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a b s t r a c t

This paper examines the minimization of the cost for an expected random production output, given
an assembly of finished goods from two random inputs, matched in two categories. We describe the
optimal input portfolio, first using the standard normal approximation of the binomial classification
distributions, and second using a tight concave envelope instead of the exact output objective. The
latter approach yields closed-form expressions for the factor demands and total costs which are linear
in the expected output and which approximate the solution to the original minimum-cost matching
problem for sufficiently large production batches. A key structural insight is that depending on the
ratio of input prices, one of the inputs should be considered as ‘‘critical component’’ while the other
assumes the role of a ‘‘buffer component.’’ As long as the cost ratio does not reach a critical threshold,
which is proportional to the ratio of the grade-attainment likelihoods, the relative composition of the
optimal input portfolio remains largely invariant. A numerical study confirms the practicality of the
envelope approach, both as a seed for a numerical solution of the exact optimality conditions and as
an approximate solution in closed-form.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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So every beast finds a mate1

Honoré de Balzac

. Introduction

Firms produce finished goods from diverse inputs. For physical
oods, the input components usually have to be assembled in
ixed proportions, corresponding to the functionality and geom-
try specified in the product design. The problem is that the
haracteristics of the incoming parts is generally random, and to
roperly fit together when assembled, components of different
ypes (e.g., a base plate and a screw) must therefore be com-
atible, that is, of the same ‘‘grade’’. The required matching of
nput grades implies that the firm’s yield in finished products is ex
nte random, as it depends on the result of its internal matching
f components. For a lack of perfect matching, this means that
ot all of the available inputs can be used productively. The
uestion then arises, how many pieces to order of each kind, so
s to minimize the cost for a given expected number of (possibly
eighted) same-grade matches?
Practical applications for input matching abound. For example,

hen building electric circuits for high-end audio equipment,

E-mail address: thomas.weber@epfl.ch.
1 From: The Maid of Thilouse (originally La pucelle de Thilhouze, published in

es contes drôlatiques, 1832).
https://doi.org/10.1016/j.jmateco.2022.102688
0304-4068/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
nc-nd/4.0/).
the components for the stereo channels must have close char-
acteristics to avoid perceptible side-to-side differences in the
stereo image. Similarly, in order to achieve a defined resonance
frequency in the movement of a mechanical watch, the respec-
tive characteristics of the balance spring and the balance wheel
must be of matching grades.2 When the unit prices of inputs
are different, as would be the case for balance springs versus
balance wheels (by at least a factor of 10), it is best to order
the cheaper parts in excess so as to decrease the number of
unmatched expensive parts.

In this paper, we formulate the ‘‘minimum-cost matching
problem’’ for the binary fitting of parts with random charac-
teristics that are independent and identically distributed, and
naturally described by binomial distributions. We first determine
the optimal input portfolio solution using the standard normal
approximation of the binomial distribution. Then we introduce
an envelope substitution of the objective function which leads
to closed-form expressions for the optimal vector of inputs and
the cost function. The comparative statics of the solution to
the envelope optimization problem highlight the two mutually
exclusive roles of inputs as either ‘‘critical components’’ or ‘‘buffer
components’’. The latter needs to be acquired in relative excess
to the former—with their relative proportions in the optimal

2 The balance spring is characterized by its stiffness (as measured by the
pring coefficient ~ [in N m/rad]) while the defining property of a balance
heel is its moment of inertia (denoted by I [in kg m2]). The quotient of these

characteristics defines the oscillation period T =
√
2π (I/~) (e.g., 1/T = 4 Hz).
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.jmateco.2022.102688
http://www.elsevier.com/locate/jmateco
http://www.elsevier.com/locate/jmateco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmateco.2022.102688&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:thomas.weber@epfl.ch
https://doi.org/10.1016/j.jmateco.2022.102688
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


T.A. Weber Journal of Mathematical Economics 101 (2022) 102688

p
(

1

w
p
(
p
t
i
c
m
c
s
i
p
c
D
b
u
r
f
r
c
i
i
p
t
o
d
i
i
i

P
t
o
a
s
w
s
m
q
t
i
s
i

1

m
t
b
b
f

o
t
b
e

t
p

i
a

a
l

t

ortfolio being fairly insensitive to the level of output and to
small) variations of factor prices.

.1. Literature

The perfect complementarity of goods in production functions,
here inputs are transformed in constant proportions into out-
uts, was introduced as a simplifying assumption by Leontief
1941) to analyze a large economy. However, such perfect com-
lementarity does arise naturally in assembly processes where
he required number of parts for each input (per unit of output)
s fixed.3 Generalizations to situations where the minimum-cost
ombinations may vary according to the size of inputs are sum-
arized by Fandel (1991) who also discusses the possibility of
ombining several assembly processes (ibid., p. 120). Production
ets akin to those with combinable assembly processes appear
n our problem as a tight bound of the (non-Leontief) smooth
roduction surface with stochastic matching. The presence of un-
ertainty in input–output production functions is recognized by
aughety (1982) who emphasizes that in a stochastic setting cost
ecomes a function of expected output, not actual output. The
nderlying assumption, as a generalization of the notions of sepa-
ability by Leontief (1947) and Sono (1961), is that the production
unction is stochastically separable, in the sense that the marginal
ates of technical substitution are in fact deterministic. In our
ase, while the envelope of ordered parts is deterministic, the
nputs to the matching categories are random. Since the sorting of
nputs into different grades or categories is part of the production
rocess, the associated production function is therefore stochas-
ic: its realization relies on an ex-ante unobserved characteristic
f the input. This produces a degree of substitutability across
ifferent input types (e.g., screws and base plates) provided each
s available in positive quantities. That is, each additional unit of
nput ensures against a contingency where an extra matching part
s available, so that an additional unit of output can be produced.

Production uncertainties in agriculture were examined by
ope and Chavas (1994), while Malikov et al. (2015) estimate
he production technology of banks by taking into account their
ptimal provision of uncertain inputs to achieve a given output-
ttainment goal in expectation. A state-contingent approach to
tochastic production is pursued by Chambers and Quiggin (2002)
here the states would tend to influence input–output conver-
ion as a whole. By contrast, we are interested here in the optimal
atching of stationary random inputs, which realize in different
uality categories. The present study is the first to determine
he cost (as a function of its expected output) and the optimal
nput portfolio, for a risk-neutral firm that engages in binomial
orting and matching of corresponding input grades to produce
ts output.4

.2. Outline

Section 2 describes the model primitives and introduces the
inimum-cost matching problem. In Section 3, we determine

he solution using the standard normal approximation to the
inomial distribution. Section 4 pursues an alternative approach
y finding cost-minimizing inputs of an upper envelope of the
irm’s objective function, which leads to a closed-form solution.

3 Here we assume that matches can occur only in equal proportions, one-to-
ne. For example, if four screws are required for each base plate, it is sufficient
o consider bundles of four screws as units of the first (‘‘type-1’’) input and
ase plates as units for the second (‘‘type-2’’) input, so as to return to the
qual-proportions assumption without any significant loss of generality.
4 Lee et al. (1990) analyze the tuning of (normal) input distributions under

wo-bin component matching to maximize the output yield in the long-run; the
roblem is different and remains unconcerned with input unit costs.
2

Fig. 1. Classification of m = 8 type-1 and n = 9 type-2 parts with characteristics
(s1, s2) in S = S1 × S2 , and random matching within grade-A and grade-B
categories, respectively.

The latter approximates the solution to the original problem
for sufficiently large production runs, thus revealing its struc-
tural properties. Numerically the envelope input approximation
is shown to perform well in a variety of settings. Section 5
concludes.

2. Problem

Consider two types of parts to be matched. Each unit of a
certain type i ∈ {1, 2} has a random characteristic Si with
realizations si in the measurable space Si ⊂ Rdi , for some integer
dimension di ≥ 1, which has at least two elements (to exclude
trivialities). A type-i part is called of ‘‘category A’’ (or ‘‘grade A’’)
if its characteristic lies in the (nonempty) set Ai ⊂ Si; otherwise
it is called of ‘‘category B’’ (or ‘‘grade B’’) with a characteristic in
the (nonempty) complement Bi = Si \ Ai. Two parts of different
types are ‘‘matched’’ if they are of the same category.5 It is clear
that different types of parts, such as balance springs and bal-
ance wheels, may have quite different characteristics, measured
in different units (cf. footnote 2). In watchmaking, for example
(given suitable thresholds for the characteristics), balance springs
may be either of ‘‘high stiffness’’ (grade A) or ‘‘low stiffness’’
(grade B), while balance wheels could be similarly classified into a
‘‘high inertia’’ (grade A) or ‘‘low inertia’’ (grade B) category. After
randomly matching parts of corresponding grades, the number
of assemblies for each grade is given by the minimum number
of parts available from either type. Thus, the finished assemblies
would be either grade A (with joint characteristics in A = A1 ×

A2) or grade B (with joint characteristics in B = B1 × B2),6 as
illustrated in Fig. 1.

