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Chaotic dynamics in systems ranging from low-dimensional nonlinear differential equations to
high-dimensional spatio-temporal systems including fluid turbulence is supported by non-chaotic,
exactly recurring time-periodic solutions of the governing equations. These unstable periodic orbits
capture key features of the turbulent dynamics and sufficiently large sets of orbits promise a frame-
work to predict the statistics of the chaotic flow. Computing periodic orbits for high-dimensional
spatio-temporally chaotic systems remains challenging as known methods either show poor conver-
gence properties because they are based on time-marching of a chaotic system causing exponential
error amplification; or they require constructing Jacobian matrices which is prohibitively expen-
sive. We propose a new matrix-free method that is unaffected by exponential error amplification, is
globally convergent and can be applied to high-dimensional systems. The adjoint-based variational
method constructs an initial value problem in the space of closed loops such that periodic orbits
are attracting fixed points for the loop-dynamics. We introduce the method for general autonomous
systems. An implementation for the one-dimensional Kuramoto-Sivashinsky equation demonstrates
the robust convergence of periodic orbits underlying spatio-temporal chaos. Convergence does not
require accurate initial guesses and is independent of the period of the respective orbit.

Keywords: spatio-temporal chaos, unstable periodic orbits, adjoint methods, variational methods, matrix-
free numerical methods, Kuramoto-Sivashinsky, dynamical systems approach to turbulence

I. INTRODUCTION

Ideas from low-dimensional chaotic dynamical systems
have recently led to new insights into high-dimensional
spatio-temporally chaotic systems including fluid turbu-
lence. The idea for a dynamical description of turbu-
lence has a long history [1–3] and stems from the obser-
vation that turbulent flows often show recognizable tran-
sient coherent patterns that recur over time and space
[4]. Only in the last 15 years, however, has concrete
progress allowed dynamical systems to be truly estab-
lished as a new paradigm to study turbulence [5–7]. This
progress is based on the discovery of unstable non-chaotic
steady and time-periodic solutions of the fully nonlinear
Navier-Stokes equations which leads to a description of
turbulence as a walk through a connected forest of these
dynamically connected invariant (‘exact’) solutions in the
infinite-dimensional state space of the flow equations [8–
11].

Of special importance are time-periodic exactly recur-
ring flows. These so-called unstable periodic orbits cap-
ture the evolving dynamics of the flow [12] and form
the elementary building blocks of the chaotic dynam-
ics. Periodic orbits have been recognized as being key
for understanding chaos since the 1880s [13–15]. Pro-
vided results from low-dimensional hyperbolic dissipative
systems carry over to high-dimensional spatio-temporally
chaotic systems, periodic orbits lie dense in the chaotic
set supporting turbulence. The turbulent trajectory thus
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almost always shadows a periodic orbit. As a conse-
quence, periodic orbit theory allows to express ergodic
ensemble averages of the turbulent flow as weighted sums
over periodic orbits. In these ‘cycle expansions’, the
statistical weight of an individual orbit is controlled by
its stability features [16–21]. Sufficiently complete sets
of periodic orbits for three-dimensional fluid flows may
thus eventually allow to quantitatively describe statisti-
cal properties of turbulence in terms of exact invariant
solutions of the underlying flow equations [22]. Even if
a full description of turbulence in terms of periodic or-
bits remains beyond our reach, individual periodic orbits
are of significant importance as they capture key physi-
cal processes underlying the turbulent dynamics and may
inform control strategies [23]. Consequently, robust tools
for computing periodic orbits of high-dimensional spatio-
temporally chaotic systems including three-dimensional
fluid flows are needed.

High-dimensional spatio-temporal systems, including
spectrally discretized three-dimensional fluid flow prob-
lems, are often characterized by more than N = 106

highly coupled degrees of freedom. Computing periodic
orbits of such high-dimensional strongly coupled systems
remains computationally challenging. The commonly
used shooting method considers an initial value problem
yielding trajectories satisfying the evolution equations
and varies the initial condition until the solution closes on
itself. To find the initial condition u0 and the period T ,
Newton iteration is used to numerically solve the nonlin-
ear equation g(u0, T ) = fT (u0)−u0, where fT is the evo-
lution of the state u0 over time T . To solve this system of
nonlinear coupled equations, a standard Newton method
would require constructing the full Jacobian matrix with
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O(N2) elements. This is practically impossible for high-
dimensional strongly coupled systems with large N . Key
for computing periodic orbits of high-dimensional sys-
tems are thus matrix-free Newton methods that do not
construct the Jacobian matrix but only require successive
evaluations of the function g, implying time-stepping of
the evolution equations. Commonly used algorithms are
Krylov subspace methods [24, 25] including the Newton-
GMRES-hook-step method by Viswanath [9, 26, 27] as
well as slight variations with alternative trust-region op-
timizations [28, 29].

The matrix-free Newton approach is well suited for
computing fixed points, where the ‘period’ T can be cho-
sen arbitrarily, but the Newton approach poses funda-
mental challenges for periodic orbits. The defining prop-
erty of a chaotic system is an exponential-in-time sep-
aration of trajectories which leads to a sensitive depen-
dence on initial conditions. Very small changes in the
initial condition u0 are thus exponentially amplified by
the required time-integration. Finding zeros of g thus
becomes an ill-conditioned problem. Consequently, an
extremely good initial guess is required for the Newton
method to converge. Generating sufficiently accurate ini-
tial guesses is very challenging and often impossible. Ow-
ing to the finite numerical precision of double-precision
arithmetic long and unstable orbits are even entirely im-
possible to converge. Examples demonstrating the diffi-
culty in finding periodic orbits of high-dimensional sys-
tems using shooting methods include the seminal work
by Chandler and Kerswell [22], who computed approxi-
mately 100 orbits for a two-dimensional model flow and
describe the time-consuming and tedious manual work to
find initial guesses and trying to converge them. Likewise
van Veen et al. [30] recently computed a single periodic
orbit for box turbulence with only moderate resolution
of 643 grid points. The authors reach a moderately small
residual of 1.8 · 10−4 and thus many orders of magni-
tude larger than machine precision only after “several
months of computing on modern GPU cards, due to the
poor conditioning of the linear problems associated with
Newton’s method”. Consequently, more robust methods
with larger radii of convergence than those of shooting
methods are needed to compute periodic orbits of high-
dimensional spatio-temporally chaotic systems.

For low-dimensional systems more robust methods for
finding periodic orbits have been devised. In two- and
four-dimensional systems periodic orbits have been con-
structed using alternatives to shooting methods includ-
ing variational approaches with Fourier representation in
time [31] and methods based on topological degree the-
ory [32, 33], which have not been extended to higher di-
mensional problems. In the context of nonlinear partial
differential equations (PDEs) with one spatial dimension,
Lan and Cvitanović [34] followed a different strategy to
overcome challenges due to the exponential error ampli-
fication associated with the shooting method: Instead of
starting from trajectories satisfying the evolution equa-
tions and varying the initial condition until the solution

closes on itself, they suggested a variational method that
reverses the approach: It starts from a closed loop in
state space that does not satisfy the evolution equations
and then adapts the loop until it solves the equations
and a periodic orbit is found. To adapt the closed loop,
the problem is recast as a minimization problem in the
space of all closed loops. The loop is driven towards a
periodic orbit by minimizing a cost function that mea-
sures the deviation of the loop from an integral curve of
the vector field induced by the governing equations. No
time-marching along the orbit is required and the loop
is adapted locally. Consequently, the variational method
does not suffer from exponential error amplification and
has a large radius of convergence. The robustness of the
method has been demonstrated in the one-dimensional
Kuramoto-Sivashinsky system [35] for which Lasagna [23]
recently found more than 20 000 periodic orbits using
N=32 Fourier modes to discretize the problem.

