NETWORK CALCULUS MADE EASY

JEAN-YVES LE BOUDEC
Laboratoire de Réseaux de Communication

Feole Polytechnique Fédérale de Lausanne (EPFL)
http://lrcwww.epfl.ch

Technical Report EPFL-DI 96/218

December 14, 1996

Abstract

We define general concepts that extend, and simplify, the network calculus developed by
Cruz [1, 2, 3] for guaranteed quality of service networks. We introduce a definition of service
curve, the extended service curve, which is the same for isolated queues and for networks
of queues, and makes it possible to model nodes that otherwise do not fit in the calculus of
Cruz. We introduce two key technical tools, the & and & operators, on arrival and service
curves. We show how their systematic use simplifies the derivation of many fundamental
results. We obtain a simple characterization of the output flow from a shaper. We show
that, if the shaping and the arrival curves are concave (which is the case in practice), then
the output of a shaper is still constrained by the same arrival curve as the input, in addition
to being constrained by the shaper curve. Lastly, we define a general form of deterministic
effective bandwidth that is particularly simple and efficient.

Keywords Guaranteed Quality of Service; ATM; Effective Bandwidth; Arrival Curves;
Service Curves; Queueing Systems; Network Calculus; Max-Plus Algebra

Contents
1 Introduction
2 Background on Arrival and Service Curves According to Cruz

3 Extended Service Curves
3.1 Definition of Extended Service Curveo
3.2 Basic Results on Bounds e

4 Network Calculus

4.1 Network Calculus in Practice e 10

4.2 Arrival Curves, Sub-Additive and Concave Functions 11
4.3 More about the & Operator e 13
4.4 Advanced Results on & and & Operators 14
5 Modelling Guaranteed Quality of Service Nodes 17
6 Shaping Devices 19
7 Deterministic Effective Bandwidth 23
7.1 Effective Bandwidth of a Flow 23
7.2 Tunneling L e 26
8 Conclusion 29
A Appendix 30
A.1 Proof of Proposition 3 L 30

1 Introduction

The support of guaranteed quality of service, as defined for example by the IETF in [16] requires
the computation of the variable part of delay and other bounds for flows served in sequences of
buffers. Fundamental work has been pioneered by Cruz in [1, 2, 3], where general bounds based
on the concepts of arrival and service curves are derived. Other fundamental work for specific or
general scheduling policies is described in [10, 11, 8, 6]. In this paper we define a few concepts
and some notation (the & and & operators) that generalize, and simplify, the work mentioned
above. This enables us to explain known results with simpler, intuitive methods, generalize the
results to more general settings, and discover new results.

We start with an overview of arrival and service curve concepts, as they are defined by Cruz in
[1, 2, 3] (Section 2).

The concept of service curve by Cruz is simple and appealing for a single queue; for a network
of queues, the definition is a little puzzling as it explicitly privileges one buffer. In particular,
a network service curve is not a queue service curve in the sense of Cruz. We propose an
alternative definition, which we call extended service curve; it is obtained from Cruz’s definition
by dropping the condition that requires a queue backlog to be zero. The new definition applies
to a general input-output system, be it a queuing system or not. The definition is the same for
individual queues or network of queues; it extends the applicability of network calculus to nodes
that do not originally fit within Cruz’s framework. The definition is given in Section 3; we show
that the properties obtained by Cruz continue to hold for extended service curves. Indeed, the
proofs are simpler than for the original calculus of Cruz. Our results are based on the use of the

¢ and & operators, two convenient and simple tools to express and discover network calculus
results.

The very simple properties of the operators, listed in Section 4, also enables us to derive a
number of simple calculus rules for service and arrival curves. We also point to the importance
of convexity, concavity, and sub-additiveness for such curves.

We show in Section 5 how a general family of schedulers [16, 6, 14] can be modelled with extended
service curves. In general, such schedulers do not have a service curve in the sense of Cruz.

Then we apply in Section 6 our concepts to the notion of a general shaper. A general shaper,
with shaping curve o, is a system that forces a flow to have an output constrained by o, at the
expense of possibly delaying bits in a buffer. The fundamental result we find is that a general
shaper offers an extended service curve of o, provided that o is sub-additive. We point out that
o is sub-additive as soon as it is concave. This result is the starting point for other new results.
In particular, we define an accurate characterization for the output of a buffered shaper. A
specific example of shaper is the buffered leaky bucket, which corresponds to the case where the
shaping curve is affine, namley of the form o(t) = rt 4+ b. A strong result by Cruz is that, if the
input flow is also constrained by some affine curves, a buffered leaky bucket does not remove
the initial arrival constraints on the flow. Using our formalism, we are able to extend this result
very simply to any arrival curve and any shaping curve, provided that both are concave. In
spite of being much more general, our proof is also considerably simpler (consider for example
the simplicity of the proofs for Theorems 7 and 8).

Lastly, in Section 7, we introduce the general concept of deterministic effective bandwidth, which
was introduced in a narrower context in [17] on pages 270-273. We give a simple, general defini-
tion, and show that it is a convex function of the arrival curve. This enables us to determine that
call acceptance regions based on deterministic delay constraints are convex. This is in contrast
to call acceptance regions based on statistical multiplexing with large deviation asymptotics,
in which case it is the complement in the positive orthant which is convex [5]. Then we apply
the results of Section 6 to the tunneling of several flows into one single, aggregate flow defined
by a peak rate, a sustainable rate and a burst tolerance. We find that, if a deterministic delay
constraint is used, then there is always an optimal peak rate, which is the effective bandwidth
of the arrival traffic.

As a convenience to the reader, we gather here some convention and notation used throughout
the paper.

o Greek, lower case letters other than ¢ denote functions defined on R, with values in

[0, +00].

e For any real number z, 7 denotes max(z,0).

For any R, Ap represents the function defined by Agr(t) = Rt.

In general, we denote arrival curves by «, service curves by 3, and shaping curves by o.
An “arrival”’curve that constrains the output of a system is noted «”.

e R(t) is the arrival function to a system; R*(¢) the departure function.

2 Background on Arrival and Service Curves According to Cruz

We first recall a few definitions. Consider a system &, which we view as a blackbox; § takes
data in and outputs data after a variable delay. Assume every observation starts at time 0; we
call R(t) the arrival function, namely the number of bits seen on the input flow in time interval
[0,t]. We use a continuous time model, so ¢t as well as R(t) are real numbers. We also call R*(t)
the departure function (namely, the arrival function at the output of system). The backlog at
time t is R*(t) — R(t); it is the amount of bits that are held inside the system, assuming we can
observe input and output simultaneously. Similarly, the virtual delay at time t is

dt) =inf {T: T > 0 and R(t) < R*(t+T)} (1)

It is the delay that would be experienced by a bit arriving at time ¢ if all bits received before it are
served beforeit. If the departure function is continuous (no batch departure) then R* (t + d(t)) =
R(t).

The purpose of network calculus is to find computational rules for bounding virtual delays and
backlog for arbitrary systems that represent networks. For that purpose, Cruz introduces the
concepts of arrival and queue service curves, which we recall here.

e Given a wide-sense increasing function «, we say that a flow is constrained by « if and
only if for all s <¢: R(t) — R(s) < a(t — s). Function « is called an arrival curve for flow
r.