Let p ∈ (0, 1) denote the probability that a randomly selected
type-1 part is of grade A, and let q ∈ (0, 1) be the probability
that a randomly selected type-2 part is of grade A.7 Furthermore,

5 The classification in the physical space Si of the type-i parts characteristics
s important for connecting our model to the real world; see Weber (2021) for
minimum-error partition of Si ⊂ R into ℓ ≥ 2 matching classes.
6 Here and in the following discussion we abstract from potential sorting and
ssembly errors, which can be all but eliminated using appropriate separation,
abeling, and verification techniques.
7 The degenerate cases where p ∈ {0, 1} or q ∈ {0, 1} are excluded, to keep

he discussion interesting.
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Fig. 2. Classification and conversion of stochastic inputs into grade-A and grade-B outputs.
iven input quantities of m type-1 units and n type-2 units, let X
escribe the random number of type-1 grade-A units and Y the
andom number of type-2 grade-A units. Both follow a binomial
istribution, so that

rob(X = x|m) =

(
m
x

)
px(1 − p)m−x, x ∈ {0, . . . ,m}, (1)

nd

rob(Y = y|n) =

(
n
y

)
qy(1 − q)n−y, y ∈ {0, . . . , n}. (2)

Given the stochastic inputs X and Y , conditional on the selected
nput (m, n), the output of matched grade-A parts is Z ≜ ⌊X, Y⌋

while the output of matched grade-B parts amounts to Ẑ ≜ ⌊m −

, n − Y⌋.8 Fig. 2 illustrates the assembly of the two types of
nputs into the respective outputs. Without loss of generality, we
ssume that the firm cares more about grade-A matches than

about grade-B matches, at least weakly. Such a weak preference
ordering can always be ensured, by switching grade labels if
necessary. The risk-neutral firm’s expected total output becomes

U(m, n) = E
[
Z + ρẐ

⏐⏐⏐m, n
]
, (3)

where the coefficient ρ ∈ [0, 1] denotes the relative weight of
B-grade output to A-grade output. As may be intuitively clear, if
more inputs are provided, the expected output must also go up.

Lemma 1 (Nonsatiation). The expected output U(m, n) is increasing
for m, n > 0.

Given (positive) unit costs c1 and c2 for type-1 and type-2
components, respectively, the minimum-cost matching problem is
to find the smallest expenditure,

C(u, c) = min
m,n≥0

{c1 m + c2n} , s.t. U(m, n) ≥ u, (*)

or a given expected output u ≥ 0, where c ≜ (c1, c2). The
inimum-cost matching problem (*) is well-posed in the sense

hat a feasible (or ‘‘admissible’’) solution (satisfying the output-
chievement constraint U(m, n) ≥ u) is guaranteed to exist.

8 For convenience, we write ⌊x, y⌋ for min{x, y} and ⌈x, y⌉ for max{x, y}, given
any real numbers x and y.
3

Remark 1 (Preview). Our solution to the minimum-cost matching
problem (*) involves a ‘‘double approximation’’, in the sense that
we first replace the discrete binomial distributions by a suitable
smooth approximation; cf. Section 3.1. This yields a continu-
ously differentiable output function, defined for all nonnegative
inputs. Since the employed normal approximation of the bino-
mial distribution is extremely good for any type of practically
relevant quantities, we continue to denote the smooth objective
approximation by U and refer the reader to (*) whenever we speak
of the (original) ‘‘minimum-cost matching problem’’. A second ap-
proximation then replaces the aforementioned smooth output
approximation by an envelope output Ū ≥ U for which a convex
‘‘envelope optimization problem’’ (**) is obtained; cf. Sections 4.1
and 4.2.

Lemma 2 (Existence). For all (u, c) ∈ R+ × R2
++

, an (admis-
sible) solution (m∗(u, c), n∗(u, c)) to the minimum-cost matching
problem (*) does exist.

The following result shows that it is possible to rescale the
output measure nonlinearly to different units of measurement,
as long as the corresponding transformation is monotonic.

Lemma 3 (Invariance). Let ϕ : R+ → R be an increasing function,
and let Û(m, n) ≜ ϕ(U(m, n)), for all m, n ≥ 0. Furthermore, let
α > 0. Then the ‘‘invariance property’’,

Ĉ(ϕ(u), αc) = αC(u, c), (4)

holds for all (u, c) ∈ R+ × R2
++

, where

Ĉ(û, ĉ) ≜ min
m,n≥0

{
ĉ1 m + ĉ2n

}
, s.t. Û(m, n) ≥ û,

for any û ≥ ϕ(0) and any ĉ = (ĉ1, ĉ2) with ĉ1, ĉ2 > 0.

We have therefore established that optimal cost is homoge-
neous of degree 1 with respect to a scaling of the cost vector c.
Thus, global inflation of factor prices has the same effect on the
optimal cost as changing the payment currency for factor inputs.
More generally, Lemma 3 can be used to include other types of
objective function, as noted next.

Remark 2 (Profit Maximization). The invariance property in
Lemma 3 broadens the scope of minimum-cost matching, for

example, to profit maximization (when viewed as minimum-cost
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evenue maximization). Indeed, let ri be the retail price (unit
evenue) and MCj the (constant) marginal cost of an assembled
roduct of grade j ∈ {A, B}.9 By setting Û(m, n) = (rA −

CA)E[Z |m, n] + (rB − MCB)E[Ẑ |m, n], assuming the positive
argins rA−MCA ≥ rB−MCB > 0 (without loss of generality), one
btains Eq. (4) with ϕ(u) = (rA −MCA)u and ρ = (rB −MCB)/(rA −

CA) ∈ (0, 1].

Lemma 4 (Solution Homogeneity). Any solution (m∗, n∗)(u, c) to the
minimum-cost matching problem (*) is invariant (or, homogeneous
of degree zero) with respect to cost scaling. That is,

(m∗, n∗)(u, c) = (m∗, n∗)(u, αc),

for all α > 0, given any (u, c) ∈ R+ × R2
++

.

Solutions to minimum-cost matching problems depend only
on the cost ratio γ = c1/c2 and the output level u, not on the
individual values of the factor costs, c1 and c2. Thus, there is
no ‘‘input-substitution effect’’ as long as a cost shock leaves γ

unchanged.

3. Solution

In an actual assembly situation, the components of the input
vector (m, n) must be natural numbers. Yet, in order to be able
to use differential calculus and simple algebra without paying
attention to the integer requirement, any input vector (m, n) ∈

R2
+
is deemed admissible. The associated rounding errors are small

and for virtually all practical purposes insignificant.

3.1. Normal approximation

To obtain an analytically convenient objective function
U(m, n), one needs a smooth version of the binomial distribu-
tion,10 defined for all (m, n) ∈ R2

+
. We employ here the ‘‘normal

approximation’’ of the binomial distribution, which—although
analytically only moderately tractable—yields good numerical
results.11 More specifically, we approximate the binomial dis-
tributions of X and Y by a standard-normal distribution, as

Prob(X ≤ x|m) ≈ F (x|m) ≜ Φ

(
x − µx(m)

σx(m)

)
(5)

and

Prob(Y ≤ y|n) ≈ G(y|n) ≜ Φ

(
y − µy(n)

σy(n)

)
, (6)

where µx(m) ≜ E[X |m] = mp, σ 2
x (m) ≜ E

[
(X − µx(m))2

⏐⏐m] =

mpp̂ are the first two moments of the binomial distribution of
X , and similarly, µy(n) ≜ nq, σ 2

y (n) = nqq̂ denote the first
and second moments of Y , respectively, using the abbreviations
p̂ = 1 − p and q̂ = 1 − q. The cumulative distribution function
(cdf) of the standard normal distribution is given by

Φ(ξ ) =

∫ ξ

−∞

φ(ζ ) dζ =
1
2

[
1 + erf(ξ/

√
2)
]
, ξ ∈ R,

9 The marginal cost MCj would generally include all production costs directly
elated to a finished product which contains the matched components of grade j.
10 In the simplest case where m, n are natural numbers, directly evaluating
inomial coefficients pushes the limits of precision (e.g., as soon as m, n ≥ 100),
nd it tends to require significant memory and computation time when using
recursive algorithm to avoid overflow (e.g., by precalculating the entries of
ascal’s triangle).
11 Ilienko (2013) provides a continuous version of the binomial distribution,
sable also for small values of m, n.
4

where

φ(ξ ) =
exp

(
−ξ 2/2

)
√
2π

, ξ ∈ R,

is the corresponding probability density function (pdf).

Remark 3 (Approximation Error). In terms of absolute approxima-
tion error, the Berry–Esseen theorem (Berry, 1941; Esseen, 1942)
guarantees limited absolute deviations, so

sup
x∈[0,m]

|Prob (X ≤ x|m) − F (x|m)| ≤
K (p2 + p̂2)

σx(m)

and

sup
y∈[0,n]

|Prob (Y ≤ y|n) − G(y|n)| ≤
K (q2 + q̂2)

σy(n)
,

ith K = 0.4748 as the currently best estimate by Shevtsova
2011) (which is strictly above the theoretical lower bound for
of (

√
10 + 3)/(6

√
2π ) ≈ 0.4097; Esseen, 1956). Provided that

m > κ2 ⌈p, p̂⌉
⌊p, p̂⌋

and n > κ2 ⌈q, q̂⌉
⌊q, q̂⌋

,

he normal approximation of the binomial distribution has an
rror in the order of the tail probabilities of realizations away
rom the mean further than κ standard deviations.

