ( 2, Rsu) Pdz + / 12-1 Rsb) Qdt t / Rsu [ Pit PFI 012--1 / Rsb [ Qtt Qt ] dz }

substituting
2-1 ( Rsu ) = eh R5ut1 + eh 018 Rsut2

at

2T / Rsb ) = ih Rsbtl + th °/% Rsbt 2

01T

149



. .

2-113 = + h2 / [( Rsut 1) P + (Rsbt 1)A) OH + hi , / [( Rsut 2) Pt ( Rsbt2) Éfdz
17.19)

- in { / Rsu [ Pit PFI dz + / Rsb [ Qt 1- Qt ] 017 }
I

131-3

2-113 =
ti 131-1 + ti 018-131-2 - ch 131-3

01T

Re /48}"T2 =

pie { p,, }
,
Re { % 131-1 - % 131-3 } + h2 018 Re { ✗18} Re { BY }01T

Re { 1318 }

Re { ✗18}
-

Re { ppg }
≥
Re { ¥ 2-1813 §

Re {2-11%1}
+

the { ✗ to } Re {2-111%1}2-11 / A / 2) = -

= A -11 + A-12 =

Re { 131g } Re { 131832

2 , / At =

'
Re { ¥0M - ¥ ✗ t2 + that } - ¥ att + ¥128K } +

The { 1318 }

Re /48}

Re { ppg }2
Re { % 131-1 - th 131-3 } + h2 019 Re { ✗18}

• °" re { pyo }
Re { '¥ } +

Re { ✗18}
-

Re { ppg }
≥
Re { ¥ 2-1813 §

2 , / At =

'
Re { ¥ att + ¥ ✗ t2-lh-al-3-l-lhg-al-4-j-g.HN } +

The { 1318 }

-

1A / 2

Re { ppg }
Re { % 131-1 - th 131-3 } -

ha dor 1A / 2

✗ °" re { Mr }
Re { '¥ } +

/ A / 2

+

Re { ppg }
Re / ¥28B §

where we have subs tie
.

1/+12 = -

Re { ✗18}

Re { 1318 }
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7. 3 COMPUTATION OF 2-120

51 52 53

-

Reb
Pdt - 1h / Jtf Pdz82-120 = -ih2-ii.la/YfRSuPdz-h1Al#-Rsu)pJz-ihf2i2tu---lh2-illAl

' ) / Rsb Qdz - th IAP ) ( 2-1125 b) Qdt - th / ( ◦ÉZTÉ Qdz
Pr Reb

- --
54 55 56

- 21h / 12th) Pt dz - 21h / (2-15) QT 012--2 IT / 2-10 } / [ 4^+1+12? - ti / 2,4^+1%+2,51012

sit 54 = (2-1111-12) 13

52 = NIA 12 / (Rsut 1)Pdz tht IAIZ 010k / ( Rsut 2) Pdz
01T

55 = + h2 IAP / ( Rsbt 1)QOIZ-thZIAI20-or-flRS.be2) QOIZ
at

52 t 55 = h2 1A 12 131-1 + h2 / AP IOK 131-2
01T

53 = - that 2 56 = thats > These 2 integrals need to be integrated by parts and

grouped with the terms in the last line .
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Initially the core of this thesis was represented by the investigation of viscoelastic turbulent
flows and specifically on the generalisation of the numerical tools for the dynamical system
analysis of such a flow. Due to a subsequent shift of the focus towards the QL project and the
intention to keep this thesis focused, we summarise our achievements regarding viscoelastic
invariant solutions in this appendix.

D.1 Phenomenology of polymers-induced turbulent drag reduction

The addition of a tiny amount of flexible long chain polymers to a Newtontian fluid is known
to produce a significant reduction, up to 80 %, of friction losses in the turbulent regime of pipe
flow. As a result the pressure drop necessary to sustain a certain flow rate decreases and so
does the shear rate at the wall.