A flow controlled by a leaky bucket has an arrival curve of the form a(t) = b+rt. Similarly,
an ATM flow, constrained by the GCRA algorithm with parameters (7', 7) [9] has an arrival
curve o(t) = B + Pt, with P in b/s and B in bits given by: B=7P+ 4, P = % In the
formulas, § is the cell size in bits. A flow conforming to the draft IETF specification for
integrated service [16], with maximum packet size M, peak rate p, sustainable rate r and
burst tolerance b, has an arrival curve defined by a(t) = min(M + pt, b+ rt).

o Let 3 be a wide-sense increasing, non-negative function. Cruz says that the buffer offers
to a flow a queue service curve [if and only if for all time ¢ there exists some ¢ty < ¢ such
that the backlog for the flow in the buffer at time ¢ is zero and R*(t) — R*(to) > p(t —to).

In other words, the flow receives a rate of service at least equal to §(T") during all intervals
[0, T] included in the busy period starting at time 0. Here, a busy period is defined by the
conditions x(s) > 0 or r(s) > 0, where z(s) is the backlog for the flow at time s. We must
have 3(0) = 0 for 3 to be a service curve.

A first result by Cruz is as follows. Consider a data flow constrained by the arrival curve «,
served in a buffer with a queue service curve of 3. The virtual delay d(¢) at any time ¢ satisfies
the following inequality:

d(t) < sgg (inf{7:T > 0and a(t) < f(s+1)}) (2)

Moreover, the backlog x(f) at any time ¢ satisfies the following inequality:

(1) < sup (a(s) - A())
Consider further a flow, with arrival curve, traversing a sequence of buffers 1,...,4,..., I, with

constant propagation delay between buffers, and with each offering a service curve ;. An
important result by Cruz is that the maximum end-to-end delay variation is bounded as in
Equation (2), with

B = inf (Bt ..+ Brltn)) (®)

= 1
ti4..+t=

Cruz defines a network service curve by saying that a series of buffers offers to a flow a network
service curve of f if for all time ¢ there exists some tg < t such that the backlog for the flow
in the first buffer at time ¢ is zero and R*(t) — R(to) > B(t — to). Function S in the equation
above is shown by Cruz to be a network service curve. Note that the network service curve is
not a queue service curve in the sense defined above, as we cannot generally find a time t5 > 0
at which the backlog for the flow in the network is zero. It is this puzzling subtlety that leads
us to an alternative definition, which turns out to be both simpler and more powerful.

Another result by Cruz is that the output of such a network is constrained by arrival curve o™,
given by

" (1) = sup (a(t + v) = B(v) 5)

Equations (2) and (4) are a strong result. Indeed, consider again a sequence of buffers. On one
hand we can compute a bound D on the total delay by using Equations (2) and (4). On the
other hand, we can also compute a bound D; for the variable delay experienced at buffer ¢, using
Equation (5) iteratively to characterize the input flow at buffer ¢. Then, in general, >, B; > B.
Network calculus captures this global network effect.

In the rest of this paper, we generalize the nodes to which network calculus applies. In particular,
we show that the above results remain true even if we add variable delays between buffers that
cannot be modelled as queueing delays.

3 Extended Service Curves
In this section we define our extension to the network calculus of Cruz.

3.1 Definition of Extended Service Curve

We propose to replace the definition of queue or network service curve by Cruz by the following
definition. We use the same notation as in Section 2

Definition 1 (Extended Service Curve) Consider a flow with arrival function R, input to
a bit processing system §. Call R* the output function. We say that S offers to the flow an
extended service curve 3 if and only if for allt > 0, there exists some to > 0, with tg < t, such

that R*(t) — R(to) > B(t — to)

The condition is similar to the queue service curve, or network service curve definition by Cruz,
with the difference that it does not imply any condition on a buffer being empty. We are able to
show and even generalize the results by Cruz without requiring such assumptions, thanks to the
simple properties of the @& and & operators. The resulting calculus not only extends to nodes
for which a service curve in the sense of Cruz does not exist, but is also surprisingly simpler.
We derive the main results for service curves in the rest of this Section and in the following one.

Of course, queue service curves and network service curves are extended service curves, as
recalled in Section 2.

We now introduce the key example of node (variable delay node) that offers an extended service
curve and cannot easily be modelled by the calculus of Cruz. We first define the burst delay
function é7 by

Definition 2 (Burst Delay function) 67(t) =0 if 0 <t < T and o7(t) = +oo if t > T

Proposition 1 (Variable Delay Node) Consider a bit processing system for which we only
know that the maximum delay for any bit of the flow is bounded by a constant T'. This system
offers to the flow an extended service curve of ér.

The proof is straightforward and is left to the reader. Figure 1 illustrates a node that offers ér
as a queue-service-curve, in the sense of Cruz: bits in the buffer are held for a time < 7T, until
the buffer is emptied instantaneously. We see on this example that a variable delay node does
not in general have d7 as a queue-service-curve, but that it does have d7 as an extended service
curve. This latter point is essential, because, as we show later, formulas for delay and output
bounds also apply to extended service curves.

3.2 Basic Results on Bounds

In this Section we generalize Cruz’s results to extended service curves.

Theorem 1 (Backlog Bound) Assume a flow, constrained by arrival curve o, traverses a
system that offers an extended service curve 3. The backlog R*(t) — R(t) for all t satisfies:

R*(t) = R(t) < sup{a(s) — B(s)}

520

bits
A

R*

seconds

»
!

\/

Figure 1: Arrival and Departure Functions for a node offering d7 as a queue-service-curve (left)
or as an extended service curve (right). On the right is also shown the arrival curve shifted by
T to the right. The departure curve is limited by this curve.

Proof: For all ¢ there exists some s such that
R*(t) = R(t - 5) 2 B(s)
Now
R(t) — R(t — s) < afs)
By subtraction, it comes that R*(t) — R(t) < a(s) — 5(s) a

If the system is a single buffer, then the backlog can be interpreted as the instantaneous queue
length. In contrast, if the system is more complex, then the backlog is the number of bits “in
transit”, assuming that we can observe input and output simultaneously. The theorem says that
the backlog is bounded by the vertical deviation between the arrival and service curves.

The next result is best described using the following notation.

Definition 3 (Minus Operator) For two functions v and 74, define v1 © vo by

71O 72(t) = sup {nt+u) — (v} (6)

We can thus re-write the result in Equation (5) by saying that the output flow has an arrival
curve o = aw & 3. This result is also true for extended service curves:

Theorem 2 (Output Characterization) Assume a flow, constrained by arrival curve «, tra-
verses a system that offers an extended service curve of 3. The output flow is constrained by the
arrival curve o = a O .

Proof: With the same notation as above, consider R*(t) — R*(t — s), for 0 <t —s <t. By
definition of the extended service curve, item 1, applied at time ¢ — s, there exists some u > 0
such that 0 <t — s — u and

R*(t—s)— R(t—s—u) > p(u)

Thus
R*(t)— R*(t—s) < R*(t) — f(u) — R(t — s — u)

Now R*(t) < R(t), therefore
R(t) = R*(t = s) < R(t) = R(t = s —u) = f(u) < (s +u) = f(u)
and the latter term is bounded by (o & §)(s) by definition of the & operator. O

It is convenient to introduce the following notation.