Henceforth, we consider the firm’s output objective in Eq. (3)
ith respect to the normal approximation of the binomial distri-
ution, so

(m, n) =

∫ m

0

[∫ n

0

(
⌊x, y⌋ + ρ⌊m − x, n − y⌋

)
dG(y|n)

]
dF (x|m),

(7)

or all (m, n) ∈ R2
+
. In particular, the minimum-cost matching prob-

em (*) is solved with respect to the smooth (approximate) output
unction U in Eq. (7); cf. Remark 1. For example, if m, n ≥ 200
nd p, q ∈ [0.2, 0.8], then the approximation error in Remark 3
annot exceed 6%.
As already alluded to in Lemma 1, which was formulated for

he original binomial input distribution, increasing inputs in the
ormal approximation leads to a right-shift of the input distribu-
ions, also termed first-order stochastic dominance (FOSD).12

emma 5 (Stochastic Dominance). m̂ > m, n̂ > n implies that
(·|m̂) ⪰FOSD F (·|m) on [0, m̂], and G(·|n̂) ⪰FOSD G(·|n) on [0, n̂].

An increase of inputs produces an FOSD-shift of components
vailable for matching, which in turn cannot decrease the number
f matched parts (of either grade) in expectation. This captures
he simple intuition that more input (of any type) is good for
utput, at least weakly.

.2. Output distribution

The assembly system converts the input distributions for the
ifferent part types and quality-grades into grade-specific output
istributions, as shown in Fig. 3. Given the normal approxima-
ions F (·|m) and G(·|n) for the random variables X and Y , the
istribution H(·|m, n) of grade-A matches Z = ⌊X, Y⌋ can be
ritten as the probabilistic complement of the product of the
ssociated survival likelihoods (1 − F (·|m)) and (1 − G(·|n)).

12 Given two cdf’s α, β defined on the common domain D (which is taken to
be a nonempty measurable subset of a finite-dimensional Euclidean space), α

first-order stochastically dominates β (i.e., α ⪰FOSD β) if and only if α ≤ β on
D (Lehmann, 1954).
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emma 6 (Grade-A Distribution). The grade-A output Z follows the
df H(·|m, n), where

H(z|m, n) = 1 −
(
1 − F (z|m)

)(
1 − G(z|n)

)
,

or all z ∈ [0, ⌊m, n⌋].

Simply put, Lemma 6 states that the probability of the grade-A
utput not exceeding a given value z is equal to the probabil-
ty that not both component types exceed z in terms of their
espective grade-A yields.

emma 7 (Grade-A Output). The expected number of category-A
atches is

z(m, n) = mpΦ

(
nq − mp
σ (m, n)

)
+ nqΦ

(
mp − nq
σ (m, n)

)
−σ (m, n)φ

(
nq − mp
σ (m, n)

)
,

here σ (m, n) =

√
mpp̂ + nqq̂ corresponds to the standard de-

viation of the difference of the statistically independent assembly
inputs.

Noting that Φ ((mp − nq)/σ (m, n)) = 1 − Φ ((nq − mp)/
σ (m, n)), one can interpret the expected amount of grade-A out-
put as a convex combination of both types of expected grade-A
inputs (with each respective weight going down as the other
component type becomes relatively more available), diminished
by a likelihood of mismatch times the dispersion σ (m, n).

Remark 4. When the expected inputs for both component types
are the same (i.e., mp = nq), then the two weights are also the
same, and the expected number of category-A matches is

µ (m,m(p/q)) = mp −

√
mp

(
p̂ + q̂

)
/(2π );
z o

5

the latter increases in the probabilities p, q of individual compo-
nents’ realizing as grade A.

Consider now the number of category-B matches, Ẑ = ⌊m −

X, n − Y⌋, which follows the cdf Ĥ(ẑ|m, n) for ẑ in [0, ⌊m, n⌋].

Lemma 8 (Grade-B Distribution). The grade-B output Ẑ follows the
cdf Ĥ(·|m, n), where

Ĥ(ẑ|m, n) = 1 − F (m − ẑ|m)G(n − ẑ|n),

for all ẑ ∈ [0, ⌊m, n⌋].

The probability that the grade-B output does not exceed the
given value ẑ is equal to the likelihood that there are either more
than m − ẑ type-1 grade-A parts or more than n − ẑ type-2
grade-A parts (or both). The counterfactual would mean that the
grade-A output is small, implying in turn that the grade-B output
exceeds ẑ, precisely the case to be excluded in the computation of
Ĥ(ẑ|m, n). Analogous to Lemma 7, it is now possible to compute
the expected grade-B output.

Lemma 9 (Grade-B Output). The expected number of grade-B
matches is

µ̂z(m, n) = mp̂Φ

(
nq̂ − mp̂
σ (m, n)

)
+ nq̂Φ

(
mp̂ − nq̂
σ (m, n)

)
−σ (m, n)φ

(
nq̂ − mp̂
σ (m, n)

)
,

here σ (m, n) is given in Lemma 7.

Again, we obtain that the expected grade-B output can be
iewed as a convex combination of its component parts in ex-
ectation, less than a mismatch adjustment—the latter being
roportional to the standard deviation of the difference (or sum)
f the two grade-B inputs.
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.3. Optimality conditions

Taking into account the expected grade-A output in Lemma 7
nd the expected grade-B output in Lemma 9, the firm’s objective,
hat is, its production function, in Eq. (7) becomes

(m, n) = µz(m, n) + ρ µ̂z(m, n), (8)

for all (m, n) ∈ R2
+
, under the normal approximation. This ex-

pected total output is increasing in the inputs, echoing the non-
satiation result in Lemma 1.

Lemma 10 (Monotonicity). ∂mU(m, n) > 0 and ∂nU(m, n) > 0, for
all (m, n) ∈ R2

+
.

Since increasing input produces increasing output, at any so-
lution of the minimum-cost matching problem (*), the output-
attainment constraint must be binding.

Lemma 11 (Output Efficiency). Any solution (m∗(u, c), n∗(u, c)) to
the minimum-cost matching problem (*) is such that

U(m∗(u, c), n∗(u, c)) = u, (9)

for all (u, c) ∈ R+ × R2
++

.

Condition (9) ensures that no money is wasted to produce any
expected output beyond the required level u. This fixes an iso-
output curve where U(m, n) = u. Along this curve, the relative
effectiveness of the component types in terms of contributing
to an expected unit of a finished good generally varies. Corner
solutions where only one type of good is procured are never
viable because they would surely not lead to any assemblies at
all. The next result establishes that at an interior optimum the
ratio of marginal productivities ∂mU/∂nU must be equal to the
ratio of the input costs γ = c1/c2, so as to optimally balance the
input portfolio in view of maximizing output.

Theorem 1. A solution (m∗(u, c), n∗(u, c)) to the minimum-cost
matching problem (*), with the expected output U(m, n) in Eq. (7),
satisfies Eq. (9) and

∂mU(m∗(u, c), n∗(u, c))
∂nU(m∗(u, c), n∗(u, c))

=
c1
c2

= γ , (10)

or any (u, c) ∈ R+×R2
++

, where the marginal product of additional
inputs is given by

∂mU(m, n) = pΦ
(

nq−mp
σ (m,n)

)
−

pp̂/2
σ (m,n) φ

(
nq−mp
σ (m,n)

)
+ρ

[
p̂Φ

(
nq̂−mp̂
σ (m,n)

)
−

pp̂/2
σ (m,n) φ

(
nq̂−mp̂
σ (m,n)

)]
,

nd

nU(m, n) = qΦ
(

mp−nq
σ (m,n)

)
−

qq̂/2
σ (m,n) φ

(
nq−mp
σ (m,n)

)
+ρ

[
q̂Φ

(
mp̂−nq̂
σ (m,n)

)
−

qq̂/2
σ (m,n) φ

(
nq̂−mp̂
σ (m,n)

)]
,

espectively, for any (m, n) ∈ R2
++

, with σ (m, n) =

√
mpp̂ + nqq̂.

Although there is no closed-form solution for the optimality
conditions (9) and (10), it is possible to connect (m∗(u, c), n∗

u, c)) to the optimal expenditure (cost) C(u, c) and establish
comparative statics as well as symmetry properties. This is ac-
complished below. In Section 4, we show that a simplified ‘‘enve-
lope objective’’ leads to a closed-form solution with very intuitive
and readily interpretable results, at a relative error that decreases
in the expected output u.
6

Remark 5 (Nonconcavity). The output objective U(m, n) is gen-
erally nonconcave in the input vector (m, n). To see this, it is
sufficient to set ρ = 0 and consider the determinant of the
Hessian (i.e., the matrix D2U of second derivatives of U):

detD2U = det
[
∂2
mmU ∂2

mnU
∂2
mnU ∂2

nnU

]
= −

p2q2(2 − p − q)2

8 σ 4(m, n)
φ2
(
nq − mp
σ (m, n)

)
< 0,

or all m, n > 0. This value corresponds to the product of the
igenvalues of the Hessian, thus implying that D2U has eigenval-
es of different signs and thus cannot be negative semidefinite,
stablishing the generic nonconcavity of U . For this reason, it
s desirable to have a good initial seed for a numerical solution
o the nonlinear first-order optimality conditions (9)–(10). This
ssue is addressed in Section 4, where a high-quality approximate
olution is given in closed form.

