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ows served in sequences ofbu�ers. Fundamental work has been pioneered by Cruz in [1, 2, 3], where general bounds basedon the concepts of arrival and service curves are derived. Other fundamental work for speci�c orgeneral scheduling policies is described in [10, 11, 8, 6]. In this paper we de�ne a few conceptsand some notation (the � and 	 operators) that generalize, and simplify, the work mentionedabove. This enables us to explain known results with simpler, intuitive methods, generalize theresults to more general settings, and discover new results.We start with an overview of arrival and service curve concepts, as they are de�ned by Cruz in[1, 2, 3] (Section 2).The concept of service curve by Cruz is simple and appealing for a single queue; for a networkof queues, the de�nition is a little puzzling as it explicitly privileges one bu�er. In particular,a network service curve is not a queue service curve in the sense of Cruz. We propose analternative de�nition, which we call extended service curve; it is obtained from Cruz's de�nitionby dropping the condition that requires a queue backlog to be zero. The new de�nition appliesto a general input-output system, be it a queuing system or not. The de�nition is the same forindividual queues or network of queues; it extends the applicability of network calculus to nodesthat do not originally �t within Cruz's framework. The de�nition is given in Section 3; we showthat the properties obtained by Cruz continue to hold for extended service curves. Indeed, theproofs are simpler than for the original calculus of Cruz. Our results are based on the use of the2



� and 	 operators, two convenient and simple tools to express and discover network calculusresults.The very simple properties of the operators, listed in Section 4, also enables us to derive anumber of simple calculus rules for service and arrival curves. We also point to the importanceof convexity, concavity, and sub-additiveness for such curves.We show in Section 5 how a general family of schedulers [16, 6, 14] can be modelled with extendedservice curves. In general, such schedulers do not have a service curve in the sense of Cruz.Then we apply in Section 6 our concepts to the notion of a general shaper. A general shaper,with shaping curve �, is a system that forces a 
ow to have an output constrained by �, at theexpense of possibly delaying bits in a bu�er. The fundamental result we �nd is that a generalshaper o�ers an extended service curve of �, provided that � is sub-additive. We point out that� is sub-additive as soon as it is concave. This result is the starting point for other new results.In particular, we de�ne an accurate characterization for the output of a bu�ered shaper. Aspeci�c example of shaper is the bu�ered leaky bucket, which corresponds to the case where theshaping curve is a�ne, namley of the form �(t) = rt+ b. A strong result by Cruz is that, if theinput 
ow is also constrained by some a�ne curves, a bu�ered leaky bucket does not removethe initial arrival constraints on the 
ow. Using our formalism, we are able to extend this resultvery simply to any arrival curve and any shaping curve, provided that both are concave. Inspite of being much more general, our proof is also considerably simpler (consider for examplethe simplicity of the proofs for Theorems 7 and 8).Lastly, in Section 7, we introduce the general concept of deterministic e�ective bandwidth, whichwas introduced in a narrower context in [17] on pages 270{273. We give a simple, general de�ni-tion, and show that it is a convex function of the arrival curve. This enables us to determine thatcall acceptance regions based on deterministic delay constraints are convex. This is in contrastto call acceptance regions based on statistical multiplexing with large deviation asymptotics,in which case it is the complement in the positive orthant which is convex [5]. Then we applythe results of Section 6 to the tunneling of several 
ows into one single, aggregate 
ow de�nedby a peak rate, a sustainable rate and a burst tolerance. We �nd that, if a deterministic delayconstraint is used, then there is always an optimal peak rate, which is the e�ective bandwidthof the arrival tra�c.As a convenience to the reader, we gather here some convention and notation used throughoutthe paper.� Greek, lower case letters other than � denote functions de�ned on R+, with values in[0;+1].� For any real number x, x+ denotes max(x; 0).� For any R, �R represents the function de�ned by �R(t) = Rt.� In general, we denote arrival curves by �, service curves by �, and shaping curves by �.An \arrival"curve that constrains the output of a system is noted ��.� R(t) is the arrival function to a system; R�(t) the departure function.3



2 Background on Arrival and Service Curves According to CruzWe �rst recall a few de�nitions. Consider a system S, which we view as a blackbox; S takesdata in and outputs data after a variable delay. Assume every observation starts at time 0; wecall R(t) the arrival function, namely the number of bits seen on the input 
ow in time interval[0; t]. We use a continuous time model, so t as well as R(t) are real numbers. We also call R�(t)the departure function (namely, the arrival function at the output of system S). The backlog attime t is R�(t)�R(t); it is the amount of bits that are held inside the system, assuming we canobserve input and output simultaneously. Similarly, the virtual delay at time t isd(t) = inf fT : T � 0 and R(t) � R�(t+ T )g (1)It is the delay that would be experienced by a bit arriving at time t if all bits received before it areserved before it. If the departure function is continuous (no batch departure) then R� (t+ d(t)) =R(t).The purpose of network calculus is to �nd computational rules for bounding virtual delays andbacklog for arbitrary systems that represent networks. For that purpose, Cruz introduces theconcepts of arrival and queue service curves, which we recall here.� Given a wide-sense increasing function �, we say that a 
ow is constrained by � if andonly if for all s � t: R(t)�R(s) � �(t� s). Function � is called an arrival curve for 
owr.A 
ow controlled by a leaky bucket has an arrival curve of the form �(t) = b+rt. Similarly,an ATM 
ow, constrained by the GCRA algorithm with parameters (T; �) [9] has an arrivalcurve �(t) = B + Pt, with P in b/s and B in bits given by: B = �P + �, P = �T . In theformulas, � is the cell size in bits. A 
ow conforming to the draft IETF speci�cation forintegrated service [16], with maximum packet size M , peak rate p, sustainable rate r andburst tolerance b, has an arrival curve de�ned by �(t) = min(M + pt; b+ rt).� Let � be a wide-sense increasing, non-negative function. Cruz says that the bu�er o�ersto a 
ow a queue service curve � if and only if for all time t there exists some t0 � t suchthat the backlog for the 
ow in the bu�er at time t0 is zero and R�(t)�R�(t0) � �(t� t0).In other words, the 
ow receives a rate of service at least equal to �(T ) during all intervals[0; T ] included in the busy period starting at time 0. Here, a busy period is de�ned by theconditions x(s) > 0 or r(s) > 0, where x(s) is the backlog for the 
ow at time s. We musthave �(0) = 0 for � to be a service curve.A �rst result by Cruz is as follows. Consider a data 
ow constrained by the arrival curve �,served in a bu�er with a queue service curve of �. The virtual delay d(t) at any time t satis�esthe following inequality:d(t) � sups�0 (inf fT : T � 0 and �(t) � �(s+ T )g) (2)4