The elastic behavior of polymers, due to their chemical structure, strongly modifies the stress-
strain (rate) relation turning the fluid viscoelastic. The polymer-induced viscoelasticity is
measured by the Weissenberg number, defined as the product between the polymer relaxation
time and the strength of the stretching exerted by the flow. Once the transition to turbulence
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is triggered, the elongation of polymers becomes substantial and the structural change in the
nature of stresses gives rise to a non-trivial interaction between polymers and turbulent fluid
motion.
Experimental observations (based on PIV and LDV techniques), and numerical simulations
have shown that the feedback produced by polymer molecules on the flow strongly affects the
statistical properties of the turbulent regime, the linear stability of the laminar state as well as
the transition to turbulence and its self-sustaining mechanism [Nadolink and Haigh (1995)].
One of the most characterizing features of this phenomenon is the existence of an upper limit
for the amount of drag reduction that can be achieved. This limit, also known as maximum
drag reduction asymptote (MDR) or Virk law, is observed to be universal with respect to the
specific properties of the solution [Virk (1975); Virk et al. (1970)].
Polymer drag reduction, first observed in 1948 by the chemist Toms Toms (1948), has received
a lot of attention in the last decades. Has found uses in many industrial applications related
to fluid propulsion, like district heating and cooling systems and fossil fuel transport sys-
tems[Burger et al. (1982)]. In spite of the fact that several theories have been formulated and
much progress has been achieved on both numerical and experimental sides, the mechanistic
underpinning of drag reduction and its universality in the MDR regime still remain not fully
understood.
We believe that much progresses in the overall understanding of this phenomenon could be
achieved by means of a dynamical systems approach. Direct numerical simulations combined
with nonlinear solvers can be used to explore the properties and the structure of the state
space that underlies this complex dynamics.

Figure D.1 – The effect of polymers in two fire hoses driven by the same pressure force. Drag
reduction induced by polymer results in a higher throughput and greatly increased range.

D.2 Dynamical systems approach to turbulence

In the last 20 years, starting from the Nagata solution of the Navier-Stokes equations [Nagata
(1990)], the dynamical systems approach to turbulence gave a deep insight in understanding
intermediate Reynolds number phenomena, establishing a link between chaos theory and
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turbulence. Thanks to the growth of computational power it has become possible to study
turbulent flows as finite high-dimensional systems in their state space, represented by all
the possible velocity fields satisfying the discretised primitive equations and the boundary
conditions. The long time behaviour of the system is thought to be controlled by the set of
solutions that are invariant under the dynamics. These so-called exact invariant solutions
include in the simplest form equilibria, but also periodic orbits, and more complex chaotic
attractors. These solutions are unstable yet dynamically connected with their entangled sta-
ble and unstable manifolds organising the state space. A single flow realization can thus be
thought of as a walk in the state space among these invariant solutions modulated by their
stability, i.e. the higher the stability of a solution, the longer is the time spent by the trajectory
near it [Eckhardt et al. (2007); Gibson et al. (2008)]. This framework promises that statistical
properties of turbulent motion can be explained as the average of the physical properties
characterizing exact solutions weighted by their relevance in the state space dynamics.
Given the remarkable results obtained by this approach for Newtonian turbulence, where
many of this solutions have already been found, we believe the approach will shed some light
on the open questions of polymer drag reduction, directly accessing the core elements of the
dynamics.

The observation that viscoelastic turbulent flows are characterised by a much less three-
dimensional dynamics compared to the Newtonian case, indicates a clear change in the
state-space structures and/or in their stability properties. Whether this represents a shift of
the dynamics towards a specific set of solutions already existing in the Newtonian dynamics
[Xi and Graham (2012)] or a deeper change in their physical properties it nowadays is not
clear. Choueiri et al. [Choueiri et al. (2018)] have recently shown the possible connection
between the universal behavior observed in highly-viscoelastic regimes (MDR) and elasto-
inertial turbulence, previously attributed to a polymer-induced change in the stability of the
Newtonian solutions [Xi and Graham (2010)]. Elucidating the mechanism underlying poly-
mers drag reduction using dynamical system concepts relies on the capability of computing
and characterizing viscoelastic invariant solutions. Only very recently the first viscoelastic
invariant solution has been found [Page et al. (2020)].

D.3 Governing equations and numerical tools

The investigation of polymer-induced drag reduction requires direct numerical simulations
(DNS) of dilute incompressible viscoelastic flows, fully solving the governing equations. Since
polymers modify the linear relation between stresses and rate of deformation, typical of a
Newtonian fluid, an additional constitutive equation for the elastic contribution of polymers
has to be included. The choice of a mathematical description, as well as its numerical imple-
mentation, is a crucial step in simulations of complex fluids where the change in the nature of
the equations can trigger mathematical and numerical instabilities [Xi (2009); ?]. For viscoelas-