.4. Solution properties

The solution of the minimum-cost matching problem is the
radient of the cost function.

emma 12 (Cost Gradient; Shephard, 1953). Let m∗(u, c) and
∗(u, c) be a solution to the minimum-cost matching problem (*).
hen m∗(u, c) = ∂C(u, c)/∂c1 and n∗(u, c) = ∂C(u, c)/∂c2.
oreover, the marginal cost of additional expected output is

∂C(u, c)
∂u

=
c1

∂mU(m∗(u, c), n∗(u, c))
=

c2
∂nU(m∗(u, c), n∗(u, c))

,

for all u > 0 and all c = (c1, c2) with c1, c2 > 0.

The last result (the first part of which corresponds to Shep-
hard’s lemma; Shephard, 1953) implies that it is possible to
infer a cost-optimizing firm’s actions by observing expenditure
variations (e.g., reported in accounting reports) in response to
shocks in the input prices (which are often publicly observable,
at least by industry insiders). At the optimal input, the marginal
cost of increasing the expected output is equal to the ratio of the
input cost ci and the ‘‘marginal productivity’’ of the correspond-
ing input (with respect to increasing output). This corresponds
to a unit cost which is generally different from the average
cost, reflecting the firm’s cost sensitivity exactly at the (bind-
ing) output-attainment constraint, due to the output-efficiency
property in Lemma 11.

An additional solution property is obtained as a consequence
of Young’s theorem about the equality of cross-partial derivatives
of smooth functions (Apostol, 1974, Thm. 12.13, p. 360), namely
a symmetric effect of unit-cost shocks of type-i inputs on the
optimal input quantity of type-j inputs, where i ̸= j.

Lemma 13 (Solution Symmetry). Let m∗(u, c) and n∗(u, c) be a
solution to the minimum-cost matching problem (*). Then
∂m∗(u, c)

∂c2
=

∂n∗(u, c)
∂c1

,

for all u > 0 and all c = (c1, c2) with c1, c2 > 0.

These properties carry over when using a high-quality approx-
imate solution, which provides further insights about the nature
of cost-minimizing inputs in a stochastic assembly situation.

4. Envelope optimization

The firm’s objective function in Eq. (8), although smooth, is
not amenable to finding an analytical solution to the minimum-
cost matching problem (*). Thus, instead of approximating the
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ptimality conditions in Theorem 1,13 we introduce in Section 4.1
he ‘‘envelope output’’ as alternative objective function. Besides
roviding an approximately optimal input, which in itself can be
sed as a high-quality initial seed for a numerical solution of the
ptimality conditions in Theorem 1, the closed-form expressions
llow for structural conclusions leading to managerial insights
discussed in Section 5). In Section 4.2, the solution to the corre-
ponding envelope optimization problem is obtained analytically.
ection 4.3 provides a theoretical approximation guarantee, as a
unction of the expected production volume. In Section 4.4, we
efine a performance comparison in terms of the relative output
rror (and the closely related relative average-cost error). An
xtensive numerical experiment indicates that the approximation
erforms well over a wide range of parameters, when taken as a
urrogate input to the original minimum-cost matching problem.

.1. Envelope output

A piecewise linear substitute for the firm’s nonlinear objective
unction in Eq. (7) is the envelope output, defined as

¯ (m, n) = ⌊mp, nq⌋ + ρ⌊mp̂, nq̂⌋, (11)

hich is a tight upper bound for U .

emma 14 (Envelope Bound). For any (m, n) ∈ R2
+

it is U(m, n) ≤

¯ (m, n).

In other words, no expected input of a given grade can ever
e less than the expected output for that grade. The reason is
ensen’s inequality: since the minimum is a concave function (and
positive linear combination of two concave functions remains
oncave), the expectation of the minimum in Eq. (3) cannot
xceed the minimum of the expectations in Eq. (11); see also
chaefer (1976). In particular, the absolute deviation between the
utput objective U and the envelope objective Ū ,

(m, n) ≜ |U(m, n) − Ū(m, n)| = Ū(m, n) − U(m, n) ≥ 0,
, n ≥ 0,

escribes the envelope approximation error. The following re-
ult, which follows from Lemmas 7 and 9, establishes that this
pproximation error is sublinear in the inputs.

emma 15 (Approximation Error). For any (m, n) ∈ R2
++

it is

R(m, n)
σ (m, n)

≤
1 + ρ
√
2π

,

where σ (m, n) =

√
mpp̂ + nqq̂.

For p = q = 1/2 = p̂ = q̂ and m = n > 0, the preceding
rror bound is tight. In an asymmetric parameter configuration,
he bound is somewhat conservative because it is derived under
he (generally infeasible) premise that the contingencies mp =

q and mp̂ = nq̂ apply simultaneously. The risk-pooling effect
mplied by the sublinearity means that the relative approximation
rror becomes arbitrarily small, as long as the input size (or
quivalently, the expected-output objective) is sufficiently large;
f. Lemma 16 in Section 4.3.

.2. Optimal envelope inputs

Consider now the (minimum-cost) envelope optimization prob-
em, which consists of determining the smallest expenditure for

13 Such an approach tends to produce results that are not very useful, since the
atter are either too crude (e.g., after linearization) or not analytically tractable
e.g., after a higher-order multidimensional Taylor expansion).
7

Table 1
Solution to the envelope optimization problem for p ̸= q.

p < q p > q

γ < γ0 γ > γ0 γ̂ < γ̂0 γ̂ > γ̂0

m̄∗ q
p

ū
q+ρq̂

ū
p+ρp̂

ū
p+ρp̂

q̂
p̂

ū
q+ρq̂

n̄∗ ū
q+ρq̂

p̂
q̂

ū
p+ρp̂

p
q

ū
p+ρp̂

ū
q+ρq̂

γ = γ0, λ ∈ [0, 1] γ̂ = γ̂0, λ ∈ [0, 1]

m̄∗ λ
( q
p

ū
q+ρq̂

)
+ (1 − λ)

( ū
p+ρp̂

)
λ
( ū
p+ρp̂

)
+ (1 − λ)

( q̂
p̂

ū
q+ρq̂

)
n̄∗ λ

( ū
q+ρq̂

)
+ (1 − λ)

( p̂
q̂

ū
p+ρp̂

)
λ
( p
q

ū
p+ρp̂

)
+ (1 − λ)

( ū
q+ρq̂

)

a given envelope output ū ≥ 0,

C̄(ū, c) = min
m,n≥0

{c1m + c2n} , s.t. Ū(m, n) ≥ ū. (**)

t turns out that the solution to this modified optimization prob-
em is simple, since the cost objective is linear and the envelope-
utput attainment constraint is piecewise linear by construction.
et γ = c1/c2 and γ0 = p/(ρq̂). Similarly, let γ̂ = c2/c1 and
ˆ0 = q/(ρp̂).

heorem 2. Let p, q ∈ (0, 1). For p ̸= q, the solution (m̄∗, n̄∗) of
the envelope optimization problem (**) is given in Table 1; for p = q,
it is m̄∗

= n̄∗
= ū/(p + ρp̂).

Considering the nontrivial case where p ̸= q, the optimal
envelope inputs m̄∗ and n̄∗ are generically different. Their val-
ues depend on whether the cost ratio γ (resp., γ̂ ) attains a
hreshold which corresponds to the ratio of the corresponding
rade-attainment probabilities p/q̂ (resp., q/p̂) when the firm
ares equally about the output grades (i.e., when ρ = 1) or a
correspondingly larger number p/(ρq̂) (resp., q/(ρp̂)) when the
firm differentiates between output grades (i.e., when ρ ∈ (0, 1)).
Which particular threshold (γ or γ̂ ) is used depends on whether
p < q or else p > q.

For p < q, if the cost ratio γ lies below the threshold γ0, then
the cost of the first (type-1) input is relatively small, leading to
an optimal input ratio m̄∗/n̄∗

= q/p > 1 favoring that input.
If the cost ratio exceeds the threshold, then the optimal input
ratio m̄∗/n̄∗

= q̂/p̂ < 1 favors the second (type-2) input. If the
cost ratio happens to be equal to the threshold, the firm becomes
indifferent between all the input ratios in the interval [q̂/p̂, q/p],
o in particular ordering the same amount of both component
ypes is also optimal. Due to its singular nature, this knife-edge
ase is practically not very interesting, and the firm would usually
ant to operate in a mode with either type-1 excess or type-2

excess. For p > q, the situation is anti-symmetric, and the optimal
nput ratio depends on whether the (inverse) cost ratio γ̂ lies
above its threshold γ̂0 or not. Thus, if γ̂ > γ̂0, then m̄∗/n̄∗

=

q̂/p̂ > 1, and conversely: if γ̂ < γ̂0, then m̄∗/n̄∗
= q/p < 1. In the

marginal case where γ̂ = γ̂0, the firm would be indifferent over
all input ratios between q/p and q̂/p̂. Substituting the optimal
envelope inputs in (**) yields the cost C̄(ū, c) of attaining any
given envelope-output objective ū > 0 given the cost vector c.