Unfortunately, the robust variational method of Lan
and Cvitanović cannot be scaled to high-dimensional
problems such as fluid turbulence. The method is not
matrix-free but requires the explicit construction of Ja-
cobian matrices and their inversion. Moreover, accurate
computations of tangents to the loop by finite differ-
ences require the loop to be represented by a sufficiently
large number of instantaneous fields closely-spaced in
temporal direction along the loop. The size of the Ja-
cobian matrix to be inverted scales with the number of
instantaneous fields M and the spatial degrees of freedom
N as O(M2N2). This scaling reflects the prohibitively
large memory requirements for high-dimensional sys-
tems. The only attempt to apply the method to a
higher-dimensional system we are aware of is Fazendairo
et al. [36, 37] who study forced box-turbulence in a
triple-periodic box using Lattice-Boltzmann computa-
tions. They provide evidence for the convergence of two
periodic orbits but reaching a modestly small residual
of O(10−5) on a relatively small 643 spatial lattice re-
quires tens of thousands of CPU cores. As stated by
Fazendeiro et. al., even finding the shortest orbits of 3D
flows using the method by Lan and Cvitanović requires
petascale computing resources. Despite its robustness,
the variational method by Lan and Cvitanović is thus
too computationally expensive to be realistically used for
high-dimensional spatio-temporally chaotic systems.

Here we propose a novel matrix-free method that pro-
vides the same favorable convergence properties of the
variational method by Lan and Cvitanović [34, 35] but
can be applied to high-dimensional systems. The method
combines a variational approach similar to Lan and Cvi-
tanović with an adjoint-based minimization technique in-
spired by recent work of Farazmand [38] on computing
steady state solutions. Combining the variational ap-
proach with adjoints allows us to construct an initial
value problem in the space of closed loops such that un-
stable periodic orbits become attracting fixed points of
the dynamics in loop-space. Converging to a periodic
orbit thus only requires evolving an initial guess under
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the dynamics in loop-space. We develop the matrix-
free adjoint-based variational method for general au-
tonomous dynamical systems. As a proof-of-concept,
the introduced method is applied to the one-dimensional
Kuramoto-Sivashinsky equation (KSE) [39, 40]. The
KSE is a model system showing spatio-temporal chaos
that has commonly been used as a sandbox model to
develop algorithms that are eventually applied to three-
dimensional fluid flows. We demonstrate the robust con-
vergence of multiple periodic orbits of varying complex-
ity and periods. The implementation utilizes a spectral
Fourier discretization in the temporal direction to sig-
nificantly reduce the prohibitively large memory require-
ments of the method by Lan and Cvitanović.

The structure of the paper is as follows: First, the pro-
posed method for computing periodic orbits is introduced
for a general autonomous system. Section II describes
the setup of the variational problem and Sec. III dis-
cusses the adjoint-based minimization technique. In Sec.
IV, we apply the adjoint-based variational method to the
KSE and demonstrate the convergence of periodic orbits
in this spatio-temporally chaotic system. Section V sum-
marizes the manuscript and discusses future applications
to three-dimensional fluid turbulence.

II. VARIATIONAL METHOD FOR FINDING
PERIODIC ORBITS

We consider a general dynamical system for an n-
dimensional real field ~u defined over a spatial domain
Ω ⊂ Rd and varying in time t,

~u : Ω× R→ Rn,
(~x, t) 7→ ~u(~x, t).

The evolution of the field ~u is first-order in time and
governed by an autonomous partial differential equation
(PDE) of the form

∂~u

∂t
= N (~u). (1)

The nonlinear differential operator N enforces boundary
conditions at ∂Ω, the boundaries of the spatial domain
Ω. A periodic orbit is a temporally periodic solution of
the governing equation,

fT (~u)− ~u = ~0, (2)

where fT (~u) = ~u +
∫ t+T
t
Ndt′ indicates the nonlinear

evolution over the period T .
The shooting method considers solutions of the initial

value problem and varies the initial condition ~u0(~x) until
the solution closes on itself and becomes periodic. Equa-
tion (2) is thus treated as an algebraic equation for the
initial condition and the period. An alternative approach
is to consider already time-periodic fields and vary those
until they satisfy the governing equations. Instead of

identifying an initial condition as in a shooting method,
we consider the entire orbit as a solution of a boundary
value problem in the (d+ 1)-dimensional space-time do-
main. To ensure periodicity of the solution in time, the
boundary conditions in space are augmented by periodic
boundary conditions in time. The field ~u(~x, t) is thus
defined on Ω× [0, T )periodic.

The length of the domain in time T is unknown and
needs to be determined as part of the solution. To con-
vert the problem to a boundary value problem on a fixed
domain, we rescale time t 7→ s := t/T , where s denotes
the normalized time coordinate. The rescaled field

~̃u(~x, s) := ~u(~x, s · T ),

is defined on a fixed domain

~̃u : Ω× [0, 1)periodic → Rn,

(~x, s) 7→ ~̃u(~x, s).

A periodic orbit is characterized by the space-time field
~̃u(~x, s) and the period T satisfying

− 1

T

∂~̃u

∂s
+N (~̃u) = ~0. (3)

Boundary conditions in space remain unchanged with re-
spect to the dynamical system (1) and are complemented
by periodic boundary conditions in the temporal direc-
tion s. To simplify the notation, the overhead tilde is
omitted in the remainder of the article.

A periodic orbit is defined by the combination of a field
~u(~x, s) and a period T that together satisfy the boundary
value problem (3). Geometrically the periodic orbit is a
closed trajectory in state space. To characterize general
closed curves in state space, we define a loop l(~x, s) as
a tuple of a field ~u(~x, s) and a period T . A loop does
not necessarily satisfy the PDE of the boundary value
problem (3) but shares all boundary conditions in space
and time with periodic orbits. We denote the space of all
loops by

P =

{
l(~x, s) =

[
~u(~x, s)
T

] ∣∣∣∣∣
~u : Ω× [0, 1)periodic → Rn, T ∈ R+

~u satisfies BC at ∂Ω and is periodic in s

}
. (4)

Periodic orbits are specific elements of the loop-space P
that satisfy the PDE (3). A general loop only satisfies
the boundary conditions but not the PDE.

The idea of the variational method is to consider an
initial loop l0(~x, s) ∈ P and to evolve the loop until
it satisfies the boundary value problem (3). The loop
thereby converges to a periodic orbit. To evolve a loop
towards a periodic orbit we minimize the cost function J
measuring the deviation of a loop from a solution of the
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boundary value problem,

J : P → R+,

l 7→ J(l) :=

∫ 1

0

∫
Ω

~r · ~rd~xds.
(5)

where ~r is the residual of Eq. (3):

~r = − 1

T

∂~u

∂s
+N (~u). (6)

The cost function J penalizes a nonzero residual ~r. For a
periodic orbit J is zero otherwise it takes positive values.
Thus, absolute minima of J correspond to periodic or-
bits. The problem of finding periodic orbits has thereby
been converted into an optimization over loop-space P.
Instead of fixing the temporal phase of loops by a phase
condition, we intentionally define J such that it is invari-
ant under a reparametrization s 7→ s′ = (s + σ) mod 1
corresponding to a phase shift by σ in the temporal peri-
odic direction. Consequently, every periodic orbit is rep-
resented by an entire family of equivalent phase-shifted
representations. Because the variational method does not
have to adapt the temporal phase of a loop to satisfy a
phase condition, we expect the arbitrariness in the tem-
poral phase to allow the variational method to converge
to periodic orbits more robustly.