Moreover, the backlog x(t) at any time t satis�es the following inequality:x(t) � sups�0 (�(s)� �(s)) (3)Consider further a 
ow, with arrival curve, traversing a sequence of bu�ers 1; : : : ; i; : : : ; I , withconstant propagation delay between bu�ers, and with each o�ering a service curve �i. Animportant result by Cruz is that the maximum end-to-end delay variation is bounded as inEquation (2), with �(t) = inft1+:::+tI=t f�1(t1) + : : :+ �I(tI)g (4)Cruz de�nes a network service curve by saying that a series of bu�ers o�ers to a 
ow a networkservice curve of � if for all time t there exists some t0 � t such that the backlog for the 
owin the �rst bu�er at time t0 is zero and R�(t)� R(t0) � �(t� t0). Function � in the equationabove is shown by Cruz to be a network service curve. Note that the network service curve isnot a queue service curve in the sense de�ned above, as we cannot generally �nd a time t0 > 0at which the backlog for the 
ow in the network is zero. It is this puzzling subtlety that leadsus to an alternative de�nition, which turns out to be both simpler and more powerful.Another result by Cruz is that the output of such a network is constrained by arrival curve ��,given by ��(t) = supv�0 (�(t + v)� �(v)) (5)Equations (2) and (4) are a strong result. Indeed, consider again a sequence of bu�ers. On onehand we can compute a bound D on the total delay by using Equations (2) and (4). On theother hand, we can also compute a bound Di for the variable delay experienced at bu�er i, usingEquation (5) iteratively to characterize the input 
ow at bu�er i. Then, in general, PiBi > B.Network calculus captures this global network e�ect.In the rest of this paper, we generalize the nodes to which network calculus applies. In particular,we show that the above results remain true even if we add variable delays between bu�ers thatcannot be modelled as queueing delays.3 Extended Service CurvesIn this section we de�ne our extension to the network calculus of Cruz.3.1 De�nition of Extended Service CurveWe propose to replace the de�nition of queue or network service curve by Cruz by the followingde�nition. We use the same notation as in Section 25



De�nition 1 (Extended Service Curve) Consider a 
ow with arrival function R, input toa bit processing system S. Call R� the output function. We say that S o�ers to the 
ow anextended service curve � if and only if for all t � 0, there exists some t0 � 0, with t0 � t, suchthat R�(t)� R(t0) � �(t� t0)The condition is similar to the queue service curve, or network service curve de�nition by Cruz,with the di�erence that it does not imply any condition on a bu�er being empty. We are able toshow and even generalize the results by Cruz without requiring such assumptions, thanks to thesimple properties of the � and 	 operators. The resulting calculus not only extends to nodesfor which a service curve in the sense of Cruz does not exist, but is also surprisingly simpler.We derive the main results for service curves in the rest of this Section and in the following one.Of course, queue service curves and network service curves are extended service curves, asrecalled in Section 2.We now introduce the key example of node (variable delay node) that o�ers an extended servicecurve and cannot easily be modelled by the calculus of Cruz. We �rst de�ne the burst delayfunction �T byDe�nition 2 (Burst Delay function) �T (t) = 0 if 0 � t � T and �T (t) = +1 if t > TProposition 1 (Variable Delay Node) Consider a bit processing system for which we onlyknow that the maximum delay for any bit of the 
ow is bounded by a constant T . This systemo�ers to the 
ow an extended service curve of �T .The proof is straightforward and is left to the reader. Figure 1 illustrates a node that o�ers �Tas a queue-service-curve, in the sense of Cruz: bits in the bu�er are held for a time � T , untilthe bu�er is emptied instantaneously. We see on this example that a variable delay node doesnot in general have �T as a queue-service-curve, but that it does have �T as an extended servicecurve. This latter point is essential, because, as we show later, formulas for delay and outputbounds also apply to extended service curves.3.2 Basic Results on BoundsIn this Section we generalize Cruz's results to extended service curves.Theorem 1 (Backlog Bound) Assume a 
ow, constrained by arrival curve �, traverses asystem that o�ers an extended service curve �. The backlog R�(t)� R(t) for all t satis�es:R�(t)�R(t) � sups�0f�(s)� �(s)g6
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Figure 1: Arrival and Departure Functions for a node o�ering �T as a queue-service-curve (left)or as an extended service curve (right). On the right is also shown the arrival curve shifted byT to the right. The departure curve is limited by this curve.Proof: For all t there exists some s such thatR�(t)�R(t� s) � �(s)Now R(t)�R(t� s) � �(s)By subtraction, it comes that R�(t)�R(t) � �(s)� �(s) �If the system is a single bu�er, then the backlog can be interpreted as the instantaneous queuelength. In contrast, if the system is more complex, then the backlog is the number of bits \intransit", assuming that we can observe input and output simultaneously. The theorem says thatthe backlog is bounded by the vertical deviation between the arrival and service curves.The next result is best described using the following notation.De�nition 3 (Minus Operator) For two functions 
1 and 
2, de�ne 
1 	 
2 by
1 	 
2(t) = supu�0 f
1(t+ u)� 
2(u)g (6)We can thus re-write the result in Equation (5) by saying that the output 
ow has an arrivalcurve �� = �	 �. This result is also true for extended service curves:Theorem 2 (Output Characterization) Assume a 
ow, constrained by arrival curve �, tra-verses a system that o�ers an extended service curve of �. The output 
ow is constrained by thearrival curve �� = �	 �.Proof: With the same notation as above, consider R�(t) � R�(t � s), for 0 � t � s � t. Byde�nition of the extended service curve, item 1, applied at time t � s, there exists some u � 0such that 0 � t � s � u and R�(t� s)� R(t� s � u) � �(u)7