Definition 4 (Horizontal Deviation h) For two wide-sense increasing functions a and 3,
call h(a,) the horizontal deviation between the two curves, namely

h(e, B) = sup (inf {7 : T >0 and o(s) < B(s+T1)}) (7)

The definition is a little complex, but is supported by the following intuition. If « and 3
are continuous, strictly increasing,then for all ¢ there exists at most one number d(¢) such
that a(t) = f(t + d(t)). If there is no such number then we let d(t) = +o0o0. In this case,
h(a, B) = sup, d(t).

In other words, h(«, 3) is nothing else than the formula used for computing the maximum delay
in Equation (2), which can now be re-written as: d(t) < h(a, 3), with d(¢) the virtual delay at
time ¢, o the arrival curve, and 3 the queue or network service curve in the sense of Cruz. This
result still remains if we consider extended service curves. Indeed:

Theorem 3 (Delay Bound) Assume a flow, constrained by arrival curve «, traverses a sys-
tem that offers an extended service curve of 3. The wvirtual delay d(t) for all t satisfies:
d(t) < h(e,).

Proof: For some fixed ¢ > 0, call d the virtual delay at time ¢, written as d(¢) in Equation
(1). We can assume d > 0 otherwise the proof is trivial. By definition of d, for all € > 0, with
€ < d we have

R*(t+d—¢) < R(t)
By the extended service curve property at time t 4+ d — ¢, there exists some tg > 0 such that
R (t+d—¢)— R(to) > Bt +d — € — to)

This implies that ty <t¢. Now
R(t) - R(to) S Oé(t — to)

Combining the three inequations gives
Blt+d—e—ty) < alt —to)
This proves that d — € < h(a,) for all 0 < e < d. O

Finally, the last basic result requires the following definition.

Definition 5 (Min-Plus convolution) For two functions v, and 74, define v1 & v, by

M @7a(l) = inf {n(w) +72(t —w)} (8)

u such that 0<u<t

We see that the network-service curve mentioned in Section 2 is the Min-Plus convolution of
the service curves offered by the buffers. In all practical cases that we will meet, the inf is a
min, which explains the name we choose for the @ operator. The concatenation result by Cruz
is also true for extended service curves:

Theorem 4 (Concatenation of Nodes) Assume a flow traverses systems Sy and Sz in se-
quence. Assume that S; offers an extended service curve of B;, ¢ = 1,2 to the flow. Then the
concatenation of the two systems offers an extended service curve of 31 & Bo to the flow.

Proof: Call R the arrival function, Ry the output function from &; (thus R; is the arrival
function to system S3) and R* the final output function. Consider some ¢ > 0. There exists
some u > 0 with 0 <t — u and

RA(t) = Ra(t =) > fa(w)
Similarly, there exists some v > 0 with 0 <{¢ — u — v and
Ri(t —u)— R(t—u—v) > B1(v)
Thus, by summation:

R*(t) = R(t —u —v) > Ba(u) + B1(v) > (B1 & B2) (u+v)

g

We have thus shown that the basic results recalled in Section 2 are valid also for extended
service curves. The bounding results mentioned in Section 2 are thus still valid if we add
random, bounded delays between the queues. Such delays are accounted for by introducing 7
functions in the service curves. As a consequence of the commutativity of &, such delays can
be inserted in any order along a sequence of buffers, without altering the delay bounds.

In the rest of the paper we derive new or more general results, using the properties of the @ and
© operators.

4 Network Calculus

In this Section we review the basic or more advanced properties of the & and ¢ operators, which
we claim to be the basics of network calculus. We start by illustrating how simple results can
be obtained with little effort.

4.1 Network Calculus in Practice

The following holds for the Min-Plus convolution.

Rule 1: & is associative and commutative, so for example (v1 & v2) B3 =71 D (2B 73) =
Y1 D v2 D3

Rule 2: If If 41(0) = 72(0) = 0 then 71 & 72 < min(y1,v2). If 71 and ;2 are concave (namely
if —y1 and —v; are convex) then vy; & v2 = min(y1, 72).

Rule 3: If v, and =5 are convex and piecewise linear, then ~; @ 7, is obtained by putting
end-to-end the different linear pieces of the individual service curves, sorted by increasing
slopes [4].

The proof of the above points is easy. For example, for rule 2, we use the fact that 3 + 75 is
concave, and thus has a minimum on [0, 7] at either 0 or ¢.

The IETF uses a generic service curve model; it assumes that every node offers a service of the
form

B(1) = R(t - T)* (9)

for some delay T and rate R. We call such a service curve the “IETF service curve model”.
We show in Section 5 that there are a number of scheduling policies that offer such extended
service curves. In [16], it is further assumed that the delay parameter T" depends on the rate R
according to T = % + D for some constants C' and D.

The extended service curve in Equation 9 is convex, therefore we can apply rule 3. Thus,
the concatenation of nodes that offer an extended service curve of §;(t) = R;(t — T;)" offers
an extended service curve (3 of the same form, given by 3(t) = R(t — T)*, with T = >, T;
and R = min; R;. As an application, the maximum delay for a flow conforming to the IETF
specification for integrated service, with maximum packet size M, peak rate p, sustainable rate
r and burst tolerance b, is obtained by computing h(«,), with a(t) = min(M + pt,b+rt). This
gives [16]:

d(t) <

b—M (p- R) M
—+T
R (p —-r + R +
Consider now another example: a series of nodes guarantee a service defined by 5;(t) = (rit +
bi)1ts0y (thus 3;(t) = 0if t = 0, as is required for a service curve). By application of rule 2, the
concatenation of these nodes offers the service curve §(t) = min;(r;t +b;)14>0y. Such nodes are
leaky bucket regulators with unlimited output peak rates (Section 6).

If we want to compute the min-plus convolution for a mix of functions which is neither all-
concave nor all-convex, then it may be useful to use some decompositions in order to apply rules
2 and 3.

As an illustration of how this calculus can simplify some computations, consider the service
curve 3 at the concatenation of two nodes offering the following service curves: at node 1,

10

Bi(t) = R(t—T)*; at node 2, B5(t) = (rt +b)1 450y Note that (a @ dr)(t) = a(t — T) 1>y for

any wide-sense increasing function a. We can now decompose 31 as:

B1 =901 F AR

and thus
= (67D AR) ® B2 =1 D (AR D B2)

Now by rule 2
AR @ fa(t) = min(Rt, rt +b)

and thus
B(t)=min[R(t —T),r(t=T)+b] LTy

In practice, we use network calculus to compute bounds on delay variation and backlogs. Con-
stant propagation delays between systems can be ignored for the computation of delay bounds,
as they simply transform an input function into the functions translated in time by a fixed
amount. Variable delays can be modelled simply by the addition of §r functions to the service
curves. For the computation of the backlog inside a system &, constant delays inside § cannot
be ignored and should be modelled with a d7 extended service curve.

4.2 Arrival Curves, Sub-Additive and Concave Functions

We now obtain general results about arrival curves. These will be useful in Section 6.

In general, we do not expect an arrival curve to be convex. Indeed, it is easy to see that if oy
and a9 are two arrival curves for the same flow, then so is @y @ as. Assume now that an arrival
curve « is convex and piecewise linear; then o @ «v is also an arrival curve, and by iterating, we
see that an arrival curve for the same flow is given by &(t) = rot, where rg is the slope of a at
t = 0+ ¢, for € small enough. This example illustrates that any arrival curve is not necessarily
very meaningful.