155



Appendix D. Polymer-induced drag reduction and viscoelastic invariant solutions

tic fluids a good trade-off between numerical feasibility and physical accuracy is represented
by the hydrodynamic FENE-P (Finitely Extensible Nonlinear Elastic-Peterlin) model. Based on
the assumption that polymers can be modeled as a couple of beads connected by a non-linear
entropic spring, the evolution of the end-to-end vector R for a single molecule is described by
the Langevin equation [Rubinstein and Colby (2003); Doi and Edwards (1986)]. By means of a
stochastic integration, the corresponding hydro-dynamical model of FENE-P can be derived,
obtaining the evolution equation, at the macroscopic level, for the polymer conformation
tensor Æ given by the average second moment of R (eq. D.3), from which the polymeric
contribution to the stress tensor TP is computed (eq. D.2).
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Indicating with µp +µs the total zero-shear rate viscosity (where µs and µp are the solvent
and the polymer contribution respectively) and with U and L the characteristic velocity and
spatial scale of the flow, here Re = ΩU L/(µp +µs) is the Reinolds number, representing the
ratio between inertial and viscous forces; W i = øU /L is the Weissenberg number indicating
the polymer-induced elasticity of the flow as the ratio of the polymer relaxation timescale ø to
the flow timescale (shear rate); Ø is the viscosity ratio Ø=µs/(µs +µp ) and b is the maximum
extensibility of the polymer dumbbells.

For applying of dynamical systems concepts to verify our hypothesis, first invariant solutions
for the above system need to be determined. We define invariant solutions as those flow fields
that satisfy

G(x(t ), t ) =æ f
T (x(t ))°x(t ) = 0 (D.4)

where x(t ) = (u(t ),Æ(t )) is the state-space vector, f
T the time evolution operator determined

by the governing equations and boundary conditions and æ is a symmetry operator.
The saddle-type nature of these solutions, which results in the presence of both stable and
unstable directions in the state space, does not allow to find them from a natural long term
evolution of the system, and thus iterative methods to solve eq. (D.4) are needed. Because of
the high dimensionality of the problem, suitable solvers are matrix-free approximations of
Newton-Raphson iterations, where the expensive calculation of the entire Jacobian is replaced
by the evaluation of its action on a vector v .

156



D.4. Summary of results - Code validation and viscoelastic invariant solutions

The numerical tools necessary to tackle the computational aspects of this project are now pro-
vided by our custom developed version of the Channelflow 2.0 package (www.channelflow.ch
[Gibson (2009)]) for which we have implemented a viscoelastic extension.
Channelflow is a pseudo-spectral code, written in C++ and designed to performs direct numer-
ical simulations of incompressible flows in a channel geometry with two periodic directions
and no-slip boundary conditions at the physical walls. The Navier-Stokes equations are in-
tegrated using a semi-implicit finite differences scheme in time (Adam Bashfort/backward
differentiation scheme for the non-linear and the linear terms respectively) and spatially
discretised via Fourier and Chebyshev polynomials in the periodic and wall-normal directions
respectively. The code provides different DNS algorithms for time forward integration, inter-
faced with a highly efficient Newton-Krylov solver to handle root-finding and linear algebra
problems in high dimensional systems. Thanks to the highly MPI-based parallelisation imple-
mented by our group and the recent extension to viscoelastic fluids, our code has now all the
fundamental features to tackle highly resolved viscoelastic simulations.

D.4 Summary of results - Code validation and viscoelastic invariant
solutions

The strong computational component at the base of this project makes the implementation of
the FENE-P equations a prerequisite for further investigation of the viscoelastic flow problem
and the successful achievement of the aforementioned objectives. In this section we first
present a qualitative validation of the code, showing its capability of capturing the main
features of turbulent drag-reduction. Then the successful computation of two families of
invariant solutions in two different systems is shown: a travelling wave in plane-Poiseuille
flow and a snaking solution in Couette flow. The aim of this section is not to draw scientific
conclusions on the topic , but rather to show the validity of the numerical tools and their
potential for future research.

D.4.1 DNS of viscoelastic channelflow: phenomenology of drag reduction

Though turbulence has a chaotic nature to the point where a statistical methods are necessary
to describe it, some physical quantities show a very specific behavior close to any solid
boundaries in the system. When velocities are scaled with the friction velocity uø = 2

p
øw /Ω

and distances with the local viscous length ±= ∫/uø (with øw = @u/@y |y=0 the time and area
averaged shear stress at the wall, Ω the density and ∫ the kinematic viscosity of the flow), the
mean stream-wise velocity profile U+(y+) expressed in this so-called "inner units" is known to
obey the law of the wall. It is linear in the viscous sub-layer, nearest to the wall where viscous
dissipation takes place, and logarithmic further away from it, where inertial forces dominate
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[Pope (2000)].