Thus R�(t)� R�(t� s) � R�(t)� �(u)� R(t� s � u)Now R�(t) � R(t), thereforeR�(t)�R�(t� s) � R(t)�R(t� s� u)� �(u) � �(s+ u)� �(u)and the latter term is bounded by (�	 �)(s) by de�nition of the 	 operator. �It is convenient to introduce the following notation.De�nition 4 (Horizontal Deviation h) For two wide-sense increasing functions � and �,call h(�; �) the horizontal deviation between the two curves, namelyh(�; �) = sups�0 (inf fT : T � 0 and �(s) � �(s+ T )g) (7)The de�nition is a little complex, but is supported by the following intuition. If � and �are continuous, strictly increasing,then for all t there exists at most one number d(t) suchthat �(t) = �(t + d(t)). If there is no such number then we let d(t) = +1. In this case,h(�; �) = supt d(t).In other words, h(�; �) is nothing else than the formula used for computing the maximum delayin Equation (2), which can now be re-written as: d(t) � h(�; �), with d(t) the virtual delay attime t, � the arrival curve, and � the queue or network service curve in the sense of Cruz. Thisresult still remains if we consider extended service curves. Indeed:Theorem 3 (Delay Bound) Assume a 
ow, constrained by arrival curve �, traverses a sys-tem that o�ers an extended service curve of �. The virtual delay d(t) for all t satis�es:d(t) � h(�; �).Proof: For some �xed t � 0, call d the virtual delay at time t, written as d(t) in Equation(1). We can assume d > 0 otherwise the proof is trivial. By de�nition of d, for all � > 0, with� < d we have R�(t+ d� �) < R(t)By the extended service curve property at time t + d� �, there exists some t0 � 0 such thatR�(t+ d� �)� R(t0) � �(t+ d� � � t0)This implies that t0 � t. Now R(t)�R(t0) � �(t � t0)Combining the three inequations gives�(t+ d� �� t0) < �(t � t0)This proves that d� � � h(�; �) for all 0 < � � d. �Finally, the last basic result requires the following de�nition.8



De�nition 5 (Min-Plus convolution) For two functions 
1 and 
2, de�ne 
1 � 
2 by
1 � 
2(t) = infu such that 0�u�t f
1(u) + 
2(t� u)g (8)We see that the network-service curve mentioned in Section 2 is the Min-Plus convolution ofthe service curves o�ered by the bu�ers. In all practical cases that we will meet, the inf is amin, which explains the name we choose for the � operator. The concatenation result by Cruzis also true for extended service curves:Theorem 4 (Concatenation of Nodes) Assume a 
ow traverses systems S1 and S2 in se-quence. Assume that Si o�ers an extended service curve of �i, i = 1; 2 to the 
ow. Then theconcatenation of the two systems o�ers an extended service curve of �1 � �2 to the 
ow.Proof: Call R the arrival function, R1 the output function from S1 (thus R1 is the arrivalfunction to system S2) and R� the �nal output function. Consider some t � 0. There existssome u � 0 with 0 � t � u and R�(t)�R1(t� u) � �2(u)Similarly, there exists some v � 0 with 0 � t� u� v andR1(t � u)�R(t� u� v) � �1(v)Thus, by summation:R�(t)� R(t� u � v) � �2(u) + �1(v) � (�1 � �2)(u+ v) �We have thus shown that the basic results recalled in Section 2 are valid also for extendedservice curves. The bounding results mentioned in Section 2 are thus still valid if we addrandom, bounded delays between the queues. Such delays are accounted for by introducing �Tfunctions in the service curves. As a consequence of the commutativity of �, such delays canbe inserted in any order along a sequence of bu�ers, without altering the delay bounds.In the rest of the paper we derive new or more general results, using the properties of the � and	 operators.4 Network CalculusIn this Section we review the basic or more advanced properties of the 	 and � operators, whichwe claim to be the basics of network calculus. We start by illustrating how simple results canbe obtained with little e�ort. 9



4.1 Network Calculus in PracticeThe following holds for the Min-Plus convolution.Rule 1: � is associative and commutative, so for example (
1 � 
2) � 
3 = 
1 � (
2 � 
3) =
1 � 
2 � 
3.Rule 2: If If 
1(0) = 
2(0) = 0 then 
1 � 
2 � min(
1; 
2). If 
1 and 
2 are concave (namelyif �
1 and �
2 are convex) then 
1 � 
2 = min(
1; 
2).Rule 3: If 
1 and 
2 are convex and piecewise linear, then 
1 � 
2 is obtained by puttingend-to-end the di�erent linear pieces of the individual service curves, sorted by increasingslopes [4].The proof of the above points is easy. For example, for rule 2, we use the fact that 
1 + 
2 isconcave, and thus has a minimum on [0; t] at either 0 or t.The IETF uses a generic service curve model; it assumes that every node o�ers a service of theform �(t) = R(t� T )+ (9)for some delay T and rate R. We call such a service curve the \IETF service curve model".We show in Section 5 that there are a number of scheduling policies that o�er such extendedservice curves. In [16], it is further assumed that the delay parameter T depends on the rate Raccording to T = CR +D for some constants C and D.The extended service curve in Equation 9 is convex, therefore we can apply rule 3. Thus,the concatenation of nodes that o�er an extended service curve of �i(t) = Ri(t � Ti)+ o�ersan extended service curve � of the same form, given by �(t) = R(t � T )+, with T = Pi Tiand R = miniRi. As an application, the maximum delay for a 
ow conforming to the IETFspeci�cation for integrated service, with maximum packet size M , peak rate p, sustainable rater and burst tolerance b, is obtained by computing h(�; �), with �(t) = min(M+pt; b+rt). Thisgives [16]: d(t) � b�MR �p�Rp� r �+ + MR + TConsider now another example: a series of nodes guarantee a service de�ned by �i(t) = (rit +bi)1ft>0g (thus �i(t) = 0 if t = 0, as is required for a service curve). By application of rule 2, theconcatenation of these nodes o�ers the service curve �(t) = mini(rit+ bi)1ft>0g. Such nodes areleaky bucket regulators with unlimited output peak rates (Section 6).If we want to compute the min-plus convolution for a mix of functions which is neither all-concave nor all-convex, then it may be useful to use some decompositions in order to apply rules2 and 3.As an illustration of how this calculus can simplify some computations, consider the servicecurve � at the concatenation of two nodes o�ering the following service curves: at node 1,10