Geometrically, minimizing the cost function corre-
sponds to deforming a closed curve, a loop, in the sys-
tem’s state space, the space spanned by all instantaneous
fields ~u(~x) satisfying the boundary conditions, until the
loop becomes an integral curve of the vector field N (~u)
induced by the dynamical system. The loop thereby be-
comes a solution of the PDE and represents a periodic or-
bit. This is schematically shown in Fig. 1. At each point
~u along the loop, the vector field defines the flow direc-
tion N (~u) while ∂~u/∂t = T−1∂~u/∂s is the tangent vector
along the loop (see panel a). The cost function J mea-
sures the misalignment between the vector field and the
loop’s tangent vectors integrated along the entire loop.
Consequently, minimizing J towards its absolute mini-
mum J = 0 deforms the loop until the tangent vectors
everywhere match the flow and the loop becomes an in-
tegral curve of the vector field, as exemplified in panel b.
The loop is locally deformed to align with the vector field
and no time-marching causing exponential instabilities is
required.

III. ADJOINT-BASED METHOD FOR
MINIMIZING THE COST FUNCTION J

We recast the problem of finding periodic orbits as a
minimization problem in the space of all loops. Abso-
lute minima of the cost function J with value J = 0
correspond to periodic orbits. To minimize J with-
out constructing Jacobians we develop an adjoint-based
approach inspired by the recently introduced method

(a)

1
T
∂~u
∂s

N (~u)

s

(b)

J

FIG. 1. Schematic of the variational method for finding
periodic orbits. (a) An arbitrary closed loop (blue line)
parametrized by s ∈ [0, 1) does not satisfy the governing equa-
tions as its loop tangent ∂~u/∂t = T−1∂~u/∂s is misaligned
relative to the vector field N (~u) induced by the dynamical
system. (b) Minimizing a cost function J measuring the mis-
alignment between the vector field and the loop tangent de-
forms the loop. When the global minimum of the cost function
with J = 0 is reached the tangent vectors everywhere match
the flow, ∂~u/∂t = N (~u). The loop becomes an integral curve
of the vector field and a periodic orbit is identified.

by Farazmand [38] who computes equilibria of a two-
dimensional flow. We construct an initial value prob-
lem in loop-space P whose dynamics monotonically de-
creases the cost function J until a minimum of J is
reached.

To derive an appropriate variational dynamics in loop-
space, we define the space of generalized loops:

Pg =

{
q(~x, s) =

[
~q1(~x, s)
q2

] ∣∣∣∣∣
~q1 : Ω× [0, 1)periodic → Rn, q2 ∈ R

~q1 is periodic in s

}
. (7)

Elements q ∈ Pg do not necessarily satisfy the spatial
boundary condition of periodic orbits at ∂Ω and are thus
termed generalized loops. Obviously, the space of loops
P is a subset of the space of generalized loops P ⊂Pg.
For a loop, the components of the generalized loop have
specific meaning, ~q1 = ~u and q2 = T . Throughout this
paper, generalized loops are denoted by boldface letters.
The space of generalized loops Pg carries a real-valued
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inner product

〈 , 〉 : Pg ×Pg → R,

〈q,q′〉 =

〈 [
~q1

q2

]
,

[
~q′1
q′2

] 〉
=

∫ 1

0

∫
Ω

~q1 · ~q′1d~xds+ q2q
′
2,

(8)

and an L2-norm

||q|| =
√
〈q,q〉 =

√∫ 1

0

∫
Ω

~q1 · ~q1d~xds+ q2
2 . (9)

The objective is to construct a dynamical system in the
space of loops P such that along its solutions the cost
function J monotonically decreases and periodic orbits
become attracting fixed points of the dynamical system.
We parametrize the evolution of loops in P by a fictitious
time τ : l(τ) = [~u(~x, s; τ);T (τ)] and define an evolution
equation,

∂l

∂τ
= G(l) (10)

with operator G chosen such that

∂J

∂τ
≤ 0 ∀ τ. (11)

To construct the operator G, we follow analogous ar-
guments to those in [38]. Note, however, that in [38] a
dynamical system is derived that acts on the space of
instantaneous fields to find equilibria while here we de-
termine an operator G that evolves loops as defined in
(4). The rate of change of J along solutions of Eq. (10)
is (see Appendix A for details)

∂J

∂τ
= 2 〈LLL (l;G),R〉 . (12)

where R ∈Pg is a generalized loop

R(l) =

[
~r
0

]
, (13)

with ~r(l) the residual field (6). LLL (l;G) is the directional
derivative of the residual R in the direction G, evaluated
for the current loop l:

LLL (l;G) = lim
ε→0

R(l + εG)−R(l)

ε
. (14)

Using the adjoint of the directional derivative, we express
Eq. (12) as

∂J

∂τ
= 2

〈
G,LLL †(l;R)

〉
(15)

where LLL † is the adjoint operator of LLL with

〈LLL (q;q′),q′′〉 =
〈
q′,LLL †(q;q′′)

〉
, (16)

for all generalized loops q, q′ and q′′. This form allows
to enforce the monotonic decrease of the cost function J
by explicitly choosing the operator G:

G = −LLL †(l;R). (17)

With this choice for G, the cost function evolves as

∂J

∂τ
= 2

〈
−LLL †(l;R),LLL †(l;R)

〉
= −2

∣∣∣∣LLL †(l;R)
∣∣∣∣2 ≤ 0.

(18)
Thus, along solutions of ∂l/∂τ = G(l) = −LLL †(l;R) the
cost function J is guaranteed to monotonically decrease.

To find a periodic orbit using the adjoint approach, an
initial loop is advanced under the dynamical system in
loop-space, until a minimum of the cost function, corre-
sponding to an attracting fixed point with ∂τ l = 0, is
reached. If an absolute minimum, J = 0, is reached, the
loop satisfies the boundary value problem (3) and repre-
sents a periodic orbit. The phase of the minimizing loop
is not chosen by the adjoint-based variational method but
depends on the initial condition.

IV. APPLICATION TO
KURAMOTO-SIVASHINSKY EQUATION

We demonstrate the adjoint-based variational method
for the one-dimensional Kuramoto-Sivashinsky equation
(KSE) [39, 40]. This nonlinear partial differential equa-
tion for a one-dimensional field u(x, t) on a 1D periodic
interval x ∈ [0, L) = Ω reads

∂u

∂t
= −u∂u

∂x
− ∂2u

∂x2
− ν ∂

4u

∂x4
; x ∈ [0, L)periodic, t ∈ R

(19)
with a constant ’superviscosity’ ν > 0. The KSE has the
general form of Eq. (1) with n = d = 1. We denote the
scalar spatial coordinate by x. Rescaling the field u by
the inverse of L indicates that the only control parameter
is L = L/

√
ν the ratio of the domain length and the

square-root of the constant ν. Consequently, fixing the
domain length L and varying ν is equivalent to fixing
ν and treating L as a control parameter. Both scalings
are used in literature. Here, we fix ν = 1 and consider
L as the control parameter. The equivariance group of
the KSE contains continuous shifts in x and the discrete
center symmetry,

x→ −x ; u→ −u. (20)

We discuss periodic orbits both in the full unconstrained
space and in the subspace of fields invariant under the
discrete center symmetry.