U+ = y+ if y+ < 5 (D.5)

U+ = 1
∑

ln
°
y+¢

+C if y+ > 30 (D.6)

For a Newtonian fluid equation (D.6) is known as von Karman log-law for which ∑ ' 0.4
and C = 5.5. Experimental observations for viscoelastic flows revealed the existence of an
analogous logarithmic dependence with higher slope and intercept (k ' 0.08 and C '°17) that
sets the upper limit of drag reduction achievable for a certain flow rate Virk (1975). Data from
different setups with different polymer concentrations, species, and pipe sizes, all collapse on
this asymptote, highlighting its nearly-universal character. Figure D.2 shows the mean velocity

Figure D.2 – Mean velocity profiles in inner units from DNS at Reø = 84.85, W i = 1° 80 .
Polymer-induced drag reduction, increasing viscoelasticity, corresponds to an higher slope
in the mean velocity profile and thus to an higher throughput if a fixed pressure gradient is
imposed (Plane-Poiseuille).

profiles obtained from DNS at fixed Reynolds number Re = 3600 (Reø = 84.5) and increasing
Weissenberg number from 1 to 80. The simulations were performed for a plane Poiseuille
system (i.e. no-slip boundary conditions in the wall normal direction and periodic conditions
in the span-wise and stream-wise directions) at constant pressure gradient. At the onset of
drag reduction, for low W i , the presence of polymers mainly affects the buffer layer, region
connecting the viscous and the log-law layers, where the mean velocity profile results shifted
upward with respect to the Newtonian case but still keeping the same slope in the log-law
region. As viscoelasticity is increased the effects start pervading the inertial layer, causing
a departure of the velocity profile from the Von-Karman law towards the MDR asymptote.
Variations in the mean velocity U+ with the distance from the wall are controlled by the shear
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stress balance that in the more general case includes viscous, turbulent and polymer shear
stresses (eq.D.7).

hø+x y i=Ø
dU+

d y+ + h°u0+v 0+i+ 1°Ø
W i

hTP
x y i (D.7)

Thus, because a fixed pressure gradient is imposed, a decrease in the total shear stress nec-
essarily leads to a higher throughput. Close to the wall, in the viscous sub-layer, turbulent
stresses are negligible and all the curves are shown to collapse onto the Newtonian slope, for
which the mean wall shear stress is determined by the constant-pressure-drop constraint via
hø+x y i|w = h¢P/¢x (h being the channel half height). Though viscoelastic stress is in principle
not vanishing at the wall, effects of polymers are mostly felt in the buffer and log-low regions,
making their contribution negligible close to the wall (up to small corrections to the mean
velocity due to shear-thinning effects). This ultimate stage is identified when the convergence
of the mean velocity profile with increasing Weissenberg number is reached and only the
dependence on Reø remains. In the present study a state that shares similar statistic proper-
ties it is observed at W i ' 80 slightly below the Virk law. Modifications in the mean velocity
profiles, due to the reduction of wall friction, reflect a deeper change in the structure of the
flow. The most evident consequence of the interaction between polymers and turbulence is a
substantial weakening of the coherent structures that characterize and sustain the turbulent
regime near the wall. This is well captured by snapshots from our simulations, where velocity
and vortical structures, respectively, are compared for a Newtonian and a viscoelastic flow. As
clearly visible in figure D.3, stream-wise velocity streaks in the xz plane, wavy and irregular in
the Newtonian case, become more elongated and almost stream-wise invariant once polymers
are introduced. At the same time vortical motion (shown by vorticity contours in fig. D.3),
responsible for the momentum transport in the span-wise and wall-normal directions, is sub-
stantially reduced. The suppression of turbulent fluctuations, accompanied by redistribution
of stresses and changes in the near-wall dynamics are without doubt the main cause of friction
reduction, even though the mechanistic coupling with polymers behavior is still not fully
explained.

