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Abstract

We study a nearest neighbors ferromagnetic classical spin system on the square
lattice in which the spin field is constrained to take values in a discretization of
the unit circle consisting of N equi-spaced vectors, also known as the N-clock
model. We find a fast rate of divergence of N with respect to the lattice spacing for
which the N-clock model has the same discrete-to-continuum variational limit as the
classical XY model (also known as planar rotator model), in particular concentrating
energy on topological defects of dimension 0. We prove the existence of a slow
rate of divergence of N at which the coarse-grain limit does not detect topological
defects, but it is instead a BV -total variation. Finally, the two different types of
limit behaviors are coupled in a critical regime for NV, whose analysis requires the
aid of Cartesian currents.

1. Introduction

The emergence of phase transitions mediated by the formation of topologi-
cal singularities has been proposed in pioneering works on the ferromagnetic XY
model (also planar rotator model) [15,34,35]. The latter describes a system of St
vectors sitting on a square lattice, in which only the nearest neighbors interact in a
ferromagnetic way. If the spin field is allowed to attain only finitely many, say N,
equi-spaced values on S! (as in the N-clock model) this topological concentration
is ruled out. Instead, the phase transitions are characterized by a typical domain
structure as in Ising systems. These two different behaviors lead to the natural
question whether the N-clock model approximates the XY model as N — +o0.
Frohlich and Spencer give a positive answer to this question, showing in [29] that
the N-clock model (for N large enough) presents phase transitions mediated by the
formation and interaction of topological singularities.

The results in this paper and in [25,26] concern a related problem regarding
the behavior of low-energy states of the two systems in the discrete-to-continuum
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variational analysis as the lattice spacing vanishes and N diverges simultaneously.
With the help of fine concepts in geometric measure theory and in the theory of
cartesian currents, these results show to which extent the coarse-grain limit of the
classical N-clock model resembles the one of the classical XY model obtained
in [4,7]. To state precisely the results, we set the mathematical framework for the
problem.

We consider a bounded, open set with Lipschitz boundary  c R2. Given a
small parameter ¢ > 0, we consider the square lattice £¢Z> and we define 2, :=
QNeZ?. The classical XY energy (relative to its minimum) is defined on spin fields
u: Q, — S! by

1
XYe() = 5 3 e?lutei) —ue)l,
(i.j)
where the sum is taken over ordered pairs of nearest neighbors (i, j), i.e., (i, j) €
7> x7?* such that|i — j| = 1 and 8! ej € Q. We consider the additional parameter
N, € N or, equivalently, 6, := 5+, and we set

= {exp(tk6;): k=0,..., N, — 1},

where ¢ is the imaginary unit. The admissible spin fields we consider here are only
those taking values in the discrete set S.. We study the energy defined for every
u: Q; — S! by

(1.1)

E. () XY.(u) ifu: Qe — S,
u) =
¢ +00 otherwise.

We are interested in the behavior of low-energy states u, such that E. (u.) < Ck,
with k. — 0 as ¢ — 0 to be determined. To this end, given 6, — 0, we find the
relevant scaling k., and we study the I'-limit of —E The limit strongly depends
on the rate of convergence 6; — 0 and can be characterlzed by interfacial-type
singularities [2,8,12,17,20,21,23,24,27] (see also [5,18]) or vortex-like singular-
ities [3,4,6,7,14,19,38], possibly coexisting. In this paper we are interested in the
following three regimes: ¢|loge| K 6;, 6, ~ ¢|loge|, and 8, K ¢. The interme-
diate case ¢ K 0, < ¢|log¢| has been covered in [25].

To understand how the limit is affected by the choice of 6, — 0, we start
by considering the following example. Let & = Bj/2(0) be the ball of radius %
centered at 0, let @1, ¢» € [0, 27r) and v; = exp(ig;), v2 = exp(tg2) € S, and for
x = (x1,x2) € R? define

if x; £0,
u(x) =40 A= (1.2)
vy, ifx; > 0.
For i = (¢iy, €ip) € Q¢ and n, > 0 we define
V1 ifei;] £0,
ue(ei) = Jexp (g1 — (1 = ) +¢2)) IO <eir Smes (1)
) if ei1 > ne.
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— €
e = |2 — ¢1l5
Fig. 1. Construction which shows that ﬁEs approximates the geodesic distance between

the two values vy and vy of a pure-jump function. During the transition between v; and vy
in the strip of size ne = |1 — ¢2| ei the minimal angle between two adjacent vectors is ¢
£

If u. satisfies the pointwise constraint u.(ei) € S, then |¢; — (pzli ~ B, ie.,
ne ~ o1 — §02|é, see Fig. 1. As aresult,

S ~ (1= eos (S0 =) 2

Ke &

£ €0
~ (1 —COS(QE))WKDI — 2| ~ K—|<P1 — @2l
ene &

This suggests that the nontrivial scaling «; = €6, leads to a finite energy propor-
tional to |¢; — ¢2|. The construction can be optimized by choosing the angles ¢
and ¢ in such a way that |¢; — ¢,| equals the geodesic distance on S' between
vy and vy, namely dgi (v1, v2). This back-of-the-envelope calculation shows that
the presence of 6, allows us to detect energy concentration on interfaces. Such a
behavior is ruled out in the classical XY model, see [4, Example 1].

The fact that dgi(vq, v2) is the total variation (in the sense of [10, For-
mula (2.11)]) of the S'-valued pure-jump function u defined in (1.2) suggests
that at the scaling k., = €6, the I'-limit of iEs might be finite on the class

BV (Q;S") of S'-valued functions of bounded variation. This is confirmed by
the following theorem, for which we introduce some notation, cf. [11]. Given a
function u € BV (Q;S"), its distributional derivative Du can be decomposed as
Du = Vul?+Du+ ut —u")®v,H'L J,, where Vu denotes the approximate
gradient, £2 is the Lebesgue measure in R2, D@y is the Cantor part of Du, H! s
the 1-dimensional Hausdorff measure, J,, is the 7 '-countably rectifiable jump set
of u with normal vector v,,, and u™* and u ™~ are the traces of # on J,. By | - || we
denote the 1-norm on vectors and by | - |1 the anisotropic norm on matrices given
by the sum of the Euclidean norms of the columns.

Theorem 1.1. (Regime ¢|log ¢| < 6, < 1) Assume that ¢|log e| < 6, < 1. Then
the following results hold:

i) (Compactness) Let us: Q. — Sg be such that S%OEES(M&) < C. Then there

exists a subsequence (not relabeled) and a function u € BV (%; S') such that
Ug —> U in Ll(Q; ]Rz).
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ke
Hu, = 651 :

Fig. 2. Example of discrete vorticity measure equal to a Dirac delta on the point ¢i € e72.
By following a closed path on the square of the lattice with the top-right corner in i, the spin

field covers the whole S!. The discrete vorticity measure can only have weights in {—1, 0, 1}

i) (T-liminf inequality) Assume that us: Qs — Se and u € BV (2; SY) satisfy
ug — uin LY(; R?). Then

. 1
/|Vu|2,1dx+|D<°)u|2,1(Q)+f dsi (™, u)|v, |y dH' < liminf — E, (u,).
Q Ju e—>0 €0,

iii) (T -limsup inequality) Let u € BV (;SY). Then there exists a sequence
Ug: Qe —> Sg such that ug — u in Ll(Q; Rz) and

lim sup iEg(us) S/|Vu|21dx+|D(c)u|21(SZ)+/ dgi (u™, u™)|v, | dHL.
0 ~Ja ' ’ Ju ’

e—0 &Ug

The previous theorem does not hold true if 6, < ¢|loge|, i.e., 8|+5g£| —- C e
[0, +00). In this regime, an additional object plays a role, namely the discrete
vorticity measures u,, associated to the spin field u, (see Fig. 2 and cf. (2.6) for
the precise definition). By (1.1), we have

1 &b,
- - 1.4
&2|log e| XY¥e(ue) = 2| loge| €6, Eolue) ~ s|loge| (1.4)
The bound o gelX Ye(u;) < C yields compactness for the discrete vorticity

measure (,, . More precisely, in [4] it is proven that p,, —f> /L up to a subsequence
in the flat convergence (i.e., in the norm of the dual of Lipschitz functions with
compact support, see (2.7)), where u = Zthl dpby,, xn € 2,dy, € Z,1s ameasure
that represents the vortex-like singularities of the spin field u, as & goes to zero. The
limit of o~ E¢(ue) is, in general, strictly greater than the anisotropic total variation in

BV (Q Sl) obtained in Theorem 1.1, since u, must satlsfy the topological constraint
M, —> 1. To describe the limit, we associate to u, w1th Es(ug) < C the current

G, given by the extended graph in QxS! of its p1ecew1se constant interpolation,
see Section 3.5. In Section 4 we prove a compactness result for G,, to deduce
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that G,, — T in the sense of currents. In Proposition 3.11 we show that 0G,, =
— My, X [S'1, where [S!] is the current given by the integration over S' oriented

counterclockwise. Since 1, BN W, thelimit 7 € Adm(u, u; 2) of the currents G,
satisfies, among other properties that characterize the class Adm(u, u; 2) given
in (4.1), 9T = —ux[S']. For this reason, in general, the current T is different
from the graph G, of the limit map u, which may have a boundary different from
— X [S']. Nevertheless, T can be represented as

T = G, + Lx[S"]. (1.5)

where L is an integer multiplicity 1-rectifiable current, which keeps track of the
possible concentration of |Du,| on 1-dimensional sets. In [25] we have proved that
the energy concentration on vortex-like singularities and the B V -type concentration
on 1-dimensional sets occur at two separate energy scalings if ¢ <« 6, < ¢|loge|.
In this paper, we investigate the critical regime 6, ~ ¢|log | and prove that the two
concentration effects appear simultaneously and are coupled in the limit energy by

T, u; Q) := inf{/

Jr

Lr (x)|vr (X)) dHl(x) T € Adm(uw, u; Q)} .

Here J7 is the 1-dimensional jump-concentration set of 7' oriented by the normal
vr, accounting for both the jump set of u and the support of the concentration part
L in the decomposition (1.5). At each point x € Jr, the current 7 has a vertical
part, given by a curve in S! which connects the traces of u on the two sides of Jz;
£7(x) is its length. See also Fig. 3.

Theorem 1.2. (Regime 6, ~ ¢|log¢|) Assume that 0, = ¢|loge|.! Then the fol-
lowing results hold:

E.(uy) < C. Then there

exists a measure (L = Zz/lzl dpdy,, M €N, x, € Q, dy € Z, such that (up to a

(i) (Compactness) Let ug: Q. — Sg be such that Tiogel llogg\

subsequence) [, —f> w and there exists a function u € BV (L2; SYY such that
(up to a subsequence) u; — u in LY(; Rz).

(ii) (T-liminf inequality) Let uy : Qe — S, let u = Z/Iq‘il dpby,, M €N, xj, € 2,
dy, € 7, and let u € BV(Q:'SY). Assume that Mo, —f> wand u, — uin
LY(; R?). Then

fgwm,l dx + DOuly 1 () + T (1, u; Q) + 27 | 11[(R)

1
<liminf —E )
=1 e2|log &| e(ue)

Lt 0: = 6Ope|loge|, with 6y € (0, +00), the limit functional needs to be modified
accordingly by multiplying by 6 the first three terms, while the term 277 | | (£2) is unaffected.
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Fig. 3. Depiction of a current of the foom 7' = G, — L><[[Sl]] € Adm(0, u; 2). In the
picture, €2 is the unit disc centered at the origin. The function u has no jumps and presents
a vortex-like singularity, turning once counterclockwise around the origin. In particular, the
graph G, has a hole, namely, 0G,, = —dg % [S']. The current T features a concentration
part —L x [S'7. 1t is supported on a radius of the ball and is characterized by a vertical part
(in gray) that connects clockwise in S! the (equal) traces u~ and u™ of u on the two sides
of the radius. Note that the vertical part is not given by the geodesic connecting #~ and
u™T. The concentration part is needed to compensate the boundary of the graph G, so that
dT = 0. Indeed, —9L x[[S'] = 80><[[Sl]] = —0G,, inside Q. In conclusion, the current 7'
does not turn around the origin. In this figure, for H!-ae. x in the support of L, the length
Lr(x)is 2w

(iii) (T'-limsup inequality) Let n = Z}]:/[:lthXh, M eN, x, € Qdy, € Z and
let u € BV (L; Sl). Then there exists a sequence ug: Qy — S such that

f
Hup = W, Ug —> U IN LY(Q: R?), and

lim sup — Ee(ue) < / Vulz1 dx 4+ DQuly,1 ()
es0 &-]loge| Q

+J (w, u; Q) + 27 | |().

Theorems 1.1, 1.2, and [25, Theorem 1.1] lead, in particular, to the conclusion
that for ¢ < 6, the N.-clock model does not share the same asymptotic behavior of
the classical XY model. For the latter model, the following asymptotic expansion
is known to hold true in the sense of I'-convergence (see [7, Section 4] and also
[1,9,16,39] for the Ginzburg-Landau model)

1
8—2XYs(us)~27TMI10g8|+W(/L)+M% (1.6)
where W is a Coulomb-type interaction potential referred to as renormalized energy,

while y is the core energy carried by each vortex, cf. (7.3) and (7.5) for the precise
definitions. The next theorem shows that the E, energy has the same asymptotic
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expansion if 6, < ¢, finally providing a precise range for 6, for which the N,-clock
model approximates the classical XY model.

Theorem 1.3. (Regime 6, <K ¢) Assume that 0, < & and M € N. Then the
following results hold:

(1) (Compactness) Assume that ug: Qg — Sg satisfies sLZES (ue) —2mM|loge| <

C. Then there exists a measure | = Z;lvzl dpby,, xn € 2, dy € Z, with

|| () £ M such that (up to a subsequence) [y, —f> u. Moreover, if |u|(R2) =

M, then |dy| = 1.
@) (T- lzmmfmequalzty)Letu Zh 1dnx,, xp € Q,|dp| =1, andletug: Q¢ —

S be such that p,, L . Then
W) + My < hrnlnf( E.(ug) — 271M|10g8|>.

(i) (T -limsup inequality) Let 1 = thlthXh, xp € R, |dp| = 1. Then there

. f
exists ug: Qg — Sg such that p,, — p and

lim sup (LZES(MS) — 2 M| 10g8|> < W(w) + My.
e—>0 V€
We summarize all the results obtained in this paper, in [25], and in [26] in
Table 1.
It is worth mentioning that the paper also contains an extension result for Carte-
sian currents, Lemma 3.4, that we reckon to be of independent interest.

2. Notation and preliminaries

In order to avoid confusion with lattice points we denote the imaginary unit by ¢.
We shall often identify R? with the complex plane C. By x © y we mean the product
ofx,y € R? seen as complex numbers. Given a vector a = (aj, az) € R2, its 1-
normis |a|; = |ai|+ |az|. We define the (2, 1)-norm of a matrix A = (a;;) € R2%2

by

1/2 12

|A|2,l = (a%l + a%l) + (Cl12 + azz)
Ifu, v € S, their geodesic distance on S' is denoted by dgi (u, v). It is given by the

angle in [0, 7] between the vectors « and v, i.e., dg1 (1, v) = arccos(u - v). Observe
that

$lu —v| = sin (3dgi (u, v)) and |u—v|§dS1(u,v)§£|u—v|. 2.1

Given two sequences o, and 8., we write o, << B if limg_0 & ﬂ— =0and o, ~ B
if limg_, g 32 B € (0, +00). We will use the notation deg(u)(xo) to denote the topo-

logical degree of a continuous map u € C(B,(xo) \ {xo0}; S, i.e., the topological
degree of its restriction u|y, (x,), independent of r < p.
We denote by 7, (x) the half-open squares given by

L.(x) = x + [0, )2 (2.2)
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Table 1. In this table we summarize our results

Regime Energy Limit of 1y, Energy Theorem
bound Behavior
0 finite %Eg <C Not relevant Interfaces [26, Thm 1.2]
elloge| <« O ﬁEs <cC Not relevant BV Thm 1.1
' vortices
6 ~ &|loge| AESC o, S + Thm 1.2
BV+
concen-
tration
vortices
f
£ K b < e|loge| %Es -, = + [25, Thm 1.1]
&
2nM|logel g <
C
BV+
concen-
tration
0, < & LE — Lu Xy Thm 1.3
2nM|loge| <
C

By “interfaces” we mean that the energy concentrates on 1-dimensional domain walls that
separate the different phases [26], while “BV” denotes a BV -type total variation, Theo-
rem 1.1. The expression “BV+concentration” indicates the presence in a BV -type energy
of a surface term of the form 7 (u, u; 2) which accounts for concentration effects on 1-
dimensional surfaces, as in [25] and Theorem 1.2. By “vortices” we mean that a logarithmic
energy is carried by the system for the creation of vortex-like singularities in the limit.
Finally, “XY” expresses the fact that the energy is a good approximation (at first order) of
the classical XY model, Theorem 1.3. The missing case 6z ~ ¢ is still mainly open

2.1. BV-functions

In this section we recall basic facts about functions of bounded variation. For
more details we refer to the monograph [11].

Let O C R?bean open set. A function u € L'(O; R") is a function of bounded
variation if its distributional derivative Du is given by a finite matrix-valued Radon
measure on O. We write u € BV (0; R").