Corollary 1. Let p, q ∈ (0, 1). The optimal cost C̄(ū, c) in (**) is
given in Table 2.

Note that C̄ is continuous in all parameters. More importantly,
it increases linearly in the envelope-output objective ū, and it is
affine (and increasing) in the unit costs c1 and c2 for type-1 and
type-2 inputs, respectively. The envelope cost can be viewed as
the potential of a vector field, producing the vector of optimal
envelope inputs as gradient of C̄ with respect to the unit-cost
vector c.
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Table 2
Optimal cost C̄(ū, c) in (**), for all ū ≥ 0 and c = (c1, c2) ≥ 0.

p ≤ q p ≥ q

γ ≤ γ0 γ ≥ γ0 γ̂ ≤ γ̂0 γ̂ ≥ γ̂0

C̄(ū, c)
( ( q

p

)
c1+c2

q+ρq̂

)
ū

( c1+

(
p̂
q̂

)
c2

p+ρp̂

)
ū

( c1+

(
p
q

)
c2

p+ρp̂

)
ū

( ( q̂
p̂

)
c1+c2

q+ρq̂

)
ū

Table 3
Minimum output u

¯
(ε) for a relative approximation error ε > 0 at (m̄∗, n̄∗).

p ≤ q p > q

γ ≤ γ0 γ > γ0 γ̂ ≤ γ̂0 γ̂ > γ̂0

¯
u(ε) p̂+q̂

2π
q+ρq̂

q

( 1+ρ

ε

)2 p+q
2π

p+ρp̂
p̂

(
1+ρ

ρε

)2
p̂+q̂
2π

p+ρp̂
p

( 1+ρ

ε

)2 p+q
2π

q+ρq̂
q̂

(
1+ρ

ρε

)2

Corollary 2. Let p, q ∈ (0, 1). The solution (m̄∗, n̄∗) of the envelope
ptimization problem (**) is given by the gradient of the optimal
ost C̄ :

¯
∗(ū, c) =

∂ C̄(ū, c)
∂c1

and n̄∗(ū, c) =
∂ C̄(ū, c)

∂c2
, (12)

or all ū > 0 and all c = (c1, c2) with c1, c2 > 0, γ ̸= γ0, and
ˆ0 ̸= γ̂0.

The last result provides solution symmetry for the envelope
ptimization problem (**), analogous to Lemma 12 for the original
inimum-cost matching problem (*), with the expected output
iven by Eq. (7). That is, the slope of the optimal type-1 input m̄∗

ith respect to the unit cost c2 is the same as the slope of the
ptimal type-2 input n̄∗ with respect to the unit cost c1.

.3. Approximating the solution of the minimum-cost matching
roblem

Lemma 15, together with Theorem 2, implies that the absolute
eviation of the envelope output from the actual expected output
s maximal at precisely the solution of the envelope optimization
roblem. Furthermore, this approximation error grows only sub-
inearly in the size of the input, which means that in terms of the
elative approximation error,

(m, n) =
|U(m, n) − Ū(m, n)|

U(m, n)
=

R(m, n)
U(m, n)

, m, n > 0, (13)

he quality of the approximation increases as the expected output
f the process goes up.

emma 16 (Solution Approximation). There exists a finite minimum
output

¯
u(ε), specified in Table 3, such that14

ū ≥
¯
u(ε) ⇒ r(m̄∗, n̄∗) ≤ ε,

for all ε > 0.

By the definition of the relative approximation error in Eq. (13)
the preceding result immediately implies

u = ū ≥
¯
u(ε) ⇒

ū
1 + ε

≤ U(m̄∗, n̄∗) ≤ ū = Ū(m̄∗, m̄∗)

= U(m∗, n∗) = u,

or all ε > 0, where (m∗(u, c), n∗(u, c)) solves (*), while
m̄∗(ū, c), n̄∗(ū, c)) solves (**). But this means that for a given ex-
ected output u in the minimum-cost matching problem (*), one
an simply set ū = u in the envelope optimization problem (**),
etermine the closed-form solution (m̄∗(ū, c), n̄∗(ū, c)) according

14 For ρ = 0, the relevant entries of Table 3 do remain finite.
8

to Table 1, and use it as an approximate solution for (*). For any
ε > 0, this procedure guarantees an expected output of at least
u/(1+ε) given any goal u ≥

¯
u(ε) . Thus, the envelope optimization

problem (**) effectively approximates the original cost-minimization
problem (*), provided the expected output is sufficiently large.

4.4. Performance evaluation

Notwithstanding the rather conservative lower output bounds
in Table 3, to evaluate the performance of the suggested envelope
solution ‘‘in the field’’, we first introduce several practical perfor-
mance measures for a given expected output and then conduct a
numerical experiment.

Performance measures. To gauge the performance of the approx-
imate solution (m̄∗, n̄∗) in comparison with the exact solution
(m∗, n∗), we first determine the relative loss in expected output
when using (m̄∗, n̄∗) instead of (m∗, n∗). That is, for a given prob-
ability tuple (p, q), cost vector c = (c1, c2), and expected output
u, we compute the minimal cost C∗(u, c). Then we determine an
‘‘equivalent envelope-output objective’’ ū(u, c), implicitly defined
as

C̄(ū(u, c), c) = C∗(u, c),

hich generates the same expenditure as solution to the enve-
ope optimization problem (**). Because of the linearity of the
nvelope cost in ū (cf. Corollary 1), the average envelope cost

AC(c) = C̄(ū, c)/ū does not depend on ū, leading to an expression
for the equivalent envelope-output objective:

ū(u, c) =
C∗(u, c)

AC(c)
. (14)

The corresponding solution of the envelope optimization prob-
lem (**) produces the expected output

Û(u, c) = U(m̄∗(ū, c), n̄∗(ū, c))
⏐⏐
(ū,c)=(ū(u,c),c) ∈ (0, u],

t the same cost as the optimal solution of the original minimum-
ost matching problem (*) which is required to attain the ex-
ected output u. And in general the approximate solution (m̄∗, n̄∗)

does not perform as well, so Û(u, c) ≤ u. The situation is
illustrated in Fig. 4. Overall, this gives rise to the relative output
error,

e(u, c) =
|u − Û(u, c)|

u
∈ [0, 1). (15)

he absolute value is used to prevent negative results, as the solu-
ion to (*) needs to be obtained numerically leading to imprecise
alues C∗ and Û within the tolerances of the chosen algorithms.

On the other hand, the average cost per part of expected output
(or ‘‘unit cost’’),

AC(u, c) =
C∗(u, c)

u
,

increases (when using the approximate solution) to

ÂC(u, c) =
C∗(u, c)

Û(u, c)
=

AC(u, c)
1 − e(u, c)

.

ut this in turn implies the relative unit-cost error,

ˆ(u, c) =

⏐⏐ÂC(u, c) − AC(u, c)
⏐⏐

AC(u, c)
=

e(u, c)
1 − e(u, c)

, (16)

which always exceeds the relative output error e(u, c) (at least
weakly).
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Numerical experiment. Since the relative errors, e and ê in
Eqs. (15) and (16), are quite close, we restrict our attention to
a computation of the former, for the fixed target output level
u = 100, cost tuples c = (c1, c2) in the set {(1, 1), (2, 1), (5, 1)},
nd a weight ρ for grade-B goods relative to grade-A goods with

values in {0.5, 1}. For larger values of u, the performance of the
envelope solution is even better, since—as a result of more risk
pooling with larger outputs—the coefficients of variation in the
relevant distributions decrease. For smaller values of u the error
somewhat increases, but at that point we leave industrial scale
and below u = 50 even the standard normal approximation
of the binomial distribution becomes an area of concern. The
conservative approximation bounds in Table 3 are quite large by
comparison. For example, given ε = 10% (resp., ε = 5%) and
c = (1, 1) with ρ = 1, we find from Lemma 16 that

¯
u(ε) ≈ 127

(resp.,
¯
u(ε) ≈ 509), whereas the actual numerical performance

is considerably better. Finally, we reiterate here that the main
point of the solution to the envelope optimization problem (**)
is not that it should necessarily be considered as a substitute of
the (numerical) solution of the original minimum-cost matching
problem (*), which can easily be obtained, but rather that its
excellent numerical performance and theoretical approximation
properties serve as a reasonable justification to glean structural
solution properties from its explicit expressions.