�1(t) = R(t�T )+; at node 2, �2(t) = (rt+ b)1ft>0g. Note that (�� �T )(t) = �(t�T )1ft>Tg forany wide-sense increasing function �. We can now decompose �1 as:�1 = �T � �Rand thus � = (�T � �R)� �2 = �T � (�R � �2)Now by rule 2 �R � �2(t) = min(Rt; rt+ b)and thus �(t) = min [R(t� T ); r(t� T ) + b] 1ft>TgIn practice, we use network calculus to compute bounds on delay variation and backlogs. Con-stant propagation delays between systems can be ignored for the computation of delay bounds,as they simply transform an input function into the functions translated in time by a �xedamount. Variable delays can be modelled simply by the addition of �T functions to the servicecurves. For the computation of the backlog inside a system S, constant delays inside S cannotbe ignored and should be modelled with a �T extended service curve.4.2 Arrival Curves, Sub-Additive and Concave FunctionsWe now obtain general results about arrival curves. These will be useful in Section 6.In general, we do not expect an arrival curve to be convex. Indeed, it is easy to see that if �1and �2 are two arrival curves for the same 
ow, then so is �1� �2. Assume now that an arrivalcurve � is convex and piecewise linear; then �� � is also an arrival curve, and by iterating, wesee that an arrival curve for the same 
ow is given by ��(t) = r0t, where r0 is the slope of � att = 0 + �, for � small enough. This example illustrates that any arrival curve is not necessarilyvery meaningful.In general, it makes sense for an arrival curve to be sub-additive:De�nition 6 We say that function � is sub-additive when �(s+ t) � �(s)+�(t) for all s; t � 0.Note that for functions � such that �(0) = 0, being sub-additive is equivalent to the condition�� � = �. We have the following result.Proposition 2 (Transformation of Arrival Curve into Sub-Additive Arrival Curve)Consider a 
ow constrained by an arrival curve �. Then there exists an arrival curve �� � �that also constrains the 
ow and is sub-additive.11



Proof: The proof consists in constructing the arrival curve ��. It follows from the discussionabove that � � : : :� � = ��n is also a service curve, and so is�� = minn�1 ��n (10)(We used the convention ��1 = �) Since ��n � ��i for i � n, note that ��n = min1�i�n ��iand thus ��(t) = limn!+1 ��n(t). We now show that �� is sub-additive. For all s; t � 0, and forall � > 0 there exist some decompositions s1 + : : :+ si = s and t1 + : : :+ tj = t such that��(s) + ��(t) � �(s1) + : : :+ �(si) + �(t1) + : : :+ �(tj)� �Thus, by de�nition of ��:��(s) + ��(t) � ��(s1 + : : :+ si + t1 + : : :+ tj)� � = ��(s+ t) � �and this is true for arbitrary small values of �. �Note that we know explicitly from Equation 10 how to transform the arrival curve � into asub-additive arrival curve ��. Note also that if � is sub-additive, then �� = �.We should thus restrict our choice of arrival curves to sub-additive functions. A simple inspectionof the arrival curve may be su�cient. Indeed:Proposition 3 Any concave function � de�ned on R+ such that �(0) = 0 is sub-additive.The proof is given in appendix.Note that any a�ne function is concave, and so is the minimum of any number of concavefunctions. Thus the arrival curves we have seen in Section 2 are all concaveSub-additivity is a condition for the theorems in Section 6 to hold. In practice, we will considerconcave arrival curves. Note however that there are arrival curves that are sub-additive and notconcave (build an example by considering an on-o� pattern).Lastly, assume we wish to determine an arrival curve from an observed arrival function R(t)t�0.The solution is simple:Proposition 4 (Minimum Arrival Curve) Consider a 
ow given by its arrival function R(t)t�0.Then� the function R	R is an arrival curve for the 
ow� R	R is sub-additive� for any arrival curve � that constrains the 
ow, we have: (R	 R) � �12



The proof is straightforward and left to the reader. Remember that the arrival curve R 	 Rde�ned in the proposition is given by(R	 R)(t) = supv�0 R(t+ v)�R(v)The proposition says that any 
ow has one minimum arrival curve. It is typically the arrivalcurve we could compute based on measurements of the arrival 
ow.4.3 More about the 	 OperatorThe following rules apply to any general functions. We use the notation 
1 � 
2 with themeaning : for all t � 0, 
1(t) � 
2(t).Rule 4 If �1 � �2, then for all � : �1	� � �2	�. If �1 � �2, then for all � : �	�1 � �	�2Rule 5 Function � is sub-additive if and only if � 	 � � �Rule 6 (
1 	 
2)	 
3 = 
1 	 (
2 � 
3) for all functions 
1, 
2 and 
3Proof: We give only the proof for rule 6. The other proofs are simple and left to the reader.For a �xed value of t, let A = [(
1	 
2)	 
3](t) and B = [
1	 (
2� 
3)](t). We show �rst thatA � B. For all s � 0 and all 0 � u � s we haveA � 
(t+ u)� 
3(u)where 
 = 
1 	 
2. Similarly, by de�nition of 	:
(t+ u) � 
1(t+ u+ s � u)� 
2(s� u)Putting the two formulas together gives
2(s� u) + 
3(u) � 
1(t+ s)� ASince this is true for all 0 � u � s, we have(
2 � 
3)(s) � 
1(t+ s)� AThe above is true for all s, which shows that B � A.Conversely, for all � > 0 there is some v such thatA � 
(t+ v)� 
3(v) + �There is also some u such that
(t+ v) � 
1(t+ v + u)� 
2(u) + �13