D.4.2 Viscoelastic invariant solutions

Many invariant solutions have already been computed, both periodic and localized in space,
for different Newtonian systems [Kawahara et al. (2012)]: [Gibson et al. (2009); Schneider et al.
(2010a,b)] in Couette flows, [Waleffe (2003)] in Poiseuille flow. Nevertheless very few, and only
from recent studies, are available for viscoelastic flows. After the development of the necessary
numerical tools we have tested them probing the state space of different viscoelastic systems
in small computational domains and two family of invariant solutions have been found: a
family of travelling waves (TW) in the viscoelastic plane-Poiseuille flow (PPF) and a family of
spatially-localised solutions (including equilibria, traveling waves and connecting states) in
the viscoelastic plane-Couette flow (PPC).
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Figure D.3 – Isosurfaces of vorticity at≠= 0.9 (in red) and isosurfaces of stream-wise velocity at
vx = 0.3 (in green) are shown in the bottom half of the pressure-driven channel for a flowfield
from DNS at Re = 3600 and W i = 0,80

From Newtonian to viscoelastic - Homotopy continuation

Though the dynamics of the system is constrained by restricting the domain size and symmetry
subspace, the dimensionality of the problem is still so high that finding invariant solutions re-
quires to provide the Newton method with a reasonably close initial guess. While a Newtonian
solution only require an initial guess for the three velocity component, a viscoelastic solution
also needs one for the six component of the polymer conformation tensor. In both systems
(PPC, and PPF) the initial guess for the velocity fields was provided by existing Newtonian
invariant solutions, while the one for the polymer conformation tensor was generated via
homotopy continuation as follow:

1. Short viscoelastic DNS (N time iterations) at W i = 1 of the Newtionian invariant solution
initialised with a zero polymer conformation tensor Æ. The purpose of this step is to
generate an initial field for Æ.

2. Short viscoelastic DNS (N time iterations) at W i = 1 of the Newtonian solution and the
Æ-tensor generated from the previous step at iteration N .

3. Repetition of the second step with an iterative update of the initial condition for the
conformation tensor, replaced each time with the one obtained from the previous
simulation at time N .

4. Viscoelastic Newton search on the Newtonian velocity solution and the final conforma-
tion tensor obtained at point 3.

This iterative methodology allows to generate an initial guess for the conformation tensor
with a small viscoelasticity degree that matches the Newtonian solution. The resulting solu-
tion (u,Æ) can then be used to find invariant solutions in different viscoelastic regimes via
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continuation in W i and/or Re.

Viscoelastic solution in PPF

Because of the spatial homogeneity in the spanwise and streamwise directions and the symme-
tries of the system, solutions in plane-Poiseuille flow are traveling waves, i.e. relative equilibria
moving at a constant velocity. Following the homotopy procedure explained above, in this
case we have computed the vicoleastic counterpart of one of the Newtonian solution found by
Gibson in PPF at Re = 2300 [Gibson and Brand (2014)]. We then were able to continue this so-
lution to unexpectedly high viscoelastic regimes (W i ' 120) obtaining a family of viscoelastic
solutions not available to this date. In figure D.4, the bifurcation diagram for the continuation
in Weissenberg(top) is shown together with the velocity contours of the two solutions (bottom)
in the Newtonian case (left) and at W i = 100 (right).

In this specific case the physical structure of the velocity component of the solution seems
to be unaffected by the presence of polymers. All the symmetries present in the original
solution, namely reflections about y and z mid-planes and spatial phase-shifts, are conserved
during the homotopy process as well as the characteristic sizes of velocity and vortical struc-
tures. However it obviously differ from the original solution for the presence of the polymer
conformation tensor Æ, whose components are shown in figure D.5.

Viscoelastic snaking in PCF

Due to the shortage of available viscoelastic solutions in literature ( precisely none before
[Page et al. (2020)]) we validated our code computing the well established snaking solutions in
PCF adding a small degree of viscoelasticity.
This specific family of solutions, first computed in PCF by Scheider, Marinc and Heckhardt
[Schneider et al. (2010b)], consists of two spanwise-localised equilibria and two spanwise
localised traveling waves that expand under parametric continuation, adding structures at
both fronts as a consequence of recursive saddle-node bifurcations. The two equilibria are
related to each other by a reflection symmetryæz ([u, v, w ](x, y, z) ! [u, v,°w ](x, y,°z)), which
is a discrete symmetry of the travelling waves, and vice versa the two travelling waves are
connected by the rotational symmetry æx y ([u, v, w ](x, y, z) ! [°u,°v, w ](°x,°y, z)) which in
turn is a discrete symmetry of the equilibrium solutions. The two types of solutions are then
connected two each other by non-symmetric rung states, arising from pitchfork bifurcations.
All together form the so called snakes-and-ladders structure. Different studies pointed out the
strong relation of this structure to the discrete symmetries of the system, a modification of
which causes either an alteration or a destruction of the homoclinic snaking [Burke et al. (2009);
Knobloch (2015); Azimi and Schneider (2020)]. Since there is no evident symmetry-breaking in
the viscoelastic system, compared to the Newtonian one, the homoclinic snaking is expected
to be structurally stable and still observable in presence of polymers. The confirmation of this
statement is shown in figure D.6 where the bifurcation diagram of the viscoelastic snaking is
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Figure D.4 – (Top)Bifurcation diagram in W ei ssenber g number from W i = 0 to W i = 120 ob-
tained by homotopy continuation of a spatially periodic travelling wave solution of Newtonian
plane Poiseuille flow at Re = 2300. (Bottom) Spatially periodic travelling waves of Newtonian
(left) and viscoelastic (right) plane Poiseuille system obtained by means of homotopy continu-
ation in W i number at fixed Re = 2300. High speed velocity streaks are represented by black
surfaces of streamwise velocity contours at vx = 0.02 in the bottom half part of the channel.
Blue and red isosurfaces show the vorticity contours at≠=±0.079.