The results of our numerical experiment are summarized in
Fig. 5a–f which provide contour-plots of the relative output error,
for p, q between 10% and 90%, and are indexed by the aforemen-
tioned values of parameters c and ρ. In the equal-cost case (with
c1 = c2 = 1), depicted in Figs. 5(a) and 5(b), the relative error
is largest (but not more than 5%) along the 45-degree line where
the grade-A attainment probabilities p and q are the same, as this
tends to align the cost envelope and the cost line (corresponding
to a slight counterclockwise turn of the iso-output curves15 in

15 Assuming equal scales on both axes, the fact that the iso-cost line in Fig. 4
as been drawn for c < c (whereas in our numerical experiment we use
1 2

9

Fig. 4) thus producing a greater numerical instability in the nu-
merical solution of (*). This theme (of greater error along regions
of alignment between the cost frontier and iso-output curves)
continues, albeit in a less apparent way, throughout Figs. 5(c)–5(f)
as well. Since the implied relative output error of the solution to
the envelope optimization problem (**) stays in the order of 5%
throughout, the performance of the proposed approximation ap-
pears quite satisfying for many applications (where the dispersion
of the underlying problem parameters, such as p, q and/or c1, c2,
ay well be higher, e.g., in the order of 10% or more).

. Conclusion

Assembly situations often involve matching components that
ave random characteristics (e.g., specified in terms of mechan-
cal or electromagnetic properties), thus implying different pos-
ible ‘‘grades’’ when ordering parts of a given type (e.g., balance
prings or balance wheels in mechanical watchmaking). A valid
ssembly needs to respect that components of different types
ust be of the same grade, for instance, to reach an allowable
and of resonance frequencies for assembled watch oscillators.
dditional quantities of one input provide insurance against im-
alances in the available same-grade matches across different
omponent types. The optimal input portfolio (which satisfies the
onditions in Theorem 1) determines the firm’s minimal cost. In
q. (8) we have provided an explicit form of the firm’s production
unction with component sorting and matching. An important
onclusion from our analysis is that the role of providing this
nsurance is clearly assigned: One input type can be consid-
red as the ‘‘critical component’’, thus relegating the status of
he other to serve as ‘‘buffer component’’. The latter provides a

c1 ≥ c2) does not affect the response of the iso-output curves to changes in the
grade-A attainment probabilities p and q, since both U and Ū are independent
of the input costs.
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Fig. 5. Relative output error e(u, c), for u = 100 and 0.1 ≤ p, q ≤ 0.9.
g
i

guarantee, albeit imperfect, against the possibility of excess in
critical components. This distinction is locally insensitive to pa-
rameter changes. Moreover, the composition of the optimal input
portfolio depends only on the ratio of the grade-attainment like-
lihoods and not the cost—as long as the ratio of the input prices
does not move past a threshold (γ0 or γ̂0 in the model). The
optimal composition of the input portfolio can be gleaned, at least
 c

10
approximately, from the solution to the envelope optimization
problem, leading to a useful rule of thumb: the ratio of the
optimal input quantities (implied by Theorem 2) corresponds to
the ratio of the grade-attainment likelihoods (i.e., either p/q for
rade A, or p̂/q̂ for grade B). This formalizes that, quite unsurpris-
ngly, the input that is ‘‘relatively cheaper’’ serves as the buffer
omponent, whereby the assessment of what it means to be
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elatively cheaper involves both the per-unit input costs as well
s the grade-attainment likelihoods of the different component
ypes; cf. Table 1.

Beyond providing structural insights, the solution to the en-
elope optimization problem (**) can be used as a high-quality
eed for a numerical solution of the optimality conditions (9)–
10) which in turn pinpoint a solution to the original (nonconvex)
inimum-cost matching problem (*), with the expected output

n Eq. (7) that uses the (standard) normal approximation of the
nderlying binomial distribution. Finally, the results in Lemma 16
how that the explicit input portfolio obtained from the envelope
ptimization problem serves as an effective approximation of the
inimum-cost input portfolio, with an arbitrarily small relative
pproximation error for a sufficiently large expected production
olume.
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ppendix. Proofs

roof of Lemma 1. We restrict our attention to establishing the
onotonicity of U(m, n) in m; the proof for the monotonicity

of U in n is symmetric. Let π (x|m) = Prob(X = x|m) denote
the discrete probability distribution function in Eq. (1), which
vanishes for x /∈ {0, 1, . . . ,m}. Increasing the number of input
draws yields a first-order stochastically dominant distribution
(i.e., π (·|m+1) ≻FOSD π (·|m); see, e.g., Klenke and Mattner, 2010),
hich implies for any realization y ∈ {1, . . . , n} that

[⌊X, y⌋|m + 1] > E[⌊X, y⌋|m].

hus, E[Z |m, n] is increasing in m, for n > 0. On the other hand,
he random variable X̂(m) = m−X is distributed with the discrete
robability distribution

rob(X̂ = x|m) =

(
m

m − x

)
pm−x(1 − p)x

=

(
m
x

)
(1 − p̂)m−xp̂x, x ∈ {0, . . . ,m},

here p̂ = 1 − p, so that we obtain an equivalent setup as
efore. The preceding argument therefore implies that E[Ẑ |m, n]
s increasing in m, for n > 0. This concludes our proof. □

roof of Lemma 2. By Lemma 1, the output-achievement con-
traint U(m, n) ≥ u defines an upper contour set C(u) which
s such that (m, n) ∈ C(u) implies that (m̂, n̂) ∈ C(u) for all
m̂, n̂) ≥ (m, n). Let (m0, n0) ∈ C(u); then the optimal cost C(u, c)
s bounded from above by C0 = c1m0 + c2n0. This means that
ne can add the constraint C0 ≥ c1 m + c2n without changing
he feasibility of any solution to the problem. Moreover, the set
(u) = {(m, n) ≥ 0 : c1 m + c2n} ∩ C(u) is finite for integer m, n,
o that a solution exists.16 □

16 For (nonnegative) real-valued m, n, a solution exists by the Weierstrass
theorem (see, e.g., Bertsekas, 1995, p. 540), since the objective function is
continuous and the set S(u) is compact; as mentioned in footnote 11, Ilienko
(2013) discusses a continuous version of the binomial distribution. In a real-
world setting, the firm would need to round a real-valued input to a suitable
integer number of pieces, e.g., depending on the batch size.
11
Proof of Lemma 3. Since ϕ is by assumption increasing, U(m, n) ≥

u if and only if Û(m, n) ≥ û = ϕ(u) ≥ ϕ(0), for all u ≥ 0. Thus,

ˆ (ϕ(u), αc) = α min
m,n≥0

{c1 m + c2n} , s.t. U(m, n) ≥ u, (17)

hich implies that C(ϕ(u), αc) = αC(u, c), as claimed. □

roof of Lemma 4. The claim follows immediately from the
quivalence of the minimum-cost matching problem (*) and the
caled optimization problem in Eq. (17) for ϕ(u) ≡ u. □

roof of Lemma 5. Differentiating the normal distribution F (x|m)
n Eq. (5) with respect to m yields

mF (x|m) =
−p
√
mpp̂ − (x − mp)pp̂/(2

√
mpp̂)

mpp̂
φ

(
x − mp√

mpp̂

)
,

or equivalently,

∂mF (x|m) = −
p + (x/m)
2σx(m)

φ

(
x − µx(m)

σx(m)

)
< 0, x ≥ 0.

This establishes first-order stochastic dominance with respect to
an increase in the number of type-1 parts ordered. Similarly,

∂nG(y|n) = −
q + (y/n)
2σy(n)

φ

(
y − µy(n)

σy(n)

)
< 0, y ≥ 0,

which shows that increasing the number of type-2 parts induces
a first-order stochastically dominant shift in the random number
of these components in the grade-A category. □

Proof of Lemma 6. Let z ∈ [0, ⌊m, n⌋]. Then, taking into account
the dependence of Z on X and Y ,

H(z|m, n) = Prob(Z ≤ z|m, n)
= Prob(X ≤ z|m) + Prob(Y ≤ z|n)

−Prob(X, Y ≤ z|m, n),

r equivalently,

(z|m, n) = F (z|m) + G(z|n) − F (z|m)G(z|n),

so

H(z|m, n) = 1 − (1 − F (z|m))(1 − G(z|n)),

hich establishes the result. □

roof of Lemma 7. Note first that Z = ⌊X, Y⌋ = X + ⌊0, Y − X⌋.
hus, given m and n, the expected value of Z can be written in
he form

[Z |m, n] = µx(m) + E [⌊0, Y − X⌋|m, n] .

Since X, Y are by assumption normally distributed (and inde-
pendent), the random difference ∆ = Y − X is also normally
distributed—with mean

µ(m, n) = µy(n) − µx(m) = nq − mp

nd variance
2(m, n) = σ 2

x (m) + σ 2
y (n) = mpp̂ + nqq̂.

y virtue of the linearity of the expectation operator, we can
ntroduce the standard normal random variable (∆ − µ(m, n))/
σ (m, n) through an affine transformation as follows:

[⌊0, ∆⌋|m, n] = µ(m, n) + E [⌊−µ(m, n), ∆ − µ(m, n)⌋|m, n]
= µ(m, n) + σ (m, n)

×E
[⌊

−
µ(m,n)

,
∆−µ(m,n)

⌋⏐⏐⏐m, n
]
.