The trivial solution of the KSE, u = const, is linearly
unstable for L > 2π

√
ν [41]. A series of bifurcations leads

to increasingly complex dynamics when L is increased.
We consider the parameter value L = 39 where the KSE
shows spatio-temporally chaotic dynamics reminiscent of
turbulence [42].
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A. Formulation of the adjoint-based method for
the KSE

For the 1D-KSE a loop consists of a one-dimensional
field u(x, s) defined over [0, L)× [0, 1) and the period T .
The residual of the boundary value problem for a periodic
orbit (6), expressed as generalized loop R (see Eq. (13)),
is

R(l) =

r(l)
0

 =

− 1

T

∂u

∂s
− u∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4

0

 , (21)

where vector notation has been suppressed because the
dimension of the field is n = 1.

The dynamical system in loop-space for which the cost
function monotonically decreases and periodic orbits be-
come attracting fixed points is based on the adjoint oper-
ator of the directional derivative of R. Partial integration
directly yields the adjoint operator for the KSE problem
(see Appendix B),

LLL †(l;R) =


1

T

∂r

∂s
+ u

∂r

∂x
− ∂2r

∂x2
− ∂4r

∂x4∫ 1

0

∫ L

0

1

T 2

∂u

∂s
rdxds

 . (22)

Consequently, the dynamical system in loop-space
∂l/∂τ = −LLL †(l;R) (see (17)) minimizing the cost func-
tion J is

∂l

∂τ
=


∂u

∂τ

∂T

∂τ

 =

−
1

T

∂r

∂s
− u ∂r

∂x
+
∂2r

∂x2
+
∂4r

∂x4

−
∫ 1

0

∫ L

0

1

T 2

∂u

∂s
rdxds

 . (23)

The first component of Eq. (23) prescribes the defor-
mation of the field u(x, s), while the second component
updates the period T .

The dynamical system in loop-space formulated for the
KSE, Eq. (23), is equivariant with respect to the discrete
symmetry:

Ξ : (x, s)→ (−x, s) ;

[
u
T

]
→
[
−u
T

]
. (24)

If an initial loop is invariant under the action of Ξ,
the evolution in τ will preserve the symmetry. Since
the transformation of the instantaneous field x →
−x;u(·, s) → −u(·, s) for all s ∈ [0, 1) corresponds to
the center-symmetry (20) of the KSE equation, the dy-
namical system in loop-space also preserves the center
symmetry of the KSE. An initial loop with field com-
ponent within the center-symmetric subspace of KSE is
invariant under Ξ, which is preserved under τ -evolution.
Consequently, the adjoint-based variational method pre-
serves the discrete center-symmetry of the KSE.

B. Numerical implementation

Expressing the field component of the dynamical sys-
tem (23) in terms of u using Eq. (21) yields,

∂u

∂τ
= G1,L +G1,NL, (25)

where the linear and nonlinear terms have the form,

G1,L =
1

T 2

∂2u

∂s2
− ∂8u

∂x8
− 2

∂6u

∂x6
− ∂4u

∂x4

G1,NL = −5
∂4u

∂x4

∂u

∂x
− 10

∂3u

∂x3

∂2u

∂x2
− 3

∂2u

∂x2

∂u

∂x
+ u2 ∂

2u

∂x2

+ u

(
∂u

∂x

)2

+
2u

T

∂2u

∂x∂s
+

1

T

∂u

∂x

∂u

∂s
.

The field u(x, s) is defined on a doubly-periodic space-
time domain. We thus numerically solve the evolu-
tion equation with a pseudospectral method [43] using
a Fourier discretization in both space and time. The
spectral representation with M modes in space and N
modes along the temporal direction is,

u(xm, sn) =

M
2 −1∑

j=−M
2

N
2 −1∑

k=−N
2

ûj,k exp

{
2πi

(
mj

M
+
nk

N

)}
.

(26)

In physical space, the field is represented by grid values
at the Gauss-Lobatto collocation points {u(xm, sn)} with
(xm, sn) = (mL/M,n/N) and index ranges 0 ≤ m ≤
M − 1 and 0 ≤ n ≤ N − 1. In spectral space, the set
of discrete Fourier coefficients {ûj,k} with −M/2 ≤ j ≤
M/2 − 1 and −N/2 ≤ k ≤ N/2 − 1 represents the field.
In spectral space, the evolution equation (25) for each
Fourier coefficient of the field takes the form

∂ûj,k
∂τ

=

[
−
(

2πk

T

)2

−
(

2πj

L

)8

+ 2

(
2πj

L

)6

−
(

2πj

L

)4
]
ûj,k + (Ĝ1,NL)j,k , (27)

where the discrete Fourier transform is indicated by a
hat. To evaluate the nonlinear term Ĝ1,NL derivatives are
calculated in spectral space and transformed to physical
space, where products are pointwise operations. Trans-
forming the result back to spectral space yields the re-
quired terms. In both the spatial and temporal direction
dealiasing following the 2/3 rule [43] is applied. To ad-
vance the evolution equation (25) in the fictitious time
τ we implement a semi-implicit time-stepping method.
An implicit-explicit Euler method treats the linear terms
implicitly and the nonlinear terms Ĝ1,NL are discretized
explicitly.

The second component of the evolution equation (23)
evolves the period of the loop T . We use an explicit
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Euler method for time-stepping. The integral defining
the right-hand-side is evaluated analogous to the pseudo-
spectral treatment of the nonlinear terms in the evolution
equation of the field. The integrand is evaluated in phys-
ical space followed by transformation to spectral space,
where the integral is given by the (0, 0) Fourier mode
multiplied by L.

Since the purpose of defining the initial value problem
in loop-space is to identify attractors corresponding to so-
lutions of the boundary value problem for periodic orbits,
stability and simplicity of the implementation are more
important than accuracy when choosing a time-stepping
scheme. The simple Euler method is only first order ac-
curate in τ but remains stable for the chosen fixed time
step ∆τ = 0.15.

C. Initial guesses and convergence to periodic
orbits

The adjoint-based variational method advances some
initial loop under the dynamical system that minimizes
the cost function J . If a minimum with J = 0 is
reached the loop satisfies the boundary value problem
for a periodic orbit. Initial guesses for the procedure
are extracted from chaotic solutions of the KSE (19)
u(x, t). The common approach for generating guesses
used in conjunction with Newton-GMRES-based shoot-
ing methods extracts close recurrences measured in terms
of the L2-distance from minima of the recurrence map
c(t, T ) = ||u(·, t+T )−u(·, t)|| [16]. Here, the L2-norm is
given by

||u||(t) =

√∫ L

0

u(x, t)2dx. (28)

Exploiting the large radius of convergence of the vari-
ational method, we here choose a much simpler and
computationally significantly cheaper method. Initial
guesses are extracted from close recurrences in a one-
dimensional projection of the solution. Specifically, we
consider subsequent maxima in the time series of ||u||(t)
where ||u||(t+ T ) ≈ ||u||(t). The segment of the solution
between those subsequent maxima yields the field com-
ponent of the initial loop. To ensure a smooth closed loop
with field component satisfying periodic boundary con-
ditions in the temporal direction, the solution segment
is Fourier-transformed in time and high-frequency com-
ponents are filtered out [34]. The double-periodic field
u0(x, s) complemented by the period defines an initial
guess l0 = [u0(x, s);T ].