shown. In this case we have mapped two initial conditions of the Newtonian snaking solutions
(Lx = 3º) [Gibson and Schneider (2016)] for one travelling wave (blue line) and one equilibrium
(red line) into the viscoelastic regime at W i = 1 and then continued the solutions in Re. As
visible from the flow velocity visualization in fig. D.6 both solutions (plots A-C for the EQ
and D-F for the TW), grow structures at their fronts without any alteration of the symmetries
observed in the Newtonian case. A similar behaviour is observed for the conformation tensor
as shown in figure D.7 (bottom) where its first component Æxx for both the equilibrium and
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Figure D.5 – Components of the polymer conformation tensor Æ of the viscoelastic travelling
wave shown in figure D.4 at W i = 100 and Re = 2300

the travelling wave solutions is plotted along the snaking branches.

D.5 Conclusions

The Channelflow package has been successfully extended to investigate viscoelastic shear
flows in channel geometry. This includes highly parallelised algorithms for direct numeri-
cal simulations as well as an highly efficient Newton-krylow solver for the computation of
viscoelastic invariant solutions. The code has been used to compute two new families of
invariant solutions in plane-Poiseuille flow and plane-Couette flow, showing its potential for
the computation of many others in the future.
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Figure D.6 – Homoclinic snaking in viscoelastic PCF at W i = 1. (Top) Bifurcation diagram of the
parametrically continued solutions. The Grey line represent the original Newtonian snaking
(for both the TW and EQ), the blue line the viscoelastic TW, the red line the viscoelastic EQ and
the black dashed line the viscoelastic rung states. (Bottom) Streamwise velocity component in
the xz plane at the center of the channel at different point on the bifurcation diagram: A-C for
the equilibrium, and D-F for the travelling wave.164



D.5. Conclusions

Figure D.7 – Polymer conformation tensor Æ of the viscoelastic snaking solution in PCF: (Top)
the six components ofÆ of the equilibrium at point B in the bifurcation diagram in fig. D.6 and
(bottom) first component Æxx for the equilibrium and the travelling wave at different points
on the snaking: A-C for the EQ, and D-F for the TW. [Æ1 =Æxx , Æ2 =Æy y , Æ3 =Æzz , Æ4 =Æx y ,
Æ5 =Æxz , Æ6 =Æy z ].

165





Acknowledgements

The work presented in this thesis is the result of five years not only of scientific research
but, most importantly, of (highly non-linear) personal developments and growth. I had the
great chance of sharing this journey with many extremely valuable people from whom i got
inspiration, knowledge and support, and without whom the completion of this chapter of my
life would have not been possible.

The major thanks goes to my supervisor, Prof. T. M. Schneider, who gave me, in the first place,
the opportunity of doing this PhD and much more. I am thankful for your guidance, for your
scientific support and constant trust. I am thankful for of all our scientific discussions, from
the calmer to the more heated ones, and for all the hours spent at the blackboard seeking
for something we could not see but we knew it was there. I am thankful for your precious
confidence boosts, and for believing in me even when I first did not. Thank you for the inex-
haustible enthusiasm and creativity you put in everything you do, from research, to teaching,
to mentoring and even to yawning. From you, I have learned more than a methodology. I have
straightened my scientific backbone and found it connected to deeper rooted personal values.
It was an honour to be your student and part of your lab.