σ (m,n) σ (m,n)
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s a result, the expected value in the preceding line can be
valuated directly,[⌊

−
µ(m,n)
σ (m,n) ,

∆−µ(m,n)
σ (m,n)

⌋⏐⏐⏐m, n
]

= −
µ(m,n)
σ (m,n)

(
1 − Φ

(
−

µ(m,n)
σ (m,n)

))
−φ

(
−

µ(m,n)
σ (m,n)

)
= −

µ(m,n)
σ (m,n)Φ

(
µ(m,n)
σ (m,n)

)
− φ

(
µ(m,n)
σ (m,n)

)
where we have used the fact that for any ξ ∈ R by symmetry
f the standard normal distribution it is Φ(ξ ) = 1 − Φ(−ξ ) and
(ξ ) = φ(−ξ ). The last equation yields

[⌊0, Y − X⌋|m, n] = µ(m, n)
(
1 − Φ

(
µ(m,n)
σ (m,n)

))
−σ (m, n)φ

(
µ(m,n)
σ (m,n)

)
,

o that

[Z |m, n] = µx(m)Φ
(

µ(m,n)
σ (m,n)

)
+µy(n)

(
1 − Φ

(
µ(m,n)
σ (m,n)

))
− σ (m, n)φ

(
µ(m,n)
σ (m,n)

)
= mpΦ

(
nq − mp
σ (m, n)

)
+ nqΦ

(
mp − nq
σ (m, n)

)
−σ (m, n)φ

(
nq − mp
σ (m, n)

)
,

hich completes our proof. □

Proof of Lemma 8. Let ẑ ∈ [0, ⌊m, n⌋]. Then

Ĥ(ẑ|m, n) = Prob(Ẑ ≤ ẑ|m, n)
= Prob(m − X ≤ ẑ|m)

+Prob(n − Y ≤ ẑ|n) − Prob(m − X, n − Y ≤ ẑ|m, n),

or equivalently,

Ĥ(ẑ|m, n) =
(
1 − F (m − ẑ|m)

)
+
(
1 − G(n − ẑ|n)

)
−
(
1 − F (m − ẑ|m)

)(
1 − G(n − ẑ|n)

)
,

hich establishes the result. □

roof of Lemma 9. The proof of this result is analogous to the
roof of Lemma 7 when replacing the grade-attainment proba-
ilities p, q by their respective complements p̂, q̂. □

roof of Lemma 10. Note first that based on Eqs. (5) and (6) the
robability densities for type-1 and type-2 parts are given by

(x|m) =
1

σx(m)
φ

(
x − µx(m)

σx(m)

)
and

(y|n) =
1

σy(n)
φ

(
y − µy(n)

σy(n)

)
,

respectively, for all (x, y) ∈ R2
+
. The gradient of U(m, n) is

∂mU, ∂nU)(m, n), where

∂mU =

∫
⌊m,n⌋

0

[
ρ (∂mF (m − z|m) + f (m − z|m))G(n − z|n)

−∂mF (z|m) (1 − G(z|n))
]
dz

nd

nU =

∫
⌊m,n⌋

0

[
ρ (∂nG(n − z|n) + g(n − z|n)) F (m − z|m)

−∂ G(z|n) 1 − F (z|m)
]
dz.
n ( )

12
e consider first the sign of ∂mU . The function G(n − z|n) is
ositive on the interval (0, ⌊m, n⌋). Moreover,

mF (m − z|m) + f (m − z|m) =

(
1 − p
2

+
z
2m

)
f (m − z|m) > 0,

z ∈ [0, ⌊m, n⌋].

ince ∂mF < 0 and (1 − G(z|n)) > 0 on (0, ⌊m, n⌋), this implies
mU > 0. The fact that ∂nU > 0 can be shown in an analogous
anner. □

roof of Lemma 11. Let (u, c) ∈ R+ × R2
++

, and assume
hat the input tuple (m∗(u, c), n∗(u, c)) solves the minimum-
ost matching problem (*) with objective function U(m, n), as
efined in Eq. (8) for all (m, n) ∈ R2

+
. Clearly, it is not possible

hat U(m∗(u, c), n∗(u, c)) < u, as then the utility attainment
onstraint is violated and the solution is not feasible. On the
ther hand, it is also impossible that U(m∗(u, c), n∗(u, c)) > u,
ince then by Lemma 10 a better input tuple (m̂∗(u, c), n̂∗(u, c))
an be found with m̂∗(u, c) < m∗(u, c) and n̂∗(u, c) < n∗(u, c)
i.e., lower cost) which still satisfies the output-attainability con-
traint (i.e., U(m̂∗(u, c), n̂∗(u, c)) ≥ u. Hence, at the optimum
he output-efficiency condition (9) holds for any solution of the
inimum-cost matching problem. □

roof of Theorem 1. Let (u, c) ∈ R+ × R2
++

. We first intro-
uce the Lagrangian L(m, n; λ) = c1 m + c2n − λ(U(m, n) −

) for the minimum-cost matching problem (*), where λ ≥ 0
s an adjoint variable, representing the shadow cost of relax-
ng the output-attainment condition by one unit. The first-order
ecessary optimality conditions become

mL(m, n; λ) = c1 − λ∂mU(m, n) = 0, (18)
∂nL(m, n; λ) = c2 − λ∂nU(m, n) = 0. (19)

iven that by Lemma 10 the gradient of U is positive at the fron-
ier U(m, n) = u, and that by Lemma 11 the output-attainment
onstraint is binding at the optimum (resulting in Eq. (9)), the
hadow cost must be positive (i.e., λ > 0). Thus, combining
qs. (18) and (19) yields Eq. (10). The gradient of the expected
rade-A output with respect to the input vector (m, n) can be
btained via direct differentiation of µz(m, n) as specified in
emma 7:

(m,n)µz(m, n) =

(
pΦ

(
nq−mp
σ (m,n)

)
−

pp̂
2σ (m,n)ϕ

(
nq−mp
σ (m,n)

)
, qΦ

(
mp−nq
σ (m,n)

)
−

qq̂
2σ (m,n)ϕ

(
nq−mp
σ (m,n)

))
;

similarly, for the gradient of the expected grade-B output with
respect to the input vector,

∇(m,n)µ̂z(m, n) =

(
p̂Φ

(
nq̂−mp̂
σ (m,n)

)
−

pp̂
2σ (m,n)ϕ

(
nq̂−mp̂
σ (m,n)

)
, q̂Φ

(
mp̂−nq̂
σ (m,n)

)
−

qq̂
2σ (m,n)ϕ

(
nq̂−mp̂
σ (m,n)

))
.

But this implies the gradient of the expected output,

∇(m,n)U(m, n) =
(
∂mU(m, n), ∂nU(m, n)

)
= ∇(m,n)µz(m, n) + ρ

[
∇(m,n)µ̂z(m, n)

]
,

esulting in the expressions given in the theorem. This concludes
ur proof. □

roof of Lemma 12. Taking into account that the constraint
(m, n) ≥ u in (*) is independent of c , by the envelope theorem
Mas-Colell et al., 1995, Thm. M.L.1., pp. 965–966) it is for any
∈ {1, 2}:

∂C(u, c)
=

∂
⏐⏐⏐⏐ L(m, n; λ) =

{
m∗(u, c), if i = 1,
n∗(u, c), if i = 2,
∂ci ∂ci (m∗(u,c),n∗(u,c))
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ndependent of λ, where L(m, n; λ) = c1 m+c2n−λ(U(m, n)−u).
imilarly, the envelope theorem also yields:

∂C(u, c)
∂u

=
∂

∂u

⏐⏐⏐⏐
(m∗(u,c),n∗(u,c))

L(m, n; λ) = λ,

which, by virtue of Eqs. (18) and (19), implies the corresponding
assertion in this result. □

Proof of Lemma 13. Since C(u, c) is twice continuously differen-
iable in c , the claim follows directly from Young’s theorem, as
he Hessian of C is symmetric. □

Proof of Lemma 14. Let (m, n) ∈ R2
+
. By Jensen’s inequality,

E[⌊X, Y⌋|m, n] ≤ ⌊E[X |m],E[Y |n]⌋ = ⌊mp, nq⌋.

Similarly, Jensen’s inequality also implies that

E[⌊m − X, n − Y⌋|m, n] ≤ ⌊m − E[X |m], n − E[Y |n]⌋ = ⌊mp̂, nq̂⌋.

Hence, taking into account the definitions of U , Ū in Eqs. (3) and
(11), one obtains

U(m, n) = E[⌊X, Y⌋ + ρ⌊m − X, n − Y⌋|m, n] ≤ Ū(m, n),

which concludes the proof. □

Proof of Lemma 15. Let m, n > 0. If we set δ(m, n) = nq − mp,
then by Lemma 7 for δ ≥ 0 it is

0 ≤
⌊mp, nq⌋ − µz(m, n)

σ (m, n)

= φ

(
δ(m, n)
σ (m, n)

)
−

δ(m, n)
σ (m, n)

(
1 − Φ

(
δ(m, n)
σ (m, n)

))
.

n the other hand, since (d/dx) (φ(x) − x (1 − Φ(x))) = −(1 −

(x)) < 0, for all x ∈ R, the expression on the right-hand side of
he preceding equality is downward-sloping in δ/σ > 0, so

(m, n) ≥ 0 ⇒ 0 ≤
⌊mp, nq⌋ − µz(m, n)

σ (m, n)
≤

1
√
2π

= φ(0).