The initial guess l0 is evolved under the dynamical sys-
tem in loop-space (10). Along the evolution the cost func-
tion J is guaranteed to monotonically decrease and reach
a minimum. Consequently, the adjoint-based variational
method is globally convergent. However, it is not guar-
anteed that an absolute minimum with J = 0 is reached
but the dynamics may asymptote towards a local min-
imum with J > 0. If a global minimum is reached, a

periodic orbit satisfying the boundary value problem (3)
is found. We consider a periodic orbit converged, when√
J < 10−12 is achieved. The periodic orbit corresponds

to an attracting fixed point of the dynamical system in
loop-space so that we expect exponential convergence at
a rate controlled by the leading eigenvalue of the loop
dynamics linearized around the attracting fixed point.

D. Results and discussion

We demonstrate the adjoint-based variational method
to construct periodic orbits of the KSE for the parameter
value L = 39. At this value, the dynamics is chaotic and a
large number of unstable periodic orbits are known to ex-
ists [23]. Periodic orbits of the KSE are found by evolving
initial loops under the dynamical system in loop-space
(23). The pseudo-spectral method uses 64 × 64 Fourier
modes in spatial and temporal directions to discretize the
field u(x, s). In spatial direction, we double the number
of modes compared to [23] where the chaotic attractor of
the KSE at the same parameter value L = 39 is shown
to remain structurally intact with only 32 modes. At the
increased spatial resolution of 64 modes, converged peri-
odic orbits are checked to be independent of the number
of spatial modes. In the temporal direction, the length of
periodic orbits is not known a priori. Instead of adapt-
ing the resolution to the period T of the specific orbit, we
chose a fixed resolution of 64 modes. Short periodic or-
bits of the temporally discretized system are found to be
independent of the number of temporal modes and thus
accurately represent periodic orbits of the continuous sys-
tem. Due to increasing temporal complexity of periodic
orbits with larger T , fully converged periodic orbits of
the temporally discretized system represent periodic or-
bits of the continuous PDE less accurately. However,
even for the longest orbits, increasing the temporal res-
olution showed that solutions of the discretized system
faithfully capture the structure of PDE solutions. We
consequently focus on the accuracy of convergence to pe-
riodic orbits of the temporally discretized system with
64 temporal modes, while noting that extra resolution
checks are needed to determine how accurately the longer
converged orbits of the discretized system represent so-
lutions of temporally continuous PDE. A fixed time step
of ∆τ = 0.15 leads to stable time-stepping.

Periodic orbits of the KSE are attracting solutions of
an initial value problem in the space of loops P that
monotonically decreases the cost function J , as shown in
Fig. 2. In the top panel, the square root of the cost func-
tion,

√
J , as a function of the fictitious time τ is shown.

After τ ≈ 1.5 · 106 the convergence criterion
√
J ≤ 10−12

is reached. Since the cost function J is the average of∫
Ω
r2dx over s, the square root of J scales with the L2-

norm (28) of the residual field r and should be used as
the convergence criterion. Along the evolution of the loop
with τ the cost function J monotonically decreases. After
an initial fast decrease,

√
J decays exponentially with τ .
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FIG. 2. Convergence of the adjoint-based variational method
for finding periodic orbits of the KSE: The initial value prob-
lem in loop-space evolves loops such that the cost function J
decreases monotonically along the fictitious time τ (top). The
exponential decay of J towards zero indicates convergence to-
wards a periodic orbit satisfying J = 0. Geometrically, the
variational dynamics deforms a closed loop until it becomes
an integral curve of the flow and thus a periodic orbit of the
KSE. This is shown in the bottom panel, where the evolu-
tion of the loop is visualized in a two-dimensional projection
of state space. Blue solid lines indicate the evolving loop at
times indicated in the top panel. The dashed gray line is the
converged periodic orbit. The state space projections P1(s)
and P2(s) are defined by the imaginary parts of the first and
second spatial Fourier coefficients of the field u(x).

Geometrically, the dynamical system in loop-space (23)
continuously deforms the initial loop until the loop satis-
fies the KSE and thereby becomes a periodic orbit. The
deformation is visualized in the bottom panel, where the
evolution of the loop shown in a two dimensional projec-
tion of the state space. A very substantial deformation of
the loop is associated with the fast decrease of J within
the initial 10% of the integration time.

In addition to the two-dimensional field defined over
the fixed space-time domain [0, L) × [0, 1), the corre-
sponding period T is required to define a loop. Evolving
a loop towards a periodic orbit implies finding the period
T , which re-scales the temporal length of the space-time
domain s→ t = T · s and thereby determines the length
of extension of the domain in the direction of time t.
Figure 3 shows the convergence of T to the period of the
periodic orbit together with the space-time contours of

0 5 10 15 20 25 30 35 τ (×104)
40

45

50

55

60

T

0

39

x
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0 59.59t
0

39

x

(a)

(b)
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−2.6

−1.3

0.0

1.3

2.6

FIG. 3. A periodic orbit is characterized by the combina-
tion of the field u(x, s) on a fixed double-periodic space-time
domain and the time period T that rescales the temporal di-
rection s→ t = T ·s. The variational dynamics adapts T until
the period of the periodic orbit is determined (top). Finding
the period T corresponds to determining the length of the
domain in time t. This is evidenced by space-time contours
of the solution u(x, t = T · s) for the initial condition (b) and
the converged periodic orbit (c). The period of the initial loop
and the periodic orbit are T = 40 and T = 59.59, respectively.

the corresponding initial loop u0(x, t = T · s) and the
converged periodic orbit u(x, t = T · s). As for the geom-
etry of the loop (Fig. 2) substantial changes in the pe-
riod T under the adjoint-based variational dynamics are
mostly observed within the initial 10% of the integration
of the dynamical system in loop-space (23). Already at
τ = 2 · 105, T is very close to the period of the periodic
orbit T = 59.59. We omit data beyond τ = 4 · 105 from
Fig. 3 since changes would not be visible.

The fast initial decrease of the cost function J followed
by a slow exponential decay towards zero suggests that
the loop approaches the periodic orbit along the leading
eigendirection of the loop dynamics linearized around the
attracting fixed point. This is evidenced in Fig. 4 where
the trajectory of the loop evolving towards the attracting
fixed point in loop-space and the leading eigendirection
are visualized in a two-dimensional projection. The resid-
ual
√
J along the trajectory at selected points are indi-

cated on the figure. Most of the computational efforts are
spent on following the exponential decay until the cost
function has reached sufficiently low values, although this
part of the dynamics is, at least approximately, linear.
Consequently, the convergence of the method can be ac-
celerated by explicitly exploiting the linearized dynamics
in the vicinity of the attracting fixed point. A straight-
forward method reducing the computational costs by ap-
proximately 50% is discussed in Appendix C. More so-
phisticated optimizations can be implemented and will
be helpful when applying the adjoint-based variational
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Im{û0,1}

−5

0

5
Im
{û
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FIG. 4. Convergence of the adjoint-based variational method
to the periodic orbit shown in Figs. 2 and 3 visualized by a
two-dimensional projection of the loop-space. The trajectory
of the loop (blue line) evolves towards the attracting fixed
point corresponding to the periodic orbit (green circle). The
approach follows the leading eigendirection (orange line) of
the loop dynamics linearized around the fixed point (see in-

set). Consequently, the residual
√
J exponentially decrease

with fictitious time τ , as shown in Fig. 2 (top). The two-
dimensional projection is spanned by the imaginary parts of
the Fourier modes (0, 1) and (1, 0) of the spatio-temporal field

u(x, s). Selected residual values
√
J along the trajectory are

indicated.