The space BVjoc(O; R") is defined as usual. The space BV (O; R") becomes
a Banach space when endowed with the norm [[u|| gy (0) = llullp 1oy + [Dul(0),
where |Du| denotes the total variation measure of Du. The total variation with
respect to the anisotropic norm | - |2 1 is denoted by |Du|>,1. When O is a bounded
Lipschitz domain, then BV (O; R") is compactly embedded in L' (O; R"). We say
that a sequence u,, converges weakly* in BV (O; R") to u if u, — uin L'(O; R")
and Du, -\ Du in the sense of measures.

Givenx € O and v € S~ we set

B (x,v) ={y € By(x): £(y —x) v >0}.
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Fig. 4. Graph of the function W for t € (—2m, 27). Observe that W is an odd function

We say that x € O is an approximate jump point of u if there exist a #= b € R”
and v € S9! such that

1 1
lim _d/ lu(y) —aldy = lim _d/ lu(y) —b|dy =0.
B;(x,v) =0 p B, (x,v)

The triplet (a, b, v) is determined uniquely up to the change to (b, a, —v). We
denoteitby (u™(x), u™ (x), v, (x)) and let J, be the set of approximate jump points
of u. The triplet (u™,u",v,) can be chosen as a Borel function on the Borel set
J,. Denoting by Vu the approximate gradient of u, we can decompose the measure
Du as

Du(B):f Vudx+/ wr @) —u" () @ v, (x) dH™ ! + DOu(B),
B J.NB

where D@y is the so-called Cantor part and DYy = (ut —u™) @ v, H*" 'L J,
is the so-called jump part.

2.2. Results for the classical XY model

We recall here some results about the classical XY model, namely when the
spin field u,: Q; — S! is not constrained to take values in a discrete set.

Following [6], in order to define the discrete vorticity of the spin variable, it is
convenient to introduce the projection Q: R — 277 defined by

Q(t) = argmin{|t — 5| : s € 217}, (2.3)

with the convention that, if the argmin is not unique, then we choose the one with
minimal modulus. Then, for every t € R, we define (see Fig. 4)

V() =t— Q) € [-m, ). 2.4)

Letu: eZ*> — S'and let ¢: €Z? — [0, 27r) be the phase of u defined by the
relation u = exp(1¢). The discrete vorticity of u is defined for every ¢i € £Z? by

1
dy(gi) == Z[\I—'(@(si +ee1) — @(ei)) + W (p(ei + ce1 + ge2) — p(ei + cey))

+ \Il(go(si + cep) — (el + cep + 862)) + \IJ(<p(8i) — (el + sez))].
(2.5)
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As already noted in [6], the discrete vorticity d,, only takes values in {—1, 0, 1},
i.e., only vortices of degree 1 can be present in the discrete setting. We introduce
the discrete measure representing all vortices of the discrete spin field defined by

=Y di(e0)8eite(errer)- (2.6)

ciesZ?

Remark 2.1. In [6,7] the vorticity measure [, is supported in the centers of the
squares completely contained in €2, i.e.,

,&u = Z dy (Ei)8£i+s/2(e1+ez) .
siceZ?
ei+[0,e]2CQ
In this paper we prefer definition (2.6) since it fits well with our definition of discrete
currents in Section 3.5 on the whole set 2. However, as we will borrow some results
from [6,7], we have to ensure that these definitions are asymptotically equivalent
with respect to the flat convergence defined below.

Definition 2.2. (Flat convergence) Let O C R? be an open set. A sequence of
finite Radon measures u; € My(O) converges flat to u € Mj(0), denoted by
iy it

sup

yecd! (0)
¥l c01 =1

/wdw—/wduleo. Q2.7)
o0 o0

Observe that the flat convergence is weaker than the weak™* convergence. The two
notions are equivalent when the measures u ; have equibounded total variations.

The two vorticity measures u,, and f1, are then close as explained in Lemma 2.3
below. For A C R? we shall use the localized energy given by

1
Ee(u; A) = 5 Z & |u(ei) — u(ef)|?.
{i.j)
ei,ejeA
We shall adopt the same notation for the classical XY, energy. We work with spin
fields u, :_£Z2 — S! defined on the whole lattice £7?. We can always assume that
XY, (ug; QS) < CXYe(ug; ), where Q" is the union of the squares i +[0, ¢]? that
intersect 2. (If not, thanks to the Lipschitz regularity of 2, we modify u, outside
2 in such a way that the energy estimate is satisfied, see [4, Remark 2].)

Lemma 2.3. Assume that u,: €Z> — S' is a sequence such that ELZXYS (ug) <

C|loge|. Then pry, L — fuu, — 0.
Proof. Note that, for any ¢ € C?’I(Q) with || [|co1 < 1, we have

& & —e
uvl—Q_oua § du\ : _§_ou Q
|t fu WIS Y (oD S Tl (@)

cieeZ2NQ’

\®)
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1 —
<Ce—XYe(u; Q) < Ce|loge|,
€
where in the last but one inequality we used [6, Remark 3.4]. This proves the claim.

We recall the following compactness and lower bound for the classical XY
model:

Proposition 2.4. Let u.: ¢Z> — S' and assume that there is a constant C > 0
such that mXYE (ue) < C. Then there exists a measure 1 € Mp(2) of the

form p = 224:1 dpdy, withdy, € Z and xj, € 2, and a subsequence (not relabeled)

f
such that p,, L 2 — . Moreover

1
27| w|(2) < liminf ——— XY, (ug).
=0 &2|loge|
Proof. In [7, Theorem 3.1-(i)] it is proven that (up to a subsequence) the discrete
vorticity measures fi,, converge flat to a measure of the claimed form satisfying
also the lower bound. The claim thus follows from Lemma 2.3.

3. Currents

For the theory of currents and cartesian currents we refer to the books [30,
31]. We recall here some notation, definitions, and basic facts about currents. We
additionally prove some technical lemmata that we need in this paper and that were
also used in [25].

3.1. Definitions and basic facts

Given an open set O C R?, we denote by D¥(0) the space of k-forms w: O +—
AFR? that are C*° with compact support in O. A k-current T € Dy(0) is an
element of the dual of D¥(0). The duality between a k-current and a k-form w
will be denoted by T (w). The boundary of a k-current T is the (k—1)-current
dT € Dy_1(0) defined by 3T (w) := T (dw) for every w € D¥~1(0) (or 8T := 0
if k = 0). As for distributions, the support of a current T is the smallest relatively
closed set K in O such that T (w) = 0 if w is supported outside K. Given a smooth
map f: O — O C RM" such that f is proper?, f*w e D¥(0) denotes the
pull-back of a k-form w € D¥(0’) through f. The push-forward of a k-current
T € D (0) is the k-current fuT € Dy (0’) defined by f3T (w) := T (f*w). Given
a k-form @ € D* (0), we can write it via its components

w = Z we dx®%, wy € C°(0),

2 which means f_l(K) is compact in O for all compact sets K C O’.
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where the expression |¢| = k denotes all multi-indices « = (¢, ..., o) with
1 £o; £d,and dx* = dx¥A...Adx*. The norm of w(x) is denoted by |w (x)|
and it is the Euclidean norm of the vector with components (wy (X))|o|=k- The total
variation of a k-current T € Dy (0O) is defined by

IT1(0) :=sup{T (@) : @ € D(0), lw(x)| < 1}.
If T € D (0) with |T|(O) < o0, then we can define the measure |T| € My (0)
ITI(¥) = sup{T (@) : w € D*(0), lw(x)| < ¥ (x)}

forevery ¢ € Co(0), ¥ = 0.Asaconsequence of Riesz’s Representation Theorem
(see [30,2.2.3, Theorem 1]) there exists a | T |-measurable function T : O — AxRY
with |T'(x)| = 1 for |T|-a.e. x € O such that

T(w) = /0<w<x>, T(0) dIT) () 3.1

for every w € D*(0). We note that if T has finite total variation, then it can be
extended to a linear functional acting on all forms with bounded, Borel-measurable
coefficients via the dominated convergence theorem. In particular, in this case the
push-forward fT canbe defined alsofor f € C 1 (0, O") withbounded derivatives,
cf. the discussion in [30, p. 132].

A set M C O is a countably H¥-rectifiable set if it can be covered, up to
an H*-negligible subset, by countably many k-manifolds of class C!. As such, it
admits at H¥-a.e. x € M a tangent space Tan(M, x) in a measure theoretic sense.
A current T € Dy (O) is an integer multiplicity (i.m.) rectifiable current if it is
representable as

T(a)):/ (w(x), £(x)0(x) dH (x), forw € D*(0), (3.2)
M

where M C O is a H¥-measurable and countably H¥-rectifiable set, 0 : M — Zis
locally H*|_M-summable, and & : M — AxR? is a H*-measurable map such that
£(x) spans Tan(M, x) and |&(x)| = 1 for H*¥-a.e. x € M. We use the short-hand
notation 7 = (M, 6, £). One can always replace M by the set M N O~ ({0}),
so that we may always assume that 6 7~ 0. Then the triple (M, 6, &) is uniquely
determined up to H¥-negligible modifications. Moreover, one can show, according
to the Riesz’s representation in (3.1), that T = & and the total variation® is given
by |T| = |6|HF L M.

If T; are i.m. rectifiable currents and 7; — T in D (O) with supj(|Tj [(V) +
[0T;|(V)) < oo for every V CC O, then by the Closure Theorem [30, 2.2.4,
Theorem 1] 7 is an i.m. rectifiable current, too. By [MM] we denote the current
defined by integration over M.

3 Fori.m. rectifiable currents, the total variation coincides with the so-called mass. Hence,
we will not distinguish between these two concepts.
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3.2. Currents in product spaces

Let us introduce some notation for currents defined on the product space R4 x R2,
We will denote by (x, y) the points in this space. The standard basis of the first
space R s {e1,...,eq )}, while {1, ..., eg} is the standard basis of the second
space R%. Given 0; C R%, 0, c R% open sets, T1 € Dy, (01), Tr € Dy, (02)
and a (k1 + ky)-form w € DX152 (01 x 0,) of the type

o, y) = Y wupx,y)dcAdyF,
|ar| =k
|Bl=k2

the product current 71 x 15 € Dy, 4k, (01 x 02) is defined by

TixTh(w) := Tl( Z Tz( Z a)aﬂ(x,y)dyﬁ) dx“),

lo|=k1 |Bl=k2

while Ty x T» (¢ dx®AdyP) = 0 if || + |B] = k1 + k2 but |a| # k1, |B| # k2.

3.3. Graphs

Let O C R? be an open set and u: @ — R? a Lipschitz map. Then we can
consider the d-current associated to the graph of u# given by G, := (idxu)#[ O] €
D>(0 xR?), where idxu: O — OxR? is the map (idxu)(x) = (x, u(x)). Note
that by definition we have

Gulw) = / (0 (r, u(x)), M(Vu(x) d
0]

for all € D?(0 x R?), with the d-vector
M(Vu) = (e) + du'e; + du’e) A ... A (eq + dau'e) + dau’er). (3.3)
The above formula can be extended to the class .A!(0; R?) defined by

AN O;R?) :={u e L' (O;R?) : uapprox. diff. almost everywhere
and all minors of Vuare inL' (0)}.
Remark 3.1. We recall that 3G, |q. g2 = 0 whenu € WH2(0; R?) ¢ A'(0; R?),

see [30, 3.2.1, Proposition 3]. This property however fails for general functions
ue A1 (0; R?).

In Lemma 3.4 we need to interpret the graphs of W!1(0; S!) as currents. This
can be done because of the following observation:

Lemma3.2.Ler O C RY be an open, bounded set. Then whlco;sh c
Al(0; R?).
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Proof. Itis well-known that Sobolev functions are approximately differentiable a.e.
Moreover, all 1-minors of Vu are in L1(0). We argue that all 2-minors vanish ata.e.
point. To this end, denote by P : R?\{0} — R? the smooth mapping P (x) = x/|x|.
Since for u € W1(0; S!) we have u = P o u almost everywhere, for a.e. x € O
the chain rule for approximate differentials yields

Vu(x) = VP(u(x))Vu(x).

Since VP (u(x)) has at most rank 1, also Vu(x) has at most rank 1 and therefore
all 2-minors have to vanish as claimed.

We will use the orientation of the graph of a smooth functionu: O c R? — S!
(cf. [30, 2.2.4]). For such maps we have |G, | = H>L. M, where M = (id xu) (),
and, for every (x, y) € M,

VI+H|Vu@)? G, (x,y) =e; Aep
+ du' (x)er A&+ d2u’(x)er A& (3.4)

—dau' (x)ex Ay — D au(x)es A .

3.4. Cartesian currents

Let O C R? be a bounded, open set. We recall that the class of cartesian
currents in O xR? is defined by

cart(O sz) ={T € Dy(O XRZ) : T is im. rectifiable, 97|y g2 = O,
7T =[01, Tlax 20, |T| < o0, [Tl < o0},

where 7 : OxR? — O denotes the projection on the first component, 7| g, = 0
means that 7'(¢ (x, y) dx) = 0 for every ¢ € C°(O xR?) with ¢ > 0, and

1711 = sup{T (p(x, y)|yldx) : ¢ € CZ(OxR?), |¢| < 1}.

Note that, if for some function u
T(¢(x,y)dX)=/¢(x,u(X))dx then |7y =/|u|dX- (3.5
0 10)

The class of cartesian currents in O xS! is
cart(OxS") := {T e cart(OxR?) : supp(T) C OxS'},

(cf. [31, 6.2.2] for this definition). We recall the following approximation theorem
which explains that cartesian currents in O xS! are precisely those currents that arise
as limits of graphs of S'-valued smooth maps. The proof, based on a regularization
argument on the lifting of 7', can be found in [32, Theorem 7].4

4 Notice that some results in [32] require O to have smooth boundary. This is not the case
for this theorem, which is based on a local construction.
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Theorem 3.3. (Approximation Theorem) Let T € cart(O xSY). Then there exists
a sequence of smooth maps uy, € C*(0; S') such that

Gu, = T inDyg(OxR?) and |G,,|(0OxR?) — |T|(OxR?).

Using the above approximation result, we now prove an extension result for
cartesian currents, which we could not find in the literature.

Lemma 3.4. (Extension of cartesian currents) Let O C RY be a bounded, open set
with Lipschitz boundary and let T € cart(O x§1 ). Then there exist an open set O S
O and a current T € cart(OxS") such that T | g2 = T and |T|(d 0 xR?) = 0.

Proof. Applying Theorem 3.3 we find a sequence uy € C°(0;S') such that
Gy, — T in Dy(0xR?) and |Gy, |(OxR?) — |T|(0xR?). In particular, the
sequence |G, |(O xR?) is bounded, which implies that

sup[ [Vurldx < C. 3.6)
k o

Next we extend the functions uj. To this end, note that there exists + > 0 and a
bi-Lipschitz map I': (00 x(—t,t)) — ['(0O0 x(—t,t)) such that I'(x, 0) = x for
allx € 00, T'(00 x(—t, 1)) is an open neighborhood of 9 O and

F@0x(—1,0) C 0, T@®0 x (0,1) Cc RN\O. (3.7)

This result is a consequence of [37, Theorem 7.4 & Corollary 7.5]; details can be
found for instance in [36, Theorem 2.3]. The extension of uy is then achieved via
reflection. More precisely, for a sufficiently small ¢’ > 0 we define it on O’ with
O’ = O + By(0) by

~ up(T(P(r~1(x))) ifx ¢ 0O,

i (x) = i (3.8)
up(x) otherwise,

where P(x, t) = (x, —1). Since I is bi-Lipschitz, we have that i} € whtico’; sh

and by a change of variables we can bound the L'-norm of its gradient via

/ | Vg | dx §/|Vuk|dx+Cr/ [(Vug)oToPol' ! dx < Cr/ |Vug| dx,
o’ o 0'\O o

(3.9
where the constant Cr depends only on the bi-Lipschitz properties of I" and the
dimension. Lemma 3.2 implies that u; € AI(O’; Rz). In particular, the current
Gy, € Da(0' x R?) is well-defined in the sense of

G (w) =/0/<0)(X,ﬁk(x)),M(Vﬁk(X)»dX,

with M (Vi) given by (3.3). We next prove that Gz, € cart(O’ x S!). First note that
whenever w € D?(0’ x R?) is a form with supp(w) CC O’ x R?\ (0’ x S!), then
the definition yields Gz, (w) = 0. It then suffices to prove that Gz, | o/ g2 = 0.
We will argue locally. For each x € O’ we choose a rotation Q,, radii r, > 0, and
heights /1, > 0 such that the cylinders Cy := x + Qy ((—rx, 7)? 7! x (—hy, hy))
satisfy



1150 MARrco CICALESE, GIANLUCA ORLANDO & MATTHIAS RUF

i) Cxccoifxe0;
(i) Cx cC 0'\O if x € O'\0;
(i) Cx CC O'ifx € 90 and

C,NO=C,nN (x—i—Qx{(x’,xd) eRY: xe(=ry, r)? —hx<xd<1p(x’)})

for some i € Lip(Rd’]).