(20)

For δ ≤ 0, Lemma 7 yields

0 ≤
⌊mp, nq⌋ − µz(m, n)

σ (m, n)
= φ

(
δ(m, n)
σ (m, n)

)
+

δ(m, n)
σ (m, n)

Φ

(
δ(m, n)
σ (m, n)

)
.

hus, taking account of the fact that (d/dx) (φ(x) + xΦ(x)) =

(x) > 0, for all x ∈ R, we find that the expression on the
ight-hand side must be upward-sloping in δ/σ < 0, whence

(m, n) ≤ 0 ⇒ 0 ≤
⌊mp, nq⌋ − µz(m, n)

σ (m, n)
≤

1
√
2π

= φ(0).

(21)

Combining Eqs. (20) and (21) yields

0 ≤
⌊mp, nq⌋ − µz(m, n)

σ (m, n)
≤

1
√
2π

, (22)

or all m, n > 0. In a completely analogous manner, after intro-
ducing δ̂(m, n) = nq̂ − mp̂, Lemma 9 yields, independent of the
sign of δ̂, that

0 ≤
⌊mp̂, nq̂⌋ − µ̂z(m, n)

σ (m, n)
≤

1
√
2π

, (23)

or all m, n > 0. Using Eqs. (22) and (23), together with the fact
hat U = µz + ρµ̂z , we can conclude by the triangular inequality
or the Euclidean norm on R that

≤
Ū(m, n) − U(m, n)

≤
1 + ρ
√ , (24)
σ (m, n) 2π w

13
for all m, n > 0. The (maximum) approximation error is therefore
at most linear in the joint standard deviation σ (m, n), so
R(m, n)
σ (m, n)

≤
1 + ρ
√
2π

,

which concludes our proof. □

Proof of Theorem 2. Let ū > 0 and fix p, q ∈ (0, 1). We first
consider the level set in (m, n)-space where Ū(m, n) = ū. For
relatively small quantities of type-1 components, when m ≤

n⌊(q/p), q̂/p̂⌋, one obtains that

m =
ū

p + ρp̂
.

or relatively small quantities of type-2 components, when n ≤

m⌊p/q, p̂/q̂⌋, it is

=
ū

q + ρq̂
.

The situation in between depends on whether p ≤ q or not. In
the former case,

n =
ū − mp

ρq̂
,

whereas in the latter case (when p > q),

=
ū − mρp̂

q
.

Thus, when p ≤ q, the points (m1, n1) = ( qp , 1)
ū

q+ρq̂ and
(m2, n2) = (1, p̂

q̂ )
ū

p+ρp̂ define the iso-Ū contour. For p = q, the
two points coincide and lie on the 45-degree line, so that (m∗, n∗)
with m∗

= n∗
= ū/(p + ρp̂) solves the envelope optimization

problem (**) as the only available solution candidate. For p < q,
the points (m1, n1) and (m2, n2) are such that m1 > m2 and
n1 < n2. The marginal rate of substitution (i.e., the slope of the
iso-utility contour) in between the points is
n2 − n1

m2 − m1
= −

p
ρq̂

= −γ0.

omparing this with the slope −γ = −(c1/c2) of the iso-C̄
contour leads to the optimal solution of (**) for γ ̸= γ0:

m̄∗, n̄∗) =

{
(m1, n1), if γ < γ0,

(m2, n2), if γ > γ0.
(25)

hen the marginal rate of substitution is equal to the slope of
he iso-C̄ contour, any intermediate point solves (**), so

m̄∗, n̄∗) ∈ {λ(m1, n1)+(1−λ)(m2, n2) : λ ∈ [0, 1]}, γ = γ0. (26)

n the case where p > q, the points (m̂1, n̂1) = (1, p
q )

ū
p+ρp̂ and

(m̂2, n̂2) = ( q̂p̂ , 1)
ū

q+ρq̂ define the iso-Ū contour. Switching the
axes (compared to the earlier case where p < q), the marginal
rate of substitution between the two points is

m̂2 − m̂1

n̂2 − n̂1
= −

q
ρp̂

= −γ̂0.

A comparison with the slope −γ̂ = −(c2/c1) then yields the
solution to (**) for γ̂ ̸= γ̂0:

(m̄∗, n̄∗) =

{
(m̂1, n̂1), if γ̂ < γ̂0,

(m̂2, n̂2), if γ̂ > γ̂0.
(27)

or γ̂ = γ̂0, the solution to (**) is again set-valued:

m̄∗, n̄∗) ∈ {λ(m̂1, n̂1)+(1−λ)(m̂2, n̂2) : λ ∈ [0, 1]}, γ̂ = γ̂0. (28)

Table 1 summarizes the results contained in Eqs. (25)–(28),
hich concludes our proof. □
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Table 4
Minimum output u

¯
(ε) with the input bounds m

¯
(M(ε)) and m̂

¯
(M(ε)), given

> 0.
p ≤ q p > q

γ ≤ γ0 γ > γ0 γ̂ ≤ γ̂0 γ̂ > γ̂0

δ = 0 δ̂ = 0 δ = 0 δ̂ = 0

¯
u(ε)

(
q+ρq̂
q/p

)
¯
m(M(ε))

(
p + ρp̂

)
ˆ
¯
m(M(ε))

(
p + ρp̂

)
¯
m(M(ε))

(
q+ρq̂
q̂/p̂

)
ˆ
¯
m(M(ε))

Proof of Corollary 1. Let p, q ∈ (0, 1) and ū ≥ 0. By defini-
ion C̄(ū, c) = c1m̄∗

+ c2n̄∗, where (m̄∗, n̄∗) is the solution to the
envelope optimization problem (**) in Theorem 2. This directly
implies all the entries in Table 2. □

Proof of Corollary 2. The claim follows immediately by di-
rect differentiation of the various entries in Table 2 which were
established by Corollary 1. □

Proof of Lemma 16. Let M > 0 be any given constant. To exclude
trivialities, we restrict attention to positive m, n > 0. As in the
proof of Lemma 15, we set δ(m, n) = nq − mp and δ̂(m, n) =

q̂ − mp̂. The bound for the absolute error in that result was
erived under the somewhat conservative (and generically infea-
ible) premise that the least favorable contingencies δ(m, n) = 0
nd δ̂(m, n) = 0 apply simultaneously. We now show that un-
er either of these two contingencies the relative approximation
rror, r(m, n) = R(m, n)/U(m, n) can be made arbitrarily small
or large enough input quantities. For this, consider first the case
here δ(m, n) = 0, i.e., mp = nq, so

U(m, n)
σ (m, n)

≥
mpΦ(0) + nqΦ(0)

σ (m, n)
=

√
mp

p̂ + q̂
≥ M,

s long as m ≥
¯
m(M) ≜ M2(p̂ + q̂)/p. Similarly, for ρ ∈ (0, 1], in

he case where δ̂(m, n) = 0, i.e., mp̂ = nq̂, it is

U(m, n)
σ (m, n)

≥ ρ
mp̂Φ(0) + nq̂Φ(0)

σ (m, n)
= ρ

√
mp̂

p + q
≥ M,

s long as m ≥ ˆ
¯
m(M) ≜ (M/ρ)2(p + q)/p̂. Thus, if under either

ontingency m is larger than the corresponding lower bound, it
is

r(m, n) =
R(m, n)
U(m, n)

≤
1
M

(
1 + ρ
√
2π

)
.

ence, given an ε > 0, one obtains

(m̄∗, n̄∗) ≤ ε,

as long as

m̄∗
≥ max

{
1{δ(m̄∗,n̄∗)=0}

¯
m(M(ε)), 1

{δ̂(m̄∗,n̄∗)=0} ˆ
¯
m(M(ε))

}
,

where

M(ε) ≜
1
ε

(
1 + ρ
√
2π

)
.

By Theorem 2 the optimal solution (m̄∗, n̄∗) to the envelope
ptimization problem (**) is proportional to ū, so that Table 1
mplies a suitable lower bound for the expected envelope out-
ut ū. Indeed, if the type-1 input m (which implies the value of
14
the type-2 input n) is such that

≥

{
¯
m(M(ε)), if δ(m, n) = 0,
ˆ
¯
m(M(ε)), if δ̂(m, n) = 0,

then the relative error, by construction, cannot exceed ε. This
ields the input bounds

¯
(M(ε)) =

p̂ + q̂
2πp

(
1 + ρ

ε

)2

and

ˆ
¯
m(M(ε)) =

p + q
2π p̂

(
1 + ρ

ρε

)2

.

Table 4 summarizes the minimum output, which is propor-
tional to the input bounds. Straightforward substitution of the
inputs into the corresponding entries for the minimum output
yields all the relevant entries in Table 3, which establishes the
result. □
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