method to three-dimensional fluid flows.
One major advantage of the adjoint-based variational

method is that the successful convergence towards a pe-
riodic orbit is independent of the period of the respective
orbit. This is in contrast to shooting methods, where the
exponential amplification of errors during time-marching
along the orbit can hinder computing long orbits. We
demonstrate the convergence of orbits of increasing pe-
riod and complexity in Fig. 5. Six converged periodic or-
bits with periods ranging from T = 25.37 to T = 147.42
are shown in terms of state-space projections, together
with initial loops extracted from a chaotic time-series of
the KSE. The apparent large difference between initial
loop and converged orbit demonstrates that the adjoint-
based variational method offers a very large radius of con-
vergence and convergence therefore does not depend on
an initial condition in the close vicinity of the converged
orbit. The evolution of loops under the dynamical system
in loop-space converges to minima of the cost function J
for any initial condition. While globally convergent, the
variational method is not guaranteed to converge to ab-
solute minima of J with J = 0, corresponding to periodic
orbits, but the dynamics may approach a local minimum
with J > 0. For initial loops extracted from recurrences
in a one-dimensional projection of state space, as dis-
cussed in IV C, we observe approximately 70% of all ini-
tial conditions to converge to periodic orbits with J = 0.
An example of a loop approaching a local minimum of J
is shown in Appendix D.

Following Lasagna [23], initial loops for the six orbits
discussed in Fig. 5 are extracted from a chaotic tra-
jectory of the KSE in the subspace of center-symmetric

5
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P2
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(f) T = 147.42

FIG. 5. Periodic orbits of increasing length and complexity
converged by the adjoint-based variational method. The two-
dimensional projection of state space as in Fig. 2 indicates,
the initial loops (dashed orange lines) as well as the converged
periodic orbits (solid blue lines). The period of the converged
orbits are given in each panel. The gray line in the background
of each panel is the trajectory of a long chaotic solution in the
center symmetry subspace of the KSE (20). All initial loops
are chosen from the center-symmetric subspace. The dynam-
ical system in loop-space preserves the discrete symmetry of
the initial loops Ξ so that all converged periodic orbits are
also center-symmetric although the symmetry has not been
imposed by the method.
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FIG. 6. Space-time contours of the converged periodic orbits
from Fig. 5 with time periods of (a) T = 25.37, (b) T = 53.13,
(c) T = 76.61, (d) T = 106.98, (e) T = 123.37, and (f) T =
147.42. Unlike shooting methods, where exponential error
amplification during time-integration along the orbit renders
long orbits inaccessible, the adjoint-based variational method
deforms orbits locally and thus converges independent of the
orbit period.
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fields. All initial conditions for the initial value problem
in loop-space are therefore center symmetric. The dy-
namical system in loop-space (23) preserves the symme-
try Ξ of loops (24) that corresponds to the center sym-
metry of instantaneous fields in the KSE system (20).
Consequently, all converged periodic orbits also lie in the
center symmetry subspace, as confirmed by Fig. 6, where
space-time contours of the six periodic orbits are shown.
Note that the method does not explicitly enforce the dis-
crete symmetry but preserves the symmetry of the initial
condition.

E. Comparing with pre-existing methods

Both the novel adjoint-based and Lan & Cvitanović’s
existing Newton-based variational methods relax the
stringent requirement of the shooting method for the ac-
curacy of initial guesses. However, both variational meth-
ods differ significantly in terms of computational costs
and memory requirements. While the adjoint-based vari-
ational method is matrix-free, the construction of large
Jacobian matrices in the Newton-based method renders
application of this method to high-dimensional systems
practically impossible. In this section, we thus first com-
pare the adjoint-based variational method and the shoot-
ing method in terms of their radii of convergence. Then,
the matrix-free adjoint-based variational method is com-
pared to the Newton-based variational approach in terms
of computational costs and memory requirements.

1. Implementation of existing methods

We implement both the shooting method and the
Newton-based variational method for finding periodic or-
bits of the KSE. The implementation of the Newton-
based variational method is analogous to that reported in
[34, 35]. Technically we implement the method described
in [23] directly in MATLAB.

The shooting method combines a time integrator for
the KSE with a Newton-solver for the nonlinear equa-
tion 0 = g(u0, T ) = fT (u0)−u0. For time integrations we
implement a pseudo-spectral scheme using Fourier modes
in space. A first-order semi-implicit Euler’s scheme ad-
vances fields in time. The time step is chosen to be close
to 0.01 to ensure numerical stability of the integration.
With the choice ∆t = T/bT/0.01c, with b·c indicating
the integer part of a number, the integration time T is
guaranteed to be an integer multiple of ∆t. The time
integrator allows evaluating g(u0, T ). Its zeroes defining
periodic orbits are found using the trust-region-dogleg
algorithm [44, 45] provided in MATLAB. When initial-
ized by a guess sufficiently close to a periodic orbit, the
method typically requires less than 20 iterations for con-
vergence. If the method does not converge in 100 itera-
tions, we consider the attempt failed.

2. Convergence range compared to the shooting method

The adjoint-based variational method overcomes the
exponential error amplification associated with the
shooting method, and is thus expected to have a signifi-
cantly larger radius of convergence. Formally quantifying
convergence radii is challenging in general. In addition,
here there is no common metric to measure radii with
respect to because the mathematical objects characteriz-
ing guesses differ fundamentally – an initial condition for
the shooting method versus a loop object for the adjoint-
based variational method.

To confirm the expected superior convergence range
of the suggested variational method, we thus carry out
a numerical experiment. We start from an initial con-
dition that converges to a periodic orbit by using the
adjoint-based variational method, extract intermediate
loops along the convergence path, and test how close
to the converged periodic orbit the intermediate state
needs to be for the shooting method to also converge.
We specifically consider the convergence path of the non-
symmetric periodic orbit, discussed previously and shown
in Figs. 2, 3 and 4. For different values of he cost
function J , we generate initial guesses for he shooting
method from instantaneous sections of the loop aug-
mented with the period T . Since the choice of the section
is arbitrary, we extract eight different temporal sections
equally-spaced in time along the loop and feed all of them
to the shooting method.

As expected, for larger values of J the shooting method
fails to converge. Only when the cost function is suffi-
ciently small,

√
J < 10−4, and thus the loop is sufficiently

close to the periodic orbit, the shooting method initiated
with one of the eight temporal sections of the loop con-
verges to the periodic orbit. Note that for

√
J < 10−4,

the dynamics of the adjoint-based variational method is
already following the leading eigendirection of the peri-
odic orbit, as evidenced by the exponential decrease of
the cost function. Moreover, projections shown in Fig.
4 indicate how close to the converged periodic orbit the
guess already needs to be for the shooting method to
converge. This clearly indicates the vastly larger radius
of convergence of the adjoint-based variational method
compared to the shooting method.

3. Computational costs and memory requirements compared
to the Newton-based variational approach

While both variational methods adapt loops until they
satisfy the evolution equation, they fundamentally differ
in how the loop is updated, which implies vastly different
computational costs. The proposed adjoint-based varia-
tional method is matrix-free, and evolves loops directly
by the dynamical system in loop-space ∂l/∂τ = G(l).
On the contrary, the existing Newton-based variational
method, first, constructs the full Jacobian matrix of an
entire loop, and then evolves the loop by solving the sys-
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TABLE I. Scaling of computational costs and memory re-
quirements of the proposed adjoint-based variational method
in comparison to the existing Newton-based method [34, 35].
The measured time per iteration on a 2.7 GHz Dual-Core In-
tel Core i5 refers to the KSE example with N = 64 spatial
degrees of freedom. In the temporal direction, the Newton-
based method requires a resolution of M = 256 to reach the
same accuracy as the adjoint-based one for M = 64.