Forx € O wehave Gy, |, xr2 = 0Gu;|c, xg2 = Osinceuy € C®(Cy; S'). Next
consider the second case, namely x € 0\ 0. Since C, CC 0’\ O, the properties
in (3.7) imply that "o P o r-¢y) cc 0.In particular, by the smoothness of
on O we have that iy € W1°(C,), so that by Remark 3.1 again dGy;, |CX><]R2 =0.
Finally, we consider x € 0. Since Cy N O is (up to arigid motion) the subgraph of
a Lipschitz function, it is in particular simply connected. By classical lifting theory,
we find a sequence of scalar functions ¢ € C*(Cy N O) such that ui(x) =
exp(tg (x)). In particular, using the chain rule we see that ¢ € whlc, n 0).
Now fix 0 < 8, < ry small enough such that Bs (x) C C, and

(CoPol~NBs,(x)N(O\O) CcC,NO,

which is possible due to (3.7). We then extend the lifting ¢ to a function @y €
wil (Bs, (x)) via the same reflection construction as in (3.8), which is well-defined
due to the above inclusion. Observe that this definition guarantees that iy (y) =
exp(t@k (v)) for almost every y € Bs, (x). Expressed in terms of currents this means
that

Giy |35X (x)xR2 = x#G g, |35X (X)xR2»

where Gz, € Dy(Bs,(x)xR) is the current associated to the graph of Dk
and x: RYxR — RIxS! is the covering map defined by x(x,?) :=
(x, cos(1), sin(¥)). In particular, by [32, Theorem 2, p. 97 & Proposition 1 (i),
p. 100] we have Gy, |BMX)XR2 € cart(Bs, (x) x S, so that by the definition of
cartesian currents we have dG g, | p; (oxr2 = 0.

Thus we have shown that, for évery x € O/, there exists a ball B;s (x) C o’
such that 0Gy, | Bs, ()xk2 = 0. Using a partition of unity to localize the support
of any form w € pi-l (0" x Rz) with respect to the x-variable, we conclude that

3G, | o' xr2 = 0and therefore Gy, € cart(O’x S!). As seen in the proof of Lemma
3.2, all 2-minors of Du vanish, so that the bounds (3.6) and (3.9) yield

1
|G;k|(0/x]R2) =/ M (Viig)| dx §/ (1+|v’zzk|2)2 dx < C.
o’ o’

Hence, up to a subsequence, we can assume that G, — T in Dy(0’ XRZ), see [30,
2.2.4 Theorem 2]. From [30, 4.2.2~.Theorem 1] it follows that T e cart(NO’xS‘).
Since @y, = uy on O, we find that T'| 5 g2 = T It remains to show that |T'[(d O x
R?) = 0. To this end, note that for 0 < < 1’ < 1 (and 5 small enough), by the
bi-Lipschitz continuity of I and (3.7) we have that

(ToPol 0Oy CcOF,
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where the sets 0,‘;‘“ and 0}7‘} are defined as

O = {x € 0'\O : dist(x,00) <7}, O} ={x € 0: dist(x,00) < 1'}.

Hence, similar to (3.9) we obtain that

1 .
|G, 1((80 + B, (0))xR?) < Cr / (1 + |Vuk|2)2 dx = Cr|G, (0 xR?) .
on
(3.10)
Since |G, |(O XRZ) — |T|(O XRZ‘) and |T'| is a finite measure, fora.e. n’ € (0, 1)
we have |G, | (0;") xR2) — |T|(0;7’,1 xR2). Applying the lower semicontinuity of
the mass with respect to weak convergence of currents in (3.10), we infer that

ITI(D0 + B,(0)xR?) < Cr|T[(ORxR?).

Sending n — O first and then n° — 0 we conclude that |7~"|(80><R2) =0, as
claimed.

We will also use the structure theorem for cartesian currents in O xS' that has
been proven in [32, Section 3, Theorems 1, 5, 6].°> However, to simplify notation,
from now on we focus on dimension two. Recall that  C R? is a bounded, open
set with Lipschitz boundary. To state the theorem, we recall the following decom-
position for a current T € cart(Q2xS!). Letting M be the countably H>-rectifiable
set where 7T is concentrated, we denote by M@ the set of points (x, y) € M at
which the tangent plane Tan(M, (x, y)) does not contain vertical vectors (namely,
the Jacobian of the projection 7% restricted to Tan(M, (x, y)) has maximal rank),

. Q
by MU == (M \ M@) N (JrxS), where J; = {x € Q : dz’;‘i‘lﬂ(x) > 0},

and by M© := M\ (M@ U MU). Then we can split the current as

T=T@W_ 7@ 4 T(jc),

where T@ := TL M@, T7© .= T MO, 17U = T L MU are mutually
singular measures, and we denote by L the restriction of the Radon measure 7.

Hereafter we use the notation x! = x2 and 2 = x'.

Theorem 3.5. (Structure Theorem for cart(QxS!)) Ler T € cart(2xS!). Then
there exists a unique map up € BV (2 S") and an (not unique) i.m. rectifiable
I-current Ly = t(L, k, LT) € D1 (Q) such that TV = T + Ly x[S'] and

T(¢(x,y)dx) = T (@ (x, y) dx) =/Q¢(x,ur<x>>dx, (3.11)
T @ (x, y) dF'ady™) = (=1)* /Q $(x,ur()duf(ydx,  (3.12)

T (¢ (x, y) d¥'Ady™) = (= 1)*" fQ ¢ (x. 7 (1)) ddS ulf (x), (3.13)

5 As for the Approximation Theorem, no boundary regularity is required for this result.
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T ($(x, y) dRAdy™) = (~1)>! f

JuT

{ P (x,y) dy'"} vl (x) dH (x)
Yx
(3.14)

forevery ¢ € C°(Q2 xR?), yx being the (oriented) geodesic arc in S' that connects
ur(x) to u'TF(x) and Ut being the precise representative of ur.

Remark 3.6. In [32, Theorem 6] the structure of 7/ is formulated in a slightly
different way, using the counter-clockwise arc y,,— -+ between (cos(¢™), sin(e ™))
and (cos(¢™), sin(p™)) and replacing J,,, by Jo, wherep € BV (Q2)isalocallifting
of T'. More precisely, the notion of lifting is understood in the sense that T = xx#G,
where x : R2xR — R2xS! is the covering map (x, ) +— (x, cos(?), sin(¢)) and
G, € cart(2xR) is the cartesian current given by the boundary of the subgraph of
¢ (hence the push-forward via y is well-defined as G, has finite mass, see Section
3.1). To explain how to deduce (3.14), we recall the local construction in [32]: for
every x € J, one chooses p™(x) = 0 and k'(x) € N U {0} such that

e () =pT () + 27k (x), 0= pTx) -9 (x) <27,

where we recall that in the scalar case the traces (and the normal to the jump set) are
arranged to satisfy ¢ = < ¢ on J,,. Then, locally, the 1-current L’ in [32, Theorem
6] is given by L. = ©(L',k'(x), L), where L' C J, denotes the set of points
with k’(x) 2 1 and L', is the orientation of £’ defined via L', = véel - vql,ez. To
obtain the representation via geodesics, we let

(q“r(X) k(x)) — (p+(x)v k/(-x)) lfp+(-x) - go_(-x) <7,

’ (Pt () =2m K () + 1) if pT(x) =~ (x) > m,
The case p*(x) — ¢~ (x) = m, i.e, antipodal points, needs special care. In this case
we define ¢ (x) and k(x) according to the following rule: let 3+ (x) := ¢*(x)
mod 27 € [0, 27). Then

(gt (), k(x)) = {(PJF(X), k' (x)) ifW (@ (x) — ¢~ () =7,

’ (PT () =2m, K'()+ 1) if W@ () - ¢~ (x) = -7,
with the function W defined in (2.4). Replacing (p™(x), k'(x)) by (g+(x), k(x)),
the modified structure of 7/ can be proven following exactly the lines of [32,
p.107-108], noting that by the chain rule in BV [11, Theorem 3.96] we have J, =
Jup Ulx € J, : ¢ (x) = ¢~ (x)}. In particular,

Ly =t(L.k,Ly), L={xel,:k(x)=1}, Lr=vlei—vje; (3.15)

still depend on the local lifting ¢, but in (3.14) the curves y,,- ,+ are replaced by the
more intrinsic geodesic arcs y, connecting u ;. (x) = (cos(¢ ™ (x)), sin(¢~ (x))) to
uJTr(x) = (cos(¢™(x)), sin(¢p™T (x))) (these formulas are consistent with the choice
Vuy (X) = vy,(x)). In particular, exchanging u;(x) and uJTr(x) will change the
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orientation of the arc (also in the case of antipodal points) and of the normal v,,, (x),6
so that the formula for 7%/ is invariant, hence well-defined without the use of local
liftings.

It is convenient to recast the jump-concentration part of 7 € cart(Q2xS'") in the
following way. Let Ly = t(L, k, L) as in Theorem 3.5. We introduce for H'-ae.
x € Jr the normal vr (x) to the 1-rectifiable set J7 = J,, U L as

oy @) itx € o
vrx) = {(—LZT(x), LL()  ifx € L\ ]y, (3.16)

where we choose v, (x) = (—LzT(x), LlT(x)) ifx € LN Jy, . For Hlae x e Jr
we consider the curve y,[ given by: the (oriented) geodesic arc y, which con-
nects u,(x) to u;(x) if x € Jy; \ L (in the sense of Remark 3.6 in case of
antipodal points); the whole S! turning k(x) times if x € £\ Juy, k(x) being
the integer multiplicity of L7; the sum (in the sense of currents)’ of the oriented
geodesic arc y, and of S! with multiplicity k(x) if x € J,, N L. Then

TG @A™ = 02 [ [ owmayhwant o,
Jr v

(3.17)
The integration over y,! with respect to the form dy™ in the formula above is
intended with the correct multiplicity of the curve yXT defined for H!-a.e. x € Jr
by the integer number

+I, ifx e Jup \ L, y €supp(yx),
k(x), if x € £\ Jur, St,
mix, y) = | E €Ly, v < (3.18)
k(x)£1, ifxelnNJy, yesupp(yy),
k(x), if x € L0y, y € supp(y]) \ supp(yx),

where + = +/— if the geodesic arc yy is oriented counterclockwise/clockwise,
respectively. More precisely,

/ d(y)dy™ = (=" ()Y m(x, y) dH (y). (3.19)
v supp(y,)

6 More precisely, assume that uy, up, v € S! and assume that the geodesic arc from u
to uo is counterclockwise. If (u;f(x), up (x), vup (x)) = (uz,uy,v), then yyx is oriented
counterclockwise. If, instead, (u'}'(x), ur (x), vyp (x)) = (uy, uz, —v) (equivalent to the
first choice, according to the definition of jump point), then yy is oriented clockwise.

7 In this case, a more elementary way of defining yxT is the following: let yx: [0, 1] —
S! be the geodesic arc, and let ¢, : [0, 1] — R be a continuous function (unique up to
translations of an integer multiple of 2m) such that y,(r) = exp(t@x(¢)). Then )/XT (1) =
exp (1(1 = Dex (0) + t (px (1) + 2k (x))).
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Remark 3.7. Note that we constructed m(x, y) based on the orientation (3.16) of vr.
As discussed in Remark 3.6, changing the orientation of v, changes the orientation
of the geodesic y,, while a change of the orientation of L7 switches the sign of
k(x). Hence changing the orientation of v (x) changes m(x, y) into —m(x, y).
If we choose locally vr = v, as in Remark 3.6, our construction above yields
m(x,y) = 0.

In the proposition below, we derive an explicit formula for the 2-vector T of a
cartesian current.

Proposition 3.8. Let T € cart(QxS!), let ur be the BV function associated to T .
Then |TW| = H2L M@ |TO| = HZL MO, |TU)| = |m|H> L MU, and

VI4+|Vur)PP T(x,y) =ei Aea
+0Quk ey A+ ub et Ay (320)
— 3 up(ex ner — 3V ud (Ve A 2,

for H2-ae. (x,y) € M@,

oy a9
T(x,y) =W(X)e1 ner+ W(X)el Nes .
daif)ulT _ daif)uzT _ G-2D
—W(X)ez nep— W(X)ez A e,
for H?-a.e. (x,y) € M©, and
sign(mx, YIT (v, y) = — vi(@)y’er Aer +vi@)y'er A e 322)

+vryler Aer —vp()yler né,
for H?-a.e. (x,y) € MUO, where m(x, y) is the integer defined in (3.18).

Proof. Assume 2 simply connected (if not, the following arguments can be
repeated locally). Let us consider the covering map x : QxR — QxS! defined
by x(x, ¥) := (x, cos(1}), sin()). By [32, Corollary 1, p. 105] there exists a lift-
ing of T, i.e., there is a function ¢ € BV (; R) such that T = x#G,, where
G, € cart(2xR) is the cartesian current given by the boundary of the sub-
graph of ¢. The fine structure of such currents is well known, compare [28, The-
orem 4.5.9], [30, 4.1.5 & 4.2.4]. We recall here that, if we consider the subgraph
SGy :={(x,y) € xR : y < ¢(x)}, then SG, is a set of finite perimeter; G, is
the current Gy = d[[SG,]. The interior normal to SG,, is given by

d(Dg, —L£?)
d|(Dg, —L£2)]
n(x, %) = (Vp(x),0), forx e Jy, ¥ €lp™ (x), (p+(x)],

n(x, px)) = (x), forx € Q\ Jy,

(3.23)

where v, is the normal to the jump set J, and £? denotes the two-dimensional
Lebesgue measure. Moreover, the current G, can be represented as Gy, = Gy |Gy|
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where |G| is concentrated on the reduced boundary 0~ SG,,, |Gy| = H2L3~SG,,
and G, is the 2-vector in R3 such that —Gy(x,P) An(x, ) =e; Nex Aes,ie,

G, = —n3el A e —l—nzel Aes3 — nlez A e3.
Finally, letting that

D@ = {(x, §(0) : x € Q\ Jy, 0 (x, u(x)) # 0},
2O = {(x, () : x € Q\ Jp, 1 (x,u(x)) =0},
S = {(x,0) : x € Jy, ¥ €lp (), 0 (0], nd(x, ) =0},

we have that 975G, = @y x©yxl and, denoting G((pa) = Gy L@,
Gg(ac) =G,L »@), G((pj) =Gyl ¥ (), and by [32, formulas (2) and (16)] we have
on the one hand that ur = (cos(p), sin(¢)) a.e. and

G =T, GO =179, 3G =19, (3.24)

On the other hand, observe that the Jacobian of dy : Tan(9~ SG, x) R* equals
1 (indeed dx maps any pair of orthonormal vectors of R? to a pair of orthonormal
vectors in R4). Hence, by the area formula, for o € {a, ¢, j} we obtain

x#GS (0) = / (o, Gy) dH* (x, 0)

()

Zf@( ))<‘°(x’y)’ > dx(n MGy(x, 3) dH (x, y). (3.25)
X o

(x.)ex1(x,y)

Next, note that for o € {a, ¢} the map x: £ — x(Z() is one-to-one and for
any (x, (x)) € T@ U £ we have
dx (x, (x))Gy(x, ¢(x))
— —n(x, §()er Aer
— n?(x, §(0) sin(@(x))er A&y + n*(x, F(x)) cos(@(x))er A &
+ n'(x, §) sin(@(x))ez A &1 — n' (x, F(x)) cos(F(x)ex Aer.  (3.26)
Since |n] = 1 we see that | dx (x, §(x))G,(x, @(x))| = 1, too. Moreover, for H2-
a.e. (x,y) € x(2@) the vector dy (x, ®(x))Gy(x, ¢(x)) orients the tangent space
at (x, y). Hence (3.24) and the uniqueness of the representation of i.m. rectifiable

currents (cf. Section 3.1) implies x(2)) = M) up to a H?-negligible set,
T =H?1_ M@, and

T (x(x, ¢(x))) = dx(x, u(x))Gy(x, §(x))

for H2-almost every (x, y) = x(x, @(x)) € £©). By the chain rule in BV [11,
Theorem 3.96] we deduce that

—uj © —ily ©
Vur={ 7)®Ve, Dur= ;7 )@Dgp.
Ur ur
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Combined with the formula for n given by (3.23), the formulas (3.20) and (3.21)
then follow from (3.26) by a straightforward calculation.

In order to treat the case ¢ = j, note that due to (3.23) we have for any
(x,y) = x(x,9) € x(TD)

dx(x, 9)Gy(x, 9) = —vi(x)y’e1 A1+ v, (x)y'er A&
+ vy (x)y’er Aer — vy (x)y'er A
=:&(x, y).
Again [§(x, y)| = 1 and §(x, y) orients the tangent space at H?-ae. (x,y) €
(D). Thus (3.25) and the uniqueness of the representation of i.m. rectifiable

currents imply (up to ’Hz-negligible sets) that MU = x (ZU)), T = & on MU,
and |TU9| = N(x, y)H? L MU, with

N(x,y) =#{® € [p”(x), 9T (x)] : (cos(®), sin(})) = y}.

To conclude, we have to relate m(x, y) to N(x, y) and v (x) to vy (x). First note
that the proof of the structure theorem (sketched in Remark 3.6) yields J,,, U £ =
Jy and, combined with the definition of the curves yxT (cf. (3.17)), implies that
xlg~(x), o (x)] = supp(y,]) for x € J,. Hence

MU = (D) = {(x,y) € @xR? : x € J,, UL, y e supp(y])}. (3.27)

Moreover, provided we orient J,,, the same way as J, and £ according to (3.15),
equation (3.16) also yields v = v, and m(x, y) = N(x, y) (a detailed proof of
the latter requires to distinguish different cases, which we omit here).® Inserting
this equality in (3.27) concludes the proof of (3.22).