In general, it makes sense for an arrival curve to be sub-additive:
Definition 6 We say that function « is sub-additive when a(s+t) < a(s)+a(t) for all s,t > 0.

Note that for functions « such that a(0) = 0, being sub-additive is equivalent to the condition
o @ a = a. We have the following result.

Proposition 2 (Transformation of Arrival Curve into Sub-Additive Arrival Curve)
Consider a flow constrained by an arrival curve «. Then there exists an arrival curve & < «
that also constrains the flow and is sub-additive.

11

Proof: The proof consists in constructing the arrival curve a. It follows from the discussion
above that o @ ...® a = a®” is also a service curve, and so is

@ = min o®" (10)
n>1

(We used the convention a®' = &) Since a®” < a® for i < n, note that a®" = ming <<, o’
and thus @(t) = lim,— 40 @®"(t). We now show that & is sub-additive. For all s,¢ > 0, and for
all € > 0 there exist some decompositions s; + ...+ s; = s and t; +...4¢; =t such that

a(s)+a(t) > a(s1)+ ...+ als) +alty) +...+alt;) —¢
Thus, by definition of a:
a(s)+a(t)>a(si+...+s+t1+...+t;) —e=a(s+1t) —¢

and this is true for arbitrary small values of e. O

Note that we know explicitly from Equation 10 how to transform the arrival curve « into a
sub-additive arrival curve @. Note also that if « is sub-additive, then & = a.

We should thus restrict our choice of arrival curves to sub-additive functions. A simple inspection
of the arrival curve may be sufficient. Indeed:

Proposition 3 Any concave function ¢ defined on R such that $(0) = 0 is sub-additive.

The proof is given in appendix.

Note that any affine function is concave, and so is the minimum of any number of concave
functions. Thus the arrival curves we have seen in Section 2 are all concave

Sub-additivity is a condition for the theorems in Section 6 to hold. In practice, we will consider
concave arrival curves. Note however that there are arrival curves that are sub-additive and not
concave (build an example by considering an on-off pattern).

Lastly, assume we wish to determine an arrival curve from an observed arrival function R(t);>o.
The solution is simple:

Proposition 4 (Minimum Arrival Curve) Consider a flow given by its arrival function R(t);>o.

Then

e the function RS R is an arrival curve for the flow
o RS R is sub-additive

e for any arrival curve « that constrains the flow, we have: (RS R) < «

12

The proof is straightforward and left to the reader. Remember that the arrival curve R & R
defined in the proposition is given by

(Re R)(t) = sggR(t +v) — R(v)

The proposition says that any flow has one minimum arrival curve. It is typically the arrival
curve we could compute based on measurements of the arrival flow.

4.3 More about the © Operator

The following rules apply to any general functions. We use the notation 7; < 72 with the
meaning : for all t > 0, v1(t) < y2(t).

Rule 4 If oy < g, thenforall 3: o168 < a8 f. If 81 < fy,thenforall a: a5 f; > oS fy
Rule 5 Function « is sub-additive if and only if « © a < «

Rule 6 (71 &72) ©7v3 =71 © (2 @ 73) for all functions 71, 72 and 73

Proof: We give only the proof for rule 6. The other proofs are simple and left to the reader.
For a fixed value of ¢, let A = [(71 S 72) ©73](t) and B = [v1 & (72 v3)](t). We show first that
A> B. Forall s>0and all 0 <u <s we have

Ayt +u) —y3(u)
where v = v1 & 5. Similarly, by definition of &:
) 2t uts —u) — (s - w)
Putting the two formulas together gives
vo(s —u) +y3(u) <nlt+s) - A
Since this is true for all 0 < u < s, we have
(2@ 73)(s) <mlt+s)— A

The above is true for all s, which shows that B < A.

Conversely, for all € > 0 there is some v such that
A+ v) - 95(0) + €
There is also some u such that

Y+ v) <t +v+u) —y(u) +e

13

Thus

ALyt + v+ u) —y2(u) —v3(v) + 26 <yt +ov+u) — (v2 D vy3)(u+ v) + 2¢

Thus A < B + 2¢ for all ¢ > 0, thus A < B. O

Consider Theorem 4 again and assume the input flow to system &y is constrained by «. From
Theorem 2 we can conclude that the output of system Sy is constrained by a & (51 & 82). On
the other hand, by recursive application of Theorem 2, it is also constrained by (o & 51) & f2.
Rule 6 tells us that the two constraints are the same.

As an example of application, consider the output a system with offering the IETF service curve
model 8 = 7 B Ar as an extended service curve. Assume the input is constrained by «. Then
the output is constrained by a* = a & (Ar @ ér) = (« S Ar) © d7. Note that

(v©or)(t) =~ +T)

for all v (shift to the left).

The computation of @ © AR is easy if « is concave. Indeed, in such a case, define ty as
to =inf{t > 0:d'(t) < R}

where o' is the right-handside derivative, and assume that ty < 4+o00. Then by studying the
variations of the function v — «(t + u) — Ru we find that (o & Ag)(s) = a(s) if s > to, and
(& AR)(s) = alto) + (s — to) R if s < to.

Putting the pieces all together we see that the output function o* is obtained from « by

e replacing « on [0,] by the linear function with slope R which has the same value as «
for t = tg, keeping the same values as a on [tg, +00],

e and shifting by 7" to the left.

Figure 2 illustrates the operation. Note that the two operations can be performed in any order
since & is commutative.

4.4 Advanced Results on © and & Operators

In this Section we conclude the study of the & and & operators by giving advanced results that
are easy to understand, but will still make it possible to derive powerful results in the next
Section.

Proposition 5 Let o be wide-sense increasing and sub-additive, with «(0) = 0. Then for any

function p: h(a,a @& 8) = h(a, 5)

We will also use Proposition 5 under the following form.

14

i departure curve
bits slope =R P

arrival
curve

time

-T t0-T

Figure 2: Derivation of output curve for a node offering the IETF service curve model §(t) =

Rt —-T)"

Corollary 1 Let o and o be wide-sense increasing and sub-additive, with a(0) = o(0) = 0.
Assume a < o. Then for any function 3: h(a,o & 3) = h(a, 5)

We can interpret this proposition and its corollary as follows. If we let a flow be served through a
series of two buffers, with the first buffer offering a service curve at least equal to the arrival curve,
then the delay bound computed from Theorem 3 is the same as if the first buffer were omitted.
Indeed, the flow experiences no delay in the first buffer. Note that the latter interpretation
cannot serve as a proof because the bound in Theorem 3 might be pessimistic in some cases.

Proof: The horizontal deviation h(«,) is defined by h(a, 3) = sup;»q d(t), with
dit)y=inf{T' >0:a(t) <pt+T)}

Define similarly

d'(t) =inf{T 2 0:at) < (a@B)(t+T1)}
First note that if we increase the function 3, then h(«, §) may only decrease, in other words:
Rule 7 If 31 < 3 then h(w, 1) > h(a, f2)

Now a & # < 3 since a(0) = 0. This proves that h(a, o) > h(e, 3).