Thus A � 
1(t+ v + u)� 
2(u)� 
3(v) + 2� � 
1(t+ v + u)� (
2 � 
3)(u+ v) + 2�Thus A � B + 2� for all � > 0, thus A � B. �Consider Theorem 4 again and assume the input 
ow to system S1 is constrained by �. FromTheorem 2 we can conclude that the output of system S2 is constrained by � 	 (�1 � �2). Onthe other hand, by recursive application of Theorem 2, it is also constrained by (� 	 �1) 	 �2.Rule 6 tells us that the two constraints are the same.As an example of application, consider the output a system with o�ering the IETF service curvemodel � = �T � �R as an extended service curve. Assume the input is constrained by �. Thenthe output is constrained by �� = � 	 (�R � �T ) = (�	 �R)	 �T . Note that(
 	 �T )(t) = 
(t+ T )for all 
 (shift to the left).The computation of � 	 �R is easy if � is concave. Indeed, in such a case, de�ne t0 ast0 = infft � 0 : �0(t) � Rgwhere �0 is the right-handside derivative, and assume that t0 < +1. Then by studying thevariations of the function u ! �(t + u) � Ru we �nd that (� 	 �R)(s) = �(s) if s � t0, and(�	 �R)(s) = �(t0) + (s� t0)R if s < t0.Putting the pieces all together we see that the output function �� is obtained from � by� replacing � on [0; t0] by the linear function with slope R which has the same value as �for t = t0, keeping the same values as � on [t0;+1[,� and shifting by T to the left.Figure 2 illustrates the operation. Note that the two operations can be performed in any ordersince � is commutative.4.4 Advanced Results on � and 	 OperatorsIn this Section we conclude the study of the � and 	 operators by giving advanced results thatare easy to understand, but will still make it possible to derive powerful results in the nextSection.Proposition 5 Let � be wide-sense increasing and sub-additive, with �(0) = 0. Then for anyfunction �: h(�; �� �) = h(�; �)We will also use Proposition 5 under the following form.14
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Figure 2: Derivation of output curve for a node o�ering the IETF service curve model �(t) =R(t� T )+Corollary 1 Let � and � be wide-sense increasing and sub-additive, with �(0) = �(0) = 0.Assume � � �. Then for any function �: h(�; � � �) = h(�; �)We can interpret this proposition and its corollary as follows. If we let a 
ow be served through aseries of two bu�ers, with the �rst bu�er o�ering a service curve at least equal to the arrival curve,then the delay bound computed from Theorem 3 is the same as if the �rst bu�er were omitted.Indeed, the 
ow experiences no delay in the �rst bu�er. Note that the latter interpretationcannot serve as a proof because the bound in Theorem 3 might be pessimistic in some cases.Proof: The horizontal deviation h(�; �) is de�ned by h(�; �) = supt�0 d(t), withd(t) = inffT � 0 : �(t) � �(t + T )gDe�ne similarly d0(t) = inffT � 0 : �(t) � (�� �)(t+ T )gFirst note that if we increase the function �, then h(�; �) may only decrease, in other words:Rule 7 If �1 � �2 then h(�; �1) � h(�; �2)Now �� � � � since �(0) = 0. This proves that h(�; �� �) � h(�; �).Conversely, the horizontal deviation h(�; �) is de�ned by h(�; �) = supt�0 d(t), withd(t) = inffT � 0 : �(t) � �(t + T )gDe�ne similarly d0(t) = inffT � 0 : �(t) � (�� �)(t+ T )g15



For all � > 0, with � < t+ d0(t): (�� �)(t+ d0(t)� �) < �(t)Thus, there exists some u such that 0 � u � t+ d0(t)� � and�(u) + �(t+ d0(t)� u� �) < �(t) (11)Now u � t otherwise �(u) � �(t). Let v = t� u; thus v � 0 and by sub-additivity of �,�(t) � �(u) + �(v)We can rewrite Equation (11) as�(u) + �(v + d0(t)� �) < �(t)Putting together the last two inequations gives�(v + d0(t)� �) < �(v)This proves that d0(t)� � � d(v)and thus d0(t)� � � h(�; �)for all �, thus d0(t) � �. This is true for all t, thus we have proven that h(�; �� �) � h(�; �).�The proof of the corollary derives immediately from the theorem and from Rule 7.We also have:Proposition 6 Let 
1 be sub-additive, with 
1(0) = 0. Then for any function 
2, the followingholds: if 
1 � 
2 then 
1 	 
2 � 
1Proof: Since 
2 � 
1 we have 
1	
2 � 
1	
1 (Rule 4). Now if 
1 is sub-additive, 
1	
1 � 
1(Rule 5). �The proposition can be interpreted as follows. If we let a 
ow be served through a bu�er thato�ers a service curve larger than the arrival curve, then the output 
ow is still constrained bythe initial arrival curve. Indeed, the 
ow experiences no delay in the bu�er .16



5 Modelling Guaranteed Quality of Service NodesIn Section 4, Equation (9), we have mentioned the common node model used by IETF. In thisSection we show that this model can be used for a very large class of schedulers, even thoughsuch schedulers do not o�er a queue-service-curve in the sense of Cruz. Of course, such nodesdo o�er an extended service curve of the type in Equation (9).A number of scheduling policies has been proposed in the literature (see for example [10, 6, 7,13, 14]). Consider the general form of scheduling proposed in [14] under the name of GuaranteedRate (GR) scheduling. It is shown in [14] that Guaranteed Rate scheduling includes as particularcases: virtual clock scheduling [13], packet by packet generalized processor sharing [10] and self-clocked fair queuing [7].Following [14], we say that a scheduling policy is of the guaranteed rate type, with rate R anddelay v for a given 
ow if it guarantees that packet j of the 
ow is served at time GCR(j) + v,with GRC(0) = 0 and GRC(j) = max fA(j); GRC(j� 1)g+ l(j)R (12)In the formula, l(j) is the length in bits of packet j and A(j) is the arrival time of packet j.Theorem 5 (Modelling GR Nodes) A node with guaranteed rate scheduling policy o�ers anextended service curve de�ned by �(t) = R(t� lR � v)+In other words, � = �R � � lR+v.Proof: Call D(i) the departure time for the last bit of packet i. If supiD(i) is �nite, then ift > supiD(i) then R(t) = R�(t) since any packet is guaranteed to leave the system after a �nitetime. The extended service curve property is trivially true in that case. We can thus assumenow that there is a packet index j such that D(j � 1) � t < D(j). ThusR�(t) = j�1Xi=1 l(i) (13)De�ne i0 = maxfi such that 1 � i � j and GRC(i� 1) � A(i)gFigure 3 illustrates a case with j = 2 and i0 = 1. We �rst consider the case where A(i0) �D(j � 1). 17
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R*(t)Figure 3: Arrival and Departure functions for GR schedulingNow GRC(i0) = A(i0) + l(i0)R and for all i such that i0 < i � j we have GRC(i) = GRC(i�1) + l(j)R , thus GRC(j) = A(i0) + 1R jXi=i0 l(i) (14)De�ne t0 = A(i0)� �, where � is small enough for t + � � D(j) and A(i0)� � > A(i0 � 1). Wehave: R(t0) = i0�1Xi=1 l(i) (15)and t� t0 � D(j)� A(i0) � GRC(j) + v �A(i0)and from Equation (14), it comes thatt� t0 � v + 1R jXi=i0 l(i) � v + l+ 1R j�1Xi=i0 l(i)Thus, by de�nition of �, �(t � t0) � j�1Xi=i0 l(i) = R�(t)� R(t0)From Equations (13) and (15), the last term in the formula above is precisely R�(t) � R(t0)which proves the extended service curve property in the case where A(i0) � D(j � 1).Now if A(i0) > D(j � 1) then necessarily i0 = j. If t � A(i0), then the above reasoning appliesand shows the extended service curve property. Otherwise, D(i0 � 1) � t < A(i0), the queue isempty at t and the extended service curve property is true with t0 = t. �18