Finally, we recall the following result, proven in [32, Section 4].

Proposition 3.9. If u € BV (2; SY), then there exists a T € cart(QxS") such that
ur = u a.e. in Q.

3.5. Currents associated to discrete spin fields

We introduce the piecewise constant interpolations of spin fields. For a set S,
we define

PC(S) :={u: R?> > S : u(x) = u(ei) if x € i + [0, 8)2 for some i € SZZ}

Given u: Q, — S', we can always identify it with its piecewise constant interpo-
lation belonging to PC.(S!), arbitrarily extended to R?. Note that the piecewise
constant interpolation of u coincides with u on the bottom-left corners of the squares
of the lattice 7.

8 As noted in Remark 3.7, the choice vr(x) = vp(x) always yields m(x, y) = 0. The
factor sign(m(x, y)) in (3.22) makes the formula invariant under the change of vz (x).



The N-Clock Model 1157

Fig. 5. The current G, has vertical parts concentrated on the jump set J;,, where a transition
from = to u™t occurs

We associate to u € PC,(S") the current G, € D> (2xR?) defined by

Gu(¢(x, y) dx'Adx?) ::/qﬁ(x,u(x))dx, (3.28)
Q
Gu(g(x,y)dXAdy™) == (=1)*! / { P (x,y) dy'"} Vi) dH (x), (3.29)
u Yx
Gu((x, y)dy'ady?) := 0, (3.30)

for every ¢ € C2° (2xR?), where J,, is the jump set of u, v, (x) is the normal to
J. at x, and y, C S! is the (oriented) geodesic arc which connects the two traces
u~(x) and u*(x) (Fig. 5). If u*(x) and u~(x) are opposite vectors, the choice
of the geodesic arc y, C S! is done consistently with the choice made in (2.3)
for the values W(ir) and W(—) as follows: let gpi(x) € [0, 27) be the phase of
ut (x);if W(pt(x) — @~ (x)) = 7, then y, is the arc that connects u~ (x) to u™ (x)
counterclockwise; if W(¢pT(x) — ¢~ (x)) = —m, then y, is the arc that connects
u~ (x) to u™ (x) clockwise. Note that the choice of the arc y, is independent of the
orientation of the normal v, (x).

We define for H!-a.e. x € J, the integer number m(x) = =£1, where + = +/—
if the geodesic arc y, is oriented counterclockwise/clockwise, respectively. Then

¢(x, y)dy™ = (=1)" m(x) ¢ (x, )" dH' (y). (3.31)
Vx supp(yx)

In the proposition below we characterize the current G, associated to a discrete
spin field in terms of the decomposition G, = G,|G,]|.

Proposition 3.10. Let u € PC.(S') and let G, € Dr(Q2xR?) be the current
defined in (3.28)—(3.30). Then G, is an i.m. rectifiable current and, according
to the representation formula (3.1), G, = G,|G,|, where |G,| = H*L_ M,

M=MDUMYD =[x, ux) : x € Q\ LI U{(x,y) : x € Ju, ¥ € va),

and
Gy(x,y)=ei Nep (3.32)
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for H?-a.e. (x,y) € M@ and

G, (x,y) = sign(m(x)[— vi(x)y’er A1 +vp(x)y'er A& 533
+ v;(x)yzeg A eq —v;(x)ylez/\ég] .

for H?-a.e. (x,y) € MY,

Proof. First note that the set M is countably H>-rectifiable. Since u is piecewise
constant, for horizontal forms we have

Gu(¢(x,y)dX)=[Q¢(x,u(X))dx =/

Qx

LPE DA LMOy).

By (3.31) we deduce that for [, m = 1,2
Gu(@(x, y) dF'Ady™)

= (—1)* / { ¢<x,y)dym}vf,(x>dH1(x>
u ¥Yx
— (=1t f { / ¢<x,y)’y*"dH1<y)}vi(x)m(x)dw(x)
Ju supp(¥x)
_ (—1)> f 6 (x. )T ()m(x) dH2 L MY (x, y).
QxR2
Then for every w € D> (2xR?) we have
G, () :/ (, Gy) dH> L M
QxR2

for G, defined as in (3.32)—(3.33) and moreover G, (x, y) is associated to the
tangent space at (x, y) € M. Since also |G, (x, y)| = 1 for |G,|-a.e. (x,y) €
QxR?, we conclude the proof.

The next proposition is crucial since it relates the boundary of the current G,
associated to a discrete spin field to the vorticity measure jt,,.

Proposition 3.11. Letr u € PC.(S') and let G, € Dr(2xR?) be the current
defined in (3.28)—(3.30). Then

3G ulaxr2 = —ux[S',

where [, is the discrete vorticity measure defined in (2.6) for u| 2 eZ* — Sl

Proof. Let us fix 0 < p < min{e/4, dist(2,, 32)} and n € D' (2xR?). With a
partition of unity we can split 7 into the sum of 1-forms depending on their supports.
We discuss here all the possibilities for the supports.

Case 1 supp(n) C (ei + (0, £)2)xRR? for some i € Z2. Since u is constant in
(¢i + (0, £)?), we get automatically 3G, () = 0 by Remark 3.1.
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Case 2 Let H be the side of the square ei + [0, £]> connecting two vertices
p.q € ¢Z? and let U be the p/2-neighborhood of H \ (B,(p) U B,(q)). Assume
that supp() C U xR?. We claim that

aG,(n) =0. (3.34)

To prove this, we approximate the pure-jump function u by means of a sequence of
Lipschitz functions ;. Let u™ be the traces of u on the two sides of H and let vy
be the normal to H oriented as v,. We let @i € [0, 27r) be the phases of uT defined
by u® = exp(tgT). Weset ¢~ :=¢ and ¢t := 0~ + W (@t — @) € (—x, 37),
where W is the function given by (2.4). We then define

_ . 1
("2 lftg_i

o) =3¢ + (et -7 )t +%) f —F<t<3
gt ift > 1,

and @i (s) := @(ks) for k large enough. Note that the curve r € (—1/2,1/2) +—

exp(tg(t)) parametrizes the geodesic arc y+ C S! which connects u™ to u™,

consistently with the choice done in formula (3.29). Then we put

ug(x) := exp (tgr (v - (x — p))) forx € U.
We prove that G,, — G, in Dy (U xR?). Let us fix ¢ € Cé’o(Usz). Since
ur — u in measure, we have that

Gu(P(x, y)dx) = /Uqb(x,uk(X))dx - /Uq)(x,u(x»dx = Gu(¢p(x, y)dx).

Writing x € U asx = x' +svy withx’ € H,s € R, forl = 1, 2 we further obtain
that

G (¢ (x. ) dRIAdy) = (—1)>! fU ¢ (6. 1 () gyt () dx

= (-1 /U ¢ (x, ug () sin(gg (g - (x = PHI@} (vpg - (x — p))vly dx
1/2k
= (—1)371 / / ¢(x/ + svy, exp (Lgok (s))) sin ((pk (s))<p,’€(s) ds va_l dH! D)
" 12k
1/2

= (—1)371/ / ¢(x’ + FVH.exp (Lgo(t))) sin (¢(1))¢’ (1) dt qu dH )
H
~ip

= (_])Z—If /d)(x/ + ivH, y) dyl vf,_, dHl(x/)
H

Y+

- (=1)>! /H f o(x,y)dy' } vl dH () = Gu(@(x, y) dFAdyl),
Y+
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Fig. 6. Example for the definition of ¢y for A =0

where y+ C S! is the geodesic arc connecting u~ to u™. With analogous compu-
tations one proves G, (¢ (x, y) d5c\l/\dy2) — Gu(p(x,y) df’/\dyz).
Hence, due to Stokes’ Theorem we have that

0= 8Guk (77) = Guk (dT]) e Gu(dn) = 8Gu(77),

which proves (3.34).

Case 3 supp(n) C Bp(p)sz, where p = ei + gej + e, for some i € 72
In this case we will approximate the current G, with graphs of a sequence of
functions uy which are Lipschitz outside the point p. For notation simplicity we let
1, 02, 3, P4 € [0, 27) be the phases defined by the relations

u(ei + eep +cep) =: uy = exp(t@y), u(ei + eep) =: uy = exp(t9y),

) R ) N (3.35)
u(ei) =: uz = exp(193), u(ei + gey) =: ug = exp(19y).
We define the auxiliary angles
Poth+1) = o) + Y (@o (h41) — Po(h))s (3.36)

forh = 1,2, 3,4, where o (h) € {1, 2, 3, 4} is such that o (h) = h mod 4 (the term
U (@o (h+1) — Po () 1s the oriented angle in [—7, 7] between the two vectors uq ()
and U, (;+1)). We introduce the 2 -periodic function ¢ : R — R

o (D)
o (h): o —%+lh% <ﬁ§h%_lﬂ’
=1 Pon) + k(Po(h+1) = o)) @ —h5 + 5p),  ifh5 — % <9 <h%+ %
gog(h_H), ifh%+ﬂ§l9<%+h%.

for ¥ € ( — T +h%T. T +h%), h € Z (see also Fig. 6). The function ¢ might
have jumps at the points % + h%, h € Z; note, however, that according to (2.3) the
amplitude of the jump is given by

o (h+1) — Poh+1) =Po(h+1) — Poh) — Y @oh+1) — Po(h))
=0@s(h+1) — Pon)) € 2L
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Fig. 7. Example of the approximation u (on the left) of the function u (on the right). The
jump set of the function u is expanded and a transition between the jumps of u is constructed

using the geodesic arcs in S! between the traces. If  has a nontrivial discrete vorticity as in
the picture, then the graph G, of the function uy has a hole in the center, as it happens for
the graph of the map x — ﬁ The hole is then preserved in the passage to limit to G, see

formula (3.37)

We now define a map v : S! — S!. Given y € S!, let ¥ (y) € [0, 27) be the
angle such that y = exp(t9*(y)) and set

vk (y) := exp (tgx (P (1)))-

The definition actually does not depend on the choice of the phase ¥ (y), due to the
2m -periodicity of ¢r. Thus we could also choose ¥ (y) € [27h, 2 (h + 1)) for any
h € Z. Note that v is continuous: indeed the possible jumps of ¢ have amplitude
in 277, and thus are not seen by vg. In particular, we can compute the degree of
the map vy via the formula

3
deg(ve)2m = deg(vk)/wsl =/vfws1 =Y Botnrt) — Pon
st gt h=0

3
=Y W @otht1) — Pow) = du(ei)2r ,
h=0

where wg1 is the volume form on S!' and d, (i) is the discrete vorticity defined
in (2.5).
We now define the map uy: B,(p) — S! by

g (x) := v (=0y).-

Note that, if (r, ¢) are polar coordinates for the point x — p, then the polar coordi-
nates of uy(x) are (1, px(9)) (see also Fig. 7).
By [30, 3.2.2, Example 2] we get that

3G u,l g, (pyxr2 = — deg(vi)d, x[S']
= — du(e)3px[S'] = —pux[S" g, pywr2- B3
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Therefore, to conclude the proof it suffices to show the convergence G,, — G, in
D, (2xR?), so that

— 1 X[S'() = 3Gy, (n) — 3G, ().

To do so, let us fix ¢ € C°(B,(p) xR2). Since uy — u in measure, we have that

Guy (@(x, y)dx) =/ @ (x, up(x)) dx — / ¢(x, u(x))dx
Bp(P) Bp(P)
=Gy (P (x, y)dx).

To compute the limit on forms of the type ¢ (x, y) dx’Ady”, observe that uy is not
constant only in the 4 sectors of B,(p) given in polar coordinates by

Al —p={n®) : re©,p), ¥ e (hd — 5. h%+ %)} hef0,1,2,3),

thus, forl,m =1, 2,

(—1)> Gy ($ (x. y) dRIAdY™) = / ¢ (x. ug (X))l (x) dx
B/)(P)

3
= Z/ @, ug(x))0ug (x) dx.
h=0 A?

The integrals on the sets Az can be computed in polar coordinates. We show the
computations for ~ = 0 and m = 1, the other cases being analogous. Changing
variables in the integral on the interval (—1/2k, 1/2k) we obtain

d (x, ug (x))d2uf (x) dx
AO

o 1/2k
/ / p + rexp (Lz?), exp (Lgok(ﬂ))) sin (@ (1?))(,0,/( () cos(¥) dvr dr
0 —1/2k
o 12
/ / (p +rexp (1f). exp(t1(1))) sin(e1 (1) g) () cos () dt dr
0 —1/2
o 12

- —/ / ¢ (p + (. 0), exp(t1 (1)) sin(gy (1))} (1) dr dr

0 —12

=/ f¢<x,y)dy1 V2 dH (v,
Ja1 W41

wheret € (—1/2,1/2) = y41(t) := exp (t(a4+(51—$4)(t+%)) is a parametriza-
tion of the geodesic arc y41 € S! which connects u4 to u; (cf. the definition of ¢4
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in (3.35) and of ¢ in (3.36)) and Jy4; is the subset of J, N B,(p) where u jumps
from uy4 to uy, oriented with normal v = (0, 1). Moreover,

/ é (x, ug (x))d,1u) (x) dx
AO
1/2k

o
/ / @ (p + rexp (19), exp (1o (D)) sin(pr (9)) gy (P) sin(P) dv dr
0 —1/2k

12

o
/ / ¢ (p + rexp (1f). exp(ti (1)) sin(ey (1)) g} (1) sin (£) dt dr — 0.
0 —12

This concludes the proof.

In the elementary lemma below we show that the flat convergence of the vorticity
measure implies convergence of the boundaries of the graphs associated to the
corresponding spin field.

Lemma 3.12. Let p,, u € Mp(2) and assume that e A w in . Then
we X[S'] — wx[S'T in D; (2xR32).

Proof. Let us fix ¢ € C°(Q xR?). For [ = 1,2, by the very definition of the
product of a O-current and a 1-current we infer

pexIS' M@ (x, y) dx') = 0 = ux[S"T(@ (x, y) dx’).
Next note that ¥ (x) := fSl ¢ (x, y)dy™ belongs to C?’I(Q) form =1, 2. Hence

s xIS' T (x, y) dy™) = fg IS (x. ) dy™) dute (x)

=/{/ ¢(x,y>dy’"} de ()
Q Sl

wam(X)dMs(X) - /W”(X)d/t(X)-
Q Q

4. A compactness result

In this section we prove a general compactness result that includes the statement
in Theorem 1.2-(i) but can be also applied in other regimes, as in [25]. For this rea-
son, in each result we give precisely the assumptions on 6, for which the statements

hold true. The notation 6, < ¢|log ¢| stands for limg_, ¢ Suog o € [0, 400). Given

a measure (L = 22'1:1 dpdyx, and an open set A, we adopt the notation
Ay = A\ supp(p) = A\ {x1, ... xa)

and Al := A\ UM, B,(xp).
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Our first goal is to prove a compactness result for the graphs G,, in the class

of i.m. rectifiable currents. To state the result, given u = 2242 1 dndy, withdy, € Z
andu € BV (Q; Sl), we introduce the set of admissible currents

Adm(p, u; Q) = {T € Dy(2xR?) : T e cart(Q, xS)),

4.1
AT | g2 = —ux[S'1, ur =uae. inQ}. @1

This is the main result in this section.

Proposition 4.1. (Compactness in the sense of currents) Assume that u,: e7> —
S! satisfies iES(ug) < Cwith 0 S ¢llogel. Let G, € D> (Q2xR?) be the cur-
rent associated to ug as in (3.28)—(3.30) and let [, the discrete vorticity measure
associated to u. as in (2.6). Then there exists a subsequence (not relabeled) and

Q) 0= M dnsy, with dy € Z such that r, > 1

(i) u € BV(Q; SY) such that ue — uin L' (2 R?) and uy —~ u in B Viee (2; R?);
(iii) T € Adm(u, u; ) such that G,, — T in DQ(QXRZ).

In particular, if 6, < ¢|loge|, then u =0 and T € cart(QxS!).

We postpone the proof, since we need some preliminary results. To deduce
a bound on the mass |G, | (and thus compactness in D1 (2xR?)), we rewrite the
energy as a parametric integral of the currents G,,, . Specifically, defining the convex
and positively 1-homogeneous function ®: A>(R*xR?) — R by

D) = v/ (E2)2 + E2)2 + /(1) + (£12)2 4.2)

for every

=tV ner+Ee N +ERe Ny +E s ne + 5% N e
+8%%, A2y € Ay(RPxR?),
we have the following representation proven in [25, Lemma 4.3].