Another special thanks goes to Prof. Gregory Chini, and the entire GFD community. I am
grateful I had the amazing chance of joining the GFD fellowship during my PhD program,
back in the summer of 2019. This experience not only allowed me to connect with incredible
people and scientists but re-shaped my way of conceiving research and ultimately this work. I
am deeply indebted to Prof. Chini for proposing such a fascinating project, which turned out
to be the core of the present thesis, and for letting me work on it till today. Thank you Greg
for all our weekly inter-continental Zoom meeting, for all the knowledge you have shared,
for trusting the project and my contribution during the past three years. It has been a great
pleasure to collaborate with you to and to have you in the jury of my defense.
I would like to take the opportunity to thank the rest of the committee members, Prof. Steve
Tobias and Prof. Paolo Ricci for carefully reviewing this thesis, and Prof. J. H. Dil for presiding
over the jury. I thank Prof. François Gallaire from LFMI for his numerous useful advises on
this work.

167



Acknowledgements

A huge thanks to all the ECPS members, colleagues and friends, present and past, each one
special his own way.
In the first place, thanks to Emilio Lozano, my office mate and close friend. We have started
and completed this journey together, counting on each other support and knowing that every-
thing, even the worse day, could be fixed with a tasty meal and a good bottle of (Spanish) wine.
I am grateful for all the conversations, meals, holidays and daily adventures we shared in the
past five years. I could not have asked for a better person, and friend, to share this part of my
life with. I thank Sajjad Azimi for being a great colleague, friend, and a brilliant scientist, from
which I learned everything important about code debugging, and grilled chicken. Thanks to
Florian Reetz for his support and his constant energy inputs to our lab, and to Simon Schütz
for the time spent together. Thanks to Omid Ashtari, who arrived later but immediately got
a special place in our group, thanks to his extreme calmness and kindness. Thanks to our
postdoc Jeremy Parker, for his British attitude and humor, and for the many good memories we
have shared since the time of the GFD program. Thanks to our former postdocs, Mirko Farano
and Ayse Yesil, for the many activities and traditions we established during our time together
here. Thanks to all the newer ECPS members, which have already brought some fresh air and
new ideas (including homemade brioches) to the group. I thank Savyaraj Deshmukh for being
the most responsive master student I could have ever got, and now a brilliant colleague. I
thank Jean-Clément Ringenbach for our many funny conversations in French, and for helping
with the French translation of this abstract. A sincere thanks to Petra Bendel for being my
second brain in all the administrative matters and for caring about all of us.

I then would like to extend my thanks to all of my friends, here in Lausanne, in Turin, and all
over the word, for their fundamental support.
I thank Matteo for always having wisdom pills (more or less effective) in his pocket to use when
needed, and for all the amazing dinners spent talking about abstract and insoluble problems,
about the meaning of life, or simply about the food we would have prepared next.
I thank Clara, for being much more than a flatmate. We have started sharing the apartment
and we ended up sharing critical and important pieces of our life. Thank you for being "sclero"
and a great friend.
A deep acknowledgement to Erica, Francesca and Martina which have put up with me for the
past 15 years, and incredibly still do. Thank you very much, your constant backing means a lot
to me. Thanks to Ilaria, one of my oldest friend. Time passes, geographical distances do not
seem to decrease but still I can always count on you.
Thanks to my university colleagues and friends, Francesca, Richard, Alessio, Ottavia, Mad-
dalena and Francesco, for always being there and inspiring me, no matter which country we
are leaving in.
Thanks to Jelle for contributing to an amazing summer at GFD. Thank you for the time together,
eating steaks, playing softball, feeding Anuj (whom i thank too) or looking at the Milky way.
A special thanks to François, for his patience and understanding during the past months of
intense work that led to the writing of this thesis. Thank you for the countless coffee breaks,

168



Acknowledgements

for the long walks in all the possible weather conditions, just because i felt the urge of moving
my legs, and for the constant support.

Last but not least, I want to thank my parents and my family for their unconditional love,
support and continuous encouragement. My sister, my brother in law and my beautiful nieces.
Always close even when far. Words can not express my gratitude for everything you have done
and keep doing.

Lausanne, June 25, 2022 Alessia Ferraro

169





Bibliography

Abdulle, A. and E, W. (2003). Finite difference heterogeneous multi-scale method for homoge-
nization problems. Journal of Computational Physics, 191:18–39.