If the delay parameter v is equal to 0, then we can show that the queue is empty at time t0,and, in that case, the extended service curve is also a queue service curve in the sense of Cruz.Otherwise, namely if v > 0, it is easy to build an example where the queue is not empty at timet0 and the service curve property in the sense of Cruz is not true.There are other forms of scheduling that do not belong to the GR type, for example, delay basedschedulers [18]. Such schedulers can easily be shown to o�er an extended service curve of �Tfor some T . Such schedulers are usually associated with a shaper. In Section 6, we will showthat such a combined system o�ers an extended service curve of �T � �, where � is the shapingcurve. In general, these systems do not o�er a service curve in the sense of Cruz.6 Shaping DevicesIn this Section we apply the calculus introduced in the previous section to shaping and policingdevices. We introduce the concept of policer that generalizes the leaky bucket controllers [17]and re-shapers [16].De�nition 7 Consider a wide sense increasing function �. We call policer a bit processingdevice such that, for any arbitrary input 
ow, we have:� the output function has � as arrival curve;� if the input 
ow has � as arrival curve, then the shaper is transparent to the 
ow.The second condition can be formalized as follows: call R the arrival function for a given,arbitrary 
ow, and R� the output function; then R(t) = R�(t) for all t. We say that � is ashaping curve. It is easy to verify that leaky bucket controllers are policers with a shaping curveof the form �(t) = (rt+ b)1ft>0g.A policer may exist in a variety of forms, since the de�nition does not specify what happensto input 
ows that are do not have � as arrival curve. However, in all cases, a policer has thefollowing feature. We consider only systems for which there is a minimum time granularity dt.For an ATM system, this corresponds to the sending of one cell, for other systems, it may bethe bit processing time. During a time interval [t; t+ dt], the policer counts all bits that arrivedsince the beginning of the connection, over all possible windows of length u � 0, and checks thatthere are not more than �(u) bits. The number of bits dR� allowed at the output, for a givennumber of input bits dR is thusdR� = min�dR;minu�0 [�(t+ dt; t� u)� R�(t)� R�(t� u)]� (16)A simple policer declares as non conformant a number of bits equal to dR� � dR wheneverdR > dR�. We call shaper a bu�ered policer, namely a friendly policer that puts into a bu�er allbits in excess (i.e. dR� � dR bits whenever dR > dR�). It is outside the scope of this paper to19



study how to build shapers (see for example [10, 6, 14]). Real shaping systems may delay packetsfor a time longer than the granularity dt; such systems are modelled by the concatenation of ashaper as described here, and a delay node with service curve �T for some T .The main result of this section is the following.Theorem 6 (Service Curve o�ered by a General Shaper) Consider a shaper with shap-ing curve �, namely a device that serves bits at the maximum instant rate such that the outputhas � as arrival curve, and otherwise keeps the bits in a bu�er. Assume that � is sub-additiveand �(0) = 0. This system o�ers to the 
ow a service curve equal to �.Proof: In order to simplify the notation, we take the time granularity dt as time unit in thisproof. De�ne the following1. x(t) is the bu�er occupancy at the end of time slot t; by convention, we de�ne x(0) = 0.2. R�]u; t] is the number of bits transmitted during time slots u+ 1; : : : ; t.3. �(j) is the maximum number of bits that may come out during j consecutive time slots.In particular, �(0) = 0.We now show by induction on t that there exists some s � 0 such that x(t � s) = 0 andR�]t� s; t] = �(s). This will imply that the shaper has � as a queue-service-curve in the senseof Cruz, and thus as an extended service curve as well. Note that we are not actually showing astronger result since, for a shaper with shaping curve �, having � as an extended service curvenecessarily implies that � is also a queue service curve.The induction property is trivial if x(t) = 0 (take s = 0) and thus is true for t = 1.Assume now that the induction property holds for 1; : : : t� 1. Call M(t) the credit available attime slot t, namely M(t) = minu�1 f�(u)�R�]t� u; t]g.If M(t) > R�]t� 1; t] then x(t) = 0), otherwise we would have served more bits during time slott. The induction property at t is then trivially true in that case. Otherwise, call u� the maximumu such that 1 � u � t and �(u) = R�]t� u; t]. We now need to show that x(t� u�) = 0. Applythe induction property at time t� u�. There exists some s � 0 such that x(t� u� � s) = 0 andR�]t� u� � s; t� u�] = �(s). Since � is sub-additive, we have�(s) + �(u�) � �(s+ u�)It follows that R�]t� u� � s; t] = �(s) + �(u�) � �(s+ u�)and since the shaper is a policer, we haveR�]t� u� � s; t] � �(s+ u�)20