Lemma 4.2. Assume that 0, < 1. Let o € (0, 1) and A CC . Then for & small
enough

1 _
—Ec(ue) 2 (1-0) dgi (g, u) vy, [y dH' = (1—0) D(Gy,) d|Gy,|.
e JusNA AxR2

One of the features of the limit current 7 is that it is an i.m. rectifiable current.
This will follow from the Closure Theorem [30, 2.2.4, Theorem 1]. However, we
first need a technical lemma to circumvent the fact that, in general, the masses [0G, |
are not equibounded. By Proposition 3.11 the boundaries 0G,,, are indeed related
to the vorticity u,, , which thanks to the well-known ball construction is equivalent
to a sequence of measures with equibounded masses. The precise statement suited
for our purposes is the following.
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Lemma 4.3. Assume that uy: e7Z> — S! satisfies e gngY (ug; Q) < C. Let

G, € Dy XRZ) be the current associated to u. defined as in (3.28)—(3.30). Let

Q' CC Q. Then there exist a subsequence (not relabeled), finitely many points
Zs...,27 €, andu,: eZ* — S' such that

() Gz, — — 0in Dy (' xR?);
(i) sup, |Gu9 |(Q’><R2) < sup, |Gy, |(2' xR?) + 1 for & small enough;
(iii) 0Gw, |(@\(zy,.....;pxr2 = 0 for & small enough.

.....

Proof. The proof relies on some arguments for the discrete vorticity measure that
can be adapted in this from [13]. We provide some details for the sake of complete-
ness.

We consider an auxiliary discrete vorticity measure ,ui defined through a tri-
angulation with respect to the lattice £Z2. (We do this since the results in [13]
are stated on the triangular lattice.) More precisely, let ¢, : ¢Z> — [0, 27) be
such that u.(x) = exp(tp:(x)). As in (2.5), for £ € {+, —} in the triangle
conv{ei, ei + gey, €i £ cer} we set

duig(si) ::%[W((p(si +ge)) — p(ei)) + V(p(ei + eer) — p(ei £ gey))
+ W (p(ei) — plei + 862))]
and

A .. . gt
Koy, |_conv{ei, gi + ey, i & ser} := dy. (61)88&(174)%]i“i%)sm,

where i &+ (1 — ‘/TE)erel +(1— ‘/TE)EQ is the incenter of the triangle conv{ei, ei £
gey, €l £ €ey}. Note that, if d;‘; (ei) # 0, then ;—ZXYE(MS; conv{ei, ei + geq, €i

gep}) = c¢o for some universal constant cy. Thus |;L,,A8|(Q’) < E%XYS(MS; Q) <
C|loge| for every Q' CC . Moreover,

|/LMA€|(A/) =0 = |uy,|(A) =0 for A CC A’ and ¢ small enough.  (4.3)

Indeed, if /,L,i L conv{ei, ei + €ey, i + €ep} = 0 and ,uuAg L conv{ei + ee; +
gey, €i +¢ey, i + €ez} = 0, then p,, L (ei + (0, e]®) = 0.
Let us fix Q" CC Q. We define the family of balls
B, .= {B

(l_g)g(x) (X € supp(p,uAg) N Q'}

and we let R(B;) := ). B, (x)eB, - Each ball in B, is contained in a triangle of
the lattice £Z2. Since |/¢MA€|(Q/) < Clloge|, we have that #8, < C|loge|. For

every 0 < r < R and for every x € R? we set A;r(x) == Br(x) \ B,(x). If
A r(x)N UBEBE B = {J we set

R
Ec(Ar R () = |1ty (B; ()| log —,
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and we extend &, to every open set A by
Ee(A) = sup[Zc‘,’g(AJ) t NeN, A=A, g,(xp), A/0 | ) B=0,
j=1 BeBB,
AT AR = Gfor j #k, A CAforallj}.
(4.4)

The set function &; is increasing, superadditive and equals —o0 iff A C Jpcp, B-
Let Q" be such that Q' CcC Q" CcC Q. Asin [13, Lemma 7.1] one can prove that

C
E(Q") = 2 XYelue; ) < Cllogel. (4.5)

We apply the ball construction to the triplet (&g, Mfg , B¢). The form which suits
most the arguments here is the one stated in [13, Lemma 6.1]. To keep track of the
constants, we let C be such that XY, (u,; Q) < Ce?| loge|. We fix p € (%, 1) and

we set . := Ce”|log ¢|. Then there exists a family {5 ()}, >0 which satisfies that

<tH <tr:
() UBeBe B C UBEBS(”)B C UBeBg(zz)B’ forevery0 <1 <1y

2) BNB =gfor every B, B’ € B.(t), B # B’,and t = 0;
(3) forevery 0 < 11 < 1 and every open set U we have that

gwn( U s U B)z Y wb®iog 2

BeB: (1) BeB (1) BeB: (1) I+n
BcU
4) for B = B,(x) € Bg(t) and r = 0, we have that r > «a, and

|tie.|(Byya, (O\By—a, (x)) = 0;
(5) for every r = 0 we have that R(B:(¢)) < (1 + t)(R(Bg) + #Bgag), where

RBe() := D p (ryeBoty T

Note that in general B¢ (0) is not B,. We let 7, := eP~1 — 1 and we define the
measures

o= Y g (Br(x))8,.
B, (x)eB:(te)

Since #B, < C|loge¢|, by property (5) above we have that

R(Be(ts)) < (1 + 1) (R(Be) + #Bsatz) < Ce*P~|log el (4.6)

Moreover, since & is an increasing set function, by (4.5), and property (3) in the
ball construction, for ¢ small enough we have that

Clloge| 2 £&(Q") 2 Y ug (B)llog(l +1c) = |TZ|(R)(1 — p)|loge|

BeB:(t:)
BcQ"

and thus
e 1() < C. .7
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We consider the following two subclasses of B, (¢;):

= {Br(x) € Be(te) : iy (Br(x)) =0, x € Q},

4.8
B#O {Br(x) € Be(te) : ufy (B) # 0,x € Q). -

Let By, (x;) € Bszo. Thanks to property (4) in the ball construction, | ,ufe [(Brota. (Xe)
\B/,—q, (xe)) = 0. We set K, := L4Spj 2 land ry == re — % + ke for

k=0,...,K,. Notethat ry < r, — - For every ¢ there exists k. € {1, ..., K¢}
such that
K¢
Ce?|loge| Z XYe(ute; By, va, (5e)\Br,—a, (x6) Z D XYeltte; Ar_y ry (xe))
k=1

> KSXYS(M&“» Tke—15Tke (I/ts, Tke—15Tke (XS))-
Rearranging terms the definition of o yields the bound X Y, (u; A,krl e (x¢)) <
C1¢2, with C; := 8. Hence we can apply Lemma 4.4 below to find i, : £Z* — S!
such that, for ¢ < (ry, — re.— 1)%, we have

e =g on eZ? \ Bry,_yon, (xe) and |y |(By, (x)) = 0.
2

The condition & < (1, — Fk,—1) mo oo C is satisfied as ¢ < sP for & small enough.

Sincery, < re— % L re— V2 2¢, we also have that the plecew1se constant functions
U and u, coincide outside By, (x¢).

We apply the modification described above to every B, (x;) € BEZO. In this
way, for every & we construct i, : €Z> — S! such that W, = u, (as piecewise
constant functions) in R? \ U BeB=0 B and | /LEAF [(A) = O for every open set A
such that A cC @'\ UBerO B. By (4.7)—(4.8) and by the definition of ji., we

have that #B’Zé 0 s equibounded and, up to a subsequence, we can assume BZé 0
{By¢ x9),-., By (x3,)}- There exists a set of points {z1,...,27} C Q' with J <
M such that, up to a subsequence, each sequence x;, converges to a point z; as
& — 0. (The points belonging to €2’ are actually not relevant for the following
discussion.) From now on, we work with this subsequence.

Let us show that G;, — G,, — 0 in Dy (Y xR?). Let ¢ € CSO(Q’XRZ).
By (4.6) we have

Al

(G, — Gu)(p(x, y)dx)| = / |p(x, Ue (x)) — @ (x, ue(x))| dx

S /I(b(x e (X)) — G x, ue ()| dx < 2)|@ L7 R(Be (1))

BeBB0
CllgllL=e* 2 loge|*.

IN

For the next estimate we observe that, given a ball B,(x), we have HI(J,,€ N

2 . . .
B, (x)) < C*-. Indeed, since u, is piecewise constant on the squares of eZ?, the
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measure of its jump set in B, (x) can be roughly estimated by 4¢ times the number
of squares that intersect B, (x), which is of the order of ;—z, at least for ¢ < r.
The same holds true for u,. For x € Jg, (resp., x € J,,), let ¥, (resp., yy) be
the (oriented) geodesic arc that connects ﬁ;‘ (x) and u, (x) (or u;‘(x) and u; (x)).

Then, using that i, = u, on eZ?>\ Ugen=0 B,

[(Ga, — Gu)(¢(x, y) dilAdy™)|

=

Z / /¢(x,y)dy'” ve (x) dH' (x)

BeB g |7,

—/ /¢(x,y)dy’" vl () dH! ()

JugNB - Wy

2
<omliglli= Y (H'Ur N B) +H! (Ju N B)) £ Cliglloe “R(Be(z:))*
BeBz0

< CllgllLee*? 3 logel*.

The two previous inequalities and the fact that p € (%, 1) imply that Gz, —G,, — 0
in D1 (2’ xR?). Moreover, taking the supremum over 2-forms with L>°-norm less
than 1, they also imply that |Gz, | (' xR?) < |G, |(' xR?)+1 for & small enough.

Let A cc A’ cc @'\ {z1,..., 27} By (4.6), for & small enough it follows
that A" CC @'\ Uy g0 B and thus | wy [(A") = 0. By (4.3), we obtain that
|um, |(A) = 0, ie., Gy, |sxp2z = 0. By the arbitrariness of A and A" we get
G @\ (1.2 xB2 = 0-

In the proof we applied the following extension lemma proven in [13, Lemma
3.5 and Remark 3.6].

Lemma 4.4. There exists a constant Co > 0 such that the following holds true.
Let ¢ > 0, xo e_Rz,and R >r >A£, let Ci1 > 1 and uAg: 72 — S! with
XY, (ue: Br(x0) \ Br(x0)) < C1€%, i, (B, (x0)) = 0, and |y, | (ei + (0, €]*) = 0
whenever (gi + (0, €1*) N (Bg (x0) \ By (x0)) # 0. Then there exists uy e7? - S!

—r
such that, for ¢ < CoCr

e U, = Uy on s 72 \E# (x0);
o 13 |(Br(x0)) = 0.

We are finally in a position to prove Proposition 4.1.

Proof of Proposition 4.1. From the assumptions ELEE (ug) £ Cand b, < ¢|loge|

s ~
it follows that

Eele) = —— — E,(up) < C
——E.(u;) = —FE.(us) £ C,
e2lloge| ° Y T elloge|ed, T T

so that by Proposition 2.4 we get that (up to a subsequence) p,, 4 w =
SV dy8.,, proving the first point.
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Applying Lemma 4.2 with o = % we deduce that for every A CC 2

1 1 1
€= L B2 —/ dsi (s wH)va, 1 AH' = S Dug1(4),
898 2 JugmA 2

Hence u, is bounded in BV (A; S!) and we conclude that (up to a subsequence)
ue — uin L'(A) and u, -~ u in BV (A;R?) for some u € BV(A;S!) with
IDul(A) £ C. Since A CC 2 was arbitrary and the constant C does not depend
on A, the second point follows from a diagonal argument and the equiintegrability
of ug.

Applying Lemma 42 with ¢ = 1 and since ®¢) 2
VEDH2 4 (£22)2 4 (£11)2 4 (£12)2, we obtain, by Proposition 3.10, that for every
A CCQ,

|Gy, [(AXR?) = |G, (M@ N AXR?) + |Gy, [((MY) N AxR?)

2
é [A] +/ CD(Gug)d|Gug| g Q2 + — E¢(ug) é C.
AxR2 e

By the Compactness Theorem for currents [30, 2.2.3, Proposition 2 and Theorem
1-(i)] we deduce that there exists a subsequence (not relabeled) and a current 7' €
Dy(2xR?) with |T| < oo such that G, — T in D (Q2xR?).

It remains to prove that 7 € Adm(u, u; €2):

e T isani.m. rectifiable current: Let ' CC 2. We consider the subsequence (not
relabeled), the points zq, ..., zy € Q',and the spinfield u, : eZ? — S! givenby
Lemma4.3. By Lemma4.3-(i) we have that G, — T in D, (2" x ]Rz). Letus fix
Acc U\ {x1,...,xm, 21, .., 27} We have that sup, |Gu£|(A><R2) < 400
and 0G,,|4xr2 = 0. By the Closure Theorem [30, 2.2.4, Theorem 1], the
limit T'| 4 g2 is an i.m. rectifiable current. By the arbitrariness of A and Q' and
since {x,}xS! and {z;) xS! are H?-negligible sets, this proves that 7" is an i.m.
rectifiable current in Q2 xR2.

o 3T|gygz = —ux[S']: by Proposition 3.11 we have 3G, |qurz =
—p%x[[Sl]]. Since [y, —f> u, by Lemma 3.12, and since dG,, — 9T
in D1(2xR?), we conclude that T |qxr2 = —,u><[[Sl]]. In particular,
8T|QMXRQ =0.

o T|dax = 0:let w € Dr(2xR3) be of the form w(x,y) = ¢(x, y)dx with
¢ € CX(QxR?) and ¢ = 0. Then G, (w) = Jo ®(x, ug(x))dx = 0. Passing
to the limit as ¢ — 0 we get T (w) = 0.

e |T| < oo: this is a consequence of the Compactness Theorem for currents (see

above).
e |[T|ly < oo: note that, by (3.5), |G, II1 = fQ lus|dx = |2|. By the lower
semicontinuity of || - ||; with respect to the convergence in D;(Q2xR?) we

deduce that || T||1 < |9].

° nﬂ?T = [Q]: let us fix @ € D*(R), i.e., a 2-form of the type w(x) = ¢(x) dx
with ¢ € C2°(Q). Then G, () = fﬂqﬁ(x) dx. Thus nﬁGus = [[2]. Pass-
ing to the limit as ¢ — 0 we get the desired condition (cf. also [30, 4.2.1,
Proposition 3]).
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e supp(T) C QxS let us fix @ € D*(QxR?) with supp(w) CC (2xR?) \
(2xS"). Then Gy, (w) = 0. Passing to the limit as ¢ — 0, we conclude that
T (w) =0.

To prove that u7 = u a.e. we observe that u, — u implies
Gu. 0. 2)d0) = [ Pl dx > [ poxuto)dx
Q Q
for every ¢ € C2°(Q2 xR?). On the other hand, due to Theorem 3.5

G (B (x, y) dx) — T((x, y) dx) =/Q¢<x,uT(x>)dx.

By the arbitrariness of ¢, we get ur = u a.e. in 2.
Finally, if 6, < ¢|log €|, then Proposition 2.4 and the assumed energy bound
yield that u = 0, whence T € cart(2xS!).

5. Proofs in the regime 0, ~ ¢|log ¢|

In this section we prove Theorem 1.2. We remark that the compactness result
Theorem 1.2-(i) is already covered by Proposition 4.1. Thus, we only need to prove
Theorem 1.2-(ii) and (iii).

From the lower semicontinuity of parametric integrals with respect to the mass
bounded weak convergence of currents, [31, 1.3.1, Theorem 1], we obtain the
following asymptotic lower bound:

Proposition 5.1. (Lower bound for the parametric integral) Assume that 6, <
¢|log e| and that ﬁ Ec(ug) < C.Let G, € Dy (Q2 xR2) be the currents associated

to ug defined as in (3.28)—(3.30) and assume that G,, — T with T € D2 (Q2xR?)
represented as T = T |T|. Then

/ d(T)d|T| £ liminf/ d(Gy,)d|G,y,|. (5.1
AxR2 e=>0 Jaxr?
for every open set A CC Q.

We can write explicitly the parametric integral in the left-hand side of (5.1) in

terms of the BV function u, limit of the sequence u.. We recall that by (3.17) the
jump-concentration part of 7" is given by

7Y (p(x, y) dX'Ady™) = (= 1)*7! /
Jr

{ T¢<x,y)dym}v’r<x)dH1<x>.
Vx
For H!-a.e. x € Jr we define the number

£r(x) := length(y,)) = / Im(x, )| dH' (), (5.2)
supp(y,])
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where m(x, y) is the integer defined in (3.18). Notice that by length(yxT) we mean
the length of the curve yXT counted with its multiplicity and not the ' Hausdorff
measure of its support. Observe that, in particular, £7(x) = dg1 (u_(x), u+(x)) if
x € Jy\ L, whilst £7 (x) = 2w |k(x)| if x € L\ J,. The full form of the parametric
integral is contained in the lemma below.

Lemma 5.2. Let ® be the parametric integrand defined in (4.2). Let © =
22/]:1 dpdy, withdp € Z.andu € BV (82; Sl). Let T € Adm(u, u; ). Then

/ o(T)d|T| = / |Vula,1 dx + [Duly, 1 () +/ Cr(0)|vr ()] dH (x).
QxR2 Q

JrNQ

Proof. We first prove the statement in the case i = 0, namely 7' € cart(Q2xS).
We employ the mutually singular decomposition given by Theorem 3.5 and Propo-
sition 3.8, so that |T| = H2 L M@ + H2 L M© + |7U9|. First of all note that
by (3.20) and (3.11) for every ¥ € C2°(2) we have

1
— dH%(x, =/ dx, 53
/me(x) e e = [yeoa (5.3)

since both integrals are equal to 7‘® (v (x) dx). By approximation, the above equal-
ity is true for every ¥ : 2 — R such that (x, y) +— ¥ (x) is H2L M@ -measurable
and x — ¥ (x) is £2-measurable. Note that x > |[Vu(x)|z,1 satisfies these mea-
surability properties thanks to (3.20). In particular, we deduce that

/ @(T(x,y))d’l—[zl_/\/l(“)(x,y)
QxR2

H2(x, y)

1
=/ Vu(x) |21 ————=——=d
M@ V14 Vu@)P?
=/|VM(X)|2,1dx.