Conversely, the horizontal deviation h(a, 3) is defined by h(a,) = sup,»q d(t), with
dit)y=inf{T' >0:a(t) <pt+T)}

Define similarly

d'(t)=inf{T > 0:at) < (a®f)(t+T)}

15

For all € > 0, with e < t 4+ d'(t):
(@@)+ d(t) —) < afl)
Thus, there exists some u such that 0 < u <t+ d'(t) — € and
a(w) + Bt + (1) - u—) < aft (1)
Now u <t otherwise a(u) > «(t). Let v =t — u; thus v > 0 and by sub-additivity of «,
a(t) < a(u) + o(v)
We can rewrite Equation (11) as
a(u) + Bv+d'(t) —¢) < aft)
Putting together the last two inequations gives
Blo+d(0) - ¢) < alv)
This proves that
d'(t) — e < d(v)
and thus
d'(t) — e < h(a,)
for all €, thus d'(t) < A. This is true for all ¢, thus we have proven that h(a,a @ 3) < h(«, 3).0

The proof of the corollary derives immediately from the theorem and from Rule 7.

We also have:

Proposition 6 Let v; be sub-additive, with v1(0) = 0. Then for any function vz, the following
holds:

if vi <2 theny1 © v <

Proof: Since v > 71 we have y1672 < 71571 (Rule 4). Now if 74 is sub-additive, y1671 < 1
(Rule 5). O

The proposition can be interpreted as follows. If we let a flow be served through a buffer that
offers a service curve larger than the arrival curve, then the output flow is still constrained by
the initial arrival curve. Indeed, the flow experiences no delay in the buffer .

16

5 Modelling Guaranteed Quality of Service Nodes

In Section 4, Equation (9), we have mentioned the common node model used by IETF. In this
Section we show that this model can be used for a very large class of schedulers, even though
such schedulers do not offer a queue-service-curve in the sense of Cruz. Of course, such nodes
do offer an exztended service curve of the type in Equation (9).

A number of scheduling policies has been proposed in the literature (see for example [10, 6, 7,
13, 14]). Consider the general form of scheduling proposed in [14] under the name of Guaranteed
Rate (GR) scheduling. It is shown in [14] that Guaranteed Rate scheduling includes as particular
cases: virtual clock scheduling [13], packet by packet generalized processor sharing [10] and self-
clocked fair queuing [7].

Following [14], we say that a scheduling policy is of the guaranteed rate type, with rate R and
delay v for a given flow if it guarantees that packet j of the flow is served at time GC'R(j) + v,
with GRC(0) = 0 and

GRC(j):maX{A(j),GRC(j—1)}—|—% (12)

In the formula, [(j) is the length in bits of packet j and A(j) is the arrival time of packet j.

Theorem 5 (Modelling GR Nodes) A node with guaranteed rate scheduling policy offers an
extended service curve defined by

In other words, 3 =Ar B oL .
R

Proof: Call D() the departure time for the last bit of packet ¢. If sup; D(7) is finite, then if
t > sup; D(¢) then R(t) = R*(t) since any packet is guaranteed to leave the system after a finite
time. The extended service curve property is trivially true in that case. We can thus assume
now that there is a packet index j such that D(j — 1) <¢ < D(j). Thus

R*(t) = Z 1(4) (13)
Define

ip = max{7 such that 1 <¢ < jand GRC(i—1) < A(¢)}

Figure 3 illustrates a case with j = 2 and ig = 1. We first consider the case where A(ig) <

DG - 1).

17

A Dbits
R(t)
1(3)
R*(t)
@) o _i
(1) : . : : | seconds

A1) A(I2) A®3) GI-RC(l) D(1) GRC(Z)‘ D(2)

Figure 3: Arrival and Departure functions for GR scheduling

Now G'RC (ip) = A(io) + ﬁ%ol and for all 7 such that ig < ¢ < j we have GRC(i) = GRC(i —
1)+ %%l, thus

GRC(j) = Alio) + %) (14)

1=1g
Define to = A(ip) — €, where € is small enough for t + ¢ < D(j) and A(ig) — € > A(ip — 1). We
have:

t9—1

R(to) = Z: L(7) (15)

and

t—to < D(j) — A(ig) < GRC(j) + v — Alip)
and from Equation (14), it comes that

7—1

1 1 .
t—togv—l—EZl(z)gv—l—l—l—EZl(z)

=19 1=1g
Thus, by definition of 3,
-1
Bt —to) < 3 100) = B (1) - Rito)
1=1g
From Equations (13) and (15), the last term in the formula above is precisely R*(t) — R(to)
which proves the extended service curve property in the case where A(ig) < D(j — 1).

Now if A(ig) > D(j — 1) then necessarily io = j. If ¢ > A(4), then the above reasoning applies
and shows the extended service curve property. Otherwise, D(ig — 1) <t < A(%g), the queue is
empty at ¢t and the extended service curve property is true with ¢y = ¢. O

18

If the delay parameter v is equal to 0, then we can show that the queue is empty at time ¢g,
and, in that case, the extended service curve is also a queue service curve in the sense of Cruz.
Otherwise, namely if v > 0, it is easy to build an example where the queue is not empty at time
to and the service curve property in the sense of Cruz is not true.

There are other forms of scheduling that do not belong to the GR type, for example, delay based
schedulers [18]. Such schedulers can easily be shown to offer an extended service curve of ér
for some T. Such schedulers are usually associated with a shaper. In Section 6, we will show
that such a combined system offers an extended service curve of 7 & o, where o is the shaping
curve. In general, these systems do not offer a service curve in the sense of Cruz.

6 Shaping Devices

In this Section we apply the calculus introduced in the previous section to shaping and policing
devices. We introduce the concept of policer that generalizes the leaky bucket controllers [17]
and re-shapers [16].

Definition 7 Consider a wide sense increasing function o. We call policer a bit processing
device such that, for any arbitrary input flow, we have:

e the output function has o as arrival curve;

o if the input flow has o as arrival curve, then the shaper is transparent to the flow.

The second condition can be formalized as follows: call R the arrival function for a given,
arbitrary flow, and R* the output function; then R(t) = R*(t) for all . We say that o is a
shaping curve. It is easy to verify that leaky bucket controllers are policers with a shaping curve

of the form o(t) = (rt + 0) 150

A policer may exist in a variety of forms, since the definition does not specify what happens
to input flows that are do not have ¢ as arrival curve. However, in all cases, a policer has the
following feature. We consider only systems for which there is a minimum time granularity dt.
For an ATM system, this corresponds to the sending of one cell, for other systems, it may be
the bit processing time. During a time interval [¢, ¢+ dt], the policer counts all bits that arrived
since the beginning of the connection, over all possible windows of length « > 0, and checks that
there are not more than o(u) bits. The number of bits dR* allowed at the output, for a given
number of input bits dR is thus

dR* = min {dR7 Zn;g [o(t+dt,t —u) — R*(t) — R*(t — u)]} (16)

A simple policer declares as non conformant a number of bits equal to dR* — dR whenever
dR > dR*. We call shaper a buffered policer, namely a friendly policer that puts into a buffer all
bits in excess (i.e. dR* — dR bits whenever dR > dR*). It is outside the scope of this paper to

19

study how to build shapers (see for example [10, 6, 14]). Real shaping systems may delay packets
for a time longer than the granularity dt¢; such systems are modelled by the concatenation of a
shaper as described here, and a delay node with service curve é7 for some 7',

The main result of this section is the following.