Method Newton-based Adjoint-based

G(l) computation − O(MN log(MN))
Jacobian construction O(MN2 log(N)) −
Linear system solution O((MN)3/2) −
Time per iteration [ms] 4392 2

Memory requirements O(MN2) O(MN)

tem of linear equations for the update vector of the New-
ton iteration (see [34] for details).

The scalings of the computational costs for both meth-
ods, with N the number of degrees of freedom in spatial
and M in temporal direction are summarized in Table I.
The computational cost of the adjoint-based variational
method is dominated by two-dimensional fast Fourier
transforms (FFT) requiring O(MN log(MN)) computa-
tions in each iteration. The Newton-based method first
constructs a Jacobian matrix of dimension MN -by-MN ,
which is sparse containing M blocks of N -by-N matrices,
4 diagonal bands and one additional horizontal and ver-
tical band each. The cost of constructing the Jacobian
matrix scales like O(MN2 log(N)). Solving the sparse
system of linear equations for the update vector takes
O((MN)3/2) operations so that depending on the size of
the system in spatial and temporal direction, either the
construction of the Jacobian or the solution of the lin-
ear system dominate the computational costs. For large
N characteristic of 3D fluid flow problems, the adjoint-
based method is expected to reduce the computational
costs per iteration by a factor of O(N).

In addition to the scalings as a function of degrees
of freedom, the lower accuracy of finite-difference ap-
proximations of the loop tangent in the Newton-based
method compared to the spectral representation in the
adjoint-based method also implies that equivalent accu-
racy requires an increased number of temporal sections
for discretizing the loop in the Newton-based method.
For the periodic orbit discussed in Fig. 2 M = 256 tem-
poral sections in the Newton-based variational method
are required to reach the same accuracy as M = 64
temporal modes in the adjoint-based method. Here we
characterize the accuracy by relative changes of the pe-
riod T when doubling the temporal resolution M . For
the equivalent resolution, one iteration of the adjoint-
based variational method takes only 2ms, while each it-
eration of the Newton-based method takes 4 392ms on
a 2.7 GHz Dual-Core Intel Core i5. Note however that
while the computational cost per iteration of the adjoint-
based variational method even for the KSE are more
than three orders of magnitude smaller than the costs

of the Newton-based method, the adjoint-based method
converges only exponentially and thus slower than the
quadratically converging Newton-based method. Con-
sequently, the adjoint-based variational method requires
more iterations to achieve converge. While the adjoint-
based method can be accelerated by exploiting the ap-
proximately linear loop dynamics around periodic orbits
(see Appendix C for an example) the main advantage
is not its speed but the vastly reduced memory require-
ments that allow to tackle larger problems.

Memory requirement are estimated for both the
adjoint-based variational method and the Newton-based
variational method and reported in Table I. The mem-
ory requirement of the Newton-based method is domi-
nated by the number of non-zero elements in the sparse
Jacobian matrix, scaling like O(MN2). In contrast to
the Newton-based method, the adjoint-based method
is matrix-free, and only stores spatio-temporal fields
with MN elements. Thus, the memory requirement of
the adjoint-based method scales with O(MN), which
is O(N) less than that of the Newton-based method.
For the convergence of the discussed KSE test case, the
Newton-based method requires more than 2 orders of
magnitude more memory than the adjoint-based method.
Due to the enormous memory requirements and compu-
tational costs, extending the Newton-based variational
method to high-dimensional systems such as fluid flows,
where N is often more than 106, is practically impossi-
ble. On the contrary, owing to the manageable memory
requirements and computational costs per iteration, the
adjoint-based method can be applied to high-dimensional
systems.

V. SUMMARY AND CONCLUSION

Unstable periodic orbits have been recognized as build-
ing blocks of the dynamics in driven dissipative spatio-
temporally chaotic systems including fluid turbulence.
Periodic orbits capture key features of the dynamics and
reveal physical processes sustaining the turbulent flow.
Constructing a sufficiently large set of periodic orbits
moreover carries the hope to eventually yield a predictive
rational theory of turbulence, where ‘properties of the
turbulent flow can be mathematically deduced from the
fundamental equations of hydrodynamics’, as expressed
by Hopf in 1948 [3]. Despite the importance of unsta-
ble periodic orbits, computing these exact solutions for
high-dimensional spatio-temporally chaotic systems re-
mains challenging. Known methods either show poor
convergence properties because they are based on time-
marching a chaotic system causing exponential error am-
plification; or they require constructing Jacobian matri-
ces which is prohibitively expensive for high-dimensional
problems. We therefore introduce a new matrix-free
method for computing periodic orbits that is unaffected
by exponential error amplification, shows robust conver-
gence properties and can be applied to high-dimensional
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spatio-temporally chaotic systems. As a proof-of-concept
we implement the method for the one-dimensional KSE
and demonstrate the convergence of periodic orbits un-
derlying spatio-temporal chaos.

The adjoint-based variational method constructs a dy-
namical system that evolves entire loops such that the
value of a cost function measuring deviations of the loop
from a solution of the governing equations monotonically
decreases. Periodic orbits correspond to attracting fixed
points of the variational dynamics. Due to the varia-
tional approach, the method provides a large radius of
convergence so that periodic orbits can be found from
inaccurate initial guesses. For the KSE we demonstrate
the robust convergence properties by successfully com-
puting periodic orbits from inaccurate initial guesses.
These guesses are extracted from the projection of the
free chaotic dynamics on a single scalar quantity, instead
from close recurrences based on the L2-distance between
spatial fields [16]. Reliable convergence to machine pre-
cision is observed independent of the period of the orbit.

The large convergence radius of the adjoint-based vari-
ational method relaxes accuracy requirements for initial
guesses when those are extracted from the chaotic dy-
namics. Since initial guesses are characterized by an en-
tire loop, one may use fast-to-compute models approxi-
mating the full dynamics to construct initial guesses for
periodic orbits of the full dynamics. Such an approach
would not be reasonable for classical shooting methods
where initial guesses are characterized by an instanta-
neous initial condition and the difference between model
and full dynamics would be amplified exponentially by
the time-marching. Suitable models that may help pro-
vide initial guesses for constructing large sets of peri-
odic orbits for a given chaotic system include under-
resolved simulations, spatially filtered equations such as
LES in fluids applications [46] and classical POD / DMD
based models [47]. In addition, recent breakthroughs
in machine learning allow to create data-driven low-
dimensional models of the chaotic dynamics that repli-
cate spatio-temporal chaos in one- and two-dimensional
systems with remarkable accuracy [48–50].