Q

Next note that, by (3.13), for every function ¥y € C.(2) it holds true

sup TO@) = sup TOw). (5.4)
&, )| SV (x) o ()| S (x)
@eD?(QxR?) o |D©u|—measurable

Indeed given @ € D*(QxR?) such that |@(x, y)| < ¥ (x), one can define the
|D©y|-measurable 2-form w(x) := &(x, ii7(x)) to prove that the left-hand side
is greater than or equal to the right-hand side. For the reverse inequality, given a
|D©y|-measurable 2-form w such that | (x)| < ¥ (x), one can regularize it and
then define the 2-form @(x, y) := w(x)Z(y), where { € C2°(By) is such that
(y) = 1 for |y| £ 1 (note that ¢ does not affect the value of T (w) thanks
to (3.13)).
Since |7 = H? L M© and by (3.13), equality (5.4) implies that

/ Y () dH(x, y) = / ¥ (x) dDul(x) (5.5)
M© Q



1172 MARrco CICALESE, GIANLUCA ORLANDO & MATTHIAS RUF

for every function ¥ € C.(2). By approximation, (5.5) holds true for every
¥ Q — R such that ¢ is H? L M(©-measurable and |D©)u|-measurable. The
Dy

function x |m(x)|2 , satisfies these measurability properties, cf. (3.21),

thus (3.21) implies

D©
/ O (T (x, y) dH> L MO (x, y) =/ D™ u (x)‘ dH?(x, y)
QxR2 2,1

M(z:) d|D(c)M|
= Dulp, 1 ().

Finally, by (3.22) we get that
/ O(T (x. ) T (x, y)
QxR2
=f Im(x, Y @) dH* L MY (x, y)
QxR2

=/J {/Sl]lMoc)(x,y)lm(x,y)||vT(x)|1dH1(y)} 4 (o)
T

=f {/ |m(x,y>|dH1(y>}|vr(x)|1dH1(x>
Jr | supp(y)
=fj Cr Oy (x)]1 dH (x).

In the second equality we employed the coarea formula for rectifiable sets [28,
Theorem 3.2.22] (applied with W = J7xS!, Z = Jr, f given by the projection
JrxS! — Jr,and g = 1 p4G0 Im]lv7[1) and in the third equality we used (3.27).

Let us prove the general case T € Adm(u, u; 2). We observe that a current
T € cart(quSl) can be extended to a current T € Dy (2xR2). Indeed, since
T € cart(2, xSl), it can be represented as

T(w) =/ (, )0 dH> L M, for w € D*(2, xR?),
Q, xR2

according to the notation in (3.2), where M C MxSl H2-a.e. (cf. the proof of
Proposition 3.8 for the last fact). The integral above can be extended to a linear
functional on forms w € D?(QxR?), namely,

T () =/ (@, E)0 dH* L M, for w € D*(QxR?).
QxR2

To prove the continuity of this functional, let us fix a form w € D?(QxR?) with
sup, lw(x)| < 1. We have the bound

IT@)] £ 1T((1 - §)w)| +\ ) ch<w,s>9dH2LM
(5.6)

p(xh)lez

N
Siri@o) + Y [ e
h=1"B
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where £ € C2(Q) is such that 0 < ¢ < 1, supp(¢) € Up—, Bp(x), and ¢ = 1
on Bya(xp) forevery h =1, ..., N. Letting p — 0 in the inequality above, we
get |T(w)] < |T](82,xR?) since H*(M N ({x;}xR?)) < H?({x4}xS!) = 0 for
h=1,...,N and6 is H2 L M-summable. This shows that T € D, (Q2xR2).

Moreover, by the arbitrariness of @ in (5.6) we deduce that |T|(2xR?) =
|T1(82, xR?) and, in particular, from the first step of the proof applied to u We
infer that

/ &(T)d|T| =/ ®(T)d|T|
QxR2 Q, xR2

n

=/|Vu|2,1dx+|D<C>u|z,1(sz)+/ £r (O |y ()] dH (x).
Q Jr

We are now in a position to prove the lower bound in the regime 6, ~ ¢|log¢]|.
We recall that the asymptotic lower bound is written in terms of the energy

J(w,u; Q) = inf{/

Jr

L1 (x)|vr (xX)]1 dHl(x) : T e Adm(u, u; Q)} 5.7

with £7 (x) definedin (5.2) and Adm(u, u; €2) in (4.1). We remark that Adm (¢, u; €2)
is non-empty.9 Moreover,

T (e, u; ) 2[ dgt (™, uh) vyl dH'. (5.8)
JuNQ
Indeed, for H'-a.e. x € Jr we have dgi (u™(x), ut(x)) < length(y[]) = £7(x),
since yXT is a curve connecting #~ (x) and u ™ (x) in St.
Using the previous results, we obtain the I'-liminf inequality.

Proof of Theorem 1.2-ii). Let uy: Q; — S, (extended arbitrarily to eZ%), u €
BV(2;S!), and n = Zthl dpdy, be as in the statement of the theorem. Let
T € Adm(u,u; 2) be given by Proposition 4.1 and fix a set A CC £,. Let
p > 0 be such that the balls {B, (xh)}}’:i1 are pairwise disjoint and A CC Qﬁ. Let
o € (0, 1). Then, by Lemma 4.2,

M

1 1
—Ee(1e) 2 ) ————Ec(ug; By(xn) + (1 —0) / ®(G,,) d|Gy,|.
€0, i— &°|loge] AxR?
(5.9)
To estimate the first term, we exploit the localized lower bgund forthe XY -model [7,
Theorem 3.1], which yields the existence of a constant C € R such that

. 1 0 ~
lim inf 8_2E£(ue§ By (xp)) — 27 |dp| log . =C

e—0

B By Proposition 3.9 there exists a current 7 € cart(2xS!) such that uy = u. Let
Vi ooy ym be pairwise disjoint unit speed Lipschitz curves such that yj, connects xj to
02. Define Ly, to be the 1-current 7 (supp(yy,), —dp, ¥p), so that 9Ly, = djdy,. Then T +

SM L Lpx[S'T € Adm(u, u; ).



1174 MARrco CICALESE, GIANLUCA ORLANDO & MATTHIAS RUF

and, in particular, that

1
hgn;(r)lf loge| E¢(ue; By(xp)) 2 2mldy]. (5.10)
By (5.9), Proposition 5.1, lettingo — Oand A " €, and by Lemma 5.2 we infer
that

M
hmlnf—Eg(ug) > " 2mdy| +/ O (T)d|T|
&0, =1 Q, xR2

= 2[al(®) +/Q|Vu|2,1dx

FIDOuna@ + [ @@l an @,

JrNQ

Taking the infimum over all 7 € Adm(u, u; 2) we deduce the claim.

Let us prove the I'-limsup inequality. In the definition of the recovery sequence
we use a map that projects vectors of S! on S. Given u € S! we let ¢, € [0, 27)
be the unique angle such that u = exp(t¢, ). We define B : S! — S, by

PBe(u) = exp (Lea Lﬁ;—J) : (5.11)

Proof of Theorem 1.2-iii). To construct the recovery sequence, we closely follow
the proof of [25, Proposition 4.22] done for the regime ¢ <« 0, K ¢|log ¢|. Most of
the arguments hold true also when 6, = ¢|log ¢/, see [25, Remark 4.23]. Here we
will sketch the proof and provide more details for the steps that need to be adapted.

Let us fix u = 22/[:1 dpdy, and u € BV (Q; S as in the statement. The
function u is gradually approximated as explained in the following.

Step 1 (Approximation with currents) Fix ¢ > 0. By the definition (5.7) of J
there exists 7 € Adm(u, u; 2) such that

/ <I>(T)d|T|g/|Vu|2,1dx+|D<C’u|z,1<sz>+J<u,u;sz>+a. (5.12)
QxR2 Q

Step 2 (Approximation with S'-valued maps with finitely many singularities)
Exploiting the extension Lemma 3.4 and the approximation Theorem 3.3, we find an
open set £ DD € and a sequence of maps ux € C®($2,; S") N W1 (@ S!) such
that uy — u in L'(Q; R?), |Gy, [(2xR?) — |T|(QXR2) and deg(uy) (xp) = dj,
forh =1,..., N. Werefer to [25, Lemma 4.17] for a detailed proof. Reshetnyak’s
Continuity Theorem implies that

/IVuklz,ldx =/ P (Gyy) d|Guyl é/ (M) dIT|+o,  (5.13)
Q QxR2 QxR2?
for k large enough. In the first equality we applied Lemma 5.2. Thanks to this

step (and via a diagonal argument as ¢ — 0), it is enough to prove the I'-limsup
inequality assuming the stronger regularity u € C*°(S2,,; SHnwhl;sh.
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Step 3 (Splitting of the degree) Without loss of generality, hereafter we shall
assume that | deg(u)(xp)| = 1 for h = 1, ..., N. If this is not the case, we split
each singularity x;, with degree dj, into |dj, | singularities of degree with modulus 1,
without increasing the energy asymptotically. More precisely, by [25, Lemma4.18],
for 0 < 7 « 1 there exist measures u” and u® € Cw(fzuz; shn W1’1(§~2; sh
with u% = Z;:/;l deg(uf)(x,f)éxi and |deg(u®)(x;)| = 1 such that u* — u in

LY(:R?), u* £ w,and [ [VuT|z1dx — [ |Vulpdx,as 7 — 0.

Step 4 (Moving singularities on a lattice) We introduce the additional param-
eter ., := 27", n € N, which will be used later to obtain a piecewise constant
appr0x1mat10n. Without loss of generality, we shall assume that x;, € A,Z?> for
h =1,..., N.Ifthis is not the case, we find an approximation of « in the will (fZ)-
norm satisfying that property as follows. Foreverynand 2 = 1, ..., N we choose
X, € Ay 7PN Q such that x;; — xj, as n — +o0. For every n there exists a diffeo-
morphism ¥, : Q — Q such that wn(x y=xpforh=1,..., N (see, e.g., [33, p.
210] for an explicit construction). We remark that it is possible to construct v, in
such a way that ||/, —id|| -1 and ||¢_1 —id| ¢1 are controlled by maxy, |x; — x| for
every n. In particular, ||y, —idllc1, |V, ! —id||c1 = Oforn — 4oc. We define
u" = uoy, € COQ\ (x], ..., x0 ) Sl)m WL1(S; SY). Then u” — u strongly
in W“(SNZ; S') asn — +oo. Let us fix p > 0 such that the balls Bp(xh) are pair-
wise disjoint and contained in . For n large enough, we have that x; € B, /4(xp)
forh =1,...,N.Let ¢ € C(B,(x;)) such that £ = 1 on B, 2(x;). By [22,
Theorem B.1] we have that

2ndeg(u")(x;;)=7/ W"xVu")t - Ve dx ””*""7[ (uxVu)t - Ve dx
By (xp) Bp(xp)

= 27 deg(u)(xp)

where (MXVM)J‘ (ulazuz - u282u1 u281u1 - ulaluz)
Step 5 (Modification near smgularities) Letus fix o > 0. Then there exists g >
0 (small enough) and u® € C*°(2,,; SHNW1(Q; S') such that [, [Vu®|5 1 dx <

fQ [Vulz,1dx + o0, u°(x) = u(x) in Q \ U}I:il Em(xh), and u? (x) = (ﬁ)d}'
in By, (xp) \ {xn} (where the power is meant in the sense of complex functions).
We refer to [25, Lemma 4.21] for a proof of this modification result. Thus, up to
a diagonal argument as 0 — 0, we assume that u has the structure of u® with
singularities x;, € I Z2.

Step 6 (Recovery sequence near singularities) By the assumption in Step 5,

u(x) == (F= )d" in By, (x;), where dj, = £1.In [25, Formula (4.75)] we showed

x—xp| . . . .
that the projection B, (1) is concentrating the energy of a vortex near the singularity.

More precisely, for every n € (0, no) we have that

lim sup (%E (Pe(u): By(x)) — 27[|log8|—> <cn, (5.14)

e—0

for some universal constant C. In the regime 6, = ¢|log ¢, this yields

lim sup —Eg(ms(u) U B (xh)> <2 M + Cn = 27 |l(Q) + Cn.

£—0 -
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Step 7 (Recovery sequence far from singularities) Fix n € (0, ). We consider
a suitable square centered at the singularities x, and with corners on 1,Z2. More
precisely, let m(X,) € N be the maximal integer such that Q(A,, x;) = x5 +
[—2mCa)y, 2mGa)y 12 By /2(xn), so that the estimate in Step 5 holds true in
Uz/lzl Q(My, xp). We also consider the square Qo(Ay, xp) == xp, + [(—2’”0‘") +
Dn, (27Gn) — 12,12, The squares Q (A, x5) and Qo(A,, xp,) differ by a frame
made by 1 layer of squares of I Z2. By the choice of m(A,), one can prove that
By 16(xn) CC Qo(Ay, xp). Far from the singularities, we discretize u on the lattice
InZ2. Specifically, we exploit the fact that u € COO(Q \ U}]:/Izl En/:),z (xn); SY to
find a sequence of piecewise constant functions u, € PCj,(S') such that

M
u, — u strongly in LI(SZ\ U En/]ﬁ(Xh)), (5.15)
h=1
1imsup/ dgi (u, , u;) vy, |1 dH! §/|Vu|2,1dx, (5.16)
n—+o0 JJ, NOM Q

Un

where O is the union of half-open squares I, (1,2), with z € Z2, that intersect
Q\ Uzil By, /16(xp,). Note that, since By;/16(x) C Qo (A, Xn),

M M M
Q\ (| QoG xn) € @\ | Byjis(en) € 0™ @\ | Byyza(an).
h=1 h=1 h=1

For a detailed proof of this discretization result see [25, Lemma 4.13].

We consider a recovery sequence u, € PC.(S,) for u, satisfying u, — u,
strongly in L' (0%") and

M
. 1 _
lim sup 7E8 (u’s, Q\ U Qo()»n,xh)) < /J o dgi (uy, , ) v, |1 dH!.

e—0 €U Pt
(5.17)
The recovery sequence u/, is defined as in the regime ¢ < 0, < ¢|loge| in the
case of no vortex-like singularities, exploiting the piecewise constant structure of
uy. The details of this construction can be found in [25, Proposition 4.16].

Step 8 (Joining the two constructions) A careful dyadic decomposition of the
square Q(A,, x;,) leads to the construction of a spin field u, : eZ2N Oy, xp) > Se
such that u, = P.(u) on By16(xp) C Qo(ry, xp), while ug(ei) = ul (i) if
gi € eZ* N O (A, xp,) satisfies dist(ei, dQ (A, x1)) < &, and

M
, 1
lim sup —- <u8; U Q(xn,xh)> < 27|l () + Cn. (5.18)

I
e—0 e h=1
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Since u, and u/, agree close to d Q (A, x;,), we define a global spinfieldu, € PC,(S;)
(equal to u, outside U,’y:l QO (Ay, xp,)) satisfying, thanks to (5.17) and (5.18),

M
1 1
lim sup —- Ex (u) < lim sup [JEg (u’g; \ (L Qo0 xh))
£

e—>0 &U¢ e—0 el

1 M
+£Es (ua; U Oy, xh)>:|

h=1
gf Ao (e, ) Vi It AH' + 27|12l (2) + C.
Jup NO*n

(5.19)
We refer to [25, Steps 2—4 in the proof of Proposition 4.22] for the details about
this construction.
Step 9 (Identifying the L'-limit of u,;) As ¢ — 0, the spin fields u, converge
in L' (Q; R?) to the map 11, € L'(Q; S!) given by

1 (x), if x € @\ UpLy Q0. 1),
i (x) 1= (‘;:jz‘)“h, ifx € QooCip, xp) forh=1,..., M,
ug" (x), if x € Q) \ Qoo(hn, xp) forh =1,..., M,

where ué" isan S!-valued map whose value is not relevant here and Qo (A, Xp) :=
xp 4 [(=2730) 4 ), (2" — 21,1 C O(An, xp,) (This notation is used in
agreement to [25, Proposition 4.22].) Since Q (A, X5) \ Qoo(An, xp) is a frame of
width 24, and Q (A, x) C By/2(xp), whereu(x) = (‘ijiz‘ )dh by our assumptions
on u in Step 5, by (5.15) we get that

iy — uin L'(Q: R?). (5.20)

Hence, via a diagonal argument as n — +oo we find a subsequence such that
ue — uin LY1(; R2) and, by (5.16) and (5.19), that

) 1
imsup £, (ue) < [ [Valy1 dx -+ 2711l(@) + Cr,
e—0 O Q
which will give the claim after an additional diagonal argument as n — 0.
Step 10 (Identifying the flat limit of w,,) In order to implement the diagonal
arguments proven in Step 9, we need to identify the flat limit of w,, for n fixed.