Theorem 6 (Service Curve offered by a General Shaper) Consider a shaper with shap-
ing curve o, namely a device that serves bits at the maximum instant rate such that the output
has o as arrival curve, and otherwise keeps the bits in a buffer. Assume that o is sub-additive
and 0(0) = 0. This system offers to the flow a service curve equal to o.

Proof: In order to simplify the notation, we take the time granularity dt as time unit in this
proof. Define the following

1. x(t) is the buffer occupancy at the end of time slot ¢; by convention, we define 2(0) = 0.
2. R*]u,t] is the number of bits transmitted during time slots u + 1,... ,t.

3. o(j) is the maximum number of bits that may come out during j consecutive time slots.
In particular, o(0) = 0.

We now show by induction on ¢ that there exists some s > 0 such that z(t —s) = 0 and
R*Jt — s,t] = o(s). This will imply that the shaper has ¢ as a queue-service-curve in the sense
of Cruz, and thus as an extended service curve as well. Note that we are not actually showing a
stronger result since, for a shaper with shaping curve o, having ¢ as an extended service curve
necessarily implies that o is also a queue service curve.

The induction property is trivial if z(¢) = 0 (take s = 0) and thus is true for ¢t = 1.

Assume now that the induction property holds for 1,...t — 1. Call M (¢) the credit available at
time slot ¢, namely M (t) = min,>; {o(u) — R*]t — u, t]}.

If M(t) > R*]t —1,t] then 2(t) = 0), otherwise we would have served more bits during time slot
t. The induction property at ¢ is then trivially true in that case. Otherwise, call «* the mazimum
w such that 1 <wu <t and o(u) = R*]t — u,t]. We now need to show that z(t — v*) = 0. Apply
the induction property at time ¢t — u*. There exists some s > 0 such that z(t — u* —s) = 0 and
R*|t —u* — s,t — u*] = o(s). Since o is sub-additive, we have

o(s)+o(u*) > o(s+u")

It follows that
Rt —u" —s,t]=0o(s) +o(u”) > o(s+ u”)

and since the shaper is a policer, we have

Rt —u" — s, t] <o(s+u")

20

which shows that we have equality in the last inequation. From the definition of u*, it follows
that s = 0, which proves that z(t — u*) = 0. a

Remember from Section 4.2 that it is not a restriction to assume that ¢ is sub-additive, and
that a sufficient condition for ¢ to be sub-additive is that it is concave. Also, the condition
o(0) = 0 is not a restriction either, and we can always enforce it since we do not require o to
be continuous. Note that the converse of Theorem 6 is not true: offering a service curve of 3 is
not sufficient to guarantee that the output is constrained by 3, even if 3 is sub-additive.

The above result is key. It enables us to apply simple calculus rules from the previous Section.
As an example, consider the issue of the buffer size required at a re-shaper. Re-shaping may
be needed because the output of a buffer normally does not conform any more with the traffic
contract specified at the input. Specifically, with the model in [16], a flow with arrival curve
o(t) = min(pt + M,rt + b) traverses a sequence of nodes, that offer a network service curve
B(t) = R(t — T)T. A reshaper is placed after the sequence of nodes. From Theorem 1, the
buffer requirement at the re-shaper is bounded by the vertical deviation between the shaping
curve and the arrival curve of the flow when it reaches the buffer. The latter is given by Theorem
2. We can then easily find, as in [16], that the buffer requirement is bounded by B with

if bp__]\f <T then b+ Tr
B= ifbp__]\fZTandp>R thenM—I—(b_]\g)_#—l—TR
else M +Tp

Let us now consider an application to a more general result. When re-shapers are introduced
along a path, they act as additional buffers, that could increase the end-to-end delay. However,
we can derive easily that they “come for free”.

Proposition 7 (Shaping does not increase the delay bound) Assume a flow, constrained
by arrival curve «, is input to networks Sy and Sy in sequence. Assume a shaper, with curve
o is added between §1 and S3. Assume that o is sub-additive. Then the delay bound given by
Theorem 3 for the system without shaper is also valid for the system with shaper.

The proof is now simple. Call 3; the extended service curve of network §;. The delay bound for
the system with shaper is h(a, /1 & o @ F3) which, by associativity and commutativity, is also
equal to h(a,a® 1 & B2) = h(w, B1 & P2) from Proposition 5. O

A restricted form of Proposition 7 is found in [16], [6] or [3], where only leaky buckets are
considered. We have here a more general, and simpler result. We will see in Section 7 that
shapers are not limited to be simple leaky buckets.

As a further illustration for the power of the concepts introduced in Section 4, consider a less
restrictive re-shaper [16] that is associated with a curve of the form

o(t) = min[Rt, rt + b] (17)

Such a shaper is often called buffered leaky bucket. It enforces both a peak rate R and a
sustainable rate r with burstiness parameter b. Consider now a series of nodes, and introduce

21

such a shaper on a flow with maximum packet size M, peak rate p, sustainable rate r and
burst tolerance b. With the same notation as in Proposition 7, the delay bound computed from
Equation (2) is d' = h(a, 1 & 0 & f3), with o given by Equation (17) and a(t) = min(M +
pt, b+ rt). From Section 4, 0 = Ap & (pt + b);, where we note (pt + b); the function ¢ — pt + b.
Thus

d' = e, (pt+b): © 1 B AR D B2) = h(a, b1 & Ar & f2)

since «(t) < pt + b and by application of Corollary 1. Assume as in [16] that all buffers along
the path guarantee a service curve of the form ¢;(t) = R;(t — T;)* (so that 8 and S, also have
a similar form). Then, by application of Rule 3:

BLBARD B2 = B1 D B2

as soon as at least one of the nodes has a rate R; > K. We have thus just shown, without
much computation, that a re-shaper of the form described in Equation (17) does not increase
the delay bound, as long as R is as large as the minimum of the rates allocated to the flow along
the path; this result is quoted in [16].

Let us apply now our calculus to a characterization of the output flow from a shaper. Of course,
the output is constrained by the shaping curve. However, the fact that the shaper also offers its
shaping curve as a service curve implies a much stronger result. Indeed:

Theorem 7 (Shaper Output Flow) Assume a flow with arrival curve « is input to a shaper
with shaping curve o. The output flow is constrained by the arrival curve

o = [min(a,0)] &0

Proof: For some arbitrary s and ¢, consider R*(t) — R*(t — s), namely the number of bits
output during time interval [t — s,¢]. By Theorem 6, there exists some u such that

R(t—s)—R(t—s—u) > o(u) (18)
Now by definition of a shaper,
R(t)—R*(t—s—u) <o(s+ u)
Since R* < R, this gives
R*(t)— R*(t—s) <o(s+u)—o(u) (19)
On the other hand, from Equation (18) we also have

R (t)—R*(t—s) <R (t)—R(t—s—u)—o(u) <R(t) — R(t — s —u) — o(u)

22

Now the input during time interval [t — s — u,] is bounded by a(s + u). We have thus:
R*(t)— R*(t —s) <a(s+u) —o(u)
Putting the last equation together with Equation (19) gives

R*(t) — R*(t — s) < minfo(s+ u), a(s + u)] — o(u) (20)

The proposition now follows from Equation (20) and the definition of the & operator. (|

This characterization of the output flow seems to be quite accurate. Indeed, we are able to
derive from it the following important result.