which shows that we have equality in the last inequation. From the de�nition of u�, it followsthat s = 0, which proves that x(t� u�) = 0. �Remember from Section 4.2 that it is not a restriction to assume that � is sub-additive, andthat a su�cient condition for � to be sub-additive is that it is concave. Also, the condition�(0) = 0 is not a restriction either, and we can always enforce it since we do not require � tobe continuous. Note that the converse of Theorem 6 is not true: o�ering a service curve of � isnot su�cient to guarantee that the output is constrained by �, even if � is sub-additive.The above result is key. It enables us to apply simple calculus rules from the previous Section.As an example, consider the issue of the bu�er size required at a re-shaper. Re-shaping maybe needed because the output of a bu�er normally does not conform any more with the tra�ccontract speci�ed at the input. Speci�cally, with the model in [16], a 
ow with arrival curve�(t) = min(pt + M; rt + b) traverses a sequence of nodes, that o�er a network service curve�(t) = R(t � T )+. A re-shaper is placed after the sequence of nodes. From Theorem 1, thebu�er requirement at the re-shaper is bounded by the vertical deviation between the shapingcurve and the arrival curve of the 
ow when it reaches the bu�er. The latter is given by Theorem2. We can then easily �nd, as in [16], that the bu�er requirement is bounded by B withB = 8><>: if b�Mp�r < T then b+ Trif b�Mp�r � T and p > R then M + (b�M)(p�R)p�r + TRelse M + TpLet us now consider an application to a more general result. When re-shapers are introducedalong a path, they act as additional bu�ers, that could increase the end-to-end delay. However,we can derive easily that they \come for free".Proposition 7 (Shaping does not increase the delay bound) Assume a 
ow, constrainedby arrival curve �, is input to networks S1 and S2 in sequence. Assume a shaper, with curve� is added between S1 and S2. Assume that � is sub-additive. Then the delay bound given byTheorem 3 for the system without shaper is also valid for the system with shaper.The proof is now simple. Call �i the extended service curve of network Si. The delay bound forthe system with shaper is h(�; �1 � � � �2) which, by associativity and commutativity, is alsoequal to h(�; �� �1 � �2) = h(�; �1 � �2) from Proposition 5. �A restricted form of Proposition 7 is found in [16], [6] or [3], where only leaky buckets areconsidered. We have here a more general, and simpler result. We will see in Section 7 thatshapers are not limited to be simple leaky buckets.As a further illustration for the power of the concepts introduced in Section 4, consider a lessrestrictive re-shaper [16] that is associated with a curve of the form�(t) = min[Rt; rt+ b] (17)Such a shaper is often called bu�ered leaky bucket. It enforces both a peak rate R and asustainable rate r with burstiness parameter b. Consider now a series of nodes, and introduce21



such a shaper on a 
ow with maximum packet size M , peak rate p, sustainable rate r andburst tolerance b. With the same notation as in Proposition 7, the delay bound computed fromEquation (2) is d0 = h(�; �1 � � � �2), with � given by Equation (17) and �(t) = min(M +pt; b+ rt). From Section 4, � = �R � (pt+ b)t, where we note (pt+ b)t the function t! pt+ b.Thus d0 = h(�; (pt+ b)t � �1 � �R � �2) = h(�; �1 � �R � �2)since �(t) � pt + b and by application of Corollary 1. Assume as in [16] that all bu�ers alongthe path guarantee a service curve of the form �i(t) = Ri(t� Ti)+ (so that �1 and �2 also havea similar form). Then, by application of Rule 3:�1 � �R � �2 = �1 � �2as soon as at least one of the nodes has a rate Ri � R. We have thus just shown, withoutmuch computation, that a re-shaper of the form described in Equation (17) does not increasethe delay bound, as long as R is as large as the minimum of the rates allocated to the 
ow alongthe path; this result is quoted in [16].Let us apply now our calculus to a characterization of the output 
ow from a shaper. Of course,the output is constrained by the shaping curve. However, the fact that the shaper also o�ers itsshaping curve as a service curve implies a much stronger result. Indeed:Theorem 7 (Shaper Output Flow) Assume a 
ow with arrival curve � is input to a shaperwith shaping curve �. The output 
ow is constrained by the arrival curve�� = [min(�; �)]	 �Proof: For some arbitrary s and t, consider R�(t) � R�(t � s), namely the number of bitsoutput during time interval [t� s; t]. By Theorem 6, there exists some u such thatR�(t� s)� R(t� s � u) � �(u) (18)Now by de�nition of a shaper, R�(t)�R�(t� s � u) � �(s+ u)Since R� � R, this gives R�(t)� R�(t � s) � �(s+ u)� �(u) (19)On the other hand, from Equation (18) we also haveR�(t)�R�(t� s) � R�(t)� R(t� s � u)� �(u) � R(t)�R(t� s� u)� �(u)22



Now the input during time interval [t� s � u; t] is bounded by �(s + u). We have thus:R�(t)� R�(t � s) � �(s+ u)� �(u)Putting the last equation together with Equation (19) givesR�(t)�R�(t� s) � min[�(s+ u); �(s+ u)]� �(u) (20)The proposition now follows from Equation (20) and the de�nition of the 	 operator. �This characterization of the output 
ow seems to be quite accurate. Indeed, we are able toderive from it the following important result.Theorem 8 (Shaping Conserves Arrival Constraints) Assume a 
ow with arrival curve� is input to a shaper with shaping curve �. Assume � and � are concave, with �(0) = �(0).Then the output 
ow is still constrained by the original arrival curve �.Note that the output 
ow is necessarily constrained by the shaping curve. The theorem statesthat any constraint on the input 
ow, enforced upstream of the shaper, is not undone by theshaper. The theorem generalizes a result by Cruz ([3], Section VI) which is obtained, after longderivations, in the speci�c case of leaky buckets and linear arrival curves.Proof: From Theorem 7, the output is constrained by�� = ([min(�; �)]	 �)We have assumed that � and � are concave, therefore, min(�; �) is concave (as minimum ofconcave functions) and thus sub-additive. The result now derives from Proposition 6 applied to
1 = min(�; �) and 
2 = �. �7 Deterministic E�ective BandwidthIn this Section we show how the concept of e�ective bandwidth can be de�ned simply in adeterministic context; we also illustrate an application of Theorem 6.7.1 E�ective Bandwidth of a FlowWe start by considering a trunk system that serves a 
ow in a work conserving manner, at aconstant rate C. We assume the arrival 
ow is constrained by an arrival curve � and wouldlike to characterize the minimum value of C that is required for a given �. This problem hasbeen studied in [17], pp 270{273, in the speci�c case of a 
ow constrained by one leaky bucket.The authors in [17] �nd that, if we impose a �xed delay constraint D to the 
ow, then thecondition on C is that C � CD, where CD depends on the leaky bucket parameters and thedelay constraint. CD is called the (deterministic) e�ective bandwidth of the 
ow, for a delay23