After the diagonal argument we will obtain the desired convergence fi,, X w. As
this is the major difference in the regime 8, = ¢|log ¢|, we provide all the details.
Since 6, = ¢|log €], the energy bound (5.19) reads

lim sup — Ee(ug; Q) < / dsi (uy, w )|y, 1dH 427 | () +Cp .
e—0 ¢&-|loge| Jup NO*n

(5.21)

Note that the left hand side agrees with the unconstrained scaled XY-model. In

particular, by Proposition 2.4 we deduce that there exists a measure wu,, € M;j(£2)
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of the form 1, = Y&, dindy,, With di, € Z\{0} such that, up to a subse-

quence, [y, —f> Wn. Thus the (already proven) lower bound in Theorem 1.2-(ii),
the convergence u, — it,, and (5.21) yield

/ |Vitnla.1 dx + [Dd2.1(R) + T (s st ) + 277 |10, | ()
Q

<[ dotadiv haH! + 2elul@ + C.
JuyNOMn

Since the last term in the above estimate is controlled via (5.16), we deduce that
|1n(S2) is equibounded in n. In particular, up to a subsequence, there exists a
measure iy € My () that has the structure ;g = Z,le di Sy, forsome d € Z\{0}

such that w, —f> 1o (and weakly* in the sense of measures). We next want to use
a lower semicontinuity property of the left hand side. However, due to the mixed
term J (u, u; €2), this is not straightforward, so we estimate the left hand side from
below with a negligible error when A, — 0. Indeed, by (5.8) we have that

T (Wn, tin; 2) 2/ dgi (i, , i1 v, 1dH.
Jin N9

iin

Inserting this lower bound in the previous estimate we obtain that

/ |Vitnl2.1 dx + D@y |21 () + / dg1 (@, D) v, LAY + 27| 1 [(2)
Q J: N

itn

S Cnr 2@+ [ ot

JupNOMn

The left hand side is lower semicontinuous with respect to the L'(Q;R?)-
convergence of it,, (see Proposition 6.1 below) and the weak*-convergence of w,,.
The limit of the right hand side is given by (5.16). Due to (5.20) and the fact that
u € WH(Q; S (recall the standing assumption in Step 5) we conclude that

/ |Vulz, dx + 27| ol < Cn+f |Vulz,1 dx + 27 || (€2)
Q Q

which implies that |u|(R2) < |u|(2) (recall that n < ng can be chosen arbitrary
small, while the constant C is bounded uniformly).

We finish the proof by showing that all measures w, have mass 1 in a
uniform neighborhood of each of the points x;, given by the target measure
U = Zﬁil deg(u)(xp)3y,. Indeed, by Step 6, u, = P (u) on each By16(x).
Due to (5.14) we have for ¢ small enough

1 0
5 Ee(Pe); By(xa)) = 2Cn— + 2| loge| = Clloge] .
This allows us to apply [6, Proposition 5.2], so that the flat convergence of discrete

vorticities is equivalent to the flat convergence of the (normalized) Jacobians of
the piecewise affine interpolations. Denote by v, and u(e) the piecewise affine
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interpolations associated to ‘B¢ (u) and u on B;;16(xp,), respectively. (We adopt the
notation u(¢) to stress that the interpolated function is independent of ¢.) We have
that

19 = TN 228, 15050 (1702208, 150000 + 1T 228, 150600 )
1

1 1 2
= Cnbe (S_ZES(‘BS(M)» By (xn)) + 8_2E8((|§:§Z|)dh; Bn(xh))>

< Ch,|loge|? .

As 0, = €| loge|, the right hand side vanishes when ¢ — 0. Hence [6, Lemma 3.1]

X—X}p

yields that Jv, — Jui(e) L 0on By /16(xp). Since u = (‘x_m)i] on By16(xp),

Step 1 of the proof of [4, Theorem 5.1 (ii)] implies that %Jﬁ(e) —f> deg(u)(xp)dy, .
Choosing an arbitrary ¢ € C? o1 (By/16(xr)), the above arguments imply

{(1tn L Byji6(xn), ¢) = Lim (s, @)
= lim (1J0;, ¢) = lim (LJa(e), p) = deg(u) (xn)¢(xn).
e—0 e—0

Letting n — +o0 in the above equality we infer that po L By16(xs) =
deg(u)(xp)dy,. Now consider the decomposition of 1 into the mutually singu-
lar measures

M M
Ho ="y deg(u)(xi)dy, + oL (2\ | Byjieten))
h=1 h=1

From mutual singularity we deduce that

M M
IR 2 Lol(@) = [deg@)(un)| + oL (24 [ Buyroun)|

h=1 h=1

> 1@ + oL (2 U Baps(n )|
h=1

Hence /L()L(Q\ U,I:/IZI B,]/m(xh)) = 0 and therefore pg = 2;1:421 deg(u) (xp)dy, =

. f f
w. In conclusion, we have proved that u,, — u, as e — 0 and u, — p as
n — +o0o which justifies the diagonal arguments in Step 9.

6. Proofs in the regime ¢|loge| < 0. < 1

In the present scaling regime the discrete vorticity measures jt,, for sequences
with bounded energy are not necessarily compact. Hence we cannot use the para-
metric integral as a comparison, but we will work directly with the spin variable u,.
We recall the following lower-semicontinuity result proven in the d-dimensional
case in [26, Lemma 3.2] via a slicing argument.
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Proposition 6.1. For every open set A C K define the functional E(-; A) :
LY(A; R?) — [0, +00] with domain BV (A; SY), on which it is given by

E(u; A) 2=/|Vw|2,1dx+|D(C)w|2,1(A) +/ dgi (" u”) val1dH"
A JuNA
Then E(-; A) is lower semicontinuous with respect to strong convergence in
L'(A; R?).

Proof of Theorem 1.1. The compactness result in (i) follows by Lemma 4.2 as in
the proof of Proposition 4.1. Indeed, Lemma 4.2 with o = % yields that u, is
bounded in BV (A; S') for every A CC Q.

To prove (ii), it suffices to consider u € BV (Q;S') and a sequence u, €
PC,(S,) such that u, — u strongly in L'(Q; R?) and

Jiminf — E.(u;) £C
mint — u >~ .
e—0 0, e\llg) =

Letus fix anopenset A CC Q2 and o > 0. By Lemma 4.2, for ¢ small enough we
have that

1 _
—E:(ue) 2 (1-0) gt u) e 1 dH = (1 — 0) E(ug; A).
e0; Ju.NA

Hence Proposition 6.1 yields that
1
liminf — E¢(u;) = (1 — 0)E(u; A).
e—0 &b,

‘We conclude the proof of the lower bound letting 0 — 0 and A 7 €.

In order to show the I"-limsup inequality in (iii), we first remark that, following
the approximation procedure in [26, Proof of Proposition 4.3 (Step 1-3)], it suffices
to prove the upper bound for a target function u € C™(Q \V:Shnwh! (Q; SH,
where @ OO  has Lipschitz-boundary and V = {x1,...,xy} C Q is a finite
set. Moreover, following Steps 3-5 in the proof of Theorem 1.2-(iii) above, we can
assume, without loss of generality, that V' C 4, 72 N Q with A, = 27", that there
exists @ CC €' CC € such that V N QN\Q) = VJ and that there exists ng > 0

such that for every x; € V we have u(x) = (\x—?|) for x € By, (x;).

We are finally in a position to apply [25, Proposition 4.22] (which is valid also
in the case ¢ < 6;) to the modified field u € C®(Q"\ V;SH n whl(@/;sh.
It gives the existence of a recovery sequence u, € PC.(S,) such that u, — u in

L'($2; R?) and

1
lim sup (87E (e) — 271|,u|(§2)|10g£|9£) §/ Vulp. 1 dx.
e Q

e—0

Since |log ¢| £ 7~ — 0, we obtain that

Ir- hmsup—Eg(u) </|Vu|21dx

e—0

Note that the right hand side coincides with the functional claimed to be the I'-limit
in Theorem 1.1 since u € WH1(Q; S1).
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7. Proofs in the regime 0, <« ¢

We now come to the scaling regime which yields a discretization of S! that is
fine enough to commit asymptotically no error compared to the XY-model up to
the first order development. Throughout this section we shall always assume that

f: < e. (7.1)

Moreover, we will use the following elementary estimate: for any x, y € R?\{0} it
holds that

(7.2)

AP

x| Iyl Lyl

7.1. Renormalized and core energy

Following [16], we define the renormalized energy corresponding to the con-
figuration of vortices u = 22/1:1 dpéy, by

W(u) = ~27 ) dpdy log|xn — x¢| =27 ) dyRo(xn).
h#k h

where R is harmonic in 2 and Ro(x) = — Zthl dplog |x — xp| for x € 92 (see
[16]). The renormalized energy can also be recast as

W) = lim [n, 1) — 27 |l ()] log ], (7.3)

where

n(n, 1) ;= min {/ ; |Vw|2 dx: wx)=a; © (‘iiiZI)dh for x € 3By (xp), |oeh|:1} .
2
(7.4)

To define the core energy (see also [16, Section IX]), we introduce the discrete
minimization problem in a ball B,

1
y (g, r) ;= min {—2Eg(v; B : v:eZ’NB, —S', v(x) = Ii_\ forx € 9B, ¢,
£

(7.5)
where 0. B, is the discrete boundary of B,, defined for a general open set by

9 A ={ei € eZ> N A: dist(ei, 0A) < ).

Note that 9; B, C Z* N B, \ B,_,. Then the core energy of a vortex is the number
y given by the following lemma. The result is analogous to [7, Theorem 4.1] with
some differences: here we consider r, — 0 depending on ¢ and we use a different
notion of discrete boundary of a set. The modifications in the proof are minor, but
we give the details for the convenience of the reader.
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Lemma 7.1. Let r, be a family of radii such that ¢ < re < C. Then there exists
tim [y (e, o) = 27| log £ = 7 € R, (7.6)
£e—> e

where y is independent of the sequence re.

Proof. We introduce the function
I1(t) = min{El(v; B%) N/ HB% — St vx) = ﬁ forx € 813%}.
Let us show that
I(n) S 1) +2rlog 2 + o0, for0 <1 <1, (1.7)

where oy, is a generic sequence (which may change from line to line) satisfying
0 — 0ast, — 0. To this end, let v, : 72N B1 — S! be such that vp(x) = |x|

for x € BlB 1 and E|(vy; B ) = 1(rn). We extend v to B 1 setting

v(i), ifieZ*NBi,
v1(G) =1 . 2
1) i ifi e Z2NBi1 \ B..

n n
To reduce notation, we define A(1, ) := B | \E 1 Next note thatif i € B1

1 12 n
and j ¢ B1 with|i—j|=1,then|i|§%—l> 5—2.Hence
)

I(tr)) SE1(vi; B1) S Ei(vy; B1)+ Ei(vi; A11, 12))
1 2

1 . .
=lo+z 2 la—wl-
(i, J)
i,jeAt,n)

To control the last sum, we den've an estimate for the finite differences away from
the singularity. Set u(x) = T .Foranyr € [0,1]and i, j € Z* with |i — j| =1
we have

(1 — r)ei + tej| 2 |ei| — e.

Hence, by the regularity of u in R2\{0}, forany ¢i, gj € 822\325 with [i — j| =1,

1
luei) — u(ej)| < / [Vu(tei + (1 — t)ej)(ei — ej)] dt.
0

Since i — j € {xe;, Ler}, a direct computation yields the two cases

1 |i - er| . .
—dt if (i —j) || eq,
ju(ei) — u(e))] < b 78

/%dz i = ) |l eas
o lti+1—10)j|?
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6Q:(3*7+) €Q§+’+)
At 12)

I
N

ng ’

6Qé+’_)

—

Fig. 8. Schematic illustration of the trimmed quadrants £ Q3

Next note that |7i + (1 —£)j| 2 |i| — 1 = max{|i - e1], |i - e2|} — 1. The right-hand
side is non-negative if i # 0, so that we can take the square of this inequality. Using
Jensen’s inequality, we infer from (7.8) that

2

lu(ei) — u(ej)|* < (7.9)

(k — 1)* lk=max{li-e1|.li-e2]}’
We shall use both (7.8) and (7.9) to estimate the sum of interactions in A(#, t2). To
do so, we split the annulus A (1, t2) using trimmed quadrants defined as follows:
given a tuple of signs s = (s1, 52) € {(+,+), (—, +), (—, =), (+,—)}andn € N
we define the trimmed quadrants O} as

QZ::{xeRzzslx-elzn, s2Xx-ey = n}. (7.10)

Fix n = 3. We then consider interactions (i, j) where both points belong to one
trimmed quadrant and the remaining interactions. For the latter we use the estimate
(7.9), noting that max{|i -e1|, |i -e2|} = \%|i| > \/Litz and that for 7, small enough,
i.e., the inner circle of the annulus large enough, the interactions outside the trimmed
quadrants can be counted along 20 lines parallel to one of the coordinate axes in
a way that the maximal component strictly increases along the line (cf. Fig. 8).
Summing over all pairs of signs s € {(+, +), (—, +), (+, —), (—, —)} then yields
that

1 , A | _ s k2
2 % ||i_|_\]7| éEZ % }\i_|_|j_|} +C Z (k — 14
i, jeAlt 1) i, jeQ5NA( 1)
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ST T e

i jEQxﬁA(Zl 1)

where we used that the series Y oo, ﬁ converges. The contributions on the
trimmed cubes have to be treated more carefully since we need the precise pre-
factor 27t in (7.7). The idea is two switch from the discrete lattice Z? to a continuum
environment that leads to an integral. We have

I._l E: |L_L|2_ 2: i+Sl€1_L|2+|i+5262_L|2
$T 9 i litsier] ] li+s2ea]  [if1 ~
(i.J) ie??
i,jeQ3NA(t1,12) i€Q3NA(t1,1)

For each term on the right hand side we apply (7.8) noting that |t (i + s,e;) + (1 —
Ni| = li +tsrep| 2 |i| fori € Qf, s = (s1,52), and r € {1, 2}, so that by Jensen’s
inequality

2 o2
itsiel —L|2+| itsrer _L|2 cliralP+li-el 1
' - li|* |i ]2

lit+sier] li+s2ea] i1

Note that for i € Z2 N Qj it holds that # > # forall x € i — s1e; — spep +

[—%, %]2. Since i — sje; — spex + [—%, %]2 € Q3, we can control I; by

1 1
I .—§/ —dx. (7.11)
’ 2 il? = Jognm s, 1xI?

n n

[IA

iezZ?
i€ Q3NA(t,0)

Summing this estimate over all couples of signs s, we infer that

1
legf —zdx<2nlog + o1,
s B, L X

L
’1 )

where we also used that by the mean value theorem | log % —log(% —4)| £ 4 1_"‘;”2 B
This proves (7.7). As a consequence, the limit lim;_, ¢ [I (t) — 27| 10gt|] =y
exists. Since y (e, r;) =1 ( ) it only remains to show that y # —oo. To this end,
we show that the boundary conditions in the definition of y (e, 1) force concentration
of the Jacobians, so that we can use localized lower bounds. Let v, : €Z2NB; — S!
be an admissible minimizer for the problem defining y (g, 1) and extend it to e Z*\ By
via vg(ei) = ‘ T ‘ Then, using the boundary conditions imposed on v, and (7.2),
we deduce that

1 1 1 el &j
—F :B3) < —F . B — L
g2 o(ve; B3) = g2 o (ves Br) + 262 % “ leil el
ci.ejeB3\B1 )
C
<y D+ = et <y 1) +C. 7.12
Syeh+5 ) sy (7.12)

(i, J)
ei,ej€B3\B1)2
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Since we already proved that y (e, 1) — 2r|log | remains bounded from above

when ¢ — 0, Proposition 2.4 implies that (up to a subsequence) i, L B3 LN n
for some p = d18x, withd; € Z and x| € B3. We claim that u # 0. Indeed, let us
denote by v, the piecewise affine interpolation of v, and let 1: [0, 3] — R be the
piecewise affine function such that » = 1 on [0, 1], = 0 on [2, 3] and 7 is affine
on [1,2]. Then define the Lipschitz function ¢ € C*'(B3) via ¢(x) = n(|x]).
Using the flat convergence of i, , which transfers to the scaled Jacobian 7%,
due to [6, Proposition 5.2], we infer that

1
(n, @) =lim — [ Jv, pdx
e=>0m Jp,
1 / ( (V5)102(Ve)2 — (V5)202(Ve)1
B\ By

=—lim — — (V) 101 (ve)2 + (V)201 (ve)1

-Vodx,
e—0 27 ) g

where in the last equality we integrated by parts due to the fact that in dimension
two the Jacobian can be written as a divergence (in two ways). Note that on B, \ B}
the function v, agrees with the discrete version of x/|x|. Hence one can pass to the
limit in & as D, converges to x/|x| weakly in H 1(B,\ B1). Moreover, it holds that
Vo(x) = —x/|x]| a.e. in B2\ B;. An explicit computation shows that

1
(n, @) = 2—/ x| tdx =1. (7.13)
T JBy\B

Consequently pl_ B3 = §,,. Let o < %dist(xl, dB3). Then [7, Theorem 3.1(ii)]
yields

1
ligninf <8—2E5(v£; B3) — 27| 10g8|>

—0

e—0

2 liminf (E%Eg(vg; By (x1)) — 2w log %) +2mlogo
2 —C +2nlogo

for some constant C. Combining this lower bound with (7.12) yields that
—C +2mlogo < é}iirz)(y(s, 1) —2x|loge|) + C.