Theorem 8 (Shaping Conserves Arrival Constraints) Assume a flow with arrival curve
« is input to a shaper with shaping curve 0. Assume o and o are concave, with «(0) = o(0).
Then the output flow is still constrained by the original arrival curve «.

Note that the output flow is necessarily constrained by the shaping curve. The theorem states
that any constraint on the input flow, enforced upstream of the shaper, is not undone by the
shaper. The theorem generalizes a result by Cruz ([3], Section VI) which is obtained, after long
derivations, in the specific case of leaky buckets and linear arrival curves.

Proof: From Theorem 7, the output is constrained by
o = ([min(a, 0)] & o)

We have assumed that ¢ and « are concave, therefore, min(e, o) is concave (as minimum of
concave functions) and thus sub-additive. The result now derives from Proposition 6 applied to
v1 = min(e, o) and v = 0. 0

7 Deterministic Effective Bandwidth

In this Section we show how the concept of effective bandwidth can be defined simply in a
deterministic context; we also illustrate an application of Theorem 6.

7.1 Effective Bandwidth of a Flow

We start by considering a trunk system that serves a flow in a work conserving manner, at a
constant rate C'. We assume the arrival flow is constrained by an arrival curve o and would
like to characterize the minimum value of C' that is required for a given «. This problem has
been studied in [17], pp 270-273, in the specific case of a flow constrained by one leaky bucket.
The authors in [17] find that, if we impose a fixed delay constraint D to the flow, then the
condition on ' is that C' > Cp, where C'p depends on the leaky bucket parameters and the
delay constraint. Cp is called the (deterministic) effective bandwidth of the flow, for a delay

23

constraint of D. If N identical flows are superimposed, the effective bandwidth of the aggregate
flow is NCp; in contrast, for a heterogeneous mix of flows, there is no such additive property.

We show now how these results derive from a more general concept. Back to the general case,
for a given arrival curve «, we wish to find a rate C' such that the horizontal deviation h(a, A¢)
is not more than D. This is equivalent to requiring that a(s) < C'(s+ D) for all s > 0, which

in turn can be expressed as C' > sup,sq %_%. We have thus shown the following:

Proposition 8 (Effective Bandwidth) The queue with constant rate C' guarantees a delay
bound of D to a flow with arrival curve o if C' > ep(«), with

ep(a) = sup Saf;) (21)

We call ep(a) the effective bit rate, or deterministic effective bandwidth corresponding to the
arrival curve a, for a delay constraint D. If « is differentiable, (D) is the slope of the tangent

to the arrival curve, drawn from the time axis at t = —D (Figure 4).

: slope = effective . slope = equivalent
bits | bandwidth bits capacity

arrival arrival

curve curve

B]
time
-D

Figure 4: Effective Bandwidth for a delay constraint D and Equivalent Capacity for a buffer
size B

We define the sustainable rate m as m = lim sup,_,, ﬂsﬁ and the peak rate by p = sup,sq afs)

p
Then m < ep(a) < p for all D. Moreover, if a is concave, then limp_ 4 ep(a) = m.

For example, for a flow constrained according to the IETF specification, with maximum packet
size M, peak rate p, sustainable rate r and burst tolerance b, the effective bandwidth is the
maximum of r and the slopes of lines (QQ4p) and (Q A1) on Figure 5; it is thus equal to:

M 1 D% 929
€p = max 577‘7]) - $—|—D ()

with z =
p—r

24

bits
A

Figure 5: Effective Bandwidth for an arrival curve according to the IETF specification

It follows also directly from the definition in (21) that

€D(Z a;) < Z ep(;)

K3

In other words, the effective bandwidth for an aggregate flow is less than or equal to the sum
of effective bandwidths. If the flows have all identical arrival curve, then the aggregate effective
bandwidth is simply I x ep(cv). 1t is this latter relation which is the origin of the term “effective
bandwidth”. The difference 3, ep(a;) — ep(>"; o) is a buffering gain; it tells us how much
capacity is saved by sharing a buffer between the flows.

In more general terms, the effective bandwidth is a convex function of function «, namely
ep(aay + (1 — a)ag) < aep(aq) + (1 — a)ep(az). This means also that the acceptance region
is convex, for a call acceptance criterion based solely on a delay bound and zero data loss.
This contrasts with acceptance regions based on statistical multiplexing with large deviation
asymptotics. In such cases, it is the complement in the positive orthant which is convex [5].

Similar results hold if we replace delay constraints by the requirement that a fixed buffer size is
not exceeded. Indeed, the queue with constant rate C', guarantees a maximum backlog of B (in
bits) for a flow with arrival curve o if C' > fp(«), with

f5(a) = sup a(s) — B
520 s

(23)

We call fp(«a) the equivalent capacity, by analogy to the work in [12]. Similar to effective
bandwidth, the equivalent capacity of a heterogeneous mix of flows is less than or equal to
the sum of equivalent capacities of the flows, provided that the buffers are also added up; in
other words, fr(a) < 3, fB, (o), with a = Y, oy and B = 3, B;. Figure 4 gives a graphical
interpretation.

Note that formulas (21) or (23), or both, can be used to estimate the capacity required for a
flow, based on a measured arrival curve (for example as in Proposition 4).

25

7.2 Tunneling

We show now how the network calculus presented in this paper can be used to estimate the
resources required in a tunneling scenario. Tunneling refers to the multiplexing of several flows
into a larger flow, which is handled in subsequent nodes as a single entity (called a virtual trunk
in [15]). Tunneling occurs when a number of RSVP flows are multiplexed onto one single ATM
connection, or over one RSVP flow itself. We expect tunneling to play an important role in the
scalability of integrated services networks.

We assume in this section that a number of flows, with an aggregate arrival curve «, is multi-
plexed into a virtual trunk. The virtual trunk is viewed as a single flow by downstream nodes;
as such, it is constrained by an arrival curve o. We are interested in finding, for a given arrival
curve «, the optimal values of ¢, for a criterion that we define later. An exhaustive study of this
problem is far beyond the scope of this paper. In contrast, we show how network calculus can be
employed in this context; indeed, it is the study of this problem that motivated the derivation
of the results in this paper, in particular Section 6.

If we assume a work conserving scheduling policy, then the multiplexing node acts as a general
shaper. From Theorem 6, we can conclude that it offers a service curve ¢ to the aggregate flow.
Assume that the constraint at the multiplexor node is to guarantee a maximum delay D. From
Theorem 3, the requirement on the virtual trunk is that, for all s > 0, we have:

o(s+ D) > a(s) (24)

Optimal Parameters for an ATM Variable Bit Rate Virtual Trunk As an example,
assume the virtual trunk is an ATM Variable Bit Rate (VBR) connection. The shaping curve
for a VBR connection has the form o(t) = min(Pt, St + B) where P is the peak rate, S the
sustainable rate and B a burst tolerance parameter. Equation (24) is illustrated on Figure 6.