The feasibility of the proposed method has been
demonstrated for a one-dimensional chaotic PDE but
the method applies to general autonomous systems and
we plan to implement it for the full three-dimensional
Navier-Stokes equations. Specifically, we aim for an im-
plementation within our own open-source software Chan-
nelflow (channelflow.ch) [51]. In the context of this
software not only the identification of periodic orbits
but also their numerical continuation will benefit from
the adjoint-based variational approach. When trans-
ferring the adjoint-based variational approach to three-
dimensional fluid turbulence, we envision further opti-
mizations of the method. First, we will exploit that dur-
ing its approach to the attracting fixed point representing
the periodic orbit, the evolution is well approximated by
the linearization of the dynamics around the attracting
fixed point. This allows to accelerate the time-marching

in loop-space and thereby the exponential convergence,
as exemplified for the KSE. Second, one may complement
the adjoint dynamics with Newton descent to identify the
attracting fixed point in loop-space, following the anal-
ogous hybrid approach for identifying equilibrium solu-
tions [38]. Alternatively, we will combine the adjoint-
based variational method with a Newton-GMRES-based
shooting method. Such a hybrid method offers the large
radius of convergence of the adjoint-based variational
method in combination with the fast quadratic conver-
gence of Newton’s method. To allow for converging long
and unstable periodic orbits, a multi-shooting variant
of the standard Newton-GMRES-hook-step method [52]
will be used.
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Appendix A: Rate of change of the cost function J

The rate of change of the cost function J with respect
to the fictitious time τ is given in Eq. (12). Here we
derive this expression including the specific form of R.
With the definition of the cost function J (5)

J(l) =

∫ 1

0

∫
Ω

~r(l).~r(l)d~xds,

the rate of change of J with respect to the fictitious time
τ is

∂J

∂τ
= 2

∫ 1

0

∫
Ω

(∇l~r ·G) · ~rd~xds.

where ∂l/∂τ = G from definition (10) has been used.
Using the definition of the inner product in the space of
generalized loops (8), we can express the rate of change
as

∂J

∂τ
= 2

〈 ∇l~r ·G
0

 ,
~r

0

 〉 .
Here we choose the second component of both generalized
loops to be zero. With this choice, the rate of change of



13

J is given by

∂J

∂τ
= 2 〈LLL (l;G),R〉 ,

where LLL (l;G) indicates the directional derivative of R =
[~r; 0] along G, defined in (14).

Appendix B: Adjoint operator for KSE

We explicitly derive the form of the adjoint operator
for the KSE problem given in Eq. (22). In this appendix,
subscripts 1 and 2 denote the field component and the
scalar component of generalized loops, respectively. The
directional derivative of KSE along G is

LLL (l;G) =

G2

T 2

∂u

∂s
− 1

T

∂G1

∂s
− ∂(uG1)

∂x
− ∂2G1

∂x2
− ∂4G1

∂x4

0


To compute the adjoint operator, we expand the inner
product of the directional derivative of the residual and
the residual itself:

〈LLL (l;G),R〉

=

∫ 1

0

∫ L

0

L1R1dxds+ L2R2

=

∫ 1

0

∫ L

0

L1R1dxds+ 0

=

∫ 1

0

∫ L

0

(
G2

T 2

∂u

∂s
− 1

T

∂G1

∂s
− ∂(uG1)

∂x

− ∂2G1

∂x2
− ∂4G1

∂x4

)
R1dxds

=

∫ 1

0

∫ L

0

G2

T 2

∂u

∂s
R1dxds (B1)

+

∫ 1

0

∫ L

0

(
− 1

T

∂G1

∂s
− ∂(uG1)

∂x

− ∂2G1

∂x2
− ∂4G1

∂x4

)
R1dxds.

This inner product must be equal to〈
G,LLL †(l;R)

〉
=

∫ 1

0

∫ L

0

L †1G1dxds+ L †2G2, (B2)

where the adjoint operator is indicated by a dagger. Di-
rect comparison of equations (B1) and (B2) results in∫ 1

0

∫ L

0

L †1G1dxds =∫ 1

0

∫ L

0

(
− 1

T

∂G1

∂s
− ∂(uG1)

∂x
− ∂2G1

∂x2
− ∂4G1

∂x4

)
R1dxds

(B3a)

L †2G2 =

(∫ 1

0

∫ L

0

1

T 2

∂u

∂s
R1dxds

)
G2. (B3b)

The form of L †2 is directly given by (B3b):

L †2 (q;R) =

∫ 1

0

∫ L

0

1

T 2

∂u

∂s
R1dxds.

Using integration by parts and the periodicity of the do-
main in space and time, Eq. (B3a) becomes∫ 1

0

∫ L

0

L †1G1dxds =∫ 1

0

∫ L

0

(
1

T

∂R1

∂s
+ u

∂R1

∂x
− ∂2R1

∂x2
− ∂4R1

∂x4

)
G1dxds.

Consequently,

L †1 (l;R) =
1

T

∂R1

∂s
+ u

∂R1

∂x
− ∂2R1

∂x2
− ∂4R1

∂x4

where R1 = r. The adjoint operator acting on loops
therefore has the form

LLL †(l;R) =


1

T

∂r

∂s
+ u

∂r

∂x
− ∂2r

∂x2
− ∂4r

∂x4∫ 1

0

∫ L

0

1

T 2

∂u

∂s
rdxds

 .
Note that, owing to the periodic boundary conditions in
both spatial and temporal directions, here, the boundary
terms that appear during integration by parts cancel. In
general, however, boundary terms do not vanish so that
the derivation of adjoint operators for other boundary
conditions may be less straightforward.

Appendix C: Acceleration of the convergence by
linearized approximation

We demonstrate a straightforward method for accel-
erating the convergence of the adjoint-based variational
method. We iterate between time-stepping of the dy-
namical system in loop-space (23) and a linear extrapo-
lation along the evolution trajectory of the loops. This
extrapolation is based on the assumption that the evolu-
tion follows the leading eigendirection of the linearization
about the attracting loop. Extrapolations yield the ini-
tial conditions of the subsequent advancing of the loop
in τ . This procedure is repeated until the periodic orbit
is converged. Figure 7 compares the convergence of the
periodic orbit shown in Figs. 2 and 3 by continuous inte-
gration of the dynamical system in loop-space (23) and
the accelerated method iterating between time-stepping
of the full dynamics and extrapolations, both from the
same initial condition. Vertical drops of the cost function
shown in the graph correspond to the extrapolations. In
this example the accelerated method reduces the required
total number of numerical steps of integration by more
than 50%.
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FIG. 7. Accelerated convergence of the adjoint-based vari-
ational method. Convergence history for the periodic orbit
discussed in figures 2 and 3, for the standard method (orange
dashed line) and the modified method involving linear extrap-
olations along the solution trajectory in the loop-space. The
linear extrapolations are based on a linear approximation of
the loop dynamics around the attracting fixed point in loop-
space corresponding to the periodic orbit. The square root of
the cost function is shown as a function of the number of ficti-
tious time steps n. The first extrapolation is performed when√
J = 10−3. Between two consecutive extrapolations, the dy-

namical system in loop-space is integrated until the value
√
J

is halved. In this example case, extrapolations reduce the
total number of fictitious time steps by more than 50%.

Appendix D: Convergence to local and global
minima of J
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FIG. 8. Minimizing J by the adjoint-based variational
method. (a) Evolution of

√
J with τ for two different ini-

tial loops. The blue line shows the convergence for the loop
that approaches a periodic orbit with J = 0 while the red line
shows the convergence for a loop that approaches a local min-
imum of J with a nonzero value J > 0. The corresponding
initial (dashed lines) and converged loops (solid lines) in the
two-dimensional projection of the state space as in Fig. 2 are
visualized for the converged loop with J > 0 (panel b) and
the periodic orbit with J → 0 (panel c).

In Figure 8 we show an example of time-stepping of
the dynamical system in loop-space where the final loop
corresponds to local minimum of J with a nonzero value.
Consequently, no periodic orbit is found.
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