This shows that y > —oo and concludes the proof.

Below we will use a shifted version of y (¢, r;). More precisely, given xg € €2,
set

1
Vxo (€, r) :=min {—2 E¢(v; By(x0)) : v: eZ* N B(xg) — S,
e

v(x) = =50 on BgBr(xo)}.

[x—x0]

As shown in the lemma below the asymptotic behavior does not depend on x.
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Lemma 7.2. Let y € R be given by Lemma 7.1 and let ¢ < re < C. Then it holds
that

lim <ny(8, re) — 2n| 1og£|> =y.

£—0 Te

Proof. Consider apoint x, € £Z such that |xo—x,| < 2&. Then, given a minimizer
v: 87? N By, _4¢ — S! for the problem defining y (¢, r. — 4¢) (extended via the
boundary conditions on 8Zz\Br€,45) we define U(ei) = v(si — x,). This function
is admissible in the definition of y,, (¢, r,). Hence

Vro (&, 7e) — 27T| log f—8|

el &j

1
Sy(e,re —4e) —2m|log &£ |+ — E &2
Svlere ) | grstez (i) leil &)l

£i,8j€Br, 12¢
81s8.1¢Bl‘g—58

The last sum can be bounded applying (7.2) which leads to

1 el gj C
— E ) H < = 2 :
2e — el gjll —r
o) et e/l £ eien?
€1,6] €Brey2e e1€Byg 42e
81,8]%3,5755 gi¢Br575£
C ree + &2
2 e
e = < |Bro+4e\Br,—7¢| = C——5—,
2 2
&€ &

which vanishes due to the assumption that ¢ < r.. Thus we proved that
lim sup (ny(e, re) — 2n| log £ ]) <vy.
£—0 ¢

The reverse inequality for the lim inf can be proven by a similar argument.

7.2. Compactness and I"-convergence

We recall the compactness result and the I'-liminf inequality obtained in [7,
Theorem 4.2]. We emphasize that these results also hold in our setting, regard-
ing u, € PCy(S,) as a spin field u,: €Z> — S', that means, neglecting the S,
constraint.

Theorem 7.3. (Theorem 4.2 in [7]) The following results hold:

(i) (Compactness) Let M € N and let u, : eZ2NQ — S! be such that e%Eg (ug) —
2nM|loge| < C. Then there exists a subsequence (which we do not relabel)

such that py, LN W for some 1 = Z,/:/lzll dpéyx, with ||(2) < M. Moreover, if
|w|(2) = M, then |dy| = 1.

@ii) (T -liminf inequality) Let u,: eZ2 N Q — S! be such that M, —f> u with
w="" dysy, |dn| = 1. Then

e—0

1
lim inf |:8—2E5(u8) — 2 M| 10g£|i| > W) + My.
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For the construction of the recovery sequence our arguments slightly differ
from the proof of [7, Theorem 4.2]. For the reader’s convenience we give here the
detailed proof, which together with Theorem 7.3 establishes Theorem 1.3.

Proposition 7.4. (I'-limsup inequality) Let u = 224: 1 dndy, with |dy| = 1. Then

. . f
there exists a sequence ug: sZPNQ — Se with (v, — [ such that

lim sup [%Eg(ug) —271M|10g8|] < W(w) + My. (7.14)
e—0 L€
Proof. To avoid confusion among infinitesimal sequences, in this proof we denote
by o0, a sequence, which may change from line to line, such that o, — 0 when
e — 0.
Step 1 (Construction of the recovery sequence)

Letus fix 0 < n’ < n < 1 with n small enough such that the balls E,](xh) are
pairwise disjoint and their union is contained in €2. We denote by w” a solution to

the minimum problem (7.4) in QZ Thenforh =1, ..., M there exists (xZ € Cwith
| = 1 such that w" (x) = &) © (Z=2)" for x € 3B, (xp). Extend w' to />

by w(x) := o © (|§:§:|)dh for x € By, (xn)\B,y2(xn). To reduce notation, we

set AZ’ (xp) = By(xp) \Enr (xn). The extension w” then belongs to W1’2(QZ,; sh
and its Dirichlet energy is given by

|Vw’7|2dx—/ [Vw"|? dx + /
L z

f 7o ¥ = x,,|2

= m(n,,u)—i—2anog e (7.15)

Setr, = |log sl_% > gandlet i, : eZ2 N B, (xp) — S! be a function that agrees

with x — aZ 0) (é:g‘l)d}’ on 9, By, (x,) and such that, cf. Lemmata 7.1 and 7.2,

1 ~
3 Belite: By, (xn) = yu, (6. 7e) = 21 log = 4+ y + 0 = 27|loge| + ¥ + ..

(7.16)
We now extend 7, to £Z> N  distinguishing two cases: we set that
~ . i—xy \dn e . o
e (ei) = oy © (=)™ if ei € By (xn) \ By, () ; (7.17)

on eZ? N QZ/ the definition is more involved since w" has only Sobolev regularity
up the (Lipschitz)-boundary and we are not aware of any density results preserving
the traces on part of the boundary and the S'-constraint. First we need to extend
w' to EZZ for some open set Q D Qwith Lipschitz boundary. This can be achieved
via a local reflection as in (3.8), so that we may assume from now on that w" €

Wl’z(ﬁn/; S!). We further extend it to R? with compact support (neglecting the

S! constraint outside QZ / 2). Now let us define the discrete approximation of this
extended w”. Consider the shifted lattice Z} = x + ¢Z? with x € B, and denote
by 1’17;7,,( e WL2(R2: R?) the piecewise affine interpolation of (the quasicontinuous
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representative of) w" on a standard triangulation associated to Z} . As shown in the
proof of [40, Theorem 1] there exists x; € B such that 1’[)2’% — w" strongly in
W12(R?; R?) (the proof is given in the scalar-case, but the argument also works
component-wise; see also [40, Section 3.1]). Thus it is natural to define iz : 72N
Q! — s!by

g (ei) = w] (i + x¢). (7.18)

~
Observe that since w” is defined on QZ/ 2 with values in S', for & small enough 7
is indeed S'-valued. Moreover, the strong convergence of the affine interpolations
ensures that

1 2
DI
g
ci,ejeQ),
< > / |Vl |2dx§/ Vw"|dx 4 e . (7.19)

eT+x, e "

"

Ue(ei) — e(e)) |*
&

T triangle
!
eTNQ, £0

Finally, we define the global sequence u, := P (is): ¢Z> N Q — S, with the
function B, given by (5.11). Note that the piecewise constant maps u. and
actually depend on 1’ and 5. For the computations to following however, we drop
the dependence on these parameters to simplify notation.

We start estimating the error in energy due to the projection ‘B,. To this end,
we use the elementary inequality

lal* = 16> < |a = bl(lal + b)) < 2/blla — bl + |a — bI?, (7.20)
which yields that
LEw )—12 lue(ei) — ue(e))|*
o2 elte) =5 - e e\&]
(i J)
<Lea Q o 2 We(ei) — () 21
S Ee(e) + CIRIS +2) Oc[le(ed) —Te(e)]. (721
(i, J)
We shall prove that S%Eg (1) carries the whole energy, that means,

I
lim sup [8—258(:45) — 27 M| 10g£|] < W(u) + My, (7.22)

e—0

whereas the remainder satisfies

li O |t (i) — g (ej)| = 0. 7.23
g%g o |l (i) — Tie (e))| (7.23)

Inequalities (7.21), (7.22), and (7.23) then yield (7.14) thanks to the assump-
tion (7.1).



The N-Clock Model 1189

In order to prove both (7.22) and (7.23), we estimate separately the contribution

of the energy and that of the remainder in the regions B, (xy), Qn/ ,and (B 1¢(xp) \
B, _¢(xp)). We remark that this decomposition of eZ% N Q takes into account all
the nearest-neighbors interactions.

Step 2 (Estimates close to the singularities)
Let us start with the estimates inside B, (x;). Notice that (7.16) already gives
explicitly the value of 81—2 E.(ig; By,), so we only have to estimate the remainder in
B, (xp,). Combining the Cauchy—Schwarz inequality with (7.16), (7.1), and taking

. _1 .
into account that r, = |log | 2, we obtain that

1 1

2

~ . ~ . ~ . ~ N2
PRCATACHEACH S BN PR ACHERACH]
(i, )) (i,)) (i.])
ei,ej€By, (xp) ei,ej€By, (xp) ei,ej€Br, (xp)

O (1 5
Cro= (5 Eelic: By, ()

[N

N

[IA

0, 1
< Cro—(2n|loge| +y +0:)? > 0 ase — 0.
&

(7.24)
Step 3 (Estimates in the perforated domain)

We go on with the estimates inside QZ,. In this set the function iz is given by (7.18).
In particular, by (7.15) and (7.19),

1 /
—2E8('iig; QZ) < / /|Vw”|2dx + 0. =mn, pu) +2nrMlog L + 0. (7.25)
£ QZ' n

Concerning the remainder, the Cauchy—Schwarz inequality, (7.25), and (7.1) imply
that

PCATACHERACH]

Wi
ei,ejeQ,
1 1
2 2
~ . ~ N
<| > ¢ PR ACHERACH] (7.26)
Wi (W)
ei,ejeQ), ei,ejeQ),
0. s 1 - ' \E
< cl@pr = (S i @)’
& \¢&
Oy 1
< C|Q|%_8(m(n,u)+2anog%+Qs)2 —0 ase — 0.
&

Step 4 (Estimates in the annulus)
Finally, we need to estimate the energy E%Eg in the set (B . (xp) \ Br,—¢(x1)),

where 7 (x) = o] © (ﬂ)d" (or slightly shifted in By (x;)\ B, (x) due to

|x—xp |
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(7.18), for which we recall that w” = &) © (2= )dh in B, (xp)\ By 2(xp)). To

[x—xp o
simplify notation, for R > r > 0 we denote in this step Af (x) := BR(x)\B,(x).
We first estimate the contribution involving the shifted function. For any i, ¢j
with i — j| =l and i € Az/+8 (xp,) the condition |x.| < & and (7.2) imply that

~ o~ de
|e (ei) — e (e))] = —
7 —

Summing these estimate we deduce that

(' +3e)? — (' — 2¢)?

1
= D &l — i)’ =C

RV
(i) (' =)
sieAZ,“(xh)
en + &2
% —> O as & — O
n —e¢
Hence we can write
1 ~  ante 1
5 Bl AL (n) S Eoi A7) + o (7.27)

Note that on the set ¢Z2 N ZZ?E (xp) the function #, coincides with x +—

— d . . .
ozZ © (ljﬁ_i:l) " so that the invariance of the discrete energy under orthogonal

transformations implies that

el — xp &j — xn

| R — 1 )

SElle Ay o)== ), ¢
(i,J;>

si,ejexrs,e(xh)

lei —xu|  lej — xnl

Using a shifted version of the trimmed quadrants defined in (7.10) and summing
over all possible pairs of signs s € {(+, +), (—, +), (+, —), (—, —)}, we can split
the energy as

1
_E (ué‘? re 75(xh))

1 (7.28)

<Z L E Qo) A +C 3 -

=%
where we used the bound (7.2) to estimate the contributions not fully contained in
one of the trimmed quadrants by the last sum. Since the sum Y_;°} k=2 is finite
and ’f — 400, the second term in the right-hand side is infinitesimal as ¢ — 0.
On each trimmed quadrant we use a shifted version of (7.8) and a monotonicity
argument as in (7.11) to deduce that

1 - S
5 Belle; (¢ Q3 + ) N Al o (xn))
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1 1
> fow §/ g &
lei — xp| eQsna” _, x|

. 7n’ re—3e
“EArS—s(xh)

eiesZzﬂ(Q§+x;,)

A

with the annulus A 3. = By \ Br _3¢ centered at 0. Summing over all four
quadrants, since € << re, We get that

1 I
Y S E(e: (eQ% +x) N AL (xa))
&

1 / /
_ n n
< ./:4'7/ de =2mlog ;= 2mlog =+ 0e.
In combination with (7.27) and (7.28) we conclude that
re—&

1 ~ / /
5 Eelile; A7 25 () < 2mlog I+ 0 - (7.29)

A’I"r

We now estimate the remainder termin A, ", (x;,), for which applying the Cauchy—

Schwarz inequality as in (7.24) is too rough. However, note that for any i € Z> and
x €e¢i + [0, 8)2 with |ei — x;,| > ¢, we have for ¢ small enough that

lei —xp| 2 |x —xp] — 26 2 |x_xh|

Hence, using (7.2) and a change of variables we obtain that

~ ~ . e 0, 1
Y Oefiee) (e SC Y be———=C= | —dx
— lei — x| & Jar+ x|
@) azeaZZnAﬁjj xn) re2e

/
. +¢
ez,ejeA:’g_g(xh)

(7.30)

Since the last integral is proportional to n’, inserting assumption (7.1) shows that
the right-hand side of (7.30) is infinitesimal as ¢ — O.

Step 5 (Proof of (7.22) and (7.23) and conclusion) To prove (7.22), we
employ (7.16), (7.25), and (7.29) to split the energy as follows:

1 - 1 - /
— Ee (i) — 27 M| log e < — Ee (U Q) — 27 M log % + 27 Mlogn
e g2

+ Z[ E.(: By, (xp)) — 27 log ’6]

Z[ Ee(Gie: A" (o) — 2 log 1|

S m(n, ) +2rMlogn + My + 0.
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Now we stress the dependence of i, on 1’ and 1, denoting the sequence by i ,
(set for instance ' = n/2). Letting ¢ — 0, for n < 1 we deduce that

1 - ~

lim sup [—2E€(u€,,,) — 2 M| 10g£|] < fi(n, ) — 2 M| logn| + My.
e—0 €

Moreover, (7.23) follows from (7.24), (7.26), and (7.30) splitting the remainder in

the same way. Hence, for each < 1 we found a sequence u, ; € PC¢(S;) such
that

1 5
lim sup [—2158(:48,,,) — 27 M| 10g8|] < fi(n, w) — 2t M|log | + My. (1.31)
e—0 &

Before we conclude via a diagonal argument, we have to identify the flat limit of
the vorticity measure py, . From the above energy estimate and Proposition 2.4

. f
we deduce that, passing to a subsequence, iy, , — iy for some pu, = 212/1:1 d] Syn

with |y |(2) = M (we allow for d,? = 0 to sum up to M). Fix a Lipschitz set A =
A, CC Qsuchthatsupp(u,) C A.Due the logarithmic energy bound we can apply

[6, Proposition 5.2] and deduce that on the set A it holds that = _1Jﬁ€,n = Ku,, —f> 0,
where 1, , denotes the piecewise affine interpolation associated to u,,, (which is
at least defined on A for ¢ small enough). Let now v, , be the function defined
via piecewise affine interpolation of the values ﬁg,n(ei ), i € eZ%2 N Q. We argue
that on A the Jacobian of %, , is close with respect to the flat convergence to the
Jacobian of v, ,, i.e.,

1(@e.y) —1@ey) — 0 on A. (7.32)

To this end, we apply [6, Lemma 3.1] which states that the Jacobians of two func-
tions u and w are close if ||[u — wl2(||Vull;2 + [[Vwl;2) is small. Since by
definition u; ,, = B¢ (Us, ), we know that

le,y (e1) — ite n(e0)] = 0.

Inserting this estimate in the definition of the piecewise affine interpolation one can
show that

[,y (X) — Doy (x)| £ CH, forallx € A. (7.33)

Taking into account the energy bounds (7.31) and (7.22), we conclude that

7.y — Venll L2y (1 Vel L2y + 1Vl 2204))
1

1 1 - 2 1

< CV/ A6 (S_ZEs(us,n; Q)+ ;Es(us,rﬁ Q)) < C/|Albg|loge|2.
(7.34)
The above right hand side vanishes when ¢ — 0, so that [6, Lemma 3.1] implies

(7.32). Hence it suffices to study the limit of the Jacobians of ﬁe,m ‘We show that
the limit carries mass in each ball B, (xj,) for all p > 0 small enough such that
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B, (x;) CC A.Tothisend, we test the flat convergence against the Lipschitz cut-off
function
¢p(x) := min{max{2 (p — [x — xx]), 0}, 1}.

Using the distributional divergence form of the Jacobian and the fact that v,

. L . . o \d
agrees with the piecewise affine interpolation of the map x — o] © (=)™ on
d

the support of the gradient of (pﬁ provided p < n/4 and r; < p/2, we infer that
(s @) = lim (x =110 . )

im — (ﬁs,n)IBZ(ﬁs,n)Z - (ﬁg,n)282(ﬁs,n)l
e—0 27 AZ/z(xh) _(Us,n)lal(vs,n)z + (vs,n)Zal(vs,n)l

=dp,

) Vgoz dx

where the limit can be calculated similarly to (7.13). From this equality and the
arbitrariness of p > 0, we deduce that {x1, ..., xy} C supp(u,) and L {x,} =
dpdy,. Since |,|(2) < M, it follows that u,, = w independently of 1 and the
subsequence of ¢. Since the flat convergence is given by a metric, we can thus use a

diagonal argument with 1 = 7, to find a sequence u, := u, ;, satisfying u,, A "
and, due to (7.31), also the claimed inequality (7.14).
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