Equation (24) becomes:

(s+ D)P > a(s)

(t+D)S+B > a(s) (25)

forallsZO:{

The first condition in Formula (25) implies that P > ep(«), which is thus a necessary and
sufficient condition on P. In other words, we have shown that for a virtual trunk of the ATM
VBR type, there is an minimum peak rate Py, which is the effective bandwidth of the arrival
stream and that this minimum peak rate is also optimal. More precisely, the latter statement
means the following. We say that the parameter set (P,.S, B) of the virtual trunk is feasible if
the virtual trunk is able to carry the traffic with a delay less than the delay constraint D. The
result is that, if (P, S, B) is feasible, then on one hand, necessarily P > Py = ep(«), and on the
other hand, (F%, S, B) is also feasible. Another aspect of this result is that, from a bandwidth
point of view, using a VBR trunk rather than a constant bit rate (CBR) trunk is all benefit
since, by definition of the effective bandwidth, the CBR trunk would have a rate of at least Fj.

If we wish to solve the problem of finding a complete optimal parameter set for (B, M), then
we need an optimality criterion. As an example, we assume that we wish to minimize a cost

26

bits o(t+D) slope S
A

arrival
curve

\

-D

Figure 6: Virtual Trunk with parameters (P, 5, B) satisfies the delay constraint D for traffic
with arrival curve drawn on the picture.

function ¢(P, M, B) which is affine and wide-sense increasing in each of its variables. The value
of P should thus be set to Fy and we wish to minimize ¢(Fp, S, B) — ¢(F,0,0) = wS 4 vB for
fixed values of u and v. We can already say is that the set of acceptable values (S, B) is defined
by

foralls >0: B+ (s+D)S—a(s) >0 (26)

and is thus a convex region (as intersection of half-planes). Assume « is concave. Any point on
the border of the region satisfies B 4 (t + D)S — a(s) = 0 for some s > sg, where sy reaches
the minimum of %_%. It follows that any point on the border of the region necessarily satisfies

a(s)

- Also, for any given point

m < S < Fy, where m is the sustainable rate m = limy_ 40
(S, B) on the border we have

B =supla(s) = (s + D)5} (27)
and
B a(s) — B
e 0

The values of (S, B) are also normally limited not to exceed maximum values Spax resp. Bmax.
We thus have to minimize wS + vB in the region defined by (26) and S < Spax, B < Bmax- By
convexity of the region, the minimum is for a point on the border.

If > D then we first compute the point (S, B) on the border where the tangent is orthogonal
to (u,v). We have:

S = 29
G Py Ny 29
_ u U —

Finally, after some algebra, we find the optimal value (Fp, So, Bp) according to the algorithm in
Figure 7.

s
P = SUPs>0 J—lﬁ_D

if $ < DY

SO = HliIl(]DO7 Smax)

Bo = sup,;sofals) — (s + D)So}
}

else {
= a(s)—a(2-D
S = SupsZO ((2+D(_v%))
B=a(t-D)- 23

if S > Spax and B > By there is no feasible solution

else if S > Spax {

SO = HliIl(]DO7 Smax)

By = sup,sofa(s) — (s + D)So}
}

else if B > Bpax {

So = supg>g %
BO = Bmax
}
else {
So=28
By, =B

Figure 7: The algorithm for the optimal VBR virtual trunk parameters (Fp, So, Bp) for a given
arrival curve a and a delay constraint D

The above results generalizes immediately to the case where the virtual trunk arrival curve is
defined by any number of affine constraints (not just two as in this example). Similar results
hold if a maximum buffer requirement is considered.

The algorithm in Figure 7 can be used to estimate the optimal characteristics of the virtual
trunk, based on a measured arrival curve a.

28

8

Conclusion

We have shown how the calculus of Cruz can be extended, and simplified. All properties are

elementary, and easy to interpret physically. We have shown on a few examples how they can
be used effectively.

References

[1] R.L. Cruz. A calculus for network delay, part i: Network elements in isolation. IFFFE Trans.

Inform. Theory, vol 37-1, pages 114-131, January 1991.

[2] R.L. Cruz. A calculus for network delay, part ii: Network analysis. IFFFE Trans. Inform.

[3]

[4]
[5]

[6]

[11]

[12]

[13]

Theory, vol 37-1, pages 132-141, January 1991.

R.L. Cruz. Quality of service guarantees in virtual circuit switched networks. IEFE JSAC,
pages 1048-1056, August 1995.

G. De Veciana, July 1996. Private Communication.

Kelly F. Effective bandwidths of multiclass queues. Queueing Systems (9)-1, pages 5-15,
1991.

L. Georgiadis, R. Guérin, V. Peris, and R. Rajan. Efficient support of delay and rate
guarantees in an internet. In Proceedings of Sigcomm’96, pages 106-116, August 1996.

Golestani S. J. A self clocked fair queuing scheme for high speed applications. In Proceedings
of Infocom ’94, 1994.

Kurose J. On computing per-session performance bounds in high-speed multi-hop computer
networks. In Proc ACM Sigmetrics / Performance 92, 1992.

Le Boudec J.-Y. The asynchronous transfer mode: A tutorial. Computer Networks and
ISDN Systems, May 1992.

Parekh A. K. and Gallager R. G. A generalized processor sharing approach to flow control
in integrated services networks: The single node case. IEFE/ACM Trans. Networking, vol
1-3, pages 344-357, June 1993.

Parekh A. K. and Gallager R. G. A generalized processor sharing approach to flow control
in integrated services networks: The multiple node case. IEEE/ACM Trans. Networking,
vol 2-2, pages 137-150, April 1994.

Gun L. and R. Guérin. Bandwidth management and congestion control framework of the
broadband network architecture. Computer Networks and ISDN Systems, vol 26, pages
61-78, 1993.

Zhang L. A new traffic control algorithm for packet switching networks. In Proceedings of
ACM Sigcomm 90, 1990.

29

[14] P.Goyal, S.S. Lam, and H. Vin. Determining end-to-end delay bounds in heterogeneous
networks. In 5th Int Workshop on Network and Op. Sys support for Digital Audion and
Video, Durham NH, April 1995.

[15] Giordano S., Le Boudec J.-Y., Oechslin P., and Robert S. Vbr over vbr: the homogeneous,
loss-free case. In Infocom 97, 1997.

[16] S. Shenker, Partridge C., and Guérin R., August 1996. Specification of Guaranteed Quality
of Service, draft-ietf-intserv-guaranteed-svc-06.

[17] P. Varayia and J. Walrand. High Performance Communication Networks. Morgan Kauf-
mann, San Francisco, 1996.

[18] H. Zhang. Service disciplines for guaranteed performance service in packet switching net-
works. Proceedings of the IFEF, 1996.

A Appendix

A.1 Proof of Proposition 3

Apply lemma 1 to A=0,B=s+t,z=s,y="1. (|

Lemma 1 Let ¢ be a concave function defined on [A, B] with A, B in R. For all x,y in [A, B]
such that x + y= A+ B we have

¢(z) + ¢(y) = 6(A) + ¢(B)

Proof: Define function v by v(u) = ¢(z + u) — ¢(x) Functions v and ¢ have right-handside
derivatives " and ¢’ satisfying

Y (u) = ¢ (x + u)

By concavity of ¢, ¢’ is wide-sense decreasing, thus
' (u) < ¢'(A+u)

and therefore
v(u) = 7(0) < o(A+u) — ¢(A)

for all u such that both A+ w and z + w are in [A, B]. Apply the last formula to u = B — 2 to
obtain the required inequality.

30