constraint of D. If N identical 
ows are superimposed, the e�ective bandwidth of the aggregate
ow is NCD; in contrast, for a heterogeneous mix of 
ows, there is no such additive property.We show now how these results derive from a more general concept. Back to the general case,for a given arrival curve �, we wish to �nd a rate C such that the horizontal deviation h(�; �C)is not more than D. This is equivalent to requiring that �(s) � C(s +D) for all s � 0, whichin turn can be expressed as C � sups�0 �(s)s+D . We have thus shown the following:Proposition 8 (E�ective Bandwidth) The queue with constant rate C guarantees a delaybound of D to a 
ow with arrival curve � if C � eD(�), witheD(�) = sups�0 �(s)s +D (21)We call eD(�) the e�ective bit rate, or deterministic e�ective bandwidth corresponding to thearrival curve �, for a delay constraint D. If � is di�erentiable, e(D) is the slope of the tangentto the arrival curve, drawn from the time axis at t = �D (Figure 4).
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7.2 TunnelingWe show now how the network calculus presented in this paper can be used to estimate theresources required in a tunneling scenario. Tunneling refers to the multiplexing of several 
owsinto a larger 
ow, which is handled in subsequent nodes as a single entity (called a virtual trunkin [15]). Tunneling occurs when a number of RSVP 
ows are multiplexed onto one single ATMconnection, or over one RSVP 
ow itself. We expect tunneling to play an important role in thescalability of integrated services networks.We assume in this section that a number of 
ows, with an aggregate arrival curve �, is multi-plexed into a virtual trunk. The virtual trunk is viewed as a single 
ow by downstream nodes;as such, it is constrained by an arrival curve �. We are interested in �nding, for a given arrivalcurve �, the optimal values of �, for a criterion that we de�ne later. An exhaustive study of thisproblem is far beyond the scope of this paper. In contrast, we show how network calculus can beemployed in this context; indeed, it is the study of this problem that motivated the derivationof the results in this paper, in particular Section 6.If we assume a work conserving scheduling policy, then the multiplexing node acts as a generalshaper. From Theorem 6, we can conclude that it o�ers a service curve � to the aggregate 
ow.Assume that the constraint at the multiplexor node is to guarantee a maximum delay D. FromTheorem 3, the requirement on the virtual trunk is that, for all s � 0, we have:�(s+D) � �(s) (24)Optimal Parameters for an ATM Variable Bit Rate Virtual Trunk As an example,assume the virtual trunk is an ATM Variable Bit Rate (VBR) connection. The shaping curvefor a VBR connection has the form �(t) = min(Pt; St + B) where P is the peak rate, S thesustainable rate and B a burst tolerance parameter. Equation (24) is illustrated on Figure 6.Equation (24) becomes: for all s � 0 : ( (s+D)P � �(s)(t+D)S +B � �(s) (25)The �rst condition in Formula (25) implies that P � eD(�), which is thus a necessary andsu�cient condition on P . In other words, we have shown that for a virtual trunk of the ATMVBR type, there is an minimum peak rate P0, which is the e�ective bandwidth of the arrivalstream and that this minimum peak rate is also optimal. More precisely, the latter statementmeans the following. We say that the parameter set (P; S; B) of the virtual trunk is feasible ifthe virtual trunk is able to carry the tra�c with a delay less than the delay constraint D. Theresult is that, if (P; S; B) is feasible, then on one hand, necessarily P � P0 = eD(�), and on theother hand, (P0; S; B) is also feasible. Another aspect of this result is that, from a bandwidthpoint of view, using a VBR trunk rather than a constant bit rate (CBR) trunk is all bene�tsince, by de�nition of the e�ective bandwidth, the CBR trunk would have a rate of at least P0.If we wish to solve the problem of �nding a complete optimal parameter set for (B;M), thenwe need an optimality criterion. As an example, we assume that we wish to minimize a cost26
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Figure 6: Virtual Trunk with parameters (P; S; B) satis�es the delay constraint D for tra�cwith arrival curve drawn on the picture.function c(P;M;B) which is a�ne and wide-sense increasing in each of its variables. The valueof P should thus be set to P0 and we wish to minimize c(P0; S; B)� c(P0; 0; 0) = uS + vB for�xed values of u and v. We can already say is that the set of acceptable values (S;B) is de�nedby for all s � 0 : B + (s+D)S � �(s) � 0 (26)and is thus a convex region (as intersection of half-planes). Assume � is concave. Any point onthe border of the region satis�es B + (t + D)S � �(s) = 0 for some s � s0, where s0 reachesthe minimum of �(s)s+D . It follows that any point on the border of the region necessarily satis�esm < S � P0, where m is the sustainable rate m = lims!+1 �(s)s . Also, for any given point(S;B) on the border we have B = sups�0f�(s)� (s+D)Sg (27)and S = sups�0 �(s)� B(s+D) (28)The values of (S;B) are also normally limited not to exceed maximum values Smax resp. Bmax.We thus have to minimize uS + vB in the region de�ned by (26) and S � Smax, B � Bmax. Byconvexity of the region, the minimum is for a point on the border.If uv � D then we �rst compute the point ( �S; �B) on the border where the tangent is orthogonalto (u; v). We have: �S = sups�0 �(s)� �(uv �D)(s+D � uv ) (29)�B = �(uv �D)� uv �S (30)27



Finally, after some algebra, we �nd the optimal value (P0; S0; B0) according to the algorithm inFigure 7.P0 = sups�0 �(s)s+Dif uv < D fS0 = min(P0; Smax)B0 = sups�0f�(s)� (s+D)S0ggelse f �S = sups�0 �(s)��(uv�D)(s+D�uv )�B = �(uv �D)� uv �Sif �S > Smax and �B > Bmax there is no feasible solutionelse if �S > Smax fS0 = min(P0; Smax)B0 = sups�0f�(s)� (s+D)S0ggelse if �B > Bmax fS0 = sups�0 �(s)�Bmaxs+DB0 = Bmaxgelse fS0 = �SB0 = �BggFigure 7: The algorithm for the optimal VBR virtual trunk parameters (P0; S0; B0) for a givenarrival curve � and a delay constraint DThe above results generalizes immediately to the case where the virtual trunk arrival curve isde�ned by any number of a�ne constraints (not just two as in this example). Similar resultshold if a maximum bu�er requirement is considered.The algorithm in Figure 7 can be used to estimate the optimal characteristics of the virtualtrunk, based on a measured arrival curve �. 28
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 by 
(u) = �(x+ u)� �(x) Functions 
 and � have right-handsidederivatives 
 0 and �0 satisfying 
 0(u) = �0(x+ u)By concavity of �, �0 is wide-sense decreasing, thus
 0(u) � �0(A+ u)and therefore 
(u)� 
(0) � �(A+ u)� �(A)for all u such that both A+ u and x+ u are in [A;B]. Apply the last formula to u = B � x toobtain the required inequality. 30