Augier, P., Chomaz, J.-M., and Billant, P. (2012). Spectral analysis of the transition to turbulence
from a dipole in stratified fluid. Journal of Fluid Mechanics, 713:86–108.

Azimi, S. and Schneider, T. M. (2020). Self-similar invariant solution in the near-wall region
of a turbulent boundary layer at asymptotically high reynolds numbers. Journal of Fluid
Mechanics, 888:A15.

Barry, M. E., Ivey, G. N., Winters, K. B., and Imberger, J. (2001). Measurements of diapycnal
diffusivities in stratified fluids. Journal of Fluid Mechanics, 442:267–291.

Bartello, P. and Tobias, S. M. (2013). Sensitivity of stratified turbulence to the buoyancy
reynolds number. Journal of Fluid Mechanics, 725:1–22.

Billant, P. and Chomaz, J.-M. (2001). Self-similarity of strongly stratified inviscid flows. Physics
of Fluids, 13:1645–1651.

Brethouwer, G., Billant, P., Lindborg, E., and Chomaz, J.-M. (2007). Scaling analysis and
simulation of strongly stratified turbulent flows. Journal of Fluid Mechanics, 585:343–368.

Burger, E. D., Munk, W., and Wahl, H. (1982). Flow increase in the trans alaska pipeline through
use of a polymeric drag-reducing additive. Society of Petroleum Engineers of AIME, pages
377–386.

Burke, J., Houghton, S. M., and Knobloch, E. (2009). Swift-hohenberg equation with broken
reflection symmetry. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics,
80:036202.

Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D., and Brown, B. P. (2020). Dedalus: A flexible
framework for numerical simulations with spectral methods. Physical Review Research,
2:023068.

Chini, G. P., Michel, G., Julien, K., Rocha, C. B., and cille P. Caulfield, C. (2022). Exploiting self-
organized criticality in strongly stratified turbulence. Journal of Fluid Mechanics, 933:A22.

171



Bibliography

Choueiri, G. H., Lopez, J. M., and Hof, B. (2018). Exceeding the asymptotic limit of polymer
drag reduction. Phys. Rev. Lett., 120.

Constantinou, N. C., Lozano-Durán, A., Nikolaidis, M.-A., Farrell, B. F., Ioannou, P. J., and
Jiménez, J. (2014). Turbulence in the highly restricted dynamics of a closure at second order:
comparison with dns. Journal of Physics: Conference Series, 506:012004.

Davis, K. A. and Monismith, S. G. (2011). The modification of bottom boundary layer turbu-
lence and mixing by internal waves shoaling on a barrier reef. Journal of Physical Oceanog-
raphy, 41:2223–2241.

Doi, M. and Edwards, S. (1986). The theory of polymer dynamics.

E, W., Engquist, B., Li, X., Ren, W., and Vanden-Eijnden, E. (2007). The heterogeneous multi-
scale method: A review. Communications in Computational Physics, 2:367–450.

Eckhardt, B., Schneider, T. M., Hof, B., and Westerweel, J. (2007). Turbulence transition in pipe
flow. Annual Review of Fluid Mechanics, 39:447–468.

Farrell, B. F., Ioannou, P. J., Jiménez, J., Constantinou, N. C., Lozano-Durán, A., and Nikolaidis,
M.-A. (2016). A statistical state dynamics-based study of the structure and mechanism of
large-scale motions in plane poiseuille flow. Journal of Fluid Mechanics, 809:290–315.

Ferrari, R. (2014). What goes down must come up. Nature, 513:179–180.

Fincham, A. M., Maxworthy, T., and Spedding, G. R. (1996). Energy dissipation and vortex
structure in freely decaying stratified grid turbulence. Dynamics of Atmospheres and Oceans,
23:155–169.

Fitzgerald, J. G. and Farrell, B. F. (2014). Mechanisms of mean flow formation and suppression
in two-dimensional rayleigh-bénard convection. Physics of Fluids, 26:054104.

Fitzgerald, J. G. and Farrell, B. F. (2018). Statistical state dynamics of vertically sheared horizon-
tal flows in two-dimensional stratified turbulence. Journal of Fluid Mechanics, 854:544–590.

Gear, C. W., Li, J., and I., G. K. (2003). The gap-tooth method in particle simulations. Physics
Letters A, 316:190–195.

Gibson, J. F. (2009). Channelflow users’ manual 0.9.18.

Gibson, J. F. and Brand, E. (2014). Spanwise-localized solutions of planar shear flows. Journal
of Fluid Mechanics, 745:25–61. windowing.
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